[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / CodeGen / TargetRegisterInfo.cpp
blobe5592c31098ae16d25d9e29547d2a99898b51be2
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Printable.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <cassert>
36 #include <utility>
38 #define DEBUG_TYPE "target-reg-info"
40 using namespace llvm;
42 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
43 regclass_iterator RCB, regclass_iterator RCE,
44 const char *const *SRINames,
45 const LaneBitmask *SRILaneMasks,
46 LaneBitmask SRICoveringLanes,
47 const RegClassInfo *const RCIs,
48 unsigned Mode)
49 : InfoDesc(ID), SubRegIndexNames(SRINames),
50 SubRegIndexLaneMasks(SRILaneMasks),
51 RegClassBegin(RCB), RegClassEnd(RCE),
52 CoveringLanes(SRICoveringLanes),
53 RCInfos(RCIs), HwMode(Mode) {
56 TargetRegisterInfo::~TargetRegisterInfo() = default;
58 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
59 const {
60 for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
61 RegisterSet.set(*AI);
64 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
65 ArrayRef<MCPhysReg> Exceptions) const {
66 // Check that all super registers of reserved regs are reserved as well.
67 BitVector Checked(getNumRegs());
68 for (unsigned Reg : RegisterSet.set_bits()) {
69 if (Checked[Reg])
70 continue;
71 for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
72 if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
73 dbgs() << "Error: Super register " << printReg(*SR, this)
74 << " of reserved register " << printReg(Reg, this)
75 << " is not reserved.\n";
76 return false;
79 // We transitively check superregs. So we can remember this for later
80 // to avoid compiletime explosion in deep register hierarchies.
81 Checked.set(*SR);
84 return true;
87 namespace llvm {
89 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
90 unsigned SubIdx, const MachineRegisterInfo *MRI) {
91 return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
92 if (!Reg)
93 OS << "$noreg";
94 else if (Register::isStackSlot(Reg))
95 OS << "SS#" << Register::stackSlot2Index(Reg);
96 else if (Register::isVirtualRegister(Reg)) {
97 StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
98 if (Name != "") {
99 OS << '%' << Name;
100 } else {
101 OS << '%' << Register::virtReg2Index(Reg);
103 } else if (!TRI)
104 OS << '$' << "physreg" << Reg;
105 else if (Reg < TRI->getNumRegs()) {
106 OS << '$';
107 printLowerCase(TRI->getName(Reg), OS);
108 } else
109 llvm_unreachable("Register kind is unsupported.");
111 if (SubIdx) {
112 if (TRI)
113 OS << ':' << TRI->getSubRegIndexName(SubIdx);
114 else
115 OS << ":sub(" << SubIdx << ')';
120 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
121 return Printable([Unit, TRI](raw_ostream &OS) {
122 // Generic printout when TRI is missing.
123 if (!TRI) {
124 OS << "Unit~" << Unit;
125 return;
128 // Check for invalid register units.
129 if (Unit >= TRI->getNumRegUnits()) {
130 OS << "BadUnit~" << Unit;
131 return;
134 // Normal units have at least one root.
135 MCRegUnitRootIterator Roots(Unit, TRI);
136 assert(Roots.isValid() && "Unit has no roots.");
137 OS << TRI->getName(*Roots);
138 for (++Roots; Roots.isValid(); ++Roots)
139 OS << '~' << TRI->getName(*Roots);
143 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
144 return Printable([Unit, TRI](raw_ostream &OS) {
145 if (Register::isVirtualRegister(Unit)) {
146 OS << '%' << Register::virtReg2Index(Unit);
147 } else {
148 OS << printRegUnit(Unit, TRI);
153 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
154 const TargetRegisterInfo *TRI) {
155 return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
156 if (RegInfo.getRegClassOrNull(Reg))
157 OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
158 else if (RegInfo.getRegBankOrNull(Reg))
159 OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
160 else {
161 OS << "_";
162 assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
163 "Generic registers must have a valid type");
168 } // end namespace llvm
170 /// getAllocatableClass - Return the maximal subclass of the given register
171 /// class that is alloctable, or NULL.
172 const TargetRegisterClass *
173 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
174 if (!RC || RC->isAllocatable())
175 return RC;
177 for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
178 ++It) {
179 const TargetRegisterClass *SubRC = getRegClass(It.getID());
180 if (SubRC->isAllocatable())
181 return SubRC;
183 return nullptr;
186 /// getMinimalPhysRegClass - Returns the Register Class of a physical
187 /// register of the given type, picking the most sub register class of
188 /// the right type that contains this physreg.
189 const TargetRegisterClass *
190 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
191 assert(Register::isPhysicalRegister(reg) &&
192 "reg must be a physical register");
194 // Pick the most sub register class of the right type that contains
195 // this physreg.
