1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
36 using namespace llvm::PatternMatch
;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
47 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
48 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts
= DstTy
->getNumElements();
54 if (NumElts
!= CV
->getType()->getVectorNumElements())
57 Type
*DstEltTy
= DstTy
->getElementType();
59 SmallVector
<Constant
*, 16> Result
;
60 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
61 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
63 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
64 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
68 return ConstantVector::get(Result
);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
77 unsigned opc
, ///< opcode of the second cast constant expression
78 ConstantExpr
*Op
, ///< the first cast constant expression
79 Type
*DstTy
///< destination type of the first cast
81 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type
*SrcTy
= Op
->getOperand(0)->getType();
87 Type
*MidTy
= Op
->getType();
88 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
89 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
98 nullptr, FakeIntPtrTy
, nullptr);
101 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
102 Type
*SrcTy
= V
->getType();
104 return V
; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
109 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
110 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
111 && PTy
->getElementType()->isSized()) {
112 SmallVector
<Value
*, 8> IdxList
;
114 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
115 IdxList
.push_back(Zero
);
116 Type
*ElTy
= PTy
->getElementType();
117 while (ElTy
!= DPTy
->getElementType()) {
118 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
119 if (STy
->getNumElements() == 0) break;
120 ElTy
= STy
->getElementType(0);
121 IdxList
.push_back(Zero
);
122 } else if (SequentialType
*STy
=
123 dyn_cast
<SequentialType
>(ElTy
)) {
124 ElTy
= STy
->getElementType();
125 IdxList
.push_back(Zero
);
131 if (ElTy
== DPTy
->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
140 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
141 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
142 "Not cast between same sized vectors!");
144 // First, check for null. Undef is already handled.
145 if (isa
<ConstantAggregateZero
>(V
))
146 return Constant::getNullValue(DestTy
);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V
, DestPTy
);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
156 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
159 // Finally, implement bitcast folding now. The code below doesn't handle
161 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
164 // Handle integral constant input.
165 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
166 if (DestTy
->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy
->getContext(),
174 APFloat(DestTy
->getFltSemantics(),
177 // Otherwise, can't fold this (vector?)
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP
->getType()->isPPC_FP128Ty())
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy
->isIntegerTy())
196 return ConstantInt::get(FP
->getContext(),
197 FP
->getValueAPF().bitcastToAPInt());
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
214 assert(C
->getType()->isIntegerTy() &&
215 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
218 assert(ByteSize
&& "Must be accessing some piece");
219 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
220 assert(ByteSize
!= CSize
&& "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
224 APInt V
= CI
->getValue();
226 V
.lshrInPlace(ByteStart
*8);
227 V
= V
.trunc(ByteSize
*8);
228 return ConstantInt::get(CI
->getContext(), V
);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
234 if (!CE
) return nullptr;
236 switch (CE
->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or
: {
239 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
244 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
245 if (RHSC
->isMinusOne())
248 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
251 return ConstantExpr::getOr(LHS
, RHS
);
253 case Instruction::And
: {
254 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
259 if (RHS
->isNullValue())
262 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
265 return ConstantExpr::getAnd(LHS
, RHS
);
267 case Instruction::LShr
: {
268 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
271 APInt ShAmt
= Amt
->getValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt
& 7) != 0)
275 ShAmt
.lshrInPlace(3);
277 // If the extract is known to be all zeros, return zero.
278 if (ShAmt
.uge(CSize
- ByteStart
))
279 return Constant::getNullValue(
280 IntegerType::get(CE
->getContext(), ByteSize
* 8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ShAmt
.ule(CSize
- (ByteStart
+ ByteSize
)))
283 return ExtractConstantBytes(CE
->getOperand(0),
284 ByteStart
+ ShAmt
.getZExtValue(), ByteSize
);
286 // TODO: Handle the 'partially zero' case.
290 case Instruction::Shl
: {
291 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
294 APInt ShAmt
= Amt
->getValue();
295 // Cannot analyze non-byte shifts.
296 if ((ShAmt
& 7) != 0)
298 ShAmt
.lshrInPlace(3);
300 // If the extract is known to be all zeros, return zero.
301 if (ShAmt
.uge(ByteStart
+ ByteSize
))
302 return Constant::getNullValue(
303 IntegerType::get(CE
->getContext(), ByteSize
* 8));
304 // If the extract is known to be fully in the input, extract it.
305 if (ShAmt
.ule(ByteStart
))
306 return ExtractConstantBytes(CE
->getOperand(0),
307 ByteStart
- ShAmt
.getZExtValue(), ByteSize
);
309 // TODO: Handle the 'partially zero' case.
313 case Instruction::ZExt
: {
314 unsigned SrcBitSize
=
315 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
317 // If extracting something that is completely zero, return 0.
318 if (ByteStart
*8 >= SrcBitSize
)
319 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
322 // If exactly extracting the input, return it.
323 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
324 return CE
->getOperand(0);
326 // If extracting something completely in the input, if the input is a
327 // multiple of 8 bits, recurse.
328 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
329 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
331 // Otherwise, if extracting a subset of the input, which is not multiple of
332 // 8 bits, do a shift and trunc to get the bits.
333 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
334 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
335 Constant
*Res
= CE
->getOperand(0);
337 Res
= ConstantExpr::getLShr(Res
,
338 ConstantInt::get(Res
->getType(), ByteStart
*8));
339 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
343 // TODO: Handle the 'partially zero' case.
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
354 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
355 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
356 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
357 return ConstantExpr::getNUWMul(E
, N
);
360 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
361 if (!STy
->isPacked()) {
362 unsigned NumElems
= STy
->getNumElements();
363 // An empty struct has size zero.
365 return ConstantExpr::getNullValue(DestTy
);
366 // Check for a struct with all members having the same size.
367 Constant
*MemberSize
=
368 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
370 for (unsigned i
= 1; i
!= NumElems
; ++i
)
372 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
377 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
378 return ConstantExpr::getNUWMul(MemberSize
, N
);
382 // Pointer size doesn't depend on the pointee type, so canonicalize them
383 // to an arbitrary pointee.
384 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
385 if (!PTy
->getElementType()->isIntegerTy(1))
387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
388 PTy
->getAddressSpace()),
391 // If there's no interesting folding happening, bail so that we don't create
392 // a constant that looks like it needs folding but really doesn't.
396 // Base case: Get a regular sizeof expression.
397 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
398 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
412 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
413 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
420 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
421 // Packed structs always have an alignment of 1.
423 return ConstantInt::get(DestTy
, 1);
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems
= STy
->getNumElements();
429 // An empty struct has minimal alignment.
431 return ConstantInt::get(DestTy
, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant
*MemberAlign
=
434 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
436 for (unsigned i
= 1; i
!= NumElems
; ++i
)
437 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
448 if (!PTy
->getElementType()->isIntegerTy(1))
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
452 PTy
->getAddressSpace()),
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
460 // Base case: Get a regular alignof expression.
461 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
462 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
, Type
*DestTy
,
474 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
475 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
478 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
479 return ConstantExpr::getNUWMul(E
, N
);
482 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
483 if (!STy
->isPacked()) {
484 unsigned NumElems
= STy
->getNumElements();
485 // An empty struct has no members.
488 // Check for a struct with all members having the same size.
489 Constant
*MemberSize
=
490 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
492 for (unsigned i
= 1; i
!= NumElems
; ++i
)
494 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
499 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
504 return ConstantExpr::getNUWMul(MemberSize
, N
);
508 // If there's no interesting folding happening, bail so that we don't create
509 // a constant that looks like it needs folding but really doesn't.
513 // Base case: Get a regular offsetof expression.
514 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
515 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
521 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
523 if (isa
<UndefValue
>(V
)) {
524 // zext(undef) = 0, because the top bits will be zero.
