[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / TargetLoweringBase.cpp
blob0eb10a11042160d7caa0b0436d73a663be58e9ee
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
64 using namespace llvm;
66 static cl::opt<bool> JumpIsExpensiveOverride(
67 "jump-is-expensive", cl::init(false),
68 cl::desc("Do not create extra branches to split comparison logic."),
69 cl::Hidden);
71 static cl::opt<unsigned> MinimumJumpTableEntries
72 ("min-jump-table-entries", cl::init(4), cl::Hidden,
73 cl::desc("Set minimum number of entries to use a jump table."));
75 static cl::opt<unsigned> MaximumJumpTableSize
76 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77 cl::desc("Set maximum size of jump tables."));
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82 cl::desc("Minimum density for building a jump table in "
83 "a normal function"));
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87 "optsize-jump-table-density", cl::init(40), cl::Hidden,
88 cl::desc("Minimum density for building a jump table in "
89 "an optsize function"));
91 static bool darwinHasSinCos(const Triple &TT) {
92 assert(TT.isOSDarwin() && "should be called with darwin triple");
93 // Don't bother with 32 bit x86.
94 if (TT.getArch() == Triple::x86)
95 return false;
96 // Macos < 10.9 has no sincos_stret.
97 if (TT.isMacOSX())
98 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99 // iOS < 7.0 has no sincos_stret.
100 if (TT.isiOS())
101 return !TT.isOSVersionLT(7, 0);
102 // Any other darwin such as WatchOS/TvOS is new enough.
103 return true;
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112 "min-predictable-branch", cl::init(99),
113 cl::desc("Minimum percentage (0-100) that a condition must be either true "
114 "or false to assume that the condition is predictable"),
115 cl::Hidden);
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119 setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122 // Initialize calling conventions to their default.
123 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127 if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
128 setLibcallName(RTLIB::ADD_F128, "__addkf3");
129 setLibcallName(RTLIB::SUB_F128, "__subkf3");
130 setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131 setLibcallName(RTLIB::DIV_F128, "__divkf3");
132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
139 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
140 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
141 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
142 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
143 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
144 setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
145 setLibcallName(RTLIB::UNE_F128, "__nekf2");
146 setLibcallName(RTLIB::OGE_F128, "__gekf2");
147 setLibcallName(RTLIB::OLT_F128, "__ltkf2");
148 setLibcallName(RTLIB::OLE_F128, "__lekf2");
149 setLibcallName(RTLIB::OGT_F128, "__gtkf2");
150 setLibcallName(RTLIB::UO_F128, "__unordkf2");
151 setLibcallName(RTLIB::O_F128, "__unordkf2");
154 // A few names are different on particular architectures or environments.
155 if (TT.isOSDarwin()) {
156 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157 // of the gnueabi-style __gnu_*_ieee.
158 // FIXME: What about other targets?
159 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
160 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
162 // Some darwins have an optimized __bzero/bzero function.
163 switch (TT.getArch()) {
164 case Triple::x86:
165 case Triple::x86_64:
166 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
167 setLibcallName(RTLIB::BZERO, "__bzero");
168 break;
169 case Triple::aarch64:
170 case Triple::aarch64_32:
171 setLibcallName(RTLIB::BZERO, "bzero");
172 break;
173 default:
174 break;
177 if (darwinHasSinCos(TT)) {
178 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
179 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
180 if (TT.isWatchABI()) {
181 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
182 CallingConv::ARM_AAPCS_VFP);
183 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
184 CallingConv::ARM_AAPCS_VFP);
187 } else {
188 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
189 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
192 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
193 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
194 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
195 setLibcallName(RTLIB::SINCOS_F64, "sincos");
196 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
197 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
198 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
201 if (TT.isPS4CPU()) {
202 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203 setLibcallName(RTLIB::SINCOS_F64, "sincos");
206 if (TT.isOSOpenBSD()) {
207 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
212 /// UNKNOWN_LIBCALL if there is none.
213 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
214 if (OpVT == MVT::f16) {
215 if (RetVT == MVT::f32)
216 return FPEXT_F16_F32;
217 } else if (OpVT == MVT::f32) {
218 if (RetVT == MVT::f64)
219 return FPEXT_F32_F64;
220 if (RetVT == MVT::f128)
221 return FPEXT_F32_F128;
222 if (RetVT == MVT::ppcf128)
223 return FPEXT_F32_PPCF128;
224 } else if (OpVT == MVT::f64) {
225 if (RetVT == MVT::f128)
226 return FPEXT_F64_F128;
227 else if (RetVT == MVT::ppcf128)
228 return FPEXT_F64_PPCF128;
229 } else if (OpVT == MVT::f80) {
230 if (RetVT == MVT::f128)
231 return FPEXT_F80_F128;
234 return UNKNOWN_LIBCALL;
237 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
238 /// UNKNOWN_LIBCALL if there is none.
239 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
240 if (RetVT == MVT::f16) {
241 if (OpVT == MVT::f32)
242 return FPROUND_F32_F16;
243 if (OpVT == MVT::f64)
244 return FPROUND_F64_F16;
245 if (OpVT == MVT::f80)
246 return FPROUND_F80_F16;
247 if (OpVT == MVT::f128)
248 return FPROUND_F128_F16;
249 if (OpVT == MVT::ppcf128)
250 return FPROUND_PPCF128_F16;
251 } else if (RetVT == MVT::f32) {
252 if (OpVT == MVT::f64)
253 return FPROUND_F64_F32;
254 if (OpVT == MVT::f80)
255 return FPROUND_F80_F32;
256 if (OpVT == MVT::f128)
257 return FPROUND_F128_F32;
258 if (OpVT == MVT::ppcf128)
259 return FPROUND_PPCF128_F32;
260 } else if (RetVT == MVT::f64) {
261 if (OpVT == MVT::f80)
262 return FPROUND_F80_F64;
263 if (OpVT == MVT::f128)
264 return FPROUND_F128_F64;
265 if (OpVT == MVT::ppcf128)
266 return FPROUND_PPCF128_F64;
267 } else if (RetVT == MVT::f80) {
268 if (OpVT == MVT::f128)
269 return FPROUND_F128_F80;
272 return UNKNOWN_LIBCALL;
275 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
278 if (OpVT == MVT::f32) {
279 if (RetVT == MVT::i32)
280 return FPTOSINT_F32_I32;
281 if (RetVT == MVT::i64)
282 return FPTOSINT_F32_I64;
283 if (RetVT == MVT::i128)
284 return FPTOSINT_F32_I128;
285 } else if (OpVT == MVT::f64) {
286 if (RetVT == MVT::i32)
287 return FPTOSINT_F64_I32;
288 if (RetVT == MVT::i64)
289 return FPTOSINT_F64_I64;
290 if (RetVT == MVT::i128)
291 return FPTOSINT_F64_I128;
292 } else if (OpVT == MVT::f80) {
293 if (RetVT == MVT::i32)
294 return FPTOSINT_F80_I32;
295 if (RetVT == MVT::i64)
296 return FPTOSINT_F80_I64;
297 if (RetVT == MVT::i128)
298 return FPTOSINT_F80_I128;
299 } else if (OpVT == MVT::f128) {
300 if (RetVT == MVT::i32)
301 return FPTOSINT_F128_I32;
302 if (RetVT == MVT::i64)
303 return FPTOSINT_F128_I64;
304 if (RetVT == MVT::i128)
305 return FPTOSINT_F128_I128;
306 } else if (OpVT == MVT::ppcf128) {
307 if (RetVT == MVT::i32)
308 return FPTOSINT_PPCF128_I32;
309 if (RetVT == MVT::i64)
310 return FPTOSINT_PPCF128_I64;
311 if (RetVT == MVT::i128)
312 return FPTOSINT_PPCF128_I128;
314 return UNKNOWN_LIBCALL;
317 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
318 /// UNKNOWN_LIBCALL if there is none.
