[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / ModuloSchedule.cpp
bloba68153cf3b6f2971d64a71418ad4ca8fb60f8632
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/CodeGen/LiveIntervals.h"
12 #include "llvm/CodeGen/MachineInstrBuilder.h"
13 #include "llvm/CodeGen/MachineRegisterInfo.h"
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/raw_ostream.h"
20 #define DEBUG_TYPE "pipeliner"
21 using namespace llvm;
23 void ModuloSchedule::print(raw_ostream &OS) {
24 for (MachineInstr *MI : ScheduledInstrs)
25 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28 //===----------------------------------------------------------------------===//
29 // ModuloScheduleExpander implementation
30 //===----------------------------------------------------------------------===//
32 /// Return the register values for the operands of a Phi instruction.
33 /// This function assume the instruction is a Phi.
34 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
35 unsigned &InitVal, unsigned &LoopVal) {
36 assert(Phi.isPHI() && "Expecting a Phi.");
38 InitVal = 0;
39 LoopVal = 0;
40 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
41 if (Phi.getOperand(i + 1).getMBB() != Loop)
42 InitVal = Phi.getOperand(i).getReg();
43 else
44 LoopVal = Phi.getOperand(i).getReg();
46 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49 /// Return the Phi register value that comes from the incoming block.
50 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
51 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
52 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
53 return Phi.getOperand(i).getReg();
54 return 0;
57 /// Return the Phi register value that comes the loop block.
58 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
59 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
60 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
61 return Phi.getOperand(i).getReg();
62 return 0;
65 void ModuloScheduleExpander::expand() {
66 BB = Schedule.getLoop()->getTopBlock();
67 Preheader = *BB->pred_begin();
68 if (Preheader == BB)
69 Preheader = *std::next(BB->pred_begin());
71 // Iterate over the definitions in each instruction, and compute the
72 // stage difference for each use. Keep the maximum value.
73 for (MachineInstr *MI : Schedule.getInstructions()) {
74 int DefStage = Schedule.getStage(MI);
75 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
76 MachineOperand &Op = MI->getOperand(i);
77 if (!Op.isReg() || !Op.isDef())
78 continue;
80 Register Reg = Op.getReg();
81 unsigned MaxDiff = 0;
82 bool PhiIsSwapped = false;
83 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
84 EI = MRI.use_end();
85 UI != EI; ++UI) {
86 MachineOperand &UseOp = *UI;
87 MachineInstr *UseMI = UseOp.getParent();
88 int UseStage = Schedule.getStage(UseMI);
89 unsigned Diff = 0;
90 if (UseStage != -1 && UseStage >= DefStage)
91 Diff = UseStage - DefStage;
92 if (MI->isPHI()) {
93 if (isLoopCarried(*MI))
94 ++Diff;
95 else
96 PhiIsSwapped = true;
98 MaxDiff = std::max(Diff, MaxDiff);
100 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
104 generatePipelinedLoop();
107 void ModuloScheduleExpander::generatePipelinedLoop() {
108 LoopInfo = TII->analyzeLoopForPipelining(BB);
109 assert(LoopInfo && "Must be able to analyze loop!");
111 // Create a new basic block for the kernel and add it to the CFG.
112 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114 unsigned MaxStageCount = Schedule.getNumStages() - 1;
116 // Remember the registers that are used in different stages. The index is
117 // the iteration, or stage, that the instruction is scheduled in. This is
118 // a map between register names in the original block and the names created
119 // in each stage of the pipelined loop.
120 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
121 InstrMapTy InstrMap;
123 SmallVector<MachineBasicBlock *, 4> PrologBBs;
125 // Generate the prolog instructions that set up the pipeline.
126 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
127 MF.insert(BB->getIterator(), KernelBB);
129 // Rearrange the instructions to generate the new, pipelined loop,
130 // and update register names as needed.
131 for (MachineInstr *CI : Schedule.getInstructions()) {
132 if (CI->isPHI())
133 continue;
134 unsigned StageNum = Schedule.getStage(CI);
135 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
136 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
137 KernelBB->push_back(NewMI);
138 InstrMap[NewMI] = CI;
141 // Copy any terminator instructions to the new kernel, and update
142 // names as needed.
143 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
144 E = BB->instr_end();
145 I != E; ++I) {
146 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
147 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
148 KernelBB->push_back(NewMI);
149 InstrMap[NewMI] = &*I;
152 NewKernel = KernelBB;
153 KernelBB->transferSuccessors(BB);
154 KernelBB->replaceSuccessor(BB, KernelBB);
156 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
157 InstrMap, MaxStageCount, MaxStageCount, false);
158 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
159 MaxStageCount, MaxStageCount, false);
161 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
164 // Generate the epilog instructions to complete the pipeline.
165 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167 // We need this step because the register allocation doesn't handle some
168 // situations well, so we insert copies to help out.
169 splitLifetimes(KernelBB, EpilogBBs);
171 // Remove dead instructions due to loop induction variables.
172 removeDeadInstructions(KernelBB, EpilogBBs);
174 // Add branches between prolog and epilog blocks.
175 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177 delete[] VRMap;
180 void ModuloScheduleExpander::cleanup() {
181 // Remove the original loop since it's no longer referenced.
182 for (auto &I : *BB)
183 LIS.RemoveMachineInstrFromMaps(I);
184 BB->clear();
185 BB->eraseFromParent();
188 /// Generate the pipeline prolog code.
189 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
190 MachineBasicBlock *KernelBB,
191 ValueMapTy *VRMap,
192 MBBVectorTy &PrologBBs) {
193 MachineBasicBlock *PredBB = Preheader;
194 InstrMapTy InstrMap;
196 // Generate a basic block for each stage, not including the last stage,
197 // which will be generated in the kernel. Each basic block may contain
198 // instructions from multiple stages/iterations.
199 for (unsigned i = 0; i < LastStage; ++i) {
200 // Create and insert the prolog basic block prior to the original loop
201 // basic block. The original loop is removed later.
202 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
203 PrologBBs.push_back(NewBB);
204 MF.insert(BB->getIterator(), NewBB);
205 NewBB->transferSuccessors(PredBB);
206 PredBB->addSuccessor(NewBB);
207 PredBB = NewBB;
209 // Generate instructions for each appropriate stage. Process instructions
210 // in original program order.
211 for (int StageNum = i; StageNum >= 0; --StageNum) {
212 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
213 BBE = BB->getFirstTerminator();
214 BBI != BBE; ++BBI) {
215 if (Schedule.getStage(&*BBI) == StageNum) {
216 if (BBI->isPHI())
217 continue;
218 MachineInstr *NewMI =
219 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
220 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
221 NewBB->push_back(NewMI);
222 InstrMap[NewMI] = &*BBI;
226 rewritePhiValues(NewBB, i, VRMap, InstrMap);
227 LLVM_DEBUG({
228 dbgs() << "prolog:\n";
229 NewBB->dump();
233 PredBB->replaceSuccessor(BB, KernelBB);
235 // Check if we need to remove the branch from the preheader to the original
236 // loop, and replace it with a branch to the new loop.
