1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
101 DenseMap
<const Value
*, std::pair
<unsigned, bool>> IDs
;
103 unsigned size() const { return IDs
.size(); }
104 std::pair
<unsigned, bool> &operator[](const Value
*V
) { return IDs
[V
]; }
106 std::pair
<unsigned, bool> lookup(const Value
*V
) const {
107 return IDs
.lookup(V
);
110 void index(const Value
*V
) {
111 // Explicitly sequence get-size and insert-value operations to avoid UB.
112 unsigned ID
= IDs
.size() + 1;
117 } // end anonymous namespace
119 static void orderValue(const Value
*V
, OrderMap
&OM
) {
120 if (OM
.lookup(V
).first
)
123 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
124 if (C
->getNumOperands() && !isa
<GlobalValue
>(C
))
125 for (const Value
*Op
: C
->operands())
126 if (!isa
<BasicBlock
>(Op
) && !isa
<GlobalValue
>(Op
))
129 // Note: we cannot cache this lookup above, since inserting into the map
130 // changes the map's size, and thus affects the other IDs.
134 static OrderMap
orderModule(const Module
*M
) {
135 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136 // and ValueEnumerator::incorporateFunction().
139 for (const GlobalVariable
&G
: M
->globals()) {
140 if (G
.hasInitializer())
141 if (!isa
<GlobalValue
>(G
.getInitializer()))
142 orderValue(G
.getInitializer(), OM
);
145 for (const GlobalAlias
&A
: M
->aliases()) {
146 if (!isa
<GlobalValue
>(A
.getAliasee()))
147 orderValue(A
.getAliasee(), OM
);
150 for (const GlobalIFunc
&I
: M
->ifuncs()) {
151 if (!isa
<GlobalValue
>(I
.getResolver()))
152 orderValue(I
.getResolver(), OM
);
155 for (const Function
&F
: *M
) {
156 for (const Use
&U
: F
.operands())
157 if (!isa
<GlobalValue
>(U
.get()))
158 orderValue(U
.get(), OM
);
162 if (F
.isDeclaration())
165 for (const Argument
&A
: F
.args())
167 for (const BasicBlock
&BB
: F
) {
169 for (const Instruction
&I
: BB
) {
170 for (const Value
*Op
: I
.operands())
171 if ((isa
<Constant
>(*Op
) && !isa
<GlobalValue
>(*Op
)) ||
181 static void predictValueUseListOrderImpl(const Value
*V
, const Function
*F
,
182 unsigned ID
, const OrderMap
&OM
,
183 UseListOrderStack
&Stack
) {
184 // Predict use-list order for this one.
185 using Entry
= std::pair
<const Use
*, unsigned>;
186 SmallVector
<Entry
, 64> List
;
187 for (const Use
&U
: V
->uses())
188 // Check if this user will be serialized.
189 if (OM
.lookup(U
.getUser()).first
)
190 List
.push_back(std::make_pair(&U
, List
.size()));
193 // We may have lost some users.
197 !isa
<GlobalVariable
>(V
) && !isa
<Function
>(V
) && !isa
<BasicBlock
>(V
);
198 if (auto *BA
= dyn_cast
<BlockAddress
>(V
))
199 ID
= OM
.lookup(BA
->getBasicBlock()).first
;
200 llvm::sort(List
, [&](const Entry
&L
, const Entry
&R
) {
201 const Use
*LU
= L
.first
;
202 const Use
*RU
= R
.first
;
206 auto LID
= OM
.lookup(LU
->getUser()).first
;
207 auto RID
= OM
.lookup(RU
->getUser()).first
;
209 // If ID is 4, then expect: 7 6 5 1 2 3.
223 // LID and RID are equal, so we have different operands of the same user.
224 // Assume operands are added in order for all instructions.
227 return LU
->getOperandNo() < RU
->getOperandNo();
228 return LU
->getOperandNo() > RU
->getOperandNo();
232 List
.begin(), List
.end(),
233 [](const Entry
&L
, const Entry
&R
) { return L
.second
< R
.second
; }))
234 // Order is already correct.
237 // Store the shuffle.
238 Stack
.emplace_back(V
, F
, List
.size());
239 assert(List
.size() == Stack
.back().Shuffle
.size() && "Wrong size");
240 for (size_t I
= 0, E
= List
.size(); I
!= E
; ++I
)
241 Stack
.back().Shuffle
[I
] = List
[I
].second
;
244 static void predictValueUseListOrder(const Value
*V
, const Function
*F
,
245 OrderMap
&OM
, UseListOrderStack
&Stack
) {
246 auto &IDPair
= OM
[V
];
247 assert(IDPair
.first
&& "Unmapped value");
249 // Already predicted.
252 // Do the actual prediction.
253 IDPair
.second
= true;
254 if (!V
->use_empty() && std::next(V
->use_begin()) != V
->use_end())
255 predictValueUseListOrderImpl(V
, F
, IDPair
.first
, OM
, Stack
);
257 // Recursive descent into constants.
258 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
259 if (C
->getNumOperands()) // Visit GlobalValues.
260 for (const Value
*Op
: C
->operands())
261 if (isa
<Constant
>(Op
)) // Visit GlobalValues.
262 predictValueUseListOrder(Op
, F
, OM
, Stack
);
265 static UseListOrderStack
predictUseListOrder(const Module
*M
) {
266 OrderMap OM
= orderModule(M
);
268 // Use-list orders need to be serialized after all the users have been added
269 // to a value, or else the shuffles will be incomplete. Store them per
270 // function in a stack.
272 // Aside from function order, the order of values doesn't matter much here.
273 UseListOrderStack Stack
;
275 // We want to visit the functions backward now so we can list function-local
276 // constants in the last Function they're used in. Module-level constants
277 // have already been visited above.
278 for (const Function
&F
: make_range(M
->rbegin(), M
->rend())) {
279 if (F
.isDeclaration())
281 for (const BasicBlock
&BB
: F
)
282 predictValueUseListOrder(&BB
, &F
, OM
, Stack
);
283 for (const Argument
&A
: F
.args())
284 predictValueUseListOrder(&A
, &F
, OM
, Stack
);
285 for (const BasicBlock
&BB
: F
)
286 for (const Instruction
&I
: BB
)
287 for (const Value
*Op
: I
.operands())
288 if (isa
<Constant
>(*Op
) || isa
<InlineAsm
>(*Op
)) // Visit GlobalValues.
289 predictValueUseListOrder(Op
, &F
, OM
, Stack
);
290 for (const BasicBlock
&BB
: F
)
291 for (const Instruction
&I
: BB
)
292 predictValueUseListOrder(&I
, &F
, OM
, Stack
);
295 // Visit globals last.
296 for (const GlobalVariable
&G
: M
->globals())
297 predictValueUseListOrder(&G
, nullptr, OM
, Stack
);
298 for (const Function
&F
: *M
)
299 predictValueUseListOrder(&F
, nullptr, OM
, Stack
);
300 for (const GlobalAlias
&A
: M
->aliases())
301 predictValueUseListOrder(&A
, nullptr, OM
, Stack
);
302 for (const GlobalIFunc
&I
: M
->ifuncs())
303 predictValueUseListOrder(&I
, nullptr, OM
, Stack
);
304 for (const GlobalVariable
&G
: M
->globals())
305 if (G
.hasInitializer())
306 predictValueUseListOrder(G
.getInitializer(), nullptr, OM
, Stack
);
307 for (const GlobalAlias
&A
: M
->aliases())
308 predictValueUseListOrder(A
.getAliasee(), nullptr, OM
, Stack
);
309 for (const GlobalIFunc
&I
: M
->ifuncs())
310 predictValueUseListOrder(I
.getResolver(), nullptr, OM
, Stack
);
311 for (const Function
&F
: *M
)
312 for (const Use
&U
: F
.operands())
313 predictValueUseListOrder(U
.get(), nullptr, OM
, Stack
);
318 static const Module
*getModuleFromVal(const Value
*V
) {
319 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
320 return MA
->getParent() ? MA
->getParent()->getParent() : nullptr;
322 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
323 return BB
->getParent() ? BB
->getParent()->getParent() : nullptr;
325 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
326 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : nullptr;
327 return M
? M
->getParent() : nullptr;
330 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
331 return GV
->getParent();
333 if (const auto *MAV
= dyn_cast
<MetadataAsValue
>(V
)) {
334 for (const User
*U
: MAV
->users())
335 if (isa
<Instruction
>(U
))
336 if (const Module
*M
= getModuleFromVal(U
))
344 static void PrintCallingConv(unsigned cc
, raw_ostream
&Out
) {
346 default: Out
<< "cc" << cc
; break;
347 case CallingConv::Fast
: Out
<< "fastcc"; break;
348 case CallingConv::Cold
: Out
<< "coldcc"; break;
349 case CallingConv::WebKit_JS
: Out
<< "webkit_jscc"; break;
350 case CallingConv::AnyReg
: Out
<< "anyregcc"; break;
351 case CallingConv::PreserveMost
: Out
<< "preserve_mostcc"; break;
352 case CallingConv::PreserveAll
: Out
<< "preserve_allcc"; break;
353 case CallingConv::CXX_FAST_TLS
: Out
<< "cxx_fast_tlscc"; break;
354 case CallingConv::GHC
: Out
<< "ghccc"; break;
355 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc"; break;
356 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc"; break;
357 case CallingConv::X86_ThisCall
: Out
<< "x86_thiscallcc"; break;
358 case CallingConv::X86_RegCall
: Out
<< "x86_regcallcc"; break;
359 case CallingConv::X86_VectorCall
:Out
<< "x86_vectorcallcc"; break;
360 case CallingConv::Intel_OCL_BI
: Out
<< "intel_ocl_bicc"; break;
361 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc"; break;
362 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc"; break;
363 case CallingConv::ARM_AAPCS_VFP
: Out
<< "arm_aapcs_vfpcc"; break;
364 case CallingConv::AArch64_VectorCall
: Out
<< "aarch64_vector_pcs"; break;
365 case CallingConv::MSP430_INTR
: Out
<< "msp430_intrcc"; break;
366 case CallingConv::AVR_INTR
: Out
<< "avr_intrcc "; break;
367 case CallingConv::AVR_SIGNAL
: Out
<< "avr_signalcc "; break;
368 case CallingConv::PTX_Kernel
: Out
<< "ptx_kernel"; break;
369 case CallingConv::PTX_Device
: Out
<< "ptx_device"; break;
370 case CallingConv::X86_64_SysV
: Out
<< "x86_64_sysvcc"; break;
371 case CallingConv::Win64
: Out
<< "win64cc"; break;
372 case CallingConv::SPIR_FUNC
: Out
<< "spir_func"; break;
373 case CallingConv::SPIR_KERNEL
: Out
<< "spir_kernel"; break;
374 case CallingConv::Swift
: Out
<< "swiftcc"; break;
375 case CallingConv::X86_INTR
: Out
<< "x86_intrcc"; break;
376 case CallingConv::HHVM
: Out
<< "hhvmcc"; break;
377 case CallingConv::HHVM_C
: Out
<< "hhvm_ccc"; break;
378 case CallingConv::AMDGPU_VS
: Out
<< "amdgpu_vs"; break;
379 case CallingConv::AMDGPU_LS
: Out
<< "amdgpu_ls"; break;
380 case CallingConv::AMDGPU_HS
: Out
<< "amdgpu_hs"; break;
381 case CallingConv::AMDGPU_ES
: Out
<< "amdgpu_es"; break;
382 case CallingConv::AMDGPU_GS
: Out
<< "amdgpu_gs"; break;
383 case CallingConv::AMDGPU_PS
: Out
<< "amdgpu_ps"; break;
384 case CallingConv::AMDGPU_CS
: Out
<< "amdgpu_cs"; break;
385 case CallingConv::AMDGPU_KERNEL
: Out
<< "amdgpu_kernel"; break;
397 void llvm::printLLVMNameWithoutPrefix(raw_ostream
&OS
, StringRef Name
) {
398 assert(!Name
.empty() && "Cannot get empty name!");
400 // Scan the name to see if it needs quotes first.
401 bool NeedsQuotes
= isdigit(static_cast<unsigned char>(Name
[0]));
403 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
404 // By making this unsigned, the value passed in to isalnum will always be
405 // in the range 0-255. This is important when building with MSVC because
406 // its implementation will assert. This situation can arise when dealing
407 // with UTF-8 multibyte characters.
408 unsigned char C
= Name
[i
];
409 if (!isalnum(static_cast<unsigned char>(C
)) && C
!= '-' && C
!= '.' &&
417 // If we didn't need any quotes, just write out the name in one blast.
423 // Okay, we need quotes. Output the quotes and escape any scary characters as
426 printEscapedString(Name
, OS
);
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream
&OS
, StringRef Name
, PrefixType Prefix
) {
449 printLLVMNameWithoutPrefix(OS
, Name
);
452 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
453 /// (if the string only contains simple characters) or is surrounded with ""'s
454 /// (if it has special chars in it). Print it out.
455 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
456 PrintLLVMName(OS
, V
->getName(),
457 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
464 TypePrinting(const Module
*M
= nullptr) : DeferredM(M
) {}
466 TypePrinting(const TypePrinting
&) = delete;
467 TypePrinting
&operator=(const TypePrinting
&) = delete;
469 /// The named types that are used by the current module.
470 TypeFinder
&getNamedTypes();
472 /// The numbered types, number to type mapping.
473 std::vector
<StructType
*> &getNumberedTypes();
477 void print(Type
*Ty
, raw_ostream
&OS
);
479 void printStructBody(StructType
*Ty
, raw_ostream
&OS
);
482 void incorporateTypes();
484 /// A module to process lazily when needed. Set to nullptr as soon as used.
485 const Module
*DeferredM
;
487 TypeFinder NamedTypes
;
489 // The numbered types, along with their value.
490 DenseMap
<StructType
*, unsigned> Type2Number
;
492 std::vector
<StructType
*> NumberedTypes
;
495 } // end anonymous namespace
497 TypeFinder
&TypePrinting::getNamedTypes() {
502 std::vector
<StructType
*> &TypePrinting::getNumberedTypes() {
505 // We know all the numbers that each type is used and we know that it is a
506 // dense assignment. Convert the map to an index table, if it's not done
507 // already (judging from the sizes):
508 if (NumberedTypes
.size() == Type2Number
.size())
509 return NumberedTypes
;
511 NumberedTypes
.resize(Type2Number
.size());
512 for (const auto &P
: Type2Number
) {
513 assert(P
.second
< NumberedTypes
.size() && "Didn't get a dense numbering?");
514 assert(!NumberedTypes
[P
.second
] && "Didn't get a unique numbering?");
515 NumberedTypes
[P
.second
] = P
.first
;
517 return NumberedTypes
;
520 bool TypePrinting::empty() {
522 return NamedTypes
.empty() && Type2Number
.empty();
525 void TypePrinting::incorporateTypes() {
529 NamedTypes
.run(*DeferredM
, false);
532 // The list of struct types we got back includes all the struct types, split
533 // the unnamed ones out to a numbering and remove the anonymous structs.
534 unsigned NextNumber
= 0;
536 std::vector
<StructType
*>::iterator NextToUse
= NamedTypes
.begin(), I
, E
;
537 for (I
= NamedTypes
.begin(), E
= NamedTypes
.end(); I
!= E
; ++I
) {
538 StructType
*STy
= *I
;
540 // Ignore anonymous types.
541 if (STy
->isLiteral())
544 if (STy
->getName().empty())
545 Type2Number
[STy
] = NextNumber
++;
550 NamedTypes
.erase(NextToUse
, NamedTypes
.end());
553 /// Write the specified type to the specified raw_ostream, making use of type
554 /// names or up references to shorten the type name where possible.
555 void TypePrinting::print(Type
*Ty
, raw_ostream
&OS
) {
556 switch (Ty
->getTypeID()) {
557 case Type::VoidTyID
: OS
<< "void"; return;
558 case Type::HalfTyID
: OS
<< "half"; return;
559 case Type::FloatTyID
: OS
<< "float"; return;
560 case Type::DoubleTyID
: OS
<< "double"; return;
561 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; return;
562 case Type::FP128TyID
: OS
<< "fp128"; return;
563 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; return;
564 case Type::LabelTyID
: OS
<< "label"; return;
565 case Type::MetadataTyID
: OS
<< "metadata"; return;
566 case Type::X86_MMXTyID
: OS
<< "x86_mmx"; return;
567 case Type::TokenTyID
: OS
<< "token"; return;
568 case Type::IntegerTyID
:
569 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
572 case Type::FunctionTyID
: {
573 FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
574 print(FTy
->getReturnType(), OS
);
576 for (FunctionType::param_iterator I
= FTy
->param_begin(),
577 E
= FTy
->param_end(); I
!= E
; ++I
) {
578 if (I
!= FTy
->param_begin())
582 if (FTy
->isVarArg()) {
583 if (FTy
->getNumParams()) OS
<< ", ";
589 case Type::StructTyID
: {
590 StructType
*STy
= cast
<StructType
>(Ty
);
592 if (STy
->isLiteral())
593 return printStructBody(STy
, OS
);
595 if (!STy
->getName().empty())
596 return PrintLLVMName(OS
, STy
->getName(), LocalPrefix
);
599 const auto I
= Type2Number
.find(STy
);
600 if (I
!= Type2Number
.end())
601 OS
<< '%' << I
->second
;
602 else // Not enumerated, print the hex address.
603 OS
<< "%\"type " << STy
<< '\"';
606 case Type::PointerTyID
: {
607 PointerType
*PTy
= cast
<PointerType
>(Ty
);
608 print(PTy
->getElementType(), OS
);
609 if (unsigned AddressSpace
= PTy
->getAddressSpace())
610 OS
<< " addrspace(" << AddressSpace
<< ')';
614 case Type::ArrayTyID
: {
615 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
616 OS
<< '[' << ATy
->getNumElements() << " x ";
617 print(ATy
->getElementType(), OS
);
621 case Type::VectorTyID
: {
622 VectorType
*PTy
= cast
<VectorType
>(Ty
);
624 if (PTy
->isScalable())
626 OS
<< PTy
->getNumElements() << " x ";
627 print(PTy
->getElementType(), OS
);
632 llvm_unreachable("Invalid TypeID");
635 void TypePrinting::printStructBody(StructType
*STy
, raw_ostream
&OS
) {
636 if (STy
->isOpaque()) {
644 if (STy
->getNumElements() == 0) {
647 StructType::element_iterator I
= STy
->element_begin();
650 for (StructType::element_iterator E
= STy
->element_end(); I
!= E
; ++I
) {
663 //===----------------------------------------------------------------------===//
664 // SlotTracker Class: Enumerate slot numbers for unnamed values
665 //===----------------------------------------------------------------------===//
666 /// This class provides computation of slot numbers for LLVM Assembly writing.
