[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Target / AArch64 / AArch64CallLowering.cpp
bloba4f2bac8d604d2b06a94334f3a7e63417f578e61
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
47 #define DEBUG_TYPE "aarch64-call-lowering"
49 using namespace llvm;
51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52 : CallLowering(&TLI) {}
54 namespace {
55 struct IncomingArgHandler : public CallLowering::ValueHandler {
56 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57 CCAssignFn *AssignFn)
58 : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
60 Register getStackAddress(uint64_t Size, int64_t Offset,
61 MachinePointerInfo &MPO) override {
62 auto &MFI = MIRBuilder.getMF().getFrameInfo();
63 int FI = MFI.CreateFixedObject(Size, Offset, true);
64 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65 Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
66 MIRBuilder.buildFrameIndex(AddrReg, FI);
67 StackUsed = std::max(StackUsed, Size + Offset);
68 return AddrReg;
71 void assignValueToReg(Register ValVReg, Register PhysReg,
72 CCValAssign &VA) override {
73 markPhysRegUsed(PhysReg);
74 switch (VA.getLocInfo()) {
75 default:
76 MIRBuilder.buildCopy(ValVReg, PhysReg);
77 break;
78 case CCValAssign::LocInfo::SExt:
79 case CCValAssign::LocInfo::ZExt:
80 case CCValAssign::LocInfo::AExt: {
81 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
82 MIRBuilder.buildTrunc(ValVReg, Copy);
83 break;
88 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
89 MachinePointerInfo &MPO, CCValAssign &VA) override {
90 // FIXME: Get alignment
91 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
92 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
93 1);
94 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
97 /// How the physical register gets marked varies between formal
98 /// parameters (it's a basic-block live-in), and a call instruction
99 /// (it's an implicit-def of the BL).
100 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
102 bool isIncomingArgumentHandler() const override { return true; }
104 uint64_t StackUsed;
107 struct FormalArgHandler : public IncomingArgHandler {
108 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
109 CCAssignFn *AssignFn)
110 : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
112 void markPhysRegUsed(unsigned PhysReg) override {
113 MIRBuilder.getMRI()->addLiveIn(PhysReg);
114 MIRBuilder.getMBB().addLiveIn(PhysReg);
118 struct CallReturnHandler : public IncomingArgHandler {
119 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
120 MachineInstrBuilder MIB, CCAssignFn *AssignFn)
121 : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
123 void markPhysRegUsed(unsigned PhysReg) override {
124 MIB.addDef(PhysReg, RegState::Implicit);
127 MachineInstrBuilder MIB;
130 struct OutgoingArgHandler : public CallLowering::ValueHandler {
131 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
132 MachineInstrBuilder MIB, CCAssignFn *AssignFn,
133 CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
134 int FPDiff = 0)
135 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
136 AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
137 StackSize(0) {}
139 Register getStackAddress(uint64_t Size, int64_t Offset,
140 MachinePointerInfo &MPO) override {
141 MachineFunction &MF = MIRBuilder.getMF();
142 LLT p0 = LLT::pointer(0, 64);
143 LLT s64 = LLT::scalar(64);
145 if (IsTailCall) {
146 Offset += FPDiff;
147 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
148 Register FIReg = MRI.createGenericVirtualRegister(p0);
149 MIRBuilder.buildFrameIndex(FIReg, FI);
150 MPO = MachinePointerInfo::getFixedStack(MF, FI);
151 return FIReg;
154 Register SPReg = MRI.createGenericVirtualRegister(p0);
155 MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));
157 Register OffsetReg = MRI.createGenericVirtualRegister(s64);
158 MIRBuilder.buildConstant(OffsetReg, Offset);
160 Register AddrReg = MRI.createGenericVirtualRegister(p0);
161 MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg);
163 MPO = MachinePointerInfo::getStack(MF, Offset);
164 return AddrReg;
167 void assignValueToReg(Register ValVReg, Register PhysReg,
168 CCValAssign &VA) override {
169 MIB.addUse(PhysReg, RegState::Implicit);
170 Register ExtReg = extendRegister(ValVReg, VA);
171 MIRBuilder.buildCopy(PhysReg, ExtReg);
174 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
175 MachinePointerInfo &MPO, CCValAssign &VA) override {
176 if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
177 Size = VA.getLocVT().getSizeInBits() / 8;
178 ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
179 ->getOperand(0)
180 .getReg();
182 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
183 MPO, MachineMemOperand::MOStore, Size, 1);
184 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
187 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
188 CCValAssign::LocInfo LocInfo,
189 const CallLowering::ArgInfo &Info,
190 ISD::ArgFlagsTy Flags,
191 CCState &State) override {
192 bool Res;
193 if (Info.IsFixed)
194 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
195 else
196 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
198 StackSize = State.getNextStackOffset();
199 return Res;
202 MachineInstrBuilder MIB;
203 CCAssignFn *AssignFnVarArg;
204 bool IsTailCall;
206 /// For tail calls, the byte offset of the call's argument area from the
207 /// callee's. Unused elsewhere.