237 unsigned numBranches = TII->removeBranch(*Preheader);
238 if (numBranches) {
239 SmallVector<MachineOperand, 0> Cond;
240 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
244 /// Generate the pipeline epilog code. The epilog code finishes the iterations
245 /// that were started in either the prolog or the kernel. We create a basic
246 /// block for each stage that needs to complete.
247 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
248 MachineBasicBlock *KernelBB,
249 ValueMapTy *VRMap,
250 MBBVectorTy &EpilogBBs,
251 MBBVectorTy &PrologBBs) {
252 // We need to change the branch from the kernel to the first epilog block, so
253 // this call to analyze branch uses the kernel rather than the original BB.
254 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
255 SmallVector<MachineOperand, 4> Cond;
256 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
257 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
258 if (checkBranch)
259 return;
261 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
262 if (*LoopExitI == KernelBB)
263 ++LoopExitI;
264 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
265 MachineBasicBlock *LoopExitBB = *LoopExitI;
267 MachineBasicBlock *PredBB = KernelBB;
268 MachineBasicBlock *EpilogStart = LoopExitBB;
269 InstrMapTy InstrMap;
271 // Generate a basic block for each stage, not including the last stage,
272 // which was generated for the kernel. Each basic block may contain
273 // instructions from multiple stages/iterations.
274 int EpilogStage = LastStage + 1;
275 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
276 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
277 EpilogBBs.push_back(NewBB);
278 MF.insert(BB->getIterator(), NewBB);
280 PredBB->replaceSuccessor(LoopExitBB, NewBB);
281 NewBB->addSuccessor(LoopExitBB);
283 if (EpilogStart == LoopExitBB)
284 EpilogStart = NewBB;
286 // Add instructions to the epilog depending on the current block.
287 // Process instructions in original program order.
288 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
289 for (auto &BBI : *BB) {
290 if (BBI.isPHI())
291 continue;
292 MachineInstr *In = &BBI;
293 if ((unsigned)Schedule.getStage(In) == StageNum) {
294 // Instructions with memoperands in the epilog are updated with
295 // conservative values.
296 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
297 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
298 NewBB->push_back(NewMI);
299 InstrMap[NewMI] = In;
303 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
304 InstrMap, LastStage, EpilogStage, i == 1);
305 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
306 LastStage, EpilogStage, i == 1);
307 PredBB = NewBB;
309 LLVM_DEBUG({
310 dbgs() << "epilog:\n";
311 NewBB->dump();
315 // Fix any Phi nodes in the loop exit block.
316 LoopExitBB->replacePhiUsesWith(BB, PredBB);
318 // Create a branch to the new epilog from the kernel.
319 // Remove the original branch and add a new branch to the epilog.
320 TII->removeBranch(*KernelBB);
321 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
322 // Add a branch to the loop exit.
323 if (EpilogBBs.size() > 0) {
324 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
325 SmallVector<MachineOperand, 4> Cond1;
326 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
330 /// Replace all uses of FromReg that appear outside the specified
331 /// basic block with ToReg.
332 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
333 MachineBasicBlock *MBB,
334 MachineRegisterInfo &MRI,
335 LiveIntervals &LIS) {
336 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
337 E = MRI.use_end();
338 I != E;) {
339 MachineOperand &O = *I;
340 ++I;
341 if (O.getParent()->getParent() != MBB)
342 O.setReg(ToReg);
344 if (!LIS.hasInterval(ToReg))
345 LIS.createEmptyInterval(ToReg);
348 /// Return true if the register has a use that occurs outside the
349 /// specified loop.
350 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
351 MachineRegisterInfo &MRI) {
352 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
353 E = MRI.use_end();
354 I != E; ++I)
355 if (I->getParent()->getParent() != BB)
356 return true;
357 return false;
360 /// Generate Phis for the specific block in the generated pipelined code.
361 /// This function looks at the Phis from the original code to guide the
362 /// creation of new Phis.
363 void ModuloScheduleExpander::generateExistingPhis(
364 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
365 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
366 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
367 // Compute the stage number for the initial value of the Phi, which
368 // comes from the prolog. The prolog to use depends on to which kernel/
369 // epilog that we're adding the Phi.
370 unsigned PrologStage = 0;
371 unsigned PrevStage = 0;
372 bool InKernel = (LastStageNum == CurStageNum);
373 if (InKernel) {
374 PrologStage = LastStageNum - 1;
375 PrevStage = CurStageNum;
376 } else {
377 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
378 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
381 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
382 BBE = BB->getFirstNonPHI();
383 BBI != BBE; ++BBI) {
384 Register Def = BBI->getOperand(0).getReg();
386 unsigned InitVal = 0;
387 unsigned LoopVal = 0;
388 getPhiRegs(*BBI, BB, InitVal, LoopVal);
390 unsigned PhiOp1 = 0;
391 // The Phi value from the loop body typically is defined in the loop, but
392 // not always. So, we need to check if the value is defined in the loop.
393 unsigned PhiOp2 = LoopVal;
394 if (VRMap[LastStageNum].count(LoopVal))
395 PhiOp2 = VRMap[LastStageNum][LoopVal];
397 int StageScheduled = Schedule.getStage(&*BBI);
398 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
399 unsigned NumStages = getStagesForReg(Def, CurStageNum);
400 if (NumStages == 0) {
401 // We don't need to generate a Phi anymore, but we need to rename any uses
402 // of the Phi value.
403 unsigned NewReg = VRMap[PrevStage][LoopVal];
404 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
405 InitVal, NewReg);
406 if (VRMap[CurStageNum].count(LoopVal))
407 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409 // Adjust the number of Phis needed depending on the number of prologs left,
410 // and the distance from where the Phi is first scheduled. The number of
411 // Phis cannot exceed the number of prolog stages. Each stage can
412 // potentially define two values.
413 unsigned MaxPhis = PrologStage + 2;
414 if (!InKernel && (int)PrologStage <= LoopValStage)
415 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
416 unsigned NumPhis = std::min(NumStages, MaxPhis);
418 unsigned NewReg = 0;
419 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
420 // In the epilog, we may need to look back one stage to get the correct
421 // Phi name because the epilog and prolog blocks execute the same stage.
422 // The correct name is from the previous block only when the Phi has
423 // been completely scheduled prior to the epilog, and Phi value is not
424 // needed in multiple stages.
425 int StageDiff = 0;
426 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
427 NumPhis == 1)
428 StageDiff = 1;
429 // Adjust the computations below when the phi and the loop definition
430 // are scheduled in different stages.
431 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
432 StageDiff = StageScheduled - LoopValStage;
433 for (unsigned np = 0; np < NumPhis; ++np) {
434 // If the Phi hasn't been scheduled, then use the initial Phi operand
435 // value. Otherwise, use the scheduled version of the instruction. This
436 // is a little complicated when a Phi references another Phi.
437 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
438 PhiOp1 = InitVal;
439 // Check if the Phi has already been scheduled in a prolog stage.
440 else if (PrologStage >= AccessStage + StageDiff + np &&
441 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
442 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
443 // Check if the Phi has already been scheduled, but the loop instruction
444 // is either another Phi, or doesn't occur in the loop.