319 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
320 if (OpVT == MVT::f32) {
321 if (RetVT == MVT::i32)
322 return FPTOUINT_F32_I32;
323 if (RetVT == MVT::i64)
324 return FPTOUINT_F32_I64;
325 if (RetVT == MVT::i128)
326 return FPTOUINT_F32_I128;
327 } else if (OpVT == MVT::f64) {
328 if (RetVT == MVT::i32)
329 return FPTOUINT_F64_I32;
330 if (RetVT == MVT::i64)
331 return FPTOUINT_F64_I64;
332 if (RetVT == MVT::i128)
333 return FPTOUINT_F64_I128;
334 } else if (OpVT == MVT::f80) {
335 if (RetVT == MVT::i32)
336 return FPTOUINT_F80_I32;
337 if (RetVT == MVT::i64)
338 return FPTOUINT_F80_I64;
339 if (RetVT == MVT::i128)
340 return FPTOUINT_F80_I128;
341 } else if (OpVT == MVT::f128) {
342 if (RetVT == MVT::i32)
343 return FPTOUINT_F128_I32;
344 if (RetVT == MVT::i64)
345 return FPTOUINT_F128_I64;
346 if (RetVT == MVT::i128)
347 return FPTOUINT_F128_I128;
348 } else if (OpVT == MVT::ppcf128) {
349 if (RetVT == MVT::i32)
350 return FPTOUINT_PPCF128_I32;
351 if (RetVT == MVT::i64)
352 return FPTOUINT_PPCF128_I64;
353 if (RetVT == MVT::i128)
354 return FPTOUINT_PPCF128_I128;
356 return UNKNOWN_LIBCALL;
359 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
360 /// UNKNOWN_LIBCALL if there is none.
361 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
362 if (OpVT == MVT::i32) {
363 if (RetVT == MVT::f32)
364 return SINTTOFP_I32_F32;
365 if (RetVT == MVT::f64)
366 return SINTTOFP_I32_F64;
367 if (RetVT == MVT::f80)
368 return SINTTOFP_I32_F80;
369 if (RetVT == MVT::f128)
370 return SINTTOFP_I32_F128;
371 if (RetVT == MVT::ppcf128)
372 return SINTTOFP_I32_PPCF128;
373 } else if (OpVT == MVT::i64) {
374 if (RetVT == MVT::f32)
375 return SINTTOFP_I64_F32;
376 if (RetVT == MVT::f64)
377 return SINTTOFP_I64_F64;
378 if (RetVT == MVT::f80)
379 return SINTTOFP_I64_F80;
380 if (RetVT == MVT::f128)
381 return SINTTOFP_I64_F128;
382 if (RetVT == MVT::ppcf128)
383 return SINTTOFP_I64_PPCF128;
384 } else if (OpVT == MVT::i128) {
385 if (RetVT == MVT::f32)
386 return SINTTOFP_I128_F32;
387 if (RetVT == MVT::f64)
388 return SINTTOFP_I128_F64;
389 if (RetVT == MVT::f80)
390 return SINTTOFP_I128_F80;
391 if (RetVT == MVT::f128)
392 return SINTTOFP_I128_F128;
393 if (RetVT == MVT::ppcf128)
394 return SINTTOFP_I128_PPCF128;
396 return UNKNOWN_LIBCALL;
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
402 if (OpVT == MVT::i32) {
403 if (RetVT == MVT::f32)
404 return UINTTOFP_I32_F32;
405 if (RetVT == MVT::f64)
406 return UINTTOFP_I32_F64;
407 if (RetVT == MVT::f80)
408 return UINTTOFP_I32_F80;
409 if (RetVT == MVT::f128)
410 return UINTTOFP_I32_F128;
411 if (RetVT == MVT::ppcf128)
412 return UINTTOFP_I32_PPCF128;
413 } else if (OpVT == MVT::i64) {
414 if (RetVT == MVT::f32)
415 return UINTTOFP_I64_F32;
416 if (RetVT == MVT::f64)
417 return UINTTOFP_I64_F64;
418 if (RetVT == MVT::f80)
419 return UINTTOFP_I64_F80;
420 if (RetVT == MVT::f128)
421 return UINTTOFP_I64_F128;
422 if (RetVT == MVT::ppcf128)
423 return UINTTOFP_I64_PPCF128;
424 } else if (OpVT == MVT::i128) {
425 if (RetVT == MVT::f32)
426 return UINTTOFP_I128_F32;
427 if (RetVT == MVT::f64)
428 return UINTTOFP_I128_F64;
429 if (RetVT == MVT::f80)
430 return UINTTOFP_I128_F80;
431 if (RetVT == MVT::f128)
432 return UINTTOFP_I128_F128;
433 if (RetVT == MVT::ppcf128)
434 return UINTTOFP_I128_PPCF128;
436 return UNKNOWN_LIBCALL;
439 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
440 #define OP_TO_LIBCALL(Name, Enum) \
441 case Name: \
442 switch (VT.SimpleTy) { \
443 default: \
444 return UNKNOWN_LIBCALL; \
445 case MVT::i8: \
446 return Enum##_1; \
447 case MVT::i16: \
448 return Enum##_2; \
449 case MVT::i32: \
450 return Enum##_4; \
451 case MVT::i64: \
452 return Enum##_8; \
453 case MVT::i128: \
454 return Enum##_16; \
457 switch (Opc) {
458 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
459 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
460 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
461 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
462 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
463 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
464 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
465 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
466 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
467 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
468 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
469 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
472 #undef OP_TO_LIBCALL
474 return UNKNOWN_LIBCALL;
477 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478 switch (ElementSize) {
479 case 1:
480 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
481 case 2:
482 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
483 case 4:
484 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
485 case 8:
486 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
487 case 16:
488 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
489 default:
490 return UNKNOWN_LIBCALL;
494 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
495 switch (ElementSize) {
496 case 1:
497 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
498 case 2:
499 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
500 case 4:
501 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
502 case 8:
503 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
504 case 16:
505 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
506 default:
507 return UNKNOWN_LIBCALL;
511 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
512 switch (ElementSize) {
513 case 1:
514 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
515 case 2:
516 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
517 case 4:
518 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
519 case 8:
520 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
521 case 16:
522 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
523 default:
524 return UNKNOWN_LIBCALL;
528 /// InitCmpLibcallCCs - Set default comparison libcall CC.
529 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
530 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
531 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
532 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
533 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
534 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
535 CCs[RTLIB::UNE_F32] = ISD::SETNE;
536 CCs[RTLIB::UNE_F64] = ISD::SETNE;
537 CCs[RTLIB::UNE_F128] = ISD::SETNE;
538 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
539 CCs[RTLIB::OGE_F32] = ISD::SETGE;
540 CCs[RTLIB::OGE_F64] = ISD::SETGE;
541 CCs[RTLIB::OGE_F128] = ISD::SETGE;
542 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
543 CCs[RTLIB::OLT_F32] = ISD::SETLT;
544 CCs[RTLIB::OLT_F64] = ISD::SETLT;
545 CCs[RTLIB::OLT_F128] = ISD::SETLT;
546 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
547 CCs[RTLIB::OLE_F32] = ISD::SETLE;
548 CCs[RTLIB::OLE_F64] = ISD::SETLE;
549 CCs[RTLIB::OLE_F128] = ISD::SETLE;
550 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
551 CCs[RTLIB::OGT_F32] = ISD::SETGT;
552 CCs[RTLIB::OGT_F64] = ISD::SETGT;
553 CCs[RTLIB::OGT_F128] = ISD::SETGT;
554 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
555 CCs[RTLIB::UO_F32] = ISD::SETNE;
556 CCs[RTLIB::UO_F64] = ISD::SETNE;
557 CCs[RTLIB::UO_F128] = ISD::SETNE;
558 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
559 CCs[RTLIB::O_F32] = ISD::SETEQ;
560 CCs[RTLIB::O_F64] = ISD::SETEQ;
561 CCs[RTLIB::O_F128] = ISD::SETEQ;
562 CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
565 /// NOTE: The TargetMachine owns TLOF.