670 /// ValueMap - A mapping of Values to slot numbers.
671 using ValueMap
= DenseMap
<const Value
*, unsigned>;
674 /// TheModule - The module for which we are holding slot numbers.
675 const Module
* TheModule
;
677 /// TheFunction - The function for which we are holding slot numbers.
678 const Function
* TheFunction
= nullptr;
679 bool FunctionProcessed
= false;
680 bool ShouldInitializeAllMetadata
;
682 /// The summary index for which we are holding slot numbers.
683 const ModuleSummaryIndex
*TheIndex
= nullptr;
685 /// mMap - The slot map for the module level data.
689 /// fMap - The slot map for the function level data.
693 /// mdnMap - Map for MDNodes.
694 DenseMap
<const MDNode
*, unsigned> mdnMap
;
695 unsigned mdnNext
= 0;
697 /// asMap - The slot map for attribute sets.
698 DenseMap
<AttributeSet
, unsigned> asMap
;
701 /// ModulePathMap - The slot map for Module paths used in the summary index.
702 StringMap
<unsigned> ModulePathMap
;
703 unsigned ModulePathNext
= 0;
705 /// GUIDMap - The slot map for GUIDs used in the summary index.
706 DenseMap
<GlobalValue::GUID
, unsigned> GUIDMap
;
707 unsigned GUIDNext
= 0;
709 /// TypeIdMap - The slot map for type ids used in the summary index.
710 StringMap
<unsigned> TypeIdMap
;
711 unsigned TypeIdNext
= 0;
714 /// Construct from a module.
716 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
717 /// functions, giving correct numbering for metadata referenced only from
718 /// within a function (even if no functions have been initialized).
719 explicit SlotTracker(const Module
*M
,
720 bool ShouldInitializeAllMetadata
= false);
722 /// Construct from a function, starting out in incorp state.
724 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
725 /// functions, giving correct numbering for metadata referenced only from
726 /// within a function (even if no functions have been initialized).
727 explicit SlotTracker(const Function
*F
,
728 bool ShouldInitializeAllMetadata
= false);
730 /// Construct from a module summary index.
731 explicit SlotTracker(const ModuleSummaryIndex
*Index
);
733 SlotTracker(const SlotTracker
&) = delete;
734 SlotTracker
&operator=(const SlotTracker
&) = delete;
736 /// Return the slot number of the specified value in it's type
737 /// plane. If something is not in the SlotTracker, return -1.
738 int getLocalSlot(const Value
*V
);
739 int getGlobalSlot(const GlobalValue
*V
);
740 int getMetadataSlot(const MDNode
*N
);
741 int getAttributeGroupSlot(AttributeSet AS
);
742 int getModulePathSlot(StringRef Path
);
743 int getGUIDSlot(GlobalValue::GUID GUID
);
744 int getTypeIdSlot(StringRef Id
);
746 /// If you'd like to deal with a function instead of just a module, use
747 /// this method to get its data into the SlotTracker.
748 void incorporateFunction(const Function
*F
) {
750 FunctionProcessed
= false;
753 const Function
*getFunction() const { return TheFunction
; }
755 /// After calling incorporateFunction, use this method to remove the
756 /// most recently incorporated function from the SlotTracker. This
757 /// will reset the state of the machine back to just the module contents.
758 void purgeFunction();
760 /// MDNode map iterators.
761 using mdn_iterator
= DenseMap
<const MDNode
*, unsigned>::iterator
;
763 mdn_iterator
mdn_begin() { return mdnMap
.begin(); }
764 mdn_iterator
mdn_end() { return mdnMap
.end(); }
765 unsigned mdn_size() const { return mdnMap
.size(); }
766 bool mdn_empty() const { return mdnMap
.empty(); }
768 /// AttributeSet map iterators.
769 using as_iterator
= DenseMap
<AttributeSet
, unsigned>::iterator
;
771 as_iterator
as_begin() { return asMap
.begin(); }
772 as_iterator
as_end() { return asMap
.end(); }
773 unsigned as_size() const { return asMap
.size(); }
774 bool as_empty() const { return asMap
.empty(); }
776 /// GUID map iterators.
777 using guid_iterator
= DenseMap
<GlobalValue::GUID
, unsigned>::iterator
;
779 /// These functions do the actual initialization.
780 inline void initializeIfNeeded();
781 void initializeIndexIfNeeded();
783 // Implementation Details
785 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
786 void CreateModuleSlot(const GlobalValue
*V
);
788 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
789 void CreateMetadataSlot(const MDNode
*N
);
791 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
792 void CreateFunctionSlot(const Value
*V
);
794 /// Insert the specified AttributeSet into the slot table.
795 void CreateAttributeSetSlot(AttributeSet AS
);
797 inline void CreateModulePathSlot(StringRef Path
);
798 void CreateGUIDSlot(GlobalValue::GUID GUID
);
799 void CreateTypeIdSlot(StringRef Id
);
801 /// Add all of the module level global variables (and their initializers)
802 /// and function declarations, but not the contents of those functions.
803 void processModule();
806 /// Add all of the functions arguments, basic blocks, and instructions.
807 void processFunction();
809 /// Add the metadata directly attached to a GlobalObject.
810 void processGlobalObjectMetadata(const GlobalObject
&GO
);
812 /// Add all of the metadata from a function.
813 void processFunctionMetadata(const Function
&F
);
815 /// Add all of the metadata from an instruction.
816 void processInstructionMetadata(const Instruction
&I
);
819 } // end namespace llvm
821 ModuleSlotTracker::ModuleSlotTracker(SlotTracker
&Machine
, const Module
*M
,
823 : M(M
), F(F
), Machine(&Machine
) {}
825 ModuleSlotTracker::ModuleSlotTracker(const Module
*M
,
826 bool ShouldInitializeAllMetadata
)
827 : ShouldCreateStorage(M
),
828 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
), M(M
) {}
830 ModuleSlotTracker::~ModuleSlotTracker() = default;
832 SlotTracker
*ModuleSlotTracker::getMachine() {
833 if (!ShouldCreateStorage
)
836 ShouldCreateStorage
= false;
838 std::make_unique
<SlotTracker
>(M
, ShouldInitializeAllMetadata
);
839 Machine
= MachineStorage
.get();
843 void ModuleSlotTracker::incorporateFunction(const Function
&F
) {
844 // Using getMachine() may lazily create the slot tracker.
848 // Nothing to do if this is the right function already.
852 Machine
->purgeFunction();
853 Machine
->incorporateFunction(&F
);
857 int ModuleSlotTracker::getLocalSlot(const Value
*V
) {
858 assert(F
&& "No function incorporated");
859 return Machine
->getLocalSlot(V
);
862 static SlotTracker
*createSlotTracker(const Value
*V
) {
863 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
864 return new SlotTracker(FA
->getParent());
866 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
868 return new SlotTracker(I
->getParent()->getParent());
870 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
871 return new SlotTracker(BB
->getParent());
873 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
874 return new SlotTracker(GV
->getParent());
876 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
877 return new SlotTracker(GA
->getParent());
879 if (const GlobalIFunc
*GIF
= dyn_cast
<GlobalIFunc
>(V
))
880 return new SlotTracker(GIF
->getParent());
882 if (const Function
*Func
= dyn_cast
<Function
>(V
))
883 return new SlotTracker(Func
);
889 #define ST_DEBUG(X) dbgs() << X
894 // Module level constructor. Causes the contents of the Module (sans functions)
895 // to be added to the slot table.
896 SlotTracker::SlotTracker(const Module
*M
, bool ShouldInitializeAllMetadata
)
897 : TheModule(M
), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
899 // Function level constructor. Causes the contents of the Module and the one
900 // function provided to be added to the slot table.
901 SlotTracker::SlotTracker(const Function
*F
, bool ShouldInitializeAllMetadata
)
902 : TheModule(F
? F
->getParent() : nullptr), TheFunction(F
),
903 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata
) {}
905 SlotTracker::SlotTracker(const ModuleSummaryIndex
*Index
)
906 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index
) {}
908 inline void SlotTracker::initializeIfNeeded() {
911 TheModule
= nullptr; ///< Prevent re-processing next time we're called.
914 if (TheFunction
&& !FunctionProcessed
)
918 void SlotTracker::initializeIndexIfNeeded() {
922 TheIndex
= nullptr; ///< Prevent re-processing next time we're called.
925 // Iterate through all the global variables, functions, and global
926 // variable initializers and create slots for them.
927 void SlotTracker::processModule() {
928 ST_DEBUG("begin processModule!\n");
930 // Add all of the unnamed global variables to the value table.
931 for (const GlobalVariable
&Var
: TheModule
->globals()) {
933 CreateModuleSlot(&Var
);
934 processGlobalObjectMetadata(Var
);
935 auto Attrs
= Var
.getAttributes();
936 if (Attrs
.hasAttributes())
937 CreateAttributeSetSlot(Attrs
);
940 for (const GlobalAlias
&A
: TheModule
->aliases()) {
942 CreateModuleSlot(&A
);
945 for (const GlobalIFunc
&I
: TheModule
->ifuncs()) {
947 CreateModuleSlot(&I
);
950 // Add metadata used by named metadata.
951 for (const NamedMDNode
&NMD
: TheModule
->named_metadata()) {
952 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
)
953 CreateMetadataSlot(NMD
.getOperand(i
));
956 for (const Function
&F
: *TheModule
) {
958 // Add all the unnamed functions to the table.
959 CreateModuleSlot(&F
);
961 if (ShouldInitializeAllMetadata
)
962 processFunctionMetadata(F
);
964 // Add all the function attributes to the table.
965 // FIXME: Add attributes of other objects?
966 AttributeSet FnAttrs
= F
.getAttributes().getFnAttributes();
967 if (FnAttrs
.hasAttributes())
968 CreateAttributeSetSlot(FnAttrs
);
971 ST_DEBUG("end processModule!\n");
974 // Process the arguments, basic blocks, and instructions of a function.
975 void SlotTracker::processFunction() {
976 ST_DEBUG("begin processFunction!\n");
979 // Process function metadata if it wasn't hit at the module-level.
980 if (!ShouldInitializeAllMetadata
)
981 processFunctionMetadata(*TheFunction
);
983 // Add all the function arguments with no names.
984 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
985 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
987 CreateFunctionSlot(&*AI
);
989 ST_DEBUG("Inserting Instructions:\n");
991 // Add all of the basic blocks and instructions with no names.
992 for (auto &BB
: *TheFunction
) {
994 CreateFunctionSlot(&BB
);
997 if (!I
.getType()->isVoidTy() && !I
.hasName())
998 CreateFunctionSlot(&I
);
1000 // We allow direct calls to any llvm.foo function here, because the
1001 // target may not be linked into the optimizer.
1002 if (const auto *Call
= dyn_cast
<CallBase
>(&I
)) {
1003 // Add all the call attributes to the table.
1004 AttributeSet Attrs
= Call
->getAttributes().getFnAttributes();
1005 if (Attrs
.hasAttributes())
1006 CreateAttributeSetSlot(Attrs
);
1011 FunctionProcessed
= true;
1013 ST_DEBUG("end processFunction!\n");
1016 // Iterate through all the GUID in the index and create slots for them.
1017 void SlotTracker::processIndex() {
1018 ST_DEBUG("begin processIndex!\n");
1021 // The first block of slots are just the module ids, which start at 0 and are
1022 // assigned consecutively. Since the StringMap iteration order isn't
1023 // guaranteed, use a std::map to order by module ID before assigning slots.
1024 std::map
<uint64_t, StringRef
> ModuleIdToPathMap
;
1025 for (auto &ModPath
: TheIndex
->modulePaths())
1026 ModuleIdToPathMap
[ModPath
.second
.first
] = ModPath
.first();
1027 for (auto &ModPair
: ModuleIdToPathMap
)
1028 CreateModulePathSlot(ModPair
.second
);
1030 // Start numbering the GUIDs after the module ids.
1031 GUIDNext
= ModulePathNext
;
1033 for (auto &GlobalList
: *TheIndex
)
1034 CreateGUIDSlot(GlobalList
.first
);
1036 // Start numbering the TypeIds after the GUIDs.
1037 TypeIdNext
= GUIDNext
;
1039 for (auto TidIter
= TheIndex
->typeIds().begin();
1040 TidIter
!= TheIndex
->typeIds().end(); TidIter
++)
1041 CreateTypeIdSlot(TidIter
->second
.first
);
1043 for (auto &TId
: TheIndex
->typeIdCompatibleVtableMap())
1044 CreateGUIDSlot(GlobalValue::getGUID(TId
.first
));
1046 ST_DEBUG("end processIndex!\n");
1049 void SlotTracker::processGlobalObjectMetadata(const GlobalObject
&GO
) {
1050 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1051 GO
.getAllMetadata(MDs
);
1052 for (auto &MD
: MDs
)
1053 CreateMetadataSlot(MD
.second
);
1056 void SlotTracker::processFunctionMetadata(const Function
&F
) {
1057 processGlobalObjectMetadata(F
);
1058 for (auto &BB
: F
) {
1060 processInstructionMetadata(I
);
1064 void SlotTracker::processInstructionMetadata(const Instruction
&I
) {
1065 // Process metadata used directly by intrinsics.
1066 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
1067 if (Function
*F
= CI
->getCalledFunction())
1068 if (F
->isIntrinsic())
1069 for (auto &Op
: I
.operands())
1070 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
1071 if (MDNode
*N
= dyn_cast
<MDNode
>(V
->getMetadata()))
1072 CreateMetadataSlot(N
);
1074 // Process metadata attached to this instruction.
1075 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1076 I
.getAllMetadata(MDs
);
1077 for (auto &MD
: MDs
)
1078 CreateMetadataSlot(MD
.second
);
1081 /// Clean up after incorporating a function. This is the only way to get out of
1082 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1083 /// incorporation state is indicated by TheFunction != 0.
1084 void SlotTracker::purgeFunction() {
1085 ST_DEBUG("begin purgeFunction!\n");
1086 fMap
.clear(); // Simply discard the function level map
1087 TheFunction
= nullptr;
1088 FunctionProcessed
= false;
1089 ST_DEBUG("end purgeFunction!\n");
1092 /// getGlobalSlot - Get the slot number of a global value.
1093 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
1094 // Check for uninitialized state and do lazy initialization.
1095 initializeIfNeeded();
1097 // Find the value in the module map
1098 ValueMap::iterator MI
= mMap
.find(V
);
1099 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
1102 /// getMetadataSlot - Get the slot number of a MDNode.
1103 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
1104 // Check for uninitialized state and do lazy initialization.
1105 initializeIfNeeded();
1107 // Find the MDNode in the module map
1108 mdn_iterator MI
= mdnMap
.find(N
);
1109 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
1112 /// getLocalSlot - Get the slot number for a value that is local to a function.
1113 int SlotTracker::getLocalSlot(const Value
*V
) {
1114 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
1116 // Check for uninitialized state and do lazy initialization.
1117 initializeIfNeeded();
1119 ValueMap::iterator FI
= fMap
.find(V
);
1120 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
1123 int SlotTracker::getAttributeGroupSlot(AttributeSet AS
) {
1124 // Check for uninitialized state and do lazy initialization.
1125 initializeIfNeeded();
1127 // Find the AttributeSet in the module map.
1128 as_iterator AI
= asMap
.find(AS
);
1129 return AI
== asMap
.end() ? -1 : (int)AI
->second
;
1132 int SlotTracker::getModulePathSlot(StringRef Path
) {
1133 // Check for uninitialized state and do lazy initialization.
1134 initializeIndexIfNeeded();
1136 // Find the Module path in the map
1137 auto I
= ModulePathMap
.find(Path
);
1138 return I
== ModulePathMap
.end() ? -1 : (int)I
->second
;
1141 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID
) {
1142 // Check for uninitialized state and do lazy initialization.
1143 initializeIndexIfNeeded();
1145 // Find the GUID in the map
1146 guid_iterator I
= GUIDMap
.find(GUID
);
1147 return I
== GUIDMap
.end() ? -1 : (int)I
->second
;
1150 int SlotTracker::getTypeIdSlot(StringRef Id
) {
1151 // Check for uninitialized state and do lazy initialization.
1152 initializeIndexIfNeeded();
1154 // Find the TypeId string in the map
1155 auto I
= TypeIdMap
.find(Id
);
1156 return I
== TypeIdMap
.end() ? -1 : (int)I
->second
;
1159 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1160 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
1161 assert(V
&& "Can't insert a null Value into SlotTracker!");
1162 assert(!V
->getType()->isVoidTy() && "Doesn't need a slot!");
1163 assert(!V
->hasName() && "Doesn't need a slot!");
1165 unsigned DestSlot
= mNext
++;
1168 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1170 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1171 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
1172 (isa
<Function
>(V
) ? 'F' :
1173 (isa
<GlobalAlias
>(V
) ? 'A' :
1174 (isa
<GlobalIFunc
>(V
) ? 'I' : 'o')))) << "]\n");
1177 /// CreateSlot - Create a new slot for the specified value if it has no name.
1178 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
1179 assert(!V
->getType()->isVoidTy() && !V
->hasName() && "Doesn't need a slot!");
1181 unsigned DestSlot
= fNext
++;
1184 // G = Global, F = Function, o = other
1185 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
1186 DestSlot
<< " [o]\n");
1189 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1190 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
1191 assert(N
&& "Can't insert a null Value into SlotTracker!");
1193 // Don't make slots for DIExpressions. We just print them inline everywhere.
1194 if (isa
<DIExpression
>(N
))
1197 unsigned DestSlot
= mdnNext
;
1198 if (!mdnMap
.insert(std::make_pair(N
, DestSlot
)).second
)
1202 // Recursively add any MDNodes referenced by operands.