525 // sext(undef) = 0, because the top bits will all be the same.
526 // [us]itofp(undef) = 0, because the result value is bounded.
527 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
528 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
529 return Constant::getNullValue(DestTy
);
530 return UndefValue::get(DestTy
);
533 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
534 opc
!= Instruction::AddrSpaceCast
)
535 return Constant::getNullValue(DestTy
);
537 // If the cast operand is a constant expression, there's a few things we can
538 // do to try to simplify it.
539 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
541 // Try hard to fold cast of cast because they are often eliminable.
542 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
543 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
544 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
545 // Do not fold addrspacecast (gep 0, .., 0). It might make the
546 // addrspacecast uncanonicalized.
547 opc
!= Instruction::AddrSpaceCast
&&
548 // Do not fold bitcast (gep) with inrange index, as this loses
550 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue() &&
551 // Do not fold if the gep type is a vector, as bitcasting
552 // operand 0 of a vector gep will result in a bitcast between
554 !CE
->getType()->isVectorTy()) {
555 // If all of the indexes in the GEP are null values, there is no pointer
556 // adjustment going on. We might as well cast the source pointer.
557 bool isAllNull
= true;
558 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
559 if (!CE
->getOperand(i
)->isNullValue()) {
564 // This is casting one pointer type to another, always BitCast
565 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
569 // If the cast operand is a constant vector, perform the cast by
570 // operating on each element. In the cast of bitcasts, the element
571 // count may be mismatched; don't attempt to handle that here.
572 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
573 DestTy
->isVectorTy() &&
574 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
575 SmallVector
<Constant
*, 16> res
;
576 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
577 Type
*DstEltTy
= DestVecTy
->getElementType();
578 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
579 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
581 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
582 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
584 return ConstantVector::get(res
);
587 // We actually have to do a cast now. Perform the cast according to the
591 llvm_unreachable("Failed to cast constant expression");
592 case Instruction::FPTrunc
:
593 case Instruction::FPExt
:
594 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
596 APFloat Val
= FPC
->getValueAPF();
597 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
598 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
599 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
600 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
602 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
604 APFloat::rmNearestTiesToEven
, &ignored
);
605 return ConstantFP::get(V
->getContext(), Val
);
607 return nullptr; // Can't fold.
608 case Instruction::FPToUI
:
609 case Instruction::FPToSI
:
610 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
611 const APFloat
&V
= FPC
->getValueAPF();
613 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
614 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
615 if (APFloat::opInvalidOp
==
616 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
617 // Undefined behavior invoked - the destination type can't represent
618 // the input constant.
619 return UndefValue::get(DestTy
);
621 return ConstantInt::get(FPC
->getContext(), IntVal
);
623 return nullptr; // Can't fold.
624 case Instruction::IntToPtr
: //always treated as unsigned
625 if (V
->isNullValue()) // Is it an integral null value?
626 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
627 return nullptr; // Other pointer types cannot be casted
628 case Instruction::PtrToInt
: // always treated as unsigned
629 // Is it a null pointer value?
630 if (V
->isNullValue())
631 return ConstantInt::get(DestTy
, 0);
632 // If this is a sizeof-like expression, pull out multiplications by
633 // known factors to expose them to subsequent folding. If it's an
634 // alignof-like expression, factor out known factors.
635 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
636 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
637 CE
->getOperand(0)->isNullValue()) {
638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642 // happen in one "real" C-code test case, so it does not seem to be an
643 // important optimization to handle vectors here. For now, simply bail
645 if (DestTy
->isVectorTy())
647 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
648 Type
*Ty
= GEPO
->getSourceElementType();
649 if (CE
->getNumOperands() == 2) {
650 // Handle a sizeof-like expression.
651 Constant
*Idx
= CE
->getOperand(1);
652 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
653 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
654 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
657 return ConstantExpr::getMul(C
, Idx
);
659 } else if (CE
->getNumOperands() == 3 &&
660 CE
->getOperand(1)->isNullValue()) {
661 // Handle an alignof-like expression.
662 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
663 if (!STy
->isPacked()) {
664 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
666 STy
->getNumElements() == 2 &&
667 STy
->getElementType(0)->isIntegerTy(1)) {
668 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
671 // Handle an offsetof-like expression.
672 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
673 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
679 // Other pointer types cannot be casted
681 case Instruction::UIToFP
:
682 case Instruction::SIToFP
:
683 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
684 const APInt
&api
= CI
->getValue();
685 APFloat
apf(DestTy
->getFltSemantics(),
686 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
687 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
688 APFloat::rmNearestTiesToEven
);
689 return ConstantFP::get(V
->getContext(), apf
);
692 case Instruction::ZExt
:
693 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
694 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
695 return ConstantInt::get(V
->getContext(),
696 CI
->getValue().zext(BitWidth
));
699 case Instruction::SExt
:
700 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
701 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
702 return ConstantInt::get(V
->getContext(),
703 CI
->getValue().sext(BitWidth
));
706 case Instruction::Trunc
: {
707 if (V
->getType()->isVectorTy())
710 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
711 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
712 return ConstantInt::get(V
->getContext(),
713 CI
->getValue().trunc(DestBitWidth
));
716 // The input must be a constantexpr. See if we can simplify this based on
717 // the bytes we are demanding. Only do this if the source and dest are an
718 // even multiple of a byte.
719 if ((DestBitWidth
& 7) == 0 &&
720 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
721 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
726 case Instruction::BitCast
:
727 return FoldBitCast(V
, DestTy
);
728 case Instruction::AddrSpaceCast
:
733 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
734 Constant
*V1
, Constant
*V2
) {
735 // Check for i1 and vector true/false conditions.
736 if (Cond
->isNullValue()) return V2
;
737 if (Cond
->isAllOnesValue()) return V1
;
739 // If the condition is a vector constant, fold the result elementwise.
740 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
741 SmallVector
<Constant
*, 16> Result
;
742 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
743 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
745 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
746 ConstantInt::get(Ty
, i
));
747 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
748 ConstantInt::get(Ty
, i
));
749 Constant
*Cond
= dyn_cast
<Constant
>(CondV
->getOperand(i
));
751 if (V1Element
== V2Element
) {
753 } else if (isa
<UndefValue
>(Cond
)) {
754 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
756 if (!isa
<ConstantInt
>(Cond
)) break;
757 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
762 // If we were able to build the vector, return it.
763 if (Result
.size() == V1
->getType()->getVectorNumElements())
764 return ConstantVector::get(Result
);
767 if (isa
<UndefValue
>(Cond
)) {
768 if (isa
<UndefValue
>(V1
)) return V1
;
771 if (isa
<UndefValue
>(V1
)) return V2
;
772 if (isa
<UndefValue
>(V2
)) return V1
;
773 if (V1
== V2
) return V1
;
775 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
776 if (TrueVal
->getOpcode() == Instruction::Select
)
777 if (TrueVal
->getOperand(0) == Cond
)
778 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
780 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
781 if (FalseVal
->getOpcode() == Instruction::Select
)
782 if (FalseVal
->getOperand(0) == Cond
)
783 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
789 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
791 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
792 return UndefValue::get(Val
->getType()->getVectorElementType());
793 if (Val
->isNullValue()) // ee(zero, x) -> zero
794 return Constant::getNullValue(Val
->getType()->getVectorElementType());
795 // ee({w,x,y,z}, undef) -> undef
796 if (isa
<UndefValue
>(Idx
))
797 return UndefValue::get(Val
->getType()->getVectorElementType());
799 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
800 // ee({w,x,y,z}, wrong_value) -> undef
801 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
802 return UndefValue::get(Val
->getType()->getVectorElementType());
803 return Val
->getAggregateElement(CIdx
->getZExtValue());
808 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
811 if (isa
<UndefValue
>(Idx
))
812 return UndefValue::get(Val
->getType());
814 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
815 if (!CIdx
) return nullptr;
817 unsigned NumElts
= Val
->getType()->getVectorNumElements();
818 if (CIdx
->uge(NumElts
))
819 return UndefValue::get(Val
->getType());
821 SmallVector
<Constant
*, 16> Result
;
822 Result
.reserve(NumElts
);
823 auto *Ty
= Type::getInt32Ty(Val
->getContext());
824 uint64_t IdxVal
= CIdx
->getZExtValue();
825 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
827 Result
.push_back(Elt
);
831 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
835 return ConstantVector::get(Result
);
838 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
841 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
842 Type
*EltTy
= V1
->getType()->getVectorElementType();
844 // Undefined shuffle mask -> undefined value.