208 int FPDiff;
209 uint64_t StackSize;
211 } // namespace
213 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
214 return CallConv == CallingConv::Fast && TailCallOpt;
217 void AArch64CallLowering::splitToValueTypes(
218 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
219 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
220 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
221 LLVMContext &Ctx = OrigArg.Ty->getContext();
223 if (OrigArg.Ty->isVoidTy())
224 return;
226 SmallVector<EVT, 4> SplitVTs;
227 SmallVector<uint64_t, 4> Offsets;
228 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
230 if (SplitVTs.size() == 1) {
231 // No splitting to do, but we want to replace the original type (e.g. [1 x
232 // double] -> double).
233 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
234 OrigArg.Flags[0], OrigArg.IsFixed);
235 return;
238 // Create one ArgInfo for each virtual register in the original ArgInfo.
239 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
241 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
242 OrigArg.Ty, CallConv, false);
243 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
244 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
245 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
246 OrigArg.IsFixed);
247 if (NeedsRegBlock)
248 SplitArgs.back().Flags[0].setInConsecutiveRegs();
251 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
254 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
255 const Value *Val,
256 ArrayRef<Register> VRegs,
257 Register SwiftErrorVReg) const {
258 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
259 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
260 "Return value without a vreg");
262 bool Success = true;
263 if (!VRegs.empty()) {
264 MachineFunction &MF = MIRBuilder.getMF();
265 const Function &F = MF.getFunction();
267 MachineRegisterInfo &MRI = MF.getRegInfo();
268 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
269 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
270 auto &DL = F.getParent()->getDataLayout();
271 LLVMContext &Ctx = Val->getType()->getContext();
273 SmallVector<EVT, 4> SplitEVTs;
274 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
275 assert(VRegs.size() == SplitEVTs.size() &&
276 "For each split Type there should be exactly one VReg.");
278 SmallVector<ArgInfo, 8> SplitArgs;
279 CallingConv::ID CC = F.getCallingConv();
281 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
282 if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
283 LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
284 return false;
287 Register CurVReg = VRegs[i];
288 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
289 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
291 // i1 is a special case because SDAG i1 true is naturally zero extended
292 // when widened using ANYEXT. We need to do it explicitly here.
293 if (MRI.getType(CurVReg).getSizeInBits() == 1) {
294 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
295 } else {
296 // Some types will need extending as specified by the CC.
297 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
298 if (EVT(NewVT) != SplitEVTs[i]) {
299 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
300 if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
301 Attribute::SExt))
302 ExtendOp = TargetOpcode::G_SEXT;
303 else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
304 Attribute::ZExt))
305 ExtendOp = TargetOpcode::G_ZEXT;
307 LLT NewLLT(NewVT);
308 LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
309 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
310 // Instead of an extend, we might have a vector type which needs
311 // padding with more elements, e.g. <2 x half> -> <4 x half>.
