[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob3d43295d7df86a5524914bb01adf86dc4d3a4484
1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <tuple>
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "legalizedag"
57 namespace {
59 /// Keeps track of state when getting the sign of a floating-point value as an
60 /// integer.
61 struct FloatSignAsInt {
62 EVT FloatVT;
63 SDValue Chain;
64 SDValue FloatPtr;
65 SDValue IntPtr;
66 MachinePointerInfo IntPointerInfo;
67 MachinePointerInfo FloatPointerInfo;
68 SDValue IntValue;
69 APInt SignMask;
70 uint8_t SignBit;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
79 ///
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize {
85 const TargetMachine &TM;
86 const TargetLowering &TLI;
87 SelectionDAG &DAG;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 EVT getSetCCResultType(EVT VT) const {
97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
100 // Libcall insertion helpers.
102 public:
103 SelectionDAGLegalize(SelectionDAG &DAG,
104 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode *Node);
112 private:
113 SDValue OptimizeFloatStore(StoreSDNode *ST);
115 void LegalizeLoadOps(SDNode *Node);
116 void LegalizeStoreOps(SDNode *Node);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
123 const SDLoc &dl);
124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
125 const SDLoc &dl);
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
132 SDValue N1, SDValue N2,
133 ArrayRef<int> Mask) const;
135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
136 bool &NeedInvert, const SDLoc &dl);
138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
141 SDNode *Node, bool isSigned);
142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_F128,
145 RTLIB::Libcall Call_PPCF128);
146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
147 RTLIB::Libcall Call_I8,
148 RTLIB::Libcall Call_I16,
149 RTLIB::Libcall Call_I32,
150 RTLIB::Libcall Call_I64,
151 RTLIB::Libcall Call_I128);
152 SDValue ExpandArgFPLibCall(SDNode *Node,
153 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
154 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
155 RTLIB::Libcall Call_PPCF128);
156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
160 const SDLoc &dl);
161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162 const SDLoc &dl, SDValue ChainIn);
163 SDValue ExpandBUILD_VECTOR(SDNode *Node);
164 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
165 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
166 SmallVectorImpl<SDValue> &Results);
167 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
168 SDValue Value) const;
169 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
170 SDValue NewIntValue) const;
171 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
172 SDValue ExpandFABS(SDNode *Node) const;
173 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT,
174 const SDLoc &dl);
175 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
176 const SDLoc &dl);
177 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
178 const SDLoc &dl);
180 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
181 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
183 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
184 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
185 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
187 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
188 SDValue ExpandConstant(ConstantSDNode *CP);
190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
191 bool ExpandNode(SDNode *Node);
192 void ConvertNodeToLibcall(SDNode *Node);
193 void PromoteNode(SDNode *Node);
195 public:
196 // Node replacement helpers
198 void ReplacedNode(SDNode *N) {
199 LegalizedNodes.erase(N);
200 if (UpdatedNodes)
201 UpdatedNodes->insert(N);
204 void ReplaceNode(SDNode *Old, SDNode *New) {
205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
206 dbgs() << " with: "; New->dump(&DAG));
208 assert(Old->getNumValues() == New->getNumValues() &&
209 "Replacing one node with another that produces a different number "
210 "of values!");
211 DAG.ReplaceAllUsesWith(Old, New);
212 if (UpdatedNodes)
213 UpdatedNodes->insert(New);
214 ReplacedNode(Old);
217 void ReplaceNode(SDValue Old, SDValue New) {
218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
219 dbgs() << " with: "; New->dump(&DAG));
221 DAG.ReplaceAllUsesWith(Old, New);
222 if (UpdatedNodes)
223 UpdatedNodes->insert(New.getNode());
224 ReplacedNode(Old.getNode());
227 void ReplaceNode(SDNode *Old, const SDValue *New) {
228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
230 DAG.ReplaceAllUsesWith(Old, New);
231 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
232 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
233 New[i]->dump(&DAG));
234 if (UpdatedNodes)
235 UpdatedNodes->insert(New[i].getNode());
237 ReplacedNode(Old);
240 void ReplaceNodeWithValue(SDValue Old, SDValue New) {
241 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
242 dbgs() << " with: "; New->dump(&DAG));
244 DAG.ReplaceAllUsesOfValueWith(Old, New);
245 if (UpdatedNodes)
246 UpdatedNodes->insert(New.getNode());
247 ReplacedNode(Old.getNode());
251 } // end anonymous namespace
253 /// Return a vector shuffle operation which
254 /// performs the same shuffle in terms of order or result bytes, but on a type
255 /// whose vector element type is narrower than the original shuffle type.
256 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
257 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
258 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
259 ArrayRef<int> Mask) const {
260 unsigned NumMaskElts = VT.getVectorNumElements();
261 unsigned NumDestElts = NVT.getVectorNumElements();
262 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
264 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
266 if (NumEltsGrowth == 1)
267 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
269 SmallVector<int, 8> NewMask;
270 for (unsigned i = 0; i != NumMaskElts; ++i) {
271 int Idx = Mask[i];
272 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
273 if (Idx < 0)
274 NewMask.push_back(-1);
275 else
276 NewMask.push_back(Idx * NumEltsGrowth + j);
279 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
280 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
281 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 /// Expands the ConstantFP node to an integer constant or
285 /// a load from the constant pool.
286 SDValue
287 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
288 bool Extend = false;
289 SDLoc dl(CFP);
291 // If a FP immediate is precise when represented as a float and if the
292 // target can do an extending load from float to double, we put it into
293 // the constant pool as a float, even if it's is statically typed as a
294 // double. This shrinks FP constants and canonicalizes them for targets where
295 // an FP extending load is the same cost as a normal load (such as on the x87
296 // fp stack or PPC FP unit).
297 EVT VT = CFP->getValueType(0);
298 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
299 if (!UseCP) {
300 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
301 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
302 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305 APFloat APF = CFP->getValueAPF();
306 EVT OrigVT = VT;
307 EVT SVT = VT;
309 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
310 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
311 if (!APF.isSignaling()) {
312 while (SVT != MVT::f32 && SVT != MVT::f16) {
313 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
314 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
315 // Only do this if the target has a native EXTLOAD instruction from
316 // smaller type.
317 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
318 TLI.ShouldShrinkFPConstant(OrigVT)) {
319 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
320 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
321 VT = SVT;
322 Extend = true;
327 SDValue CPIdx =
328 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
329 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
330 if (Extend) {
331 SDValue Result = DAG.getExtLoad(
332 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
333 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
334 Alignment);
335 return Result;
337 SDValue Result = DAG.getLoad(
338 OrigVT, dl, DAG.getEntryNode(), CPIdx,
339 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
340 return Result;
343 /// Expands the Constant node to a load from the constant pool.
344 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
345 SDLoc dl(CP);
346 EVT VT = CP->getValueType(0);
347 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
348 TLI.getPointerTy(DAG.getDataLayout()));
349 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
350 SDValue Result = DAG.getLoad(
351 VT, dl, DAG.getEntryNode(), CPIdx,
352 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
353 return Result;
356 /// Some target cannot handle a variable insertion index for the
357 /// INSERT_VECTOR_ELT instruction. In this case, it
358 /// is necessary to spill the vector being inserted into to memory, perform
359 /// the insert there, and then read the result back.
360 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
361 SDValue Val,
362 SDValue Idx,
363 const SDLoc &dl) {
364 SDValue Tmp1 = Vec;
365 SDValue Tmp2 = Val;
366 SDValue Tmp3 = Idx;
368 // If the target doesn't support this, we have to spill the input vector
369 // to a temporary stack slot, update the element, then reload it. This is
370 // badness. We could also load the value into a vector register (either
371 // with a "move to register" or "extload into register" instruction, then
372 // permute it into place, if the idx is a constant and if the idx is
373 // supported by the target.
374 EVT VT = Tmp1.getValueType();
375 EVT EltVT = VT.getVectorElementType();
376 SDValue StackPtr = DAG.CreateStackTemporary(VT);
378 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
380 // Store the vector.
381 SDValue Ch = DAG.getStore(
382 DAG.getEntryNode(), dl, Tmp1, StackPtr,
383 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
385 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
387 // Store the scalar value.
388 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
389 // Load the updated vector.
390 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
391 DAG.getMachineFunction(), SPFI));
394 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
395 SDValue Idx,
396 const SDLoc &dl) {
397 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
398 // SCALAR_TO_VECTOR requires that the type of the value being inserted
399 // match the element type of the vector being created, except for
400 // integers in which case the inserted value can be over width.
401 EVT EltVT = Vec.getValueType().getVectorElementType();
402 if (Val.getValueType() == EltVT ||
403 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
404 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
405 Vec.getValueType(), Val);
407 unsigned NumElts = Vec.getValueType().getVectorNumElements();
408 // We generate a shuffle of InVec and ScVec, so the shuffle mask
409 // should be 0,1,2,3,4,5... with the appropriate element replaced with
410 // elt 0 of the RHS.
411 SmallVector<int, 8> ShufOps;
412 for (unsigned i = 0; i != NumElts; ++i)
413 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
415 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
418 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
421 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
422 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
423 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
424 // FIXME: We shouldn't do this for TargetConstantFP's.
425 // FIXME: move this to the DAG Combiner! Note that we can't regress due
426 // to phase ordering between legalized code and the dag combiner. This
427 // probably means that we need to integrate dag combiner and legalizer
428 // together.
429 // We generally can't do this one for long doubles.
430 SDValue Chain = ST->getChain();
431 SDValue Ptr = ST->getBasePtr();
432 unsigned Alignment = ST->getAlignment();
433 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
434 AAMDNodes AAInfo = ST->getAAInfo();
435 SDLoc dl(ST);
436 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
437 if (CFP->getValueType(0) == MVT::f32 &&
438 TLI.isTypeLegal(MVT::i32)) {
439 SDValue Con = DAG.getConstant(CFP->getValueAPF().
440 bitcastToAPInt().zextOrTrunc(32),
441 SDLoc(CFP), MVT::i32);
442 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
443 MMOFlags, AAInfo);
446 if (CFP->getValueType(0) == MVT::f64) {
447 // If this target supports 64-bit registers, do a single 64-bit store.
448 if (TLI.isTypeLegal(MVT::i64)) {
449 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
450 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
451 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
452 Alignment, MMOFlags, AAInfo);
455 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
456 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
457 // stores. If the target supports neither 32- nor 64-bits, this
458 // xform is certainly not worth it.
459 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
460 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
461 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
462 if (DAG.getDataLayout().isBigEndian())
463 std::swap(Lo, Hi);
465 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
466 MMOFlags, AAInfo);
467 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
468 DAG.getConstant(4, dl, Ptr.getValueType()));
469 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
470 ST->getPointerInfo().getWithOffset(4),
471 MinAlign(Alignment, 4U), MMOFlags, AAInfo);
473 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
477 return SDValue(nullptr, 0);
480 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
481 StoreSDNode *ST = cast<StoreSDNode>(Node);
482 SDValue Chain = ST->getChain();
483 SDValue Ptr = ST->getBasePtr();
484 SDLoc dl(Node);
486 unsigned Alignment = ST->getAlignment();
487 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
488 AAMDNodes AAInfo = ST->getAAInfo();
490 if (!ST->isTruncatingStore()) {
491 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
492 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
493 ReplaceNode(ST, OptStore);
494 return;
497 SDValue Value = ST->getValue();
498 MVT VT = Value.getSimpleValueType();
499 switch (TLI.getOperationAction(ISD::STORE, VT)) {
500 default: llvm_unreachable("This action is not supported yet!");
501 case TargetLowering::Legal: {
502 // If this is an unaligned store and the target doesn't support it,
503 // expand it.
504 EVT MemVT = ST->getMemoryVT();
505 const DataLayout &DL = DAG.getDataLayout();
506 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
507 *ST->getMemOperand())) {
508 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
509 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
510 ReplaceNode(SDValue(ST, 0), Result);
511 } else
512 LLVM_DEBUG(dbgs() << "Legal store\n");
513 break;
515 case TargetLowering::Custom: {
516 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
517 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
518 if (Res && Res != SDValue(Node, 0))
519 ReplaceNode(SDValue(Node, 0), Res);
520 return;
522 case TargetLowering::Promote: {
523 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
524 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
525 "Can only promote stores to same size type");
526 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
527 SDValue Result =
528 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
529 Alignment, MMOFlags, AAInfo);
530 ReplaceNode(SDValue(Node, 0), Result);
531 break;
534 return;
537 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
538 SDValue Value = ST->getValue();
539 EVT StVT = ST->getMemoryVT();
540 unsigned StWidth = StVT.getSizeInBits();
541 auto &DL = DAG.getDataLayout();
543 if (StWidth != StVT.getStoreSizeInBits()) {
544 // Promote to a byte-sized store with upper bits zero if not
545 // storing an integral number of bytes. For example, promote
546 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
547 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
548 StVT.getStoreSizeInBits());
549 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
550 SDValue Result =
551 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
552 Alignment, MMOFlags, AAInfo);
553 ReplaceNode(SDValue(Node, 0), Result);
554 } else if (StWidth & (StWidth - 1)) {
555 // If not storing a power-of-2 number of bits, expand as two stores.
556 assert(!StVT.isVector() && "Unsupported truncstore!");
557 unsigned LogStWidth = Log2_32(StWidth);
558 assert(LogStWidth < 32);
559 unsigned RoundWidth = 1 << LogStWidth;
560 assert(RoundWidth < StWidth);
561 unsigned ExtraWidth = StWidth - RoundWidth;
562 assert(ExtraWidth < RoundWidth);
563 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
564 "Store size not an integral number of bytes!");
565 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
566 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
567 SDValue Lo, Hi;
568 unsigned IncrementSize;
570 if (DL.isLittleEndian()) {
571 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
572 // Store the bottom RoundWidth bits.
573 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
574 RoundVT, Alignment, MMOFlags, AAInfo);
576 // Store the remaining ExtraWidth bits.
577 IncrementSize = RoundWidth / 8;
578 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
579 DAG.getConstant(IncrementSize, dl,
580 Ptr.getValueType()));
581 Hi = DAG.getNode(
582 ISD::SRL, dl, Value.getValueType(), Value,
583 DAG.getConstant(RoundWidth, dl,
584 TLI.getShiftAmountTy(Value.getValueType(), DL)));
585 Hi = DAG.getTruncStore(
586 Chain, dl, Hi, Ptr,
587 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
588 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
589 } else {
590 // Big endian - avoid unaligned stores.
591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592 // Store the top RoundWidth bits.
593 Hi = DAG.getNode(
594 ISD::SRL, dl, Value.getValueType(), Value,
595 DAG.getConstant(ExtraWidth, dl,
596 TLI.getShiftAmountTy(Value.getValueType(), DL)));
597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
598 RoundVT, Alignment, MMOFlags, AAInfo);
600 // Store the remaining ExtraWidth bits.
601 IncrementSize = RoundWidth / 8;
602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603 DAG.getConstant(IncrementSize, dl,
604 Ptr.getValueType()));
605 Lo = DAG.getTruncStore(
606 Chain, dl, Value, Ptr,
607 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
608 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
611 // The order of the stores doesn't matter.
612 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
613 ReplaceNode(SDValue(Node, 0), Result);
614 } else {
615 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
616 default: llvm_unreachable("This action is not supported yet!");
617 case TargetLowering::Legal: {
618 EVT MemVT = ST->getMemoryVT();
619 // If this is an unaligned store and the target doesn't support it,
620 // expand it.
621 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
622 *ST->getMemOperand())) {
623 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
624 ReplaceNode(SDValue(ST, 0), Result);
626 break;
628 case TargetLowering::Custom: {
629 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
630 if (Res && Res != SDValue(Node, 0))
631 ReplaceNode(SDValue(Node, 0), Res);
632 return;
634 case TargetLowering::Expand:
635 assert(!StVT.isVector() &&
636 "Vector Stores are handled in LegalizeVectorOps");
638 SDValue Result;
640 // TRUNCSTORE:i16 i32 -> STORE i16
641 if (TLI.isTypeLegal(StVT)) {
642 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
643 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
644 Alignment, MMOFlags, AAInfo);
645 } else {
646 // The in-memory type isn't legal. Truncate to the type it would promote
647 // to, and then do a truncstore.