845 if (isa
<UndefValue
>(Mask
))
846 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
848 // Don't break the bitcode reader hack.
849 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
851 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
853 // Loop over the shuffle mask, evaluating each element.
854 SmallVector
<Constant
*, 32> Result
;
855 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
856 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
858 Result
.push_back(UndefValue::get(EltTy
));
862 if (unsigned(Elt
) >= SrcNumElts
*2)
863 InElt
= UndefValue::get(EltTy
);
864 else if (unsigned(Elt
) >= SrcNumElts
) {
865 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
867 ConstantExpr::getExtractElement(V2
,
868 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
870 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
871 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
873 Result
.push_back(InElt
);
876 return ConstantVector::get(Result
);
879 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
880 ArrayRef
<unsigned> Idxs
) {
881 // Base case: no indices, so return the entire value.
885 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
886 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
891 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
893 ArrayRef
<unsigned> Idxs
) {
894 // Base case: no indices, so replace the entire value.
899 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
900 NumElts
= ST
->getNumElements();
902 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
904 SmallVector
<Constant
*, 32> Result
;
905 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
906 Constant
*C
= Agg
->getAggregateElement(i
);
907 if (!C
) return nullptr;
910 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
915 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
916 return ConstantStruct::get(ST
, Result
);
917 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
918 return ConstantArray::get(AT
, Result
);
919 return ConstantVector::get(Result
);
922 Constant
*llvm::ConstantFoldUnaryInstruction(unsigned Opcode
, Constant
*C
) {
923 assert(Instruction::isUnaryOp(Opcode
) && "Non-unary instruction detected");
925 // Handle scalar UndefValue. Vectors are always evaluated per element.
926 bool HasScalarUndef
= !C
->getType()->isVectorTy() && isa
<UndefValue
>(C
);
928 if (HasScalarUndef
) {
929 switch (static_cast<Instruction::UnaryOps
>(Opcode
)) {
930 case Instruction::FNeg
:
931 return C
; // -undef -> undef
932 case Instruction::UnaryOpsEnd
:
933 llvm_unreachable("Invalid UnaryOp");
937 // Constant should not be UndefValue, unless these are vector constants.
938 assert(!HasScalarUndef
&& "Unexpected UndefValue");
939 // We only have FP UnaryOps right now.
940 assert(!isa
<ConstantInt
>(C
) && "Unexpected Integer UnaryOp");
942 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
943 const APFloat
&CV
= CFP
->getValueAPF();
947 case Instruction::FNeg
:
948 return ConstantFP::get(C
->getContext(), neg(CV
));
950 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C
->getType())) {
951 // Fold each element and create a vector constant from those constants.
952 SmallVector
<Constant
*, 16> Result
;
953 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
954 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
955 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
956 Constant
*Elt
= ConstantExpr::getExtractElement(C
, ExtractIdx
);
958 Result
.push_back(ConstantExpr::get(Opcode
, Elt
));
961 return ConstantVector::get(Result
);
964 // We don't know how to fold this.
968 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
970 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
972 // Handle scalar UndefValue. Vectors are always evaluated per element.
973 bool HasScalarUndef
= !C1
->getType()->isVectorTy() &&
974 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
975 if (HasScalarUndef
) {
976 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
977 case Instruction::Xor
:
978 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
979 // Handle undef ^ undef -> 0 special case. This is a common
981 return Constant::getNullValue(C1
->getType());
983 case Instruction::Add
:
984 case Instruction::Sub
:
985 return UndefValue::get(C1
->getType());
986 case Instruction::And
:
987 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
989 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
990 case Instruction::Mul
: {
991 // undef * undef -> undef
992 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
995 // X * undef -> undef if X is odd
996 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
998 return UndefValue::get(C1
->getType());
1000 // X * undef -> 0 otherwise
1001 return Constant::getNullValue(C1
->getType());
1003 case Instruction::SDiv
:
1004 case Instruction::UDiv
:
1005 // X / undef -> undef
1006 if (isa
<UndefValue
>(C2
))
1008 // undef / 0 -> undef
1009 // undef / 1 -> undef
1010 if (match(C2
, m_Zero()) || match(C2
, m_One()))
1012 // undef / X -> 0 otherwise
1013 return Constant::getNullValue(C1
->getType());
1014 case Instruction::URem
:
1015 case Instruction::SRem
:
1016 // X % undef -> undef
1017 if (match(C2
, m_Undef()))
1019 // undef % 0 -> undef
1020 if (match(C2
, m_Zero()))
1022 // undef % X -> 0 otherwise
1023 return Constant::getNullValue(C1
->getType());
1024 case Instruction::Or
: // X | undef -> -1
1025 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
1027 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
1028 case Instruction::LShr
:
1029 // X >>l undef -> undef
1030 if (isa
<UndefValue
>(C2
))
1032 // undef >>l 0 -> undef
1033 if (match(C2
, m_Zero()))
1036 return Constant::getNullValue(C1
->getType());
1037 case Instruction::AShr
:
1038 // X >>a undef -> undef
1039 if (isa
<UndefValue
>(C2
))
1041 // undef >>a 0 -> undef
1042 if (match(C2
, m_Zero()))
1044 // TODO: undef >>a X -> undef if the shift is exact
1046 return Constant::getNullValue(C1
->getType());
1047 case Instruction::Shl
:
1048 // X << undef -> undef
1049 if (isa
<UndefValue
>(C2
))
1051 // undef << 0 -> undef
1052 if (match(C2
, m_Zero()))
1055 return Constant::getNullValue(C1
->getType());
1056 case Instruction::FAdd
:
1057 case Instruction::FSub
:
1058 case Instruction::FMul
:
1059 case Instruction::FDiv
:
1060 case Instruction::FRem
:
1061 // [any flop] undef, undef -> undef
1062 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
1064 // [any flop] C, undef -> NaN
1065 // [any flop] undef, C -> NaN
1066 // We could potentially specialize NaN/Inf constants vs. 'normal'
1067 // constants (possibly differently depending on opcode and operand). This
1068 // would allow returning undef sometimes. But it is always safe to fold to
1069 // NaN because we can choose the undef operand as NaN, and any FP opcode
1070 // with a NaN operand will propagate NaN.
1071 return ConstantFP::getNaN(C1
->getType());
1072 case Instruction::BinaryOpsEnd
:
1073 llvm_unreachable("Invalid BinaryOp");
1077 // Neither constant should be UndefValue, unless these are vector constants.
1078 assert(!HasScalarUndef
&& "Unexpected UndefValue");
1080 // Handle simplifications when the RHS is a constant int.
1081 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1083 case Instruction::Add
:
1084 if (CI2
->isZero()) return C1
; // X + 0 == X
1086 case Instruction::Sub
:
1087 if (CI2
->isZero()) return C1
; // X - 0 == X
1089 case Instruction::Mul
:
1090 if (CI2
->isZero()) return C2
; // X * 0 == 0
1092 return C1
; // X * 1 == X
1094 case Instruction::UDiv
:
1095 case Instruction::SDiv
:
1097 return C1
; // X / 1 == X
1099 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1101 case Instruction::URem
:
1102 case Instruction::SRem
:
1104 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1106 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1108 case Instruction::And
:
1109 if (CI2
->isZero()) return C2
; // X & 0 == 0
1110 if (CI2
->isMinusOne())
1111 return C1
; // X & -1 == X
1113 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1114 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1115 if (CE1
->getOpcode() == Instruction::ZExt
) {
1116 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1118 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1119 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1120 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1124 // If and'ing the address of a global with a constant, fold it.