1203 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1204 if (const MDNode
*Op
= dyn_cast_or_null
<MDNode
>(N
->getOperand(i
)))
1205 CreateMetadataSlot(Op
);
1208 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS
) {
1209 assert(AS
.hasAttributes() && "Doesn't need a slot!");
1211 as_iterator I
= asMap
.find(AS
);
1212 if (I
!= asMap
.end())
1215 unsigned DestSlot
= asNext
++;
1216 asMap
[AS
] = DestSlot
;
1219 /// Create a new slot for the specified Module
1220 void SlotTracker::CreateModulePathSlot(StringRef Path
) {
1221 ModulePathMap
[Path
] = ModulePathNext
++;
1224 /// Create a new slot for the specified GUID
1225 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID
) {
1226 GUIDMap
[GUID
] = GUIDNext
++;
1229 /// Create a new slot for the specified Id
1230 void SlotTracker::CreateTypeIdSlot(StringRef Id
) {
1231 TypeIdMap
[Id
] = TypeIdNext
++;
1234 //===----------------------------------------------------------------------===//
1235 // AsmWriter Implementation
1236 //===----------------------------------------------------------------------===//
1238 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
1239 TypePrinting
*TypePrinter
,
1240 SlotTracker
*Machine
,
1241 const Module
*Context
);
1243 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
1244 TypePrinting
*TypePrinter
,
1245 SlotTracker
*Machine
, const Module
*Context
,
1246 bool FromValue
= false);
1248 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
1249 if (const FPMathOperator
*FPO
= dyn_cast
<const FPMathOperator
>(U
)) {
1250 // 'Fast' is an abbreviation for all fast-math-flags.
1254 if (FPO
->hasAllowReassoc())
1256 if (FPO
->hasNoNaNs())
1258 if (FPO
->hasNoInfs())
1260 if (FPO
->hasNoSignedZeros())
1262 if (FPO
->hasAllowReciprocal())
1264 if (FPO
->hasAllowContract())
1266 if (FPO
->hasApproxFunc())
1271 if (const OverflowingBinaryOperator
*OBO
=
1272 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
1273 if (OBO
->hasNoUnsignedWrap())
1275 if (OBO
->hasNoSignedWrap())
1277 } else if (const PossiblyExactOperator
*Div
=
1278 dyn_cast
<PossiblyExactOperator
>(U
)) {
1281 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
1282 if (GEP
->isInBounds())
1287 static void WriteConstantInternal(raw_ostream
&Out
, const Constant
*CV
,
1288 TypePrinting
&TypePrinter
,
1289 SlotTracker
*Machine
,
1290 const Module
*Context
) {
1291 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1292 if (CI
->getType()->isIntegerTy(1)) {
1293 Out
<< (CI
->getZExtValue() ? "true" : "false");
1296 Out
<< CI
->getValue();
1300 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1301 const APFloat
&APF
= CFP
->getValueAPF();
1302 if (&APF
.getSemantics() == &APFloat::IEEEsingle() ||
1303 &APF
.getSemantics() == &APFloat::IEEEdouble()) {
1304 // We would like to output the FP constant value in exponential notation,
1305 // but we cannot do this if doing so will lose precision. Check here to
1306 // make sure that we only output it in exponential format if we can parse
1307 // the value back and get the same value.
1310 bool isDouble
= &APF
.getSemantics() == &APFloat::IEEEdouble();
1311 bool isInf
= APF
.isInfinity();
1312 bool isNaN
= APF
.isNaN();
1313 if (!isInf
&& !isNaN
) {
1314 double Val
= isDouble
? APF
.convertToDouble() : APF
.convertToFloat();
1315 SmallString
<128> StrVal
;
1316 APF
.toString(StrVal
, 6, 0, false);
1317 // Check to make sure that the stringized number is not some string like
1318 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1319 // that the string matches the "[-+]?[0-9]" regex.
1321 assert(((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
1322 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
1323 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) &&
1324 "[-+]?[0-9] regex does not match!");
1325 // Reparse stringized version!
1326 if (APFloat(APFloat::IEEEdouble(), StrVal
).convertToDouble() == Val
) {
1331 // Otherwise we could not reparse it to exactly the same value, so we must
1332 // output the string in hexadecimal format! Note that loading and storing
1333 // floating point types changes the bits of NaNs on some hosts, notably
1334 // x86, so we must not use these types.
1335 static_assert(sizeof(double) == sizeof(uint64_t),
1336 "assuming that double is 64 bits!");
1338 // Floats are represented in ASCII IR as double, convert.
1340 apf
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
1342 Out
<< format_hex(apf
.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1346 // Either half, or some form of long double.
1347 // These appear as a magic letter identifying the type, then a
1348 // fixed number of hex digits.
1350 APInt API
= APF
.bitcastToAPInt();
1351 if (&APF
.getSemantics() == &APFloat::x87DoubleExtended()) {
1353 Out
<< format_hex_no_prefix(API
.getHiBits(16).getZExtValue(), 4,
1355 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1358 } else if (&APF
.getSemantics() == &APFloat::IEEEquad()) {
1360 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1362 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1364 } else if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble()) {
1366 Out
<< format_hex_no_prefix(API
.getLoBits(64).getZExtValue(), 16,
1368 Out
<< format_hex_no_prefix(API
.getHiBits(64).getZExtValue(), 16,
1370 } else if (&APF
.getSemantics() == &APFloat::IEEEhalf()) {
1372 Out
<< format_hex_no_prefix(API
.getZExtValue(), 4,
1375 llvm_unreachable("Unsupported floating point type");
1379 if (isa
<ConstantAggregateZero
>(CV
)) {
1380 Out
<< "zeroinitializer";
1384 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
)) {
1385 Out
<< "blockaddress(";
1386 WriteAsOperandInternal(Out
, BA
->getFunction(), &TypePrinter
, Machine
,
1389 WriteAsOperandInternal(Out
, BA
->getBasicBlock(), &TypePrinter
, Machine
,
1395 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
1396 Type
*ETy
= CA
->getType()->getElementType();
1398 TypePrinter
.print(ETy
, Out
);
1400 WriteAsOperandInternal(Out
, CA
->getOperand(0),
1401 &TypePrinter
, Machine
,
1403 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
1405 TypePrinter
.print(ETy
, Out
);
1407 WriteAsOperandInternal(Out
, CA
->getOperand(i
), &TypePrinter
, Machine
,
1414 if (const ConstantDataArray
*CA
= dyn_cast
<ConstantDataArray
>(CV
)) {
1415 // As a special case, print the array as a string if it is an array of
1416 // i8 with ConstantInt values.
1417 if (CA
->isString()) {
1419 printEscapedString(CA
->getAsString(), Out
);
1424 Type
*ETy
= CA
->getType()->getElementType();
1426 TypePrinter
.print(ETy
, Out
);
1428 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(0),
1429 &TypePrinter
, Machine
,
1431 for (unsigned i
= 1, e
= CA
->getNumElements(); i
!= e
; ++i
) {
1433 TypePrinter
.print(ETy
, Out
);
1435 WriteAsOperandInternal(Out
, CA
->getElementAsConstant(i
), &TypePrinter
,
1442 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
1443 if (CS
->getType()->isPacked())
1446 unsigned N
= CS
->getNumOperands();
1449 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
1452 WriteAsOperandInternal(Out
, CS
->getOperand(0), &TypePrinter
, Machine
,
1455 for (unsigned i
= 1; i
< N
; i
++) {
1457 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
1460 WriteAsOperandInternal(Out
, CS
->getOperand(i
), &TypePrinter
, Machine
,
1467 if (CS
->getType()->isPacked())
1472 if (isa
<ConstantVector
>(CV
) || isa
<ConstantDataVector
>(CV
)) {
1473 Type
*ETy
= CV
->getType()->getVectorElementType();
1475 TypePrinter
.print(ETy
, Out
);
1477 WriteAsOperandInternal(Out
, CV
->getAggregateElement(0U), &TypePrinter
,
1479 for (unsigned i
= 1, e
= CV
->getType()->getVectorNumElements(); i
!= e
;++i
){
1481 TypePrinter
.print(ETy
, Out
);
1483 WriteAsOperandInternal(Out
, CV
->getAggregateElement(i
), &TypePrinter
,
1490 if (isa
<ConstantPointerNull
>(CV
)) {
1495 if (isa
<ConstantTokenNone
>(CV
)) {
1500 if (isa
<UndefValue
>(CV
)) {
1505 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
1506 Out
<< CE
->getOpcodeName();
1507 WriteOptimizationInfo(Out
, CE
);
1508 if (CE
->isCompare())
1509 Out
<< ' ' << CmpInst::getPredicateName(
1510 static_cast<CmpInst::Predicate
>(CE
->getPredicate()));
1513 Optional
<unsigned> InRangeOp
;
1514 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1515 TypePrinter
.print(GEP
->getSourceElementType(), Out
);
1517 InRangeOp
= GEP
->getInRangeIndex();
1522 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
1523 if (InRangeOp
&& unsigned(OI
- CE
->op_begin()) == *InRangeOp
)
1525 TypePrinter
.print((*OI
)->getType(), Out
);
1527 WriteAsOperandInternal(Out
, *OI
, &TypePrinter
, Machine
, Context
);
1528 if (OI
+1 != CE
->op_end())
1532 if (CE
->hasIndices()) {
1533 ArrayRef
<unsigned> Indices
= CE
->getIndices();
1534 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
1535 Out
<< ", " << Indices
[i
];
1540 TypePrinter
.print(CE
->getType(), Out
);
1547 Out
<< "<placeholder or erroneous Constant>";
1550 static void writeMDTuple(raw_ostream
&Out
, const MDTuple
*Node
,
1551 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1552 const Module
*Context
) {
1554 for (unsigned mi
= 0, me
= Node
->getNumOperands(); mi
!= me
; ++mi
) {
1555 const Metadata
*MD
= Node
->getOperand(mi
);
1558 else if (auto *MDV
= dyn_cast
<ValueAsMetadata
>(MD
)) {
1559 Value
*V
= MDV
->getValue();
1560 TypePrinter
->print(V
->getType(), Out
);
1562 WriteAsOperandInternal(Out
, V
, TypePrinter
, Machine
, Context
);
1564 WriteAsOperandInternal(Out
, MD
, TypePrinter
, Machine
, Context
);
1575 struct FieldSeparator
{
1579 FieldSeparator(const char *Sep
= ", ") : Sep(Sep
) {}
1582 raw_ostream
&operator<<(raw_ostream
&OS
, FieldSeparator
&FS
) {
1587 return OS
<< FS
.Sep
;
1590 struct MDFieldPrinter
{
1593 TypePrinting
*TypePrinter
= nullptr;
1594 SlotTracker
*Machine
= nullptr;
1595 const Module
*Context
= nullptr;
1597 explicit MDFieldPrinter(raw_ostream
&Out
) : Out(Out
) {}
1598 MDFieldPrinter(raw_ostream
&Out
, TypePrinting
*TypePrinter
,
1599 SlotTracker
*Machine
, const Module
*Context
)
1600 : Out(Out
), TypePrinter(TypePrinter
), Machine(Machine
), Context(Context
) {
1603 void printTag(const DINode
*N
);
1604 void printMacinfoType(const DIMacroNode
*N
);
1605 void printChecksum(const DIFile::ChecksumInfo
<StringRef
> &N
);
1606 void printString(StringRef Name
, StringRef Value
,
1607 bool ShouldSkipEmpty
= true);
1608 void printMetadata(StringRef Name
, const Metadata
*MD
,
1609 bool ShouldSkipNull
= true);
1610 template <class IntTy
>
1611 void printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
= true);
1612 void printBool(StringRef Name
, bool Value
, Optional
<bool> Default
= None
);
1613 void printDIFlags(StringRef Name
, DINode::DIFlags Flags
);
1614 void printDISPFlags(StringRef Name
, DISubprogram::DISPFlags Flags
);
1615 template <class IntTy
, class Stringifier
>
1616 void printDwarfEnum(StringRef Name
, IntTy Value
, Stringifier toString
,
1617 bool ShouldSkipZero
= true);
1618 void printEmissionKind(StringRef Name
, DICompileUnit::DebugEmissionKind EK
);
1619 void printNameTableKind(StringRef Name
,
1620 DICompileUnit::DebugNameTableKind NTK
);
1623 } // end anonymous namespace
1625 void MDFieldPrinter::printTag(const DINode
*N
) {
1626 Out
<< FS
<< "tag: ";
1627 auto Tag
= dwarf::TagString(N
->getTag());
1634 void MDFieldPrinter::printMacinfoType(const DIMacroNode
*N
) {
1635 Out
<< FS
<< "type: ";
1636 auto Type
= dwarf::MacinfoString(N
->getMacinfoType());
1640 Out
<< N
->getMacinfoType();
1643 void MDFieldPrinter::printChecksum(
1644 const DIFile::ChecksumInfo
<StringRef
> &Checksum
) {
1645 Out
<< FS
<< "checksumkind: " << Checksum
.getKindAsString();
1646 printString("checksum", Checksum
.Value
, /* ShouldSkipEmpty */ false);
1649 void MDFieldPrinter::printString(StringRef Name
, StringRef Value
,
1650 bool ShouldSkipEmpty
) {
1651 if (ShouldSkipEmpty
&& Value
.empty())
1654 Out
<< FS
<< Name
<< ": \"";
1655 printEscapedString(Value
, Out
);
1659 static void writeMetadataAsOperand(raw_ostream
&Out
, const Metadata
*MD
,
1660 TypePrinting
*TypePrinter
,
1661 SlotTracker
*Machine
,
1662 const Module
*Context
) {
1667 WriteAsOperandInternal(Out
, MD
, TypePrinter
, Machine
, Context
);
1670 void MDFieldPrinter::printMetadata(StringRef Name
, const Metadata
*MD
,
1671 bool ShouldSkipNull
) {
1672 if (ShouldSkipNull
&& !MD
)
1675 Out
<< FS
<< Name
<< ": ";
1676 writeMetadataAsOperand(Out
, MD
, TypePrinter
, Machine
, Context
);
1679 template <class IntTy
>
1680 void MDFieldPrinter::printInt(StringRef Name
, IntTy Int
, bool ShouldSkipZero
) {
1681 if (ShouldSkipZero
&& !Int
)
1684 Out
<< FS
<< Name
<< ": " << Int
;
1687 void MDFieldPrinter::printBool(StringRef Name
, bool Value
,
1688 Optional
<bool> Default
) {
1689 if (Default
&& Value
== *Default
)
1691 Out
<< FS
<< Name
<< ": " << (Value
? "true" : "false");
1694 void MDFieldPrinter::printDIFlags(StringRef Name
, DINode::DIFlags Flags
) {
1698 Out
<< FS
<< Name
<< ": ";
1700 SmallVector
<DINode::DIFlags
, 8> SplitFlags
;
1701 auto Extra
= DINode::splitFlags(Flags
, SplitFlags
);
1703 FieldSeparator
FlagsFS(" | ");
1704 for (auto F
: SplitFlags
) {
1705 auto StringF
= DINode::getFlagString(F
);
1706 assert(!StringF
.empty() && "Expected valid flag");
1707 Out
<< FlagsFS
<< StringF
;
1709 if (Extra
|| SplitFlags
.empty())
1710 Out
<< FlagsFS
<< Extra
;
1713 void MDFieldPrinter::printDISPFlags(StringRef Name
,
1714 DISubprogram::DISPFlags Flags
) {
1715 // Always print this field, because no flags in the IR at all will be
1716 // interpreted as old-style isDefinition: true.
1717 Out
<< FS
<< Name
<< ": ";
1724 SmallVector
<DISubprogram::DISPFlags
, 8> SplitFlags
;
1725 auto Extra
= DISubprogram::splitFlags(Flags
, SplitFlags
);
1727 FieldSeparator
FlagsFS(" | ");
1728 for (auto F
: SplitFlags
) {
1729 auto StringF
= DISubprogram::getFlagString(F
);
1730 assert(!StringF
.empty() && "Expected valid flag");
1731 Out
<< FlagsFS
<< StringF
;
1733 if (Extra
|| SplitFlags
.empty())
1734 Out
<< FlagsFS
<< Extra
;
1737 void MDFieldPrinter::printEmissionKind(StringRef Name
,
1738 DICompileUnit::DebugEmissionKind EK
) {
1739 Out
<< FS
<< Name
<< ": " << DICompileUnit::emissionKindString(EK
);
1742 void MDFieldPrinter::printNameTableKind(StringRef Name
,
1743 DICompileUnit::DebugNameTableKind NTK
) {
1744 if (NTK
== DICompileUnit::DebugNameTableKind::Default
)
1746 Out
<< FS
<< Name
<< ": " << DICompileUnit::nameTableKindString(NTK
);
1749 template <class IntTy
, class Stringifier
>
1750 void MDFieldPrinter::printDwarfEnum(StringRef Name
, IntTy Value
,
1751 Stringifier toString
, bool ShouldSkipZero
) {
1755 Out
<< FS
<< Name
<< ": ";
1756 auto S
= toString(Value
);
1763 static void writeGenericDINode(raw_ostream
&Out
, const GenericDINode
*N
,
1764 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1765 const Module
*Context
) {
1766 Out
<< "!GenericDINode(";
1767 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1768 Printer
.printTag(N
);
1769 Printer
.printString("header", N
->getHeader());
1770 if (N
->getNumDwarfOperands()) {
1771 Out
<< Printer
.FS
<< "operands: {";
1773 for (auto &I
: N
->dwarf_operands()) {
1775 writeMetadataAsOperand(Out
, I
, TypePrinter
, Machine
, Context
);
1782 static void writeDILocation(raw_ostream
&Out
, const DILocation
*DL
,
1783 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1784 const Module
*Context
) {
1785 Out
<< "!DILocation(";
1786 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1787 // Always output the line, since 0 is a relevant and important value for it.