312 if (NewVT.isVector()) {
313 if (OldLLT.isVector()) {
314 if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
315 // We don't handle VA types which are not exactly twice the
316 // size, but can easily be done in future.
317 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
318 LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
319 return false;
321 auto Undef = MIRBuilder.buildUndef({OldLLT});
322 CurVReg =
323 MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
324 .getReg(0);
325 } else {
326 // Just do a vector extend.
327 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
328 .getReg(0);
330 } else if (NewLLT.getNumElements() == 2) {
331 // We need to pad a <1 x S> type to <2 x S>. Since we don't have
332 // <1 x S> vector types in GISel we use a build_vector instead
333 // of a vector merge/concat.
334 auto Undef = MIRBuilder.buildUndef({OldLLT});
335 CurVReg =
336 MIRBuilder
337 .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
338 .getReg(0);
339 } else {
340 LLVM_DEBUG(dbgs() << "Could not handle ret ty");
341 return false;
343 } else {
344 // A scalar extend.
345 CurVReg =
346 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
350 if (CurVReg != CurArgInfo.Regs[0]) {
351 CurArgInfo.Regs[0] = CurVReg;
352 // Reset the arg flags after modifying CurVReg.
353 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
355 splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
358 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
359 Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
362 if (SwiftErrorVReg) {
363 MIB.addUse(AArch64::X21, RegState::Implicit);
364 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
367 MIRBuilder.insertInstr(MIB);
368 return Success;
371 bool AArch64CallLowering::lowerFormalArguments(
372 MachineIRBuilder &MIRBuilder, const Function &F,
373 ArrayRef<ArrayRef<Register>> VRegs) const {
374 MachineFunction &MF = MIRBuilder.getMF();
375 MachineBasicBlock &MBB = MIRBuilder.getMBB();
376 MachineRegisterInfo &MRI = MF.getRegInfo();
377 auto &DL = F.getParent()->getDataLayout();
379 SmallVector<ArgInfo, 8> SplitArgs;
380 unsigned i = 0;
381 for (auto &Arg : F.args()) {
382 if (DL.getTypeStoreSize(Arg.getType()) == 0)
383 continue;
385 ArgInfo OrigArg{VRegs[i], Arg.getType()};
386 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
388 splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
389 ++i;
392 if (!MBB.empty())
393 MIRBuilder.setInstr(*MBB.begin());
395 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
396 CCAssignFn *AssignFn =
397 TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
399 FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
400 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
401 return false;
403 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
404 uint64_t StackOffset = Handler.StackUsed;
405 if (F.isVarArg()) {
406 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
407 if (!Subtarget.isTargetDarwin()) {
408 // FIXME: we need to reimplement saveVarArgsRegisters from
409 // AArch64ISelLowering.
410 return false;
413 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
414 StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
416 auto &MFI = MIRBuilder.getMF().getFrameInfo();
417 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
420 if (doesCalleeRestoreStack(F.getCallingConv(),
421 MF.getTarget().Options.GuaranteedTailCallOpt)) {
422 // We have a non-standard ABI, so why not make full use of the stack that
423 // we're going to pop? It must be aligned to 16 B in any case.
424 StackOffset = alignTo(StackOffset, 16);
426 // If we're expected to restore the stack (e.g. fastcc), then we'll be
427 // adding a multiple of 16.
428 FuncInfo->setArgumentStackToRestore(StackOffset);
430 // Our own callers will guarantee that the space is free by giving an
431 // aligned value to CALLSEQ_START.
434 // When we tail call, we need to check if the callee's arguments
435 // will fit on the caller's stack. So, whenever we lower formal arguments,
436 // we should keep track of this information, since we might lower a tail call
437 // in this function later.
438 FuncInfo->setBytesInStackArgArea(StackOffset);
440 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
441 if (Subtarget.hasCustomCallingConv())
442 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
444 // Move back to the end of the basic block.
445 MIRBuilder.setMBB(MBB);
447 return true;
450 /// Return true if the calling convention is one that we can guarantee TCO for.