648 Value = DAG.getNode(ISD::TRUNCATE, dl,
649 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
650 Value);
651 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
652 StVT, Alignment, MMOFlags, AAInfo);
655 ReplaceNode(SDValue(Node, 0), Result);
656 break;
661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
662 LoadSDNode *LD = cast<LoadSDNode>(Node);
663 SDValue Chain = LD->getChain(); // The chain.
664 SDValue Ptr = LD->getBasePtr(); // The base pointer.
665 SDValue Value; // The value returned by the load op.
666 SDLoc dl(Node);
668 ISD::LoadExtType ExtType = LD->getExtensionType();
669 if (ExtType == ISD::NON_EXTLOAD) {
670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671 MVT VT = Node->getSimpleValueType(0);
672 SDValue RVal = SDValue(Node, 0);
673 SDValue RChain = SDValue(Node, 1);
675 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
676 default: llvm_unreachable("This action is not supported yet!");
677 case TargetLowering::Legal: {
678 EVT MemVT = LD->getMemoryVT();
679 const DataLayout &DL = DAG.getDataLayout();
680 // If this is an unaligned load and the target doesn't support it,
681 // expand it.
682 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
683 *LD->getMemOperand())) {
684 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
686 break;
688 case TargetLowering::Custom:
689 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
690 RVal = Res;
691 RChain = Res.getValue(1);
693 break;
695 case TargetLowering::Promote: {
696 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
697 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
698 "Can only promote loads to same size type");
700 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
701 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
702 RChain = Res.getValue(1);
703 break;
706 if (RChain.getNode() != Node) {
707 assert(RVal.getNode() != Node && "Load must be completely replaced");
708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
709 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
710 if (UpdatedNodes) {
711 UpdatedNodes->insert(RVal.getNode());
712 UpdatedNodes->insert(RChain.getNode());
714 ReplacedNode(Node);
716 return;
719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720 EVT SrcVT = LD->getMemoryVT();
721 unsigned SrcWidth = SrcVT.getSizeInBits();
722 unsigned Alignment = LD->getAlignment();
723 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
724 AAMDNodes AAInfo = LD->getAAInfo();
726 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
727 // Some targets pretend to have an i1 loading operation, and actually
728 // load an i8. This trick is correct for ZEXTLOAD because the top 7
729 // bits are guaranteed to be zero; it helps the optimizers understand
730 // that these bits are zero. It is also useful for EXTLOAD, since it
731 // tells the optimizers that those bits are undefined. It would be
732 // nice to have an effective generic way of getting these benefits...
733 // Until such a way is found, don't insist on promoting i1 here.
734 (SrcVT != MVT::i1 ||
735 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
736 TargetLowering::Promote)) {
737 // Promote to a byte-sized load if not loading an integral number of
738 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
739 unsigned NewWidth = SrcVT.getStoreSizeInBits();
740 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
741 SDValue Ch;
743 // The extra bits are guaranteed to be zero, since we stored them that
744 // way. A zext load from NVT thus automatically gives zext from SrcVT.
746 ISD::LoadExtType NewExtType =
747 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
749 SDValue Result =
750 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
751 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
753 Ch = Result.getValue(1); // The chain.
755 if (ExtType == ISD::SEXTLOAD)
756 // Having the top bits zero doesn't help when sign extending.
757 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
758 Result.getValueType(),
759 Result, DAG.getValueType(SrcVT));
760 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
761 // All the top bits are guaranteed to be zero - inform the optimizers.
762 Result = DAG.getNode(ISD::AssertZext, dl,
763 Result.getValueType(), Result,
764 DAG.getValueType(SrcVT));
766 Value = Result;
767 Chain = Ch;
768 } else if (SrcWidth & (SrcWidth - 1)) {
769 // If not loading a power-of-2 number of bits, expand as two loads.
770 assert(!SrcVT.isVector() && "Unsupported extload!");
771 unsigned LogSrcWidth = Log2_32(SrcWidth);
772 assert(LogSrcWidth < 32);
773 unsigned RoundWidth = 1 << LogSrcWidth;
774 assert(RoundWidth < SrcWidth);
775 unsigned ExtraWidth = SrcWidth - RoundWidth;
776 assert(ExtraWidth < RoundWidth);
777 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
778 "Load size not an integral number of bytes!");
779 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
780 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
781 SDValue Lo, Hi, Ch;
782 unsigned IncrementSize;
783 auto &DL = DAG.getDataLayout();
785 if (DL.isLittleEndian()) {
786 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
787 // Load the bottom RoundWidth bits.
788 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
789 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
790 AAInfo);
792 // Load the remaining ExtraWidth bits.
793 IncrementSize = RoundWidth / 8;
794 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
795 DAG.getConstant(IncrementSize, dl,
796 Ptr.getValueType()));
797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
798 LD->getPointerInfo().getWithOffset(IncrementSize),
799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
800 AAInfo);
802 // Build a factor node to remember that this load is independent of
803 // the other one.
804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
805 Hi.getValue(1));
807 // Move the top bits to the right place.
808 Hi = DAG.getNode(
809 ISD::SHL, dl, Hi.getValueType(), Hi,
810 DAG.getConstant(RoundWidth, dl,
811 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
813 // Join the hi and lo parts.
814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
815 } else {
816 // Big endian - avoid unaligned loads.
817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
818 // Load the top RoundWidth bits.
819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
821 AAInfo);
823 // Load the remaining ExtraWidth bits.
824 IncrementSize = RoundWidth / 8;
825 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
826 DAG.getConstant(IncrementSize, dl,
827 Ptr.getValueType()));
828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
829 LD->getPointerInfo().getWithOffset(IncrementSize),
830 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
831 AAInfo);
833 // Build a factor node to remember that this load is independent of
834 // the other one.
835 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
836 Hi.getValue(1));
838 // Move the top bits to the right place.
839 Hi = DAG.getNode(
840 ISD::SHL, dl, Hi.getValueType(), Hi,
841 DAG.getConstant(ExtraWidth, dl,
842 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
844 // Join the hi and lo parts.
845 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
848 Chain = Ch;
849 } else {
850 bool isCustom = false;
851 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
852 SrcVT.getSimpleVT())) {
853 default: llvm_unreachable("This action is not supported yet!");
854 case TargetLowering::Custom:
855 isCustom = true;
856 LLVM_FALLTHROUGH;
857 case TargetLowering::Legal:
858 Value = SDValue(Node, 0);
859 Chain = SDValue(Node, 1);
861 if (isCustom) {
862 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
863 Value = Res;
864 Chain = Res.getValue(1);
866 } else {
867 // If this is an unaligned load and the target doesn't support it,
868 // expand it.
869 EVT MemVT = LD->getMemoryVT();
870 const DataLayout &DL = DAG.getDataLayout();
871 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
872 *LD->getMemOperand())) {
873 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
876 break;
878 case TargetLowering::Expand: {
879 EVT DestVT = Node->getValueType(0);
880 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
881 // If the source type is not legal, see if there is a legal extload to
882 // an intermediate type that we can then extend further.
883 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
884 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
885 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
886 // If we are loading a legal type, this is a non-extload followed by a
887 // full extend.
888 ISD::LoadExtType MidExtType =
889 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
891 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
892 SrcVT, LD->getMemOperand());
893 unsigned ExtendOp =
894 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
895 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
896 Chain = Load.getValue(1);
897 break;
900 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
901 // normal undefined upper bits behavior to allow using an in-reg extend
902 // with the illegal FP type, so load as an integer and do the
903 // from-integer conversion.
904 if (SrcVT.getScalarType() == MVT::f16) {
905 EVT ISrcVT = SrcVT.changeTypeToInteger();
906 EVT IDestVT = DestVT.changeTypeToInteger();
907 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
909 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
910 Ptr, ISrcVT, LD->getMemOperand());
911 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
912 Chain = Result.getValue(1);
913 break;
917 assert(!SrcVT.isVector() &&
918 "Vector Loads are handled in LegalizeVectorOps");
920 // FIXME: This does not work for vectors on most targets. Sign-
921 // and zero-extend operations are currently folded into extending
922 // loads, whether they are legal or not, and then we end up here
923 // without any support for legalizing them.
924 assert(ExtType != ISD::EXTLOAD &&
925 "EXTLOAD should always be supported!");
926 // Turn the unsupported load into an EXTLOAD followed by an
927 // explicit zero/sign extend inreg.
928 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
929 Node->getValueType(0),
930 Chain, Ptr, SrcVT,
931 LD->getMemOperand());
932 SDValue ValRes;
933 if (ExtType == ISD::SEXTLOAD)
934 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
935 Result.getValueType(),
936 Result, DAG.getValueType(SrcVT));
937 else
938 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
939 Value = ValRes;
940 Chain = Result.getValue(1);
941 break;
946 // Since loads produce two values, make sure to remember that we legalized
947 // both of them.
948 if (Chain.getNode() != Node) {
949 assert(Value.getNode() != Node && "Load must be completely replaced");
950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
951 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
952 if (UpdatedNodes) {
953 UpdatedNodes->insert(Value.getNode());
954 UpdatedNodes->insert(Chain.getNode());
956 ReplacedNode(Node);
960 /// Return a legal replacement for the given operation, with all legal operands.
961 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
962 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
964 // Allow illegal target nodes and illegal registers.
965 if (Node->getOpcode() == ISD::TargetConstant ||
966 Node->getOpcode() == ISD::Register)
967 return;
969 #ifndef NDEBUG
970 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
971 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
972 TargetLowering::TypeLegal &&
973 "Unexpected illegal type!");
975 for (const SDValue &Op : Node->op_values())
976 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
977 TargetLowering::TypeLegal ||
978 Op.getOpcode() == ISD::TargetConstant ||
979 Op.getOpcode() == ISD::Register) &&
980 "Unexpected illegal type!");
981 #endif
983 // Figure out the correct action; the way to query this varies by opcode
984 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
985 bool SimpleFinishLegalizing = true;
986 switch (Node->getOpcode()) {
987 case ISD::INTRINSIC_W_CHAIN:
988 case ISD::INTRINSIC_WO_CHAIN:
989 case ISD::INTRINSIC_VOID:
990 case ISD::STACKSAVE:
991 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
992 break;
993 case ISD::GET_DYNAMIC_AREA_OFFSET:
994 Action = TLI.getOperationAction(Node->getOpcode(),
995 Node->getValueType(0));
996 break;
997 case ISD::VAARG:
998 Action = TLI.getOperationAction(Node->getOpcode(),
999 Node->getValueType(0));
1000 if (Action != TargetLowering::Promote)
1001 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1002 break;
1003 case ISD::FP_TO_FP16:
1004 case ISD::SINT_TO_FP:
1005 case ISD::UINT_TO_FP:
1006 case ISD::EXTRACT_VECTOR_ELT:
1007 case ISD::LROUND:
1008 case ISD::LLROUND:
1009 case ISD::LRINT:
1010 case ISD::LLRINT:
1011 Action = TLI.getOperationAction(Node->getOpcode(),
1012 Node->getOperand(0).getValueType());
1013 break;
1014 case ISD::SIGN_EXTEND_INREG: {
1015 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1016 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1017 break;
1019 case ISD::ATOMIC_STORE:
1020 Action = TLI.getOperationAction(Node->getOpcode(),
1021 Node->getOperand(2).getValueType());
1022 break;
1023 case ISD::SELECT_CC:
1024 case ISD::SETCC:
1025 case ISD::BR_CC: {
1026 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1027 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1028 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1029 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1030 ISD::CondCode CCCode =
1031 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1032 Action = TLI.getCondCodeAction(CCCode, OpVT);
1033 if (Action == TargetLowering::Legal) {
1034 if (Node->getOpcode() == ISD::SELECT_CC)
1035 Action = TLI.getOperationAction(Node->getOpcode(),
1036 Node->getValueType(0));
1037 else
1038 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1040 break;
1042 case ISD::LOAD:
1043 case ISD::STORE:
1044 // FIXME: Model these properly. LOAD and STORE are complicated, and
1045 // STORE expects the unlegalized operand in some cases.
1046 SimpleFinishLegalizing = false;
1047 break;
1048 case ISD::CALLSEQ_START:
1049 case ISD::CALLSEQ_END:
1050 // FIXME: This shouldn't be necessary. These nodes have special properties
1051 // dealing with the recursive nature of legalization. Removing this
1052 // special case should be done as part of making LegalizeDAG non-recursive.
1053 SimpleFinishLegalizing = false;
1054 break;
1055 case ISD::EXTRACT_ELEMENT:
1056 case ISD::FLT_ROUNDS_:
1057 case ISD::MERGE_VALUES:
1058 case ISD::EH_RETURN:
1059 case ISD::FRAME_TO_ARGS_OFFSET:
1060 case ISD::EH_DWARF_CFA:
1061 case ISD::EH_SJLJ_SETJMP:
1062 case ISD::EH_SJLJ_LONGJMP:
1063 case ISD::EH_SJLJ_SETUP_DISPATCH:
1064 // These operations lie about being legal: when they claim to be legal,
1065 // they should actually be expanded.
1066 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1067 if (Action == TargetLowering::Legal)
1068 Action = TargetLowering::Expand;
1069 break;
1070 case ISD::INIT_TRAMPOLINE:
1071 case ISD::ADJUST_TRAMPOLINE:
1072 case ISD::FRAMEADDR:
1073 case ISD::RETURNADDR:
1074 case ISD::ADDROFRETURNADDR:
1075 case ISD::SPONENTRY:
1076 // These operations lie about being legal: when they claim to be legal,
1077 // they should actually be custom-lowered.
1078 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1079 if (Action == TargetLowering::Legal)
1080 Action = TargetLowering::Custom;
1081 break;
1082 case ISD::READCYCLECOUNTER:
1083 // READCYCLECOUNTER returns an i64, even if type legalization might have
1084 // expanded that to several smaller types.
1085 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1086 break;
1087 case ISD::READ_REGISTER:
1088 case ISD::WRITE_REGISTER:
1089 // Named register is legal in the DAG, but blocked by register name
1090 // selection if not implemented by target (to chose the correct register)
1091 // They'll be converted to Copy(To/From)Reg.
1092 Action = TargetLowering::Legal;
1093 break;
1094 case ISD::DEBUGTRAP:
1095 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1096 if (Action == TargetLowering::Expand) {
1097 // replace ISD::DEBUGTRAP with ISD::TRAP
1098 SDValue NewVal;
1099 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1100 Node->getOperand(0));
1101 ReplaceNode(Node, NewVal.getNode());
1102 LegalizeOp(NewVal.getNode());
1103 return;
1105 break;
1106 case ISD::SADDSAT:
1107 case ISD::UADDSAT:
1108 case ISD::SSUBSAT:
1109 case ISD::USUBSAT: {
1110 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1111 break;
1113 case ISD::SMULFIX:
1114 case ISD::SMULFIXSAT:
1115 case ISD::UMULFIX:
1116 case ISD::UMULFIXSAT: {
1117 unsigned Scale = Node->getConstantOperandVal(2);
1118 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1119 Node->getValueType(0), Scale);
1120 break;
1122 case ISD::MSCATTER:
1123 Action = TLI.getOperationAction(Node->getOpcode(),
1124 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1125 break;
1126 case ISD::MSTORE:
1127 Action = TLI.getOperationAction(Node->getOpcode(),
1128 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1129 break;
1130 case ISD::VECREDUCE_FADD:
1131 case ISD::VECREDUCE_FMUL:
1132 case ISD::VECREDUCE_ADD:
1133 case ISD::VECREDUCE_MUL:
1134 case ISD::VECREDUCE_AND:
1135 case ISD::VECREDUCE_OR:
1136 case ISD::VECREDUCE_XOR:
1137 case ISD::VECREDUCE_SMAX:
1138 case ISD::VECREDUCE_SMIN:
1139 case ISD::VECREDUCE_UMAX:
1140 case ISD::VECREDUCE_UMIN:
1141 case ISD::VECREDUCE_FMAX:
1142 case ISD::VECREDUCE_FMIN:
1143 Action = TLI.getOperationAction(
1144 Node->getOpcode(), Node->getOperand(0).getValueType());
1145 break;
1146 default:
1147 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1148 Action = TargetLowering::Legal;
1149 } else {
1150 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1152 break;
1155 if (SimpleFinishLegalizing) {
1156 SDNode *NewNode = Node;
1157 switch (Node->getOpcode()) {
1158 default: break;
1159 case ISD::SHL:
1160 case ISD::SRL:
1161 case ISD::SRA:
1162 case ISD::ROTL:
1163 case ISD::ROTR: {
1164 // Legalizing shifts/rotates requires adjusting the shift amount
1165 // to the appropriate width.
1166 SDValue Op0 = Node->getOperand(0);
1167 SDValue Op1 = Node->getOperand(1);
1168 if (!Op1.getValueType().isVector()) {
1169 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1170 // The getShiftAmountOperand() may create a new operand node or
1171 // return the existing one. If new operand is created we need
1172 // to update the parent node.
1173 // Do not try to legalize SAO here! It will be automatically legalized
1174 // in the next round.