1788 Printer
.printInt("line", DL
->getLine(), /* ShouldSkipZero */ false);
1789 Printer
.printInt("column", DL
->getColumn());
1790 Printer
.printMetadata("scope", DL
->getRawScope(), /* ShouldSkipNull */ false);
1791 Printer
.printMetadata("inlinedAt", DL
->getRawInlinedAt());
1792 Printer
.printBool("isImplicitCode", DL
->isImplicitCode(),
1793 /* Default */ false);
1797 static void writeDISubrange(raw_ostream
&Out
, const DISubrange
*N
,
1798 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1799 const Module
*Context
) {
1800 Out
<< "!DISubrange(";
1801 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1802 if (auto *CE
= N
->getCount().dyn_cast
<ConstantInt
*>())
1803 Printer
.printInt("count", CE
->getSExtValue(), /* ShouldSkipZero */ false);
1805 Printer
.printMetadata("count", N
->getCount().dyn_cast
<DIVariable
*>(),
1806 /*ShouldSkipNull */ false);
1807 Printer
.printInt("lowerBound", N
->getLowerBound());
1811 static void writeDIEnumerator(raw_ostream
&Out
, const DIEnumerator
*N
,
1812 TypePrinting
*, SlotTracker
*, const Module
*) {
1813 Out
<< "!DIEnumerator(";
1814 MDFieldPrinter
Printer(Out
);
1815 Printer
.printString("name", N
->getName(), /* ShouldSkipEmpty */ false);
1816 if (N
->isUnsigned()) {
1817 auto Value
= static_cast<uint64_t>(N
->getValue());
1818 Printer
.printInt("value", Value
, /* ShouldSkipZero */ false);
1819 Printer
.printBool("isUnsigned", true);
1821 Printer
.printInt("value", N
->getValue(), /* ShouldSkipZero */ false);
1826 static void writeDIBasicType(raw_ostream
&Out
, const DIBasicType
*N
,
1827 TypePrinting
*, SlotTracker
*, const Module
*) {
1828 Out
<< "!DIBasicType(";
1829 MDFieldPrinter
Printer(Out
);
1830 if (N
->getTag() != dwarf::DW_TAG_base_type
)
1831 Printer
.printTag(N
);
1832 Printer
.printString("name", N
->getName());
1833 Printer
.printInt("size", N
->getSizeInBits());
1834 Printer
.printInt("align", N
->getAlignInBits());
1835 Printer
.printDwarfEnum("encoding", N
->getEncoding(),
1836 dwarf::AttributeEncodingString
);
1837 Printer
.printDIFlags("flags", N
->getFlags());
1841 static void writeDIDerivedType(raw_ostream
&Out
, const DIDerivedType
*N
,
1842 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1843 const Module
*Context
) {
1844 Out
<< "!DIDerivedType(";
1845 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1846 Printer
.printTag(N
);
1847 Printer
.printString("name", N
->getName());
1848 Printer
.printMetadata("scope", N
->getRawScope());
1849 Printer
.printMetadata("file", N
->getRawFile());
1850 Printer
.printInt("line", N
->getLine());
1851 Printer
.printMetadata("baseType", N
->getRawBaseType(),
1852 /* ShouldSkipNull */ false);
1853 Printer
.printInt("size", N
->getSizeInBits());
1854 Printer
.printInt("align", N
->getAlignInBits());
1855 Printer
.printInt("offset", N
->getOffsetInBits());
1856 Printer
.printDIFlags("flags", N
->getFlags());
1857 Printer
.printMetadata("extraData", N
->getRawExtraData());
1858 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1859 Printer
.printInt("dwarfAddressSpace", *DWARFAddressSpace
,
1860 /* ShouldSkipZero */ false);
1864 static void writeDICompositeType(raw_ostream
&Out
, const DICompositeType
*N
,
1865 TypePrinting
*TypePrinter
,
1866 SlotTracker
*Machine
, const Module
*Context
) {
1867 Out
<< "!DICompositeType(";
1868 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1869 Printer
.printTag(N
);
1870 Printer
.printString("name", N
->getName());
1871 Printer
.printMetadata("scope", N
->getRawScope());
1872 Printer
.printMetadata("file", N
->getRawFile());
1873 Printer
.printInt("line", N
->getLine());
1874 Printer
.printMetadata("baseType", N
->getRawBaseType());
1875 Printer
.printInt("size", N
->getSizeInBits());
1876 Printer
.printInt("align", N
->getAlignInBits());
1877 Printer
.printInt("offset", N
->getOffsetInBits());
1878 Printer
.printDIFlags("flags", N
->getFlags());
1879 Printer
.printMetadata("elements", N
->getRawElements());
1880 Printer
.printDwarfEnum("runtimeLang", N
->getRuntimeLang(),
1881 dwarf::LanguageString
);
1882 Printer
.printMetadata("vtableHolder", N
->getRawVTableHolder());
1883 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
1884 Printer
.printString("identifier", N
->getIdentifier());
1885 Printer
.printMetadata("discriminator", N
->getRawDiscriminator());
1889 static void writeDISubroutineType(raw_ostream
&Out
, const DISubroutineType
*N
,
1890 TypePrinting
*TypePrinter
,
1891 SlotTracker
*Machine
, const Module
*Context
) {
1892 Out
<< "!DISubroutineType(";
1893 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1894 Printer
.printDIFlags("flags", N
->getFlags());
1895 Printer
.printDwarfEnum("cc", N
->getCC(), dwarf::ConventionString
);
1896 Printer
.printMetadata("types", N
->getRawTypeArray(),
1897 /* ShouldSkipNull */ false);
1901 static void writeDIFile(raw_ostream
&Out
, const DIFile
*N
, TypePrinting
*,
1902 SlotTracker
*, const Module
*) {
1904 MDFieldPrinter
Printer(Out
);
1905 Printer
.printString("filename", N
->getFilename(),
1906 /* ShouldSkipEmpty */ false);
1907 Printer
.printString("directory", N
->getDirectory(),
1908 /* ShouldSkipEmpty */ false);
1909 // Print all values for checksum together, or not at all.
1910 if (N
->getChecksum())
1911 Printer
.printChecksum(*N
->getChecksum());
1912 Printer
.printString("source", N
->getSource().getValueOr(StringRef()),
1913 /* ShouldSkipEmpty */ true);
1917 static void writeDICompileUnit(raw_ostream
&Out
, const DICompileUnit
*N
,
1918 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1919 const Module
*Context
) {
1920 Out
<< "!DICompileUnit(";
1921 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1922 Printer
.printDwarfEnum("language", N
->getSourceLanguage(),
1923 dwarf::LanguageString
, /* ShouldSkipZero */ false);
1924 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
1925 Printer
.printString("producer", N
->getProducer());
1926 Printer
.printBool("isOptimized", N
->isOptimized());
1927 Printer
.printString("flags", N
->getFlags());
1928 Printer
.printInt("runtimeVersion", N
->getRuntimeVersion(),
1929 /* ShouldSkipZero */ false);
1930 Printer
.printString("splitDebugFilename", N
->getSplitDebugFilename());
1931 Printer
.printEmissionKind("emissionKind", N
->getEmissionKind());
1932 Printer
.printMetadata("enums", N
->getRawEnumTypes());
1933 Printer
.printMetadata("retainedTypes", N
->getRawRetainedTypes());
1934 Printer
.printMetadata("globals", N
->getRawGlobalVariables());
1935 Printer
.printMetadata("imports", N
->getRawImportedEntities());
1936 Printer
.printMetadata("macros", N
->getRawMacros());
1937 Printer
.printInt("dwoId", N
->getDWOId());
1938 Printer
.printBool("splitDebugInlining", N
->getSplitDebugInlining(), true);
1939 Printer
.printBool("debugInfoForProfiling", N
->getDebugInfoForProfiling(),
1941 Printer
.printNameTableKind("nameTableKind", N
->getNameTableKind());
1942 Printer
.printBool("rangesBaseAddress", N
->getRangesBaseAddress(), false);
1946 static void writeDISubprogram(raw_ostream
&Out
, const DISubprogram
*N
,
1947 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1948 const Module
*Context
) {
1949 Out
<< "!DISubprogram(";
1950 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1951 Printer
.printString("name", N
->getName());
1952 Printer
.printString("linkageName", N
->getLinkageName());
1953 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1954 Printer
.printMetadata("file", N
->getRawFile());
1955 Printer
.printInt("line", N
->getLine());
1956 Printer
.printMetadata("type", N
->getRawType());
1957 Printer
.printInt("scopeLine", N
->getScopeLine());
1958 Printer
.printMetadata("containingType", N
->getRawContainingType());
1959 if (N
->getVirtuality() != dwarf::DW_VIRTUALITY_none
||
1960 N
->getVirtualIndex() != 0)
1961 Printer
.printInt("virtualIndex", N
->getVirtualIndex(), false);
1962 Printer
.printInt("thisAdjustment", N
->getThisAdjustment());
1963 Printer
.printDIFlags("flags", N
->getFlags());
1964 Printer
.printDISPFlags("spFlags", N
->getSPFlags());
1965 Printer
.printMetadata("unit", N
->getRawUnit());
1966 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
1967 Printer
.printMetadata("declaration", N
->getRawDeclaration());
1968 Printer
.printMetadata("retainedNodes", N
->getRawRetainedNodes());
1969 Printer
.printMetadata("thrownTypes", N
->getRawThrownTypes());
1973 static void writeDILexicalBlock(raw_ostream
&Out
, const DILexicalBlock
*N
,
1974 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
1975 const Module
*Context
) {
1976 Out
<< "!DILexicalBlock(";
1977 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1978 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1979 Printer
.printMetadata("file", N
->getRawFile());
1980 Printer
.printInt("line", N
->getLine());
1981 Printer
.printInt("column", N
->getColumn());
1985 static void writeDILexicalBlockFile(raw_ostream
&Out
,
1986 const DILexicalBlockFile
*N
,
1987 TypePrinting
*TypePrinter
,
1988 SlotTracker
*Machine
,
1989 const Module
*Context
) {
1990 Out
<< "!DILexicalBlockFile(";
1991 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
1992 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
1993 Printer
.printMetadata("file", N
->getRawFile());
1994 Printer
.printInt("discriminator", N
->getDiscriminator(),
1995 /* ShouldSkipZero */ false);
1999 static void writeDINamespace(raw_ostream
&Out
, const DINamespace
*N
,
2000 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2001 const Module
*Context
) {
2002 Out
<< "!DINamespace(";
2003 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2004 Printer
.printString("name", N
->getName());
2005 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2006 Printer
.printBool("exportSymbols", N
->getExportSymbols(), false);
2010 static void writeDICommonBlock(raw_ostream
&Out
, const DICommonBlock
*N
,
2011 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2012 const Module
*Context
) {
2013 Out
<< "!DICommonBlock(";
2014 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2015 Printer
.printMetadata("scope", N
->getRawScope(), false);
2016 Printer
.printMetadata("declaration", N
->getRawDecl(), false);
2017 Printer
.printString("name", N
->getName());
2018 Printer
.printMetadata("file", N
->getRawFile());
2019 Printer
.printInt("line", N
->getLineNo());
2023 static void writeDIMacro(raw_ostream
&Out
, const DIMacro
*N
,
2024 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2025 const Module
*Context
) {
2027 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2028 Printer
.printMacinfoType(N
);
2029 Printer
.printInt("line", N
->getLine());
2030 Printer
.printString("name", N
->getName());
2031 Printer
.printString("value", N
->getValue());
2035 static void writeDIMacroFile(raw_ostream
&Out
, const DIMacroFile
*N
,
2036 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2037 const Module
*Context
) {
2038 Out
<< "!DIMacroFile(";
2039 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2040 Printer
.printInt("line", N
->getLine());
2041 Printer
.printMetadata("file", N
->getRawFile(), /* ShouldSkipNull */ false);
2042 Printer
.printMetadata("nodes", N
->getRawElements());
2046 static void writeDIModule(raw_ostream
&Out
, const DIModule
*N
,
2047 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2048 const Module
*Context
) {
2049 Out
<< "!DIModule(";
2050 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2051 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2052 Printer
.printString("name", N
->getName());
2053 Printer
.printString("configMacros", N
->getConfigurationMacros());
2054 Printer
.printString("includePath", N
->getIncludePath());
2055 Printer
.printString("isysroot", N
->getISysRoot());
2060 static void writeDITemplateTypeParameter(raw_ostream
&Out
,
2061 const DITemplateTypeParameter
*N
,
2062 TypePrinting
*TypePrinter
,
2063 SlotTracker
*Machine
,
2064 const Module
*Context
) {
2065 Out
<< "!DITemplateTypeParameter(";
2066 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2067 Printer
.printString("name", N
->getName());
2068 Printer
.printMetadata("type", N
->getRawType(), /* ShouldSkipNull */ false);
2072 static void writeDITemplateValueParameter(raw_ostream
&Out
,
2073 const DITemplateValueParameter
*N
,
2074 TypePrinting
*TypePrinter
,
2075 SlotTracker
*Machine
,
2076 const Module
*Context
) {
2077 Out
<< "!DITemplateValueParameter(";
2078 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2079 if (N
->getTag() != dwarf::DW_TAG_template_value_parameter
)
2080 Printer
.printTag(N
);
2081 Printer
.printString("name", N
->getName());
2082 Printer
.printMetadata("type", N
->getRawType());
2083 Printer
.printMetadata("value", N
->getValue(), /* ShouldSkipNull */ false);
2087 static void writeDIGlobalVariable(raw_ostream
&Out
, const DIGlobalVariable
*N
,
2088 TypePrinting
*TypePrinter
,
2089 SlotTracker
*Machine
, const Module
*Context
) {
2090 Out
<< "!DIGlobalVariable(";
2091 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2092 Printer
.printString("name", N
->getName());
2093 Printer
.printString("linkageName", N
->getLinkageName());
2094 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2095 Printer
.printMetadata("file", N
->getRawFile());
2096 Printer
.printInt("line", N
->getLine());
2097 Printer
.printMetadata("type", N
->getRawType());
2098 Printer
.printBool("isLocal", N
->isLocalToUnit());
2099 Printer
.printBool("isDefinition", N
->isDefinition());
2100 Printer
.printMetadata("declaration", N
->getRawStaticDataMemberDeclaration());
2101 Printer
.printMetadata("templateParams", N
->getRawTemplateParams());
2102 Printer
.printInt("align", N
->getAlignInBits());
2106 static void writeDILocalVariable(raw_ostream
&Out
, const DILocalVariable
*N
,
2107 TypePrinting
*TypePrinter
,
2108 SlotTracker
*Machine
, const Module
*Context
) {
2109 Out
<< "!DILocalVariable(";
2110 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2111 Printer
.printString("name", N
->getName());
2112 Printer
.printInt("arg", N
->getArg());
2113 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2114 Printer
.printMetadata("file", N
->getRawFile());
2115 Printer
.printInt("line", N
->getLine());
2116 Printer
.printMetadata("type", N
->getRawType());
2117 Printer
.printDIFlags("flags", N
->getFlags());
2118 Printer
.printInt("align", N
->getAlignInBits());
2122 static void writeDILabel(raw_ostream
&Out
, const DILabel
*N
,
2123 TypePrinting
*TypePrinter
,
2124 SlotTracker
*Machine
, const Module
*Context
) {
2126 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2127 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2128 Printer
.printString("name", N
->getName());
2129 Printer
.printMetadata("file", N
->getRawFile());
2130 Printer
.printInt("line", N
->getLine());
2134 static void writeDIExpression(raw_ostream
&Out
, const DIExpression
*N
,
2135 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2136 const Module
*Context
) {
2137 Out
<< "!DIExpression(";
2140 for (auto I
= N
->expr_op_begin(), E
= N
->expr_op_end(); I
!= E
; ++I
) {
2141 auto OpStr
= dwarf::OperationEncodingString(I
->getOp());
2142 assert(!OpStr
.empty() && "Expected valid opcode");
2145 if (I
->getOp() == dwarf::DW_OP_LLVM_convert
) {
2146 Out
<< FS
<< I
->getArg(0);
2147 Out
<< FS
<< dwarf::AttributeEncodingString(I
->getArg(1));
2149 for (unsigned A
= 0, AE
= I
->getNumArgs(); A
!= AE
; ++A
)
2150 Out
<< FS
<< I
->getArg(A
);
2154 for (const auto &I
: N
->getElements())
2160 static void writeDIGlobalVariableExpression(raw_ostream
&Out
,
2161 const DIGlobalVariableExpression
*N
,
2162 TypePrinting
*TypePrinter
,
2163 SlotTracker
*Machine
,
2164 const Module
*Context
) {
2165 Out
<< "!DIGlobalVariableExpression(";
2166 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2167 Printer
.printMetadata("var", N
->getVariable());
2168 Printer
.printMetadata("expr", N
->getExpression());
2172 static void writeDIObjCProperty(raw_ostream
&Out
, const DIObjCProperty
*N
,
2173 TypePrinting
*TypePrinter
, SlotTracker
*Machine
,
2174 const Module
*Context
) {
2175 Out
<< "!DIObjCProperty(";
2176 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2177 Printer
.printString("name", N
->getName());
2178 Printer
.printMetadata("file", N
->getRawFile());
2179 Printer
.printInt("line", N
->getLine());
2180 Printer
.printString("setter", N
->getSetterName());
2181 Printer
.printString("getter", N
->getGetterName());
2182 Printer
.printInt("attributes", N
->getAttributes());
2183 Printer
.printMetadata("type", N
->getRawType());
2187 static void writeDIImportedEntity(raw_ostream
&Out
, const DIImportedEntity
*N
,
2188 TypePrinting
*TypePrinter
,
2189 SlotTracker
*Machine
, const Module
*Context
) {
2190 Out
<< "!DIImportedEntity(";
2191 MDFieldPrinter
Printer(Out
, TypePrinter
, Machine
, Context
);
2192 Printer
.printTag(N
);
2193 Printer
.printString("name", N
->getName());
2194 Printer
.printMetadata("scope", N
->getRawScope(), /* ShouldSkipNull */ false);
2195 Printer
.printMetadata("entity", N
->getRawEntity());
2196 Printer
.printMetadata("file", N
->getRawFile());
2197 Printer
.printInt("line", N
->getLine());
2201 static void WriteMDNodeBodyInternal(raw_ostream
&Out
, const MDNode
*Node
,
2202 TypePrinting
*TypePrinter
,
2203 SlotTracker
*Machine
,
2204 const Module
*Context
) {
2205 if (Node
->isDistinct())
2207 else if (Node
->isTemporary())
2208 Out
<< "<temporary!> "; // Handle broken code.