566 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
567 initActions();
569 // Perform these initializations only once.
570 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
571 MaxLoadsPerMemcmp = 8;
572 MaxGluedStoresPerMemcpy = 0;
573 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
574 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
575 UseUnderscoreSetJmp = false;
576 UseUnderscoreLongJmp = false;
577 HasMultipleConditionRegisters = false;
578 HasExtractBitsInsn = false;
579 JumpIsExpensive = JumpIsExpensiveOverride;
580 PredictableSelectIsExpensive = false;
581 EnableExtLdPromotion = false;
582 StackPointerRegisterToSaveRestore = 0;
583 BooleanContents = UndefinedBooleanContent;
584 BooleanFloatContents = UndefinedBooleanContent;
585 BooleanVectorContents = UndefinedBooleanContent;
586 SchedPreferenceInfo = Sched::ILP;
587 GatherAllAliasesMaxDepth = 18;
588 // TODO: the default will be switched to 0 in the next commit, along
589 // with the Target-specific changes necessary.
590 MaxAtomicSizeInBitsSupported = 1024;
592 MinCmpXchgSizeInBits = 0;
593 SupportsUnalignedAtomics = false;
595 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
597 InitLibcalls(TM.getTargetTriple());
598 InitCmpLibcallCCs(CmpLibcallCCs);
601 void TargetLoweringBase::initActions() {
602 // All operations default to being supported.
603 memset(OpActions, 0, sizeof(OpActions));
604 memset(LoadExtActions, 0, sizeof(LoadExtActions));
605 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
606 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
607 memset(CondCodeActions, 0, sizeof(CondCodeActions));
608 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
609 std::fill(std::begin(TargetDAGCombineArray),
610 std::end(TargetDAGCombineArray), 0);
612 for (MVT VT : MVT::fp_valuetypes()) {
613 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
614 if (IntVT.isValid()) {
615 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
616 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
620 // Set default actions for various operations.
621 for (MVT VT : MVT::all_valuetypes()) {
622 // Default all indexed load / store to expand.
623 for (unsigned IM = (unsigned)ISD::PRE_INC;
624 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
625 setIndexedLoadAction(IM, VT, Expand);
626 setIndexedStoreAction(IM, VT, Expand);
629 // Most backends expect to see the node which just returns the value loaded.
630 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
632 // These operations default to expand.
633 setOperationAction(ISD::FGETSIGN, VT, Expand);
634 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
635 setOperationAction(ISD::FMINNUM, VT, Expand);
636 setOperationAction(ISD::FMAXNUM, VT, Expand);
637 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
638 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
639 setOperationAction(ISD::FMINIMUM, VT, Expand);
640 setOperationAction(ISD::FMAXIMUM, VT, Expand);
641 setOperationAction(ISD::FMAD, VT, Expand);
642 setOperationAction(ISD::SMIN, VT, Expand);
643 setOperationAction(ISD::SMAX, VT, Expand);
644 setOperationAction(ISD::UMIN, VT, Expand);
645 setOperationAction(ISD::UMAX, VT, Expand);
646 setOperationAction(ISD::ABS, VT, Expand);
647 setOperationAction(ISD::FSHL, VT, Expand);
648 setOperationAction(ISD::FSHR, VT, Expand);
649 setOperationAction(ISD::SADDSAT, VT, Expand);
650 setOperationAction(ISD::UADDSAT, VT, Expand);
651 setOperationAction(ISD::SSUBSAT, VT, Expand);
652 setOperationAction(ISD::USUBSAT, VT, Expand);
653 setOperationAction(ISD::SMULFIX, VT, Expand);
654 setOperationAction(ISD::SMULFIXSAT, VT, Expand);
655 setOperationAction(ISD::UMULFIX, VT, Expand);
656 setOperationAction(ISD::UMULFIXSAT, VT, Expand);
658 // Overflow operations default to expand
659 setOperationAction(ISD::SADDO, VT, Expand);
660 setOperationAction(ISD::SSUBO, VT, Expand);
661 setOperationAction(ISD::UADDO, VT, Expand);
662 setOperationAction(ISD::USUBO, VT, Expand);
663 setOperationAction(ISD::SMULO, VT, Expand);
664 setOperationAction(ISD::UMULO, VT, Expand);
666 // ADDCARRY operations default to expand
667 setOperationAction(ISD::ADDCARRY, VT, Expand);
668 setOperationAction(ISD::SUBCARRY, VT, Expand);
669 setOperationAction(ISD::SETCCCARRY, VT, Expand);
671 // ADDC/ADDE/SUBC/SUBE default to expand.
672 setOperationAction(ISD::ADDC, VT, Expand);
673 setOperationAction(ISD::ADDE, VT, Expand);
674 setOperationAction(ISD::SUBC, VT, Expand);
675 setOperationAction(ISD::SUBE, VT, Expand);
677 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
678 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
679 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
681 setOperationAction(ISD::BITREVERSE, VT, Expand);
683 // These library functions default to expand.
684 setOperationAction(ISD::FROUND, VT, Expand);
685 setOperationAction(ISD::FPOWI, VT, Expand);
687 // These operations default to expand for vector types.
688 if (VT.isVector()) {
689 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
690 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
691 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
692 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
695 // Constrained floating-point operations default to expand.
696 setOperationAction(ISD::STRICT_FADD, VT, Expand);
697 setOperationAction(ISD::STRICT_FSUB, VT, Expand);
698 setOperationAction(ISD::STRICT_FMUL, VT, Expand);
699 setOperationAction(ISD::STRICT_FDIV, VT, Expand);
700 setOperationAction(ISD::STRICT_FREM, VT, Expand);
701 setOperationAction(ISD::STRICT_FMA, VT, Expand);
702 setOperationAction(ISD::STRICT_FSQRT, VT, Expand);
703 setOperationAction(ISD::STRICT_FPOW, VT, Expand);
704 setOperationAction(ISD::STRICT_FPOWI, VT, Expand);
705 setOperationAction(ISD::STRICT_FSIN, VT, Expand);
706 setOperationAction(ISD::STRICT_FCOS, VT, Expand);
707 setOperationAction(ISD::STRICT_FEXP, VT, Expand);
708 setOperationAction(ISD::STRICT_FEXP2, VT, Expand);
709 setOperationAction(ISD::STRICT_FLOG, VT, Expand);
710 setOperationAction(ISD::STRICT_FLOG10, VT, Expand);
711 setOperationAction(ISD::STRICT_FLOG2, VT, Expand);
712 setOperationAction(ISD::STRICT_FRINT, VT, Expand);
713 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand);
714 setOperationAction(ISD::STRICT_FCEIL, VT, Expand);
715 setOperationAction(ISD::STRICT_FFLOOR, VT, Expand);
716 setOperationAction(ISD::STRICT_FROUND, VT, Expand);
717 setOperationAction(ISD::STRICT_FTRUNC, VT, Expand);
718 setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand);
719 setOperationAction(ISD::STRICT_FMINNUM, VT, Expand);
720 setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand);
721 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand);
722 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Expand);
723 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Expand);
725 // For most targets @llvm.get.dynamic.area.offset just returns 0.
726 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
728 // Vector reduction default to expand.
729 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
730 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
731 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
732 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
733 setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
734 setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
735 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
736 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
737 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
738 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
739 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
740 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
741 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
744 // Most targets ignore the @llvm.prefetch intrinsic.