1125 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1126 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1127 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1131 if (Module
*TheModule
= GV
->getParent()) {
1132 GVAlign
= GV
->getPointerAlignment(TheModule
->getDataLayout());
1134 // If the function alignment is not specified then assume that it
1136 // This is dangerous; on x86, the alignment of the pointer
1137 // corresponds to the alignment of the function, but might be less
1138 // than 4 if it isn't explicitly specified.
1139 // However, a fix for this behaviour was reverted because it
1140 // increased code size (see https://reviews.llvm.org/D55115)
1141 // FIXME: This code should be deleted once existing targets have
1142 // appropriate defaults
1143 if (GVAlign
== 0U && isa
<Function
>(GV
))
1145 } else if (isa
<Function
>(GV
)) {
1146 // Without a datalayout we have to assume the worst case: that the
1147 // function pointer isn't aligned at all.
1150 GVAlign
= GV
->getAlignment();
1154 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1155 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
1156 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1158 // If checking bits we know are clear, return zero.
1159 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1160 return Constant::getNullValue(CI2
->getType());
1165 case Instruction::Or
:
1166 if (CI2
->isZero()) return C1
; // X | 0 == X
1167 if (CI2
->isMinusOne())
1168 return C2
; // X | -1 == -1
1170 case Instruction::Xor
:
1171 if (CI2
->isZero()) return C1
; // X ^ 0 == X
1173 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1174 switch (CE1
->getOpcode()) {
1176 case Instruction::ICmp
:
1177 case Instruction::FCmp
:
1178 // cmp pred ^ true -> cmp !pred
1179 assert(CI2
->isOne());
1180 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1181 pred
= CmpInst::getInversePredicate(pred
);
1182 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1183 CE1
->getOperand(1));
1187 case Instruction::AShr
:
1188 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1189 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1190 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1191 return ConstantExpr::getLShr(C1
, C2
);
1194 } else if (isa
<ConstantInt
>(C1
)) {
1195 // If C1 is a ConstantInt and C2 is not, swap the operands.
1196 if (Instruction::isCommutative(Opcode
))
1197 return ConstantExpr::get(Opcode
, C2
, C1
);
1200 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1201 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1202 const APInt
&C1V
= CI1
->getValue();
1203 const APInt
&C2V
= CI2
->getValue();
1207 case Instruction::Add
:
1208 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1209 case Instruction::Sub
:
1210 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1211 case Instruction::Mul
:
1212 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1213 case Instruction::UDiv
:
1214 assert(!CI2
->isZero() && "Div by zero handled above");
1215 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1216 case Instruction::SDiv
:
1217 assert(!CI2
->isZero() && "Div by zero handled above");
1218 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1219 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1220 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1221 case Instruction::URem
:
1222 assert(!CI2
->isZero() && "Div by zero handled above");
1223 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1224 case Instruction::SRem
:
1225 assert(!CI2
->isZero() && "Div by zero handled above");
1226 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1227 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1228 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1229 case Instruction::And
:
1230 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1231 case Instruction::Or
:
1232 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1233 case Instruction::Xor
:
1234 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1235 case Instruction::Shl
:
1236 if (C2V
.ult(C1V
.getBitWidth()))
1237 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1238 return UndefValue::get(C1
->getType()); // too big shift is undef
1239 case Instruction::LShr
:
1240 if (C2V
.ult(C1V
.getBitWidth()))
1241 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1242 return UndefValue::get(C1
->getType()); // too big shift is undef
1243 case Instruction::AShr
:
1244 if (C2V
.ult(C1V
.getBitWidth()))
1245 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1246 return UndefValue::get(C1
->getType()); // too big shift is undef
1251 case Instruction::SDiv
:
1252 case Instruction::UDiv
:
1253 case Instruction::URem
:
1254 case Instruction::SRem
:
1255 case Instruction::LShr
:
1256 case Instruction::AShr
:
1257 case Instruction::Shl
:
1258 if (CI1
->isZero()) return C1
;
1263 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1264 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1265 const APFloat
&C1V
= CFP1
->getValueAPF();
1266 const APFloat
&C2V
= CFP2
->getValueAPF();
1267 APFloat C3V
= C1V
; // copy for modification
1271 case Instruction::FAdd
:
1272 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1273 return ConstantFP::get(C1
->getContext(), C3V
);
1274 case Instruction::FSub
:
1275 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1276 return ConstantFP::get(C1
->getContext(), C3V
);
1277 case Instruction::FMul
:
1278 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1279 return ConstantFP::get(C1
->getContext(), C3V
);
1280 case Instruction::FDiv
:
1281 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1282 return ConstantFP::get(C1
->getContext(), C3V
);
1283 case Instruction::FRem
:
1285 return ConstantFP::get(C1
->getContext(), C3V
);
1288 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1289 // Fold each element and create a vector constant from those constants.
1290 SmallVector
<Constant
*, 16> Result
;
1291 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1292 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1293 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1294 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1295 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1297 // If any element of a divisor vector is zero, the whole op is undef.
1298 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
1299 return UndefValue::get(VTy
);
1301 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1304 return ConstantVector::get(Result
);
1307 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1308 // There are many possible foldings we could do here. We should probably
1309 // at least fold add of a pointer with an integer into the appropriate
1310 // getelementptr. This will improve alias analysis a bit.
1312 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1314 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1315 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1316 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1317 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1319 } else if (isa
<ConstantExpr
>(C2
)) {
1320 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1321 // other way if possible.
1322 if (Instruction::isCommutative(Opcode
))
1323 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1326 // i1 can be simplified in many cases.
1327 if (C1
->getType()->isIntegerTy(1)) {
1329 case Instruction::Add
:
1330 case Instruction::Sub
:
1331 return ConstantExpr::getXor(C1
, C2
);
1332 case Instruction::Mul
:
1333 return ConstantExpr::getAnd(C1
, C2
);
1334 case Instruction::Shl
:
1335 case Instruction::LShr
:
1336 case Instruction::AShr
:
1337 // We can assume that C2 == 0. If it were one the result would be
1338 // undefined because the shift value is as large as the bitwidth.
1340 case Instruction::SDiv
:
1341 case Instruction::UDiv
:
1342 // We can assume that C2 == 1. If it were zero the result would be
1343 // undefined through division by zero.
1345 case Instruction::URem
:
1346 case Instruction::SRem
:
1347 // We can assume that C2 == 1. If it were zero the result would be
1348 // undefined through division by zero.
1349 return ConstantInt::getFalse(C1
->getContext());
1355 // We don't know how to fold this.
1359 /// This type is zero-sized if it's an array or structure of zero-sized types.
1360 /// The only leaf zero-sized type is an empty structure.
1361 static bool isMaybeZeroSizedType(Type
*Ty
) {
1362 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1363 if (STy
->isOpaque()) return true; // Can't say.
1365 // If all of elements have zero size, this does too.
1366 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1367 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1370 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1371 return isMaybeZeroSizedType(ATy
->getElementType());
1376 /// Compare the two constants as though they were getelementptr indices.
1377 /// This allows coercion of the types to be the same thing.
1379 /// If the two constants are the "same" (after coercion), return 0. If the
1380 /// first is less than the second, return -1, if the second is less than the
1381 /// first, return 1. If the constants are not integral, return -2.