2210 switch (Node
->getMetadataID()) {
2212 llvm_unreachable("Expected uniquable MDNode");
2213 #define HANDLE_MDNODE_LEAF(CLASS) \
2214 case Metadata::CLASS##Kind: \
2215 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2217 #include "llvm/IR/Metadata.def"
2221 // Full implementation of printing a Value as an operand with support for
2222 // TypePrinting, etc.
2223 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
2224 TypePrinting
*TypePrinter
,
2225 SlotTracker
*Machine
,
2226 const Module
*Context
) {
2228 PrintLLVMName(Out
, V
);
2232 const Constant
*CV
= dyn_cast
<Constant
>(V
);
2233 if (CV
&& !isa
<GlobalValue
>(CV
)) {
2234 assert(TypePrinter
&& "Constants require TypePrinting!");
2235 WriteConstantInternal(Out
, CV
, *TypePrinter
, Machine
, Context
);
2239 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2241 if (IA
->hasSideEffects())
2242 Out
<< "sideeffect ";
2243 if (IA
->isAlignStack())
2244 Out
<< "alignstack ";
2245 // We don't emit the AD_ATT dialect as it's the assumed default.
2246 if (IA
->getDialect() == InlineAsm::AD_Intel
)
2247 Out
<< "inteldialect ";
2249 printEscapedString(IA
->getAsmString(), Out
);
2251 printEscapedString(IA
->getConstraintString(), Out
);
2256 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
)) {
2257 WriteAsOperandInternal(Out
, MD
->getMetadata(), TypePrinter
, Machine
,
2258 Context
, /* FromValue */ true);
2264 // If we have a SlotTracker, use it.
2266 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2267 Slot
= Machine
->getGlobalSlot(GV
);
2270 Slot
= Machine
->getLocalSlot(V
);
2272 // If the local value didn't succeed, then we may be referring to a value
2273 // from a different function. Translate it, as this can happen when using
2274 // address of blocks.
2276 if ((Machine
= createSlotTracker(V
))) {
2277 Slot
= Machine
->getLocalSlot(V
);
2281 } else if ((Machine
= createSlotTracker(V
))) {
2282 // Otherwise, create one to get the # and then destroy it.
2283 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
2284 Slot
= Machine
->getGlobalSlot(GV
);
2287 Slot
= Machine
->getLocalSlot(V
);
2296 Out
<< Prefix
<< Slot
;
2301 static void WriteAsOperandInternal(raw_ostream
&Out
, const Metadata
*MD
,
2302 TypePrinting
*TypePrinter
,
2303 SlotTracker
*Machine
, const Module
*Context
,
2305 // Write DIExpressions inline when used as a value. Improves readability of
2306 // debug info intrinsics.
2307 if (const DIExpression
*Expr
= dyn_cast
<DIExpression
>(MD
)) {
2308 writeDIExpression(Out
, Expr
, TypePrinter
, Machine
, Context
);
2312 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2313 std::unique_ptr
<SlotTracker
> MachineStorage
;
2315 MachineStorage
= std::make_unique
<SlotTracker
>(Context
);
2316 Machine
= MachineStorage
.get();
2318 int Slot
= Machine
->getMetadataSlot(N
);
2320 if (const DILocation
*Loc
= dyn_cast
<DILocation
>(N
)) {
2321 writeDILocation(Out
, Loc
, TypePrinter
, Machine
, Context
);
2324 // Give the pointer value instead of "badref", since this comes up all
2325 // the time when debugging.
2326 Out
<< "<" << N
<< ">";
2332 if (const MDString
*MDS
= dyn_cast
<MDString
>(MD
)) {
2334 printEscapedString(MDS
->getString(), Out
);
2339 auto *V
= cast
<ValueAsMetadata
>(MD
);
2340 assert(TypePrinter
&& "TypePrinter required for metadata values");
2341 assert((FromValue
|| !isa
<LocalAsMetadata
>(V
)) &&
2342 "Unexpected function-local metadata outside of value argument");
2344 TypePrinter
->print(V
->getValue()->getType(), Out
);
2346 WriteAsOperandInternal(Out
, V
->getValue(), TypePrinter
, Machine
, Context
);
2351 class AssemblyWriter
{
2352 formatted_raw_ostream
&Out
;
2353 const Module
*TheModule
= nullptr;
2354 const ModuleSummaryIndex
*TheIndex
= nullptr;
2355 std::unique_ptr
<SlotTracker
> SlotTrackerStorage
;
2356 SlotTracker
&Machine
;
2357 TypePrinting TypePrinter
;
2358 AssemblyAnnotationWriter
*AnnotationWriter
= nullptr;
2359 SetVector
<const Comdat
*> Comdats
;
2361 bool ShouldPreserveUseListOrder
;
2362 UseListOrderStack UseListOrders
;
2363 SmallVector
<StringRef
, 8> MDNames
;
2364 /// Synchronization scope names registered with LLVMContext.
2365 SmallVector
<StringRef
, 8> SSNs
;
2366 DenseMap
<const GlobalValueSummary
*, GlobalValue::GUID
> SummaryToGUIDMap
;
2369 /// Construct an AssemblyWriter with an external SlotTracker
2370 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
, const Module
*M
,
2371 AssemblyAnnotationWriter
*AAW
, bool IsForDebug
,
2372 bool ShouldPreserveUseListOrder
= false);
2374 AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2375 const ModuleSummaryIndex
*Index
, bool IsForDebug
);
2377 void printMDNodeBody(const MDNode
*MD
);
2378 void printNamedMDNode(const NamedMDNode
*NMD
);
2380 void printModule(const Module
*M
);
2382 void writeOperand(const Value
*Op
, bool PrintType
);
2383 void writeParamOperand(const Value
*Operand
, AttributeSet Attrs
);
2384 void writeOperandBundles(const CallBase
*Call
);
2385 void writeSyncScope(const LLVMContext
&Context
,
2386 SyncScope::ID SSID
);
2387 void writeAtomic(const LLVMContext
&Context
,
2388 AtomicOrdering Ordering
,
2389 SyncScope::ID SSID
);
2390 void writeAtomicCmpXchg(const LLVMContext
&Context
,
2391 AtomicOrdering SuccessOrdering
,
2392 AtomicOrdering FailureOrdering
,
2393 SyncScope::ID SSID
);
2395 void writeAllMDNodes();
2396 void writeMDNode(unsigned Slot
, const MDNode
*Node
);
2397 void writeAllAttributeGroups();
2399 void printTypeIdentities();
2400 void printGlobal(const GlobalVariable
*GV
);
2401 void printIndirectSymbol(const GlobalIndirectSymbol
*GIS
);
2402 void printComdat(const Comdat
*C
);
2403 void printFunction(const Function
*F
);
2404 void printArgument(const Argument
*FA
, AttributeSet Attrs
);
2405 void printBasicBlock(const BasicBlock
*BB
);
2406 void printInstructionLine(const Instruction
&I
);
2407 void printInstruction(const Instruction
&I
);
2409 void printUseListOrder(const UseListOrder
&Order
);
2410 void printUseLists(const Function
*F
);
2412 void printModuleSummaryIndex();
2413 void printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
);
2414 void printSummary(const GlobalValueSummary
&Summary
);
2415 void printAliasSummary(const AliasSummary
*AS
);
2416 void printGlobalVarSummary(const GlobalVarSummary
*GS
);
2417 void printFunctionSummary(const FunctionSummary
*FS
);
2418 void printTypeIdSummary(const TypeIdSummary
&TIS
);
2419 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo
&TI
);
2420 void printTypeTestResolution(const TypeTestResolution
&TTRes
);
2421 void printArgs(const std::vector
<uint64_t> &Args
);
2422 void printWPDRes(const WholeProgramDevirtResolution
&WPDRes
);
2423 void printTypeIdInfo(const FunctionSummary::TypeIdInfo
&TIDInfo
);
2424 void printVFuncId(const FunctionSummary::VFuncId VFId
);
2426 printNonConstVCalls(const std::vector
<FunctionSummary::VFuncId
> VCallList
,
2429 printConstVCalls(const std::vector
<FunctionSummary::ConstVCall
> VCallList
,
2433 /// Print out metadata attachments.
2434 void printMetadataAttachments(
2435 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
2436 StringRef Separator
);
2438 // printInfoComment - Print a little comment after the instruction indicating
2439 // which slot it occupies.
2440 void printInfoComment(const Value
&V
);
2442 // printGCRelocateComment - print comment after call to the gc.relocate
2443 // intrinsic indicating base and derived pointer names.
2444 void printGCRelocateComment(const GCRelocateInst
&Relocate
);
2447 } // end anonymous namespace
2449 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2450 const Module
*M
, AssemblyAnnotationWriter
*AAW
,
2451 bool IsForDebug
, bool ShouldPreserveUseListOrder
)
2452 : Out(o
), TheModule(M
), Machine(Mac
), TypePrinter(M
), AnnotationWriter(AAW
),
2453 IsForDebug(IsForDebug
),
2454 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder
) {
2457 for (const GlobalObject
&GO
: TheModule
->global_objects())
2458 if (const Comdat
*C
= GO
.getComdat())
2462 AssemblyWriter::AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
2463 const ModuleSummaryIndex
*Index
, bool IsForDebug
)
2464 : Out(o
), TheIndex(Index
), Machine(Mac
), TypePrinter(/*Module=*/nullptr),
2465 IsForDebug(IsForDebug
), ShouldPreserveUseListOrder(false) {}
2467 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
2469 Out
<< "<null operand!>";
2473 TypePrinter
.print(Operand
->getType(), Out
);
2476 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
2479 void AssemblyWriter::writeSyncScope(const LLVMContext
&Context
,
2480 SyncScope::ID SSID
) {
2482 case SyncScope::System
: {
2487 Context
.getSyncScopeNames(SSNs
);
2489 Out
<< " syncscope(\"";
2490 printEscapedString(SSNs
[SSID
], Out
);
2497 void AssemblyWriter::writeAtomic(const LLVMContext
&Context
,
2498 AtomicOrdering Ordering
,
2499 SyncScope::ID SSID
) {
2500 if (Ordering
== AtomicOrdering::NotAtomic
)
2503 writeSyncScope(Context
, SSID
);
2504 Out
<< " " << toIRString(Ordering
);
2507 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext
&Context
,
2508 AtomicOrdering SuccessOrdering
,
2509 AtomicOrdering FailureOrdering
,
2510 SyncScope::ID SSID
) {
2511 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
2512 FailureOrdering
!= AtomicOrdering::NotAtomic
);
2514 writeSyncScope(Context
, SSID
);
2515 Out
<< " " << toIRString(SuccessOrdering
);
2516 Out
<< " " << toIRString(FailureOrdering
);
2519 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
2520 AttributeSet Attrs
) {
2522 Out
<< "<null operand!>";
2527 TypePrinter
.print(Operand
->getType(), Out
);
2528 // Print parameter attributes list
2529 if (Attrs
.hasAttributes())
2530 Out
<< ' ' << Attrs
.getAsString();
2532 // Print the operand
2533 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
2536 void AssemblyWriter::writeOperandBundles(const CallBase
*Call
) {
2537 if (!Call
->hasOperandBundles())
2542 bool FirstBundle
= true;
2543 for (unsigned i
= 0, e
= Call
->getNumOperandBundles(); i
!= e
; ++i
) {
2544 OperandBundleUse BU
= Call
->getOperandBundleAt(i
);
2548 FirstBundle
= false;
2551 printEscapedString(BU
.getTagName(), Out
);
2556 bool FirstInput
= true;
2557 for (const auto &Input
: BU
.Inputs
) {
2562 TypePrinter
.print(Input
->getType(), Out
);
2564 WriteAsOperandInternal(Out
, Input
, &TypePrinter
, &Machine
, TheModule
);
2573 void AssemblyWriter::printModule(const Module
*M
) {
2574 Machine
.initializeIfNeeded();
2576 if (ShouldPreserveUseListOrder
)
2577 UseListOrders
= predictUseListOrder(M
);
2579 if (!M
->getModuleIdentifier().empty() &&
2580 // Don't print the ID if it will start a new line (which would
2581 // require a comment char before it).
2582 M
->getModuleIdentifier().find('\n') == std::string::npos
)
2583 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
2585 if (!M
->getSourceFileName().empty()) {
2586 Out
<< "source_filename = \"";
2587 printEscapedString(M
->getSourceFileName(), Out
);
2591 const std::string
&DL
= M
->getDataLayoutStr();
2593 Out
<< "target datalayout = \"" << DL
<< "\"\n";
2594 if (!M
->getTargetTriple().empty())
2595 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
2597 if (!M
->getModuleInlineAsm().empty()) {
2600 // Split the string into lines, to make it easier to read the .ll file.
2601 StringRef Asm
= M
->getModuleInlineAsm();
2604 std::tie(Front
, Asm
) = Asm
.split('\n');
2606 // We found a newline, print the portion of the asm string from the
2607 // last newline up to this newline.
2608 Out
<< "module asm \"";
2609 printEscapedString(Front
, Out
);
2611 } while (!Asm
.empty());
2614 printTypeIdentities();
2616 // Output all comdats.
2617 if (!Comdats
.empty())
2619 for (const Comdat
*C
: Comdats
) {
2621 if (C
!= Comdats
.back())
2625 // Output all globals.
2626 if (!M
->global_empty()) Out
<< '\n';
2627 for (const GlobalVariable
&GV
: M
->globals()) {
2628 printGlobal(&GV
); Out
<< '\n';
2631 // Output all aliases.
2632 if (!M
->alias_empty()) Out
<< "\n";
2633 for (const GlobalAlias
&GA
: M
->aliases())
2634 printIndirectSymbol(&GA
);
2636 // Output all ifuncs.
2637 if (!M
->ifunc_empty()) Out
<< "\n";
2638 for (const GlobalIFunc
&GI
: M
->ifuncs())
2639 printIndirectSymbol(&GI
);
2641 // Output global use-lists.
2642 printUseLists(nullptr);
2644 // Output all of the functions.
2645 for (const Function
&F
: *M
)
2647 assert(UseListOrders
.empty() && "All use-lists should have been consumed");
2649 // Output all attribute groups.
2650 if (!Machine
.as_empty()) {
2652 writeAllAttributeGroups();
2655 // Output named metadata.
2656 if (!M
->named_metadata_empty()) Out
<< '\n';
2658 for (const NamedMDNode
&Node
: M
->named_metadata())
2659 printNamedMDNode(&Node
);
2662 if (!Machine
.mdn_empty()) {
2668 void AssemblyWriter::printModuleSummaryIndex() {
2670 Machine
.initializeIndexIfNeeded();
2674 // Print module path entries. To print in order, add paths to a vector
2675 // indexed by module slot.
2676 std::vector
<std::pair
<std::string
, ModuleHash
>> moduleVec
;
2677 std::string RegularLTOModuleName
= "[Regular LTO]";
2678 moduleVec
.resize(TheIndex
->modulePaths().size());
2679 for (auto &ModPath
: TheIndex
->modulePaths())
2680 moduleVec
[Machine
.getModulePathSlot(ModPath
.first())] = std::make_pair(
2681 // A module id of -1 is a special entry for a regular LTO module created
2682 // during the thin link.
2683 ModPath
.second
.first
== -1u ? RegularLTOModuleName
2684 : (std::string
)ModPath
.first(),
2685 ModPath
.second
.second
);
2688 for (auto &ModPair
: moduleVec
) {
2689 Out
<< "^" << i
++ << " = module: (";
2691 printEscapedString(ModPair
.first
, Out
);
2692 Out
<< "\", hash: (";
2694 for (auto Hash
: ModPair
.second
)
2699 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2700 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2701 for (auto &GlobalList
: *TheIndex
) {
2702 auto GUID
= GlobalList
.first
;
2703 for (auto &Summary
: GlobalList
.second
.SummaryList
)
2704 SummaryToGUIDMap
[Summary
.get()] = GUID
;
2707 // Print the global value summary entries.
2708 for (auto &GlobalList
: *TheIndex
) {
2709 auto GUID
= GlobalList
.first
;
2710 auto VI
= TheIndex
->getValueInfo(GlobalList
);
2711 printSummaryInfo(Machine
.getGUIDSlot(GUID
), VI
);
2714 // Print the TypeIdMap entries.
2715 for (auto TidIter
= TheIndex
->typeIds().begin();
2716 TidIter
!= TheIndex
->typeIds().end(); TidIter
++) {
2717 Out
<< "^" << Machine
.getTypeIdSlot(TidIter
->second
.first
)
2718 << " = typeid: (name: \"" << TidIter
->second
.first
<< "\"";
2719 printTypeIdSummary(TidIter
->second
.second
);
2720 Out
<< ") ; guid = " << TidIter
->first
<< "\n";
2723 // Print the TypeIdCompatibleVtableMap entries.
2724 for (auto &TId
: TheIndex
->typeIdCompatibleVtableMap()) {
2725 auto GUID
= GlobalValue::getGUID(TId
.first
);
2726 Out
<< "^" << Machine
.getGUIDSlot(GUID
)
2727 << " = typeidCompatibleVTable: (name: \"" << TId
.first
<< "\"";
2728 printTypeIdCompatibleVtableSummary(TId
.second
);
2729 Out
<< ") ; guid = " << GUID
<< "\n";
2734 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K
) {
2736 case WholeProgramDevirtResolution::Indir
:
2738 case WholeProgramDevirtResolution::SingleImpl
:
2739 return "singleImpl";
2740 case WholeProgramDevirtResolution::BranchFunnel
:
2741 return "branchFunnel";
2743 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2746 static const char *getWholeProgDevirtResByArgKindName(
2747 WholeProgramDevirtResolution::ByArg::Kind K
) {
2749 case WholeProgramDevirtResolution::ByArg::Indir
:
2751 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2752 return "uniformRetVal";
2753 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
:
2754 return "uniqueRetVal";
2755 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
:
2756 return "virtualConstProp";
2758 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2761 static const char *getTTResKindName(TypeTestResolution::Kind K
) {
2763 case TypeTestResolution::Unsat
:
2765 case TypeTestResolution::ByteArray
:
2767 case TypeTestResolution::Inline
:
2769 case TypeTestResolution::Single
:
2771 case TypeTestResolution::AllOnes
:
2774 llvm_unreachable("invalid TypeTestResolution kind");
2777 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution
&TTRes
) {
2778 Out
<< "typeTestRes: (kind: " << getTTResKindName(TTRes
.TheKind
)
2779 << ", sizeM1BitWidth: " << TTRes
.SizeM1BitWidth
;
2781 // The following fields are only used if the target does not support the use
2782 // of absolute symbols to store constants. Print only if non-zero.