745 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
747 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
748 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
750 // ConstantFP nodes default to expand. Targets can either change this to
751 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
752 // to optimize expansions for certain constants.
753 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
754 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
755 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
756 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
757 setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
759 // These library functions default to expand.
760 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
761 setOperationAction(ISD::FCBRT, VT, Expand);
762 setOperationAction(ISD::FLOG , VT, Expand);
763 setOperationAction(ISD::FLOG2, VT, Expand);
764 setOperationAction(ISD::FLOG10, VT, Expand);
765 setOperationAction(ISD::FEXP , VT, Expand);
766 setOperationAction(ISD::FEXP2, VT, Expand);
767 setOperationAction(ISD::FFLOOR, VT, Expand);
768 setOperationAction(ISD::FNEARBYINT, VT, Expand);
769 setOperationAction(ISD::FCEIL, VT, Expand);
770 setOperationAction(ISD::FRINT, VT, Expand);
771 setOperationAction(ISD::FTRUNC, VT, Expand);
772 setOperationAction(ISD::FROUND, VT, Expand);
773 setOperationAction(ISD::LROUND, VT, Expand);
774 setOperationAction(ISD::LLROUND, VT, Expand);
775 setOperationAction(ISD::LRINT, VT, Expand);
776 setOperationAction(ISD::LLRINT, VT, Expand);
779 // Default ISD::TRAP to expand (which turns it into abort).
780 setOperationAction(ISD::TRAP, MVT::Other, Expand);
782 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
783 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
784 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
787 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
788 EVT) const {
789 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
792 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
793 bool LegalTypes) const {
794 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
795 if (LHSTy.isVector())
796 return LHSTy;
797 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
798 : getPointerTy(DL);
801 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
802 assert(isTypeLegal(VT));
803 switch (Op) {
804 default:
805 return false;
806 case ISD::SDIV:
807 case ISD::UDIV:
808 case ISD::SREM:
809 case ISD::UREM:
810 return true;
814 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
815 // If the command-line option was specified, ignore this request.
816 if (!JumpIsExpensiveOverride.getNumOccurrences())
817 JumpIsExpensive = isExpensive;
820 TargetLoweringBase::LegalizeKind
821 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
822 // If this is a simple type, use the ComputeRegisterProp mechanism.
823 if (VT.isSimple()) {
824 MVT SVT = VT.getSimpleVT();
825 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
826 MVT NVT = TransformToType[SVT.SimpleTy];
827 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
829 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
830 (NVT.isVector() ||
831 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
832 "Promote may not follow Expand or Promote");
834 if (LA == TypeSplitVector)
835 return LegalizeKind(LA,
836 EVT::getVectorVT(Context, SVT.getVectorElementType(),
837 SVT.getVectorNumElements() / 2));
838 if (LA == TypeScalarizeVector)
839 return LegalizeKind(LA, SVT.getVectorElementType());
840 return LegalizeKind(LA, NVT);
843 // Handle Extended Scalar Types.
844 if (!VT.isVector()) {
845 assert(VT.isInteger() && "Float types must be simple");
846 unsigned BitSize = VT.getSizeInBits();
847 // First promote to a power-of-two size, then expand if necessary.
848 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
849 EVT NVT = VT.getRoundIntegerType(Context);
850 assert(NVT != VT && "Unable to round integer VT");
851 LegalizeKind NextStep = getTypeConversion(Context, NVT);
852 // Avoid multi-step promotion.
853 if (NextStep.first == TypePromoteInteger)
854 return NextStep;
855 // Return rounded integer type.
856 return LegalizeKind(TypePromoteInteger, NVT);
859 return LegalizeKind(TypeExpandInteger,
860 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
863 // Handle vector types.
864 unsigned NumElts = VT.getVectorNumElements();
865 EVT EltVT = VT.getVectorElementType();
867 // Vectors with only one element are always scalarized.
868 if (NumElts == 1)
869 return LegalizeKind(TypeScalarizeVector, EltVT);
871 // Try to widen vector elements until the element type is a power of two and
872 // promote it to a legal type later on, for example:
873 // <3 x i8> -> <4 x i8> -> <4 x i32>
874 if (EltVT.isInteger()) {
875 // Vectors with a number of elements that is not a power of two are always
876 // widened, for example <3 x i8> -> <4 x i8>.
877 if (!VT.isPow2VectorType()) {
878 NumElts = (unsigned)NextPowerOf2(NumElts);
879 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
880 return LegalizeKind(TypeWidenVector, NVT);
883 // Examine the element type.
884 LegalizeKind LK = getTypeConversion(Context, EltVT);
886 // If type is to be expanded, split the vector.
887 // <4 x i140> -> <2 x i140>
888 if (LK.first == TypeExpandInteger)
889 return LegalizeKind(TypeSplitVector,
890 EVT::getVectorVT(Context, EltVT, NumElts / 2));
892 // Promote the integer element types until a legal vector type is found
893 // or until the element integer type is too big. If a legal type was not
894 // found, fallback to the usual mechanism of widening/splitting the
895 // vector.
896 EVT OldEltVT = EltVT;
897 while (true) {
898 // Increase the bitwidth of the element to the next pow-of-two
899 // (which is greater than 8 bits).
900 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
901 .getRoundIntegerType(Context);
903 // Stop trying when getting a non-simple element type.
904 // Note that vector elements may be greater than legal vector element
905 // types. Example: X86 XMM registers hold 64bit element on 32bit
906 // systems.
907 if (!EltVT.isSimple())
908 break;
910 // Build a new vector type and check if it is legal.
911 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
912 // Found a legal promoted vector type.
913 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
914 return LegalizeKind(TypePromoteInteger,
915 EVT::getVectorVT(Context, EltVT, NumElts));
918 // Reset the type to the unexpanded type if we did not find a legal vector
919 // type with a promoted vector element type.
920 EltVT = OldEltVT;
923 // Try to widen the vector until a legal type is found.
924 // If there is no wider legal type, split the vector.
925 while (true) {
926 // Round up to the next power of 2.
927 NumElts = (unsigned)NextPowerOf2(NumElts);
929 // If there is no simple vector type with this many elements then there
930 // cannot be a larger legal vector type. Note that this assumes that
931 // there are no skipped intermediate vector types in the simple types.
932 if (!EltVT.isSimple())
933 break;
934 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
935 if (LargerVector == MVT())
936 break;
938 // If this type is legal then widen the vector.
939 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
940 return LegalizeKind(TypeWidenVector, LargerVector);
943 // Widen odd vectors to next power of two.
944 if (!VT.isPow2VectorType()) {
945 EVT NVT = VT.getPow2VectorType(Context);
946 return LegalizeKind(TypeWidenVector, NVT);
949 // Vectors with illegal element types are expanded.
950 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
951 return LegalizeKind(TypeSplitVector, NVT);
954 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
955 unsigned &NumIntermediates,
956 MVT &RegisterVT,
957 TargetLoweringBase *TLI) {
958 // Figure out the right, legal destination reg to copy into.
959 unsigned NumElts = VT.getVectorNumElements();
960 MVT EltTy = VT.getVectorElementType();
962 unsigned NumVectorRegs = 1;
964 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
965 // could break down into LHS/RHS like LegalizeDAG does.
966 if (!isPowerOf2_32(NumElts)) {
967 NumVectorRegs = NumElts;
968 NumElts = 1;
971 // Divide the input until we get to a supported size. This will always
972 // end with a scalar if the target doesn't support vectors.
973 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
974 NumElts >>= 1;
975 NumVectorRegs <<= 1;
978 NumIntermediates = NumVectorRegs;
980 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
981 if (!TLI->isTypeLegal(NewVT))
982 NewVT = EltTy;
983 IntermediateVT = NewVT;
985 unsigned NewVTSize = NewVT.getSizeInBits();
987 // Convert sizes such as i33 to i64.
