[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob83c1251265f2a87d78959e347195f550cd597baf
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
12 //===----------------------------------------------------------------------===//
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <stdint.h>
37 using namespace llvm;
39 #define DEBUG_TYPE "x86-isel"
41 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
44 cl::desc("Enable setting constant bits to reduce size of mask immediates"),
45 cl::Hidden);
47 //===----------------------------------------------------------------------===//
48 // Pattern Matcher Implementation
49 //===----------------------------------------------------------------------===//
51 namespace {
52 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
53 /// numbers for the leaves of the matched tree.
54 struct X86ISelAddressMode {
55 enum {
56 RegBase,
57 FrameIndexBase
58 } BaseType;
60 // This is really a union, discriminated by BaseType!
61 SDValue Base_Reg;
62 int Base_FrameIndex;
64 unsigned Scale;
65 SDValue IndexReg;
66 int32_t Disp;
67 SDValue Segment;
68 const GlobalValue *GV;
69 const Constant *CP;
70 const BlockAddress *BlockAddr;
71 const char *ES;
72 MCSymbol *MCSym;
73 int JT;
74 unsigned Align; // CP alignment.
75 unsigned char SymbolFlags; // X86II::MO_*
76 bool NegateIndex = false;
78 X86ISelAddressMode()
79 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
80 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
81 MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
83 bool hasSymbolicDisplacement() const {
84 return GV != nullptr || CP != nullptr || ES != nullptr ||
85 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88 bool hasBaseOrIndexReg() const {
89 return BaseType == FrameIndexBase ||
90 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93 /// Return true if this addressing mode is already RIP-relative.
94 bool isRIPRelative() const {
95 if (BaseType != RegBase) return false;
96 if (RegisterSDNode *RegNode =
97 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
98 return RegNode->getReg() == X86::RIP;
99 return false;
102 void setBaseReg(SDValue Reg) {
103 BaseType = RegBase;
104 Base_Reg = Reg;
107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
108 void dump(SelectionDAG *DAG = nullptr) {
109 dbgs() << "X86ISelAddressMode " << this << '\n';
110 dbgs() << "Base_Reg ";
111 if (Base_Reg.getNode())
112 Base_Reg.getNode()->dump(DAG);
113 else
114 dbgs() << "nul\n";
115 if (BaseType == FrameIndexBase)
116 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
117 dbgs() << " Scale " << Scale << '\n'
118 << "IndexReg ";
119 if (NegateIndex)
120 dbgs() << "negate ";
121 if (IndexReg.getNode())
122 IndexReg.getNode()->dump(DAG);
123 else
124 dbgs() << "nul\n";
125 dbgs() << " Disp " << Disp << '\n'
126 << "GV ";
127 if (GV)
128 GV->dump();
129 else
130 dbgs() << "nul";
131 dbgs() << " CP ";
132 if (CP)
133 CP->dump();
134 else
135 dbgs() << "nul";
136 dbgs() << '\n'
137 << "ES ";
138 if (ES)
139 dbgs() << ES;
140 else
141 dbgs() << "nul";
142 dbgs() << " MCSym ";
143 if (MCSym)
144 dbgs() << MCSym;
145 else
146 dbgs() << "nul";
147 dbgs() << " JT" << JT << " Align" << Align << '\n';
149 #endif
153 namespace {
154 //===--------------------------------------------------------------------===//
155 /// ISel - X86-specific code to select X86 machine instructions for
156 /// SelectionDAG operations.
158 class X86DAGToDAGISel final : public SelectionDAGISel {
159 /// Keep a pointer to the X86Subtarget around so that we can
160 /// make the right decision when generating code for different targets.
161 const X86Subtarget *Subtarget;
163 /// If true, selector should try to optimize for code size instead of
164 /// performance.
165 bool OptForSize;
167 /// If true, selector should try to optimize for minimum code size.
168 bool OptForMinSize;
170 /// Disable direct TLS access through segment registers.
171 bool IndirectTlsSegRefs;
173 public:
174 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
175 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForSize(false),
176 OptForMinSize(false), IndirectTlsSegRefs(false) {}
178 StringRef getPassName() const override {
179 return "X86 DAG->DAG Instruction Selection";
182 bool runOnMachineFunction(MachineFunction &MF) override {
183 // Reset the subtarget each time through.
184 Subtarget = &MF.getSubtarget<X86Subtarget>();
185 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
186 "indirect-tls-seg-refs");
188 // OptFor[Min]Size are used in pattern predicates that isel is matching.