451 static bool canGuaranteeTCO(CallingConv::ID CC) {
452 return CC == CallingConv::Fast;
455 /// Return true if we might ever do TCO for calls with this calling convention.
456 static bool mayTailCallThisCC(CallingConv::ID CC) {
457 switch (CC) {
458 case CallingConv::C:
459 case CallingConv::PreserveMost:
460 case CallingConv::Swift:
461 return true;
462 default:
463 return canGuaranteeTCO(CC);
467 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
468 CallLoweringInfo &Info, MachineFunction &MF,
469 SmallVectorImpl<ArgInfo> &InArgs) const {
470 const Function &CallerF = MF.getFunction();
471 CallingConv::ID CalleeCC = Info.CallConv;
472 CallingConv::ID CallerCC = CallerF.getCallingConv();
474 // If the calling conventions match, then everything must be the same.
475 if (CalleeCC == CallerCC)
476 return true;
478 // Check if the caller and callee will handle arguments in the same way.
479 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
480 CCAssignFn *CalleeAssignFn = TLI.CCAssignFnForCall(CalleeCC, Info.IsVarArg);
481 CCAssignFn *CallerAssignFn =
482 TLI.CCAssignFnForCall(CallerCC, CallerF.isVarArg());
484 if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFn, *CallerAssignFn))
485 return false;
487 // Make sure that the caller and callee preserve all of the same registers.
488 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
489 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
490 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
491 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
492 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
493 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
496 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
499 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
500 CallLoweringInfo &Info, MachineFunction &MF,
501 SmallVectorImpl<ArgInfo> &OutArgs) const {
502 // If there are no outgoing arguments, then we are done.
503 if (OutArgs.empty())
504 return true;
506 const Function &CallerF = MF.getFunction();
507 CallingConv::ID CalleeCC = Info.CallConv;
508 CallingConv::ID CallerCC = CallerF.getCallingConv();
509 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
511 // We have outgoing arguments. Make sure that we can tail call with them.
512 SmallVector<CCValAssign, 16> OutLocs;
513 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
515 if (!analyzeArgInfo(OutInfo, OutArgs,
516 *TLI.CCAssignFnForCall(CalleeCC, Info.IsVarArg))) {
517 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
518 return false;
521 // Make sure that they can fit on the caller's stack.
522 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
523 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
524 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
525 return false;
528 // Verify that the parameters in callee-saved registers match.
529 // TODO: Port this over to CallLowering as general code once swiftself is
530 // supported.
531 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
532 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
533 MachineRegisterInfo &MRI = MF.getRegInfo();
535 for (unsigned i = 0; i < OutLocs.size(); ++i) {
536 auto &ArgLoc = OutLocs[i];
537 // If it's not a register, it's fine.
538 if (!ArgLoc.isRegLoc()) {
539 if (Info.IsVarArg) {
540 // Be conservative and disallow variadic memory operands to match SDAG's
541 // behaviour.
542 // FIXME: If the caller's calling convention is C, then we can
543 // potentially use its argument area. However, for cases like fastcc,
544 // we can't do anything.
545 LLVM_DEBUG(
546 dbgs()
547 << "... Cannot tail call vararg function with stack arguments\n");
548 return false;
550 continue;
553 Register Reg = ArgLoc.getLocReg();
555 // Only look at callee-saved registers.
556 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
557 continue;
559 LLVM_DEBUG(
560 dbgs()
561 << "... Call has an argument passed in a callee-saved register.\n");
563 // Check if it was copied from.
564 ArgInfo &OutInfo = OutArgs[i];
566 if (OutInfo.Regs.size() > 1) {
567 LLVM_DEBUG(
568 dbgs() << "... Cannot handle arguments in multiple registers.\n");
569 return false;
572 // Check if we copy the register, walking through copies from virtual
573 // registers. Note that getDefIgnoringCopies does not ignore copies from
574 // physical registers.