1383 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1384 if (C1
== C2
) return 0;
1386 // Ok, we found a different index. If they are not ConstantInt, we can't do
1387 // anything with them.
1388 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1389 return -2; // don't know!
1391 // We cannot compare the indices if they don't fit in an int64_t.
1392 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1393 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1394 return -2; // don't know!
1396 // Ok, we have two differing integer indices. Sign extend them to be the same
1398 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1399 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1401 if (C1Val
== C2Val
) return 0; // They are equal
1403 // If the type being indexed over is really just a zero sized type, there is
1404 // no pointer difference being made here.
1405 if (isMaybeZeroSizedType(ElTy
))
1406 return -2; // dunno.
1408 // If they are really different, now that they are the same type, then we
1409 // found a difference!
1416 /// This function determines if there is anything we can decide about the two
1417 /// constants provided. This doesn't need to handle simple things like
1418 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1419 /// If we can determine that the two constants have a particular relation to
1420 /// each other, we should return the corresponding FCmpInst predicate,
1421 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1422 /// ConstantFoldCompareInstruction.
1424 /// To simplify this code we canonicalize the relation so that the first
1425 /// operand is always the most "complex" of the two. We consider ConstantFP
1426 /// to be the simplest, and ConstantExprs to be the most complex.
1427 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1428 assert(V1
->getType() == V2
->getType() &&
1429 "Cannot compare values of different types!");
1431 // We do not know if a constant expression will evaluate to a number or NaN.
1432 // Therefore, we can only say that the relation is unordered or equal.
1433 if (V1
== V2
) return FCmpInst::FCMP_UEQ
;
1435 if (!isa
<ConstantExpr
>(V1
)) {
1436 if (!isa
<ConstantExpr
>(V2
)) {
1437 // Simple case, use the standard constant folder.
1438 ConstantInt
*R
= nullptr;
1439 R
= dyn_cast
<ConstantInt
>(
1440 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1441 if (R
&& !R
->isZero())
1442 return FCmpInst::FCMP_OEQ
;
1443 R
= dyn_cast
<ConstantInt
>(
1444 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1445 if (R
&& !R
->isZero())
1446 return FCmpInst::FCMP_OLT
;
1447 R
= dyn_cast
<ConstantInt
>(
1448 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1449 if (R
&& !R
->isZero())
1450 return FCmpInst::FCMP_OGT
;
1452 // Nothing more we can do
1453 return FCmpInst::BAD_FCMP_PREDICATE
;
1456 // If the first operand is simple and second is ConstantExpr, swap operands.
1457 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1458 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1459 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1461 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1462 // constantexpr or a simple constant.
1463 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1464 switch (CE1
->getOpcode()) {
1465 case Instruction::FPTrunc
:
1466 case Instruction::FPExt
:
1467 case Instruction::UIToFP
:
1468 case Instruction::SIToFP
:
1469 // We might be able to do something with these but we don't right now.
1475 // There are MANY other foldings that we could perform here. They will
1476 // probably be added on demand, as they seem needed.
1477 return FCmpInst::BAD_FCMP_PREDICATE
;
1480 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1481 const GlobalValue
*GV2
) {
1482 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1483 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1485 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1486 Type
*Ty
= GVar
->getValueType();
1487 // A global with opaque type might end up being zero sized.
1490 // A global with an empty type might lie at the address of any other
1492 if (Ty
->isEmptyTy())
1497 // Don't try to decide equality of aliases.
1498 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1499 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1500 return ICmpInst::ICMP_NE
;
1501 return ICmpInst::BAD_ICMP_PREDICATE
;
1504 /// This function determines if there is anything we can decide about the two
1505 /// constants provided. This doesn't need to handle simple things like integer
1506 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1507 /// If we can determine that the two constants have a particular relation to
1508 /// each other, we should return the corresponding ICmp predicate, otherwise
1509 /// return ICmpInst::BAD_ICMP_PREDICATE.
1511 /// To simplify this code we canonicalize the relation so that the first
1512 /// operand is always the most "complex" of the two. We consider simple
1513 /// constants (like ConstantInt) to be the simplest, followed by
1514 /// GlobalValues, followed by ConstantExpr's (the most complex).
1516 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1518 assert(V1
->getType() == V2
->getType() &&
1519 "Cannot compare different types of values!");
1520 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1522 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1523 !isa
<BlockAddress
>(V1
)) {
1524 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1525 !isa
<BlockAddress
>(V2
)) {
1526 // We distilled this down to a simple case, use the standard constant
1528 ConstantInt
*R
= nullptr;
1529 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1530 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1531 if (R
&& !R
->isZero())
1533 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1534 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1535 if (R
&& !R
->isZero())
1537 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1538 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1539 if (R
&& !R
->isZero())
1542 // If we couldn't figure it out, bail.
1543 return ICmpInst::BAD_ICMP_PREDICATE
;
1546 // If the first operand is simple, swap operands.
1547 ICmpInst::Predicate SwappedRelation
=
1548 evaluateICmpRelation(V2
, V1
, isSigned
);
1549 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1550 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1552 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1553 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1554 ICmpInst::Predicate SwappedRelation
=
1555 evaluateICmpRelation(V2
, V1
, isSigned
);
1556 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1557 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1558 return ICmpInst::BAD_ICMP_PREDICATE
;
1561 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1562 // constant (which, since the types must match, means that it's a
1563 // ConstantPointerNull).
1564 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1565 return areGlobalsPotentiallyEqual(GV
, GV2
);
1566 } else if (isa
<BlockAddress
>(V2
)) {
1567 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1569 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1570 // GlobalVals can never be null unless they have external weak linkage.
1571 // We don't try to evaluate aliases here.
1572 // NOTE: We should not be doing this constant folding if null pointer
1573 // is considered valid for the function. But currently there is no way to
1574 // query it from the Constant type.
1575 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1576 !NullPointerIsDefined(nullptr /* F */,
1577 GV
->getType()->getAddressSpace()))
1578 return ICmpInst::ICMP_NE
;
1580 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1581 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1582 ICmpInst::Predicate SwappedRelation
=
1583 evaluateICmpRelation(V2
, V1
, isSigned
);
1584 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1585 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1586 return ICmpInst::BAD_ICMP_PREDICATE
;
1589 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1590 // constant (which, since the types must match, means that it is a
1591 // ConstantPointerNull).
1592 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1593 // Block address in another function can't equal this one, but block
1594 // addresses in the current function might be the same if blocks are
1596 if (BA2
->getFunction() != BA
->getFunction())
1597 return ICmpInst::ICMP_NE
;
1599 // Block addresses aren't null, don't equal the address of globals.
1600 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1601 "Canonicalization guarantee!");
1602 return ICmpInst::ICMP_NE
;
1605 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1606 // constantexpr, a global, block address, or a simple constant.
1607 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1608 Constant
*CE1Op0
= CE1
->getOperand(0);
1610 switch (CE1
->getOpcode()) {
1611 case Instruction::Trunc
:
1612 case Instruction::FPTrunc
:
1613 case Instruction::FPExt
:
1614 case Instruction::FPToUI
:
1615 case Instruction::FPToSI
:
1616 break; // We can't evaluate floating point casts or truncations.
1618 case Instruction::UIToFP
:
1619 case Instruction::SIToFP
:
1620 case Instruction::BitCast
:
1621 case Instruction::ZExt
:
1622 case Instruction::SExt
:
1623 // We can't evaluate floating point casts or truncations.
1624 if (CE1Op0
->getType()->isFPOrFPVectorTy())
1627 // If the cast is not actually changing bits, and the second operand is a
1628 // null pointer, do the comparison with the pre-casted value.
1629 if (V2
->isNullValue() && CE1
->getType()->isIntOrPtrTy()) {
1630 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1631 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1632 return evaluateICmpRelation(CE1Op0
,
1633 Constant::getNullValue(CE1Op0
->getType()),
1638 case Instruction::GetElementPtr
: {
1639 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1640 // Ok, since this is a getelementptr, we know that the constant has a
1641 // pointer type. Check the various cases.