2783 if (TTRes
.AlignLog2
)
2784 Out
<< ", alignLog2: " << TTRes
.AlignLog2
;
2786 Out
<< ", sizeM1: " << TTRes
.SizeM1
;
2788 // BitMask is uint8_t which causes it to print the corresponding char.
2789 Out
<< ", bitMask: " << (unsigned)TTRes
.BitMask
;
2790 if (TTRes
.InlineBits
)
2791 Out
<< ", inlineBits: " << TTRes
.InlineBits
;
2796 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary
&TIS
) {
2797 Out
<< ", summary: (";
2798 printTypeTestResolution(TIS
.TTRes
);
2799 if (!TIS
.WPDRes
.empty()) {
2800 Out
<< ", wpdResolutions: (";
2802 for (auto &WPDRes
: TIS
.WPDRes
) {
2804 Out
<< "(offset: " << WPDRes
.first
<< ", ";
2805 printWPDRes(WPDRes
.second
);
2813 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2814 const TypeIdCompatibleVtableInfo
&TI
) {
2815 Out
<< ", summary: (";
2817 for (auto &P
: TI
) {
2819 Out
<< "(offset: " << P
.AddressPointOffset
<< ", ";
2820 Out
<< "^" << Machine
.getGUIDSlot(P
.VTableVI
.getGUID());
2826 void AssemblyWriter::printArgs(const std::vector
<uint64_t> &Args
) {
2829 for (auto arg
: Args
) {
2836 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution
&WPDRes
) {
2837 Out
<< "wpdRes: (kind: ";
2838 Out
<< getWholeProgDevirtResKindName(WPDRes
.TheKind
);
2840 if (WPDRes
.TheKind
== WholeProgramDevirtResolution::SingleImpl
)
2841 Out
<< ", singleImplName: \"" << WPDRes
.SingleImplName
<< "\"";
2843 if (!WPDRes
.ResByArg
.empty()) {
2844 Out
<< ", resByArg: (";
2846 for (auto &ResByArg
: WPDRes
.ResByArg
) {
2848 printArgs(ResByArg
.first
);
2849 Out
<< ", byArg: (kind: ";
2850 Out
<< getWholeProgDevirtResByArgKindName(ResByArg
.second
.TheKind
);
2851 if (ResByArg
.second
.TheKind
==
2852 WholeProgramDevirtResolution::ByArg::UniformRetVal
||
2853 ResByArg
.second
.TheKind
==
2854 WholeProgramDevirtResolution::ByArg::UniqueRetVal
)
2855 Out
<< ", info: " << ResByArg
.second
.Info
;
2857 // The following fields are only used if the target does not support the
2858 // use of absolute symbols to store constants. Print only if non-zero.
2859 if (ResByArg
.second
.Byte
|| ResByArg
.second
.Bit
)
2860 Out
<< ", byte: " << ResByArg
.second
.Byte
2861 << ", bit: " << ResByArg
.second
.Bit
;
2870 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK
) {
2872 case GlobalValueSummary::AliasKind
:
2874 case GlobalValueSummary::FunctionKind
:
2876 case GlobalValueSummary::GlobalVarKind
:
2879 llvm_unreachable("invalid summary kind");
2882 void AssemblyWriter::printAliasSummary(const AliasSummary
*AS
) {
2883 Out
<< ", aliasee: ";
2884 // The indexes emitted for distributed backends may not include the
2885 // aliasee summary (only if it is being imported directly). Handle
2886 // that case by just emitting "null" as the aliasee.
2887 if (AS
->hasAliasee())
2888 Out
<< "^" << Machine
.getGUIDSlot(SummaryToGUIDMap
[&AS
->getAliasee()]);
2893 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary
*GS
) {
2894 Out
<< ", varFlags: (readonly: " << GS
->VarFlags
.MaybeReadOnly
<< ", "
2895 << "writeonly: " << GS
->VarFlags
.MaybeWriteOnly
<< ")";
2897 auto VTableFuncs
= GS
->vTableFuncs();
2898 if (!VTableFuncs
.empty()) {
2899 Out
<< ", vTableFuncs: (";
2901 for (auto &P
: VTableFuncs
) {
2903 Out
<< "(virtFunc: ^" << Machine
.getGUIDSlot(P
.FuncVI
.getGUID())
2904 << ", offset: " << P
.VTableOffset
;
2911 static std::string
getLinkageName(GlobalValue::LinkageTypes LT
) {
2913 case GlobalValue::ExternalLinkage
:
2915 case GlobalValue::PrivateLinkage
:
2917 case GlobalValue::InternalLinkage
:
2919 case GlobalValue::LinkOnceAnyLinkage
:
2921 case GlobalValue::LinkOnceODRLinkage
:
2922 return "linkonce_odr";
2923 case GlobalValue::WeakAnyLinkage
:
2925 case GlobalValue::WeakODRLinkage
:
2927 case GlobalValue::CommonLinkage
:
2929 case GlobalValue::AppendingLinkage
:
2931 case GlobalValue::ExternalWeakLinkage
:
2932 return "extern_weak";
2933 case GlobalValue::AvailableExternallyLinkage
:
2934 return "available_externally";
2936 llvm_unreachable("invalid linkage");
2939 // When printing the linkage types in IR where the ExternalLinkage is
2940 // not printed, and other linkage types are expected to be printed with
2941 // a space after the name.
2942 static std::string
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT
) {
2943 if (LT
== GlobalValue::ExternalLinkage
)
2945 return getLinkageName(LT
) + " ";
2948 void AssemblyWriter::printFunctionSummary(const FunctionSummary
*FS
) {
2949 Out
<< ", insts: " << FS
->instCount();
2951 FunctionSummary::FFlags FFlags
= FS
->fflags();
2952 if (FFlags
.ReadNone
| FFlags
.ReadOnly
| FFlags
.NoRecurse
|
2953 FFlags
.ReturnDoesNotAlias
) {
2954 Out
<< ", funcFlags: (";
2955 Out
<< "readNone: " << FFlags
.ReadNone
;
2956 Out
<< ", readOnly: " << FFlags
.ReadOnly
;
2957 Out
<< ", noRecurse: " << FFlags
.NoRecurse
;
2958 Out
<< ", returnDoesNotAlias: " << FFlags
.ReturnDoesNotAlias
;
2959 Out
<< ", noInline: " << FFlags
.NoInline
;
2962 if (!FS
->calls().empty()) {
2963 Out
<< ", calls: (";
2965 for (auto &Call
: FS
->calls()) {
2967 Out
<< "(callee: ^" << Machine
.getGUIDSlot(Call
.first
.getGUID());
2968 if (Call
.second
.getHotness() != CalleeInfo::HotnessType::Unknown
)
2969 Out
<< ", hotness: " << getHotnessName(Call
.second
.getHotness());
2970 else if (Call
.second
.RelBlockFreq
)
2971 Out
<< ", relbf: " << Call
.second
.RelBlockFreq
;
2977 if (const auto *TIdInfo
= FS
->getTypeIdInfo())
2978 printTypeIdInfo(*TIdInfo
);
2981 void AssemblyWriter::printTypeIdInfo(
2982 const FunctionSummary::TypeIdInfo
&TIDInfo
) {
2983 Out
<< ", typeIdInfo: (";
2984 FieldSeparator TIDFS
;
2985 if (!TIDInfo
.TypeTests
.empty()) {
2987 Out
<< "typeTests: (";
2989 for (auto &GUID
: TIDInfo
.TypeTests
) {
2990 auto TidIter
= TheIndex
->typeIds().equal_range(GUID
);
2991 if (TidIter
.first
== TidIter
.second
) {
2996 // Print all type id that correspond to this GUID.
2997 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
2999 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
3006 if (!TIDInfo
.TypeTestAssumeVCalls
.empty()) {
3008 printNonConstVCalls(TIDInfo
.TypeTestAssumeVCalls
, "typeTestAssumeVCalls");
3010 if (!TIDInfo
.TypeCheckedLoadVCalls
.empty()) {
3012 printNonConstVCalls(TIDInfo
.TypeCheckedLoadVCalls
, "typeCheckedLoadVCalls");
3014 if (!TIDInfo
.TypeTestAssumeConstVCalls
.empty()) {
3016 printConstVCalls(TIDInfo
.TypeTestAssumeConstVCalls
,
3017 "typeTestAssumeConstVCalls");
3019 if (!TIDInfo
.TypeCheckedLoadConstVCalls
.empty()) {
3021 printConstVCalls(TIDInfo
.TypeCheckedLoadConstVCalls
,
3022 "typeCheckedLoadConstVCalls");
3027 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId
) {
3028 auto TidIter
= TheIndex
->typeIds().equal_range(VFId
.GUID
);
3029 if (TidIter
.first
== TidIter
.second
) {
3030 Out
<< "vFuncId: (";
3031 Out
<< "guid: " << VFId
.GUID
;
3032 Out
<< ", offset: " << VFId
.Offset
;
3036 // Print all type id that correspond to this GUID.
3038 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
3040 Out
<< "vFuncId: (";
3041 auto Slot
= Machine
.getTypeIdSlot(It
->second
.first
);
3044 Out
<< ", offset: " << VFId
.Offset
;
3049 void AssemblyWriter::printNonConstVCalls(
3050 const std::vector
<FunctionSummary::VFuncId
> VCallList
, const char *Tag
) {
3051 Out
<< Tag
<< ": (";
3053 for (auto &VFuncId
: VCallList
) {
3055 printVFuncId(VFuncId
);
3060 void AssemblyWriter::printConstVCalls(
3061 const std::vector
<FunctionSummary::ConstVCall
> VCallList
, const char *Tag
) {
3062 Out
<< Tag
<< ": (";
3064 for (auto &ConstVCall
: VCallList
) {
3067 printVFuncId(ConstVCall
.VFunc
);
3068 if (!ConstVCall
.Args
.empty()) {
3070 printArgs(ConstVCall
.Args
);
3077 void AssemblyWriter::printSummary(const GlobalValueSummary
&Summary
) {
3078 GlobalValueSummary::GVFlags GVFlags
= Summary
.flags();
3079 GlobalValue::LinkageTypes LT
= (GlobalValue::LinkageTypes
)GVFlags
.Linkage
;
3080 Out
<< getSummaryKindName(Summary
.getSummaryKind()) << ": ";
3081 Out
<< "(module: ^" << Machine
.getModulePathSlot(Summary
.modulePath())
3083 Out
<< "linkage: " << getLinkageName(LT
);
3084 Out
<< ", notEligibleToImport: " << GVFlags
.NotEligibleToImport
;
3085 Out
<< ", live: " << GVFlags
.Live
;
3086 Out
<< ", dsoLocal: " << GVFlags
.DSOLocal
;
3087 Out
<< ", canAutoHide: " << GVFlags
.CanAutoHide
;
3090 if (Summary
.getSummaryKind() == GlobalValueSummary::AliasKind
)
3091 printAliasSummary(cast
<AliasSummary
>(&Summary
));
3092 else if (Summary
.getSummaryKind() == GlobalValueSummary::FunctionKind
)
3093 printFunctionSummary(cast
<FunctionSummary
>(&Summary
));
3095 printGlobalVarSummary(cast
<GlobalVarSummary
>(&Summary
));
3097 auto RefList
= Summary
.refs();
3098 if (!RefList
.empty()) {
3101 for (auto &Ref
: RefList
) {
3103 if (Ref
.isReadOnly())
3105 else if (Ref
.isWriteOnly())
3106 Out
<< "writeonly ";
3107 Out
<< "^" << Machine
.getGUIDSlot(Ref
.getGUID());
3115 void AssemblyWriter::printSummaryInfo(unsigned Slot
, const ValueInfo
&VI
) {
3116 Out
<< "^" << Slot
<< " = gv: (";
3117 if (!VI
.name().empty())
3118 Out
<< "name: \"" << VI
.name() << "\"";
3120 Out
<< "guid: " << VI
.getGUID();
3121 if (!VI
.getSummaryList().empty()) {
3122 Out
<< ", summaries: (";
3124 for (auto &Summary
: VI
.getSummaryList()) {
3126 printSummary(*Summary
);
3131 if (!VI
.name().empty())
3132 Out
<< " ; guid = " << VI
.getGUID();
3136 static void printMetadataIdentifier(StringRef Name
,
3137 formatted_raw_ostream
&Out
) {
3139 Out
<< "<empty name> ";
3141 if (isalpha(static_cast<unsigned char>(Name
[0])) || Name
[0] == '-' ||
3142 Name
[0] == '$' || Name
[0] == '.' || Name
[0] == '_')
3145 Out
<< '\\' << hexdigit(Name
[0] >> 4) << hexdigit(Name
[0] & 0x0F);
3146 for (unsigned i
= 1, e
= Name
.size(); i
!= e
; ++i
) {
3147 unsigned char C
= Name
[i
];
3148 if (isalnum(static_cast<unsigned char>(C
)) || C
== '-' || C
== '$' ||
3149 C
== '.' || C
== '_')
3152 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
3157 void AssemblyWriter::printNamedMDNode(const NamedMDNode
*NMD
) {
3159 printMetadataIdentifier(NMD
->getName(), Out
);
3161 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
3165 // Write DIExpressions inline.
3166 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3167 MDNode
*Op
= NMD
->getOperand(i
);
3168 if (auto *Expr
= dyn_cast
<DIExpression
>(Op
)) {
3169 writeDIExpression(Out
, Expr
, nullptr, nullptr, nullptr);
3173 int Slot
= Machine
.getMetadataSlot(Op
);
3182 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
3183 formatted_raw_ostream
&Out
) {
3185 case GlobalValue::DefaultVisibility
: break;
3186 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
3187 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
3191 static void PrintDSOLocation(const GlobalValue
&GV
,
3192 formatted_raw_ostream
&Out
) {
3193 // GVs with local linkage or non default visibility are implicitly dso_local,
3194 // so we don't print it.
3195 bool Implicit
= GV
.hasLocalLinkage() ||
3196 (!GV
.hasExternalWeakLinkage() && !GV
.hasDefaultVisibility());
3197 if (GV
.isDSOLocal() && !Implicit
)
3198 Out
<< "dso_local ";
3201 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT
,
3202 formatted_raw_ostream
&Out
) {
3204 case GlobalValue::DefaultStorageClass
: break;
3205 case GlobalValue::DLLImportStorageClass
: Out
<< "dllimport "; break;
3206 case GlobalValue::DLLExportStorageClass
: Out
<< "dllexport "; break;
3210 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM
,
3211 formatted_raw_ostream
&Out
) {
3213 case GlobalVariable::NotThreadLocal
:
3215 case GlobalVariable::GeneralDynamicTLSModel
:
3216 Out
<< "thread_local ";
3218 case GlobalVariable::LocalDynamicTLSModel
:
3219 Out
<< "thread_local(localdynamic) ";
3221 case GlobalVariable::InitialExecTLSModel
:
3222 Out
<< "thread_local(initialexec) ";
3224 case GlobalVariable::LocalExecTLSModel
:
3225 Out
<< "thread_local(localexec) ";
3230 static StringRef
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA
) {
3232 case GlobalVariable::UnnamedAddr::None
:
3234 case GlobalVariable::UnnamedAddr::Local
:
3235 return "local_unnamed_addr";
3236 case GlobalVariable::UnnamedAddr::Global
:
3237 return "unnamed_addr";
3239 llvm_unreachable("Unknown UnnamedAddr");
3242 static void maybePrintComdat(formatted_raw_ostream
&Out
,
3243 const GlobalObject
&GO
) {
3244 const Comdat
*C
= GO
.getComdat();
3248 if (isa
<GlobalVariable
>(GO
))
3252 if (GO
.getName() == C
->getName())
3256 PrintLLVMName(Out
, C
->getName(), ComdatPrefix
);
3260 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
3261 if (GV
->isMaterializable())
3262 Out
<< "; Materializable\n";
3264 WriteAsOperandInternal(Out
, GV
, &TypePrinter
, &Machine
, GV
->getParent());
3267 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
3270 Out
<< getLinkageNameWithSpace(GV
->getLinkage());
3271 PrintDSOLocation(*GV
, Out
);
3272 PrintVisibility(GV
->getVisibility(), Out
);
3273 PrintDLLStorageClass(GV
->getDLLStorageClass(), Out
);
3274 PrintThreadLocalModel(GV
->getThreadLocalMode(), Out
);
3275 StringRef UA
= getUnnamedAddrEncoding(GV
->getUnnamedAddr());
3279 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
3280 Out
<< "addrspace(" << AddressSpace
<< ") ";
3281 if (GV
->isExternallyInitialized()) Out
<< "externally_initialized ";
3282 Out
<< (GV
->isConstant() ? "constant " : "global ");
3283 TypePrinter
.print(GV
->getValueType(), Out
);
3285 if (GV
->hasInitializer()) {
3287 writeOperand(GV
->getInitializer(), false);
3290 if (GV
->hasSection()) {
3291 Out
<< ", section \"";
3292 printEscapedString(GV
->getSection(), Out
);
3295 if (GV
->hasPartition()) {
3296 Out
<< ", partition \"";
3297 printEscapedString(GV
->getPartition(), Out
);
3301 maybePrintComdat(Out
, *GV
);
3302 if (GV
->getAlignment())
3303 Out
<< ", align " << GV
->getAlignment();
3305 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3306 GV
->getAllMetadata(MDs
);
3307 printMetadataAttachments(MDs
, ", ");
3309 auto Attrs
= GV
->getAttributes();
3310 if (Attrs
.hasAttributes())
3311 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
);
3313 printInfoComment(*GV
);
3316 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol
*GIS
) {
3317 if (GIS
->isMaterializable())
3318 Out
<< "; Materializable\n";
3320 WriteAsOperandInternal(Out
, GIS
, &TypePrinter
, &Machine
, GIS
->getParent());
3323 Out
<< getLinkageNameWithSpace(GIS
->getLinkage());
3324 PrintDSOLocation(*GIS
, Out
);
3325 PrintVisibility(GIS
->getVisibility(), Out
);
3326 PrintDLLStorageClass(GIS
->getDLLStorageClass(), Out
);
3327 PrintThreadLocalModel(GIS
->getThreadLocalMode(), Out
);
3328 StringRef UA
= getUnnamedAddrEncoding(GIS
->getUnnamedAddr());
3332 if (isa
<GlobalAlias
>(GIS
))
3334 else if (isa
<GlobalIFunc
>(GIS
))
3337 llvm_unreachable("Not an alias or ifunc!");
3339 TypePrinter
.print(GIS
->getValueType(), Out
);
3343 const Constant
*IS
= GIS
->getIndirectSymbol();
3346 TypePrinter
.print(GIS
->getType(), Out
);
3347 Out
<< " <<NULL ALIASEE>>";
3349 writeOperand(IS
, !isa
<ConstantExpr
>(IS
));
3352 if (GIS
->hasPartition()) {
3353 Out
<< ", partition \"";
3354 printEscapedString(GIS
->getPartition(), Out
);
3358 printInfoComment(*GIS
);
3362 void AssemblyWriter::printComdat(const Comdat
*C
) {
3366 void AssemblyWriter::printTypeIdentities() {
3367 if (TypePrinter
.empty())
3372 // Emit all numbered types.