189 OptForSize = MF.getFunction().hasOptSize();
190 OptForMinSize = MF.getFunction().hasMinSize();
191 assert((!OptForMinSize || OptForSize) &&
192 "OptForMinSize implies OptForSize");
194 SelectionDAGISel::runOnMachineFunction(MF);
195 return true;
198 void EmitFunctionEntryCode() override;
200 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
202 void PreprocessISelDAG() override;
203 void PostprocessISelDAG() override;
205 // Include the pieces autogenerated from the target description.
206 #include "X86GenDAGISel.inc"
208 private:
209 void Select(SDNode *N) override;
211 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
212 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
213 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
214 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
215 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
216 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
217 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218 unsigned Depth);
219 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
220 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
221 SDValue &Scale, SDValue &Index, SDValue &Disp,
222 SDValue &Segment);
223 bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
224 SDValue &Scale, SDValue &Index, SDValue &Disp,
225 SDValue &Segment);
226 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
227 bool selectLEAAddr(SDValue N, SDValue &Base,
228 SDValue &Scale, SDValue &Index, SDValue &Disp,
229 SDValue &Segment);
230 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
231 SDValue &Scale, SDValue &Index, SDValue &Disp,
232 SDValue &Segment);
233 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
234 SDValue &Scale, SDValue &Index, SDValue &Disp,
235 SDValue &Segment);
236 bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N,
237 SDValue &Base, SDValue &Scale,
238 SDValue &Index, SDValue &Disp,
239 SDValue &Segment,
240 SDValue &NodeWithChain);
241 bool selectRelocImm(SDValue N, SDValue &Op);
243 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
244 SDValue &Base, SDValue &Scale,
245 SDValue &Index, SDValue &Disp,
246 SDValue &Segment);
248 // Convenience method where P is also root.
249 bool tryFoldLoad(SDNode *P, SDValue N,
250 SDValue &Base, SDValue &Scale,
251 SDValue &Index, SDValue &Disp,
252 SDValue &Segment) {
253 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
256 /// Implement addressing mode selection for inline asm expressions.
257 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
258 unsigned ConstraintID,
259 std::vector<SDValue> &OutOps) override;
261 void emitSpecialCodeForMain();
263 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
264 MVT VT, SDValue &Base, SDValue &Scale,
265 SDValue &Index, SDValue &Disp,
266 SDValue &Segment) {
267 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
268 Base = CurDAG->getTargetFrameIndex(
269 AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
270 else if (AM.Base_Reg.getNode())
271 Base = AM.Base_Reg;
272 else
273 Base = CurDAG->getRegister(0, VT);
275 Scale = getI8Imm(AM.Scale, DL);
277 // Negate the index if needed.
278 if (AM.NegateIndex) {
279 unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
280 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
281 AM.IndexReg), 0);
282 AM.IndexReg = Neg;
285 if (AM.IndexReg.getNode())
286 Index = AM.IndexReg;
287 else
288 Index = CurDAG->getRegister(0, VT);
290 // These are 32-bit even in 64-bit mode since RIP-relative offset
291 // is 32-bit.
292 if (AM.GV)
293 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
294 MVT::i32, AM.Disp,
295 AM.SymbolFlags);
296 else if (AM.CP)
297 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
298 AM.Align, AM.Disp, AM.SymbolFlags);
299 else if (AM.ES) {
300 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
301 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
302 } else if (AM.MCSym) {
303 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
304 assert(AM.SymbolFlags == 0 && "oo");
305 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
306 } else if (AM.JT != -1) {
307 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
308 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
309 } else if (AM.BlockAddr)
310 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
311 AM.SymbolFlags);
312 else
313 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
315 if (AM.Segment.getNode())
316 Segment = AM.Segment;
317 else
318 Segment = CurDAG->getRegister(0, MVT::i16);
321 // Utility function to determine whether we should avoid selecting
322 // immediate forms of instructions for better code size or not.
323 // At a high level, we'd like to avoid such instructions when
324 // we have similar constants used within the same basic block
325 // that can be kept in a register.
327 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
328 uint32_t UseCount = 0;
330 // Do not want to hoist if we're not optimizing for size.
331 // TODO: We'd like to remove this restriction.
332 // See the comment in X86InstrInfo.td for more info.
333 if (!OptForSize)
334 return false;
336 // Walk all the users of the immediate.