575 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
576 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
577 LLVM_DEBUG(
578 dbgs()
579 << "... Parameter was not copied into a VReg, cannot tail call.\n");
580 return false;
583 // Got a copy. Verify that it's the same as the register we want.
584 Register CopyRHS = RegDef->getOperand(1).getReg();
585 if (CopyRHS != Reg) {
586 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
587 "VReg, cannot tail call.\n");
588 return false;
592 return true;
595 bool AArch64CallLowering::isEligibleForTailCallOptimization(
596 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
597 SmallVectorImpl<ArgInfo> &InArgs,
598 SmallVectorImpl<ArgInfo> &OutArgs) const {
600 // Must pass all target-independent checks in order to tail call optimize.
601 if (!Info.IsTailCall)
602 return false;
604 CallingConv::ID CalleeCC = Info.CallConv;
605 MachineFunction &MF = MIRBuilder.getMF();
606 const Function &CallerF = MF.getFunction();
608 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
610 if (Info.SwiftErrorVReg) {
611 // TODO: We should handle this.
612 // Note that this is also handled by the check for no outgoing arguments.
613 // Proactively disabling this though, because the swifterror handling in
614 // lowerCall inserts a COPY *after* the location of the call.
615 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
616 return false;
619 if (!mayTailCallThisCC(CalleeCC)) {
620 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
621 return false;
624 // Byval parameters hand the function a pointer directly into the stack area
625 // we want to reuse during a tail call. Working around this *is* possible (see
626 // X86).
628 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
629 // it?
631 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
632 // In this case, it is necessary to save/restore X0 in the callee. Tail
633 // call opt interferes with this. So we disable tail call opt when the
634 // caller has an argument with "inreg" attribute.
636 // FIXME: Check whether the callee also has an "inreg" argument.
638 // When the caller has a swifterror argument, we don't want to tail call
639 // because would have to move into the swifterror register before the
640 // tail call.
641 if (any_of(CallerF.args(), [](const Argument &A) {
642 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
643 })) {
644 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
645 "inreg, or swifterror arguments\n");
646 return false;
649 // Externally-defined functions with weak linkage should not be
650 // tail-called on AArch64 when the OS does not support dynamic
651 // pre-emption of symbols, as the AAELF spec requires normal calls
652 // to undefined weak functions to be replaced with a NOP or jump to the
653 // next instruction. The behaviour of branch instructions in this
654 // situation (as used for tail calls) is implementation-defined, so we
655 // cannot rely on the linker replacing the tail call with a return.
656 if (Info.Callee.isGlobal()) {
657 const GlobalValue *GV = Info.Callee.getGlobal();
658 const Triple &TT = MF.getTarget().getTargetTriple();
659 if (GV->hasExternalWeakLinkage() &&
660 (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
661 TT.isOSBinFormatMachO())) {
662 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
663 "with weak linkage for this OS.\n");
664 return false;
668 // If we have -tailcallopt, then we're done.
669 if (MF.getTarget().Options.GuaranteedTailCallOpt)
670 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
672 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
673 // Try to find cases where we can do that.
675 // I want anyone implementing a new calling convention to think long and hard
676 // about this assert.
677 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
678 "Unexpected variadic calling convention");
680 // Before we can musttail varargs, we need to forward parameters like in
681 // r345641. Make sure that we don't enable musttail with varargs without
682 // addressing that!
683 if (Info.IsVarArg && Info.IsMustTailCall) {
684 LLVM_DEBUG(
685 dbgs()
686 << "... Cannot handle vararg musttail functions yet.\n");
687 return false;
690 // Verify that the incoming and outgoing arguments from the callee are
691 // safe to tail call.
692 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
693 LLVM_DEBUG(
694 dbgs()
695 << "... Caller and callee have incompatible calling conventions.\n");
696 return false;
699 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
700 return false;
702 LLVM_DEBUG(
703 dbgs() << "... Call is eligible for tail call optimization.\n");
704 return true;
707 static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect,
708 bool IsTailCall) {
709 if (!IsTailCall)
710 return IsIndirect ? AArch64::BLR : AArch64::BL;
712 if (!IsIndirect)
713 return AArch64::TCRETURNdi;
715 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
716 // x16 or x17.
717 if (CallerF.hasFnAttribute("branch-target-enforcement"))
718 return AArch64::TCRETURNriBTI;
720 return AArch64::TCRETURNri;
723 bool AArch64CallLowering::lowerTailCall(
724 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
725 SmallVectorImpl<ArgInfo> &OutArgs) const {
726 MachineFunction &MF = MIRBuilder.getMF();
727 const Function &F = MF.getFunction();
728 MachineRegisterInfo &MRI = MF.getRegInfo();
729 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
731 // True when we're tail calling, but without -tailcallopt.
732 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
734 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
735 // register class. Until we can do that, we should fall back here.
736 if (F.hasFnAttribute("branch-target-enforcement")) {
737 LLVM_DEBUG(
738 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
739 return false;
742 // Find out which ABI gets to decide where things go.
743 CallingConv::ID CalleeCC = Info.CallConv;
744 CCAssignFn *AssignFnFixed =
745 TLI.CCAssignFnForCall(CalleeCC, /*IsVarArg=*/false);
746 CCAssignFn *AssignFnVarArg =
747 TLI.CCAssignFnForCall(CalleeCC, /*IsVarArg=*/true);
749 MachineInstrBuilder CallSeqStart;
750 if (!IsSibCall)
751 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
753 unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true);
754 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
755 MIB.add(Info.Callee);
757 // Byte offset for the tail call. When we are sibcalling, this will always
758 // be 0.
759 MIB.addImm(0);
761 // Tell the call which registers are clobbered.
762 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
763 const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
764 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
765 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
766 MIB.addRegMask(Mask);
768 if (TRI->isAnyArgRegReserved(MF))
769 TRI->emitReservedArgRegCallError(MF);
771 // FPDiff is the byte offset of the call's argument area from the callee's.
772 // Stores to callee stack arguments will be placed in FixedStackSlots offset
773 // by this amount for a tail call. In a sibling call it must be 0 because the
774 // caller will deallocate the entire stack and the callee still expects its
775 // arguments to begin at SP+0.
776 int FPDiff = 0;
778 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
779 // by -tailcallopt. For sibcalls, the memory operands for the call are
780 // already available in the caller's incoming argument space.
781 unsigned NumBytes = 0;
782 if (!IsSibCall) {
783 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
784 // before handling assignments, because FPDiff must be known for memory
785 // arguments.
786 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
787 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
788 SmallVector<CCValAssign, 16> OutLocs;
789 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
790 analyzeArgInfo(OutInfo, OutArgs,
791 *TLI.CCAssignFnForCall(CalleeCC, Info.IsVarArg));
793 // The callee will pop the argument stack as a tail call. Thus, we must
794 // keep it 16-byte aligned.
795 NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
797 // FPDiff will be negative if this tail call requires more space than we
798 // would automatically have in our incoming argument space. Positive if we
799 // actually shrink the stack.
800 FPDiff = NumReusableBytes - NumBytes;
802 // The stack pointer must be 16-byte aligned at all times it's used for a
803 // memory operation, which in practice means at *all* times and in
804 // particular across call boundaries. Therefore our own arguments started at
805 // a 16-byte aligned SP and the delta applied for the tail call should
806 // satisfy the same constraint.
807 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
810 // Do the actual argument marshalling.
811 SmallVector<unsigned, 8> PhysRegs;
812 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
813 AssignFnVarArg, true, FPDiff);
814 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
815 return false;
817 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
818 // sequence start and end here.
819 if (!IsSibCall) {
820 MIB->getOperand(1).setImm(FPDiff);
821 CallSeqStart.addImm(NumBytes).addImm(0);
822 // End the call sequence *before* emitting the call. Normally, we would
823 // tidy the frame up after the call. However, here, we've laid out the
824 // parameters so that when SP is reset, they will be in the correct
825 // location.
826 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
829 // Now we can add the actual call instruction to the correct basic block.
830 MIRBuilder.insertInstr(MIB);
832 // If Callee is a reg, since it is used by a target specific instruction,
833 // it must have a register class matching the constraint of that instruction.
834 if (Info.Callee.isReg())
835 MIB->getOperand(0).setReg(constrainOperandRegClass(
836 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
837 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
838 0));
840 MF.getFrameInfo().setHasTailCall();
841 Info.LoweredTailCall = true;
842 return true;
845 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
846 CallLoweringInfo &Info) const {
847 MachineFunction &MF = MIRBuilder.getMF();
848 const Function &F = MF.getFunction();
849 MachineRegisterInfo &MRI = MF.getRegInfo();
850 auto &DL = F.getParent()->getDataLayout();
851 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
853 SmallVector<ArgInfo, 8> OutArgs;
854 for (auto &OrigArg : Info.OrigArgs) {
855 splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
856 // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
857 if (OrigArg.Ty->isIntegerTy(1))
858 OutArgs.back().Flags[0].setZExt();
861 SmallVector<ArgInfo, 8> InArgs;
862 if (!Info.OrigRet.Ty->isVoidTy())
863 splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
865 // If we can lower as a tail call, do that instead.
866 bool CanTailCallOpt =
867 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
869 // We must emit a tail call if we have musttail.
870 if (Info.IsMustTailCall && !CanTailCallOpt) {
871 // There are types of incoming/outgoing arguments we can't handle yet, so
872 // it doesn't make sense to actually die here like in ISelLowering. Instead,
873 // fall back to SelectionDAG and let it try to handle this.
874 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
875 return false;
878 if (CanTailCallOpt)
879 return lowerTailCall(MIRBuilder, Info, OutArgs);
881 // Find out which ABI gets to decide where things go.
882 CCAssignFn *AssignFnFixed =
883 TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/false);
884 CCAssignFn *AssignFnVarArg =
885 TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/true);
887 MachineInstrBuilder CallSeqStart;
888 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
890 // Create a temporarily-floating call instruction so we can add the implicit
891 // uses of arg registers.
892 unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false);
894 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
895 MIB.add(Info.Callee);
897 // Tell the call which registers are clobbered.
898 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
899 const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
900 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
901 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
902 MIB.addRegMask(Mask);
904 if (TRI->isAnyArgRegReserved(MF))
905 TRI->emitReservedArgRegCallError(MF);
907 // Do the actual argument marshalling.
908 SmallVector<unsigned, 8> PhysRegs;
909 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
910 AssignFnVarArg, false);
911 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
912 return false;
914 // Now we can add the actual call instruction to the correct basic block.
915 MIRBuilder.insertInstr(MIB);
917 // If Callee is a reg, since it is used by a target specific
918 // instruction, it must have a register class matching the
919 // constraint of that instruction.
920 if (Info.Callee.isReg())
921 MIB->getOperand(0).setReg(constrainOperandRegClass(
922 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
923 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
924 0));
926 // Finally we can copy the returned value back into its virtual-register. In
927 // symmetry with the arugments, the physical register must be an
928 // implicit-define of the call instruction.
929 if (!Info.OrigRet.Ty->isVoidTy()) {
930 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
931 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
932 if (!handleAssignments(MIRBuilder, InArgs, Handler))
933 return false;
936 if (Info.SwiftErrorVReg) {
937 MIB.addDef(AArch64::X21, RegState::Implicit);
938 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
941 uint64_t CalleePopBytes =
942 doesCalleeRestoreStack(Info.CallConv,
943 MF.getTarget().Options.GuaranteedTailCallOpt)
944 ? alignTo(Handler.StackSize, 16)
945 : 0;
947 CallSeqStart.addImm(Handler.StackSize).addImm(0);
948 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
949 .addImm(Handler.StackSize)
950 .addImm(CalleePopBytes);
952 return true;