3373 auto &NumberedTypes
= TypePrinter
.getNumberedTypes();
3374 for (unsigned I
= 0, E
= NumberedTypes
.size(); I
!= E
; ++I
) {
3375 Out
<< '%' << I
<< " = type ";
3377 // Make sure we print out at least one level of the type structure, so
3378 // that we do not get %2 = type %2
3379 TypePrinter
.printStructBody(NumberedTypes
[I
], Out
);
3383 auto &NamedTypes
= TypePrinter
.getNamedTypes();
3384 for (unsigned I
= 0, E
= NamedTypes
.size(); I
!= E
; ++I
) {
3385 PrintLLVMName(Out
, NamedTypes
[I
]->getName(), LocalPrefix
);
3388 // Make sure we print out at least one level of the type structure, so
3389 // that we do not get %FILE = type %FILE
3390 TypePrinter
.printStructBody(NamedTypes
[I
], Out
);
3395 /// printFunction - Print all aspects of a function.
3396 void AssemblyWriter::printFunction(const Function
*F
) {
3397 // Print out the return type and name.
3400 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
3402 if (F
->isMaterializable())
3403 Out
<< "; Materializable\n";
3405 const AttributeList
&Attrs
= F
->getAttributes();
3406 if (Attrs
.hasAttributes(AttributeList::FunctionIndex
)) {
3407 AttributeSet AS
= Attrs
.getFnAttributes();
3408 std::string AttrStr
;
3410 for (const Attribute
&Attr
: AS
) {
3411 if (!Attr
.isStringAttribute()) {
3412 if (!AttrStr
.empty()) AttrStr
+= ' ';
3413 AttrStr
+= Attr
.getAsString();
3417 if (!AttrStr
.empty())
3418 Out
<< "; Function Attrs: " << AttrStr
<< '\n';
3421 Machine
.incorporateFunction(F
);
3423 if (F
->isDeclaration()) {
3425 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3426 F
->getAllMetadata(MDs
);
3427 printMetadataAttachments(MDs
, " ");
3432 Out
<< getLinkageNameWithSpace(F
->getLinkage());
3433 PrintDSOLocation(*F
, Out
);
3434 PrintVisibility(F
->getVisibility(), Out
);
3435 PrintDLLStorageClass(F
->getDLLStorageClass(), Out
);
3437 // Print the calling convention.
3438 if (F
->getCallingConv() != CallingConv::C
) {
3439 PrintCallingConv(F
->getCallingConv(), Out
);
3443 FunctionType
*FT
= F
->getFunctionType();
3444 if (Attrs
.hasAttributes(AttributeList::ReturnIndex
))
3445 Out
<< Attrs
.getAsString(AttributeList::ReturnIndex
) << ' ';
3446 TypePrinter
.print(F
->getReturnType(), Out
);
3448 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
, F
->getParent());
3451 // Loop over the arguments, printing them...
3452 if (F
->isDeclaration() && !IsForDebug
) {
3453 // We're only interested in the type here - don't print argument names.
3454 for (unsigned I
= 0, E
= FT
->getNumParams(); I
!= E
; ++I
) {
3455 // Insert commas as we go... the first arg doesn't get a comma
3459 TypePrinter
.print(FT
->getParamType(I
), Out
);
3461 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(I
);
3462 if (ArgAttrs
.hasAttributes())
3463 Out
<< ' ' << ArgAttrs
.getAsString();
3466 // The arguments are meaningful here, print them in detail.
3467 for (const Argument
&Arg
: F
->args()) {
3468 // Insert commas as we go... the first arg doesn't get a comma
3469 if (Arg
.getArgNo() != 0)
3471 printArgument(&Arg
, Attrs
.getParamAttributes(Arg
.getArgNo()));
3475 // Finish printing arguments...
3476 if (FT
->isVarArg()) {
3477 if (FT
->getNumParams()) Out
<< ", ";
3478 Out
<< "..."; // Output varargs portion of signature!
3481 StringRef UA
= getUnnamedAddrEncoding(F
->getUnnamedAddr());
3484 // We print the function address space if it is non-zero or if we are writing
3485 // a module with a non-zero program address space or if there is no valid
3486 // Module* so that the file can be parsed without the datalayout string.
3487 const Module
*Mod
= F
->getParent();
3488 if (F
->getAddressSpace() != 0 || !Mod
||
3489 Mod
->getDataLayout().getProgramAddressSpace() != 0)
3490 Out
<< " addrspace(" << F
->getAddressSpace() << ")";
3491 if (Attrs
.hasAttributes(AttributeList::FunctionIndex
))
3492 Out
<< " #" << Machine
.getAttributeGroupSlot(Attrs
.getFnAttributes());
3493 if (F
->hasSection()) {
3494 Out
<< " section \"";
3495 printEscapedString(F
->getSection(), Out
);
3498 if (F
->hasPartition()) {
3499 Out
<< " partition \"";
3500 printEscapedString(F
->getPartition(), Out
);
3503 maybePrintComdat(Out
, *F
);
3504 if (F
->getAlignment())
3505 Out
<< " align " << F
->getAlignment();
3507 Out
<< " gc \"" << F
->getGC() << '"';
3508 if (F
->hasPrefixData()) {
3510 writeOperand(F
->getPrefixData(), true);
3512 if (F
->hasPrologueData()) {
3513 Out
<< " prologue ";
3514 writeOperand(F
->getPrologueData(), true);
3516 if (F
->hasPersonalityFn()) {
3517 Out
<< " personality ";
3518 writeOperand(F
->getPersonalityFn(), /*PrintType=*/true);
3521 if (F
->isDeclaration()) {
3524 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
3525 F
->getAllMetadata(MDs
);
3526 printMetadataAttachments(MDs
, " ");
3529 // Output all of the function's basic blocks.
3530 for (const BasicBlock
&BB
: *F
)
3531 printBasicBlock(&BB
);
3533 // Output the function's use-lists.
3539 Machine
.purgeFunction();
3542 /// printArgument - This member is called for every argument that is passed into
3543 /// the function. Simply print it out
3544 void AssemblyWriter::printArgument(const Argument
*Arg
, AttributeSet Attrs
) {
3546 TypePrinter
.print(Arg
->getType(), Out
);
3548 // Output parameter attributes list
3549 if (Attrs
.hasAttributes())
3550 Out
<< ' ' << Attrs
.getAsString();
3552 // Output name, if available...
3553 if (Arg
->hasName()) {
3555 PrintLLVMName(Out
, Arg
);
3557 int Slot
= Machine
.getLocalSlot(Arg
);
3558 assert(Slot
!= -1 && "expect argument in function here");
3559 Out
<< " %" << Slot
;
3563 /// printBasicBlock - This member is called for each basic block in a method.
3564 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
3565 bool IsEntryBlock
= BB
== &BB
->getParent()->getEntryBlock();
3566 if (BB
->hasName()) { // Print out the label if it exists...
3568 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
3570 } else if (!IsEntryBlock
) {
3572 int Slot
= Machine
.getLocalSlot(BB
);
3579 if (!BB
->getParent()) {
3580 Out
.PadToColumn(50);
3581 Out
<< "; Error: Block without parent!";
3582 } else if (!IsEntryBlock
) {
3583 // Output predecessors for the block.
3584 Out
.PadToColumn(50);
3586 const_pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
3589 Out
<< " No predecessors!";
3592 writeOperand(*PI
, false);
3593 for (++PI
; PI
!= PE
; ++PI
) {
3595 writeOperand(*PI
, false);
3602 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
3604 // Output all of the instructions in the basic block...
3605 for (const Instruction
&I
: *BB
) {
3606 printInstructionLine(I
);
3609 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
3612 /// printInstructionLine - Print an instruction and a newline character.
3613 void AssemblyWriter::printInstructionLine(const Instruction
&I
) {
3614 printInstruction(I
);
3618 /// printGCRelocateComment - print comment after call to the gc.relocate
3619 /// intrinsic indicating base and derived pointer names.
3620 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst
&Relocate
) {
3622 writeOperand(Relocate
.getBasePtr(), false);
3624 writeOperand(Relocate
.getDerivedPtr(), false);
3628 /// printInfoComment - Print a little comment after the instruction indicating
3629 /// which slot it occupies.
3630 void AssemblyWriter::printInfoComment(const Value
&V
) {
3631 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(&V
))
3632 printGCRelocateComment(*Relocate
);
3634 if (AnnotationWriter
)
3635 AnnotationWriter
->printInfoComment(V
, Out
);
3638 static void maybePrintCallAddrSpace(const Value
*Operand
, const Instruction
*I
,
3640 // We print the address space of the call if it is non-zero.
3641 unsigned CallAddrSpace
= Operand
->getType()->getPointerAddressSpace();
3642 bool PrintAddrSpace
= CallAddrSpace
!= 0;
3643 if (!PrintAddrSpace
) {
3644 const Module
*Mod
= getModuleFromVal(I
);
3645 // We also print it if it is zero but not equal to the program address space
3646 // or if we can't find a valid Module* to make it possible to parse
3647 // the resulting file even without a datalayout string.
3648 if (!Mod
|| Mod
->getDataLayout().getProgramAddressSpace() != 0)
3649 PrintAddrSpace
= true;
3652 Out
<< " addrspace(" << CallAddrSpace
<< ")";
3655 // This member is called for each Instruction in a function..
3656 void AssemblyWriter::printInstruction(const Instruction
&I
) {
3657 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
3659 // Print out indentation for an instruction.
3662 // Print out name if it exists...
3664 PrintLLVMName(Out
, &I
);
3666 } else if (!I
.getType()->isVoidTy()) {
3667 // Print out the def slot taken.
3668 int SlotNum
= Machine
.getLocalSlot(&I
);
3670 Out
<< "<badref> = ";
3672 Out
<< '%' << SlotNum
<< " = ";
3675 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
3676 if (CI
->isMustTailCall())
3678 else if (CI
->isTailCall())
3680 else if (CI
->isNoTailCall())
3684 // Print out the opcode...
3685 Out
<< I
.getOpcodeName();
3687 // If this is an atomic load or store, print out the atomic marker.
3688 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isAtomic()) ||
3689 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isAtomic()))
3692 if (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isWeak())
3695 // If this is a volatile operation, print out the volatile marker.
3696 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
3697 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile()) ||
3698 (isa
<AtomicCmpXchgInst
>(I
) && cast
<AtomicCmpXchgInst
>(I
).isVolatile()) ||
3699 (isa
<AtomicRMWInst
>(I
) && cast
<AtomicRMWInst
>(I
).isVolatile()))
3702 // Print out optimization information.
3703 WriteOptimizationInfo(Out
, &I
);
3705 // Print out the compare instruction predicates
3706 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
3707 Out
<< ' ' << CmpInst::getPredicateName(CI
->getPredicate());
3709 // Print out the atomicrmw operation
3710 if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
))
3711 Out
<< ' ' << AtomicRMWInst::getOperationName(RMWI
->getOperation());
3713 // Print out the type of the operands...
3714 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : nullptr;
3716 // Special case conditional branches to swizzle the condition out to the front
3717 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
3718 const BranchInst
&BI(cast
<BranchInst
>(I
));
3720 writeOperand(BI
.getCondition(), true);
3722 writeOperand(BI
.getSuccessor(0), true);
3724 writeOperand(BI
.getSuccessor(1), true);
3726 } else if (isa
<SwitchInst
>(I
)) {
3727 const SwitchInst
& SI(cast
<SwitchInst
>(I
));
3728 // Special case switch instruction to get formatting nice and correct.
3730 writeOperand(SI
.getCondition(), true);
3732 writeOperand(SI
.getDefaultDest(), true);
3734 for (auto Case
: SI
.cases()) {
3736 writeOperand(Case
.getCaseValue(), true);
3738 writeOperand(Case
.getCaseSuccessor(), true);
3741 } else if (isa
<IndirectBrInst
>(I
)) {
3742 // Special case indirectbr instruction to get formatting nice and correct.
3744 writeOperand(Operand
, true);
3747 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
3750 writeOperand(I
.getOperand(i
), true);
3753 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
3755 TypePrinter
.print(I
.getType(), Out
);
3758 for (unsigned op
= 0, Eop
= PN
->getNumIncomingValues(); op
< Eop
; ++op
) {
3759 if (op
) Out
<< ", ";
3761 writeOperand(PN
->getIncomingValue(op
), false); Out
<< ", ";
3762 writeOperand(PN
->getIncomingBlock(op
), false); Out
<< " ]";
3764 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
3766 writeOperand(I
.getOperand(0), true);
3767 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
3769 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
3771 writeOperand(I
.getOperand(0), true); Out
<< ", ";
3772 writeOperand(I
.getOperand(1), true);
3773 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
3775 } else if (const LandingPadInst
*LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3777 TypePrinter
.print(I
.getType(), Out
);
3778 if (LPI
->isCleanup() || LPI
->getNumClauses() != 0)
3781 if (LPI
->isCleanup())
3784 for (unsigned i
= 0, e
= LPI
->getNumClauses(); i
!= e
; ++i
) {
3785 if (i
!= 0 || LPI
->isCleanup()) Out
<< "\n";
3786 if (LPI
->isCatch(i
))
3791 writeOperand(LPI
->getClause(i
), true);
3793 } else if (const auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(&I
)) {
3795 writeOperand(CatchSwitch
->getParentPad(), /*PrintType=*/false);
3798 for (const BasicBlock
*PadBB
: CatchSwitch
->handlers()) {
3801 writeOperand(PadBB
, /*PrintType=*/true);
3805 if (const BasicBlock
*UnwindDest
= CatchSwitch
->getUnwindDest())
3806 writeOperand(UnwindDest
, /*PrintType=*/true);
3809 } else if (const auto *FPI
= dyn_cast
<FuncletPadInst
>(&I
)) {
3811 writeOperand(FPI
->getParentPad(), /*PrintType=*/false);
3813 for (unsigned Op
= 0, NumOps
= FPI
->getNumArgOperands(); Op
< NumOps
;
3817 writeOperand(FPI
->getArgOperand(Op
), /*PrintType=*/true);
3820 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
3822 } else if (const auto *CRI
= dyn_cast
<CatchReturnInst
>(&I
)) {
3824 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
3827 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
3828 } else if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(&I
)) {
3830 writeOperand(CRI
->getOperand(0), /*PrintType=*/false);
3833 if (CRI
->hasUnwindDest())
3834 writeOperand(CRI
->getOperand(1), /*PrintType=*/true);
3837 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
3838 // Print the calling convention being used.
3839 if (CI
->getCallingConv() != CallingConv::C
) {
3841 PrintCallingConv(CI
->getCallingConv(), Out
);
3844 Operand
= CI
->getCalledValue();
3845 FunctionType
*FTy
= CI
->getFunctionType();
3846 Type
*RetTy
= FTy
->getReturnType();
3847 const AttributeList
&PAL
= CI
->getAttributes();
3849 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3850 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3852 // Only print addrspace(N) if necessary:
3853 maybePrintCallAddrSpace(Operand
, &I
, Out
);
3855 // If possible, print out the short form of the call instruction. We can
3856 // only do this if the first argument is a pointer to a nonvararg function,
3857 // and if the return type is not a pointer to a function.
3860 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3862 writeOperand(Operand
, false);
3864 for (unsigned op
= 0, Eop
= CI
->getNumArgOperands(); op
< Eop
; ++op
) {
3867 writeParamOperand(CI
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3870 // Emit an ellipsis if this is a musttail call in a vararg function. This
3871 // is only to aid readability, musttail calls forward varargs by default.
3872 if (CI
->isMustTailCall() && CI
->getParent() &&
3873 CI
->getParent()->getParent() &&
3874 CI
->getParent()->getParent()->isVarArg())
3878 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3879 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3881 writeOperandBundles(CI
);
3882 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
3883 Operand
= II
->getCalledValue();
3884 FunctionType
*FTy
= II
->getFunctionType();
3885 Type
*RetTy
= FTy
->getReturnType();
3886 const AttributeList
&PAL
= II
->getAttributes();
3888 // Print the calling convention being used.
3889 if (II
->getCallingConv() != CallingConv::C
) {
3891 PrintCallingConv(II
->getCallingConv(), Out
);
3894 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3895 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3897 // Only print addrspace(N) if necessary:
3898 maybePrintCallAddrSpace(Operand
, &I
, Out
);
3900 // If possible, print out the short form of the invoke instruction. We can
3901 // only do this if the first argument is a pointer to a nonvararg function,
3902 // and if the return type is not a pointer to a function.