445 else if (PrologStage >= AccessStage + StageDiff + np) {
446 // If the Phi references another Phi, we need to examine the other
447 // Phi to get the correct value.
448 PhiOp1 = LoopVal;
449 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
450 int Indirects = 1;
451 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
452 int PhiStage = Schedule.getStage(InstOp1);
453 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
454 PhiOp1 = getInitPhiReg(*InstOp1, BB);
455 else
456 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
457 InstOp1 = MRI.getVRegDef(PhiOp1);
458 int PhiOpStage = Schedule.getStage(InstOp1);
459 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
460 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
461 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
462 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
463 break;
465 ++Indirects;
467 } else
468 PhiOp1 = InitVal;
469 // If this references a generated Phi in the kernel, get the Phi operand
470 // from the incoming block.
471 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
472 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
473 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
476 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
477 // In the epilog, a map lookup is needed to get the value from the kernel,
478 // or previous epilog block. How is does this depends on if the
479 // instruction is scheduled in the previous block.
480 if (!InKernel) {
481 int StageDiffAdj = 0;
482 if (LoopValStage != -1 && StageScheduled > LoopValStage)
483 StageDiffAdj = StageScheduled - LoopValStage;
484 // Use the loop value defined in the kernel, unless the kernel
485 // contains the last definition of the Phi.
486 if (np == 0 && PrevStage == LastStageNum &&
487 (StageScheduled != 0 || LoopValStage != 0) &&
488 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
489 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
490 // Use the value defined by the Phi. We add one because we switch
491 // from looking at the loop value to the Phi definition.
492 else if (np > 0 && PrevStage == LastStageNum &&
493 VRMap[PrevStage - np + 1].count(Def))
494 PhiOp2 = VRMap[PrevStage - np + 1][Def];
495 // Use the loop value defined in the kernel.
496 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
497 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
498 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
499 // Use the value defined by the Phi, unless we're generating the first
500 // epilog and the Phi refers to a Phi in a different stage.
501 else if (VRMap[PrevStage - np].count(Def) &&
502 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
503 (LoopValStage == StageScheduled)))
504 PhiOp2 = VRMap[PrevStage - np][Def];
507 // Check if we can reuse an existing Phi. This occurs when a Phi
508 // references another Phi, and the other Phi is scheduled in an
509 // earlier stage. We can try to reuse an existing Phi up until the last
510 // stage of the current Phi.
511 if (LoopDefIsPhi) {
512 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
513 int LVNumStages = getStagesForPhi(LoopVal);
514 int StageDiff = (StageScheduled - LoopValStage);
515 LVNumStages -= StageDiff;
516 // Make sure the loop value Phi has been processed already.
517 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
518 NewReg = PhiOp2;
519 unsigned ReuseStage = CurStageNum;
520 if (isLoopCarried(*PhiInst))
521 ReuseStage -= LVNumStages;
522 // Check if the Phi to reuse has been generated yet. If not, then
523 // there is nothing to reuse.
524 if (VRMap[ReuseStage - np].count(LoopVal)) {
525 NewReg = VRMap[ReuseStage - np][LoopVal];
527 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
528 Def, NewReg);
529 // Update the map with the new Phi name.
530 VRMap[CurStageNum - np][Def] = NewReg;
531 PhiOp2 = NewReg;
532 if (VRMap[LastStageNum - np - 1].count(LoopVal))
533 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535 if (IsLast && np == NumPhis - 1)
536 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
537 continue;
541 if (InKernel && StageDiff > 0 &&
542 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
543 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
546 const TargetRegisterClass *RC = MRI.getRegClass(Def);
547 NewReg = MRI.createVirtualRegister(RC);
549 MachineInstrBuilder NewPhi =
550 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
551 TII->get(TargetOpcode::PHI), NewReg);
552 NewPhi.addReg(PhiOp1).addMBB(BB1);
553 NewPhi.addReg(PhiOp2).addMBB(BB2);
554 if (np == 0)
555 InstrMap[NewPhi] = &*BBI;
557 // We define the Phis after creating the new pipelined code, so
558 // we need to rename the Phi values in scheduled instructions.
560 unsigned PrevReg = 0;
561 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
562 PrevReg = VRMap[PrevStage - np][LoopVal];
563 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
564 NewReg, PrevReg);
565 // If the Phi has been scheduled, use the new name for rewriting.
566 if (VRMap[CurStageNum - np].count(Def)) {
567 unsigned R = VRMap[CurStageNum - np][Def];
568 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
569 NewReg);
572 // Check if we need to rename any uses that occurs after the loop. The
573 // register to replace depends on whether the Phi is scheduled in the
574 // epilog.
575 if (IsLast && np == NumPhis - 1)
576 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578 // In the kernel, a dependent Phi uses the value from this Phi.
579 if (InKernel)
580 PhiOp2 = NewReg;
582 // Update the map with the new Phi name.
583 VRMap[CurStageNum - np][Def] = NewReg;
586 while (NumPhis++ < NumStages) {
587 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
588 NewReg, 0);
591 // Check if we need to rename a Phi that has been eliminated due to
592 // scheduling.
593 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
594 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
598 /// Generate Phis for the specified block in the generated pipelined code.
599 /// These are new Phis needed because the definition is scheduled after the
600 /// use in the pipelined sequence.
601 void ModuloScheduleExpander::generatePhis(
602 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
603 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
604 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
605 // Compute the stage number that contains the initial Phi value, and
606 // the Phi from the previous stage.
607 unsigned PrologStage = 0;
608 unsigned PrevStage = 0;
609 unsigned StageDiff = CurStageNum - LastStageNum;
610 bool InKernel = (StageDiff == 0);
611 if (InKernel) {
612 PrologStage = LastStageNum - 1;
613 PrevStage = CurStageNum;
614 } else {
615 PrologStage = LastStageNum - StageDiff;
616 PrevStage = LastStageNum + StageDiff - 1;
619 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
620 BBE = BB->instr_end();
621 BBI != BBE; ++BBI) {
622 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
623 MachineOperand &MO = BBI->getOperand(i);
624 if (!MO.isReg() || !MO.isDef() ||
625 !Register::isVirtualRegister(MO.getReg()))
626 continue;
628 int StageScheduled = Schedule.getStage(&*BBI);
629 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
630 Register Def = MO.getReg();
631 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
632 // An instruction scheduled in stage 0 and is used after the loop
633 // requires a phi in the epilog for the last definition from either
634 // the kernel or prolog.
635 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
636 hasUseAfterLoop(Def, BB, MRI))
637 NumPhis = 1;
638 if (!InKernel && (unsigned)StageScheduled > PrologStage)
639 continue;
641 unsigned PhiOp2 = VRMap[PrevStage][Def];
642 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
643 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
644 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
645 // The number of Phis can't exceed the number of prolog stages. The
646 // prolog stage number is zero based.