337 for (SDNode::use_iterator UI = N->use_begin(),
338 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
340 SDNode *User = *UI;
342 // This user is already selected. Count it as a legitimate use and
343 // move on.
344 if (User->isMachineOpcode()) {
345 UseCount++;
346 continue;
349 // We want to count stores of immediates as real uses.
350 if (User->getOpcode() == ISD::STORE &&
351 User->getOperand(1).getNode() == N) {
352 UseCount++;
353 continue;
356 // We don't currently match users that have > 2 operands (except
357 // for stores, which are handled above)
358 // Those instruction won't match in ISEL, for now, and would
359 // be counted incorrectly.
360 // This may change in the future as we add additional instruction
361 // types.
362 if (User->getNumOperands() != 2)
363 continue;
365 // If this can match to INC/DEC, don't count it as a use.
366 if (User->getOpcode() == ISD::ADD &&
367 (isOneConstant(SDValue(N, 0)) || isAllOnesConstant(SDValue(N, 0))))
368 continue;
370 // Immediates that are used for offsets as part of stack
371 // manipulation should be left alone. These are typically
372 // used to indicate SP offsets for argument passing and
373 // will get pulled into stores/pushes (implicitly).
374 if (User->getOpcode() == X86ISD::ADD ||
375 User->getOpcode() == ISD::ADD ||
376 User->getOpcode() == X86ISD::SUB ||
377 User->getOpcode() == ISD::SUB) {
379 // Find the other operand of the add/sub.
380 SDValue OtherOp = User->getOperand(0);
381 if (OtherOp.getNode() == N)
382 OtherOp = User->getOperand(1);
384 // Don't count if the other operand is SP.
385 RegisterSDNode *RegNode;
386 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
387 (RegNode = dyn_cast_or_null<RegisterSDNode>(
388 OtherOp->getOperand(1).getNode())))
389 if ((RegNode->getReg() == X86::ESP) ||
390 (RegNode->getReg() == X86::RSP))
391 continue;
394 // ... otherwise, count this and move on.
395 UseCount++;
398 // If we have more than 1 use, then recommend for hoisting.
399 return (UseCount > 1);
402 /// Return a target constant with the specified value of type i8.
403 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
404 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
407 /// Return a target constant with the specified value, of type i32.
408 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
409 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
412 /// Return a target constant with the specified value, of type i64.
413 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
414 return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
417 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
418 const SDLoc &DL) {
419 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
420 uint64_t Index = N->getConstantOperandVal(1);
421 MVT VecVT = N->getOperand(0).getSimpleValueType();
422 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
425 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
426 const SDLoc &DL) {
427 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
428 uint64_t Index = N->getConstantOperandVal(2);
429 MVT VecVT = N->getSimpleValueType(0);
430 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
433 // Helper to detect unneeded and instructions on shift amounts. Called
434 // from PatFrags in tablegen.
435 bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
436 assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
437 const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
439 if (Val.countTrailingOnes() >= Width)
440 return true;
442 APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
443 return Mask.countTrailingOnes() >= Width;
446 /// Return an SDNode that returns the value of the global base register.
447 /// Output instructions required to initialize the global base register,
448 /// if necessary.
449 SDNode *getGlobalBaseReg();
451 /// Return a reference to the TargetMachine, casted to the target-specific
452 /// type.
453 const X86TargetMachine &getTargetMachine() const {
454 return static_cast<const X86TargetMachine &>(TM);
457 /// Return a reference to the TargetInstrInfo, casted to the target-specific
458 /// type.
459 const X86InstrInfo *getInstrInfo() const {
460 return Subtarget->getInstrInfo();
463 /// Address-mode matching performs shift-of-and to and-of-shift
464 /// reassociation in order to expose more scaled addressing
465 /// opportunities.
466 bool ComplexPatternFuncMutatesDAG() const override {
467 return true;
470 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
472 /// Returns whether this is a relocatable immediate in the range
473 /// [-2^Width .. 2^Width-1].
474 template <unsigned Width> bool isSExtRelocImm(SDNode *N) const {
475 if (auto *CN = dyn_cast<ConstantSDNode>(N))
476 return isInt<Width>(CN->getSExtValue());
477 return isSExtAbsoluteSymbolRef(Width, N);
480 // Indicates we should prefer to use a non-temporal load for this load.
481 bool useNonTemporalLoad(LoadSDNode *N) const {
482 if (!N->isNonTemporal())
483 return false;
485 unsigned StoreSize = N->getMemoryVT().getStoreSize();
487 if (N->getAlignment() < StoreSize)
488 return false;
490 switch (StoreSize) {
491 default: llvm_unreachable("Unsupported store size");
492 case 4:
493 case 8:
494 return false;
495 case 16:
496 return Subtarget->hasSSE41();
497 case 32:
498 return Subtarget->hasAVX2();
499 case 64:
500 return Subtarget->hasAVX512();
504 bool foldLoadStoreIntoMemOperand(SDNode *Node);
505 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
506 bool matchBitExtract(SDNode *Node);
507 bool shrinkAndImmediate(SDNode *N);
508 bool isMaskZeroExtended(SDNode *N) const;
509 bool tryShiftAmountMod(SDNode *N);
510 bool combineIncDecVector(SDNode *Node);
511 bool tryShrinkShlLogicImm(SDNode *N);
512 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
514 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
515 const SDLoc &dl, MVT VT, SDNode *Node);
516 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
517 const SDLoc &dl, MVT VT, SDNode *Node,
518 SDValue &InFlag);
520 bool tryOptimizeRem8Extend(SDNode *N);
522 bool onlyUsesZeroFlag(SDValue Flags) const;
523 bool hasNoSignFlagUses(SDValue Flags) const;
524 bool hasNoCarryFlagUses(SDValue Flags) const;
529 // Returns true if this masked compare can be implemented legally with this
530 // type.
531 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
532 unsigned Opcode = N->getOpcode();
533 if (Opcode == X86ISD::CMPM || Opcode == ISD::SETCC ||
534 Opcode == X86ISD::CMPM_SAE || Opcode == X86ISD::VFPCLASS) {
535 // We can get 256-bit 8 element types here without VLX being enabled. When
536 // this happens we will use 512-bit operations and the mask will not be
537 // zero extended.
538 EVT OpVT = N->getOperand(0).getValueType();
539 if (OpVT.is256BitVector() || OpVT.is128BitVector())
540 return Subtarget->hasVLX();
542 return true;
544 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
545 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
546 Opcode == X86ISD::FSETCCM_SAE)
547 return true;
549 return false;
552 // Returns true if we can assume the writer of the mask has zero extended it
553 // for us.
554 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
555 // If this is an AND, check if we have a compare on either side. As long as
556 // one side guarantees the mask is zero extended, the AND will preserve those
557 // zeros.
558 if (N->getOpcode() == ISD::AND)
559 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
560 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
562 return isLegalMaskCompare(N, Subtarget);
565 bool
566 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
567 if (OptLevel == CodeGenOpt::None) return false;
569 if (!N.hasOneUse())
570 return false;
572 if (N.getOpcode() != ISD::LOAD)
573 return true;
575 // Don't fold non-temporal loads if we have an instruction for them.
576 if (useNonTemporalLoad(cast<LoadSDNode>(N)))
577 return false;
579 // If N is a load, do additional profitability checks.
580 if (U == Root) {
581 switch (U->getOpcode()) {
582 default: break;
583 case X86ISD::ADD:
584 case X86ISD::ADC:
585 case X86ISD::SUB:
586 case X86ISD::SBB:
587 case X86ISD::AND:
588 case X86ISD::XOR:
589 case X86ISD::OR:
590 case ISD::ADD:
591 case ISD::ADDCARRY:
592 case ISD::AND:
593 case ISD::OR:
594 case ISD::XOR: {
595 SDValue Op1 = U->getOperand(1);
597 // If the other operand is a 8-bit immediate we should fold the immediate
598 // instead. This reduces code size.
599 // e.g.
600 // movl 4(%esp), %eax
601 // addl $4, %eax
602 // vs.
603 // movl $4, %eax
604 // addl 4(%esp), %eax
605 // The former is 2 bytes shorter. In case where the increment is 1, then
606 // the saving can be 4 bytes (by using incl %eax).
607 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
608 if (Imm->getAPIntValue().isSignedIntN(8))
609 return false;
611 // If this is a 64-bit AND with an immediate that fits in 32-bits,
612 // prefer using the smaller and over folding the load. This is needed to
613 // make sure immediates created by shrinkAndImmediate are always folded.
614 // Ideally we would narrow the load during DAG combine and get the
615 // best of both worlds.
616 if (U->getOpcode() == ISD::AND &&
617 Imm->getAPIntValue().getBitWidth() == 64 &&
618 Imm->getAPIntValue().isIntN(32))
619 return false;
621 // If this really a zext_inreg that can be represented with a movzx
622 // instruction, prefer that.
623 // TODO: We could shrink the load and fold if it is non-volatile.
624 if (U->getOpcode() == ISD::AND &&
625 (Imm->getAPIntValue() == UINT8_MAX ||
626 Imm->getAPIntValue() == UINT16_MAX ||
627 Imm->getAPIntValue() == UINT32_MAX))
628 return false;
630 // ADD/SUB with can negate the immediate and use the opposite operation
631 // to fit 128 into a sign extended 8 bit immediate.
632 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
633 (-Imm->getAPIntValue()).isSignedIntN(8))
634 return false;
637 // If the other operand is a TLS address, we should fold it instead.
638 // This produces
639 // movl %gs:0, %eax
640 // leal i@NTPOFF(%eax), %eax
641 // instead of
642 // movl $i@NTPOFF, %eax
643 // addl %gs:0, %eax
644 // if the block also has an access to a second TLS address this will save
645 // a load.
646 // FIXME: This is probably also true for non-TLS addresses.
647 if (Op1.getOpcode() == X86ISD::Wrapper) {
648 SDValue Val = Op1.getOperand(0);
649 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
650 return false;
653 // Don't fold load if this matches the BTS/BTR/BTC patterns.
654 // BTS: (or X, (shl 1, n))
655 // BTR: (and X, (rotl -2, n))
656 // BTC: (xor X, (shl 1, n))
657 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
658 if (U->getOperand(0).getOpcode() == ISD::SHL &&
659 isOneConstant(U->getOperand(0).getOperand(0)))
660 return false;
662 if (U->getOperand(1).getOpcode() == ISD::SHL &&
663 isOneConstant(U->getOperand(1).getOperand(0)))
664 return false;
666 if (U->getOpcode() == ISD::AND) {
667 SDValue U0 = U->getOperand(0);
668 SDValue U1 = U->getOperand(1);
669 if (U0.getOpcode() == ISD::ROTL) {
670 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
671 if (C && C->getSExtValue() == -2)
672 return false;
675 if (U1.getOpcode() == ISD::ROTL) {
676 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
677 if (C && C->getSExtValue() == -2)
678 return false;
682 break;
684 case ISD::SHL:
685 case ISD::SRA:
686 case ISD::SRL:
687 // Don't fold a load into a shift by immediate. The BMI2 instructions
688 // support folding a load, but not an immediate. The legacy instructions
689 // support folding an immediate, but can't fold a load. Folding an
690 // immediate is preferable to folding a load.
691 if (isa<ConstantSDNode>(U->getOperand(1)))
692 return false;
694 break;
698 // Prevent folding a load if this can implemented with an insert_subreg or
699 // a move that implicitly zeroes.
700 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
701 isNullConstant(Root->getOperand(2)) &&
702 (Root->getOperand(0).isUndef() ||
703 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
704 return false;
706 return true;
709 /// Replace the original chain operand of the call with
710 /// load's chain operand and move load below the call's chain operand.
711 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
712 SDValue Call, SDValue OrigChain) {
713 SmallVector<SDValue, 8> Ops;
714 SDValue Chain = OrigChain.getOperand(0);
715 if (Chain.getNode() == Load.getNode())
716 Ops.push_back(Load.getOperand(0));
717 else {
718 assert(Chain.getOpcode() == ISD::TokenFactor &&
719 "Unexpected chain operand");
720 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
721 if (Chain.getOperand(i).getNode() == Load.getNode())
722 Ops.push_back(Load.getOperand(0));
723 else
724 Ops.push_back(Chain.getOperand(i));
725 SDValue NewChain =
726 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
727 Ops.clear();
728 Ops.push_back(NewChain);
730 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
731 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
732 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
733 Load.getOperand(1), Load.getOperand(2));
735 Ops.clear();
736 Ops.push_back(SDValue(Load.getNode(), 1));
737 Ops.append(Call->op_begin() + 1, Call->op_end());
738 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
741 /// Return true if call address is a load and it can be
742 /// moved below CALLSEQ_START and the chains leading up to the call.
743 /// Return the CALLSEQ_START by reference as a second output.
744 /// In the case of a tail call, there isn't a callseq node between the call
745 /// chain and the load.