196 const TargetRegisterClass* BestRC = nullptr;
197 for (const TargetRegisterClass* RC : regclasses()) {
198 if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
199 RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
200 BestRC = RC;
203 assert(BestRC && "Couldn't find the register class");
204 return BestRC;
207 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
208 /// registers for the specific register class.
209 static void getAllocatableSetForRC(const MachineFunction &MF,
210 const TargetRegisterClass *RC, BitVector &R){
211 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
212 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
213 for (unsigned i = 0; i != Order.size(); ++i)
214 R.set(Order[i]);
217 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
218 const TargetRegisterClass *RC) const {
219 BitVector Allocatable(getNumRegs());
220 if (RC) {
221 // A register class with no allocatable subclass returns an empty set.
222 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
223 if (SubClass)
224 getAllocatableSetForRC(MF, SubClass, Allocatable);
225 } else {
226 for (const TargetRegisterClass *C : regclasses())
227 if (C->isAllocatable())
228 getAllocatableSetForRC(MF, C, Allocatable);
231 // Mask out the reserved registers
232 BitVector Reserved = getReservedRegs(MF);
233 Allocatable &= Reserved.flip();
235 return Allocatable;
238 static inline
239 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
240 const uint32_t *B,
241 const TargetRegisterInfo *TRI) {
242 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
243 if (unsigned Common = *A++ & *B++)
244 return TRI->getRegClass(I + countTrailingZeros(Common));
245 return nullptr;
248 const TargetRegisterClass *
249 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
250 const TargetRegisterClass *B) const {
251 // First take care of the trivial cases.
252 if (A == B)
253 return A;
254 if (!A || !B)
255 return nullptr;
257 // Register classes are ordered topologically, so the largest common
258 // sub-class it the common sub-class with the smallest ID.
259 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
262 const TargetRegisterClass *
263 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
264 const TargetRegisterClass *B,
265 unsigned Idx) const {
266 assert(A && B && "Missing register class");
267 assert(Idx && "Bad sub-register index");
269 // Find Idx in the list of super-register indices.
270 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
271 if (RCI.getSubReg() == Idx)
272 // The bit mask contains all register classes that are projected into B
273 // by Idx. Find a class that is also a sub-class of A.
274 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
275 return nullptr;
278 const TargetRegisterClass *TargetRegisterInfo::
279 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
280 const TargetRegisterClass *RCB, unsigned SubB,
281 unsigned &PreA, unsigned &PreB) const {
282 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
284 // Search all pairs of sub-register indices that project into RCA and RCB
285 // respectively. This is quadratic, but usually the sets are very small. On
286 // most targets like X86, there will only be a single sub-register index
287 // (e.g., sub_16bit projecting into GR16).
289 // The worst case is a register class like DPR on ARM.
290 // We have indices dsub_0..dsub_7 projecting into that class.
292 // It is very common that one register class is a sub-register of the other.
293 // Arrange for RCA to be the larger register so the answer will be found in
294 // the first iteration. This makes the search linear for the most common
295 // case.
296 const TargetRegisterClass *BestRC = nullptr;
297 unsigned *BestPreA = &PreA;
298 unsigned *BestPreB = &PreB;
299 if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
300 std::swap(RCA, RCB);
301 std::swap(SubA, SubB);
302 std::swap(BestPreA, BestPreB);
305 // Also terminate the search one we have found a register class as small as
306 // RCA.
307 unsigned MinSize = getRegSizeInBits(*RCA);
309 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
310 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
311 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
312 // Check if a common super-register class exists for this index pair.
313 const TargetRegisterClass *RC =
314 firstCommonClass(IA.getMask(), IB.getMask(), this);
315 if (!RC || getRegSizeInBits(*RC) < MinSize)
316 continue;
318 // The indexes must compose identically: PreA+SubA == PreB+SubB.
319 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
320 if (FinalA != FinalB)
321 continue;
323 // Is RC a better candidate than BestRC?
324 if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
325 continue;
327 // Yes, RC is the smallest super-register seen so far.
328 BestRC = RC;
329 *BestPreA = IA.getSubReg();
330 *BestPreB = IB.getSubReg();
332 // Bail early if we reached MinSize. We won't find a better candidate.
333 if (getRegSizeInBits(*BestRC) == MinSize)
334 return BestRC;
337 return BestRC;
340 /// Check if the registers defined by the pair (RegisterClass, SubReg)
341 /// share the same register file.
342 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
343 const TargetRegisterClass *DefRC,
344 unsigned DefSubReg,
345 const TargetRegisterClass *SrcRC,
346 unsigned SrcSubReg) {
347 // Same register class.
348 if (DefRC == SrcRC)
349 return true;
351 // Both operands are sub registers. Check if they share a register class.
352 unsigned SrcIdx, DefIdx;
353 if (SrcSubReg && DefSubReg) {
354 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
355 SrcIdx, DefIdx) != nullptr;
358 // At most one of the register is a sub register, make it Src to avoid
359 // duplicating the test.
