[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / StackProtector.cpp
blob809960c7fdf98e0c5a40aa987a382a5dcf2187a4
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/CaptureTracking.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <utility>
52 using namespace llvm;
54 #define DEBUG_TYPE "stack-protector"
56 STATISTIC(NumFunProtected, "Number of functions protected");
57 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
58 " taken.");
60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
61 cl::init(true), cl::Hidden);
63 char StackProtector::ID = 0;
65 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
66 "Insert stack protectors", false, true)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
69 "Insert stack protectors", false, true)
71 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
73 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.addRequired<TargetPassConfig>();
75 AU.addPreserved<DominatorTreeWrapperPass>();
78 bool StackProtector::runOnFunction(Function &Fn) {
79 F = &Fn;
80 M = F->getParent();
81 DominatorTreeWrapperPass *DTWP =
82 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
83 DT = DTWP ? &DTWP->getDomTree() : nullptr;
84 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
85 Trip = TM->getTargetTriple();
86 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
87 HasPrologue = false;
88 HasIRCheck = false;
90 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
91 if (Attr.isStringAttribute() &&
92 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
93 return false; // Invalid integer string
95 if (!RequiresStackProtector())
96 return false;
98 // TODO(etienneb): Functions with funclets are not correctly supported now.
99 // Do nothing if this is funclet-based personality.
100 if (Fn.hasPersonalityFn()) {
101 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
102 if (isFuncletEHPersonality(Personality))
103 return false;
106 ++NumFunProtected;
107 return InsertStackProtectors();
110 /// \param [out] IsLarge is set to true if a protectable array is found and
111 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
112 /// multiple arrays, this gets set if any of them is large.
113 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
114 bool Strong,
115 bool InStruct) const {
116 if (!Ty)
117 return false;
118 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
119 if (!AT->getElementType()->isIntegerTy(8)) {
120 // If we're on a non-Darwin platform or we're inside of a structure, don't
121 // add stack protectors unless the array is a character array.
122 // However, in strong mode any array, regardless of type and size,
123 // triggers a protector.
124 if (!Strong && (InStruct || !Trip.isOSDarwin()))
125 return false;
128 // If an array has more than SSPBufferSize bytes of allocated space, then we
129 // emit stack protectors.
130 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
131 IsLarge = true;
132 return true;
135 if (Strong)
136 // Require a protector for all arrays in strong mode
137 return true;
140 const StructType *ST = dyn_cast<StructType>(Ty);
141 if (!ST)
142 return false;
144 bool NeedsProtector = false;
145 for (StructType::element_iterator I = ST->element_begin(),
146 E = ST->element_end();
147 I != E; ++I)
148 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
149 // If the element is a protectable array and is large (>= SSPBufferSize)
150 // then we are done. If the protectable array is not large, then
151 // keep looking in case a subsequent element is a large array.
152 if (IsLarge)
153 return true;
154 NeedsProtector = true;
157 return NeedsProtector;
160 /// Search for the first call to the llvm.stackprotector intrinsic and return it
161 /// if present.
162 static const CallInst *findStackProtectorIntrinsic(Function &F) {
163 for (const BasicBlock &BB : F)
164 for (const Instruction &I : BB)
165 if (const CallInst *CI = dyn_cast<CallInst>(&I))
166 if (CI->getCalledFunction() ==
167 Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector))
168 return CI;
169 return nullptr;
172 /// Check whether or not this function needs a stack protector based
173 /// upon the stack protector level.
175 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
176 /// The standard heuristic which will add a guard variable to functions that
177 /// call alloca with a either a variable size or a size >= SSPBufferSize,
178 /// functions with character buffers larger than SSPBufferSize, and functions
179 /// with aggregates containing character buffers larger than SSPBufferSize. The
180 /// strong heuristic will add a guard variables to functions that call alloca
181 /// regardless of size, functions with any buffer regardless of type and size,
182 /// functions with aggregates that contain any buffer regardless of type and
183 /// size, and functions that contain stack-based variables that have had their
184 /// address taken.
185 bool StackProtector::RequiresStackProtector() {
186 bool Strong = false;
187 bool NeedsProtector = false;
188 HasPrologue = findStackProtectorIntrinsic(*F);
190 if (F->hasFnAttribute(Attribute::SafeStack))
191 return false;
193 // We are constructing the OptimizationRemarkEmitter on the fly rather than
194 // using the analysis pass to avoid building DominatorTree and LoopInfo which
195 // are not available this late in the IR pipeline.