1175 if (SAO != Op1)
1176 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1179 break;
1180 case ISD::FSHL:
1181 case ISD::FSHR:
1182 case ISD::SRL_PARTS:
1183 case ISD::SRA_PARTS:
1184 case ISD::SHL_PARTS: {
1185 // Legalizing shifts/rotates requires adjusting the shift amount
1186 // to the appropriate width.
1187 SDValue Op0 = Node->getOperand(0);
1188 SDValue Op1 = Node->getOperand(1);
1189 SDValue Op2 = Node->getOperand(2);
1190 if (!Op2.getValueType().isVector()) {
1191 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1192 // The getShiftAmountOperand() may create a new operand node or
1193 // return the existing one. If new operand is created we need
1194 // to update the parent node.
1195 if (SAO != Op2)
1196 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1198 break;
1202 if (NewNode != Node) {
1203 ReplaceNode(Node, NewNode);
1204 Node = NewNode;
1206 switch (Action) {
1207 case TargetLowering::Legal:
1208 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1209 return;
1210 case TargetLowering::Custom:
1211 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1212 // FIXME: The handling for custom lowering with multiple results is
1213 // a complete mess.
1214 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1215 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1216 return;
1218 if (Node->getNumValues() == 1) {
1219 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1220 // We can just directly replace this node with the lowered value.
1221 ReplaceNode(SDValue(Node, 0), Res);
1222 return;
1225 SmallVector<SDValue, 8> ResultVals;
1226 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1227 ResultVals.push_back(Res.getValue(i));
1228 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1229 ReplaceNode(Node, ResultVals.data());
1230 return;
1232 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1233 LLVM_FALLTHROUGH;
1234 case TargetLowering::Expand:
1235 if (ExpandNode(Node))
1236 return;
1237 LLVM_FALLTHROUGH;
1238 case TargetLowering::LibCall:
1239 ConvertNodeToLibcall(Node);
1240 return;
1241 case TargetLowering::Promote:
1242 PromoteNode(Node);
1243 return;
1247 switch (Node->getOpcode()) {
1248 default:
1249 #ifndef NDEBUG
1250 dbgs() << "NODE: ";
1251 Node->dump( &DAG);
1252 dbgs() << "\n";
1253 #endif
1254 llvm_unreachable("Do not know how to legalize this operator!");
1256 case ISD::CALLSEQ_START:
1257 case ISD::CALLSEQ_END:
1258 break;
1259 case ISD::LOAD:
1260 return LegalizeLoadOps(Node);
1261 case ISD::STORE:
1262 return LegalizeStoreOps(Node);
1266 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1267 SDValue Vec = Op.getOperand(0);
1268 SDValue Idx = Op.getOperand(1);
1269 SDLoc dl(Op);
1271 // Before we generate a new store to a temporary stack slot, see if there is
1272 // already one that we can use. There often is because when we scalarize
1273 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1274 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1275 // the vector. If all are expanded here, we don't want one store per vector
1276 // element.
1278 // Caches for hasPredecessorHelper
1279 SmallPtrSet<const SDNode *, 32> Visited;
1280 SmallVector<const SDNode *, 16> Worklist;
1281 Visited.insert(Op.getNode());
1282 Worklist.push_back(Idx.getNode());
1283 SDValue StackPtr, Ch;
1284 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1285 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1286 SDNode *User = *UI;
1287 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1288 if (ST->isIndexed() || ST->isTruncatingStore() ||
1289 ST->getValue() != Vec)
1290 continue;
1292 // Make sure that nothing else could have stored into the destination of
1293 // this store.
1294 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1295 continue;
1297 // If the index is dependent on the store we will introduce a cycle when
1298 // creating the load (the load uses the index, and by replacing the chain
1299 // we will make the index dependent on the load). Also, the store might be
1300 // dependent on the extractelement and introduce a cycle when creating
1301 // the load.
1302 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1303 ST->hasPredecessor(Op.getNode()))
1304 continue;
1306 StackPtr = ST->getBasePtr();
1307 Ch = SDValue(ST, 0);
1308 break;
1312 EVT VecVT = Vec.getValueType();
1314 if (!Ch.getNode()) {
1315 // Store the value to a temporary stack slot, then LOAD the returned part.
1316 StackPtr = DAG.CreateStackTemporary(VecVT);
1317 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1318 MachinePointerInfo());
1321 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1323 SDValue NewLoad;
1325 if (Op.getValueType().isVector())
1326 NewLoad =
1327 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1328 else
1329 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1330 MachinePointerInfo(),
1331 VecVT.getVectorElementType());
1333 // Replace the chain going out of the store, by the one out of the load.
1334 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1336 // We introduced a cycle though, so update the loads operands, making sure
1337 // to use the original store's chain as an incoming chain.
1338 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1339 NewLoad->op_end());
1340 NewLoadOperands[0] = Ch;
1341 NewLoad =
1342 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1343 return NewLoad;
1346 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1347 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1349 SDValue Vec = Op.getOperand(0);
1350 SDValue Part = Op.getOperand(1);
1351 SDValue Idx = Op.getOperand(2);
1352 SDLoc dl(Op);
1354 // Store the value to a temporary stack slot, then LOAD the returned part.
1355 EVT VecVT = Vec.getValueType();
1356 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1357 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1358 MachinePointerInfo PtrInfo =
1359 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1361 // First store the whole vector.
1362 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1364 // Then store the inserted part.
1365 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1367 // Store the subvector.
1368 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1370 // Finally, load the updated vector.
1371 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1374 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1375 // We can't handle this case efficiently. Allocate a sufficiently
1376 // aligned object on the stack, store each element into it, then load
1377 // the result as a vector.
1378 // Create the stack frame object.
1379 EVT VT = Node->getValueType(0);
1380 EVT EltVT = VT.getVectorElementType();
1381 SDLoc dl(Node);
1382 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1383 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1384 MachinePointerInfo PtrInfo =
1385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1387 // Emit a store of each element to the stack slot.
1388 SmallVector<SDValue, 8> Stores;
1389 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1390 assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1391 // Store (in the right endianness) the elements to memory.
1392 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1393 // Ignore undef elements.
1394 if (Node->getOperand(i).isUndef()) continue;
1396 unsigned Offset = TypeByteSize*i;
1398 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1399 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1401 // If the destination vector element type is narrower than the source
1402 // element type, only store the bits necessary.
1403 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1404 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1405 Node->getOperand(i), Idx,
1406 PtrInfo.getWithOffset(Offset), EltVT));
1407 } else
1408 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1409 Idx, PtrInfo.getWithOffset(Offset)));
1412 SDValue StoreChain;
1413 if (!Stores.empty()) // Not all undef elements?
1414 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1415 else
1416 StoreChain = DAG.getEntryNode();
1418 // Result is a load from the stack slot.
1419 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1422 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1423 /// containing the sign bit if the target has no integer value capable of
1424 /// holding all bits of the floating-point value.
1425 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1426 const SDLoc &DL,
1427 SDValue Value) const {
1428 EVT FloatVT = Value.getValueType();
1429 unsigned NumBits = FloatVT.getSizeInBits();
1430 State.FloatVT = FloatVT;
1431 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1432 // Convert to an integer of the same size.
1433 if (TLI.isTypeLegal(IVT)) {
1434 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1435 State.SignMask = APInt::getSignMask(NumBits);
1436 State.SignBit = NumBits - 1;
1437 return;
1440 auto &DataLayout = DAG.getDataLayout();
1441 // Store the float to memory, then load the sign part out as an integer.
1442 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1443 // First create a temporary that is aligned for both the load and store.
1444 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1445 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1446 // Then store the float to it.
1447 State.FloatPtr = StackPtr;
1448 MachineFunction &MF = DAG.getMachineFunction();
1449 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1450 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1451 State.FloatPointerInfo);
1453 SDValue IntPtr;
1454 if (DataLayout.isBigEndian()) {
1455 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1456 // Load out a legal integer with the same sign bit as the float.
1457 IntPtr = StackPtr;
1458 State.IntPointerInfo = State.FloatPointerInfo;
1459 } else {
1460 // Advance the pointer so that the loaded byte will contain the sign bit.
1461 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1462 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1463 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1464 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1465 ByteOffset);
1468 State.IntPtr = IntPtr;
1469 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1470 State.IntPointerInfo, MVT::i8);
1471 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1472 State.SignBit = 7;
1475 /// Replace the integer value produced by getSignAsIntValue() with a new value
1476 /// and cast the result back to a floating-point type.
1477 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1478 const SDLoc &DL,
1479 SDValue NewIntValue) const {
1480 if (!State.Chain)
1481 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1483 // Override the part containing the sign bit in the value stored on the stack.
1484 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1485 State.IntPointerInfo, MVT::i8);
1486 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1487 State.FloatPointerInfo);
1490 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1491 SDLoc DL(Node);
1492 SDValue Mag = Node->getOperand(0);
1493 SDValue Sign = Node->getOperand(1);
1495 // Get sign bit into an integer value.
1496 FloatSignAsInt SignAsInt;
1497 getSignAsIntValue(SignAsInt, DL, Sign);
1499 EVT IntVT = SignAsInt.IntValue.getValueType();
1500 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1501 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1502 SignMask);
1504 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1505 EVT FloatVT = Mag.getValueType();
1506 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1507 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1508 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1509 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1510 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1511 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1512 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1515 // Transform Mag value to integer, and clear the sign bit.
1516 FloatSignAsInt MagAsInt;
1517 getSignAsIntValue(MagAsInt, DL, Mag);
1518 EVT MagVT = MagAsInt.IntValue.getValueType();
1519 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1520 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1521 ClearSignMask);
1523 // Get the signbit at the right position for MagAsInt.
1524 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1525 EVT ShiftVT = IntVT;
1526 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1527 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1528 ShiftVT = MagVT;
1530 if (ShiftAmount > 0) {
1531 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1532 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1533 } else if (ShiftAmount < 0) {
1534 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1535 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1537 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1538 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1541 // Store the part with the modified sign and convert back to float.
1542 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1543 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1546 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1547 SDLoc DL(Node);
1548 SDValue Value = Node->getOperand(0);
1550 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1551 EVT FloatVT = Value.getValueType();
1552 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1553 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1554 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1557 // Transform value to integer, clear the sign bit and transform back.
1558 FloatSignAsInt ValueAsInt;
1559 getSignAsIntValue(ValueAsInt, DL, Value);
1560 EVT IntVT = ValueAsInt.IntValue.getValueType();
1561 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1562 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1563 ClearSignMask);
1564 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1567 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1568 SmallVectorImpl<SDValue> &Results) {
1569 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1570 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1571 " not tell us which reg is the stack pointer!");
1572 SDLoc dl(Node);
1573 EVT VT = Node->getValueType(0);
1574 SDValue Tmp1 = SDValue(Node, 0);
1575 SDValue Tmp2 = SDValue(Node, 1);
1576 SDValue Tmp3 = Node->getOperand(2);
1577 SDValue Chain = Tmp1.getOperand(0);
1579 // Chain the dynamic stack allocation so that it doesn't modify the stack
1580 // pointer when other instructions are using the stack.
1581 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1583 SDValue Size = Tmp2.getOperand(1);
1584 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1585 Chain = SP.getValue(1);
1586 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1587 unsigned StackAlign =
1588 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1589 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1590 if (Align > StackAlign)
1591 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1592 DAG.getConstant(-(uint64_t)Align, dl, VT));
1593 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1595 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1596 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1598 Results.push_back(Tmp1);
1599 Results.push_back(Tmp2);
1602 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1603 /// target.
1605 /// If the SETCC has been legalized using AND / OR, then the legalized node
1606 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1607 /// will be set to false.
1609 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1610 /// then the values of LHS and RHS will be swapped, CC will be set to the
1611 /// new condition, and NeedInvert will be set to false.
1613 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1614 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1615 /// will be set to true. The caller must invert the result of the SETCC with
1616 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1617 /// of a true/false result.
1619 /// \returns true if the SetCC has been legalized, false if it hasn't.
1620 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1621 SDValue &RHS, SDValue &CC,
1622 bool &NeedInvert,
1623 const SDLoc &dl) {
1624 MVT OpVT = LHS.getSimpleValueType();
1625 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1626 NeedInvert = false;
1627 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1628 default: llvm_unreachable("Unknown condition code action!");
1629 case TargetLowering::Legal:
1630 // Nothing to do.
1631 break;
1632 case TargetLowering::Expand: {
1633 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1634 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1635 std::swap(LHS, RHS);
1636 CC = DAG.getCondCode(InvCC);
1637 return true;
1639 // Swapping operands didn't work. Try inverting the condition.
1640 bool NeedSwap = false;
1641 InvCC = getSetCCInverse(CCCode, OpVT.isInteger());
1642 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1643 // If inverting the condition is not enough, try swapping operands
1644 // on top of it.
1645 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1646 NeedSwap = true;
1648 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1649 CC = DAG.getCondCode(InvCC);
1650 NeedInvert = true;
1651 if (NeedSwap)
1652 std::swap(LHS, RHS);
1653 return true;
1656 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1657 unsigned Opc = 0;
1658 switch (CCCode) {
1659 default: llvm_unreachable("Don't know how to expand this condition!");
1660 case ISD::SETO:
1661 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1662 && "If SETO is expanded, SETOEQ must be legal!");
1663 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1664 case ISD::SETUO:
1665 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1666 && "If SETUO is expanded, SETUNE must be legal!");
1667 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1668 case ISD::SETOEQ:
1669 case ISD::SETOGT:
1670 case ISD::SETOGE:
1671 case ISD::SETOLT:
1672 case ISD::SETOLE:
1673 case ISD::SETONE:
1674 case ISD::SETUEQ:
1675 case ISD::SETUNE:
1676 case ISD::SETUGT:
1677 case ISD::SETUGE:
1678 case ISD::SETULT:
1679 case ISD::SETULE:
1680 // If we are floating point, assign and break, otherwise fall through.
1681 if (!OpVT.isInteger()) {
1682 // We can use the 4th bit to tell if we are the unordered
1683 // or ordered version of the opcode.
1684 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1685 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1686 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1687 break;
1689 // Fallthrough if we are unsigned integer.
1690 LLVM_FALLTHROUGH;
1691 case ISD::SETLE:
1692 case ISD::SETGT:
1693 case ISD::SETGE:
1694 case ISD::SETLT:
1695 case ISD::SETNE:
1696 case ISD::SETEQ:
1697 // If all combinations of inverting the condition and swapping operands
1698 // didn't work then we have no means to expand the condition.
1699 llvm_unreachable("Don't know how to expand this condition!");
1702 SDValue SetCC1, SetCC2;
1703 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1704 // If we aren't the ordered or unorder operation,
1705 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1706 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1707 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1708 } else {
1709 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1710 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1711 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1713 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1714 RHS = SDValue();
1715 CC = SDValue();
1716 return true;
1719 return false;
1722 /// Emit a store/load combination to the stack. This stores
1723 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1724 /// a load from the stack slot to DestVT, extending it if needed.
1725 /// The resultant code need not be legal.
1726 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1727 EVT DestVT, const SDLoc &dl) {
1728 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1731 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1732 EVT DestVT, const SDLoc &dl,
1733 SDValue Chain) {
1734 // Create the stack frame object.
1735 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1736 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1737 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1739 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1740 int SPFI = StackPtrFI->getIndex();
1741 MachinePointerInfo PtrInfo =
1742 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1744 unsigned SrcSize = SrcOp.getValueSizeInBits();
1745 unsigned SlotSize = SlotVT.getSizeInBits();
1746 unsigned DestSize = DestVT.getSizeInBits();
1747 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1748 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1750 // Emit a store to the stack slot. Use a truncstore if the input value is
1751 // later than DestVT.
1752 SDValue Store;
1754 if (SrcSize > SlotSize)
1755 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1756 SlotVT, SrcAlign);
1757 else {
1758 assert(SrcSize == SlotSize && "Invalid store");
1759 Store =
1760 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1763 // Result is a load from the stack slot.
1764 if (SlotSize == DestSize)
1765 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1767 assert(SlotSize < DestSize && "Unknown extension!");
1768 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1769 DestAlign);
1772 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1773 SDLoc dl(Node);
1774 // Create a vector sized/aligned stack slot, store the value to element #0,
1775 // then load the whole vector back out.