988 if (!isPowerOf2_32(NewVTSize))
989 NewVTSize = NextPowerOf2(NewVTSize);
991 MVT DestVT = TLI->getRegisterType(NewVT);
992 RegisterVT = DestVT;
993 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
994 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
996 // Otherwise, promotion or legal types use the same number of registers as
997 // the vector decimated to the appropriate level.
998 return NumVectorRegs;
1001 /// isLegalRC - Return true if the value types that can be represented by the
1002 /// specified register class are all legal.
1003 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1004 const TargetRegisterClass &RC) const {
1005 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1006 if (isTypeLegal(*I))
1007 return true;
1008 return false;
1011 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1012 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1013 MachineBasicBlock *
1014 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1015 MachineBasicBlock *MBB) const {
1016 MachineInstr *MI = &InitialMI;
1017 MachineFunction &MF = *MI->getMF();
1018 MachineFrameInfo &MFI = MF.getFrameInfo();
1020 // We're handling multiple types of operands here:
1021 // PATCHPOINT MetaArgs - live-in, read only, direct
1022 // STATEPOINT Deopt Spill - live-through, read only, indirect
1023 // STATEPOINT Deopt Alloca - live-through, read only, direct
1024 // (We're currently conservative and mark the deopt slots read/write in
1025 // practice.)
1026 // STATEPOINT GC Spill - live-through, read/write, indirect
1027 // STATEPOINT GC Alloca - live-through, read/write, direct
1028 // The live-in vs live-through is handled already (the live through ones are
1029 // all stack slots), but we need to handle the different type of stackmap
1030 // operands and memory effects here.
1032 // MI changes inside this loop as we grow operands.
1033 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1034 MachineOperand &MO = MI->getOperand(OperIdx);
1035 if (!MO.isFI())
1036 continue;
1038 // foldMemoryOperand builds a new MI after replacing a single FI operand
1039 // with the canonical set of five x86 addressing-mode operands.
1040 int FI = MO.getIndex();
1041 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1043 // Copy operands before the frame-index.
1044 for (unsigned i = 0; i < OperIdx; ++i)
1045 MIB.add(MI->getOperand(i));
1046 // Add frame index operands recognized by stackmaps.cpp
1047 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1048 // indirect-mem-ref tag, size, #FI, offset.
1049 // Used for spills inserted by StatepointLowering. This codepath is not
1050 // used for patchpoints/stackmaps at all, for these spilling is done via
1051 // foldMemoryOperand callback only.
1052 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1053 MIB.addImm(StackMaps::IndirectMemRefOp);
1054 MIB.addImm(MFI.getObjectSize(FI));
1055 MIB.add(MI->getOperand(OperIdx));
1056 MIB.addImm(0);
1057 } else {
1058 // direct-mem-ref tag, #FI, offset.
1059 // Used by patchpoint, and direct alloca arguments to statepoints
1060 MIB.addImm(StackMaps::DirectMemRefOp);
1061 MIB.add(MI->getOperand(OperIdx));
1062 MIB.addImm(0);
1064 // Copy the operands after the frame index.
1065 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1066 MIB.add(MI->getOperand(i));
1068 // Inherit previous memory operands.
1069 MIB.cloneMemRefs(*MI);
1070 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1072 // Add a new memory operand for this FI.
1073 assert(MFI.getObjectOffset(FI) != -1);
1075 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1076 // PATCHPOINT should be updated to do the same. (TODO)
1077 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1078 auto Flags = MachineMemOperand::MOLoad;
1079 MachineMemOperand *MMO = MF.getMachineMemOperand(
1080 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1081 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1082 MIB->addMemOperand(MF, MMO);
1085 // Replace the instruction and update the operand index.
1086 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1087 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1088 MI->eraseFromParent();
1089 MI = MIB;
1091 return MBB;
1094 MachineBasicBlock *
1095 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1096 MachineBasicBlock *MBB) const {
1097 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1098 "Called emitXRayCustomEvent on the wrong MI!");
1099 auto &MF = *MI.getMF();
1100 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1101 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1102 MIB.add(MI.getOperand(OpIdx));
1104 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1105 MI.eraseFromParent();
1106 return MBB;
1109 MachineBasicBlock *
1110 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1111 MachineBasicBlock *MBB) const {
1112 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1113 "Called emitXRayTypedEvent on the wrong MI!");
1114 auto &MF = *MI.getMF();
1115 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1116 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1117 MIB.add(MI.getOperand(OpIdx));
1119 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1120 MI.eraseFromParent();
1121 return MBB;
1124 /// findRepresentativeClass - Return the largest legal super-reg register class
1125 /// of the register class for the specified type and its associated "cost".
1126 // This function is in TargetLowering because it uses RegClassForVT which would
1127 // need to be moved to TargetRegisterInfo and would necessitate moving
1128 // isTypeLegal over as well - a massive change that would just require
1129 // TargetLowering having a TargetRegisterInfo class member that it would use.
1130 std::pair<const TargetRegisterClass *, uint8_t>
1131 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1132 MVT VT) const {
1133 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1134 if (!RC)
1135 return std::make_pair(RC, 0);
1137 // Compute the set of all super-register classes.
1138 BitVector SuperRegRC(TRI->getNumRegClasses());
1139 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1140 SuperRegRC.setBitsInMask(RCI.getMask());
1142 // Find the first legal register class with the largest spill size.
1143 const TargetRegisterClass *BestRC = RC;
1144 for (unsigned i : SuperRegRC.set_bits()) {
1145 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1146 // We want the largest possible spill size.
1147 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1148 continue;
1149 if (!isLegalRC(*TRI, *SuperRC))
1150 continue;
1151 BestRC = SuperRC;
1153 return std::make_pair(BestRC, 1);
1156 /// computeRegisterProperties - Once all of the register classes are added,
1157 /// this allows us to compute derived properties we expose.
1158 void TargetLoweringBase::computeRegisterProperties(
1159 const TargetRegisterInfo *TRI) {
1160 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1161 "Too many value types for ValueTypeActions to hold!");
1163 // Everything defaults to needing one register.
1164 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1165 NumRegistersForVT[i] = 1;
1166 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1168 // ...except isVoid, which doesn't need any registers.
1169 NumRegistersForVT[MVT::isVoid] = 0;
1171 // Find the largest integer register class.
1172 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1173 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1174 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1176 // Every integer value type larger than this largest register takes twice as
1177 // many registers to represent as the previous ValueType.
1178 for (unsigned ExpandedReg = LargestIntReg + 1;
1179 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1180 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1181 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1182 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1183 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1184 TypeExpandInteger);
1187 // Inspect all of the ValueType's smaller than the largest integer
1188 // register to see which ones need promotion.
1189 unsigned LegalIntReg = LargestIntReg;
1190 for (unsigned IntReg = LargestIntReg - 1;
1191 IntReg >= (unsigned)MVT::i1; --IntReg) {
1192 MVT IVT = (MVT::SimpleValueType)IntReg;
1193 if (isTypeLegal(IVT)) {
1194 LegalIntReg = IntReg;
1195 } else {
1196 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1197 (MVT::SimpleValueType)LegalIntReg;
1198 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1202 // ppcf128 type is really two f64's.
1203 if (!isTypeLegal(MVT::ppcf128)) {
1204 if (isTypeLegal(MVT::f64)) {
1205 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1206 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1207 TransformToType[MVT::ppcf128] = MVT::f64;
1208 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1209 } else {
1210 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1211 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1212 TransformToType[MVT::ppcf128] = MVT::i128;
1213 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1217 // Decide how to handle f128. If the target does not have native f128 support,
1218 // expand it to i128 and we will be generating soft float library calls.