1642 if (isa
<ConstantPointerNull
>(V2
)) {
1643 // If we are comparing a GEP to a null pointer, check to see if the base
1644 // of the GEP equals the null pointer.
1645 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1646 if (GV
->hasExternalWeakLinkage())
1647 // Weak linkage GVals could be zero or not. We're comparing that
1648 // to null pointer so its greater-or-equal
1649 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1651 // If its not weak linkage, the GVal must have a non-zero address
1652 // so the result is greater-than
1653 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1654 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1655 // If we are indexing from a null pointer, check to see if we have any
1656 // non-zero indices.
1657 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1658 if (!CE1
->getOperand(i
)->isNullValue())
1659 // Offsetting from null, must not be equal.
1660 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1661 // Only zero indexes from null, must still be zero.
1662 return ICmpInst::ICMP_EQ
;
1664 // Otherwise, we can't really say if the first operand is null or not.
1665 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1666 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1667 if (GV2
->hasExternalWeakLinkage())
1668 // Weak linkage GVals could be zero or not. We're comparing it to
1669 // a null pointer, so its less-or-equal
1670 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1672 // If its not weak linkage, the GVal must have a non-zero address
1673 // so the result is less-than
1674 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1675 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1677 // If this is a getelementptr of the same global, then it must be
1678 // different. Because the types must match, the getelementptr could
1679 // only have at most one index, and because we fold getelementptr's
1680 // with a single zero index, it must be nonzero.
1681 assert(CE1
->getNumOperands() == 2 &&
1682 !CE1
->getOperand(1)->isNullValue() &&
1683 "Surprising getelementptr!");
1684 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1686 if (CE1GEP
->hasAllZeroIndices())
1687 return areGlobalsPotentiallyEqual(GV
, GV2
);
1688 return ICmpInst::BAD_ICMP_PREDICATE
;
1692 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1693 Constant
*CE2Op0
= CE2
->getOperand(0);
1695 // There are MANY other foldings that we could perform here. They will
1696 // probably be added on demand, as they seem needed.
1697 switch (CE2
->getOpcode()) {
1699 case Instruction::GetElementPtr
:
1700 // By far the most common case to handle is when the base pointers are
1701 // obviously to the same global.
1702 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1703 // Don't know relative ordering, but check for inequality.
1704 if (CE1Op0
!= CE2Op0
) {
1705 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1706 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1707 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1708 cast
<GlobalValue
>(CE2Op0
));
1709 return ICmpInst::BAD_ICMP_PREDICATE
;
1711 // Ok, we know that both getelementptr instructions are based on the
1712 // same global. From this, we can precisely determine the relative
1713 // ordering of the resultant pointers.
1716 // The logic below assumes that the result of the comparison
1717 // can be determined by finding the first index that differs.
1718 // This doesn't work if there is over-indexing in any
1719 // subsequent indices, so check for that case first.
1720 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1721 !CE2
->isGEPWithNoNotionalOverIndexing())
1722 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1724 // Compare all of the operands the GEP's have in common.
1725 gep_type_iterator GTI
= gep_type_begin(CE1
);
1726 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1728 switch (IdxCompare(CE1
->getOperand(i
),
1729 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1730 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1731 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1732 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1735 // Ok, we ran out of things they have in common. If any leftovers
1736 // are non-zero then we have a difference, otherwise we are equal.
1737 for (; i
< CE1
->getNumOperands(); ++i
)
1738 if (!CE1
->getOperand(i
)->isNullValue()) {
1739 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1740 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1742 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1745 for (; i
< CE2
->getNumOperands(); ++i
)
1746 if (!CE2
->getOperand(i
)->isNullValue()) {
1747 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1748 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1750 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1752 return ICmpInst::ICMP_EQ
;
1763 return ICmpInst::BAD_ICMP_PREDICATE
;
1766 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1767 Constant
*C1
, Constant
*C2
) {
1769 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1770 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1771 VT
->getNumElements());
1773 ResultTy
= Type::getInt1Ty(C1
->getContext());
1775 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1776 if (pred
== FCmpInst::FCMP_FALSE
)
1777 return Constant::getNullValue(ResultTy
);
1779 if (pred
== FCmpInst::FCMP_TRUE
)
1780 return Constant::getAllOnesValue(ResultTy
);
1782 // Handle some degenerate cases first
1783 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1784 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1785 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1786 // For EQ and NE, we can always pick a value for the undef to make the
1787 // predicate pass or fail, so we can return undef.
1788 // Also, if both operands are undef, we can return undef for int comparison.
1789 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1790 return UndefValue::get(ResultTy
);
1792 // Otherwise, for integer compare, pick the same value as the non-undef
1793 // operand, and fold it to true or false.
1794 if (isIntegerPredicate
)
1795 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1797 // Choosing NaN for the undef will always make unordered comparison succeed
1798 // and ordered comparison fails.
1799 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1802 // icmp eq/ne(null,GV) -> false/true
1803 if (C1
->isNullValue()) {
1804 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1805 // Don't try to evaluate aliases. External weak GV can be null.
1806 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1807 !NullPointerIsDefined(nullptr /* F */,
1808 GV
->getType()->getAddressSpace())) {
1809 if (pred
== ICmpInst::ICMP_EQ
)
1810 return ConstantInt::getFalse(C1
->getContext());
1811 else if (pred
== ICmpInst::ICMP_NE
)
1812 return ConstantInt::getTrue(C1
->getContext());
1814 // icmp eq/ne(GV,null) -> false/true
1815 } else if (C2
->isNullValue()) {
1816 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1817 // Don't try to evaluate aliases. External weak GV can be null.
1818 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1819 !NullPointerIsDefined(nullptr /* F */,
1820 GV
->getType()->getAddressSpace())) {
1821 if (pred
== ICmpInst::ICMP_EQ
)
1822 return ConstantInt::getFalse(C1
->getContext());
1823 else if (pred
== ICmpInst::ICMP_NE
)
1824 return ConstantInt::getTrue(C1
->getContext());
1828 // If the comparison is a comparison between two i1's, simplify it.
1829 if (C1
->getType()->isIntegerTy(1)) {
1831 case ICmpInst::ICMP_EQ
:
1832 if (isa
<ConstantInt
>(C2
))
1833 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1834 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1835 case ICmpInst::ICMP_NE
:
1836 return ConstantExpr::getXor(C1
, C2
);
1842 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1843 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1844 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1846 default: llvm_unreachable("Invalid ICmp Predicate");
1847 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1848 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1849 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1850 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1851 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1852 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1853 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1854 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1855 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1856 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1858 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1859 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1860 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1861 APFloat::cmpResult R
= C1V
.compare(C2V
);
1863 default: llvm_unreachable("Invalid FCmp Predicate");
1864 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1865 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1866 case FCmpInst::FCMP_UNO
:
1867 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1868 case FCmpInst::FCMP_ORD
:
1869 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1870 case FCmpInst::FCMP_UEQ
:
1871 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1872 R
==APFloat::cmpEqual
);
1873 case FCmpInst::FCMP_OEQ
:
1874 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1875 case FCmpInst::FCMP_UNE
:
1876 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1877 case FCmpInst::FCMP_ONE
:
1878 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1879 R
==APFloat::cmpGreaterThan
);
1880 case FCmpInst::FCMP_ULT
:
1881 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1882 R
==APFloat::cmpLessThan
);
1883 case FCmpInst::FCMP_OLT
:
1884 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1885 case FCmpInst::FCMP_UGT
:
1886 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1887 R
==APFloat::cmpGreaterThan
);
1888 case FCmpInst::FCMP_OGT
:
1889 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1890 case FCmpInst::FCMP_ULE
:
1891 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1892 case FCmpInst::FCMP_OLE
:
1893 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1894 R
==APFloat::cmpEqual
);
1895 case FCmpInst::FCMP_UGE
:
1896 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1897 case FCmpInst::FCMP_OGE
:
1898 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1899 R
==APFloat::cmpEqual
);
1901 } else if (C1
->getType()->isVectorTy()) {
1902 // If we can constant fold the comparison of each element, constant fold
1903 // the whole vector comparison.