746 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
747 // The transformation is somewhat dangerous if the call's chain was glued to
748 // the call. After MoveBelowOrigChain the load is moved between the call and
749 // the chain, this can create a cycle if the load is not folded. So it is
750 // *really* important that we are sure the load will be folded.
751 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
752 return false;
753 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
754 if (!LD ||
755 !LD->isSimple() ||
756 LD->getAddressingMode() != ISD::UNINDEXED ||
757 LD->getExtensionType() != ISD::NON_EXTLOAD)
758 return false;
760 // Now let's find the callseq_start.
761 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
762 if (!Chain.hasOneUse())
763 return false;
764 Chain = Chain.getOperand(0);
767 if (!Chain.getNumOperands())
768 return false;
769 // Since we are not checking for AA here, conservatively abort if the chain
770 // writes to memory. It's not safe to move the callee (a load) across a store.
771 if (isa<MemSDNode>(Chain.getNode()) &&
772 cast<MemSDNode>(Chain.getNode())->writeMem())
773 return false;
774 if (Chain.getOperand(0).getNode() == Callee.getNode())
775 return true;
776 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
777 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
778 Callee.getValue(1).hasOneUse())
779 return true;
780 return false;
783 void X86DAGToDAGISel::PreprocessISelDAG() {
784 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
785 E = CurDAG->allnodes_end(); I != E; ) {
786 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
788 // If this is a target specific AND node with no flag usages, turn it back
789 // into ISD::AND to enable test instruction matching.
790 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
791 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
792 N->getOperand(0), N->getOperand(1));
793 --I;
794 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
795 ++I;
796 CurDAG->DeleteNode(N);
797 continue;
800 switch (N->getOpcode()) {
801 case ISD::FP_TO_SINT:
802 case ISD::FP_TO_UINT: {
803 // Replace vector fp_to_s/uint with their X86 specific equivalent so we
804 // don't need 2 sets of patterns.
805 if (!N->getSimpleValueType(0).isVector())
806 break;
808 unsigned NewOpc;
809 switch (N->getOpcode()) {
810 default: llvm_unreachable("Unexpected opcode!");
811 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
812 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
814 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
815 N->getOperand(0));
816 --I;
817 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
818 ++I;
819 CurDAG->DeleteNode(N);
820 continue;
822 case ISD::SHL:
823 case ISD::SRA:
824 case ISD::SRL: {
825 // Replace vector shifts with their X86 specific equivalent so we don't
826 // need 2 sets of patterns.
827 if (!N->getValueType(0).isVector())
828 break;
830 unsigned NewOpc;
831 switch (N->getOpcode()) {
832 default: llvm_unreachable("Unexpected opcode!");
833 case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
834 case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
835 case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
837 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
838 N->getOperand(0), N->getOperand(1));
839 --I;
840 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
841 ++I;
842 CurDAG->DeleteNode(N);
843 continue;
845 case ISD::ANY_EXTEND:
846 case ISD::ANY_EXTEND_VECTOR_INREG: {
847 // Replace vector any extend with the zero extend equivalents so we don't
848 // need 2 sets of patterns. Ignore vXi1 extensions.
849 if (!N->getValueType(0).isVector() ||
850 N->getOperand(0).getScalarValueSizeInBits() == 1)
851 break;
853 unsigned NewOpc = N->getOpcode() == ISD::ANY_EXTEND
854 ? ISD::ZERO_EXTEND
855 : ISD::ZERO_EXTEND_VECTOR_INREG;
857 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
858 N->getOperand(0));
859 --I;
860 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
861 ++I;
862 CurDAG->DeleteNode(N);
863 continue;
865 case ISD::FCEIL:
866 case ISD::FFLOOR:
867 case ISD::FTRUNC:
868 case ISD::FNEARBYINT:
869 case ISD::FRINT: {
870 // Replace fp rounding with their X86 specific equivalent so we don't
871 // need 2 sets of patterns.
872 unsigned Imm;
873 switch (N->getOpcode()) {
874 default: llvm_unreachable("Unexpected opcode!");
875 case ISD::FCEIL: Imm = 0xA; break;
876 case ISD::FFLOOR: Imm = 0x9; break;
877 case ISD::FTRUNC: Imm = 0xB; break;
878 case ISD::FNEARBYINT: Imm = 0xC; break;
879 case ISD::FRINT: Imm = 0x4; break;
881 SDLoc dl(N);
882 SDValue Res = CurDAG->getNode(
883 X86ISD::VRNDSCALE, dl, N->getValueType(0), N->getOperand(0),
884 CurDAG->getTargetConstant(Imm, dl, MVT::i8));
885 --I;
886 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
887 ++I;
888 CurDAG->DeleteNode(N);
889 continue;
891 case X86ISD::FANDN:
892 case X86ISD::FAND:
893 case X86ISD::FOR:
894 case X86ISD::FXOR: {
895 // Widen scalar fp logic ops to vector to reduce isel patterns.