1776 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1778 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1779 int SPFI = StackPtrFI->getIndex();
1781 SDValue Ch = DAG.getTruncStore(
1782 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1783 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1784 Node->getValueType(0).getVectorElementType());
1785 return DAG.getLoad(
1786 Node->getValueType(0), dl, Ch, StackPtr,
1787 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1790 static bool
1791 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1792 const TargetLowering &TLI, SDValue &Res) {
1793 unsigned NumElems = Node->getNumOperands();
1794 SDLoc dl(Node);
1795 EVT VT = Node->getValueType(0);
1797 // Try to group the scalars into pairs, shuffle the pairs together, then
1798 // shuffle the pairs of pairs together, etc. until the vector has
1799 // been built. This will work only if all of the necessary shuffle masks
1800 // are legal.
1802 // We do this in two phases; first to check the legality of the shuffles,
1803 // and next, assuming that all shuffles are legal, to create the new nodes.
1804 for (int Phase = 0; Phase < 2; ++Phase) {
1805 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1806 NewIntermedVals;
1807 for (unsigned i = 0; i < NumElems; ++i) {
1808 SDValue V = Node->getOperand(i);
1809 if (V.isUndef())
1810 continue;
1812 SDValue Vec;
1813 if (Phase)
1814 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1815 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1818 while (IntermedVals.size() > 2) {
1819 NewIntermedVals.clear();
1820 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1821 // This vector and the next vector are shuffled together (simply to
1822 // append the one to the other).
1823 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1825 SmallVector<int, 16> FinalIndices;
1826 FinalIndices.reserve(IntermedVals[i].second.size() +
1827 IntermedVals[i+1].second.size());
1829 int k = 0;
1830 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1831 ++j, ++k) {
1832 ShuffleVec[k] = j;
1833 FinalIndices.push_back(IntermedVals[i].second[j]);
1835 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1836 ++j, ++k) {
1837 ShuffleVec[k] = NumElems + j;
1838 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1841 SDValue Shuffle;
1842 if (Phase)
1843 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1844 IntermedVals[i+1].first,
1845 ShuffleVec);
1846 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1847 return false;
1848 NewIntermedVals.push_back(
1849 std::make_pair(Shuffle, std::move(FinalIndices)));
1852 // If we had an odd number of defined values, then append the last
1853 // element to the array of new vectors.
1854 if ((IntermedVals.size() & 1) != 0)
1855 NewIntermedVals.push_back(IntermedVals.back());
1857 IntermedVals.swap(NewIntermedVals);
1860 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1861 "Invalid number of intermediate vectors");
1862 SDValue Vec1 = IntermedVals[0].first;
1863 SDValue Vec2;
1864 if (IntermedVals.size() > 1)
1865 Vec2 = IntermedVals[1].first;
1866 else if (Phase)
1867 Vec2 = DAG.getUNDEF(VT);
1869 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1870 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1871 ShuffleVec[IntermedVals[0].second[i]] = i;
1872 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1873 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1875 if (Phase)
1876 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1877 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1878 return false;
1881 return true;
1884 /// Expand a BUILD_VECTOR node on targets that don't
1885 /// support the operation, but do support the resultant vector type.
1886 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1887 unsigned NumElems = Node->getNumOperands();
1888 SDValue Value1, Value2;
1889 SDLoc dl(Node);
1890 EVT VT = Node->getValueType(0);
1891 EVT OpVT = Node->getOperand(0).getValueType();
1892 EVT EltVT = VT.getVectorElementType();
1894 // If the only non-undef value is the low element, turn this into a
1895 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1896 bool isOnlyLowElement = true;
1897 bool MoreThanTwoValues = false;
1898 bool isConstant = true;
1899 for (unsigned i = 0; i < NumElems; ++i) {
1900 SDValue V = Node->getOperand(i);
1901 if (V.isUndef())
1902 continue;
1903 if (i > 0)
1904 isOnlyLowElement = false;
1905 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1906 isConstant = false;
1908 if (!Value1.getNode()) {
1909 Value1 = V;
1910 } else if (!Value2.getNode()) {
1911 if (V != Value1)
1912 Value2 = V;
1913 } else if (V != Value1 && V != Value2) {
1914 MoreThanTwoValues = true;
1918 if (!Value1.getNode())
1919 return DAG.getUNDEF(VT);
1921 if (isOnlyLowElement)
1922 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1924 // If all elements are constants, create a load from the constant pool.
1925 if (isConstant) {
1926 SmallVector<Constant*, 16> CV;
1927 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1928 if (ConstantFPSDNode *V =
1929 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1930 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1931 } else if (ConstantSDNode *V =
1932 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1933 if (OpVT==EltVT)
1934 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1935 else {
1936 // If OpVT and EltVT don't match, EltVT is not legal and the
1937 // element values have been promoted/truncated earlier. Undo this;
1938 // we don't want a v16i8 to become a v16i32 for example.
1939 const ConstantInt *CI = V->getConstantIntValue();
1940 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1941 CI->getZExtValue()));
1943 } else {
1944 assert(Node->getOperand(i).isUndef());
1945 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1946 CV.push_back(UndefValue::get(OpNTy));
1949 Constant *CP = ConstantVector::get(CV);
1950 SDValue CPIdx =
1951 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1952 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1953 return DAG.getLoad(
1954 VT, dl, DAG.getEntryNode(), CPIdx,
1955 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1956 Alignment);
1959 SmallSet<SDValue, 16> DefinedValues;
1960 for (unsigned i = 0; i < NumElems; ++i) {
1961 if (Node->getOperand(i).isUndef())
1962 continue;
1963 DefinedValues.insert(Node->getOperand(i));
1966 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1967 if (!MoreThanTwoValues) {
1968 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1969 for (unsigned i = 0; i < NumElems; ++i) {
1970 SDValue V = Node->getOperand(i);
1971 if (V.isUndef())
1972 continue;
1973 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1975 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1976 // Get the splatted value into the low element of a vector register.
1977 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1978 SDValue Vec2;
1979 if (Value2.getNode())
1980 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1981 else
1982 Vec2 = DAG.getUNDEF(VT);
1984 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1985 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1987 } else {
1988 SDValue Res;
1989 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1990 return Res;
1994 // Otherwise, we can't handle this case efficiently.
1995 return ExpandVectorBuildThroughStack(Node);
1998 // Expand a node into a call to a libcall. If the result value
1999 // does not fit into a register, return the lo part and set the hi part to the
2000 // by-reg argument. If it does fit into a single register, return the result
2001 // and leave the Hi part unset.
2002 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2003 bool isSigned) {
2004 TargetLowering::ArgListTy Args;
2005 TargetLowering::ArgListEntry Entry;
2006 for (const SDValue &Op : Node->op_values()) {
2007 EVT ArgVT = Op.getValueType();
2008 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2009 Entry.Node = Op;
2010 Entry.Ty = ArgTy;
2011 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2012 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2013 Args.push_back(Entry);
2015 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2016 TLI.getPointerTy(DAG.getDataLayout()));
2018 EVT RetVT = Node->getValueType(0);
2019 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2021 // By default, the input chain to this libcall is the entry node of the
2022 // function. If the libcall is going to be emitted as a tail call then
2023 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2024 // node which is being folded has a non-entry input chain.
2025 SDValue InChain = DAG.getEntryNode();
2027 // isTailCall may be true since the callee does not reference caller stack
2028 // frame. Check if it's in the right position and that the return types match.
2029 SDValue TCChain = InChain;
2030 const Function &F = DAG.getMachineFunction().getFunction();
2031 bool isTailCall =
2032 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2033 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2034 if (isTailCall)
2035 InChain = TCChain;
2037 TargetLowering::CallLoweringInfo CLI(DAG);
2038 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2039 CLI.setDebugLoc(SDLoc(Node))
2040 .setChain(InChain)
2041 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2042 std::move(Args))
2043 .setTailCall(isTailCall)
2044 .setSExtResult(signExtend)
2045 .setZExtResult(!signExtend)
2046 .setIsPostTypeLegalization(true);
2048 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2050 if (!CallInfo.second.getNode()) {
2051 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2052 // It's a tailcall, return the chain (which is the DAG root).
2053 return DAG.getRoot();
2056 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2057 return CallInfo.first;
2060 // Expand a node into a call to a libcall. Similar to
2061 // ExpandLibCall except that the first operand is the in-chain.
2062 std::pair<SDValue, SDValue>
2063 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2064 SDNode *Node,
2065 bool isSigned) {
2066 SDValue InChain = Node->getOperand(0);
2068 TargetLowering::ArgListTy Args;
2069 TargetLowering::ArgListEntry Entry;
2070 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2071 EVT ArgVT = Node->getOperand(i).getValueType();
2072 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2073 Entry.Node = Node->getOperand(i);
2074 Entry.Ty = ArgTy;
2075 Entry.IsSExt = isSigned;
2076 Entry.IsZExt = !isSigned;
2077 Args.push_back(Entry);
2079 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2080 TLI.getPointerTy(DAG.getDataLayout()));
2082 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2084 TargetLowering::CallLoweringInfo CLI(DAG);
2085 CLI.setDebugLoc(SDLoc(Node))
2086 .setChain(InChain)
2087 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2088 std::move(Args))
2089 .setSExtResult(isSigned)
2090 .setZExtResult(!isSigned);
2092 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2094 return CallInfo;
2097 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2098 RTLIB::Libcall Call_F32,
2099 RTLIB::Libcall Call_F64,
2100 RTLIB::Libcall Call_F80,
2101 RTLIB::Libcall Call_F128,
2102 RTLIB::Libcall Call_PPCF128) {
2103 if (Node->isStrictFPOpcode())
2104 Node = DAG.mutateStrictFPToFP(Node);
2106 RTLIB::Libcall LC;
2107 switch (Node->getSimpleValueType(0).SimpleTy) {
2108 default: llvm_unreachable("Unexpected request for libcall!");
2109 case MVT::f32: LC = Call_F32; break;
2110 case MVT::f64: LC = Call_F64; break;
2111 case MVT::f80: LC = Call_F80; break;
2112 case MVT::f128: LC = Call_F128; break;
2113 case MVT::ppcf128: LC = Call_PPCF128; break;
2115 return ExpandLibCall(LC, Node, false);
2118 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2119 RTLIB::Libcall Call_I8,
2120 RTLIB::Libcall Call_I16,
2121 RTLIB::Libcall Call_I32,
2122 RTLIB::Libcall Call_I64,
2123 RTLIB::Libcall Call_I128) {
2124 RTLIB::Libcall LC;
2125 switch (Node->getSimpleValueType(0).SimpleTy) {
2126 default: llvm_unreachable("Unexpected request for libcall!");
2127 case MVT::i8: LC = Call_I8; break;
2128 case MVT::i16: LC = Call_I16; break;
2129 case MVT::i32: LC = Call_I32; break;
2130 case MVT::i64: LC = Call_I64; break;
2131 case MVT::i128: LC = Call_I128; break;
2133 return ExpandLibCall(LC, Node, isSigned);
2136 /// Expand the node to a libcall based on first argument type (for instance
2137 /// lround and its variant).
2138 SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2139 RTLIB::Libcall Call_F32,
2140 RTLIB::Libcall Call_F64,
2141 RTLIB::Libcall Call_F80,
2142 RTLIB::Libcall Call_F128,
2143 RTLIB::Libcall Call_PPCF128) {
2144 RTLIB::Libcall LC;
2145 switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) {
2146 default: llvm_unreachable("Unexpected request for libcall!");
2147 case MVT::f32: LC = Call_F32; break;
2148 case MVT::f64: LC = Call_F64; break;
2149 case MVT::f80: LC = Call_F80; break;
2150 case MVT::f128: LC = Call_F128; break;
2151 case MVT::ppcf128: LC = Call_PPCF128; break;
2154 return ExpandLibCall(LC, Node, false);
2157 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2158 void
2159 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2160 SmallVectorImpl<SDValue> &Results) {
2161 unsigned Opcode = Node->getOpcode();
2162 bool isSigned = Opcode == ISD::SDIVREM;
2164 RTLIB::Libcall LC;
2165 switch (Node->getSimpleValueType(0).SimpleTy) {
2166 default: llvm_unreachable("Unexpected request for libcall!");
2167 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2168 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2169 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2170 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2171 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2174 // The input chain to this libcall is the entry node of the function.
2175 // Legalizing the call will automatically add the previous call to the
2176 // dependence.
2177 SDValue InChain = DAG.getEntryNode();
2179 EVT RetVT = Node->getValueType(0);
2180 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2182 TargetLowering::ArgListTy Args;
2183 TargetLowering::ArgListEntry Entry;
2184 for (const SDValue &Op : Node->op_values()) {
2185 EVT ArgVT = Op.getValueType();
2186 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2187 Entry.Node = Op;
2188 Entry.Ty = ArgTy;
2189 Entry.IsSExt = isSigned;
2190 Entry.IsZExt = !isSigned;
2191 Args.push_back(Entry);
2194 // Also pass the return address of the remainder.
2195 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2196 Entry.Node = FIPtr;
2197 Entry.Ty = RetTy->getPointerTo();
2198 Entry.IsSExt = isSigned;
2199 Entry.IsZExt = !isSigned;
2200 Args.push_back(Entry);
2202 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2203 TLI.getPointerTy(DAG.getDataLayout()));
2205 SDLoc dl(Node);
2206 TargetLowering::CallLoweringInfo CLI(DAG);
2207 CLI.setDebugLoc(dl)
2208 .setChain(InChain)
2209 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2210 std::move(Args))
2211 .setSExtResult(isSigned)
2212 .setZExtResult(!isSigned);
2214 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2216 // Remainder is loaded back from the stack frame.
2217 SDValue Rem =
2218 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2219 Results.push_back(CallInfo.first);
2220 Results.push_back(Rem);
2223 /// Return true if sincos libcall is available.
2224 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2225 RTLIB::Libcall LC;
2226 switch (Node->getSimpleValueType(0).SimpleTy) {
2227 default: llvm_unreachable("Unexpected request for libcall!");
2228 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2229 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2230 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2231 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2232 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2234 return TLI.getLibcallName(LC) != nullptr;
2237 /// Only issue sincos libcall if both sin and cos are needed.
2238 static bool useSinCos(SDNode *Node) {
2239 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2240 ? ISD::FCOS : ISD::FSIN;
2242 SDValue Op0 = Node->getOperand(0);
2243 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2244 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2245 SDNode *User = *UI;
2246 if (User == Node)
2247 continue;
2248 // The other user might have been turned into sincos already.
2249 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2250 return true;
2252 return false;
2255 /// Issue libcalls to sincos to compute sin / cos pairs.
2256 void
2257 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2258 SmallVectorImpl<SDValue> &Results) {
2259 RTLIB::Libcall LC;
2260 switch (Node->getSimpleValueType(0).SimpleTy) {
2261 default: llvm_unreachable("Unexpected request for libcall!");
2262 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2263 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2264 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2265 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2266 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2269 // The input chain to this libcall is the entry node of the function.
2270 // Legalizing the call will automatically add the previous call to the
2271 // dependence.
2272 SDValue InChain = DAG.getEntryNode();
2274 EVT RetVT = Node->getValueType(0);
2275 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2277 TargetLowering::ArgListTy Args;
2278 TargetLowering::ArgListEntry Entry;
2280 // Pass the argument.
2281 Entry.Node = Node->getOperand(0);
2282 Entry.Ty = RetTy;
2283 Entry.IsSExt = false;
2284 Entry.IsZExt = false;
2285 Args.push_back(Entry);
2287 // Pass the return address of sin.
2288 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2289 Entry.Node = SinPtr;
2290 Entry.Ty = RetTy->getPointerTo();
2291 Entry.IsSExt = false;
2292 Entry.IsZExt = false;
2293 Args.push_back(Entry);
2295 // Also pass the return address of the cos.
2296 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2297 Entry.Node = CosPtr;
2298 Entry.Ty = RetTy->getPointerTo();
2299 Entry.IsSExt = false;
2300 Entry.IsZExt = false;
2301 Args.push_back(Entry);
2303 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2304 TLI.getPointerTy(DAG.getDataLayout()));
2306 SDLoc dl(Node);
2307 TargetLowering::CallLoweringInfo CLI(DAG);
2308 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2309 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2310 std::move(Args));
2312 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2314 Results.push_back(
2315 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2316 Results.push_back(
2317 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2320 /// This function is responsible for legalizing a
2321 /// INT_TO_FP operation of the specified operand when the target requests that
2322 /// we expand it. At this point, we know that the result and operand types are
2323 /// legal for the target.
2324 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2325 EVT DestVT,
2326 const SDLoc &dl) {
2327 EVT SrcVT = Op0.getValueType();
2329 // TODO: Should any fast-math-flags be set for the created nodes?
2330 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2331 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2332 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2333 "expansion\n");
2335 // Get the stack frame index of a 8 byte buffer.