196 OptimizationRemarkEmitter ORE(F);
198 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
199 ORE.emit([&]() {
200 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
201 << "Stack protection applied to function "
202 << ore::NV("Function", F)
203 << " due to a function attribute or command-line switch";
205 NeedsProtector = true;
206 Strong = true; // Use the same heuristic as strong to determine SSPLayout
207 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
208 Strong = true;
209 else if (HasPrologue)
210 NeedsProtector = true;
211 else if (!F->hasFnAttribute(Attribute::StackProtect))
212 return false;
214 for (const BasicBlock &BB : *F) {
215 for (const Instruction &I : BB) {
216 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
217 if (AI->isArrayAllocation()) {
218 auto RemarkBuilder = [&]() {
219 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
221 << "Stack protection applied to function "
222 << ore::NV("Function", F)
223 << " due to a call to alloca or use of a variable length "
224 "array";
226 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
227 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
228 // A call to alloca with size >= SSPBufferSize requires
229 // stack protectors.
230 Layout.insert(std::make_pair(AI,
231 MachineFrameInfo::SSPLK_LargeArray));
232 ORE.emit(RemarkBuilder);
233 NeedsProtector = true;
234 } else if (Strong) {
235 // Require protectors for all alloca calls in strong mode.
236 Layout.insert(std::make_pair(AI,
237 MachineFrameInfo::SSPLK_SmallArray));
238 ORE.emit(RemarkBuilder);
239 NeedsProtector = true;
241 } else {
242 // A call to alloca with a variable size requires protectors.
243 Layout.insert(std::make_pair(AI,
244 MachineFrameInfo::SSPLK_LargeArray));
245 ORE.emit(RemarkBuilder);
246 NeedsProtector = true;
248 continue;
251 bool IsLarge = false;
252 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
253 Layout.insert(std::make_pair(AI, IsLarge
254 ? MachineFrameInfo::SSPLK_LargeArray
255 : MachineFrameInfo::SSPLK_SmallArray));
256 ORE.emit([&]() {
257 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
258 << "Stack protection applied to function "
259 << ore::NV("Function", F)
260 << " due to a stack allocated buffer or struct containing a "
261 "buffer";
263 NeedsProtector = true;
264 continue;
267 if (Strong && PointerMayBeCaptured(AI,
268 /* ReturnCaptures */ false,
269 /* StoreCaptures */ true)) {
270 ++NumAddrTaken;
271 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
272 ORE.emit([&]() {
273 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
275 << "Stack protection applied to function "
276 << ore::NV("Function", F)
277 << " due to the address of a local variable being taken";
279 NeedsProtector = true;
285 return NeedsProtector;
288 /// Create a stack guard loading and populate whether SelectionDAG SSP is
289 /// supported.
290 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
291 IRBuilder<> &B,
292 bool *SupportsSelectionDAGSP = nullptr) {
293 if (Value *Guard = TLI->getIRStackGuard(B))
294 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
296 // Use SelectionDAG SSP handling, since there isn't an IR guard.
298 // This is more or less weird, since we optionally output whether we
299 // should perform a SelectionDAG SP here. The reason is that it's strictly
300 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
301 // mutating. There is no way to get this bit without mutating the IR, so
302 // getting this bit has to happen in this right time.
304 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
305 // will put more burden on the backends' overriding work, especially when it
306 // actually conveys the same information getIRStackGuard() already gives.
307 if (SupportsSelectionDAGSP)
308 *SupportsSelectionDAGSP = true;
309 TLI->insertSSPDeclarations(*M);
310 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
313 /// Insert code into the entry block that stores the stack guard
314 /// variable onto the stack:
316 /// entry:
317 /// StackGuardSlot = alloca i8*
318 /// StackGuard = <stack guard>
319 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
321 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
322 /// node.
323 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
324 const TargetLoweringBase *TLI, AllocaInst *&AI) {
325 bool SupportsSelectionDAGSP = false;
326 IRBuilder<> B(&F->getEntryBlock().front());
327 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
328 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
330 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
331 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
332 {GuardSlot, AI});
333 return SupportsSelectionDAGSP;
336 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
337 /// function.
339 /// - The prologue code loads and stores the stack guard onto the stack.
340 /// - The epilogue checks the value stored in the prologue against the original
341 /// value. It calls __stack_chk_fail if they differ.
342 bool StackProtector::InsertStackProtectors() {
343 // If the target wants to XOR the frame pointer into the guard value, it's
344 // impossible to emit the check in IR, so the target *must* support stack
345 // protection in SDAG.