1904 SmallVector
<Constant
*, 4> ResElts
;
1905 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1906 // Compare the elements, producing an i1 result or constant expr.
1907 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1909 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1911 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1913 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1916 return ConstantVector::get(ResElts
);
1919 if (C1
->getType()->isFloatingPointTy() &&
1920 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1921 // infinite recursive loop
1922 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1923 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1924 switch (evaluateFCmpRelation(C1
, C2
)) {
1925 default: llvm_unreachable("Unknown relation!");
1926 case FCmpInst::FCMP_UNO
:
1927 case FCmpInst::FCMP_ORD
:
1928 case FCmpInst::FCMP_UNE
:
1929 case FCmpInst::FCMP_ULT
:
1930 case FCmpInst::FCMP_UGT
:
1931 case FCmpInst::FCMP_ULE
:
1932 case FCmpInst::FCMP_UGE
:
1933 case FCmpInst::FCMP_TRUE
:
1934 case FCmpInst::FCMP_FALSE
:
1935 case FCmpInst::BAD_FCMP_PREDICATE
:
1936 break; // Couldn't determine anything about these constants.
1937 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1938 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1939 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1940 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1942 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1943 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1944 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1945 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1947 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1948 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1949 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1950 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1952 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1953 // We can only partially decide this relation.
1954 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1956 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1959 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1960 // We can only partially decide this relation.
1961 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1963 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1966 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1967 // We can only partially decide this relation.
1968 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1970 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1973 case FCmpInst::FCMP_UEQ
: // We know that C1 == C2 || isUnordered(C1, C2).
1974 // We can only partially decide this relation.
1975 if (pred
== FCmpInst::FCMP_ONE
)
1977 else if (pred
== FCmpInst::FCMP_UEQ
)
1982 // If we evaluated the result, return it now.
1984 return ConstantInt::get(ResultTy
, Result
);
1987 // Evaluate the relation between the two constants, per the predicate.
1988 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1989 switch (evaluateICmpRelation(C1
, C2
,
1990 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1991 default: llvm_unreachable("Unknown relational!");
1992 case ICmpInst::BAD_ICMP_PREDICATE
:
1993 break; // Couldn't determine anything about these constants.
1994 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1995 // If we know the constants are equal, we can decide the result of this
1996 // computation precisely.
1997 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1999 case ICmpInst::ICMP_ULT
:
2001 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
2003 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
2007 case ICmpInst::ICMP_SLT
:
2009 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
2011 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
2015 case ICmpInst::ICMP_UGT
:
2017 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
2019 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
2023 case ICmpInst::ICMP_SGT
:
2025 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
2027 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
2031 case ICmpInst::ICMP_ULE
:
2032 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
2033 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
2035 case ICmpInst::ICMP_SLE
:
2036 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
2037 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
2039 case ICmpInst::ICMP_UGE
:
2040 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
2041 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
2043 case ICmpInst::ICMP_SGE
:
2044 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
2045 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
2047 case ICmpInst::ICMP_NE
:
2048 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
2049 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
2053 // If we evaluated the result, return it now.
2055 return ConstantInt::get(ResultTy
, Result
);
2057 // If the right hand side is a bitcast, try using its inverse to simplify
2058 // it by moving it to the left hand side. We can't do this if it would turn
2059 // a vector compare into a scalar compare or visa versa, or if it would turn
2060 // the operands into FP values.
2061 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
2062 Constant
*CE2Op0
= CE2
->getOperand(0);
2063 if (CE2
->getOpcode() == Instruction::BitCast
&&
2064 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy() &&
2065 !CE2Op0
->getType()->isFPOrFPVectorTy()) {
2066 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
2067 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
2071 // If the left hand side is an extension, try eliminating it.
2072 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
2073 if ((CE1
->getOpcode() == Instruction::SExt
&&
2074 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
2075 (CE1
->getOpcode() == Instruction::ZExt
&&
2076 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
2077 Constant
*CE1Op0
= CE1
->getOperand(0);
2078 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
2079 if (CE1Inverse
== CE1Op0
) {
2080 // Check whether we can safely truncate the right hand side.
2081 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
2082 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
2083 C2
->getType()) == C2
)
2084 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
2089 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
2090 (C1
->isNullValue() && !C2
->isNullValue())) {
2091 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2092 // other way if possible.
2093 // Also, if C1 is null and C2 isn't, flip them around.
2094 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
2095 return ConstantExpr::getICmp(pred
, C2
, C1
);
2101 /// Test whether the given sequence of *normalized* indices is "inbounds".
2102 template<typename IndexTy
>
2103 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2104 // No indices means nothing that could be out of bounds.
2105 if (Idxs
.empty()) return true;
2107 // If the first index is zero, it's in bounds.
2108 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2110 // If the first index is one and all the rest are zero, it's in bounds,
2111 // by the one-past-the-end rule.
2112 if (auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[0])) {
2116 auto *CV
= cast
<ConstantDataVector
>(Idxs
[0]);
2117 CI
= dyn_cast_or_null
<ConstantInt
>(CV
->getSplatValue());
2118 if (!CI
|| !CI
->isOne())
2122 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2123 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2128 /// Test whether a given ConstantInt is in-range for a SequentialType.
2129 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2130 const ConstantInt
*CI
) {
2131 // We cannot bounds check the index if it doesn't fit in an int64_t.
2132 if (CI
->getValue().getMinSignedBits() > 64)
2135 // A negative index or an index past the end of our sequential type is
2136 // considered out-of-range.
2137 int64_t IndexVal
= CI
->getSExtValue();
2138 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2141 // Otherwise, it is in-range.
2145 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2147 Optional
<unsigned> InRangeIndex
,
2148 ArrayRef
<Value
*> Idxs
) {
2149 if (Idxs
.empty()) return C
;
2151 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2152 PointeeTy
, C
, makeArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
2154 if (isa
<UndefValue
>(C
))
2155 return UndefValue::get(GEPTy
);
2157 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2158 if (Idxs
.size() == 1 && (Idx0
->isNullValue() || isa
<UndefValue
>(Idx0
)))
2159 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
2160 ? ConstantVector::getSplat(
2161 cast
<VectorType
>(GEPTy
)->getNumElements(), C
)
2164 if (C
->isNullValue()) {
2166 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2167 if (!isa
<UndefValue
>(Idxs
[i
]) &&
2168 !cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2173 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2174 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2176 assert(Ty
&& "Invalid indices for GEP!");
2177 Type
*OrigGEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2178 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2179 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2180 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2182 // The GEP returns a vector of pointers when one of more of
2183 // its arguments is a vector.
2184 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2185 if (auto *VT
= dyn_cast
<VectorType
>(Idxs
[i
]->getType())) {
2186 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2191 return Constant::getNullValue(GEPTy
);
2195 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2196 // Combine Indices - If the source pointer to this getelementptr instruction
2197 // is a getelementptr instruction, combine the indices of the two
2198 // getelementptr instructions into a single instruction.
2200 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2201 gep_type_iterator LastI
= gep_type_end(CE
);
2202 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2206 // We cannot combine indices if doing so would take us outside of an
2207 // array or vector. Doing otherwise could trick us if we evaluated such a
2208 // GEP as part of a load.