896 // FIXME: Can we do this during lowering/combine.
897 MVT VT = N->getSimpleValueType(0);
898 if (VT.isVector() || VT == MVT::f128)
899 break;
901 MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
902 SDLoc dl(N);
903 SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
904 N->getOperand(0));
905 SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
906 N->getOperand(1));
908 SDValue Res;
909 if (Subtarget->hasSSE2()) {
910 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
911 Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
912 Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
913 unsigned Opc;
914 switch (N->getOpcode()) {
915 default: llvm_unreachable("Unexpected opcode!");
916 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
917 case X86ISD::FAND: Opc = ISD::AND; break;
918 case X86ISD::FOR: Opc = ISD::OR; break;
919 case X86ISD::FXOR: Opc = ISD::XOR; break;
921 Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
922 Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
923 } else {
924 Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
926 Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
927 CurDAG->getIntPtrConstant(0, dl));
928 --I;
929 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
930 ++I;
931 CurDAG->DeleteNode(N);
932 continue;
936 if (OptLevel != CodeGenOpt::None &&
937 // Only do this when the target can fold the load into the call or
938 // jmp.
939 !Subtarget->useRetpolineIndirectCalls() &&
940 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
941 (N->getOpcode() == X86ISD::TC_RETURN &&
942 (Subtarget->is64Bit() ||
943 !getTargetMachine().isPositionIndependent())))) {
944 /// Also try moving call address load from outside callseq_start to just
945 /// before the call to allow it to be folded.
947 /// [Load chain]
948 /// ^
949 /// |
950 /// [Load]
951 /// ^ ^
952 /// | |
953 /// / \--
954 /// / |
955 ///[CALLSEQ_START] |
956 /// ^ |
957 /// | |
958 /// [LOAD/C2Reg] |
959 /// | |
960 /// \ /
961 /// \ /
962 /// [CALL]
963 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
964 SDValue Chain = N->getOperand(0);
965 SDValue Load = N->getOperand(1);
966 if (!isCalleeLoad(Load, Chain, HasCallSeq))
967 continue;
968 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
969 ++NumLoadMoved;
970 continue;
973 // Lower fpround and fpextend nodes that target the FP stack to be store and
974 // load to the stack. This is a gross hack. We would like to simply mark
975 // these as being illegal, but when we do that, legalize produces these when
976 // it expands calls, then expands these in the same legalize pass. We would
977 // like dag combine to be able to hack on these between the call expansion
978 // and the node legalization. As such this pass basically does "really
979 // late" legalization of these inline with the X86 isel pass.
980 // FIXME: This should only happen when not compiled with -O0.
981 switch (N->getOpcode()) {
982 default: continue;
983 case ISD::FP_ROUND:
984 case ISD::FP_EXTEND:
986 MVT SrcVT = N->getOperand(0).getSimpleValueType();
987 MVT DstVT = N->getSimpleValueType(0);
989 // If any of the sources are vectors, no fp stack involved.
990 if (SrcVT.isVector() || DstVT.isVector())
991 continue;
993 // If the source and destination are SSE registers, then this is a legal
994 // conversion that should not be lowered.
995 const X86TargetLowering *X86Lowering =
996 static_cast<const X86TargetLowering *>(TLI);
997 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
998 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
999 if (SrcIsSSE && DstIsSSE)
1000 continue;
1002 if (!SrcIsSSE && !DstIsSSE) {
1003 // If this is an FPStack extension, it is a noop.
1004 if (N->getOpcode() == ISD::FP_EXTEND)
1005 continue;
1006 // If this is a value-preserving FPStack truncation, it is a noop.
1007 if (N->getConstantOperandVal(1))
1008 continue;
1011 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1012 // FPStack has extload and truncstore. SSE can fold direct loads into other
1013 // operations. Based on this, decide what we want to do.
1014 MVT MemVT;
1015 if (N->getOpcode() == ISD::FP_ROUND)
1016 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
1017 else
1018 MemVT = SrcIsSSE ? SrcVT : DstVT;
1020 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1021 SDLoc dl(N);
1023 // FIXME: optimize the case where the src/dest is a load or store?