1219 if (!isTypeLegal(MVT::f128)) {
1220 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1221 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1222 TransformToType[MVT::f128] = MVT::i128;
1223 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1226 // Decide how to handle f64. If the target does not have native f64 support,
1227 // expand it to i64 and we will be generating soft float library calls.
1228 if (!isTypeLegal(MVT::f64)) {
1229 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1230 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1231 TransformToType[MVT::f64] = MVT::i64;
1232 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1235 // Decide how to handle f32. If the target does not have native f32 support,
1236 // expand it to i32 and we will be generating soft float library calls.
1237 if (!isTypeLegal(MVT::f32)) {
1238 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1239 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1240 TransformToType[MVT::f32] = MVT::i32;
1241 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1244 // Decide how to handle f16. If the target does not have native f16 support,
1245 // promote it to f32, because there are no f16 library calls (except for
1246 // conversions).
1247 if (!isTypeLegal(MVT::f16)) {
1248 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1249 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1250 TransformToType[MVT::f16] = MVT::f32;
1251 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1254 // Loop over all of the vector value types to see which need transformations.
1255 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1256 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1257 MVT VT = (MVT::SimpleValueType) i;
1258 if (isTypeLegal(VT))
1259 continue;
1261 MVT EltVT = VT.getVectorElementType();
1262 unsigned NElts = VT.getVectorNumElements();
1263 bool IsLegalWiderType = false;
1264 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1265 switch (PreferredAction) {
1266 case TypePromoteInteger:
1267 // Try to promote the elements of integer vectors. If no legal
1268 // promotion was found, fall through to the widen-vector method.
1269 for (unsigned nVT = i + 1;
1270 nVT <= MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; ++nVT) {
1271 MVT SVT = (MVT::SimpleValueType) nVT;
1272 // Promote vectors of integers to vectors with the same number
1273 // of elements, with a wider element type.
1274 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1275 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1276 TransformToType[i] = SVT;
1277 RegisterTypeForVT[i] = SVT;
1278 NumRegistersForVT[i] = 1;
1279 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1280 IsLegalWiderType = true;
1281 break;
1284 if (IsLegalWiderType)
1285 break;
1286 LLVM_FALLTHROUGH;
1288 case TypeWidenVector:
1289 if (isPowerOf2_32(NElts)) {
1290 // Try to widen the vector.
1291 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1292 MVT SVT = (MVT::SimpleValueType) nVT;
1293 if (SVT.getVectorElementType() == EltVT
1294 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1295 TransformToType[i] = SVT;
1296 RegisterTypeForVT[i] = SVT;
1297 NumRegistersForVT[i] = 1;
1298 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1299 IsLegalWiderType = true;
1300 break;
1303 if (IsLegalWiderType)
1304 break;
1305 } else {
1306 // Only widen to the next power of 2 to keep consistency with EVT.
1307 MVT NVT = VT.getPow2VectorType();
1308 if (isTypeLegal(NVT)) {
1309 TransformToType[i] = NVT;
1310 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1311 RegisterTypeForVT[i] = NVT;
1312 NumRegistersForVT[i] = 1;
1313 break;
1316 LLVM_FALLTHROUGH;
1318 case TypeSplitVector:
1319 case TypeScalarizeVector: {
1320 MVT IntermediateVT;
1321 MVT RegisterVT;
1322 unsigned NumIntermediates;
1323 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1324 NumIntermediates, RegisterVT, this);
1325 RegisterTypeForVT[i] = RegisterVT;
1327 MVT NVT = VT.getPow2VectorType();
1328 if (NVT == VT) {
1329 // Type is already a power of 2. The default action is to split.
1330 TransformToType[i] = MVT::Other;
1331 if (PreferredAction == TypeScalarizeVector)
1332 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1333 else if (PreferredAction == TypeSplitVector)
1334 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1335 else
1336 // Set type action according to the number of elements.
1337 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1338 : TypeSplitVector);
1339 } else {
1340 TransformToType[i] = NVT;
1341 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1343 break;
1345 default:
1346 llvm_unreachable("Unknown vector legalization action!");
1350 // Determine the 'representative' register class for each value type.
1351 // An representative register class is the largest (meaning one which is
1352 // not a sub-register class / subreg register class) legal register class for
1353 // a group of value types. For example, on i386, i8, i16, and i32
1354 // representative would be GR32; while on x86_64 it's GR64.
1355 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1356 const TargetRegisterClass* RRC;
1357 uint8_t Cost;
1358 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1359 RepRegClassForVT[i] = RRC;
1360 RepRegClassCostForVT[i] = Cost;
1364 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1365 EVT VT) const {
1366 assert(!VT.isVector() && "No default SetCC type for vectors!");
1367 return getPointerTy(DL).SimpleTy;
1370 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1371 return MVT::i32; // return the default value
1374 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1375 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1376 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1377 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1379 /// This method returns the number of registers needed, and the VT for each
1380 /// register. It also returns the VT and quantity of the intermediate values
1381 /// before they are promoted/expanded.
1382 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1383 EVT &IntermediateVT,
1384 unsigned &NumIntermediates,
1385 MVT &RegisterVT) const {
1386 unsigned NumElts = VT.getVectorNumElements();
1388 // If there is a wider vector type with the same element type as this one,
1389 // or a promoted vector type that has the same number of elements which
1390 // are wider, then we should convert to that legal vector type.
1391 // This handles things like <2 x float> -> <4 x float> and
1392 // <4 x i1> -> <4 x i32>.
1393 LegalizeTypeAction TA = getTypeAction(Context, VT);
1394 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1395 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1396 if (isTypeLegal(RegisterEVT)) {
1397 IntermediateVT = RegisterEVT;
1398 RegisterVT = RegisterEVT.getSimpleVT();
1399 NumIntermediates = 1;
1400 return 1;
1404 // Figure out the right, legal destination reg to copy into.
1405 EVT EltTy = VT.getVectorElementType();
1407 unsigned NumVectorRegs = 1;
1409 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1410 // could break down into LHS/RHS like LegalizeDAG does.
1411 if (!isPowerOf2_32(NumElts)) {
1412 NumVectorRegs = NumElts;
1413 NumElts = 1;
1416 // Divide the input until we get to a supported size. This will always
1417 // end with a scalar if the target doesn't support vectors.
1418 while (NumElts > 1 && !isTypeLegal(
1419 EVT::getVectorVT(Context, EltTy, NumElts))) {
1420 NumElts >>= 1;
1421 NumVectorRegs <<= 1;
1424 NumIntermediates = NumVectorRegs;
1426 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1427 if (!isTypeLegal(NewVT))
1428 NewVT = EltTy;
1429 IntermediateVT = NewVT;
1431 MVT DestVT = getRegisterType(Context, NewVT);
1432 RegisterVT = DestVT;
1433 unsigned NewVTSize = NewVT.getSizeInBits();
1435 // Convert sizes such as i33 to i64.
1436 if (!isPowerOf2_32(NewVTSize))
1437 NewVTSize = NextPowerOf2(NewVTSize);
1439 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1440 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1442 // Otherwise, promotion or legal types use the same number of registers as
1443 // the vector decimated to the appropriate level.
1444 return NumVectorRegs;
1447 /// Get the EVTs and ArgFlags collections that represent the legalized return
1448 /// type of the given function. This does not require a DAG or a return value,
1449 /// and is suitable for use before any DAGs for the function are constructed.
1450 /// TODO: Move this out of TargetLowering.cpp.
1451 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1452 AttributeList attr,
1453 SmallVectorImpl<ISD::OutputArg> &Outs,
1454 const TargetLowering &TLI, const DataLayout &DL) {
1455 SmallVector<EVT, 4> ValueVTs;
1456 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1457 unsigned NumValues = ValueVTs.size();
1458 if (NumValues == 0) return;
1460 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1461 EVT VT = ValueVTs[j];
1462 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1464 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1465 ExtendKind = ISD::SIGN_EXTEND;
1466 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1467 ExtendKind = ISD::ZERO_EXTEND;
1469 // FIXME: C calling convention requires the return type to be promoted to
1470 // at least 32-bit. But this is not necessary for non-C calling
1471 // conventions. The frontend should mark functions whose return values
1472 // require promoting with signext or zeroext attributes.