647 if (NumPhis > PrologStage + 1 - StageScheduled)
648 NumPhis = PrologStage + 1 - StageScheduled;
649 for (unsigned np = 0; np < NumPhis; ++np) {
650 unsigned PhiOp1 = VRMap[PrologStage][Def];
651 if (np <= PrologStage)
652 PhiOp1 = VRMap[PrologStage - np][Def];
653 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
654 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
655 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
656 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
657 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659 if (!InKernel)
660 PhiOp2 = VRMap[PrevStage - np][Def];
662 const TargetRegisterClass *RC = MRI.getRegClass(Def);
663 Register NewReg = MRI.createVirtualRegister(RC);
665 MachineInstrBuilder NewPhi =
666 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
667 TII->get(TargetOpcode::PHI), NewReg);
668 NewPhi.addReg(PhiOp1).addMBB(BB1);
669 NewPhi.addReg(PhiOp2).addMBB(BB2);
670 if (np == 0)
671 InstrMap[NewPhi] = &*BBI;
673 // Rewrite uses and update the map. The actions depend upon whether
674 // we generating code for the kernel or epilog blocks.
675 if (InKernel) {
676 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
677 NewReg);
678 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
679 NewReg);
681 PhiOp2 = NewReg;
682 VRMap[PrevStage - np - 1][Def] = NewReg;
683 } else {
684 VRMap[CurStageNum - np][Def] = NewReg;
685 if (np == NumPhis - 1)
686 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
687 NewReg);
689 if (IsLast && np == NumPhis - 1)
690 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
696 /// Remove instructions that generate values with no uses.
697 /// Typically, these are induction variable operations that generate values
698 /// used in the loop itself. A dead instruction has a definition with
699 /// no uses, or uses that occur in the original loop only.
700 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
701 MBBVectorTy &EpilogBBs) {
702 // For each epilog block, check that the value defined by each instruction
703 // is used. If not, delete it.
704 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
705 MBE = EpilogBBs.rend();
706 MBB != MBE; ++MBB)
707 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
708 ME = (*MBB)->instr_rend();
709 MI != ME;) {
710 // From DeadMachineInstructionElem. Don't delete inline assembly.
711 if (MI->isInlineAsm()) {
712 ++MI;
713 continue;
715 bool SawStore = false;
716 // Check if it's safe to remove the instruction due to side effects.
717 // We can, and want to, remove Phis here.
718 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
719 ++MI;
720 continue;
722 bool used = true;
723 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
724 MOE = MI->operands_end();
725 MOI != MOE; ++MOI) {
726 if (!MOI->isReg() || !MOI->isDef())
727 continue;
728 Register reg = MOI->getReg();
729 // Assume physical registers are used, unless they are marked dead.
730 if (Register::isPhysicalRegister(reg)) {
731 used = !MOI->isDead();
732 if (used)
733 break;
734 continue;
736 unsigned realUses = 0;
737 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
738 EI = MRI.use_end();
739 UI != EI; ++UI) {
740 // Check if there are any uses that occur only in the original
741 // loop. If so, that's not a real use.
742 if (UI->getParent()->getParent() != BB) {
743 realUses++;
744 used = true;
745 break;
748 if (realUses > 0)
749 break;
750 used = false;
752 if (!used) {
753 LIS.RemoveMachineInstrFromMaps(*MI);
754 MI++->eraseFromParent();
755 continue;
757 ++MI;
759 // In the kernel block, check if we can remove a Phi that generates a value
760 // used in an instruction removed in the epilog block.
761 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
762 BBE = KernelBB->getFirstNonPHI();
763 BBI != BBE;) {
764 MachineInstr *MI = &*BBI;
765 ++BBI;
766 Register reg = MI->getOperand(0).getReg();
767 if (MRI.use_begin(reg) == MRI.use_end()) {
768 LIS.RemoveMachineInstrFromMaps(*MI);
769 MI->eraseFromParent();
774 /// For loop carried definitions, we split the lifetime of a virtual register
775 /// that has uses past the definition in the next iteration. A copy with a new
776 /// virtual register is inserted before the definition, which helps with
777 /// generating a better register assignment.
779 /// v1 = phi(a, v2) v1 = phi(a, v2)
780 /// v2 = phi(b, v3) v2 = phi(b, v3)
781 /// v3 = .. v4 = copy v1
782 /// .. = V1 v3 = ..
783 /// .. = v4
784 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
785 MBBVectorTy &EpilogBBs) {
786 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
787 for (auto &PHI : KernelBB->phis()) {
788 Register Def = PHI.getOperand(0).getReg();
789 // Check for any Phi definition that used as an operand of another Phi
790 // in the same block.
791 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
792 E = MRI.use_instr_end();
793 I != E; ++I) {
794 if (I->isPHI() && I->getParent() == KernelBB) {
795 // Get the loop carried definition.
796 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
797 if (!LCDef)
798 continue;
799 MachineInstr *MI = MRI.getVRegDef(LCDef);
800 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
801 continue;
802 // Search through the rest of the block looking for uses of the Phi
803 // definition. If one occurs, then split the lifetime.
804 unsigned SplitReg = 0;
805 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
806 KernelBB->instr_end()))
807 if (BBJ.readsRegister(Def)) {
808 // We split the lifetime when we find the first use.
809 if (SplitReg == 0) {
810 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
811 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
812 TII->get(TargetOpcode::COPY), SplitReg)
813 .addReg(Def);
815 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
817 if (!SplitReg)
818 continue;
819 // Search through each of the epilog blocks for any uses to be renamed.
820 for (auto &Epilog : EpilogBBs)
821 for (auto &I : *Epilog)
822 if (I.readsRegister(Def))
823 I.substituteRegister(Def, SplitReg, 0, *TRI);
824 break;
830 /// Remove the incoming block from the Phis in a basic block.
831 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
832 for (MachineInstr &MI : *BB) {
833 if (!MI.isPHI())
834 break;
835 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
836 if (MI.getOperand(i + 1).getMBB() == Incoming) {
837 MI.RemoveOperand(i + 1);
838 MI.RemoveOperand(i);
839 break;
844 /// Create branches from each prolog basic block to the appropriate epilog
845 /// block. These edges are needed if the loop ends before reaching the
846 /// kernel.
847 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
848 MBBVectorTy &PrologBBs,
849 MachineBasicBlock *KernelBB,
850 MBBVectorTy &EpilogBBs,
851 ValueMapTy *VRMap) {
852 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
853 MachineBasicBlock *LastPro = KernelBB;
854 MachineBasicBlock *LastEpi = KernelBB;
856 // Start from the blocks connected to the kernel and work "out"
857 // to the first prolog and the last epilog blocks.
858 SmallVector<MachineInstr *, 4> PrevInsts;
859 unsigned MaxIter = PrologBBs.size() - 1;
860 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
861 // Add branches to the prolog that go to the corresponding
862 // epilog, and the fall-thru prolog/kernel block.
863 MachineBasicBlock *Prolog = PrologBBs[j];
864 MachineBasicBlock *Epilog = EpilogBBs[i];
866 SmallVector<MachineOperand, 4> Cond;
867 Optional<bool> StaticallyGreater =
868 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
869 unsigned numAdded = 0;
870 if (!StaticallyGreater.hasValue()) {
871 Prolog->addSuccessor(Epilog);
872 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
873 } else if (*StaticallyGreater == false) {
874 Prolog->addSuccessor(Epilog);
875 Prolog->removeSuccessor(LastPro);
876 LastEpi->removeSuccessor(Epilog);
877 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
878 removePhis(Epilog, LastEpi);
879 // Remove the blocks that are no longer referenced.