360 if (!SrcSubReg) {
361 std::swap(DefSubReg, SrcSubReg);
362 std::swap(DefRC, SrcRC);
365 // One of the register is a sub register, check if we can get a superclass.
366 if (SrcSubReg)
367 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
369 // Plain copy.
370 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
373 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
374 unsigned DefSubReg,
375 const TargetRegisterClass *SrcRC,
376 unsigned SrcSubReg) const {
377 // If this source does not incur a cross register bank copy, use it.
378 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
381 // Compute target-independent register allocator hints to help eliminate copies.
382 bool
383 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
384 ArrayRef<MCPhysReg> Order,
385 SmallVectorImpl<MCPhysReg> &Hints,
386 const MachineFunction &MF,
387 const VirtRegMap *VRM,
388 const LiveRegMatrix *Matrix) const {
389 const MachineRegisterInfo &MRI = MF.getRegInfo();
390 const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
391 MRI.getRegAllocationHints(VirtReg);
393 SmallSet<unsigned, 32> HintedRegs;
394 // First hint may be a target hint.
395 bool Skip = (Hints_MRI.first != 0);
396 for (auto Reg : Hints_MRI.second) {
397 if (Skip) {
398 Skip = false;
399 continue;
402 // Target-independent hints are either a physical or a virtual register.
403 unsigned Phys = Reg;
404 if (VRM && Register::isVirtualRegister(Phys))
405 Phys = VRM->getPhys(Phys);
407 // Don't add the same reg twice (Hints_MRI may contain multiple virtual
408 // registers allocated to the same physreg).
409 if (!HintedRegs.insert(Phys).second)
410 continue;
411 // Check that Phys is a valid hint in VirtReg's register class.
412 if (!Register::isPhysicalRegister(Phys))
413 continue;
414 if (MRI.isReserved(Phys))
415 continue;
416 // Check that Phys is in the allocation order. We shouldn't heed hints
417 // from VirtReg's register class if they aren't in the allocation order. The
418 // target probably has a reason for removing the register.
419 if (!is_contained(Order, Phys))
420 continue;
422 // All clear, tell the register allocator to prefer this register.
423 Hints.push_back(Phys);
425 return false;
428 bool TargetRegisterInfo::isCalleeSavedPhysReg(
429 unsigned PhysReg, const MachineFunction &MF) const {
430 if (PhysReg == 0)
431 return false;
432 const uint32_t *callerPreservedRegs =
433 getCallPreservedMask(MF, MF.getFunction().getCallingConv());
434 if (callerPreservedRegs) {
435 assert(Register::isPhysicalRegister(PhysReg) &&
436 "Expected physical register");
437 return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
439 return false;
442 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
443 return !MF.getFunction().hasFnAttribute("no-realign-stack");
446 bool TargetRegisterInfo::needsStackRealignment(
447 const MachineFunction &MF) const {
448 const MachineFrameInfo &MFI = MF.getFrameInfo();
449 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
450 const Function &F = MF.getFunction();
451 unsigned StackAlign = TFI->getStackAlignment();
452 bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
453 F.hasFnAttribute(Attribute::StackAlignment));
454 if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
455 if (canRealignStack(MF))
456 return true;
457 LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
458 << "\n");
460 return false;
463 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
464 const uint32_t *mask1) const {
465 unsigned N = (getNumRegs()+31) / 32;
466 for (unsigned I = 0; I < N; ++I)
467 if ((mask0[I] & mask1[I]) != mask0[I])
468 return false;
469 return true;
472 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
473 const MachineRegisterInfo &MRI) const {
474 const TargetRegisterClass *RC{};
475 if (Register::isPhysicalRegister(Reg)) {
476 // The size is not directly available for physical registers.
477 // Instead, we need to access a register class that contains Reg and
478 // get the size of that register class.
479 RC = getMinimalPhysRegClass(Reg);
480 } else {
481 LLT Ty = MRI.getType(Reg);
482 unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
483 // If Reg is not a generic register, query the register class to
484 // get its size.
485 if (RegSize)
486 return RegSize;
487 // Since Reg is not a generic register, it must have a register class.
488 RC = MRI.getRegClass(Reg);
490 assert(RC && "Unable to deduce the register class");
491 return getRegSizeInBits(*RC);
494 unsigned
495 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
496 const MachineRegisterInfo *MRI) const {
497 while (true) {
498 const MachineInstr *MI = MRI->getVRegDef(SrcReg);
499 if (!MI->isCopyLike())
500 return SrcReg;
502 unsigned CopySrcReg;
503 if (MI->isCopy())
504 CopySrcReg = MI->getOperand(1).getReg();
505 else {
506 assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
507 CopySrcReg = MI->getOperand(2).getReg();
510 if (!Register::isVirtualRegister(CopySrcReg))
511 return CopySrcReg;
513 SrcReg = CopySrcReg;
517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
518 LLVM_DUMP_METHOD
519 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
520 const TargetRegisterInfo *TRI) {
521 dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
523 #endif