1473 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1474 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1475 if (VT.bitsLT(MinVT))
1476 VT = MinVT;
1479 unsigned NumParts =
1480 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1481 MVT PartVT =
1482 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1484 // 'inreg' on function refers to return value
1485 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1486 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1487 Flags.setInReg();
1489 // Propagate extension type if any
1490 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1491 Flags.setSExt();
1492 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1493 Flags.setZExt();
1495 for (unsigned i = 0; i < NumParts; ++i)
1496 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1500 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1501 /// function arguments in the caller parameter area. This is the actual
1502 /// alignment, not its logarithm.
1503 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1504 const DataLayout &DL) const {
1505 return DL.getABITypeAlignment(Ty);
1508 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1509 const DataLayout &DL, EVT VT,
1510 unsigned AddrSpace,
1511 unsigned Alignment,
1512 MachineMemOperand::Flags Flags,
1513 bool *Fast) const {
1514 // Check if the specified alignment is sufficient based on the data layout.
1515 // TODO: While using the data layout works in practice, a better solution
1516 // would be to implement this check directly (make this a virtual function).
1517 // For example, the ABI alignment may change based on software platform while
1518 // this function should only be affected by hardware implementation.
1519 Type *Ty = VT.getTypeForEVT(Context);
1520 if (Alignment >= DL.getABITypeAlignment(Ty)) {
1521 // Assume that an access that meets the ABI-specified alignment is fast.
1522 if (Fast != nullptr)
1523 *Fast = true;
1524 return true;
1527 // This is a misaligned access.
1528 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1531 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1532 const DataLayout &DL, EVT VT,
1533 const MachineMemOperand &MMO,
1534 bool *Fast) const {
1535 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1536 MMO.getAlignment(), MMO.getFlags(), Fast);
1539 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1540 return BranchProbability(MinPercentageForPredictableBranch, 100);
1543 //===----------------------------------------------------------------------===//
1544 // TargetTransformInfo Helpers
1545 //===----------------------------------------------------------------------===//
1547 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1548 enum InstructionOpcodes {
1549 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1550 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1551 #include "llvm/IR/Instruction.def"
1553 switch (static_cast<InstructionOpcodes>(Opcode)) {
1554 case Ret: return 0;
1555 case Br: return 0;
1556 case Switch: return 0;
1557 case IndirectBr: return 0;
1558 case Invoke: return 0;
1559 case CallBr: return 0;
1560 case Resume: return 0;
1561 case Unreachable: return 0;
1562 case CleanupRet: return 0;
1563 case CatchRet: return 0;
1564 case CatchPad: return 0;
1565 case CatchSwitch: return 0;
1566 case CleanupPad: return 0;
1567 case FNeg: return ISD::FNEG;
1568 case Add: return ISD::ADD;
1569 case FAdd: return ISD::FADD;
1570 case Sub: return ISD::SUB;
1571 case FSub: return ISD::FSUB;
1572 case Mul: return ISD::MUL;
1573 case FMul: return ISD::FMUL;
1574 case UDiv: return ISD::UDIV;
1575 case SDiv: return ISD::SDIV;
1576 case FDiv: return ISD::FDIV;
1577 case URem: return ISD::UREM;
1578 case SRem: return ISD::SREM;
1579 case FRem: return ISD::FREM;
1580 case Shl: return ISD::SHL;
1581 case LShr: return ISD::SRL;
1582 case AShr: return ISD::SRA;
1583 case And: return ISD::AND;
1584 case Or: return ISD::OR;
1585 case Xor: return ISD::XOR;
1586 case Alloca: return 0;
1587 case Load: return ISD::LOAD;
1588 case Store: return ISD::STORE;
1589 case GetElementPtr: return 0;
1590 case Fence: return 0;
1591 case AtomicCmpXchg: return 0;
1592 case AtomicRMW: return 0;
1593 case Trunc: return ISD::TRUNCATE;
1594 case ZExt: return ISD::ZERO_EXTEND;
1595 case SExt: return ISD::SIGN_EXTEND;
1596 case FPToUI: return ISD::FP_TO_UINT;
1597 case FPToSI: return ISD::FP_TO_SINT;
1598 case UIToFP: return ISD::UINT_TO_FP;
1599 case SIToFP: return ISD::SINT_TO_FP;
1600 case FPTrunc: return ISD::FP_ROUND;
1601 case FPExt: return ISD::FP_EXTEND;
1602 case PtrToInt: return ISD::BITCAST;
1603 case IntToPtr: return ISD::BITCAST;
1604 case BitCast: return ISD::BITCAST;
1605 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1606 case ICmp: return ISD::SETCC;
1607 case FCmp: return ISD::SETCC;
1608 case PHI: return 0;
1609 case Call: return 0;
1610 case Select: return ISD::SELECT;
1611 case UserOp1: return 0;
1612 case UserOp2: return 0;
1613 case VAArg: return 0;
1614 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1615 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1616 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1617 case ExtractValue: return ISD::MERGE_VALUES;
1618 case InsertValue: return ISD::MERGE_VALUES;
1619 case LandingPad: return 0;
1622 llvm_unreachable("Unknown instruction type encountered!");
1625 std::pair<int, MVT>
1626 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1627 Type *Ty) const {
1628 LLVMContext &C = Ty->getContext();
1629 EVT MTy = getValueType(DL, Ty);
1631 int Cost = 1;
1632 // We keep legalizing the type until we find a legal kind. We assume that
1633 // the only operation that costs anything is the split. After splitting
1634 // we need to handle two types.
1635 while (true) {
1636 LegalizeKind LK = getTypeConversion(C, MTy);
1638 if (LK.first == TypeLegal)
1639 return std::make_pair(Cost, MTy.getSimpleVT());
1641 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1642 Cost *= 2;
1644 // Do not loop with f128 type.
1645 if (MTy == LK.second)
1646 return std::make_pair(Cost, MTy.getSimpleVT());
1648 // Keep legalizing the type.
1649 MTy = LK.second;
1653 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1654 bool UseTLS) const {
1655 // compiler-rt provides a variable with a magic name. Targets that do not
1656 // link with compiler-rt may also provide such a variable.
1657 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1658 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1659 auto UnsafeStackPtr =
1660 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1662 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1664 if (!UnsafeStackPtr) {
1665 auto TLSModel = UseTLS ?
1666 GlobalValue::InitialExecTLSModel :
1667 GlobalValue::NotThreadLocal;
1668 // The global variable is not defined yet, define it ourselves.
1669 // We use the initial-exec TLS model because we do not support the
1670 // variable living anywhere other than in the main executable.
1671 UnsafeStackPtr = new GlobalVariable(
1672 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1673 UnsafeStackPtrVar, nullptr, TLSModel);
1674 } else {
1675 // The variable exists, check its type and attributes.
1676 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1677 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1678 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1679 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1680 (UseTLS ? "" : "not ") + "be thread-local");
1682 return UnsafeStackPtr;
1685 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1686 if (!TM.getTargetTriple().isAndroid())
1687 return getDefaultSafeStackPointerLocation(IRB, true);
1689 // Android provides a libc function to retrieve the address of the current
1690 // thread's unsafe stack pointer.
1691 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1692 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1693 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1694 StackPtrTy->getPointerTo(0));
1695 return IRB.CreateCall(Fn);
1698 //===----------------------------------------------------------------------===//
1699 // Loop Strength Reduction hooks
1700 //===----------------------------------------------------------------------===//
1702 /// isLegalAddressingMode - Return true if the addressing mode represented
1703 /// by AM is legal for this target, for a load/store of the specified type.