880 if (LastPro != LastEpi) {
881 LastEpi->clear();
882 LastEpi->eraseFromParent();
884 if (LastPro == KernelBB) {
885 LoopInfo->disposed();
886 NewKernel = nullptr;
888 LastPro->clear();
889 LastPro->eraseFromParent();
890 } else {
891 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
892 removePhis(Epilog, Prolog);
894 LastPro = Prolog;
895 LastEpi = Epilog;
896 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
897 E = Prolog->instr_rend();
898 I != E && numAdded > 0; ++I, --numAdded)
899 updateInstruction(&*I, false, j, 0, VRMap);
902 if (NewKernel) {
903 LoopInfo->setPreheader(PrologBBs[MaxIter]);
904 LoopInfo->adjustTripCount(-(MaxIter + 1));
908 /// Return true if we can compute the amount the instruction changes
909 /// during each iteration. Set Delta to the amount of the change.
910 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
911 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
912 const MachineOperand *BaseOp;
913 int64_t Offset;
914 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
915 return false;
917 if (!BaseOp->isReg())
918 return false;
920 Register BaseReg = BaseOp->getReg();
922 MachineRegisterInfo &MRI = MF.getRegInfo();
923 // Check if there is a Phi. If so, get the definition in the loop.
924 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
925 if (BaseDef && BaseDef->isPHI()) {
926 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
927 BaseDef = MRI.getVRegDef(BaseReg);
929 if (!BaseDef)
930 return false;
932 int D = 0;
933 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
934 return false;
936 Delta = D;
937 return true;
940 /// Update the memory operand with a new offset when the pipeliner
941 /// generates a new copy of the instruction that refers to a
942 /// different memory location.
943 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
944 MachineInstr &OldMI,
945 unsigned Num) {
946 if (Num == 0)
947 return;
948 // If the instruction has memory operands, then adjust the offset
949 // when the instruction appears in different stages.
950 if (NewMI.memoperands_empty())
951 return;
952 SmallVector<MachineMemOperand *, 2> NewMMOs;
953 for (MachineMemOperand *MMO : NewMI.memoperands()) {
954 // TODO: Figure out whether isAtomic is really necessary (see D57601).
955 if (MMO->isVolatile() || MMO->isAtomic() ||
956 (MMO->isInvariant() && MMO->isDereferenceable()) ||
957 (!MMO->getValue())) {
958 NewMMOs.push_back(MMO);
959 continue;
961 unsigned Delta;
962 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
963 int64_t AdjOffset = Delta * Num;
964 NewMMOs.push_back(
965 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
966 } else {
967 NewMMOs.push_back(
968 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
971 NewMI.setMemRefs(MF, NewMMOs);
974 /// Clone the instruction for the new pipelined loop and update the
975 /// memory operands, if needed.
976 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
977 unsigned CurStageNum,
978 unsigned InstStageNum) {
979 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
980 // Check for tied operands in inline asm instructions. This should be handled
981 // elsewhere, but I'm not sure of the best solution.
982 if (OldMI->isInlineAsm())
983 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
984 const auto &MO = OldMI->getOperand(i);
985 if (MO.isReg() && MO.isUse())
986 break;
987 unsigned UseIdx;
988 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
989 NewMI->tieOperands(i, UseIdx);
991 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
992 return NewMI;
995 /// Clone the instruction for the new pipelined loop. If needed, this
996 /// function updates the instruction using the values saved in the
997 /// InstrChanges structure.
998 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
999 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1000 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1001 auto It = InstrChanges.find(OldMI);
1002 if (It != InstrChanges.end()) {
1003 std::pair<unsigned, int64_t> RegAndOffset = It->second;
1004 unsigned BasePos, OffsetPos;
1005 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1006 return nullptr;
1007 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1008 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1009 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1010 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1011 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1013 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1014 return NewMI;
1017 /// Update the machine instruction with new virtual registers. This
1018 /// function may change the defintions and/or uses.
1019 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1020 bool LastDef,
1021 unsigned CurStageNum,
1022 unsigned InstrStageNum,
1023 ValueMapTy *VRMap) {
1024 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1025 MachineOperand &MO = NewMI->getOperand(i);
1026 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1027 continue;
1028 Register reg = MO.getReg();
1029 if (MO.isDef()) {
1030 // Create a new virtual register for the definition.
1031 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1032 Register NewReg = MRI.createVirtualRegister(RC);
1033 MO.setReg(NewReg);
1034 VRMap[CurStageNum][reg] = NewReg;
1035 if (LastDef)
1036 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1037 } else if (MO.isUse()) {
1038 MachineInstr *Def = MRI.getVRegDef(reg);
1039 // Compute the stage that contains the last definition for instruction.
1040 int DefStageNum = Schedule.getStage(Def);
1041 unsigned StageNum = CurStageNum;
1042 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1043 // Compute the difference in stages between the defintion and the use.
1044 unsigned StageDiff = (InstrStageNum - DefStageNum);
1045 // Make an adjustment to get the last definition.
1046 StageNum -= StageDiff;
1048 if (VRMap[StageNum].count(reg))
1049 MO.setReg(VRMap[StageNum][reg]);
1054 /// Return the instruction in the loop that defines the register.
1055 /// If the definition is a Phi, then follow the Phi operand to
1056 /// the instruction in the loop.
1057 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1058 SmallPtrSet<MachineInstr *, 8> Visited;
1059 MachineInstr *Def = MRI.getVRegDef(Reg);
1060 while (Def->isPHI()) {
1061 if (!Visited.insert(Def).second)
1062 break;
1063 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1064 if (Def->getOperand(i + 1).getMBB() == BB) {
1065 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1066 break;
1069 return Def;
1072 /// Return the new name for the value from the previous stage.
1073 unsigned ModuloScheduleExpander::getPrevMapVal(
1074 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1075 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1076 unsigned PrevVal = 0;
1077 if (StageNum > PhiStage) {
1078 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1079 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1080 // The name is defined in the previous stage.
1081 PrevVal = VRMap[StageNum - 1][LoopVal];
1082 else if (VRMap[StageNum].count(LoopVal))
1083 // The previous name is defined in the current stage when the instruction
1084 // order is swapped.
1085 PrevVal = VRMap[StageNum][LoopVal];
1086 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1087 // The loop value hasn't yet been scheduled.
1088 PrevVal = LoopVal;
1089 else if (StageNum == PhiStage + 1)
1090 // The loop value is another phi, which has not been scheduled.
1091 PrevVal = getInitPhiReg(*LoopInst, BB);
1092 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1093 // The loop value is another phi, which has been scheduled.
1094 PrevVal =
1095 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1096 LoopStage, VRMap, BB);
1098 return PrevVal;
1101 /// Rewrite the Phi values in the specified block to use the mappings
1102 /// from the initial operand. Once the Phi is scheduled, we switch
1103 /// to using the loop value instead of the Phi value, so those names
1104 /// do not need to be rewritten.