2210 // e.g. Consider if the original GEP was:
2211 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2212 // i32 0, i32 0, i64 0)
2214 // If we then tried to offset it by '8' to get to the third element,
2215 // an i8, we should *not* get:
2216 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2217 // i32 0, i32 0, i64 8)
2219 // This GEP tries to index array element '8 which runs out-of-bounds.
2220 // Subsequent evaluation would get confused and produce erroneous results.
2222 // The following prohibits such a GEP from being formed by checking to see
2223 // if the index is in-range with respect to an array.
2224 // TODO: This code may be extended to handle vectors as well.
2225 bool PerformFold
= false;
2226 if (Idx0
->isNullValue())
2228 else if (LastI
.isSequential())
2229 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2230 PerformFold
= (!LastI
.isBoundedSequential() ||
2231 isIndexInRangeOfArrayType(
2232 LastI
.getSequentialNumElements(), CI
)) &&
2233 !CE
->getOperand(CE
->getNumOperands() - 1)
2238 SmallVector
<Value
*, 16> NewIndices
;
2239 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2240 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2242 // Add the last index of the source with the first index of the new GEP.
2243 // Make sure to handle the case when they are actually different types.
2244 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2245 // Otherwise it must be an array.
2246 if (!Idx0
->isNullValue()) {
2247 Type
*IdxTy
= Combined
->getType();
2248 if (IdxTy
!= Idx0
->getType()) {
2249 unsigned CommonExtendedWidth
=
2250 std::max(IdxTy
->getIntegerBitWidth(),
2251 Idx0
->getType()->getIntegerBitWidth());
2252 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2255 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2256 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2257 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2258 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2261 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2265 NewIndices
.push_back(Combined
);
2266 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2268 // The combined GEP normally inherits its index inrange attribute from
2269 // the inner GEP, but if the inner GEP's last index was adjusted by the
2270 // outer GEP, any inbounds attribute on that index is invalidated.
2271 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2272 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2275 return ConstantExpr::getGetElementPtr(
2276 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2277 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2282 // Attempt to fold casts to the same type away. For example, folding:
2284 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2288 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2290 // Don't fold if the cast is changing address spaces.
2291 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2292 PointerType
*SrcPtrTy
=
2293 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2294 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2295 if (SrcPtrTy
&& DstPtrTy
) {
2296 ArrayType
*SrcArrayTy
=
2297 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2298 ArrayType
*DstArrayTy
=
2299 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2300 if (SrcArrayTy
&& DstArrayTy
2301 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2302 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2303 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2304 (Constant
*)CE
->getOperand(0),
2305 Idxs
, InBounds
, InRangeIndex
);
2310 // Check to see if any array indices are not within the corresponding
2311 // notional array or vector bounds. If so, try to determine if they can be
2312 // factored out into preceding dimensions.
2313 SmallVector
<Constant
*, 8> NewIdxs
;
2314 Type
*Ty
= PointeeTy
;
2315 Type
*Prev
= C
->getType();
2317 !isa
<ConstantInt
>(Idxs
[0]) && !isa
<ConstantDataVector
>(Idxs
[0]);
2318 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2319 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2320 if (!isa
<ConstantInt
>(Idxs
[i
]) && !isa
<ConstantDataVector
>(Idxs
[i
])) {
2321 // We don't know if it's in range or not.
2325 if (!isa
<ConstantInt
>(Idxs
[i
- 1]) && !isa
<ConstantDataVector
>(Idxs
[i
- 1]))
2326 // Skip if the type of the previous index is not supported.
2328 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2329 // If an index is marked inrange, we cannot apply this canonicalization to
2330 // the following index, as that will cause the inrange index to point to
2331 // the wrong element.
2334 if (isa
<StructType
>(Ty
)) {
2335 // The verify makes sure that GEPs into a struct are in range.
2338 auto *STy
= cast
<SequentialType
>(Ty
);
2339 if (isa
<VectorType
>(STy
)) {
2340 // There can be awkward padding in after a non-power of two vector.
2344 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idxs
[i
])) {
2345 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2346 // It's in range, skip to the next index.
2348 if (CI
->getSExtValue() < 0) {
2349 // It's out of range and negative, don't try to factor it.
2354 auto *CV
= cast
<ConstantDataVector
>(Idxs
[i
]);
2355 bool InRange
= true;
2356 for (unsigned I
= 0, E
= CV
->getNumElements(); I
!= E
; ++I
) {
2357 auto *CI
= cast
<ConstantInt
>(CV
->getElementAsConstant(I
));
2358 InRange
&= isIndexInRangeOfArrayType(STy
->getNumElements(), CI
);
2359 if (CI
->getSExtValue() < 0) {
2364 if (InRange
|| Unknown
)
2365 // It's in range, skip to the next index.
2366 // It's out of range and negative, don't try to factor it.
2369 if (isa
<StructType
>(Prev
)) {
2370 // It's out of range, but the prior dimension is a struct
2371 // so we can't do anything about it.
2375 // It's out of range, but we can factor it into the prior
2377 NewIdxs
.resize(Idxs
.size());
2378 // Determine the number of elements in our sequential type.
2379 uint64_t NumElements
= STy
->getArrayNumElements();
2381 // Expand the current index or the previous index to a vector from a scalar
2383 Constant
*CurrIdx
= cast
<Constant
>(Idxs
[i
]);
2385 NewIdxs
[i
- 1] ? NewIdxs
[i
- 1] : cast
<Constant
>(Idxs
[i
- 1]);
2386 bool IsCurrIdxVector
= CurrIdx
->getType()->isVectorTy();
2387 bool IsPrevIdxVector
= PrevIdx
->getType()->isVectorTy();
2388 bool UseVector
= IsCurrIdxVector
|| IsPrevIdxVector
;
2390 if (!IsCurrIdxVector
&& IsPrevIdxVector
)
2391 CurrIdx
= ConstantDataVector::getSplat(
2392 PrevIdx
->getType()->getVectorNumElements(), CurrIdx
);
2394 if (!IsPrevIdxVector
&& IsCurrIdxVector
)
2395 PrevIdx
= ConstantDataVector::getSplat(
2396 CurrIdx
->getType()->getVectorNumElements(), PrevIdx
);
2399 ConstantInt::get(CurrIdx
->getType()->getScalarType(), NumElements
);
2401 Factor
= ConstantDataVector::getSplat(
2402 IsPrevIdxVector
? PrevIdx
->getType()->getVectorNumElements()
2403 : CurrIdx
->getType()->getVectorNumElements(),
2406 NewIdxs
[i
] = ConstantExpr::getSRem(CurrIdx
, Factor
);
2408 Constant
*Div
= ConstantExpr::getSDiv(CurrIdx
, Factor
);
2410 unsigned CommonExtendedWidth
=
2411 std::max(PrevIdx
->getType()->getScalarSizeInBits(),
2412 Div
->getType()->getScalarSizeInBits());
2413 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2415 // Before adding, extend both operands to i64 to avoid
2416 // overflow trouble.
2417 Type
*ExtendedTy
= Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
);
2419 ExtendedTy
= VectorType::get(
2420 ExtendedTy
, IsPrevIdxVector
2421 ? PrevIdx
->getType()->getVectorNumElements()
2422 : CurrIdx
->getType()->getVectorNumElements());
2424 if (!PrevIdx
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2425 PrevIdx
= ConstantExpr::getSExt(PrevIdx
, ExtendedTy
);
2427 if (!Div
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2428 Div
= ConstantExpr::getSExt(Div
, ExtendedTy
);
2430 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2433 // If we did any factoring, start over with the adjusted indices.
2434 if (!NewIdxs
.empty()) {
2435 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2436 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2437 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2441 // If all indices are known integers and normalized, we can do a simple
2442 // check for the "inbounds" property.
2443 if (!Unknown
&& !InBounds
)
2444 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2445 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2446 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2447 /*InBounds=*/true, InRangeIndex
);