1704 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1705 const AddrMode &AM, Type *Ty,
1706 unsigned AS, Instruction *I) const {
1707 // The default implementation of this implements a conservative RISCy, r+r and
1708 // r+i addr mode.
1710 // Allows a sign-extended 16-bit immediate field.
1711 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1712 return false;
1714 // No global is ever allowed as a base.
1715 if (AM.BaseGV)
1716 return false;
1718 // Only support r+r,
1719 switch (AM.Scale) {
1720 case 0: // "r+i" or just "i", depending on HasBaseReg.
1721 break;
1722 case 1:
1723 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1724 return false;
1725 // Otherwise we have r+r or r+i.
1726 break;
1727 case 2:
1728 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1729 return false;
1730 // Allow 2*r as r+r.
1731 break;
1732 default: // Don't allow n * r
1733 return false;
1736 return true;
1739 //===----------------------------------------------------------------------===//
1740 // Stack Protector
1741 //===----------------------------------------------------------------------===//
1743 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1744 // so that SelectionDAG handle SSP.
1745 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1746 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1747 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1748 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1749 return M.getOrInsertGlobal("__guard_local", PtrTy);
1751 return nullptr;
1754 // Currently only support "standard" __stack_chk_guard.
1755 // TODO: add LOAD_STACK_GUARD support.
1756 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1757 if (!M.getNamedValue("__stack_chk_guard"))
1758 new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1759 GlobalVariable::ExternalLinkage,
1760 nullptr, "__stack_chk_guard");
1763 // Currently only support "standard" __stack_chk_guard.
1764 // TODO: add LOAD_STACK_GUARD support.
1765 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1766 return M.getNamedValue("__stack_chk_guard");
1769 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1770 return nullptr;
1773 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1774 return MinimumJumpTableEntries;
1777 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1778 MinimumJumpTableEntries = Val;
1781 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1782 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1785 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1786 return MaximumJumpTableSize;
1789 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1790 MaximumJumpTableSize = Val;
1793 //===----------------------------------------------------------------------===//
1794 // Reciprocal Estimates
1795 //===----------------------------------------------------------------------===//
1797 /// Get the reciprocal estimate attribute string for a function that will
1798 /// override the target defaults.
1799 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1800 const Function &F = MF.getFunction();
1801 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1804 /// Construct a string for the given reciprocal operation of the given type.
1805 /// This string should match the corresponding option to the front-end's
1806 /// "-mrecip" flag assuming those strings have been passed through in an
1807 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1808 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1809 std::string Name = VT.isVector() ? "vec-" : "";
1811 Name += IsSqrt ? "sqrt" : "div";
1813 // TODO: Handle "half" or other float types?
1814 if (VT.getScalarType() == MVT::f64) {
1815 Name += "d";
1816 } else {
1817 assert(VT.getScalarType() == MVT::f32 &&
1818 "Unexpected FP type for reciprocal estimate");
1819 Name += "f";
1822 return Name;
1825 /// Return the character position and value (a single numeric character) of a
1826 /// customized refinement operation in the input string if it exists. Return
1827 /// false if there is no customized refinement step count.
1828 static bool parseRefinementStep(StringRef In, size_t &Position,
1829 uint8_t &Value) {
1830 const char RefStepToken = ':';
1831 Position = In.find(RefStepToken);
1832 if (Position == StringRef::npos)
1833 return false;
1835 StringRef RefStepString = In.substr(Position + 1);
1836 // Allow exactly one numeric character for the additional refinement
1837 // step parameter.
1838 if (RefStepString.size() == 1) {
1839 char RefStepChar = RefStepString[0];
1840 if (RefStepChar >= '0' && RefStepChar <= '9') {
1841 Value = RefStepChar - '0';
1842 return true;
1845 report_fatal_error("Invalid refinement step for -recip.");
1848 /// For the input attribute string, return one of the ReciprocalEstimate enum
1849 /// status values (enabled, disabled, or not specified) for this operation on
1850 /// the specified data type.
1851 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1852 if (Override.empty())
1853 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1855 SmallVector<StringRef, 4> OverrideVector;
1856 Override.split(OverrideVector, ',');
1857 unsigned NumArgs = OverrideVector.size();
1859 // Check if "all", "none", or "default" was specified.
1860 if (NumArgs == 1) {
1861 // Look for an optional setting of the number of refinement steps needed
1862 // for this type of reciprocal operation.
1863 size_t RefPos;
1864 uint8_t RefSteps;
1865 if (parseRefinementStep(Override, RefPos, RefSteps)) {
1866 // Split the string for further processing.
1867 Override = Override.substr(0, RefPos);
1870 // All reciprocal types are enabled.
1871 if (Override == "all")
1872 return TargetLoweringBase::ReciprocalEstimate::Enabled;
1874 // All reciprocal types are disabled.
1875 if (Override == "none")
1876 return TargetLoweringBase::ReciprocalEstimate::Disabled;
1878 // Target defaults for enablement are used.
1879 if (Override == "default")
1880 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1883 // The attribute string may omit the size suffix ('f'/'d').
1884 std::string VTName = getReciprocalOpName(IsSqrt, VT);
1885 std::string VTNameNoSize = VTName;
1886 VTNameNoSize.pop_back();
1887 static const char DisabledPrefix = '!';
1889 for (StringRef RecipType : OverrideVector) {
1890 size_t RefPos;
1891 uint8_t RefSteps;
1892 if (parseRefinementStep(RecipType, RefPos, RefSteps))
1893 RecipType = RecipType.substr(0, RefPos);
1895 // Ignore the disablement token for string matching.
1896 bool IsDisabled = RecipType[0] == DisabledPrefix;
1897 if (IsDisabled)
1898 RecipType = RecipType.substr(1);
1900 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1901 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1902 : TargetLoweringBase::ReciprocalEstimate::Enabled;
1905 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1908 /// For the input attribute string, return the customized refinement step count
1909 /// for this operation on the specified data type. If the step count does not
1910 /// exist, return the ReciprocalEstimate enum value for unspecified.
1911 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1912 if (Override.empty())
1913 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1915 SmallVector<StringRef, 4> OverrideVector;
1916 Override.split(OverrideVector, ',');
1917 unsigned NumArgs = OverrideVector.size();
1919 // Check if "all", "default", or "none" was specified.
1920 if (NumArgs == 1) {
1921 // Look for an optional setting of the number of refinement steps needed
1922 // for this type of reciprocal operation.
1923 size_t RefPos;
1924 uint8_t RefSteps;
1925 if (!parseRefinementStep(Override, RefPos, RefSteps))
1926 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1928 // Split the string for further processing.
1929 Override = Override.substr(0, RefPos);
1930 assert(Override != "none" &&
1931 "Disabled reciprocals, but specifed refinement steps?");
1933 // If this is a general override, return the specified number of steps.
1934 if (Override == "all" || Override == "default")
1935 return RefSteps;
1938 // The attribute string may omit the size suffix ('f'/'d').
1939 std::string VTName = getReciprocalOpName(IsSqrt, VT);
1940 std::string VTNameNoSize = VTName;
1941 VTNameNoSize.pop_back();
1943 for (StringRef RecipType : OverrideVector) {
1944 size_t RefPos;
1945 uint8_t RefSteps;
1946 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1947 continue;
1949 RecipType = RecipType.substr(0, RefPos);
1950 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1951 return RefSteps;
1954 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1957 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1958 MachineFunction &MF) const {
1959 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1962 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1963 MachineFunction &MF) const {
1964 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1967 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1968 MachineFunction &MF) const {
1969 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1972 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1973 MachineFunction &MF) const {
1974 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1977 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1978 MF.getRegInfo().freezeReservedRegs(MF);