1105 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1106 unsigned StageNum,
1107 ValueMapTy *VRMap,
1108 InstrMapTy &InstrMap) {
1109 for (auto &PHI : BB->phis()) {
1110 unsigned InitVal = 0;
1111 unsigned LoopVal = 0;
1112 getPhiRegs(PHI, BB, InitVal, LoopVal);
1113 Register PhiDef = PHI.getOperand(0).getReg();
1115 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1116 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1117 unsigned NumPhis = getStagesForPhi(PhiDef);
1118 if (NumPhis > StageNum)
1119 NumPhis = StageNum;
1120 for (unsigned np = 0; np <= NumPhis; ++np) {
1121 unsigned NewVal =
1122 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1123 if (!NewVal)
1124 NewVal = InitVal;
1125 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1126 NewVal);
1131 /// Rewrite a previously scheduled instruction to use the register value
1132 /// from the new instruction. Make sure the instruction occurs in the
1133 /// basic block, and we don't change the uses in the new instruction.
1134 void ModuloScheduleExpander::rewriteScheduledInstr(
1135 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1136 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1137 unsigned PrevReg) {
1138 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1139 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1140 // Rewrite uses that have been scheduled already to use the new
1141 // Phi register.
1142 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1143 EI = MRI.use_end();
1144 UI != EI;) {
1145 MachineOperand &UseOp = *UI;
1146 MachineInstr *UseMI = UseOp.getParent();
1147 ++UI;
1148 if (UseMI->getParent() != BB)
1149 continue;
1150 if (UseMI->isPHI()) {
1151 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1152 continue;
1153 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1154 continue;
1156 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1157 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1158 MachineInstr *OrigMI = OrigInstr->second;
1159 int StageSched = Schedule.getStage(OrigMI);
1160 int CycleSched = Schedule.getCycle(OrigMI);
1161 unsigned ReplaceReg = 0;
1162 // This is the stage for the scheduled instruction.
1163 if (StagePhi == StageSched && Phi->isPHI()) {
1164 int CyclePhi = Schedule.getCycle(Phi);
1165 if (PrevReg && InProlog)
1166 ReplaceReg = PrevReg;
1167 else if (PrevReg && !isLoopCarried(*Phi) &&
1168 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1169 ReplaceReg = PrevReg;
1170 else
1171 ReplaceReg = NewReg;
1173 // The scheduled instruction occurs before the scheduled Phi, and the
1174 // Phi is not loop carried.
1175 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1176 ReplaceReg = NewReg;
1177 if (StagePhi > StageSched && Phi->isPHI())
1178 ReplaceReg = NewReg;
1179 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1180 ReplaceReg = NewReg;
1181 if (ReplaceReg) {
1182 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1183 UseOp.setReg(ReplaceReg);
1188 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1189 if (!Phi.isPHI())
1190 return false;
1191 unsigned DefCycle = Schedule.getCycle(&Phi);
1192 int DefStage = Schedule.getStage(&Phi);
1194 unsigned InitVal = 0;
1195 unsigned LoopVal = 0;
1196 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1197 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1198 if (!Use || Use->isPHI())
1199 return true;
1200 unsigned LoopCycle = Schedule.getCycle(Use);
1201 int LoopStage = Schedule.getStage(Use);
1202 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1205 //===----------------------------------------------------------------------===//
1206 // PeelingModuloScheduleExpander implementation
1207 //===----------------------------------------------------------------------===//
1208 // This is a reimplementation of ModuloScheduleExpander that works by creating
1209 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1210 //===----------------------------------------------------------------------===//
1212 namespace {
1213 // Remove any dead phis in MBB. Dead phis either have only one block as input
1214 // (in which case they are the identity) or have no uses.
1215 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1216 LiveIntervals *LIS) {
1217 bool Changed = true;
1218 while (Changed) {
1219 Changed = false;
1220 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1221 MachineInstr &MI = *I++;
1222 assert(MI.isPHI());
1223 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1224 if (LIS)
1225 LIS->RemoveMachineInstrFromMaps(MI);
1226 MI.eraseFromParent();
1227 Changed = true;
1228 } else if (MI.getNumExplicitOperands() == 3) {
1229 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1230 MRI.getRegClass(MI.getOperand(0).getReg()));
1231 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1232 MI.getOperand(1).getReg());
1233 if (LIS)
1234 LIS->RemoveMachineInstrFromMaps(MI);
1235 MI.eraseFromParent();
1236 Changed = true;
1242 /// Rewrites the kernel block in-place to adhere to the given schedule.
1243 /// KernelRewriter holds all of the state required to perform the rewriting.
1244 class KernelRewriter {
1245 ModuloSchedule &S;
1246 MachineBasicBlock *BB;
1247 MachineBasicBlock *PreheaderBB, *ExitBB;
1248 MachineRegisterInfo &MRI;
1249 const TargetInstrInfo *TII;
1250 LiveIntervals *LIS;
1252 // Map from register class to canonical undef register for that class.
1253 DenseMap<const TargetRegisterClass *, Register> Undefs;
1254 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1255 // this map is only used when InitReg is non-undef.
1256 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1257 // Map from LoopReg to phi register where the InitReg is undef.
1258 DenseMap<Register, Register> UndefPhis;
1260 // Reg is used by MI. Return the new register MI should use to adhere to the
1261 // schedule. Insert phis as necessary.
1262 Register remapUse(Register Reg, MachineInstr &MI);
1263 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1264 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1265 // or will be chosen so as to share another phi.
1266 Register phi(Register LoopReg, Optional<Register> InitReg = {},
1267 const TargetRegisterClass *RC = nullptr);
1268 // Create an undef register of the given register class.
1269 Register undef(const TargetRegisterClass *RC);
1271 public:
1272 KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1273 LiveIntervals *LIS = nullptr);
1274 void rewrite();
1276 } // namespace
1278 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1279 LiveIntervals *LIS)
1280 : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1281 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1282 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1283 PreheaderBB = *BB->pred_begin();
1284 if (PreheaderBB == BB)
1285 PreheaderBB = *std::next(BB->pred_begin());
1288 void KernelRewriter::rewrite() {
1289 // Rearrange the loop to be in schedule order. Note that the schedule may
1290 // contain instructions that are not owned by the loop block (InstrChanges and
1291 // friends), so we gracefully handle unowned instructions and delete any
1292 // instructions that weren't in the schedule.
1293 auto InsertPt = BB->getFirstTerminator();
1294 MachineInstr *FirstMI = nullptr;
1295 for (MachineInstr *MI : S.getInstructions()) {
1296 if (MI->isPHI())
1297 continue;
1298 if (MI->getParent())
1299 MI->removeFromParent();
1300 BB->insert(InsertPt, MI);
1301 if (!FirstMI)
1302 FirstMI = MI;
1304 assert(FirstMI && "Failed to find first MI in schedule");
1306 // At this point all of the scheduled instructions are between FirstMI
1307 // and the end of the block. Kill from the first non-phi to FirstMI.
1308 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1309 if (LIS)
1310 LIS->RemoveMachineInstrFromMaps(*I);
1311 (I++)->eraseFromParent();
1314 // Now remap every instruction in the loop.
1315 for (MachineInstr &MI : *BB) {
1316 if (MI.isPHI())
1317 continue;
1318 for (MachineOperand &MO : MI.uses()) {
1319 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1320 continue;
1321 Register Reg = remapUse(MO.getReg(), MI);
1322 MO.setReg(Reg);
1325 EliminateDeadPhis(BB, MRI, LIS);
1327 // Ensure a phi exists for all instructions that are either referenced by
1328 // an illegal phi or by an instruction outside the loop. This allows us to
1329 // treat remaps of these values the same as "normal" values that come from
1330 // loop-carried phis.
1331 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1332 if (MI->isPHI()) {
1333 Register R = MI->getOperand(0).getReg();
1334 phi(R);
1335 continue;
1338 for (MachineOperand &Def : MI->defs()) {
1339 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1340 if (MI.getParent() != BB) {
1341 phi(Def.getReg());
1342 break;
1349 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1350 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1351 if (!Producer)
1352 return Reg;
1354 int ConsumerStage = S.getStage(&MI);
1355 if (!Producer->isPHI()) {
1356 // Non-phi producers are simple to remap. Insert as many phis as the
1357 // difference between the consumer and producer stages.
1358 if (Producer->getParent() != BB)
1359 // Producer was not inside the loop. Use the register as-is.
1360 return Reg;
1361 int ProducerStage = S.getStage(Producer);
1362 assert(ConsumerStage != -1 &&
1363 "In-loop consumer should always be scheduled!");
1364 assert(ConsumerStage >= ProducerStage);
1365 unsigned StageDiff = ConsumerStage - ProducerStage;
1367 for (unsigned I = 0; I < StageDiff; ++I)
1368 Reg = phi(Reg);
1369 return Reg;
1372 // First, dive through the phi chain to find the defaults for the generated
1373 // phis.
1374 SmallVector<Optional<Register>, 4> Defaults;
1375 Register LoopReg = Reg;
1376 auto LoopProducer = Producer;
1377 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1378 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1379 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1380 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1381 assert(LoopProducer);
1383 int LoopProducerStage = S.getStage(LoopProducer);
1385 Optional<Register> IllegalPhiDefault;
1387 if (LoopProducerStage == -1) {
1388 // Do nothing.
1389 } else if (LoopProducerStage > ConsumerStage) {
1390 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1391 // In addition, Consumer's cycle must be scheduled after Producer in the
1392 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1393 // functions.
1394 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1395 int LoopProducerCycle = S.getCycle(LoopProducer);
1396 int ConsumerCycle = S.getCycle(&MI);
1397 #endif
1398 assert(LoopProducerCycle <= ConsumerCycle);
1399 assert(LoopProducerStage == ConsumerStage + 1);
1400 // Peel off the first phi from Defaults and insert a phi between producer
1401 // and consumer. This phi will not be at the front of the block so we
1402 // consider it illegal. It will only exist during the rewrite process; it
1403 // needs to exist while we peel off prologs because these could take the
1404 // default value. After that we can replace all uses with the loop producer
1405 // value.
1406 IllegalPhiDefault = Defaults.front();
1407 Defaults.erase(Defaults.begin());
1408 } else {
1409 assert(ConsumerStage >= LoopProducerStage);
1410 int StageDiff = ConsumerStage - LoopProducerStage;
1411 if (StageDiff > 0) {
1412 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1413 << " to " << (Defaults.size() + StageDiff) << "\n");
1414 // If we need more phis than we have defaults for, pad out with undefs for
1415 // the earliest phis, which are at the end of the defaults chain (the
1416 // chain is in reverse order).
1417 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1418 ? Optional<Register>()
1419 : Defaults.back());
1423 // Now we know the number of stages to jump back, insert the phi chain.
1424 auto DefaultI = Defaults.rbegin();
1425 while (DefaultI != Defaults.rend())
1426 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1428 if (IllegalPhiDefault.hasValue()) {
1429 // The consumer optionally consumes LoopProducer in the same iteration
1430 // (because the producer is scheduled at an earlier cycle than the consumer)
1431 // or the initial value. To facilitate this we create an illegal block here
1432 // by embedding a phi in the middle of the block. We will fix this up
1433 // immediately prior to pruning.
1434 auto RC = MRI.getRegClass(Reg);
1435 Register R = MRI.createVirtualRegister(RC);
1436 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1437 .addReg(IllegalPhiDefault.getValue())
1438 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1439 .addReg(LoopReg)
1440 .addMBB(BB); // Block choice is arbitrary and has no effect.
1441 return R;
1444 return LoopReg;
1447 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1448 const TargetRegisterClass *RC) {
1449 // If the init register is not undef, try and find an existing phi.
1450 if (InitReg.hasValue()) {
1451 auto I = Phis.find({LoopReg, InitReg.getValue()});
1452 if (I != Phis.end())
1453 return I->second;
1454 } else {
1455 for (auto &KV : Phis) {
1456 if (KV.first.first == LoopReg)
1457 return KV.second;
1461 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1462 // find a phi that takes undef as input.
1463 auto I = UndefPhis.find(LoopReg);
1464 if (I != UndefPhis.end()) {
1465 Register R = I->second;
1466 if (!InitReg.hasValue())
1467 // Found a phi taking undef as input, and this input is undef so return
1468 // without any more changes.
1469 return R;
1470 // Found a phi taking undef as input, so rewrite it to take InitReg.
1471 MachineInstr *MI = MRI.getVRegDef(R);
1472 MI->getOperand(1).setReg(InitReg.getValue());
1473 Phis.insert({{LoopReg, InitReg.getValue()}, R});
1474 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1475 UndefPhis.erase(I);
1476 return R;
1479 // Failed to find any existing phi to reuse, so create a new one.
1480 if (!RC)
1481 RC = MRI.getRegClass(LoopReg);
1482 Register R = MRI.createVirtualRegister(RC);
1483 if (InitReg.hasValue())
1484 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1485 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1486 .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1487 .addMBB(PreheaderBB)
1488 .addReg(LoopReg)
1489 .addMBB(BB);
1490 if (!InitReg.hasValue())
1491 UndefPhis[LoopReg] = R;
1492 else
1493 Phis[{LoopReg, *InitReg}] = R;
1494 return R;
1497 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1498 Register &R = Undefs[RC];
1499 if (R == 0) {
1500 // Create an IMPLICIT_DEF that defines this register if we need it.
1501 // All uses of this should be removed by the time we have finished unrolling
1502 // prologs and epilogs.
1503 R = MRI.createVirtualRegister(RC);
1504 auto *InsertBB = &PreheaderBB->getParent()->front();
1505 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1506 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1508 return R;
1511 namespace {
1512 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1513 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1514 /// through and defaults for these phis.
1515 class KernelOperandInfo {
1516 MachineBasicBlock *BB;
1517 MachineRegisterInfo &MRI;
1518 SmallVector<Register, 4> PhiDefaults;
1519 MachineOperand *Source;
1520 MachineOperand *Target;
1522 public:
1523 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1524 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1525 : MRI(MRI) {
1526 Source = MO;
1527 BB = MO->getParent()->getParent();
1528 while (isRegInLoop(MO)) {
1529 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1530 if (MI->isFullCopy()) {
1531 MO = &MI->getOperand(1);
1532 continue;
1534 if (!MI->isPHI())
1535 break;
1536 // If this is an illegal phi, don't count it in distance.
1537 if (IllegalPhis.count(MI)) {
1538 MO = &MI->getOperand(3);
1539 continue;
1542 Register Default = getInitPhiReg(*MI, BB);
1543 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1544 : &MI->getOperand(3);
1545 PhiDefaults.push_back(Default);
1547 Target = MO;
1550 bool operator==(const KernelOperandInfo &Other) const {
1551 return PhiDefaults.size() == Other.PhiDefaults.size();
1554 void print(raw_ostream &OS) const {
1555 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1556 << *Source->getParent();
1559 private:
1560 bool isRegInLoop(MachineOperand *MO) {
1561 return MO->isReg() && MO->getReg().isVirtual() &&
1562 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1565 } // namespace
1567 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1568 BB = Schedule.getLoop()->getTopBlock();
1569 Preheader = Schedule.getLoop()->getLoopPreheader();
1571 // Dump the schedule before we invalidate and remap all its instructions.
1572 // Stash it in a string so we can print it if we found an error.
1573 std::string ScheduleDump;
1574 raw_string_ostream OS(ScheduleDump);
1575 Schedule.print(OS);
1576 OS.flush();
1578 // First, run the normal ModuleScheduleExpander. We don't support any
1579 // InstrChanges.
1580 assert(LIS && "Requires LiveIntervals!");
1581 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
1582 ModuloScheduleExpander::InstrChangesTy());
1583 MSE.expand();
1584 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
1585 if (!ExpandedKernel) {
1586 // The expander optimized away the kernel. We can't do any useful checking.
1587 MSE.cleanup();
1588 return;
1590 // Before running the KernelRewriter, re-add BB into the CFG.
1591 Preheader->addSuccessor(BB);
1593 // Now run the new expansion algorithm.
1594 KernelRewriter KR(*Schedule.getLoop(), Schedule);
1595 KR.rewrite();
1597 // Collect all illegal phis that the new algorithm created. We'll give these
1598 // to KernelOperandInfo.
1599 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
1600 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
1601 if (NI->isPHI())
1602 IllegalPhis.insert(&*NI);
1605 // Co-iterate across both kernels. We expect them to be identical apart from
1606 // phis and full COPYs (we look through both).
1607 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
1608 auto OI = ExpandedKernel->begin();
1609 auto NI = BB->begin();
1610 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
1611 while (OI->isPHI() || OI->isFullCopy())
1612 ++OI;
1613 while (NI->isPHI() || NI->isFullCopy())
1614 ++NI;
1615 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
1616 // Analyze every operand separately.
1617 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
1618 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
1619 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
1620 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
1623 bool Failed = false;
1624 for (auto &OldAndNew : KOIs) {
1625 if (OldAndNew.first == OldAndNew.second)
1626 continue;
1627 Failed = true;
1628 errs() << "Modulo kernel validation error: [\n";
1629 errs() << " [golden] ";
1630 OldAndNew.first.print(errs());
1631 errs() << " ";
1632 OldAndNew.second.print(errs());
1633 errs() << "]\n";
1636 if (Failed) {
1637 errs() << "Golden reference kernel:\n";
1638 ExpandedKernel->print(errs());
1639 errs() << "New kernel:\n";
1640 BB->print(errs());
1641 errs() << ScheduleDump;
1642 report_fatal_error(
1643 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
1646 // Cleanup by removing BB from the CFG again as the original
1647 // ModuloScheduleExpander intended.
1648 Preheader->removeSuccessor(BB);
1649 MSE.cleanup();
1652 //===----------------------------------------------------------------------===//
1653 // ModuloScheduleTestPass implementation
1654 //===----------------------------------------------------------------------===//
1655 // This pass constructs a ModuloSchedule from its module and runs
1656 // ModuloScheduleExpander.
1658 // The module is expected to contain a single-block analyzable loop.
1659 // The total order of instructions is taken from the loop as-is.
1660 // Instructions are expected to be annotated with a PostInstrSymbol.
1661 // This PostInstrSymbol must have the following format:
1662 // "Stage=%d Cycle=%d".
1663 //===----------------------------------------------------------------------===//
1665 namespace {
1666 class ModuloScheduleTest : public MachineFunctionPass {
1667 public:
1668 static char ID;
1670 ModuloScheduleTest() : MachineFunctionPass(ID) {
1671 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
1674 bool runOnMachineFunction(MachineFunction &MF) override;
1675 void runOnLoop(MachineFunction &MF, MachineLoop &L);
1677 void getAnalysisUsage(AnalysisUsage &AU) const override {
1678 AU.addRequired<MachineLoopInfo>();
1679 AU.addRequired<LiveIntervals>();
1680 MachineFunctionPass::getAnalysisUsage(AU);
1683 } // namespace
1685 char ModuloScheduleTest::ID = 0;
1687 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
1688 "Modulo Schedule test pass", false, false)
1689 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
1690 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1691 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
1692 "Modulo Schedule test pass", false, false)
1694 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
1695 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
1696 for (auto *L : MLI) {
1697 if (L->getTopBlock() != L->getBottomBlock())
1698 continue;
1699 runOnLoop(MF, *L);
1700 return false;
1702 return false;
1705 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
1706 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
1707 std::pair<StringRef, StringRef> StageTokenAndValue =
1708 getToken(StageAndCycle.first, "-");
1709 std::pair<StringRef, StringRef> CycleTokenAndValue =
1710 getToken(StageAndCycle.second, "-");
1711 if (StageTokenAndValue.first != "Stage" ||
1712 CycleTokenAndValue.first != "_Cycle") {
1713 llvm_unreachable(
1714 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
1715 return;
1718 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
1719 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
1721 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
1724 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
1725 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
1726 MachineBasicBlock *BB = L.getTopBlock();
1727 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
1729 DenseMap<MachineInstr *, int> Cycle, Stage;
1730 std::vector<MachineInstr *> Instrs;
1731 for (MachineInstr &MI : *BB) {
1732 if (MI.isTerminator())
1733 continue;
1734 Instrs.push_back(&MI);
1735 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
1736 dbgs() << "Parsing post-instr symbol for " << MI;
1737 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
1741 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
1742 std::move(Stage));
1743 ModuloScheduleExpander MSE(
1744 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
1745 MSE.expand();
1746 MSE.cleanup();
1749 //===----------------------------------------------------------------------===//
1750 // ModuloScheduleTestAnnotater implementation
1751 //===----------------------------------------------------------------------===//
1753 void ModuloScheduleTestAnnotater::annotate() {
1754 for (MachineInstr *MI : S.getInstructions()) {
1755 SmallVector<char, 16> SV;
1756 raw_svector_ostream OS(SV);
1757 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
1758 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
1759 MI->setPostInstrSymbol(MF, Sym);