346 bool SupportsSelectionDAGSP =
347 TLI->useStackGuardXorFP() ||
348 (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
349 !TM->Options.EnableGlobalISel);
350 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
352 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
353 BasicBlock *BB = &*I++;
354 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
355 if (!RI)
356 continue;
358 // Generate prologue instrumentation if not already generated.
359 if (!HasPrologue) {
360 HasPrologue = true;
361 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
364 // SelectionDAG based code generation. Nothing else needs to be done here.
365 // The epilogue instrumentation is postponed to SelectionDAG.
366 if (SupportsSelectionDAGSP)
367 break;
369 // Find the stack guard slot if the prologue was not created by this pass
370 // itself via a previous call to CreatePrologue().
371 if (!AI) {
372 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
373 assert(SPCall && "Call to llvm.stackprotector is missing");
374 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
377 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
378 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
379 // instrumentation has already been generated.
380 HasIRCheck = true;
382 // Generate epilogue instrumentation. The epilogue intrumentation can be
383 // function-based or inlined depending on which mechanism the target is
384 // providing.
385 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
386 // Generate the function-based epilogue instrumentation.
387 // The target provides a guard check function, generate a call to it.
388 IRBuilder<> B(RI);
389 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
390 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
391 Call->setAttributes(GuardCheck->getAttributes());
392 Call->setCallingConv(GuardCheck->getCallingConv());
393 } else {
394 // Generate the epilogue with inline instrumentation.
395 // If we do not support SelectionDAG based tail calls, generate IR level
396 // tail calls.
398 // For each block with a return instruction, convert this:
400 // return:
401 // ...
402 // ret ...
404 // into this:
406 // return:
407 // ...
408 // %1 = <stack guard>
409 // %2 = load StackGuardSlot
410 // %3 = cmp i1 %1, %2
411 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
413 // SP_return:
414 // ret ...
416 // CallStackCheckFailBlk:
417 // call void @__stack_chk_fail()
418 // unreachable
420 // Create the FailBB. We duplicate the BB every time since the MI tail
421 // merge pass will merge together all of the various BB into one including
422 // fail BB generated by the stack protector pseudo instruction.
423 BasicBlock *FailBB = CreateFailBB();
425 // Split the basic block before the return instruction.
426 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
428 // Update the dominator tree if we need to.
429 if (DT && DT->isReachableFromEntry(BB)) {
430 DT->addNewBlock(NewBB, BB);
431 DT->addNewBlock(FailBB, BB);
434 // Remove default branch instruction to the new BB.
435 BB->getTerminator()->eraseFromParent();
437 // Move the newly created basic block to the point right after the old
438 // basic block so that it's in the "fall through" position.
439 NewBB->moveAfter(BB);
441 // Generate the stack protector instructions in the old basic block.
442 IRBuilder<> B(BB);
443 Value *Guard = getStackGuard(TLI, M, B);
444 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
445 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
446 auto SuccessProb =
447 BranchProbabilityInfo::getBranchProbStackProtector(true);
448 auto FailureProb =
449 BranchProbabilityInfo::getBranchProbStackProtector(false);
450 MDNode *Weights = MDBuilder(F->getContext())
451 .createBranchWeights(SuccessProb.getNumerator(),
452 FailureProb.getNumerator());
453 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
457 // Return if we didn't modify any basic blocks. i.e., there are no return
458 // statements in the function.
459 return HasPrologue;
462 /// CreateFailBB - Create a basic block to jump to when the stack protector
463 /// check fails.
464 BasicBlock *StackProtector::CreateFailBB() {
465 LLVMContext &Context = F->getContext();
466 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
467 IRBuilder<> B(FailBB);
468 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
469 if (Trip.isOSOpenBSD()) {
470 FunctionCallee StackChkFail = M->getOrInsertFunction(
471 "__stack_smash_handler", Type::getVoidTy(Context),
472 Type::getInt8PtrTy(Context));
474 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
475 } else {
476 FunctionCallee StackChkFail =
477 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
479 B.CreateCall(StackChkFail, {});
481 B.CreateUnreachable();
482 return FailBB;
485 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
486 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
489 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
490 if (Layout.empty())
491 return;
493 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
494 if (MFI.isDeadObjectIndex(I))
495 continue;
497 const AllocaInst *AI = MFI.getObjectAllocation(I);
498 if (!AI)
499 continue;
501 SSPLayoutMap::const_iterator LI = Layout.find(AI);
502 if (LI == Layout.end())
503 continue;
505 MFI.setObjectSSPLayout(I, LI->second);