2336 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2338 // word offset constant for Hi/Lo address computation
2339 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2340 StackSlot.getValueType());
2341 // set up Hi and Lo (into buffer) address based on endian
2342 SDValue Hi = StackSlot;
2343 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2344 StackSlot, WordOff);
2345 if (DAG.getDataLayout().isLittleEndian())
2346 std::swap(Hi, Lo);
2348 // if signed map to unsigned space
2349 SDValue Op0Mapped;
2350 if (isSigned) {
2351 // constant used to invert sign bit (signed to unsigned mapping)
2352 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2353 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2354 } else {
2355 Op0Mapped = Op0;
2357 // store the lo of the constructed double - based on integer input
2358 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2359 MachinePointerInfo());
2360 // initial hi portion of constructed double
2361 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2362 // store the hi of the constructed double - biased exponent
2363 SDValue Store2 =
2364 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2365 // load the constructed double
2366 SDValue Load =
2367 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2368 // FP constant to bias correct the final result
2369 SDValue Bias = DAG.getConstantFP(isSigned ?
2370 BitsToDouble(0x4330000080000000ULL) :
2371 BitsToDouble(0x4330000000000000ULL),
2372 dl, MVT::f64);
2373 // subtract the bias
2374 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2375 // final result
2376 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2377 return Result;
2379 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2380 // Code below here assumes !isSigned without checking again.
2382 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2384 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2385 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2386 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2387 Four = DAG.getIntPtrConstant(4, dl);
2388 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2389 SignSet, Four, Zero);
2391 // If the sign bit of the integer is set, the large number will be treated
2392 // as a negative number. To counteract this, the dynamic code adds an
2393 // offset depending on the data type.
2394 uint64_t FF;
2395 switch (SrcVT.getSimpleVT().SimpleTy) {
2396 default: llvm_unreachable("Unsupported integer type!");
2397 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2398 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2399 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2400 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2402 if (DAG.getDataLayout().isLittleEndian())
2403 FF <<= 32;
2404 Constant *FudgeFactor = ConstantInt::get(
2405 Type::getInt64Ty(*DAG.getContext()), FF);
2407 SDValue CPIdx =
2408 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2409 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2410 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2411 Alignment = std::min(Alignment, 4u);
2412 SDValue FudgeInReg;
2413 if (DestVT == MVT::f32)
2414 FudgeInReg = DAG.getLoad(
2415 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2416 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2417 Alignment);
2418 else {
2419 SDValue Load = DAG.getExtLoad(
2420 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2421 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2422 Alignment);
2423 HandleSDNode Handle(Load);
2424 LegalizeOp(Load.getNode());
2425 FudgeInReg = Handle.getValue();
2428 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2431 /// This function is responsible for legalizing a
2432 /// *INT_TO_FP operation of the specified operand when the target requests that
2433 /// we promote it. At this point, we know that the result and operand types are
2434 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2435 /// operation that takes a larger input.
2436 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2437 bool isSigned,
2438 const SDLoc &dl) {
2439 // First step, figure out the appropriate *INT_TO_FP operation to use.
2440 EVT NewInTy = LegalOp.getValueType();
2442 unsigned OpToUse = 0;
2444 // Scan for the appropriate larger type to use.
2445 while (true) {
2446 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2447 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2449 // If the target supports SINT_TO_FP of this type, use it.
2450 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2451 OpToUse = ISD::SINT_TO_FP;
2452 break;
2454 if (isSigned) continue;
2456 // If the target supports UINT_TO_FP of this type, use it.
2457 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2458 OpToUse = ISD::UINT_TO_FP;
2459 break;
2462 // Otherwise, try a larger type.
2465 // Okay, we found the operation and type to use. Zero extend our input to the
2466 // desired type then run the operation on it.
2467 return DAG.getNode(OpToUse, dl, DestVT,
2468 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2469 dl, NewInTy, LegalOp));
2472 /// This function is responsible for legalizing a
2473 /// FP_TO_*INT operation of the specified operand when the target requests that
2474 /// we promote it. At this point, we know that the result and operand types are
2475 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2476 /// operation that returns a larger result.
2477 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2478 bool isSigned,
2479 const SDLoc &dl) {
2480 // First step, figure out the appropriate FP_TO*INT operation to use.
2481 EVT NewOutTy = DestVT;
2483 unsigned OpToUse = 0;
2485 // Scan for the appropriate larger type to use.
2486 while (true) {
2487 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2488 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2490 // A larger signed type can hold all unsigned values of the requested type,
2491 // so using FP_TO_SINT is valid
2492 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2493 OpToUse = ISD::FP_TO_SINT;
2494 break;
2497 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2498 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2499 OpToUse = ISD::FP_TO_UINT;
2500 break;
2503 // Otherwise, try a larger type.
2506 // Okay, we found the operation and type to use.
2507 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2509 // Truncate the result of the extended FP_TO_*INT operation to the desired
2510 // size.
2511 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2514 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2515 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2516 EVT VT = Op.getValueType();
2517 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2518 unsigned Sz = VT.getScalarSizeInBits();
2520 SDValue Tmp, Tmp2, Tmp3;
2522 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2523 // and finally the i1 pairs.
2524 // TODO: We can easily support i4/i2 legal types if any target ever does.
2525 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2526 // Create the masks - repeating the pattern every byte.
2527 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2528 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2529 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2530 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2531 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2532 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2534 // BSWAP if the type is wider than a single byte.
2535 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2537 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2538 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2539 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2540 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2541 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2542 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2544 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2545 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2546 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2547 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2548 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2549 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2551 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2552 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2553 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2554 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2555 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2556 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2557 return Tmp;
2560 Tmp = DAG.getConstant(0, dl, VT);
2561 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2562 if (I < J)
2563 Tmp2 =
2564 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2565 else
2566 Tmp2 =
2567 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2569 APInt Shift(Sz, 1);
2570 Shift <<= J;
2571 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2572 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2575 return Tmp;
2578 /// Open code the operations for BSWAP of the specified operation.
2579 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2580 EVT VT = Op.getValueType();
2581 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2582 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2583 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2584 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2585 case MVT::i16:
2586 // Use a rotate by 8. This can be further expanded if necessary.
2587 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2588 case MVT::i32:
2589 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2590 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2591 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2592 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2593 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2594 DAG.getConstant(0xFF0000, dl, VT));
2595 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2596 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2597 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2598 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2599 case MVT::i64:
2600 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2601 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2602 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2603 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2604 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2605 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2606 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2607 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2608 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2609 DAG.getConstant(255ULL<<48, dl, VT));
2610 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2611 DAG.getConstant(255ULL<<40, dl, VT));
2612 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2613 DAG.getConstant(255ULL<<32, dl, VT));
2614 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2615 DAG.getConstant(255ULL<<24, dl, VT));
2616 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2617 DAG.getConstant(255ULL<<16, dl, VT));
2618 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2619 DAG.getConstant(255ULL<<8 , dl, VT));
2620 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2621 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2622 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2623 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2624 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2625 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2626 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2630 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2631 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2632 SmallVector<SDValue, 8> Results;
2633 SDLoc dl(Node);
2634 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2635 bool NeedInvert;
2636 switch (Node->getOpcode()) {
2637 case ISD::ABS:
2638 if (TLI.expandABS(Node, Tmp1, DAG))
2639 Results.push_back(Tmp1);
2640 break;
2641 case ISD::CTPOP:
2642 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2643 Results.push_back(Tmp1);
2644 break;
2645 case ISD::CTLZ:
2646 case ISD::CTLZ_ZERO_UNDEF:
2647 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2648 Results.push_back(Tmp1);
2649 break;
2650 case ISD::CTTZ:
2651 case ISD::CTTZ_ZERO_UNDEF:
2652 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2653 Results.push_back(Tmp1);
2654 break;
2655 case ISD::BITREVERSE:
2656 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2657 break;
2658 case ISD::BSWAP:
2659 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2660 break;
2661 case ISD::FRAMEADDR:
2662 case ISD::RETURNADDR:
2663 case ISD::FRAME_TO_ARGS_OFFSET:
2664 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2665 break;
2666 case ISD::EH_DWARF_CFA: {
2667 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2668 TLI.getPointerTy(DAG.getDataLayout()));
2669 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2670 CfaArg.getValueType(),
2671 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2672 CfaArg.getValueType()),
2673 CfaArg);
2674 SDValue FA = DAG.getNode(
2675 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2676 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2677 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2678 FA, Offset));
2679 break;
2681 case ISD::FLT_ROUNDS_:
2682 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2683 break;
2684 case ISD::EH_RETURN:
2685 case ISD::EH_LABEL:
2686 case ISD::PREFETCH:
2687 case ISD::VAEND:
2688 case ISD::EH_SJLJ_LONGJMP:
2689 // If the target didn't expand these, there's nothing to do, so just
2690 // preserve the chain and be done.
2691 Results.push_back(Node->getOperand(0));
2692 break;
2693 case ISD::READCYCLECOUNTER:
2694 // If the target didn't expand this, just return 'zero' and preserve the
2695 // chain.
2696 Results.append(Node->getNumValues() - 1,
2697 DAG.getConstant(0, dl, Node->getValueType(0)));
2698 Results.push_back(Node->getOperand(0));
2699 break;
2700 case ISD::EH_SJLJ_SETJMP:
2701 // If the target didn't expand this, just return 'zero' and preserve the
2702 // chain.
2703 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2704 Results.push_back(Node->getOperand(0));
2705 break;
2706 case ISD::ATOMIC_LOAD: {
2707 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2708 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2709 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2710 SDValue Swap = DAG.getAtomicCmpSwap(
2711 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2712 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2713 cast<AtomicSDNode>(Node)->getMemOperand());
2714 Results.push_back(Swap.getValue(0));
2715 Results.push_back(Swap.getValue(1));
2716 break;
2718 case ISD::ATOMIC_STORE: {
2719 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2720 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2721 cast<AtomicSDNode>(Node)->getMemoryVT(),
2722 Node->getOperand(0),
2723 Node->getOperand(1), Node->getOperand(2),
2724 cast<AtomicSDNode>(Node)->getMemOperand());
2725 Results.push_back(Swap.getValue(1));
2726 break;
2728 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2729 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2730 // splits out the success value as a comparison. Expanding the resulting
2731 // ATOMIC_CMP_SWAP will produce a libcall.
2732 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2733 SDValue Res = DAG.getAtomicCmpSwap(
2734 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2735 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2736 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2738 SDValue ExtRes = Res;
2739 SDValue LHS = Res;
2740 SDValue RHS = Node->getOperand(1);
2742 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2743 EVT OuterType = Node->getValueType(0);
2744 switch (TLI.getExtendForAtomicOps()) {
2745 case ISD::SIGN_EXTEND:
2746 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2747 DAG.getValueType(AtomicType));
2748 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2749 Node->getOperand(2), DAG.getValueType(AtomicType));
2750 ExtRes = LHS;
2751 break;
2752 case ISD::ZERO_EXTEND:
2753 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2754 DAG.getValueType(AtomicType));
2755 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2756 ExtRes = LHS;
2757 break;
2758 case ISD::ANY_EXTEND:
2759 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2760 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2761 break;
2762 default:
2763 llvm_unreachable("Invalid atomic op extension");
2766 SDValue Success =
2767 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2769 Results.push_back(ExtRes.getValue(0));
2770 Results.push_back(Success);
2771 Results.push_back(Res.getValue(1));
2772 break;
2774 case ISD::DYNAMIC_STACKALLOC:
2775 ExpandDYNAMIC_STACKALLOC(Node, Results);
2776 break;
2777 case ISD::MERGE_VALUES:
2778 for (unsigned i = 0; i < Node->getNumValues(); i++)
2779 Results.push_back(Node->getOperand(i));
2780 break;
2781 case ISD::UNDEF: {
2782 EVT VT = Node->getValueType(0);
2783 if (VT.isInteger())
2784 Results.push_back(DAG.getConstant(0, dl, VT));
2785 else {
2786 assert(VT.isFloatingPoint() && "Unknown value type!");
2787 Results.push_back(DAG.getConstantFP(0, dl, VT));
2789 break;
2791 case ISD::STRICT_FP_ROUND:
2792 // This expansion does not honor the "strict" properties anyway,
2793 // so prefer falling back to the non-strict operation if legal.
2794 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2795 Node->getValueType(0))
2796 == TargetLowering::Legal)
2797 break;
2798 Tmp1 = EmitStackConvert(Node->getOperand(1),
2799 Node->getValueType(0),
2800 Node->getValueType(0), dl, Node->getOperand(0));
2801 ReplaceNode(Node, Tmp1.getNode());
2802 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2803 return true;
2804 case ISD::FP_ROUND:
2805 case ISD::BITCAST:
2806 Tmp1 = EmitStackConvert(Node->getOperand(0),
2807 Node->getValueType(0),
2808 Node->getValueType(0), dl);
2809 Results.push_back(Tmp1);
2810 break;
2811 case ISD::STRICT_FP_EXTEND:
2812 // This expansion does not honor the "strict" properties anyway,
2813 // so prefer falling back to the non-strict operation if legal.
2814 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2815 Node->getValueType(0))
2816 == TargetLowering::Legal)
2817 break;
2818 Tmp1 = EmitStackConvert(Node->getOperand(1),
2819 Node->getOperand(1).getValueType(),
2820 Node->getValueType(0), dl, Node->getOperand(0));
2821 ReplaceNode(Node, Tmp1.getNode());
2822 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2823 return true;
2824 case ISD::FP_EXTEND:
2825 Tmp1 = EmitStackConvert(Node->getOperand(0),
2826 Node->getOperand(0).getValueType(),
2827 Node->getValueType(0), dl);
2828 Results.push_back(Tmp1);
2829 break;
2830 case ISD::SIGN_EXTEND_INREG: {
2831 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2832 EVT VT = Node->getValueType(0);
2834 // An in-register sign-extend of a boolean is a negation:
2835 // 'true' (1) sign-extended is -1.
2836 // 'false' (0) sign-extended is 0.
2837 // However, we must mask the high bits of the source operand because the
2838 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2840 // TODO: Do this for vectors too?
2841 if (ExtraVT.getSizeInBits() == 1) {
2842 SDValue One = DAG.getConstant(1, dl, VT);
2843 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2844 SDValue Zero = DAG.getConstant(0, dl, VT);
2845 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2846 Results.push_back(Neg);
2847 break;
2850 // NOTE: we could fall back on load/store here too for targets without
2851 // SRA. However, it is doubtful that any exist.
2852 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2853 unsigned BitsDiff = VT.getScalarSizeInBits() -
2854 ExtraVT.getScalarSizeInBits();
2855 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2856 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2857 Node->getOperand(0), ShiftCst);
2858 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2859 Results.push_back(Tmp1);
2860 break;
2862 case ISD::UINT_TO_FP:
2863 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) {
2864 Results.push_back(Tmp1);
2865 break;
2867 LLVM_FALLTHROUGH;
2868 case ISD::SINT_TO_FP:
2869 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2870 Node->getOperand(0), Node->getValueType(0), dl);
2871 Results.push_back(Tmp1);
2872 break;
2873 case ISD::FP_TO_SINT:
2874 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2875 Results.push_back(Tmp1);
2876 break;
2877 case ISD::STRICT_FP_TO_SINT:
2878 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2879 ReplaceNode(Node, Tmp1.getNode());
2880 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2881 return true;
2883 break;
2884 case ISD::FP_TO_UINT:
2885 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2886 Results.push_back(Tmp1);
2887 break;
2888 case ISD::STRICT_FP_TO_UINT:
2889 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2890 // Relink the chain.
2891 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2892 // Replace the new UINT result.
2893 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2894 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2895 return true;
2897 break;
2898 case ISD::LROUND:
2899 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
2900 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
2901 RTLIB::LROUND_F128,
2902 RTLIB::LROUND_PPCF128));
2903 break;
2904 case ISD::LLROUND:
2905 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
2906 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
2907 RTLIB::LLROUND_F128,
2908 RTLIB::LLROUND_PPCF128));
2909 break;
2910 case ISD::LRINT:
2911 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
2912 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
2913 RTLIB::LRINT_F128,
2914 RTLIB::LRINT_PPCF128));
2915 break;
2916 case ISD::LLRINT:
2917 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
2918 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
2919 RTLIB::LLRINT_F128,
2920 RTLIB::LLRINT_PPCF128));
2921 break;
2922 case ISD::VAARG:
2923 Results.push_back(DAG.expandVAArg(Node));
2924 Results.push_back(Results[0].getValue(1));
2925 break;
2926 case ISD::VACOPY:
2927 Results.push_back(DAG.expandVACopy(Node));
2928 break;
2929 case ISD::EXTRACT_VECTOR_ELT:
2930 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2931 // This must be an access of the only element. Return it.
2932 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2933 Node->getOperand(0));
2934 else
2935 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2936 Results.push_back(Tmp1);
2937 break;
2938 case ISD::EXTRACT_SUBVECTOR:
2939 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2940 break;
2941 case ISD::INSERT_SUBVECTOR:
2942 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2943 break;
2944 case ISD::CONCAT_VECTORS:
2945 Results.push_back(ExpandVectorBuildThroughStack(Node));
2946 break;
2947 case ISD::SCALAR_TO_VECTOR:
2948 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2949 break;
2950 case ISD::INSERT_VECTOR_ELT:
2951 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2952 Node->getOperand(1),
2953 Node->getOperand(2), dl));
2954 break;
2955 case ISD::VECTOR_SHUFFLE: {
2956 SmallVector<int, 32> NewMask;
2957 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2959 EVT VT = Node->getValueType(0);
2960 EVT EltVT = VT.getVectorElementType();
2961 SDValue Op0 = Node->getOperand(0);
2962 SDValue Op1 = Node->getOperand(1);
2963 if (!TLI.isTypeLegal(EltVT)) {
2964 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2966 // BUILD_VECTOR operands are allowed to be wider than the element type.
2967 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2968 // it.
2969 if (NewEltVT.bitsLT(EltVT)) {
2970 // Convert shuffle node.
2971 // If original node was v4i64 and the new EltVT is i32,
2972 // cast operands to v8i32 and re-build the mask.
2974 // Calculate new VT, the size of the new VT should be equal to original.
2975 EVT NewVT =
2976 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2977 VT.getSizeInBits() / NewEltVT.getSizeInBits());
2978 assert(NewVT.bitsEq(VT));
2980 // cast operands to new VT
2981 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2982 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2984 // Convert the shuffle mask
2985 unsigned int factor =
2986 NewVT.getVectorNumElements()/VT.getVectorNumElements();
2988 // EltVT gets smaller
2989 assert(factor > 0);
2991 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2992 if (Mask[i] < 0) {
2993 for (unsigned fi = 0; fi < factor; ++fi)
2994 NewMask.push_back(Mask[i]);
2996 else {
2997 for (unsigned fi = 0; fi < factor; ++fi)
2998 NewMask.push_back(Mask[i]*factor+fi);
3001 Mask = NewMask;
3002 VT = NewVT;
3004 EltVT = NewEltVT;
3006 unsigned NumElems = VT.getVectorNumElements();
3007 SmallVector<SDValue, 16> Ops;
3008 for (unsigned i = 0; i != NumElems; ++i) {
3009 if (Mask[i] < 0) {
3010 Ops.push_back(DAG.getUNDEF(EltVT));
3011 continue;
3013 unsigned Idx = Mask[i];
3014 if (Idx < NumElems)
3015 Ops.push_back(DAG.getNode(
3016 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3017 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3018 else
3019 Ops.push_back(DAG.getNode(
3020 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3021 DAG.getConstant(Idx - NumElems, dl,
3022 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3025 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3026 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3027 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3028 Results.push_back(Tmp1);
3029 break;
3031 case ISD::EXTRACT_ELEMENT: {
3032 EVT OpTy = Node->getOperand(0).getValueType();
3033 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3034 // 1 -> Hi
3035 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3036 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3037 TLI.getShiftAmountTy(
3038 Node->getOperand(0).getValueType(),
3039 DAG.getDataLayout())));
3040 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3041 } else {
3042 // 0 -> Lo
3043 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3044 Node->getOperand(0));
3046 Results.push_back(Tmp1);
3047 break;
3049 case ISD::STACKSAVE:
3050 // Expand to CopyFromReg if the target set
3051 // StackPointerRegisterToSaveRestore.
3052 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3053 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3054 Node->getValueType(0)));
3055 Results.push_back(Results[0].getValue(1));
3056 } else {
3057 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3058 Results.push_back(Node->getOperand(0));
3060 break;
3061 case ISD::STACKRESTORE:
3062 // Expand to CopyToReg if the target set
3063 // StackPointerRegisterToSaveRestore.
3064 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3065 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3066 Node->getOperand(1)));
3067 } else {
3068 Results.push_back(Node->getOperand(0));
3070 break;
3071 case ISD::GET_DYNAMIC_AREA_OFFSET:
3072 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3073 Results.push_back(Results[0].getValue(0));
3074 break;
3075 case ISD::FCOPYSIGN:
3076 Results.push_back(ExpandFCOPYSIGN(Node));
3077 break;
3078 case ISD::FNEG:
3079 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3080 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3081 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3082 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3083 Node->getOperand(0));
3084 Results.push_back(Tmp1);
3085 break;
3086 case ISD::FABS:
3087 Results.push_back(ExpandFABS(Node));
3088 break;
3089 case ISD::SMIN:
3090 case ISD::SMAX:
3091 case ISD::UMIN:
3092 case ISD::UMAX: {
3093 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3094 ISD::CondCode Pred;
3095 switch (Node->getOpcode()) {
3096 default: llvm_unreachable("How did we get here?");
3097 case ISD::SMAX: Pred = ISD::SETGT; break;
3098 case ISD::SMIN: Pred = ISD::SETLT; break;
3099 case ISD::UMAX: Pred = ISD::SETUGT; break;
3100 case ISD::UMIN: Pred = ISD::SETULT; break;
3102 Tmp1 = Node->getOperand(0);
3103 Tmp2 = Node->getOperand(1);
3104 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3105 Results.push_back(Tmp1);
3106 break;
3108 case ISD::FMINNUM:
3109 case ISD::FMAXNUM: {
3110 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3111 Results.push_back(Expanded);
3112 break;
3114 case ISD::FSIN:
3115 case ISD::FCOS: {
3116 EVT VT = Node->getValueType(0);
3117 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3118 // fcos which share the same operand and both are used.
3119 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3120 isSinCosLibcallAvailable(Node, TLI))
3121 && useSinCos(Node)) {
3122 SDVTList VTs = DAG.getVTList(VT, VT);
3123 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3124 if (Node->getOpcode() == ISD::FCOS)
3125 Tmp1 = Tmp1.getValue(1);
3126 Results.push_back(Tmp1);
3128 break;
3130 case ISD::FMAD:
3131 llvm_unreachable("Illegal fmad should never be formed");
3133 case ISD::FP16_TO_FP:
3134 if (Node->getValueType(0) != MVT::f32) {
3135 // We can extend to types bigger than f32 in two steps without changing
3136 // the result. Since "f16 -> f32" is much more commonly available, give
3137 // CodeGen the option of emitting that before resorting to a libcall.
3138 SDValue Res =
3139 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3140 Results.push_back(
3141 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3143 break;
3144 case ISD::FP_TO_FP16:
3145 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3146 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3147 SDValue Op = Node->getOperand(0);
3148 MVT SVT = Op.getSimpleValueType();
3149 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3150 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3151 // Under fastmath, we can expand this node into a fround followed by
3152 // a float-half conversion.
3153 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3154 DAG.getIntPtrConstant(0, dl));
3155 Results.push_back(
3156 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3159 break;
3160 case ISD::ConstantFP: {
3161 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3162 // Check to see if this FP immediate is already legal.
3163 // If this is a legal constant, turn it into a TargetConstantFP node.
3164 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3165 DAG.getMachineFunction().getFunction().hasOptSize()))
3166 Results.push_back(ExpandConstantFP(CFP, true));
3167 break;
3169 case ISD::Constant: {
3170 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3171 Results.push_back(ExpandConstant(CP));
3172 break;
3174 case ISD::FSUB: {
3175 EVT VT = Node->getValueType(0);
3176 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3177 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3178 const SDNodeFlags Flags = Node->getFlags();
3179 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3180 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3181 Results.push_back(Tmp1);
3183 break;
3185 case ISD::SUB: {
3186 EVT VT = Node->getValueType(0);
3187 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3188 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3189 "Don't know how to expand this subtraction!");
3190 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3191 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3192 VT));
3193 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3194 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3195 break;
3197 case ISD::UREM:
3198 case ISD::SREM: {
3199 EVT VT = Node->getValueType(0);
3200 bool isSigned = Node->getOpcode() == ISD::SREM;
3201 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3202 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3203 Tmp2 = Node->getOperand(0);
3204 Tmp3 = Node->getOperand(1);
3205 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3206 SDVTList VTs = DAG.getVTList(VT, VT);
3207 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3208 Results.push_back(Tmp1);
3209 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3210 // X % Y -> X-X/Y*Y
3211 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3212 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3213 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3214 Results.push_back(Tmp1);
3216 break;
3218 case ISD::UDIV:
3219 case ISD::SDIV: {
3220 bool isSigned = Node->getOpcode() == ISD::SDIV;
3221 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3222 EVT VT = Node->getValueType(0);
3223 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3224 SDVTList VTs = DAG.getVTList(VT, VT);
3225 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3226 Node->getOperand(1));
3227 Results.push_back(Tmp1);
3229 break;
3231 case ISD::MULHU:
3232 case ISD::MULHS: {
3233 unsigned ExpandOpcode =
3234 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3235 EVT VT = Node->getValueType(0);
3236 SDVTList VTs = DAG.getVTList(VT, VT);
3238 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3239 Node->getOperand(1));
3240 Results.push_back(Tmp1.getValue(1));
3241 break;
3243 case ISD::UMUL_LOHI:
3244 case ISD::SMUL_LOHI: {
3245 SDValue LHS = Node->getOperand(0);
3246 SDValue RHS = Node->getOperand(1);
3247 MVT VT = LHS.getSimpleValueType();
3248 unsigned MULHOpcode =
3249 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3251 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3252 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3253 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3254 break;
3257 SmallVector<SDValue, 4> Halves;
3258 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3259 assert(TLI.isTypeLegal(HalfType));
3260 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3261 HalfType, DAG,
3262 TargetLowering::MulExpansionKind::Always)) {
3263 for (unsigned i = 0; i < 2; ++i) {
3264 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3265 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3266 SDValue Shift = DAG.getConstant(
3267 HalfType.getScalarSizeInBits(), dl,
3268 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3269 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3270 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3272 break;
3274 break;
3276 case ISD::MUL: {
3277 EVT VT = Node->getValueType(0);
3278 SDVTList VTs = DAG.getVTList(VT, VT);
3279 // See if multiply or divide can be lowered using two-result operations.
3280 // We just need the low half of the multiply; try both the signed
3281 // and unsigned forms. If the target supports both SMUL_LOHI and
3282 // UMUL_LOHI, form a preference by checking which forms of plain
3283 // MULH it supports.
3284 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3285 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3286 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3287 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3288 unsigned OpToUse = 0;
3289 if (HasSMUL_LOHI && !HasMULHS) {
3290 OpToUse = ISD::SMUL_LOHI;
3291 } else if (HasUMUL_LOHI && !HasMULHU) {
3292 OpToUse = ISD::UMUL_LOHI;
3293 } else if (HasSMUL_LOHI) {
3294 OpToUse = ISD::SMUL_LOHI;
3295 } else if (HasUMUL_LOHI) {
3296 OpToUse = ISD::UMUL_LOHI;
3298 if (OpToUse) {
3299 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3300 Node->getOperand(1)));
3301 break;
3304 SDValue Lo, Hi;
3305 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3306 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3307 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3308 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3309 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3310 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3311 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3312 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3313 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3314 SDValue Shift =
3315 DAG.getConstant(HalfType.getSizeInBits(), dl,
3316 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3317 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3318 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3320 break;
3322 case ISD::FSHL:
3323 case ISD::FSHR:
3324 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3325 Results.push_back(Tmp1);
3326 break;
3327 case ISD::ROTL:
3328 case ISD::ROTR:
3329 if (TLI.expandROT(Node, Tmp1, DAG))
3330 Results.push_back(Tmp1);
3331 break;
3332 case ISD::SADDSAT:
3333 case ISD::UADDSAT:
3334 case ISD::SSUBSAT:
3335 case ISD::USUBSAT:
3336 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3337 break;
3338 case ISD::SMULFIX:
3339 case ISD::SMULFIXSAT:
3340 case ISD::UMULFIX:
3341 case ISD::UMULFIXSAT:
3342 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3343 break;
3344 case ISD::ADDCARRY:
3345 case ISD::SUBCARRY: {
3346 SDValue LHS = Node->getOperand(0);
3347 SDValue RHS = Node->getOperand(1);
3348 SDValue Carry = Node->getOperand(2);
3350 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3352 // Initial add of the 2 operands.
3353 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3354 EVT VT = LHS.getValueType();
3355 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3357 // Initial check for overflow.
3358 EVT CarryType = Node->getValueType(1);
3359 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3360 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3361 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3363 // Add of the sum and the carry.
3364 SDValue CarryExt =
3365 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1);
3366 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3368 // Second check for overflow. If we are adding, we can only overflow if the
3369 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3370 // If we are subtracting, we can only overflow if the initial sum is 0 and
3371 // the carry is set, resulting in a new sum of all 1s.
3372 SDValue Zero = DAG.getConstant(0, dl, VT);
3373 SDValue Overflow2 =
3374 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3375 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3376 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3377 DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3379 SDValue ResultCarry =
3380 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3382 Results.push_back(Sum2);
3383 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3384 break;
3386 case ISD::SADDO:
3387 case ISD::SSUBO: {
3388 SDValue Result, Overflow;
3389 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3390 Results.push_back(Result);
3391 Results.push_back(Overflow);
3392 break;
3394 case ISD::UADDO:
3395 case ISD::USUBO: {
3396 SDValue Result, Overflow;
3397 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3398 Results.push_back(Result);
3399 Results.push_back(Overflow);
3400 break;
3402 case ISD::UMULO:
3403 case ISD::SMULO: {
3404 SDValue Result, Overflow;
3405 if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3406 Results.push_back(Result);
3407 Results.push_back(Overflow);
3409 break;
3411 case ISD::BUILD_PAIR: {
3412 EVT PairTy = Node->getValueType(0);
3413 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3414 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3415 Tmp2 = DAG.getNode(
3416 ISD::SHL, dl, PairTy, Tmp2,
3417 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3418 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3419 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3420 break;
3422 case ISD::SELECT:
3423 Tmp1 = Node->getOperand(0);
3424 Tmp2 = Node->getOperand(1);
3425 Tmp3 = Node->getOperand(2);
3426 if (Tmp1.getOpcode() == ISD::SETCC) {
3427 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3428 Tmp2, Tmp3,
3429 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3430 } else {
3431 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3432 DAG.getConstant(0, dl, Tmp1.getValueType()),
3433 Tmp2, Tmp3, ISD::SETNE);
3435 Tmp1->setFlags(Node->getFlags());
3436 Results.push_back(Tmp1);
3437 break;
3438 case ISD::BR_JT: {
3439 SDValue Chain = Node->getOperand(0);
3440 SDValue Table = Node->getOperand(1);
3441 SDValue Index = Node->getOperand(2);
3443 const DataLayout &TD = DAG.getDataLayout();
3444 EVT PTy = TLI.getPointerTy(TD);
3446 unsigned EntrySize =
3447 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3449 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3450 // This transformation needs to be done here since otherwise the MIPS
3451 // backend will end up emitting a three instruction multiply sequence
3452 // instead of a single shift and MSP430 will call a runtime function.
3453 if (llvm::isPowerOf2_32(EntrySize))
3454 Index = DAG.getNode(
3455 ISD::SHL, dl, Index.getValueType(), Index,
3456 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3457 else
3458 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3459 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3460 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3461 Index, Table);
3463 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3464 SDValue LD = DAG.getExtLoad(
3465 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3466 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3467 Addr = LD;
3468 if (TLI.isJumpTableRelative()) {
3469 // For PIC, the sequence is:
3470 // BRIND(load(Jumptable + index) + RelocBase)
3471 // RelocBase can be JumpTable, GOT or some sort of global base.
3472 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3473 TLI.getPICJumpTableRelocBase(Table, DAG));
3476 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3477 Results.push_back(Tmp1);
3478 break;
3480 case ISD::BRCOND:
3481 // Expand brcond's setcc into its constituent parts and create a BR_CC
3482 // Node.
3483 Tmp1 = Node->getOperand(0);
3484 Tmp2 = Node->getOperand(1);
3485 if (Tmp2.getOpcode() == ISD::SETCC) {
3486 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3487 Tmp1, Tmp2.getOperand(2),
3488 Tmp2.getOperand(0), Tmp2.getOperand(1),
3489 Node->getOperand(2));
3490 } else {
3491 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3492 if (Tmp2.isUndef() ||
3493 (Tmp2.getOpcode() == ISD::AND &&
3494 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3495 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3496 Tmp3 = Tmp2;
3497 else
3498 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3499 DAG.getConstant(1, dl, Tmp2.getValueType()));
3500 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3501 DAG.getCondCode(ISD::SETNE), Tmp3,
3502 DAG.getConstant(0, dl, Tmp3.getValueType()),
3503 Node->getOperand(2));
3505 Results.push_back(Tmp1);
3506 break;
3507 case ISD::SETCC: {
3508 Tmp1 = Node->getOperand(0);
3509 Tmp2 = Node->getOperand(1);
3510 Tmp3 = Node->getOperand(2);
3511 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3512 Tmp3, NeedInvert, dl);
3514 if (Legalized) {
3515 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3516 // condition code, create a new SETCC node.
3517 if (Tmp3.getNode())
3518 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3519 Tmp1, Tmp2, Tmp3, Node->getFlags());
3521 // If we expanded the SETCC by inverting the condition code, then wrap
3522 // the existing SETCC in a NOT to restore the intended condition.
3523 if (NeedInvert)
3524 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3526 Results.push_back(Tmp1);
3527 break;
3530 // Otherwise, SETCC for the given comparison type must be completely
3531 // illegal; expand it into a SELECT_CC.
3532 EVT VT = Node->getValueType(0);
3533 int TrueValue;
3534 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3535 case TargetLowering::ZeroOrOneBooleanContent:
3536 case TargetLowering::UndefinedBooleanContent:
3537 TrueValue = 1;
3538 break;
3539 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3540 TrueValue = -1;
3541 break;
3543 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3544 DAG.getConstant(TrueValue, dl, VT),
3545 DAG.getConstant(0, dl, VT),
3546 Tmp3);
3547 Tmp1->setFlags(Node->getFlags());
3548 Results.push_back(Tmp1);
3549 break;
3551 case ISD::SELECT_CC: {
3552 Tmp1 = Node->getOperand(0); // LHS
3553 Tmp2 = Node->getOperand(1); // RHS
3554 Tmp3 = Node->getOperand(2); // True
3555 Tmp4 = Node->getOperand(3); // False
3556 EVT VT = Node->getValueType(0);
3557 SDValue CC = Node->getOperand(4);
3558 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3560 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3561 // If the condition code is legal, then we need to expand this
3562 // node using SETCC and SELECT.
3563 EVT CmpVT = Tmp1.getValueType();
3564 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3565 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3566 "expanded.");
3567 EVT CCVT = getSetCCResultType(CmpVT);
3568 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3569 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3570 break;
3573 // SELECT_CC is legal, so the condition code must not be.
3574 bool Legalized = false;
3575 // Try to legalize by inverting the condition. This is for targets that
3576 // might support an ordered version of a condition, but not the unordered
3577 // version (or vice versa).
3578 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3579 Tmp1.getValueType().isInteger());
3580 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3581 // Use the new condition code and swap true and false
3582 Legalized = true;
3583 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3584 Tmp1->setFlags(Node->getFlags());
3585 } else {
3586 // If The inverse is not legal, then try to swap the arguments using
3587 // the inverse condition code.
3588 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3589 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3590 // The swapped inverse condition is legal, so swap true and false,
3591 // lhs and rhs.
3592 Legalized = true;
3593 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3594 Tmp1->setFlags(Node->getFlags());
3598 if (!Legalized) {
3599 Legalized = LegalizeSetCCCondCode(
3600 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3601 dl);
3603 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3605 // If we expanded the SETCC by inverting the condition code, then swap
3606 // the True/False operands to match.
3607 if (NeedInvert)
3608 std::swap(Tmp3, Tmp4);
3610 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3611 // condition code, create a new SELECT_CC node.
3612 if (CC.getNode()) {
3613 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3614 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3615 } else {
3616 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3617 CC = DAG.getCondCode(ISD::SETNE);
3618 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3619 Tmp2, Tmp3, Tmp4, CC);
3621 Tmp1->setFlags(Node->getFlags());
3623 Results.push_back(Tmp1);
3624 break;
3626 case ISD::BR_CC: {
3627 Tmp1 = Node->getOperand(0); // Chain
3628 Tmp2 = Node->getOperand(2); // LHS
3629 Tmp3 = Node->getOperand(3); // RHS
3630 Tmp4 = Node->getOperand(1); // CC
3632 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3633 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3634 (void)Legalized;
3635 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3637 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3639 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3640 // node.
3641 if (Tmp4.getNode()) {
3642 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3643 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3644 } else {
3645 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3646 Tmp4 = DAG.getCondCode(ISD::SETNE);
3647 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3648 Tmp2, Tmp3, Node->getOperand(4));
3650 Results.push_back(Tmp1);
3651 break;
3653 case ISD::BUILD_VECTOR:
3654 Results.push_back(ExpandBUILD_VECTOR(Node));
3655 break;
3656 case ISD::SRA:
3657 case ISD::SRL:
3658 case ISD::SHL: {
3659 // Scalarize vector SRA/SRL/SHL.
3660 EVT VT = Node->getValueType(0);
3661 assert(VT.isVector() && "Unable to legalize non-vector shift");
3662 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3663 unsigned NumElem = VT.getVectorNumElements();
3665 SmallVector<SDValue, 8> Scalars;
3666 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3667 SDValue Ex = DAG.getNode(
3668 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3669 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3670 SDValue Sh = DAG.getNode(
3671 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3672 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3673 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3674 VT.getScalarType(), Ex, Sh));
3677 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3678 ReplaceNode(SDValue(Node, 0), Result);
3679 break;
3681 case ISD::VECREDUCE_FADD:
3682 case ISD::VECREDUCE_FMUL:
3683 case ISD::VECREDUCE_ADD:
3684 case ISD::VECREDUCE_MUL:
3685 case ISD::VECREDUCE_AND:
3686 case ISD::VECREDUCE_OR:
3687 case ISD::VECREDUCE_XOR:
3688 case ISD::VECREDUCE_SMAX:
3689 case ISD::VECREDUCE_SMIN:
3690 case ISD::VECREDUCE_UMAX:
3691 case ISD::VECREDUCE_UMIN:
3692 case ISD::VECREDUCE_FMAX:
3693 case ISD::VECREDUCE_FMIN:
3694 Results.push_back(TLI.expandVecReduce(Node, DAG));
3695 break;
3696 case ISD::GLOBAL_OFFSET_TABLE:
3697 case ISD::GlobalAddress:
3698 case ISD::GlobalTLSAddress:
3699 case ISD::ExternalSymbol:
3700 case ISD::ConstantPool:
3701 case ISD::JumpTable:
3702 case ISD::INTRINSIC_W_CHAIN:
3703 case ISD::INTRINSIC_WO_CHAIN:
3704 case ISD::INTRINSIC_VOID:
3705 // FIXME: Custom lowering for these operations shouldn't return null!
3706 break;
3709 if (Results.empty() && Node->isStrictFPOpcode()) {
3710 // FIXME: We were asked to expand a strict floating-point operation,
3711 // but there is currently no expansion implemented that would preserve
3712 // the "strict" properties. For now, we just fall back to the non-strict
3713 // version if that is legal on the target. The actual mutation of the
3714 // operation will happen in SelectionDAGISel::DoInstructionSelection.
3715 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3716 Node->getValueType(0))
3717 == TargetLowering::Legal)
3718 return true;
3721 // Replace the original node with the legalized result.
3722 if (Results.empty()) {
3723 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3724 return false;
3727 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3728 ReplaceNode(Node, Results.data());
3729 return true;
3732 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3733 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3734 SmallVector<SDValue, 8> Results;
3735 SDLoc dl(Node);
3736 // FIXME: Check flags on the node to see if we can use a finite call.
3737 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath;
3738 unsigned Opc = Node->getOpcode();
3739 switch (Opc) {
3740 case ISD::ATOMIC_FENCE: {
3741 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3742 // FIXME: handle "fence singlethread" more efficiently.
3743 TargetLowering::ArgListTy Args;
3745 TargetLowering::CallLoweringInfo CLI(DAG);
3746 CLI.setDebugLoc(dl)
3747 .setChain(Node->getOperand(0))
3748 .setLibCallee(
3749 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3750 DAG.getExternalSymbol("__sync_synchronize",
3751 TLI.getPointerTy(DAG.getDataLayout())),
3752 std::move(Args));
3754 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3756 Results.push_back(CallResult.second);
3757 break;
3759 // By default, atomic intrinsics are marked Legal and lowered. Targets
3760 // which don't support them directly, however, may want libcalls, in which
3761 // case they mark them Expand, and we get here.
3762 case ISD::ATOMIC_SWAP:
3763 case ISD::ATOMIC_LOAD_ADD:
3764 case ISD::ATOMIC_LOAD_SUB:
3765 case ISD::ATOMIC_LOAD_AND:
3766 case ISD::ATOMIC_LOAD_CLR:
3767 case ISD::ATOMIC_LOAD_OR:
3768 case ISD::ATOMIC_LOAD_XOR:
3769 case ISD::ATOMIC_LOAD_NAND:
3770 case ISD::ATOMIC_LOAD_MIN:
3771 case ISD::ATOMIC_LOAD_MAX:
3772 case ISD::ATOMIC_LOAD_UMIN:
3773 case ISD::ATOMIC_LOAD_UMAX:
3774 case ISD::ATOMIC_CMP_SWAP: {
3775 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3776 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3777 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3779 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3780 Results.push_back(Tmp.first);
3781 Results.push_back(Tmp.second);
3782 break;
3784 case ISD::TRAP: {
3785 // If this operation is not supported, lower it to 'abort()' call
3786 TargetLowering::ArgListTy Args;
3787 TargetLowering::CallLoweringInfo CLI(DAG);
3788 CLI.setDebugLoc(dl)
3789 .setChain(Node->getOperand(0))
3790 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3791 DAG.getExternalSymbol(
3792 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3793 std::move(Args));
3794 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3796 Results.push_back(CallResult.second);
3797 break;
3799 case ISD::FMINNUM:
3800 case ISD::STRICT_FMINNUM:
3801 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3802 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3803 RTLIB::FMIN_PPCF128));
3804 break;
3805 case ISD::FMAXNUM:
3806 case ISD::STRICT_FMAXNUM:
3807 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3808 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3809 RTLIB::FMAX_PPCF128));
3810 break;
3811 case ISD::FSQRT:
3812 case ISD::STRICT_FSQRT:
3813 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3814 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3815 RTLIB::SQRT_PPCF128));
3816 break;
3817 case ISD::FCBRT:
3818 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3819 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3820 RTLIB::CBRT_PPCF128));
3821 break;
3822 case ISD::FSIN:
3823 case ISD::STRICT_FSIN:
3824 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3825 RTLIB::SIN_F80, RTLIB::SIN_F128,
3826 RTLIB::SIN_PPCF128));
3827 break;
3828 case ISD::FCOS:
3829 case ISD::STRICT_FCOS:
3830 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3831 RTLIB::COS_F80, RTLIB::COS_F128,
3832 RTLIB::COS_PPCF128));
3833 break;
3834 case ISD::FSINCOS:
3835 // Expand into sincos libcall.
3836 ExpandSinCosLibCall(Node, Results);
3837 break;
3838 case ISD::FLOG:
3839 case ISD::STRICT_FLOG:
3840 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite))
3841 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32,
3842 RTLIB::LOG_FINITE_F64,
3843 RTLIB::LOG_FINITE_F80,
3844 RTLIB::LOG_FINITE_F128,
3845 RTLIB::LOG_FINITE_PPCF128));
3846 else
3847 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3848 RTLIB::LOG_F80, RTLIB::LOG_F128,
3849 RTLIB::LOG_PPCF128));
3850 break;
3851 case ISD::FLOG2:
3852 case ISD::STRICT_FLOG2:
3853 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite))
3854 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32,
3855 RTLIB::LOG2_FINITE_F64,
3856 RTLIB::LOG2_FINITE_F80,
3857 RTLIB::LOG2_FINITE_F128,
3858 RTLIB::LOG2_FINITE_PPCF128));
3859 else
3860 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3861 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3862 RTLIB::LOG2_PPCF128));
3863 break;
3864 case ISD::FLOG10:
3865 case ISD::STRICT_FLOG10:
3866 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite))
3867 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32,
3868 RTLIB::LOG10_FINITE_F64,
3869 RTLIB::LOG10_FINITE_F80,
3870 RTLIB::LOG10_FINITE_F128,
3871 RTLIB::LOG10_FINITE_PPCF128));
3872 else
3873 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3874 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3875 RTLIB::LOG10_PPCF128));
3876 break;
3877 case ISD::FEXP:
3878 case ISD::STRICT_FEXP:
3879 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite))
3880 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32,
3881 RTLIB::EXP_FINITE_F64,
3882 RTLIB::EXP_FINITE_F80,
3883 RTLIB::EXP_FINITE_F128,
3884 RTLIB::EXP_FINITE_PPCF128));
3885 else
3886 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3887 RTLIB::EXP_F80, RTLIB::EXP_F128,
3888 RTLIB::EXP_PPCF128));
3889 break;
3890 case ISD::FEXP2:
3891 case ISD::STRICT_FEXP2:
3892 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite))
3893 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32,
3894 RTLIB::EXP2_FINITE_F64,
3895 RTLIB::EXP2_FINITE_F80,
3896 RTLIB::EXP2_FINITE_F128,
3897 RTLIB::EXP2_FINITE_PPCF128));
3898 else
3899 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3900 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3901 RTLIB::EXP2_PPCF128));
3902 break;
3903 case ISD::FTRUNC:
3904 case ISD::STRICT_FTRUNC:
3905 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3906 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3907 RTLIB::TRUNC_PPCF128));
3908 break;
3909 case ISD::FFLOOR:
3910 case ISD::STRICT_FFLOOR:
3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3912 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3913 RTLIB::FLOOR_PPCF128));
3914 break;
3915 case ISD::FCEIL:
3916 case ISD::STRICT_FCEIL:
3917 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3918 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3919 RTLIB::CEIL_PPCF128));
3920 break;
3921 case ISD::FRINT:
3922 case ISD::STRICT_FRINT:
3923 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3924 RTLIB::RINT_F80, RTLIB::RINT_F128,
3925 RTLIB::RINT_PPCF128));
3926 break;
3927 case ISD::FNEARBYINT:
3928 case ISD::STRICT_FNEARBYINT:
3929 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3930 RTLIB::NEARBYINT_F64,
3931 RTLIB::NEARBYINT_F80,
3932 RTLIB::NEARBYINT_F128,
3933 RTLIB::NEARBYINT_PPCF128));
3934 break;
3935 case ISD::FROUND:
3936 case ISD::STRICT_FROUND:
3937 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3938 RTLIB::ROUND_F64,
3939 RTLIB::ROUND_F80,
3940 RTLIB::ROUND_F128,
3941 RTLIB::ROUND_PPCF128));
3942 break;
3943 case ISD::FPOWI:
3944 case ISD::STRICT_FPOWI:
3945 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3946 RTLIB::POWI_F80, RTLIB::POWI_F128,
3947 RTLIB::POWI_PPCF128));
3948 break;
3949 case ISD::FPOW:
3950 case ISD::STRICT_FPOW:
3951 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite))
3952 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32,
3953 RTLIB::POW_FINITE_F64,
3954 RTLIB::POW_FINITE_F80,
3955 RTLIB::POW_FINITE_F128,
3956 RTLIB::POW_FINITE_PPCF128));
3957 else
3958 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3959 RTLIB::POW_F80, RTLIB::POW_F128,
3960 RTLIB::POW_PPCF128));
3961 break;
3962 case ISD::FDIV:
3963 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3964 RTLIB::DIV_F80, RTLIB::DIV_F128,
3965 RTLIB::DIV_PPCF128));
3966 break;
3967 case ISD::FREM:
3968 case ISD::STRICT_FREM:
3969 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3970 RTLIB::REM_F80, RTLIB::REM_F128,
3971 RTLIB::REM_PPCF128));
3972 break;
3973 case ISD::FMA:
3974 case ISD::STRICT_FMA:
3975 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3976 RTLIB::FMA_F80, RTLIB::FMA_F128,
3977 RTLIB::FMA_PPCF128));
3978 break;
3979 case ISD::FADD:
3980 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3981 RTLIB::ADD_F80, RTLIB::ADD_F128,
3982 RTLIB::ADD_PPCF128));
3983 break;
3984 case ISD::FMUL:
3985 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3986 RTLIB::MUL_F80, RTLIB::MUL_F128,
3987 RTLIB::MUL_PPCF128));
3988 break;
3989 case ISD::FP16_TO_FP:
3990 if (Node->getValueType(0) == MVT::f32) {
3991 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3993 break;
3994 case ISD::FP_TO_FP16: {
3995 RTLIB::Libcall LC =
3996 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3997 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3998 Results.push_back(ExpandLibCall(LC, Node, false));
3999 break;
4001 case ISD::FSUB:
4002 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4003 RTLIB::SUB_F80, RTLIB::SUB_F128,
4004 RTLIB::SUB_PPCF128));
4005 break;
4006 case ISD::SREM:
4007 Results.push_back(ExpandIntLibCall(Node, true,
4008 RTLIB::SREM_I8,
4009 RTLIB::SREM_I16, RTLIB::SREM_I32,
4010 RTLIB::SREM_I64, RTLIB::SREM_I128));
4011 break;
4012 case ISD::UREM:
4013 Results.push_back(ExpandIntLibCall(Node, false,
4014 RTLIB::UREM_I8,
4015 RTLIB::UREM_I16, RTLIB::UREM_I32,
4016 RTLIB::UREM_I64, RTLIB::UREM_I128));
4017 break;
4018 case ISD::SDIV:
4019 Results.push_back(ExpandIntLibCall(Node, true,
4020 RTLIB::SDIV_I8,
4021 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4022 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4023 break;
4024 case ISD::UDIV:
4025 Results.push_back(ExpandIntLibCall(Node, false,
4026 RTLIB::UDIV_I8,
4027 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4028 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4029 break;
4030 case ISD::SDIVREM:
4031 case ISD::UDIVREM:
4032 // Expand into divrem libcall
4033 ExpandDivRemLibCall(Node, Results);
4034 break;
4035 case ISD::MUL:
4036 Results.push_back(ExpandIntLibCall(Node, false,
4037 RTLIB::MUL_I8,
4038 RTLIB::MUL_I16, RTLIB::MUL_I32,
4039 RTLIB::MUL_I64, RTLIB::MUL_I128));
4040 break;
4041 case ISD::CTLZ_ZERO_UNDEF:
4042 switch (Node->getSimpleValueType(0).SimpleTy) {
4043 default:
4044 llvm_unreachable("LibCall explicitly requested, but not available");
4045 case MVT::i32:
4046 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4047 break;
4048 case MVT::i64:
4049 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4050 break;
4051 case MVT::i128:
4052 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4053 break;
4055 break;
4058 // Replace the original node with the legalized result.
4059 if (!Results.empty()) {
4060 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4061 ReplaceNode(Node, Results.data());
4062 } else
4063 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4066 // Determine the vector type to use in place of an original scalar element when
4067 // promoting equally sized vectors.
4068 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4069 MVT EltVT, MVT NewEltVT) {
4070 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4071 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4072 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4073 return MidVT;
4076 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4077 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4078 SmallVector<SDValue, 8> Results;
4079 MVT OVT = Node->getSimpleValueType(0);
4080 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4081 Node->getOpcode() == ISD::SINT_TO_FP ||
4082 Node->getOpcode() == ISD::SETCC ||
4083 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4084 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4085 OVT = Node->getOperand(0).getSimpleValueType();
4087 if (Node->getOpcode() == ISD::BR_CC)
4088 OVT = Node->getOperand(2).getSimpleValueType();
4089 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4090 SDLoc dl(Node);
4091 SDValue Tmp1, Tmp2, Tmp3;
4092 switch (Node->getOpcode()) {
4093 case ISD::CTTZ:
4094 case ISD::CTTZ_ZERO_UNDEF:
4095 case ISD::CTLZ:
4096 case ISD::CTLZ_ZERO_UNDEF:
4097 case ISD::CTPOP:
4098 // Zero extend the argument.
4099 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4100 if (Node->getOpcode() == ISD::CTTZ) {
4101 // The count is the same in the promoted type except if the original
4102 // value was zero. This can be handled by setting the bit just off
4103 // the top of the original type.
4104 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4105 OVT.getSizeInBits());
4106 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4107 DAG.getConstant(TopBit, dl, NVT));
4109 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4110 // already the correct result.
4111 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4112 if (Node->getOpcode() == ISD::CTLZ ||
4113 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4114 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4115 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4116 DAG.getConstant(NVT.getSizeInBits() -
4117 OVT.getSizeInBits(), dl, NVT));
4119 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4120 break;
4121 case ISD::BITREVERSE:
4122 case ISD::BSWAP: {
4123 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4124 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4125 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4126 Tmp1 = DAG.getNode(
4127 ISD::SRL, dl, NVT, Tmp1,
4128 DAG.getConstant(DiffBits, dl,
4129 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4131 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4132 break;
4134 case ISD::FP_TO_UINT:
4135 case ISD::FP_TO_SINT:
4136 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4137 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4138 Results.push_back(Tmp1);
4139 break;
4140 case ISD::UINT_TO_FP:
4141 case ISD::SINT_TO_FP:
4142 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4143 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4144 Results.push_back(Tmp1);
4145 break;
4146 case ISD::VAARG: {
4147 SDValue Chain = Node->getOperand(0); // Get the chain.
4148 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4150 unsigned TruncOp;
4151 if (OVT.isVector()) {
4152 TruncOp = ISD::BITCAST;
4153 } else {
4154 assert(OVT.isInteger()
4155 && "VAARG promotion is supported only for vectors or integer types");
4156 TruncOp = ISD::TRUNCATE;
4159 // Perform the larger operation, then convert back
4160 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4161 Node->getConstantOperandVal(3));
4162 Chain = Tmp1.getValue(1);
4164 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4166 // Modified the chain result - switch anything that used the old chain to
4167 // use the new one.
4168 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4169 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4170 if (UpdatedNodes) {
4171 UpdatedNodes->insert(Tmp2.getNode());
4172 UpdatedNodes->insert(Chain.getNode());
4174 ReplacedNode(Node);
4175 break;
4177 case ISD::MUL:
4178 case ISD::SDIV:
4179 case ISD::SREM:
4180 case ISD::UDIV:
4181 case ISD::UREM:
4182 case ISD::AND:
4183 case ISD::OR:
4184 case ISD::XOR: {
4185 unsigned ExtOp, TruncOp;
4186 if (OVT.isVector()) {
4187 ExtOp = ISD::BITCAST;
4188 TruncOp = ISD::BITCAST;
4189 } else {
4190 assert(OVT.isInteger() && "Cannot promote logic operation");
4192 switch (Node->getOpcode()) {
4193 default:
4194 ExtOp = ISD::ANY_EXTEND;
4195 break;
4196 case ISD::SDIV:
4197 case ISD::SREM:
4198 ExtOp = ISD::SIGN_EXTEND;
4199 break;
4200 case ISD::UDIV:
4201 case ISD::UREM:
4202 ExtOp = ISD::ZERO_EXTEND;
4203 break;
4205 TruncOp = ISD::TRUNCATE;
4207 // Promote each of the values to the new type.
4208 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4209 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4210 // Perform the larger operation, then convert back
4211 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4212 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4213 break;
4215 case ISD::UMUL_LOHI:
4216 case ISD::SMUL_LOHI: {
4217 // Promote to a multiply in a wider integer type.
4218 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4219 : ISD::SIGN_EXTEND;
4220 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4221 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4222 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4224 auto &DL = DAG.getDataLayout();
4225 unsigned OriginalSize = OVT.getScalarSizeInBits();
4226 Tmp2 = DAG.getNode(
4227 ISD::SRL, dl, NVT, Tmp1,
4228 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4229 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4230 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4231 break;
4233 case ISD::SELECT: {
4234 unsigned ExtOp, TruncOp;
4235 if (Node->getValueType(0).isVector() ||
4236 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4237 ExtOp = ISD::BITCAST;
4238 TruncOp = ISD::BITCAST;
4239 } else if (Node->getValueType(0).isInteger()) {
4240 ExtOp = ISD::ANY_EXTEND;
4241 TruncOp = ISD::TRUNCATE;
4242 } else {
4243 ExtOp = ISD::FP_EXTEND;
4244 TruncOp = ISD::FP_ROUND;
4246 Tmp1 = Node->getOperand(0);
4247 // Promote each of the values to the new type.
4248 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4249 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4250 // Perform the larger operation, then round down.
4251 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4252 Tmp1->setFlags(Node->getFlags());
4253 if (TruncOp != ISD::FP_ROUND)
4254 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4255 else
4256 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4257 DAG.getIntPtrConstant(0, dl));
4258 Results.push_back(Tmp1);
4259 break;
4261 case ISD::VECTOR_SHUFFLE: {
4262 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4264 // Cast the two input vectors.
4265 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4266 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4268 // Convert the shuffle mask to the right # elements.
4269 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4270 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4271 Results.push_back(Tmp1);
4272 break;
4274 case ISD::SETCC: {
4275 unsigned ExtOp = ISD::FP_EXTEND;
4276 if (NVT.isInteger()) {
4277 ISD::CondCode CCCode =
4278 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4279 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4281 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4282 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4283 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4284 Tmp2, Node->getOperand(2), Node->getFlags()));
4285 break;
4287 case ISD::BR_CC: {
4288 unsigned ExtOp = ISD::FP_EXTEND;
4289 if (NVT.isInteger()) {
4290 ISD::CondCode CCCode =
4291 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4292 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4294 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4295 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4296 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4297 Node->getOperand(0), Node->getOperand(1),
4298 Tmp1, Tmp2, Node->getOperand(4)));
4299 break;
4301 case ISD::FADD:
4302 case ISD::FSUB:
4303 case ISD::FMUL:
4304 case ISD::FDIV:
4305 case ISD::FREM:
4306 case ISD::FMINNUM:
4307 case ISD::FMAXNUM:
4308 case ISD::FPOW:
4309 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4310 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4311 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4312 Node->getFlags());
4313 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4314 Tmp3, DAG.getIntPtrConstant(0, dl)));
4315 break;
4316 case ISD::FMA:
4317 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4318 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4319 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4320 Results.push_back(
4321 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4322 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4323 DAG.getIntPtrConstant(0, dl)));
4324 break;
4325 case ISD::FCOPYSIGN:
4326 case ISD::FPOWI: {
4327 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4328 Tmp2 = Node->getOperand(1);
4329 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4331 // fcopysign doesn't change anything but the sign bit, so
4332 // (fp_round (fcopysign (fpext a), b))
4333 // is as precise as
4334 // (fp_round (fpext a))
4335 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4336 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4337 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4338 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4339 break;
4341 case ISD::FFLOOR:
4342 case ISD::FCEIL:
4343 case ISD::FRINT:
4344 case ISD::FNEARBYINT:
4345 case ISD::FROUND:
4346 case ISD::FTRUNC:
4347 case ISD::FNEG:
4348 case ISD::FSQRT:
4349 case ISD::FSIN:
4350 case ISD::FCOS:
4351 case ISD::FLOG:
4352 case ISD::FLOG2:
4353 case ISD::FLOG10:
4354 case ISD::FABS:
4355 case ISD::FEXP:
4356 case ISD::FEXP2:
4357 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4358 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4359 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4360 Tmp2, DAG.getIntPtrConstant(0, dl)));
4361 break;
4362 case ISD::BUILD_VECTOR: {
4363 MVT EltVT = OVT.getVectorElementType();
4364 MVT NewEltVT = NVT.getVectorElementType();
4366 // Handle bitcasts to a different vector type with the same total bit size
4368 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4369 // =>
4370 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4372 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4373 "Invalid promote type for build_vector");
4374 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4376 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4378 SmallVector<SDValue, 8> NewOps;
4379 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4380 SDValue Op = Node->getOperand(I);
4381 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4384 SDLoc SL(Node);
4385 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4386 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4387 Results.push_back(CvtVec);
4388 break;
4390 case ISD::EXTRACT_VECTOR_ELT: {
4391 MVT EltVT = OVT.getVectorElementType();
4392 MVT NewEltVT = NVT.getVectorElementType();
4394 // Handle bitcasts to a different vector type with the same total bit size.
4396 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4397 // =>
4398 // v4i32:castx = bitcast x:v2i64
4400 // i64 = bitcast
4401 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4402 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4405 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4406 "Invalid promote type for extract_vector_elt");
4407 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4409 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4410 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4412 SDValue Idx = Node->getOperand(1);
4413 EVT IdxVT = Idx.getValueType();
4414 SDLoc SL(Node);
4415 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4416 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4418 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4420 SmallVector<SDValue, 8> NewOps;
4421 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4422 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4423 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4425 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4426 CastVec, TmpIdx);
4427 NewOps.push_back(Elt);
4430 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4431 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4432 break;
4434 case ISD::INSERT_VECTOR_ELT: {
4435 MVT EltVT = OVT.getVectorElementType();
4436 MVT NewEltVT = NVT.getVectorElementType();
4438 // Handle bitcasts to a different vector type with the same total bit size
4440 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4441 // =>
4442 // v4i32:castx = bitcast x:v2i64
4443 // v2i32:casty = bitcast y:i64
4445 // v2i64 = bitcast
4446 // (v4i32 insert_vector_elt
4447 // (v4i32 insert_vector_elt v4i32:castx,
4448 // (extract_vector_elt casty, 0), 2 * z),
4449 // (extract_vector_elt casty, 1), (2 * z + 1))
4451 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4452 "Invalid promote type for insert_vector_elt");
4453 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4455 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4456 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4458 SDValue Val = Node->getOperand(1);
4459 SDValue Idx = Node->getOperand(2);
4460 EVT IdxVT = Idx.getValueType();
4461 SDLoc SL(Node);
4463 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4464 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4466 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4467 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4469 SDValue NewVec = CastVec;
4470 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4471 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4472 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4474 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4475 CastVal, IdxOffset);
4477 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4478 NewVec, Elt, InEltIdx);
4481 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4482 break;
4484 case ISD::SCALAR_TO_VECTOR: {
4485 MVT EltVT = OVT.getVectorElementType();
4486 MVT NewEltVT = NVT.getVectorElementType();
4488 // Handle bitcasts to different vector type with the same total bit size.
4490 // e.g. v2i64 = scalar_to_vector x:i64
4491 // =>
4492 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4495 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4496 SDValue Val = Node->getOperand(0);
4497 SDLoc SL(Node);
4499 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4500 SDValue Undef = DAG.getUNDEF(MidVT);
4502 SmallVector<SDValue, 8> NewElts;
4503 NewElts.push_back(CastVal);
4504 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4505 NewElts.push_back(Undef);
4507 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4508 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4509 Results.push_back(CvtVec);
4510 break;
4512 case ISD::ATOMIC_SWAP: {
4513 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4514 SDLoc SL(Node);
4515 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4516 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4517 "unexpected promotion type");
4518 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4519 "unexpected atomic_swap with illegal type");
4521 SDValue NewAtomic
4522 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4523 DAG.getVTList(NVT, MVT::Other),
4524 { AM->getChain(), AM->getBasePtr(), CastVal },
4525 AM->getMemOperand());
4526 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4527 Results.push_back(NewAtomic.getValue(1));
4528 break;
4532 // Replace the original node with the legalized result.
4533 if (!Results.empty()) {
4534 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4535 ReplaceNode(Node, Results.data());
4536 } else
4537 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4540 /// This is the entry point for the file.
4541 void SelectionDAG::Legalize() {
4542 AssignTopologicalOrder();
4544 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4545 // Use a delete listener to remove nodes which were deleted during
4546 // legalization from LegalizeNodes. This is needed to handle the situation
4547 // where a new node is allocated by the object pool to the same address of a
4548 // previously deleted node.
4549 DAGNodeDeletedListener DeleteListener(
4550 *this,
4551 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4553 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4555 // Visit all the nodes. We start in topological order, so that we see
4556 // nodes with their original operands intact. Legalization can produce
4557 // new nodes which may themselves need to be legalized. Iterate until all
4558 // nodes have been legalized.
4559 while (true) {
4560 bool AnyLegalized = false;
4561 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4562 --NI;
4564 SDNode *N = &*NI;
4565 if (N->use_empty() && N != getRoot().getNode()) {
4566 ++NI;
4567 DeleteNode(N);
4568 continue;
4571 if (LegalizedNodes.insert(N).second) {
4572 AnyLegalized = true;
4573 Legalizer.LegalizeOp(N);
4575 if (N->use_empty() && N != getRoot().getNode()) {
4576 ++NI;
4577 DeleteNode(N);
4581 if (!AnyLegalized)
4582 break;
4586 // Remove dead nodes now.
4587 RemoveDeadNodes();
4590 bool SelectionDAG::LegalizeOp(SDNode *N,
4591 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4592 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4593 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4595 // Directly insert the node in question, and legalize it. This will recurse
4596 // as needed through operands.
4597 LegalizedNodes.insert(N);
4598 Legalizer.LegalizeOp(N);
4600 return LegalizedNodes.count(N);