3905 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3907 writeOperand(Operand
, false);
3909 for (unsigned op
= 0, Eop
= II
->getNumArgOperands(); op
< Eop
; ++op
) {
3912 writeParamOperand(II
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3916 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3917 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3919 writeOperandBundles(II
);
3922 writeOperand(II
->getNormalDest(), true);
3924 writeOperand(II
->getUnwindDest(), true);
3925 } else if (const CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(&I
)) {
3926 Operand
= CBI
->getCalledValue();
3927 FunctionType
*FTy
= CBI
->getFunctionType();
3928 Type
*RetTy
= FTy
->getReturnType();
3929 const AttributeList
&PAL
= CBI
->getAttributes();
3931 // Print the calling convention being used.
3932 if (CBI
->getCallingConv() != CallingConv::C
) {
3934 PrintCallingConv(CBI
->getCallingConv(), Out
);
3937 if (PAL
.hasAttributes(AttributeList::ReturnIndex
))
3938 Out
<< ' ' << PAL
.getAsString(AttributeList::ReturnIndex
);
3940 // If possible, print out the short form of the callbr instruction. We can
3941 // only do this if the first argument is a pointer to a nonvararg function,
3942 // and if the return type is not a pointer to a function.
3945 TypePrinter
.print(FTy
->isVarArg() ? FTy
: RetTy
, Out
);
3947 writeOperand(Operand
, false);
3949 for (unsigned op
= 0, Eop
= CBI
->getNumArgOperands(); op
< Eop
; ++op
) {
3952 writeParamOperand(CBI
->getArgOperand(op
), PAL
.getParamAttributes(op
));
3956 if (PAL
.hasAttributes(AttributeList::FunctionIndex
))
3957 Out
<< " #" << Machine
.getAttributeGroupSlot(PAL
.getFnAttributes());
3959 writeOperandBundles(CBI
);
3962 writeOperand(CBI
->getDefaultDest(), true);
3964 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
) {
3967 writeOperand(CBI
->getIndirectDest(i
), true);
3970 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(&I
)) {
3972 if (AI
->isUsedWithInAlloca())
3974 if (AI
->isSwiftError())
3975 Out
<< "swifterror ";
3976 TypePrinter
.print(AI
->getAllocatedType(), Out
);
3978 // Explicitly write the array size if the code is broken, if it's an array
3979 // allocation, or if the type is not canonical for scalar allocations. The
3980 // latter case prevents the type from mutating when round-tripping through
3982 if (!AI
->getArraySize() || AI
->isArrayAllocation() ||
3983 !AI
->getArraySize()->getType()->isIntegerTy(32)) {
3985 writeOperand(AI
->getArraySize(), true);
3987 if (AI
->getAlignment()) {
3988 Out
<< ", align " << AI
->getAlignment();
3991 unsigned AddrSpace
= AI
->getType()->getAddressSpace();
3992 if (AddrSpace
!= 0) {
3993 Out
<< ", addrspace(" << AddrSpace
<< ')';
3995 } else if (isa
<CastInst
>(I
)) {
3998 writeOperand(Operand
, true); // Work with broken code
4001 TypePrinter
.print(I
.getType(), Out
);
4002 } else if (isa
<VAArgInst
>(I
)) {
4005 writeOperand(Operand
, true); // Work with broken code
4008 TypePrinter
.print(I
.getType(), Out
);
4009 } else if (Operand
) { // Print the normal way.
4010 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
4012 TypePrinter
.print(GEP
->getSourceElementType(), Out
);
4014 } else if (const auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
4016 TypePrinter
.print(LI
->getType(), Out
);
4020 // PrintAllTypes - Instructions who have operands of all the same type
4021 // omit the type from all but the first operand. If the instruction has
4022 // different type operands (for example br), then they are all printed.
4023 bool PrintAllTypes
= false;
4024 Type
*TheType
= Operand
->getType();
4026 // Select, Store and ShuffleVector always print all types.
4027 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
4028 || isa
<ReturnInst
>(I
)) {
4029 PrintAllTypes
= true;
4031 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
4032 Operand
= I
.getOperand(i
);
4033 // note that Operand shouldn't be null, but the test helps make dump()
4034 // more tolerant of malformed IR
4035 if (Operand
&& Operand
->getType() != TheType
) {
4036 PrintAllTypes
= true; // We have differing types! Print them all!
4042 if (!PrintAllTypes
) {
4044 TypePrinter
.print(TheType
, Out
);
4048 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
4050 writeOperand(I
.getOperand(i
), PrintAllTypes
);
4054 // Print atomic ordering/alignment for memory operations
4055 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
4057 writeAtomic(LI
->getContext(), LI
->getOrdering(), LI
->getSyncScopeID());
4058 if (LI
->getAlignment())
4059 Out
<< ", align " << LI
->getAlignment();
4060 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
4062 writeAtomic(SI
->getContext(), SI
->getOrdering(), SI
->getSyncScopeID());
4063 if (SI
->getAlignment())
4064 Out
<< ", align " << SI
->getAlignment();
4065 } else if (const AtomicCmpXchgInst
*CXI
= dyn_cast
<AtomicCmpXchgInst
>(&I
)) {
4066 writeAtomicCmpXchg(CXI
->getContext(), CXI
->getSuccessOrdering(),
4067 CXI
->getFailureOrdering(), CXI
->getSyncScopeID());
4068 } else if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(&I
)) {
4069 writeAtomic(RMWI
->getContext(), RMWI
->getOrdering(),
4070 RMWI
->getSyncScopeID());
4071 } else if (const FenceInst
*FI
= dyn_cast
<FenceInst
>(&I
)) {
4072 writeAtomic(FI
->getContext(), FI
->getOrdering(), FI
->getSyncScopeID());
4075 // Print Metadata info.
4076 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> InstMD
;
4077 I
.getAllMetadata(InstMD
);
4078 printMetadataAttachments(InstMD
, ", ");
4080 // Print a nice comment.
4081 printInfoComment(I
);
4084 void AssemblyWriter::printMetadataAttachments(
4085 const SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
,
4086 StringRef Separator
) {
4090 if (MDNames
.empty())
4091 MDs
[0].second
->getContext().getMDKindNames(MDNames
);
4093 for (const auto &I
: MDs
) {
4094 unsigned Kind
= I
.first
;
4096 if (Kind
< MDNames
.size()) {
4098 printMetadataIdentifier(MDNames
[Kind
], Out
);
4100 Out
<< "!<unknown kind #" << Kind
<< ">";
4102 WriteAsOperandInternal(Out
, I
.second
, &TypePrinter
, &Machine
, TheModule
);
4106 void AssemblyWriter::writeMDNode(unsigned Slot
, const MDNode
*Node
) {
4107 Out
<< '!' << Slot
<< " = ";
4108 printMDNodeBody(Node
);
4112 void AssemblyWriter::writeAllMDNodes() {
4113 SmallVector
<const MDNode
*, 16> Nodes
;
4114 Nodes
.resize(Machine
.mdn_size());
4115 for (SlotTracker::mdn_iterator I
= Machine
.mdn_begin(), E
= Machine
.mdn_end();
4117 Nodes
[I
->second
] = cast
<MDNode
>(I
->first
);
4119 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
4120 writeMDNode(i
, Nodes
[i
]);
4124 void AssemblyWriter::printMDNodeBody(const MDNode
*Node
) {
4125 WriteMDNodeBodyInternal(Out
, Node
, &TypePrinter
, &Machine
, TheModule
);
4128 void AssemblyWriter::writeAllAttributeGroups() {
4129 std::vector
<std::pair
<AttributeSet
, unsigned>> asVec
;
4130 asVec
.resize(Machine
.as_size());
4132 for (SlotTracker::as_iterator I
= Machine
.as_begin(), E
= Machine
.as_end();
4134 asVec
[I
->second
] = *I
;
4136 for (const auto &I
: asVec
)
4137 Out
<< "attributes #" << I
.second
<< " = { "
4138 << I
.first
.getAsString(true) << " }\n";
4141 void AssemblyWriter::printUseListOrder(const UseListOrder
&Order
) {
4142 bool IsInFunction
= Machine
.getFunction();
4146 Out
<< "uselistorder";
4147 if (const BasicBlock
*BB
=
4148 IsInFunction
? nullptr : dyn_cast
<BasicBlock
>(Order
.V
)) {
4150 writeOperand(BB
->getParent(), false);
4152 writeOperand(BB
, false);
4155 writeOperand(Order
.V
, true);
4159 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
4160 Out
<< Order
.Shuffle
[0];
4161 for (unsigned I
= 1, E
= Order
.Shuffle
.size(); I
!= E
; ++I
)
4162 Out
<< ", " << Order
.Shuffle
[I
];
4166 void AssemblyWriter::printUseLists(const Function
*F
) {
4168 [&]() { return !UseListOrders
.empty() && UseListOrders
.back().F
== F
; };
4173 Out
<< "\n; uselistorder directives\n";
4175 printUseListOrder(UseListOrders
.back());
4176 UseListOrders
.pop_back();
4180 //===----------------------------------------------------------------------===//
4181 // External Interface declarations
4182 //===----------------------------------------------------------------------===//
4184 void Function::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4185 bool ShouldPreserveUseListOrder
,
4186 bool IsForDebug
) const {
4187 SlotTracker
SlotTable(this->getParent());
4188 formatted_raw_ostream
OS(ROS
);
4189 AssemblyWriter
W(OS
, SlotTable
, this->getParent(), AAW
,
4191 ShouldPreserveUseListOrder
);
4192 W
.printFunction(this);
4195 void Module::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
,
4196 bool ShouldPreserveUseListOrder
, bool IsForDebug
) const {
4197 SlotTracker
SlotTable(this);
4198 formatted_raw_ostream
OS(ROS
);
4199 AssemblyWriter
W(OS
, SlotTable
, this, AAW
, IsForDebug
,
4200 ShouldPreserveUseListOrder
);
4201 W
.printModule(this);
4204 void NamedMDNode::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4205 SlotTracker
SlotTable(getParent());
4206 formatted_raw_ostream
OS(ROS
);
4207 AssemblyWriter
W(OS
, SlotTable
, getParent(), nullptr, IsForDebug
);
4208 W
.printNamedMDNode(this);
4211 void NamedMDNode::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4212 bool IsForDebug
) const {
4213 Optional
<SlotTracker
> LocalST
;
4214 SlotTracker
*SlotTable
;
4215 if (auto *ST
= MST
.getMachine())
4218 LocalST
.emplace(getParent());
4219 SlotTable
= &*LocalST
;
4222 formatted_raw_ostream
OS(ROS
);
4223 AssemblyWriter
W(OS
, *SlotTable
, getParent(), nullptr, IsForDebug
);
4224 W
.printNamedMDNode(this);
4227 void Comdat::print(raw_ostream
&ROS
, bool /*IsForDebug*/) const {
4228 PrintLLVMName(ROS
, getName(), ComdatPrefix
);
4229 ROS
<< " = comdat ";
4231 switch (getSelectionKind()) {
4235 case Comdat::ExactMatch
:
4236 ROS
<< "exactmatch";
4238 case Comdat::Largest
:
4241 case Comdat::NoDuplicates
:
4242 ROS
<< "noduplicates";
4244 case Comdat::SameSize
:
4252 void Type::print(raw_ostream
&OS
, bool /*IsForDebug*/, bool NoDetails
) const {
4254 TP
.print(const_cast<Type
*>(this), OS
);
4259 // If the type is a named struct type, print the body as well.
4260 if (StructType
*STy
= dyn_cast
<StructType
>(const_cast<Type
*>(this)))
4261 if (!STy
->isLiteral()) {
4263 TP
.printStructBody(STy
, OS
);
4267 static bool isReferencingMDNode(const Instruction
&I
) {
4268 if (const auto *CI
= dyn_cast
<CallInst
>(&I
))
4269 if (Function
*F
= CI
->getCalledFunction())
4270 if (F
->isIntrinsic())
4271 for (auto &Op
: I
.operands())
4272 if (auto *V
= dyn_cast_or_null
<MetadataAsValue
>(Op
))
4273 if (isa
<MDNode
>(V
->getMetadata()))
4278 void Value::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4279 bool ShouldInitializeAllMetadata
= false;
4280 if (auto *I
= dyn_cast
<Instruction
>(this))
4281 ShouldInitializeAllMetadata
= isReferencingMDNode(*I
);
4282 else if (isa
<Function
>(this) || isa
<MetadataAsValue
>(this))
4283 ShouldInitializeAllMetadata
= true;
4285 ModuleSlotTracker
MST(getModuleFromVal(this), ShouldInitializeAllMetadata
);
4286 print(ROS
, MST
, IsForDebug
);
4289 void Value::print(raw_ostream
&ROS
, ModuleSlotTracker
&MST
,
4290 bool IsForDebug
) const {
4291 formatted_raw_ostream
OS(ROS
);
4292 SlotTracker
EmptySlotTable(static_cast<const Module
*>(nullptr));
4293 SlotTracker
&SlotTable
=
4294 MST
.getMachine() ? *MST
.getMachine() : EmptySlotTable
;
4295 auto incorporateFunction
= [&](const Function
*F
) {
4297 MST
.incorporateFunction(*F
);
4300 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
4301 incorporateFunction(I
->getParent() ? I
->getParent()->getParent() : nullptr);
4302 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(I
), nullptr, IsForDebug
);
4303 W
.printInstruction(*I
);
4304 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
4305 incorporateFunction(BB
->getParent());
4306 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(BB
), nullptr, IsForDebug
);
4307 W
.printBasicBlock(BB
);
4308 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
4309 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), nullptr, IsForDebug
);
4310 if (const GlobalVariable
*V
= dyn_cast
<GlobalVariable
>(GV
))
4312 else if (const Function
*F
= dyn_cast
<Function
>(GV
))
4315 W
.printIndirectSymbol(cast
<GlobalIndirectSymbol
>(GV
));
4316 } else if (const MetadataAsValue
*V
= dyn_cast
<MetadataAsValue
>(this)) {
4317 V
->getMetadata()->print(ROS
, MST
, getModuleFromVal(V
));
4318 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
4319 TypePrinting TypePrinter
;
4320 TypePrinter
.print(C
->getType(), OS
);
4322 WriteConstantInternal(OS
, C
, TypePrinter
, MST
.getMachine(), nullptr);
4323 } else if (isa
<InlineAsm
>(this) || isa
<Argument
>(this)) {
4324 this->printAsOperand(OS
, /* PrintType */ true, MST
);
4326 llvm_unreachable("Unknown value to print out!");
4330 /// Print without a type, skipping the TypePrinting object.
4332 /// \return \c true iff printing was successful.
4333 static bool printWithoutType(const Value
&V
, raw_ostream
&O
,
4334 SlotTracker
*Machine
, const Module
*M
) {
4335 if (V
.hasName() || isa
<GlobalValue
>(V
) ||
4336 (!isa
<Constant
>(V
) && !isa
<MetadataAsValue
>(V
))) {
4337 WriteAsOperandInternal(O
, &V
, nullptr, Machine
, M
);
4343 static void printAsOperandImpl(const Value
&V
, raw_ostream
&O
, bool PrintType
,
4344 ModuleSlotTracker
&MST
) {
4345 TypePrinting
TypePrinter(MST
.getModule());
4347 TypePrinter
.print(V
.getType(), O
);
4351 WriteAsOperandInternal(O
, &V
, &TypePrinter
, MST
.getMachine(),
4355 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4356 const Module
*M
) const {
4358 M
= getModuleFromVal(this);
4361 if (printWithoutType(*this, O
, nullptr, M
))
4364 SlotTracker
Machine(
4365 M
, /* ShouldInitializeAllMetadata */ isa
<MetadataAsValue
>(this));
4366 ModuleSlotTracker
MST(Machine
, M
);
4367 printAsOperandImpl(*this, O
, PrintType
, MST
);
4370 void Value::printAsOperand(raw_ostream
&O
, bool PrintType
,
4371 ModuleSlotTracker
&MST
) const {
4373 if (printWithoutType(*this, O
, MST
.getMachine(), MST
.getModule()))
4376 printAsOperandImpl(*this, O
, PrintType
, MST
);
4379 static void printMetadataImpl(raw_ostream
&ROS
, const Metadata
&MD
,
4380 ModuleSlotTracker
&MST
, const Module
*M
,
4381 bool OnlyAsOperand
) {
4382 formatted_raw_ostream
OS(ROS
);
4384 TypePrinting
TypePrinter(M
);
4386 WriteAsOperandInternal(OS
, &MD
, &TypePrinter
, MST
.getMachine(), M
,
4387 /* FromValue */ true);
4389 auto *N
= dyn_cast
<MDNode
>(&MD
);
4390 if (OnlyAsOperand
|| !N
|| isa
<DIExpression
>(MD
))
4394 WriteMDNodeBodyInternal(OS
, N
, &TypePrinter
, MST
.getMachine(), M
);
4397 void Metadata::printAsOperand(raw_ostream
&OS
, const Module
*M
) const {
4398 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4399 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4402 void Metadata::printAsOperand(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4403 const Module
*M
) const {
4404 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ true);
4407 void Metadata::print(raw_ostream
&OS
, const Module
*M
,
4408 bool /*IsForDebug*/) const {
4409 ModuleSlotTracker
MST(M
, isa
<MDNode
>(this));
4410 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4413 void Metadata::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
4414 const Module
*M
, bool /*IsForDebug*/) const {
4415 printMetadataImpl(OS
, *this, MST
, M
, /* OnlyAsOperand */ false);
4418 void ModuleSummaryIndex::print(raw_ostream
&ROS
, bool IsForDebug
) const {
4419 SlotTracker
SlotTable(this);
4420 formatted_raw_ostream
OS(ROS
);
4421 AssemblyWriter
W(OS
, SlotTable
, this, IsForDebug
);
4422 W
.printModuleSummaryIndex();
4425 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4426 // Value::dump - allow easy printing of Values from the debugger.
4428 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4430 // Type::dump - allow easy printing of Types from the debugger.
4432 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4434 // Module::dump() - Allow printing of Modules from the debugger.
4436 void Module::dump() const {
4437 print(dbgs(), nullptr,
4438 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4441 // Allow printing of Comdats from the debugger.
4443 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4445 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4447 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4450 void Metadata::dump() const { dump(nullptr); }
4453 void Metadata::dump(const Module
*M
) const {
4454 print(dbgs(), M
, /*IsForDebug=*/true);
4458 // Allow printing of ModuleSummaryIndex from the debugger.
4460 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }