1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the SystemZ target.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
23 #define DEBUG_TYPE "systemz-isel"
26 // Used to build addressing modes.
27 struct SystemZAddressingMode
{
28 // The shape of the address.
33 // base+displacement+index for load and store operands
36 // base+displacement+index for load address operands
39 // base+displacement+index+ADJDYNALLOC
44 // The type of displacement. The enum names here correspond directly
45 // to the definitions in SystemZOperand.td. We could split them into
46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
56 // The parts of the address. The address is equivalent to:
58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
62 bool IncludesDynAlloc
;
64 SystemZAddressingMode(AddrForm form
, DispRange dr
)
65 : Form(form
), DR(dr
), Base(), Disp(0), Index(),
66 IncludesDynAlloc(false) {}
68 // True if the address can have an index register.
69 bool hasIndexField() { return Form
!= FormBD
; }
71 // True if the address can (and must) include ADJDYNALLOC.
72 bool isDynAlloc() { return Form
== FormBDXDynAlloc
; }
74 void dump(const llvm::SelectionDAG
*DAG
) {
75 errs() << "SystemZAddressingMode " << this << '\n';
79 Base
.getNode()->dump(DAG
);
83 if (hasIndexField()) {
86 Index
.getNode()->dump(DAG
);
91 errs() << " Disp " << Disp
;
93 errs() << " + ADJDYNALLOC";
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count
) {
103 return (uint64_t(1) << Count
) - 1;
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
110 // (or (rotl Input, Rotate), ~Mask)
114 // (and (rotl Input, Rotate), Mask)
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands
{
120 RxSBGOperands(unsigned Op
, SDValue N
)
121 : Opcode(Op
), BitSize(N
.getValueSizeInBits()),
122 Mask(allOnes(BitSize
)), Input(N
), Start(64 - BitSize
), End(63),
134 class SystemZDAGToDAGISel
: public SelectionDAGISel
{
135 const SystemZSubtarget
*Subtarget
;
137 // Used by SystemZOperands.td to create integer constants.
138 inline SDValue
getImm(const SDNode
*Node
, uint64_t Imm
) const {
139 return CurDAG
->getTargetConstant(Imm
, SDLoc(Node
), Node
->getValueType(0));
142 const SystemZTargetMachine
&getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine
&>(TM
);
146 const SystemZInstrInfo
*getInstrInfo() const {
147 return Subtarget
->getInstrInfo();
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode
&AM
, bool IsBase
) const;
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N
, SystemZAddressingMode
&AM
) const;
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode
&AM
, EVT VT
,
159 SDValue
&Base
, SDValue
&Disp
) const;
160 void getAddressOperands(const SystemZAddressingMode
&AM
, EVT VT
,
161 SDValue
&Base
, SDValue
&Disp
, SDValue
&Index
) const;
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR
, SDValue Addr
,
167 SDValue
&Base
, SDValue
&Disp
) const;
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR
, SDValue Addr
,
173 SDValue
&Base
, SDValue
&Disp
) const;
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form
,
179 SystemZAddressingMode::DispRange DR
, SDValue Addr
,
180 SDValue
&Base
, SDValue
&Disp
, SDValue
&Index
) const;
182 // PC-relative address matching routines used by SystemZOperands.td.
183 bool selectPCRelAddress(SDValue Addr
, SDValue
&Target
) const {
184 if (SystemZISD::isPCREL(Addr
.getOpcode())) {
185 Target
= Addr
.getOperand(0);
191 // BD matching routines used by SystemZOperands.td.
192 bool selectBDAddr12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only
, Addr
, Base
, Disp
);
195 bool selectBDAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair
, Addr
, Base
, Disp
);
198 bool selectBDAddr20Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only
, Addr
, Base
, Disp
);
201 bool selectBDAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair
, Addr
, Base
, Disp
);
205 // MVI matching routines used by SystemZOperands.td.
206 bool selectMVIAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair
, Addr
, Base
, Disp
);
209 bool selectMVIAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair
, Addr
, Base
, Disp
);
213 // BDX matching routines used by SystemZOperands.td.
214 bool selectBDXAddr12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
215 SDValue
&Index
) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
217 SystemZAddressingMode::Disp12Only
,
218 Addr
, Base
, Disp
, Index
);
220 bool selectBDXAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
221 SDValue
&Index
) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
223 SystemZAddressingMode::Disp12Pair
,
224 Addr
, Base
, Disp
, Index
);
226 bool selectDynAlloc12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
227 SDValue
&Index
) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc
,
229 SystemZAddressingMode::Disp12Only
,
230 Addr
, Base
, Disp
, Index
);
232 bool selectBDXAddr20Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
233 SDValue
&Index
) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
235 SystemZAddressingMode::Disp20Only
,
236 Addr
, Base
, Disp
, Index
);
238 bool selectBDXAddr20Only128(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
239 SDValue
&Index
) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
241 SystemZAddressingMode::Disp20Only128
,
242 Addr
, Base
, Disp
, Index
);
244 bool selectBDXAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
245 SDValue
&Index
) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
247 SystemZAddressingMode::Disp20Pair
,
248 Addr
, Base
, Disp
, Index
);
250 bool selectLAAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
251 SDValue
&Index
) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA
,
253 SystemZAddressingMode::Disp12Pair
,
254 Addr
, Base
, Disp
, Index
);
256 bool selectLAAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
257 SDValue
&Index
) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA
,
259 SystemZAddressingMode::Disp20Pair
,
260 Addr
, Base
, Disp
, Index
);
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr
, SDValue Elem
, SDValue
&Base
,
268 SDValue
&Disp
, SDValue
&Index
) const;
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
273 bool detectOrAndInsertion(SDValue
&Op
, uint64_t InsertMask
) const;
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands
&RxSBG
, uint64_t Mask
) const;
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands
&RxSBG
) const;
283 // Return an undefined value of type VT.
284 SDValue
getUNDEF(const SDLoc
&DL
, EVT VT
) const;
286 // Convert N to VT, if it isn't already.
287 SDValue
convertTo(const SDLoc
&DL
, EVT VT
, SDValue N
) const;
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode
*N
);
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode
*N
, unsigned Opcode
);
297 // If Op0 is null, then Node is a constant that can be loaded using:
299 // (Opcode UpperVal LowerVal)
301 // If Op0 is nonnull, then Node can be implemented using:
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode
, SDNode
*Node
, SDValue Op0
,
305 uint64_t UpperVal
, uint64_t LowerVal
);
307 void loadVectorConstant(const SystemZVectorConstantInfo
&VCI
,
310 // Try to use gather instruction Opcode to implement vector insertion N.
311 bool tryGather(SDNode
*N
, unsigned Opcode
);
313 // Try to use scatter instruction Opcode to implement store Store.
314 bool tryScatter(StoreSDNode
*Store
, unsigned Opcode
);
316 // Change a chain of {load; op; store} of the same value into a simple op
317 // through memory of that value, if the uses of the modified value and its
318 // address are suitable.
319 bool tryFoldLoadStoreIntoMemOperand(SDNode
*Node
);
321 // Return true if Load and Store are loads and stores of the same size
322 // and are guaranteed not to overlap. Such operations can be implemented
323 // using block (SS-format) instructions.
325 // Partial overlap would lead to incorrect code, since the block operations
326 // are logically bytewise, even though they have a fast path for the
327 // non-overlapping case. We also need to avoid full overlap (i.e. two
328 // addresses that might be equal at run time) because although that case
329 // would be handled correctly, it might be implemented by millicode.
330 bool canUseBlockOperation(StoreSDNode
*Store
, LoadSDNode
*Load
) const;
332 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
334 bool storeLoadCanUseMVC(SDNode
*N
) const;
336 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
337 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
339 bool storeLoadCanUseBlockBinary(SDNode
*N
, unsigned I
) const;
341 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
342 SDValue
expandSelectBoolean(SDNode
*Node
);
345 SystemZDAGToDAGISel(SystemZTargetMachine
&TM
, CodeGenOpt::Level OptLevel
)
346 : SelectionDAGISel(TM
, OptLevel
) {}
348 bool runOnMachineFunction(MachineFunction
&MF
) override
{
349 Subtarget
= &MF
.getSubtarget
<SystemZSubtarget
>();
350 return SelectionDAGISel::runOnMachineFunction(MF
);
353 // Override MachineFunctionPass.
354 StringRef
getPassName() const override
{
355 return "SystemZ DAG->DAG Pattern Instruction Selection";
358 // Override SelectionDAGISel.
359 void Select(SDNode
*Node
) override
;
360 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
361 std::vector
<SDValue
> &OutOps
) override
;
362 bool IsProfitableToFold(SDValue N
, SDNode
*U
, SDNode
*Root
) const override
;
363 void PreprocessISelDAG() override
;
365 // Include the pieces autogenerated from the target description.
366 #include "SystemZGenDAGISel.inc"
368 } // end anonymous namespace
370 FunctionPass
*llvm::createSystemZISelDag(SystemZTargetMachine
&TM
,
371 CodeGenOpt::Level OptLevel
) {
372 return new SystemZDAGToDAGISel(TM
, OptLevel
);
375 // Return true if Val should be selected as a displacement for an address
376 // with range DR. Here we're interested in the range of both the instruction
377 // described by DR and of any pairing instruction.
378 static bool selectDisp(SystemZAddressingMode::DispRange DR
, int64_t Val
) {
380 case SystemZAddressingMode::Disp12Only
:
381 return isUInt
<12>(Val
);
383 case SystemZAddressingMode::Disp12Pair
:
384 case SystemZAddressingMode::Disp20Only
:
385 case SystemZAddressingMode::Disp20Pair
:
386 return isInt
<20>(Val
);
388 case SystemZAddressingMode::Disp20Only128
:
389 return isInt
<20>(Val
) && isInt
<20>(Val
+ 8);
391 llvm_unreachable("Unhandled displacement range");
394 // Change the base or index in AM to Value, where IsBase selects
395 // between the base and index.
396 static void changeComponent(SystemZAddressingMode
&AM
, bool IsBase
,
404 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
405 // where IsBase selects between the base and index. Try to fold the
406 // ADJDYNALLOC into AM.
407 static bool expandAdjDynAlloc(SystemZAddressingMode
&AM
, bool IsBase
,
409 if (AM
.isDynAlloc() && !AM
.IncludesDynAlloc
) {
410 changeComponent(AM
, IsBase
, Value
);
411 AM
.IncludesDynAlloc
= true;
417 // The base of AM is equivalent to Base + Index. Try to use Index as
418 // the index register.
419 static bool expandIndex(SystemZAddressingMode
&AM
, SDValue Base
,
421 if (AM
.hasIndexField() && !AM
.Index
.getNode()) {
429 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
430 // between the base and index. Try to fold Op1 into AM's displacement.
431 static bool expandDisp(SystemZAddressingMode
&AM
, bool IsBase
,
432 SDValue Op0
, uint64_t Op1
) {
433 // First try adjusting the displacement.
434 int64_t TestDisp
= AM
.Disp
+ Op1
;
435 if (selectDisp(AM
.DR
, TestDisp
)) {
436 changeComponent(AM
, IsBase
, Op0
);
441 // We could consider forcing the displacement into a register and
442 // using it as an index, but it would need to be carefully tuned.
446 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode
&AM
,
448 SDValue N
= IsBase
? AM
.Base
: AM
.Index
;
449 unsigned Opcode
= N
.getOpcode();
450 if (Opcode
== ISD::TRUNCATE
) {
452 Opcode
= N
.getOpcode();
454 if (Opcode
== ISD::ADD
|| CurDAG
->isBaseWithConstantOffset(N
)) {
455 SDValue Op0
= N
.getOperand(0);
456 SDValue Op1
= N
.getOperand(1);
458 unsigned Op0Code
= Op0
->getOpcode();
459 unsigned Op1Code
= Op1
->getOpcode();
461 if (Op0Code
== SystemZISD::ADJDYNALLOC
)
462 return expandAdjDynAlloc(AM
, IsBase
, Op1
);
463 if (Op1Code
== SystemZISD::ADJDYNALLOC
)
464 return expandAdjDynAlloc(AM
, IsBase
, Op0
);
466 if (Op0Code
== ISD::Constant
)
467 return expandDisp(AM
, IsBase
, Op1
,
468 cast
<ConstantSDNode
>(Op0
)->getSExtValue());
469 if (Op1Code
== ISD::Constant
)
470 return expandDisp(AM
, IsBase
, Op0
,
471 cast
<ConstantSDNode
>(Op1
)->getSExtValue());
473 if (IsBase
&& expandIndex(AM
, Op0
, Op1
))
476 if (Opcode
== SystemZISD::PCREL_OFFSET
) {
477 SDValue Full
= N
.getOperand(0);
478 SDValue Base
= N
.getOperand(1);
479 SDValue Anchor
= Base
.getOperand(0);
480 uint64_t Offset
= (cast
<GlobalAddressSDNode
>(Full
)->getOffset() -
481 cast
<GlobalAddressSDNode
>(Anchor
)->getOffset());
482 return expandDisp(AM
, IsBase
, Base
, Offset
);
487 // Return true if an instruction with displacement range DR should be
488 // used for displacement value Val. selectDisp(DR, Val) must already hold.
489 static bool isValidDisp(SystemZAddressingMode::DispRange DR
, int64_t Val
) {
490 assert(selectDisp(DR
, Val
) && "Invalid displacement");
492 case SystemZAddressingMode::Disp12Only
:
493 case SystemZAddressingMode::Disp20Only
:
494 case SystemZAddressingMode::Disp20Only128
:
497 case SystemZAddressingMode::Disp12Pair
:
498 // Use the other instruction if the displacement is too large.
499 return isUInt
<12>(Val
);
501 case SystemZAddressingMode::Disp20Pair
:
502 // Use the other instruction if the displacement is small enough.
503 return !isUInt
<12>(Val
);
505 llvm_unreachable("Unhandled displacement range");
508 // Return true if Base + Disp + Index should be performed by LA(Y).
509 static bool shouldUseLA(SDNode
*Base
, int64_t Disp
, SDNode
*Index
) {
510 // Don't use LA(Y) for constants.
514 // Always use LA(Y) for frame addresses, since we know that the destination
515 // register is almost always (perhaps always) going to be different from
516 // the frame register.
517 if (Base
->getOpcode() == ISD::FrameIndex
)
521 // Always use LA(Y) if there is a base, displacement and index.
525 // Always use LA if the displacement is small enough. It should always
526 // be no worse than AGHI (and better if it avoids a move).
527 if (isUInt
<12>(Disp
))
530 // For similar reasons, always use LAY if the constant is too big for AGHI.
531 // LAY should be no worse than AGFI.
532 if (!isInt
<16>(Disp
))
535 // Don't use LA for plain registers.
539 // Don't use LA for plain addition if the index operand is only used
540 // once. It should be a natural two-operand addition in that case.
541 if (Index
->hasOneUse())
544 // Prefer addition if the second operation is sign-extended, in the
545 // hope of using AGF.
546 unsigned IndexOpcode
= Index
->getOpcode();
547 if (IndexOpcode
== ISD::SIGN_EXTEND
||
548 IndexOpcode
== ISD::SIGN_EXTEND_INREG
)
552 // Don't use LA for two-operand addition if either operand is only
553 // used once. The addition instructions are better in that case.
554 if (Base
->hasOneUse())
560 // Return true if Addr is suitable for AM, updating AM if so.
561 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr
,
562 SystemZAddressingMode
&AM
) const {
563 // Start out assuming that the address will need to be loaded separately,
564 // then try to extend it as much as we can.
567 // First try treating the address as a constant.
568 if (Addr
.getOpcode() == ISD::Constant
&&
569 expandDisp(AM
, true, SDValue(),
570 cast
<ConstantSDNode
>(Addr
)->getSExtValue()))
572 // Also see if it's a bare ADJDYNALLOC.
573 else if (Addr
.getOpcode() == SystemZISD::ADJDYNALLOC
&&
574 expandAdjDynAlloc(AM
, true, SDValue()))
577 // Otherwise try expanding each component.
578 while (expandAddress(AM
, true) ||
579 (AM
.Index
.getNode() && expandAddress(AM
, false)))
582 // Reject cases where it isn't profitable to use LA(Y).
583 if (AM
.Form
== SystemZAddressingMode::FormBDXLA
&&
584 !shouldUseLA(AM
.Base
.getNode(), AM
.Disp
, AM
.Index
.getNode()))
587 // Reject cases where the other instruction in a pair should be used.
588 if (!isValidDisp(AM
.DR
, AM
.Disp
))
591 // Make sure that ADJDYNALLOC is included where necessary.
592 if (AM
.isDynAlloc() && !AM
.IncludesDynAlloc
)
595 LLVM_DEBUG(AM
.dump(CurDAG
));
599 // Insert a node into the DAG at least before Pos. This will reposition
600 // the node as needed, and will assign it a node ID that is <= Pos's ID.
601 // Note that this does *not* preserve the uniqueness of node IDs!
602 // The selection DAG must no longer depend on their uniqueness when this
604 static void insertDAGNode(SelectionDAG
*DAG
, SDNode
*Pos
, SDValue N
) {
605 if (N
->getNodeId() == -1 ||
606 (SelectionDAGISel::getUninvalidatedNodeId(N
.getNode()) >
607 SelectionDAGISel::getUninvalidatedNodeId(Pos
))) {
608 DAG
->RepositionNode(Pos
->getIterator(), N
.getNode());
609 // Mark Node as invalid for pruning as after this it may be a successor to a
610 // selected node but otherwise be in the same position of Pos.
611 // Conservatively mark it with the same -abs(Id) to assure node id
612 // invariant is preserved.
613 N
->setNodeId(Pos
->getNodeId());
614 SelectionDAGISel::InvalidateNodeId(N
.getNode());
618 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode
&AM
,
619 EVT VT
, SDValue
&Base
,
620 SDValue
&Disp
) const {
623 // Register 0 means "no base". This is mostly useful for shifts.
624 Base
= CurDAG
->getRegister(0, VT
);
625 else if (Base
.getOpcode() == ISD::FrameIndex
) {
626 // Lower a FrameIndex to a TargetFrameIndex.
627 int64_t FrameIndex
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
628 Base
= CurDAG
->getTargetFrameIndex(FrameIndex
, VT
);
629 } else if (Base
.getValueType() != VT
) {
630 // Truncate values from i64 to i32, for shifts.
631 assert(VT
== MVT::i32
&& Base
.getValueType() == MVT::i64
&&
632 "Unexpected truncation");
634 SDValue Trunc
= CurDAG
->getNode(ISD::TRUNCATE
, DL
, VT
, Base
);
635 insertDAGNode(CurDAG
, Base
.getNode(), Trunc
);
639 // Lower the displacement to a TargetConstant.
640 Disp
= CurDAG
->getTargetConstant(AM
.Disp
, SDLoc(Base
), VT
);
643 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode
&AM
,
644 EVT VT
, SDValue
&Base
,
646 SDValue
&Index
) const {
647 getAddressOperands(AM
, VT
, Base
, Disp
);
650 if (!Index
.getNode())
651 // Register 0 means "no index".
652 Index
= CurDAG
->getRegister(0, VT
);
655 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR
,
656 SDValue Addr
, SDValue
&Base
,
657 SDValue
&Disp
) const {
658 SystemZAddressingMode
AM(SystemZAddressingMode::FormBD
, DR
);
659 if (!selectAddress(Addr
, AM
))
662 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
);
666 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR
,
667 SDValue Addr
, SDValue
&Base
,
668 SDValue
&Disp
) const {
669 SystemZAddressingMode
AM(SystemZAddressingMode::FormBDXNormal
, DR
);
670 if (!selectAddress(Addr
, AM
) || AM
.Index
.getNode())
673 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
);
677 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form
,
678 SystemZAddressingMode::DispRange DR
,
679 SDValue Addr
, SDValue
&Base
,
680 SDValue
&Disp
, SDValue
&Index
) const {
681 SystemZAddressingMode
AM(Form
, DR
);
682 if (!selectAddress(Addr
, AM
))
685 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
, Index
);
689 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr
, SDValue Elem
,
692 SDValue
&Index
) const {
694 if (selectBDXAddr12Only(Addr
, Regs
[0], Disp
, Regs
[1]) &&
695 Regs
[0].getNode() && Regs
[1].getNode()) {
696 for (unsigned int I
= 0; I
< 2; ++I
) {
699 // We can't tell here whether the index vector has the right type
700 // for the access; the caller needs to do that instead.
701 if (Index
.getOpcode() == ISD::ZERO_EXTEND
)
702 Index
= Index
.getOperand(0);
703 if (Index
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
704 Index
.getOperand(1) == Elem
) {
705 Index
= Index
.getOperand(0);
713 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue
&Op
,
714 uint64_t InsertMask
) const {
715 // We're only interested in cases where the insertion is into some operand
716 // of Op, rather than into Op itself. The only useful case is an AND.
717 if (Op
.getOpcode() != ISD::AND
)
720 // We need a constant mask.
721 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
725 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
726 uint64_t AndMask
= MaskNode
->getZExtValue();
727 if (InsertMask
& AndMask
)
730 // It's only an insertion if all bits are covered or are known to be zero.
731 // The inner check covers all cases but is more expensive.
732 uint64_t Used
= allOnes(Op
.getValueSizeInBits());
733 if (Used
!= (AndMask
| InsertMask
)) {
734 KnownBits Known
= CurDAG
->computeKnownBits(Op
.getOperand(0));
735 if (Used
!= (AndMask
| InsertMask
| Known
.Zero
.getZExtValue()))
739 Op
= Op
.getOperand(0);
743 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands
&RxSBG
,
744 uint64_t Mask
) const {
745 const SystemZInstrInfo
*TII
= getInstrInfo();
746 if (RxSBG
.Rotate
!= 0)
747 Mask
= (Mask
<< RxSBG
.Rotate
) | (Mask
>> (64 - RxSBG
.Rotate
));
749 if (TII
->isRxSBGMask(Mask
, RxSBG
.BitSize
, RxSBG
.Start
, RxSBG
.End
)) {
756 // Return true if any bits of (RxSBG.Input & Mask) are significant.
757 static bool maskMatters(RxSBGOperands
&RxSBG
, uint64_t Mask
) {
758 // Rotate the mask in the same way as RxSBG.Input is rotated.
759 if (RxSBG
.Rotate
!= 0)
760 Mask
= ((Mask
<< RxSBG
.Rotate
) | (Mask
>> (64 - RxSBG
.Rotate
)));
761 return (Mask
& RxSBG
.Mask
) != 0;
764 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands
&RxSBG
) const {
765 SDValue N
= RxSBG
.Input
;
766 unsigned Opcode
= N
.getOpcode();
768 case ISD::TRUNCATE
: {
769 if (RxSBG
.Opcode
== SystemZ::RNSBG
)
771 uint64_t BitSize
= N
.getValueSizeInBits();
772 uint64_t Mask
= allOnes(BitSize
);
773 if (!refineRxSBGMask(RxSBG
, Mask
))
775 RxSBG
.Input
= N
.getOperand(0);
779 if (RxSBG
.Opcode
== SystemZ::RNSBG
)
782 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
786 SDValue Input
= N
.getOperand(0);
787 uint64_t Mask
= MaskNode
->getZExtValue();
788 if (!refineRxSBGMask(RxSBG
, Mask
)) {
789 // If some bits of Input are already known zeros, those bits will have
790 // been removed from the mask. See if adding them back in makes the
792 KnownBits Known
= CurDAG
->computeKnownBits(Input
);
793 Mask
|= Known
.Zero
.getZExtValue();
794 if (!refineRxSBGMask(RxSBG
, Mask
))
802 if (RxSBG
.Opcode
!= SystemZ::RNSBG
)
805 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
809 SDValue Input
= N
.getOperand(0);
810 uint64_t Mask
= ~MaskNode
->getZExtValue();
811 if (!refineRxSBGMask(RxSBG
, Mask
)) {
812 // If some bits of Input are already known ones, those bits will have
813 // been removed from the mask. See if adding them back in makes the
815 KnownBits Known
= CurDAG
->computeKnownBits(Input
);
816 Mask
&= ~Known
.One
.getZExtValue();
817 if (!refineRxSBGMask(RxSBG
, Mask
))
825 // Any 64-bit rotate left can be merged into the RxSBG.
826 if (RxSBG
.BitSize
!= 64 || N
.getValueType() != MVT::i64
)
828 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
832 RxSBG
.Rotate
= (RxSBG
.Rotate
+ CountNode
->getZExtValue()) & 63;
833 RxSBG
.Input
= N
.getOperand(0);
837 case ISD::ANY_EXTEND
:
838 // Bits above the extended operand are don't-care.
839 RxSBG
.Input
= N
.getOperand(0);
842 case ISD::ZERO_EXTEND
:
843 if (RxSBG
.Opcode
!= SystemZ::RNSBG
) {
844 // Restrict the mask to the extended operand.
845 unsigned InnerBitSize
= N
.getOperand(0).getValueSizeInBits();
846 if (!refineRxSBGMask(RxSBG
, allOnes(InnerBitSize
)))
849 RxSBG
.Input
= N
.getOperand(0);
854 case ISD::SIGN_EXTEND
: {
855 // Check that the extension bits are don't-care (i.e. are masked out
856 // by the final mask).
857 unsigned BitSize
= N
.getValueSizeInBits();
858 unsigned InnerBitSize
= N
.getOperand(0).getValueSizeInBits();
859 if (maskMatters(RxSBG
, allOnes(BitSize
) - allOnes(InnerBitSize
))) {
860 // In the case where only the sign bit is active, increase Rotate with
861 // the extension width.
862 if (RxSBG
.Mask
== 1 && RxSBG
.Rotate
== 1)
863 RxSBG
.Rotate
+= (BitSize
- InnerBitSize
);
868 RxSBG
.Input
= N
.getOperand(0);
873 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
877 uint64_t Count
= CountNode
->getZExtValue();
878 unsigned BitSize
= N
.getValueSizeInBits();
879 if (Count
< 1 || Count
>= BitSize
)
882 if (RxSBG
.Opcode
== SystemZ::RNSBG
) {
883 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
884 // count bits from RxSBG.Input are ignored.
885 if (maskMatters(RxSBG
, allOnes(Count
)))
888 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
889 if (!refineRxSBGMask(RxSBG
, allOnes(BitSize
- Count
) << Count
))
893 RxSBG
.Rotate
= (RxSBG
.Rotate
+ Count
) & 63;
894 RxSBG
.Input
= N
.getOperand(0);
900 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
904 uint64_t Count
= CountNode
->getZExtValue();
905 unsigned BitSize
= N
.getValueSizeInBits();
906 if (Count
< 1 || Count
>= BitSize
)
909 if (RxSBG
.Opcode
== SystemZ::RNSBG
|| Opcode
== ISD::SRA
) {
910 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
911 // count bits from RxSBG.Input are ignored.
912 if (maskMatters(RxSBG
, allOnes(Count
) << (BitSize
- Count
)))
915 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
916 // which is similar to SLL above.
917 if (!refineRxSBGMask(RxSBG
, allOnes(BitSize
- Count
)))
921 RxSBG
.Rotate
= (RxSBG
.Rotate
- Count
) & 63;
922 RxSBG
.Input
= N
.getOperand(0);
930 SDValue
SystemZDAGToDAGISel::getUNDEF(const SDLoc
&DL
, EVT VT
) const {
931 SDNode
*N
= CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, VT
);
932 return SDValue(N
, 0);
935 SDValue
SystemZDAGToDAGISel::convertTo(const SDLoc
&DL
, EVT VT
,
937 if (N
.getValueType() == MVT::i32
&& VT
== MVT::i64
)
938 return CurDAG
->getTargetInsertSubreg(SystemZ::subreg_l32
,
939 DL
, VT
, getUNDEF(DL
, MVT::i64
), N
);
940 if (N
.getValueType() == MVT::i64
&& VT
== MVT::i32
)
941 return CurDAG
->getTargetExtractSubreg(SystemZ::subreg_l32
, DL
, VT
, N
);
942 assert(N
.getValueType() == VT
&& "Unexpected value types");
946 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode
*N
) {
948 EVT VT
= N
->getValueType(0);
949 if (!VT
.isInteger() || VT
.getSizeInBits() > 64)
951 RxSBGOperands
RISBG(SystemZ::RISBG
, SDValue(N
, 0));
953 while (expandRxSBG(RISBG
))
954 // The widening or narrowing is expected to be free.
955 // Counting widening or narrowing as a saved operation will result in
956 // preferring an R*SBG over a simple shift/logical instruction.
957 if (RISBG
.Input
.getOpcode() != ISD::ANY_EXTEND
&&
958 RISBG
.Input
.getOpcode() != ISD::TRUNCATE
)
963 // Prefer to use normal shift instructions over RISBG, since they can handle
964 // all cases and are sometimes shorter.
965 if (Count
== 1 && N
->getOpcode() != ISD::AND
)
968 // Prefer register extensions like LLC over RISBG. Also prefer to start
969 // out with normal ANDs if one instruction would be enough. We can convert
970 // these ANDs into an RISBG later if a three-address instruction is useful.
971 if (RISBG
.Rotate
== 0) {
972 bool PreferAnd
= false;
973 // Prefer AND for any 32-bit and-immediate operation.
976 // As well as for any 64-bit operation that can be implemented via LLC(R),
977 // LLH(R), LLGT(R), or one of the and-immediate instructions.
978 else if (RISBG
.Mask
== 0xff ||
979 RISBG
.Mask
== 0xffff ||
980 RISBG
.Mask
== 0x7fffffff ||
981 SystemZ::isImmLF(~RISBG
.Mask
) ||
982 SystemZ::isImmHF(~RISBG
.Mask
))
984 // And likewise for the LLZRGF instruction, which doesn't have a register
985 // to register version.
986 else if (auto *Load
= dyn_cast
<LoadSDNode
>(RISBG
.Input
)) {
987 if (Load
->getMemoryVT() == MVT::i32
&&
988 (Load
->getExtensionType() == ISD::EXTLOAD
||
989 Load
->getExtensionType() == ISD::ZEXTLOAD
) &&
990 RISBG
.Mask
== 0xffffff00 &&
991 Subtarget
->hasLoadAndZeroRightmostByte())
995 // Replace the current node with an AND. Note that the current node
996 // might already be that same AND, in which case it is already CSE'd
997 // with it, and we must not call ReplaceNode.
998 SDValue In
= convertTo(DL
, VT
, RISBG
.Input
);
999 SDValue Mask
= CurDAG
->getConstant(RISBG
.Mask
, DL
, VT
);
1000 SDValue New
= CurDAG
->getNode(ISD::AND
, DL
, VT
, In
, Mask
);
1001 if (N
!= New
.getNode()) {
1002 insertDAGNode(CurDAG
, N
, Mask
);
1003 insertDAGNode(CurDAG
, N
, New
);
1004 ReplaceNode(N
, New
.getNode());
1007 // Now, select the machine opcode to implement this operation.
1008 if (!N
->isMachineOpcode())
1014 unsigned Opcode
= SystemZ::RISBG
;
1015 // Prefer RISBGN if available, since it does not clobber CC.
1016 if (Subtarget
->hasMiscellaneousExtensions())
1017 Opcode
= SystemZ::RISBGN
;
1018 EVT OpcodeVT
= MVT::i64
;
1019 if (VT
== MVT::i32
&& Subtarget
->hasHighWord() &&
1020 // We can only use the 32-bit instructions if all source bits are
1021 // in the low 32 bits without wrapping, both after rotation (because
1022 // of the smaller range for Start and End) and before rotation
1023 // (because the input value is truncated).
1024 RISBG
.Start
>= 32 && RISBG
.End
>= RISBG
.Start
&&
1025 ((RISBG
.Start
+ RISBG
.Rotate
) & 63) >= 32 &&
1026 ((RISBG
.End
+ RISBG
.Rotate
) & 63) >=
1027 ((RISBG
.Start
+ RISBG
.Rotate
) & 63)) {
1028 Opcode
= SystemZ::RISBMux
;
1029 OpcodeVT
= MVT::i32
;
1034 getUNDEF(DL
, OpcodeVT
),
1035 convertTo(DL
, OpcodeVT
, RISBG
.Input
),
1036 CurDAG
->getTargetConstant(RISBG
.Start
, DL
, MVT::i32
),
1037 CurDAG
->getTargetConstant(RISBG
.End
| 128, DL
, MVT::i32
),
1038 CurDAG
->getTargetConstant(RISBG
.Rotate
, DL
, MVT::i32
)
1040 SDValue New
= convertTo(
1041 DL
, VT
, SDValue(CurDAG
->getMachineNode(Opcode
, DL
, OpcodeVT
, Ops
), 0));
1042 ReplaceNode(N
, New
.getNode());
1046 bool SystemZDAGToDAGISel::tryRxSBG(SDNode
*N
, unsigned Opcode
) {
1048 EVT VT
= N
->getValueType(0);
1049 if (!VT
.isInteger() || VT
.getSizeInBits() > 64)
1051 // Try treating each operand of N as the second operand of the RxSBG
1052 // and see which goes deepest.
1053 RxSBGOperands RxSBG
[] = {
1054 RxSBGOperands(Opcode
, N
->getOperand(0)),
1055 RxSBGOperands(Opcode
, N
->getOperand(1))
1057 unsigned Count
[] = { 0, 0 };
1058 for (unsigned I
= 0; I
< 2; ++I
)
1059 while (expandRxSBG(RxSBG
[I
]))
1060 // The widening or narrowing is expected to be free.
1061 // Counting widening or narrowing as a saved operation will result in
1062 // preferring an R*SBG over a simple shift/logical instruction.
1063 if (RxSBG
[I
].Input
.getOpcode() != ISD::ANY_EXTEND
&&
1064 RxSBG
[I
].Input
.getOpcode() != ISD::TRUNCATE
)
1067 // Do nothing if neither operand is suitable.
1068 if (Count
[0] == 0 && Count
[1] == 0)
1071 // Pick the deepest second operand.
1072 unsigned I
= Count
[0] > Count
[1] ? 0 : 1;
1073 SDValue Op0
= N
->getOperand(I
^ 1);
1075 // Prefer IC for character insertions from memory.
1076 if (Opcode
== SystemZ::ROSBG
&& (RxSBG
[I
].Mask
& 0xff) == 0)
1077 if (auto *Load
= dyn_cast
<LoadSDNode
>(Op0
.getNode()))
1078 if (Load
->getMemoryVT() == MVT::i8
)
1081 // See whether we can avoid an AND in the first operand by converting
1083 if (Opcode
== SystemZ::ROSBG
&& detectOrAndInsertion(Op0
, RxSBG
[I
].Mask
)) {
1084 Opcode
= SystemZ::RISBG
;
1085 // Prefer RISBGN if available, since it does not clobber CC.
1086 if (Subtarget
->hasMiscellaneousExtensions())
1087 Opcode
= SystemZ::RISBGN
;
1091 convertTo(DL
, MVT::i64
, Op0
),
1092 convertTo(DL
, MVT::i64
, RxSBG
[I
].Input
),
1093 CurDAG
->getTargetConstant(RxSBG
[I
].Start
, DL
, MVT::i32
),
1094 CurDAG
->getTargetConstant(RxSBG
[I
].End
, DL
, MVT::i32
),
1095 CurDAG
->getTargetConstant(RxSBG
[I
].Rotate
, DL
, MVT::i32
)
1097 SDValue New
= convertTo(
1098 DL
, VT
, SDValue(CurDAG
->getMachineNode(Opcode
, DL
, MVT::i64
, Ops
), 0));
1099 ReplaceNode(N
, New
.getNode());
1103 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode
, SDNode
*Node
,
1104 SDValue Op0
, uint64_t UpperVal
,
1105 uint64_t LowerVal
) {
1106 EVT VT
= Node
->getValueType(0);
1108 SDValue Upper
= CurDAG
->getConstant(UpperVal
, DL
, VT
);
1110 Upper
= CurDAG
->getNode(Opcode
, DL
, VT
, Op0
, Upper
);
1113 // When we haven't passed in Op0, Upper will be a constant. In order to
1114 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1115 // SelectCode first and end up with an opaque machine node. This means that
1116 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1119 // Note that in the case where Op0 is passed in we could just call
1120 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1121 // the handle at all, but it's fine to do it here.
1123 // TODO: This is a pretty hacky way to do this. Can we do something that
1124 // doesn't require a two paragraph explanation?
1125 HandleSDNode
Handle(Upper
);
1126 SelectCode(Upper
.getNode());
1127 Upper
= Handle
.getValue();
1130 SDValue Lower
= CurDAG
->getConstant(LowerVal
, DL
, VT
);
1131 SDValue Or
= CurDAG
->getNode(Opcode
, DL
, VT
, Upper
, Lower
);
1133 ReplaceNode(Node
, Or
.getNode());
1135 SelectCode(Or
.getNode());
1138 void SystemZDAGToDAGISel::loadVectorConstant(
1139 const SystemZVectorConstantInfo
&VCI
, SDNode
*Node
) {
1140 assert((VCI
.Opcode
== SystemZISD::BYTE_MASK
||
1141 VCI
.Opcode
== SystemZISD::REPLICATE
||
1142 VCI
.Opcode
== SystemZISD::ROTATE_MASK
) &&
1144 assert(VCI
.VecVT
.getSizeInBits() == 128 && "Expected a vector type");
1145 EVT VT
= Node
->getValueType(0);
1147 SmallVector
<SDValue
, 2> Ops
;
1148 for (unsigned OpVal
: VCI
.OpVals
)
1149 Ops
.push_back(CurDAG
->getTargetConstant(OpVal
, DL
, MVT::i32
));
1150 SDValue Op
= CurDAG
->getNode(VCI
.Opcode
, DL
, VCI
.VecVT
, Ops
);
1152 if (VCI
.VecVT
== VT
.getSimpleVT())
1153 ReplaceNode(Node
, Op
.getNode());
1154 else if (VT
.getSizeInBits() == 128) {
1155 SDValue BitCast
= CurDAG
->getNode(ISD::BITCAST
, DL
, VT
, Op
);
1156 ReplaceNode(Node
, BitCast
.getNode());
1157 SelectCode(BitCast
.getNode());
1158 } else { // float or double
1159 unsigned SubRegIdx
=
1160 (VT
.getSizeInBits() == 32 ? SystemZ::subreg_h32
: SystemZ::subreg_h64
);
1162 Node
, CurDAG
->getTargetExtractSubreg(SubRegIdx
, DL
, VT
, Op
).getNode());
1164 SelectCode(Op
.getNode());
1167 bool SystemZDAGToDAGISel::tryGather(SDNode
*N
, unsigned Opcode
) {
1168 SDValue ElemV
= N
->getOperand(2);
1169 auto *ElemN
= dyn_cast
<ConstantSDNode
>(ElemV
);
1173 unsigned Elem
= ElemN
->getZExtValue();
1174 EVT VT
= N
->getValueType(0);
1175 if (Elem
>= VT
.getVectorNumElements())
1178 auto *Load
= dyn_cast
<LoadSDNode
>(N
->getOperand(1));
1179 if (!Load
|| !Load
->hasNUsesOfValue(1, 0))
1181 if (Load
->getMemoryVT().getSizeInBits() !=
1182 Load
->getValueType(0).getSizeInBits())
1185 SDValue Base
, Disp
, Index
;
1186 if (!selectBDVAddr12Only(Load
->getBasePtr(), ElemV
, Base
, Disp
, Index
) ||
1187 Index
.getValueType() != VT
.changeVectorElementTypeToInteger())
1192 N
->getOperand(0), Base
, Disp
, Index
,
1193 CurDAG
->getTargetConstant(Elem
, DL
, MVT::i32
), Load
->getChain()
1195 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, DL
, VT
, MVT::Other
, Ops
);
1196 ReplaceUses(SDValue(Load
, 1), SDValue(Res
, 1));
1197 ReplaceNode(N
, Res
);
1201 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode
*Store
, unsigned Opcode
) {
1202 SDValue Value
= Store
->getValue();
1203 if (Value
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
1205 if (Store
->getMemoryVT().getSizeInBits() != Value
.getValueSizeInBits())
1208 SDValue ElemV
= Value
.getOperand(1);
1209 auto *ElemN
= dyn_cast
<ConstantSDNode
>(ElemV
);
1213 SDValue Vec
= Value
.getOperand(0);
1214 EVT VT
= Vec
.getValueType();
1215 unsigned Elem
= ElemN
->getZExtValue();
1216 if (Elem
>= VT
.getVectorNumElements())
1219 SDValue Base
, Disp
, Index
;
1220 if (!selectBDVAddr12Only(Store
->getBasePtr(), ElemV
, Base
, Disp
, Index
) ||
1221 Index
.getValueType() != VT
.changeVectorElementTypeToInteger())
1226 Vec
, Base
, Disp
, Index
, CurDAG
->getTargetConstant(Elem
, DL
, MVT::i32
),
1229 ReplaceNode(Store
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
1233 // Check whether or not the chain ending in StoreNode is suitable for doing
1234 // the {load; op; store} to modify transformation.
1235 static bool isFusableLoadOpStorePattern(StoreSDNode
*StoreNode
,
1236 SDValue StoredVal
, SelectionDAG
*CurDAG
,
1237 LoadSDNode
*&LoadNode
,
1238 SDValue
&InputChain
) {
1239 // Is the stored value result 0 of the operation?
1240 if (StoredVal
.getResNo() != 0)
1243 // Are there other uses of the loaded value than the operation?
1244 if (!StoredVal
.getNode()->hasNUsesOfValue(1, 0))
1247 // Is the store non-extending and non-indexed?
1248 if (!ISD::isNormalStore(StoreNode
) || StoreNode
->isNonTemporal())
1251 SDValue Load
= StoredVal
->getOperand(0);
1252 // Is the stored value a non-extending and non-indexed load?
1253 if (!ISD::isNormalLoad(Load
.getNode()))
1256 // Return LoadNode by reference.
1257 LoadNode
= cast
<LoadSDNode
>(Load
);
1259 // Is store the only read of the loaded value?
1260 if (!Load
.hasOneUse())
1263 // Is the address of the store the same as the load?
1264 if (LoadNode
->getBasePtr() != StoreNode
->getBasePtr() ||
1265 LoadNode
->getOffset() != StoreNode
->getOffset())
1268 // Check if the chain is produced by the load or is a TokenFactor with
1269 // the load output chain as an operand. Return InputChain by reference.
1270 SDValue Chain
= StoreNode
->getChain();
1272 bool ChainCheck
= false;
1273 if (Chain
== Load
.getValue(1)) {
1275 InputChain
= LoadNode
->getChain();
1276 } else if (Chain
.getOpcode() == ISD::TokenFactor
) {
1277 SmallVector
<SDValue
, 4> ChainOps
;
1278 SmallVector
<const SDNode
*, 4> LoopWorklist
;
1279 SmallPtrSet
<const SDNode
*, 16> Visited
;
1280 const unsigned int Max
= 1024;
1281 for (unsigned i
= 0, e
= Chain
.getNumOperands(); i
!= e
; ++i
) {
1282 SDValue Op
= Chain
.getOperand(i
);
1283 if (Op
== Load
.getValue(1)) {
1285 // Drop Load, but keep its chain. No cycle check necessary.
1286 ChainOps
.push_back(Load
.getOperand(0));
1289 LoopWorklist
.push_back(Op
.getNode());
1290 ChainOps
.push_back(Op
);
1294 // Add the other operand of StoredVal to worklist.
1295 for (SDValue Op
: StoredVal
->ops())
1296 if (Op
.getNode() != LoadNode
)
1297 LoopWorklist
.push_back(Op
.getNode());
1299 // Check if Load is reachable from any of the nodes in the worklist.
1300 if (SDNode::hasPredecessorHelper(Load
.getNode(), Visited
, LoopWorklist
, Max
,
1304 // Make a new TokenFactor with all the other input chains except
1306 InputChain
= CurDAG
->getNode(ISD::TokenFactor
, SDLoc(Chain
),
1307 MVT::Other
, ChainOps
);
1316 // Change a chain of {load; op; store} of the same value into a simple op
1317 // through memory of that value, if the uses of the modified value and its
1318 // address are suitable.
1320 // The tablegen pattern memory operand pattern is currently not able to match
1321 // the case where the CC on the original operation are used.
1323 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1324 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode
*Node
) {
1325 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Node
);
1326 SDValue StoredVal
= StoreNode
->getOperand(1);
1327 unsigned Opc
= StoredVal
->getOpcode();
1328 SDLoc
DL(StoreNode
);
1330 // Before we try to select anything, make sure this is memory operand size
1331 // and opcode we can handle. Note that this must match the code below that
1332 // actually lowers the opcodes.
1333 EVT MemVT
= StoreNode
->getMemoryVT();
1334 unsigned NewOpc
= 0;
1335 bool NegateOperand
= false;
1339 case SystemZISD::SSUBO
:
1340 NegateOperand
= true;
1342 case SystemZISD::SADDO
:
1343 if (MemVT
== MVT::i32
)
1344 NewOpc
= SystemZ::ASI
;
1345 else if (MemVT
== MVT::i64
)
1346 NewOpc
= SystemZ::AGSI
;
1350 case SystemZISD::USUBO
:
1351 NegateOperand
= true;
1353 case SystemZISD::UADDO
:
1354 if (MemVT
== MVT::i32
)
1355 NewOpc
= SystemZ::ALSI
;
1356 else if (MemVT
== MVT::i64
)
1357 NewOpc
= SystemZ::ALGSI
;
1363 LoadSDNode
*LoadNode
= nullptr;
1365 if (!isFusableLoadOpStorePattern(StoreNode
, StoredVal
, CurDAG
, LoadNode
,
1369 SDValue Operand
= StoredVal
.getOperand(1);
1370 auto *OperandC
= dyn_cast
<ConstantSDNode
>(Operand
);
1373 auto OperandV
= OperandC
->getAPIntValue();
1375 OperandV
= -OperandV
;
1376 if (OperandV
.getMinSignedBits() > 8)
1378 Operand
= CurDAG
->getTargetConstant(OperandV
, DL
, MemVT
);
1381 if (!selectBDAddr20Only(StoreNode
->getBasePtr(), Base
, Disp
))
1384 SDValue Ops
[] = { Base
, Disp
, Operand
, InputChain
};
1385 MachineSDNode
*Result
=
1386 CurDAG
->getMachineNode(NewOpc
, DL
, MVT::i32
, MVT::Other
, Ops
);
1387 CurDAG
->setNodeMemRefs(
1388 Result
, {StoreNode
->getMemOperand(), LoadNode
->getMemOperand()});
1390 ReplaceUses(SDValue(StoreNode
, 0), SDValue(Result
, 1));
1391 ReplaceUses(SDValue(StoredVal
.getNode(), 1), SDValue(Result
, 0));
1392 CurDAG
->RemoveDeadNode(Node
);
1396 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode
*Store
,
1397 LoadSDNode
*Load
) const {
1398 // Check that the two memory operands have the same size.
1399 if (Load
->getMemoryVT() != Store
->getMemoryVT())
1402 // Volatility stops an access from being decomposed.
1403 if (Load
->isVolatile() || Store
->isVolatile())
1406 // There's no chance of overlap if the load is invariant.
1407 if (Load
->isInvariant() && Load
->isDereferenceable())
1410 // Otherwise we need to check whether there's an alias.
1411 const Value
*V1
= Load
->getMemOperand()->getValue();
1412 const Value
*V2
= Store
->getMemOperand()->getValue();
1417 uint64_t Size
= Load
->getMemoryVT().getStoreSize();
1418 int64_t End1
= Load
->getSrcValueOffset() + Size
;
1419 int64_t End2
= Store
->getSrcValueOffset() + Size
;
1420 if (V1
== V2
&& End1
== End2
)
1423 return !AA
->alias(MemoryLocation(V1
, End1
, Load
->getAAInfo()),
1424 MemoryLocation(V2
, End2
, Store
->getAAInfo()));
1427 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode
*N
) const {
1428 auto *Store
= cast
<StoreSDNode
>(N
);
1429 auto *Load
= cast
<LoadSDNode
>(Store
->getValue());
1431 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1433 uint64_t Size
= Load
->getMemoryVT().getStoreSize();
1434 if (Size
> 1 && Size
<= 8) {
1435 // Prefer LHRL, LRL and LGRL.
1436 if (SystemZISD::isPCREL(Load
->getBasePtr().getOpcode()))
1438 // Prefer STHRL, STRL and STGRL.
1439 if (SystemZISD::isPCREL(Store
->getBasePtr().getOpcode()))
1443 return canUseBlockOperation(Store
, Load
);
1446 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode
*N
,
1448 auto *StoreA
= cast
<StoreSDNode
>(N
);
1449 auto *LoadA
= cast
<LoadSDNode
>(StoreA
->getValue().getOperand(1 - I
));
1450 auto *LoadB
= cast
<LoadSDNode
>(StoreA
->getValue().getOperand(I
));
1451 return !LoadA
->isVolatile() && canUseBlockOperation(StoreA
, LoadB
);
1454 void SystemZDAGToDAGISel::Select(SDNode
*Node
) {
1455 // If we have a custom node, we already have selected!
1456 if (Node
->isMachineOpcode()) {
1457 LLVM_DEBUG(errs() << "== "; Node
->dump(CurDAG
); errs() << "\n");
1458 Node
->setNodeId(-1);
1462 unsigned Opcode
= Node
->getOpcode();
1465 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1466 if (tryRxSBG(Node
, SystemZ::ROSBG
))
1471 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1472 if (tryRxSBG(Node
, SystemZ::RXSBG
))
1476 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1477 // split the operation into two. If both operands here happen to be
1478 // constant, leave this to common code to optimize.
1479 if (Node
->getValueType(0) == MVT::i64
&&
1480 Node
->getOperand(0).getOpcode() != ISD::Constant
)
1481 if (auto *Op1
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(1))) {
1482 uint64_t Val
= Op1
->getZExtValue();
1483 // Don't split the operation if we can match one of the combined
1484 // logical operations provided by miscellaneous-extensions-3.
1485 if (Subtarget
->hasMiscellaneousExtensions3()) {
1486 unsigned ChildOpcode
= Node
->getOperand(0).getOpcode();
1487 // Check whether this expression matches NAND/NOR/NXOR.
1488 if (Val
== (uint64_t)-1 && Opcode
== ISD::XOR
)
1489 if (ChildOpcode
== ISD::AND
|| ChildOpcode
== ISD::OR
||
1490 ChildOpcode
== ISD::XOR
)
1492 // Check whether this expression matches OR-with-complement.
1493 if (Opcode
== ISD::OR
&& ChildOpcode
== ISD::XOR
) {
1494 auto Op0
= Node
->getOperand(0);
1495 if (auto *Op0Op1
= dyn_cast
<ConstantSDNode
>(Op0
->getOperand(1)))
1496 if (Op0Op1
->getZExtValue() == (uint64_t)-1)
1500 if (!SystemZ::isImmLF(Val
) && !SystemZ::isImmHF(Val
)) {
1501 splitLargeImmediate(Opcode
, Node
, Node
->getOperand(0),
1502 Val
- uint32_t(Val
), uint32_t(Val
));
1509 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1510 if (tryRxSBG(Node
, SystemZ::RNSBG
))
1516 case ISD::ZERO_EXTEND
:
1517 if (tryRISBGZero(Node
))
1522 // If this is a 64-bit constant that is out of the range of LLILF,
1523 // LLIHF and LGFI, split it into two 32-bit pieces.
1524 if (Node
->getValueType(0) == MVT::i64
) {
1525 uint64_t Val
= cast
<ConstantSDNode
>(Node
)->getZExtValue();
1526 if (!SystemZ::isImmLF(Val
) && !SystemZ::isImmHF(Val
) && !isInt
<32>(Val
)) {
1527 splitLargeImmediate(ISD::OR
, Node
, SDValue(), Val
- uint32_t(Val
),
1534 case SystemZISD::SELECT_CCMASK
: {
1535 SDValue Op0
= Node
->getOperand(0);
1536 SDValue Op1
= Node
->getOperand(1);
1537 // Prefer to put any load first, so that it can be matched as a
1538 // conditional load. Likewise for constants in range for LOCHI.
1539 if ((Op1
.getOpcode() == ISD::LOAD
&& Op0
.getOpcode() != ISD::LOAD
) ||
1540 (Subtarget
->hasLoadStoreOnCond2() &&
1541 Node
->getValueType(0).isInteger() &&
1542 Op1
.getOpcode() == ISD::Constant
&&
1543 isInt
<16>(cast
<ConstantSDNode
>(Op1
)->getSExtValue()) &&
1544 !(Op0
.getOpcode() == ISD::Constant
&&
1545 isInt
<16>(cast
<ConstantSDNode
>(Op0
)->getSExtValue())))) {
1546 SDValue CCValid
= Node
->getOperand(2);
1547 SDValue CCMask
= Node
->getOperand(3);
1548 uint64_t ConstCCValid
=
1549 cast
<ConstantSDNode
>(CCValid
.getNode())->getZExtValue();
1550 uint64_t ConstCCMask
=
1551 cast
<ConstantSDNode
>(CCMask
.getNode())->getZExtValue();
1552 // Invert the condition.
1553 CCMask
= CurDAG
->getTargetConstant(ConstCCValid
^ ConstCCMask
,
1554 SDLoc(Node
), CCMask
.getValueType());
1555 SDValue Op4
= Node
->getOperand(4);
1556 SDNode
*UpdatedNode
=
1557 CurDAG
->UpdateNodeOperands(Node
, Op1
, Op0
, CCValid
, CCMask
, Op4
);
1558 if (UpdatedNode
!= Node
) {
1559 // In case this node already exists then replace Node with it.
1560 ReplaceNode(Node
, UpdatedNode
);
1567 case ISD::INSERT_VECTOR_ELT
: {
1568 EVT VT
= Node
->getValueType(0);
1569 unsigned ElemBitSize
= VT
.getScalarSizeInBits();
1570 if (ElemBitSize
== 32) {
1571 if (tryGather(Node
, SystemZ::VGEF
))
1573 } else if (ElemBitSize
== 64) {
1574 if (tryGather(Node
, SystemZ::VGEG
))
1580 case ISD::BUILD_VECTOR
: {
1581 auto *BVN
= cast
<BuildVectorSDNode
>(Node
);
1582 SystemZVectorConstantInfo
VCI(BVN
);
1583 if (VCI
.isVectorConstantLegal(*Subtarget
)) {
1584 loadVectorConstant(VCI
, Node
);
1590 case ISD::ConstantFP
: {
1591 APFloat Imm
= cast
<ConstantFPSDNode
>(Node
)->getValueAPF();
1592 if (Imm
.isZero() || Imm
.isNegZero())
1594 SystemZVectorConstantInfo
VCI(Imm
);
1595 bool Success
= VCI
.isVectorConstantLegal(*Subtarget
); (void)Success
;
1596 assert(Success
&& "Expected legal FP immediate");
1597 loadVectorConstant(VCI
, Node
);
1602 if (tryFoldLoadStoreIntoMemOperand(Node
))
1604 auto *Store
= cast
<StoreSDNode
>(Node
);
1605 unsigned ElemBitSize
= Store
->getValue().getValueSizeInBits();
1606 if (ElemBitSize
== 32) {
1607 if (tryScatter(Store
, SystemZ::VSCEF
))
1609 } else if (ElemBitSize
== 64) {
1610 if (tryScatter(Store
, SystemZ::VSCEG
))
1620 bool SystemZDAGToDAGISel::
1621 SelectInlineAsmMemoryOperand(const SDValue
&Op
,
1622 unsigned ConstraintID
,
1623 std::vector
<SDValue
> &OutOps
) {
1624 SystemZAddressingMode::AddrForm Form
;
1625 SystemZAddressingMode::DispRange DispRange
;
1626 SDValue Base
, Disp
, Index
;
1628 switch(ConstraintID
) {
1630 llvm_unreachable("Unexpected asm memory constraint");
1631 case InlineAsm::Constraint_i
:
1632 case InlineAsm::Constraint_Q
:
1633 // Accept an address with a short displacement, but no index.
1634 Form
= SystemZAddressingMode::FormBD
;
1635 DispRange
= SystemZAddressingMode::Disp12Only
;
1637 case InlineAsm::Constraint_R
:
1638 // Accept an address with a short displacement and an index.
1639 Form
= SystemZAddressingMode::FormBDXNormal
;
1640 DispRange
= SystemZAddressingMode::Disp12Only
;
1642 case InlineAsm::Constraint_S
:
1643 // Accept an address with a long displacement, but no index.
1644 Form
= SystemZAddressingMode::FormBD
;
1645 DispRange
= SystemZAddressingMode::Disp20Only
;
1647 case InlineAsm::Constraint_T
:
1648 case InlineAsm::Constraint_m
:
1649 case InlineAsm::Constraint_o
:
1650 // Accept an address with a long displacement and an index.
1651 // m works the same as T, as this is the most general case.
1652 // We don't really have any special handling of "offsettable"
1653 // memory addresses, so just treat o the same as m.
1654 Form
= SystemZAddressingMode::FormBDXNormal
;
1655 DispRange
= SystemZAddressingMode::Disp20Only
;
1659 if (selectBDXAddr(Form
, DispRange
, Op
, Base
, Disp
, Index
)) {
1660 const TargetRegisterClass
*TRC
=
1661 Subtarget
->getRegisterInfo()->getPointerRegClass(*MF
);
1663 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), DL
, MVT::i32
);
1665 // Make sure that the base address doesn't go into %r0.
1666 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1667 if (Base
.getOpcode() != ISD::TargetFrameIndex
&&
1668 Base
.getOpcode() != ISD::Register
) {
1670 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
1671 DL
, Base
.getValueType(),
1675 // Make sure that the index register isn't assigned to %r0 either.
1676 if (Index
.getOpcode() != ISD::Register
) {
1678 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
1679 DL
, Index
.getValueType(),
1683 OutOps
.push_back(Base
);
1684 OutOps
.push_back(Disp
);
1685 OutOps
.push_back(Index
);
1692 // IsProfitableToFold - Returns true if is profitable to fold the specific
1693 // operand node N of U during instruction selection that starts at Root.
1695 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
1696 SDNode
*Root
) const {
1697 // We want to avoid folding a LOAD into an ICMP node if as a result
1698 // we would be forced to spill the condition code into a GPR.
1699 if (N
.getOpcode() == ISD::LOAD
&& U
->getOpcode() == SystemZISD::ICMP
) {
1700 if (!N
.hasOneUse() || !U
->hasOneUse())
1703 // The user of the CC value will usually be a CopyToReg into the
1704 // physical CC register, which in turn is glued and chained to the
1705 // actual instruction that uses the CC value. Bail out if we have
1706 // anything else than that.
1707 SDNode
*CCUser
= *U
->use_begin();
1708 SDNode
*CCRegUser
= nullptr;
1709 if (CCUser
->getOpcode() == ISD::CopyToReg
||
1710 cast
<RegisterSDNode
>(CCUser
->getOperand(1))->getReg() == SystemZ::CC
) {
1711 for (auto *U
: CCUser
->uses()) {
1712 if (CCRegUser
== nullptr)
1714 else if (CCRegUser
!= U
)
1718 if (CCRegUser
== nullptr)
1721 // If the actual instruction is a branch, the only thing that remains to be
1722 // checked is whether the CCUser chain is a predecessor of the load.
1723 if (CCRegUser
->isMachineOpcode() &&
1724 CCRegUser
->getMachineOpcode() == SystemZ::BRC
)
1725 return !N
->isPredecessorOf(CCUser
->getOperand(0).getNode());
1727 // Otherwise, the instruction may have multiple operands, and we need to
1728 // verify that none of them are a predecessor of the load. This is exactly
1729 // the same check that would be done by common code if the CC setter were
1730 // glued to the CC user, so simply invoke that check here.
1731 if (!IsLegalToFold(N
, U
, CCRegUser
, OptLevel
, false))
1739 // Represents a sequence for extracting a 0/1 value from an IPM result:
1740 // (((X ^ XORValue) + AddValue) >> Bit)
1741 struct IPMConversion
{
1742 IPMConversion(unsigned xorValue
, int64_t addValue
, unsigned bit
)
1743 : XORValue(xorValue
), AddValue(addValue
), Bit(bit
) {}
1749 } // end anonymous namespace
1751 // Return a sequence for getting a 1 from an IPM result when CC has a
1752 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1753 // The handling of CC values outside CCValid doesn't matter.
1754 static IPMConversion
getIPMConversion(unsigned CCValid
, unsigned CCMask
) {
1755 // Deal with cases where the result can be taken directly from a bit
1756 // of the IPM result.
1757 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
| SystemZ::CCMASK_3
)))
1758 return IPMConversion(0, 0, SystemZ::IPM_CC
);
1759 if (CCMask
== (CCValid
& (SystemZ::CCMASK_2
| SystemZ::CCMASK_3
)))
1760 return IPMConversion(0, 0, SystemZ::IPM_CC
+ 1);
1762 // Deal with cases where we can add a value to force the sign bit
1763 // to contain the right value. Putting the bit in 31 means we can
1764 // use SRL rather than RISBG(L), and also makes it easier to get a
1765 // 0/-1 value, so it has priority over the other tests below.
1767 // These sequences rely on the fact that the upper two bits of the
1768 // IPM result are zero.
1769 uint64_t TopBit
= uint64_t(1) << 31;
1770 if (CCMask
== (CCValid
& SystemZ::CCMASK_0
))
1771 return IPMConversion(0, -(1 << SystemZ::IPM_CC
), 31);
1772 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
)))
1773 return IPMConversion(0, -(2 << SystemZ::IPM_CC
), 31);
1774 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1776 | SystemZ::CCMASK_2
)))
1777 return IPMConversion(0, -(3 << SystemZ::IPM_CC
), 31);
1778 if (CCMask
== (CCValid
& SystemZ::CCMASK_3
))
1779 return IPMConversion(0, TopBit
- (3 << SystemZ::IPM_CC
), 31);
1780 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
1782 | SystemZ::CCMASK_3
)))
1783 return IPMConversion(0, TopBit
- (1 << SystemZ::IPM_CC
), 31);
1785 // Next try inverting the value and testing a bit. 0/1 could be
1786 // handled this way too, but we dealt with that case above.
1787 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_2
)))
1788 return IPMConversion(-1, 0, SystemZ::IPM_CC
);
1790 // Handle cases where adding a value forces a non-sign bit to contain
1792 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
| SystemZ::CCMASK_2
)))
1793 return IPMConversion(0, 1 << SystemZ::IPM_CC
, SystemZ::IPM_CC
+ 1);
1794 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_3
)))
1795 return IPMConversion(0, -(1 << SystemZ::IPM_CC
), SystemZ::IPM_CC
+ 1);
1797 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1798 // can be done by inverting the low CC bit and applying one of the
1799 // sign-based extractions above.
1800 if (CCMask
== (CCValid
& SystemZ::CCMASK_1
))
1801 return IPMConversion(1 << SystemZ::IPM_CC
, -(1 << SystemZ::IPM_CC
), 31);
1802 if (CCMask
== (CCValid
& SystemZ::CCMASK_2
))
1803 return IPMConversion(1 << SystemZ::IPM_CC
,
1804 TopBit
- (3 << SystemZ::IPM_CC
), 31);
1805 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1807 | SystemZ::CCMASK_3
)))
1808 return IPMConversion(1 << SystemZ::IPM_CC
, -(3 << SystemZ::IPM_CC
), 31);
1809 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1811 | SystemZ::CCMASK_3
)))
1812 return IPMConversion(1 << SystemZ::IPM_CC
,
1813 TopBit
- (1 << SystemZ::IPM_CC
), 31);
1815 llvm_unreachable("Unexpected CC combination");
1818 SDValue
SystemZDAGToDAGISel::expandSelectBoolean(SDNode
*Node
) {
1819 auto *TrueOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(0));
1820 auto *FalseOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(1));
1821 if (!TrueOp
|| !FalseOp
)
1823 if (FalseOp
->getZExtValue() != 0)
1825 if (TrueOp
->getSExtValue() != 1 && TrueOp
->getSExtValue() != -1)
1828 auto *CCValidOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(2));
1829 auto *CCMaskOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(3));
1830 if (!CCValidOp
|| !CCMaskOp
)
1832 int CCValid
= CCValidOp
->getZExtValue();
1833 int CCMask
= CCMaskOp
->getZExtValue();
1836 SDValue CCReg
= Node
->getOperand(4);
1837 IPMConversion IPM
= getIPMConversion(CCValid
, CCMask
);
1838 SDValue Result
= CurDAG
->getNode(SystemZISD::IPM
, DL
, MVT::i32
, CCReg
);
1841 Result
= CurDAG
->getNode(ISD::XOR
, DL
, MVT::i32
, Result
,
1842 CurDAG
->getConstant(IPM
.XORValue
, DL
, MVT::i32
));
1845 Result
= CurDAG
->getNode(ISD::ADD
, DL
, MVT::i32
, Result
,
1846 CurDAG
->getConstant(IPM
.AddValue
, DL
, MVT::i32
));
1848 EVT VT
= Node
->getValueType(0);
1849 if (VT
== MVT::i32
&& IPM
.Bit
== 31) {
1850 unsigned ShiftOp
= TrueOp
->getSExtValue() == 1 ? ISD::SRL
: ISD::SRA
;
1851 Result
= CurDAG
->getNode(ShiftOp
, DL
, MVT::i32
, Result
,
1852 CurDAG
->getConstant(IPM
.Bit
, DL
, MVT::i32
));
1855 Result
= CurDAG
->getNode(ISD::ANY_EXTEND
, DL
, VT
, Result
);
1857 if (TrueOp
->getSExtValue() == 1) {
1858 // The SHR/AND sequence should get optimized to an RISBG.
1859 Result
= CurDAG
->getNode(ISD::SRL
, DL
, VT
, Result
,
1860 CurDAG
->getConstant(IPM
.Bit
, DL
, MVT::i32
));
1861 Result
= CurDAG
->getNode(ISD::AND
, DL
, VT
, Result
,
1862 CurDAG
->getConstant(1, DL
, VT
));
1864 // Sign-extend from IPM.Bit using a pair of shifts.
1865 int ShlAmt
= VT
.getSizeInBits() - 1 - IPM
.Bit
;
1866 int SraAmt
= VT
.getSizeInBits() - 1;
1867 Result
= CurDAG
->getNode(ISD::SHL
, DL
, VT
, Result
,
1868 CurDAG
->getConstant(ShlAmt
, DL
, MVT::i32
));
1869 Result
= CurDAG
->getNode(ISD::SRA
, DL
, VT
, Result
,
1870 CurDAG
->getConstant(SraAmt
, DL
, MVT::i32
));
1877 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1878 // If we have conditional immediate loads, we always prefer
1879 // using those over an IPM sequence.
1880 if (Subtarget
->hasLoadStoreOnCond2())
1883 bool MadeChange
= false;
1885 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
1886 E
= CurDAG
->allnodes_end();
1893 switch (N
->getOpcode()) {
1895 case SystemZISD::SELECT_CCMASK
:
1896 Res
= expandSelectBoolean(N
);
1901 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1902 LLVM_DEBUG(N
->dump(CurDAG
));
1903 LLVM_DEBUG(dbgs() << "\nNew: ");
1904 LLVM_DEBUG(Res
.getNode()->dump(CurDAG
));
1905 LLVM_DEBUG(dbgs() << "\n");
1907 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), Res
);
1913 CurDAG
->RemoveDeadNodes();