1025 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0),
1026 MemTmp, MachinePointerInfo(), MemVT);
1027 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
1028 MachinePointerInfo(), MemVT);
1030 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1031 // extload we created. This will cause general havok on the dag because
1032 // anything below the conversion could be folded into other existing nodes.
1033 // To avoid invalidating 'I', back it up to the convert node.
1034 --I;
1035 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1036 break;
1039 //The sequence of events for lowering STRICT_FP versions of these nodes requires
1040 //dealing with the chain differently, as there is already a preexisting chain.
1041 case ISD::STRICT_FP_ROUND:
1042 case ISD::STRICT_FP_EXTEND:
1044 MVT SrcVT = N->getOperand(1).getSimpleValueType();
1045 MVT DstVT = N->getSimpleValueType(0);
1047 // If any of the sources are vectors, no fp stack involved.
1048 if (SrcVT.isVector() || DstVT.isVector())
1049 continue;
1051 // If the source and destination are SSE registers, then this is a legal
1052 // conversion that should not be lowered.
1053 const X86TargetLowering *X86Lowering =
1054 static_cast<const X86TargetLowering *>(TLI);
1055 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1056 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1057 if (SrcIsSSE && DstIsSSE)
1058 continue;
1060 if (!SrcIsSSE && !DstIsSSE) {
1061 // If this is an FPStack extension, it is a noop.
1062 if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1063 continue;
1064 // If this is a value-preserving FPStack truncation, it is a noop.
1065 if (N->getConstantOperandVal(2))
1066 continue;
1069 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1070 // FPStack has extload and truncstore. SSE can fold direct loads into other
1071 // operations. Based on this, decide what we want to do.
1072 MVT MemVT;
1073 if (N->getOpcode() == ISD::STRICT_FP_ROUND)
1074 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
1075 else
1076 MemVT = SrcIsSSE ? SrcVT : DstVT;
1078 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1079 SDLoc dl(N);
1081 // FIXME: optimize the case where the src/dest is a load or store?
1083 //Since the operation is StrictFP, use the preexisting chain.
1084 SDValue Store = CurDAG->getTruncStore(N->getOperand(0), dl, N->getOperand(1),
1085 MemTmp, MachinePointerInfo(), MemVT);
1086 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
1087 MachinePointerInfo(), MemVT);
1089 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1090 // extload we created. This will cause general havok on the dag because
1091 // anything below the conversion could be folded into other existing nodes.
1092 // To avoid invalidating 'I', back it up to the convert node.
1093 --I;
1094 CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1095 break;
1100 // Now that we did that, the node is dead. Increment the iterator to the
1101 // next node to process, then delete N.
1102 ++I;
1103 CurDAG->DeleteNode(N);
1106 // The load+call transform above can leave some dead nodes in the graph. Make
1107 // sure we remove them. Its possible some of the other transforms do to so
1108 // just remove dead nodes unconditionally.
1109 CurDAG->RemoveDeadNodes();
1112 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1113 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1114 unsigned Opc = N->getMachineOpcode();
1115 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1116 Opc != X86::MOVSX64rr8)
1117 return false;
1119 SDValue N0 = N->getOperand(0);
1121 // We need to be extracting the lower bit of an extend.
1122 if (!N0.isMachineOpcode() ||
1123 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1124 N0.getConstantOperandVal(1) != X86::sub_8bit)
1125 return false;
1127 // We're looking for either a movsx or movzx to match the original opcode.
1128 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1129 : X86::MOVSX32rr8_NOREX;
1130 SDValue N00 = N0.getOperand(0);
1131 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1132 return false;
1134 if (Opc == X86::MOVSX64rr8) {
1135 // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1136 // to 64.
1137 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1138 MVT::i64, N00);
1139 ReplaceUses(N, Extend);
1140 } else {
1141 // Ok we can drop this extend and just use the original extend.
1142 ReplaceUses(N, N00.getNode());
1145 return true;
1148 void X86DAGToDAGISel::PostprocessISelDAG() {
1149 // Skip peepholes at -O0.
1150 if (TM.getOptLevel() == CodeGenOpt::None)
1151 return;
1153 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1155 bool MadeChange = false;
1156 while (Position != CurDAG->allnodes_begin()) {
1157 SDNode *N = &*--Position;
1158 // Skip dead nodes and any non-machine opcodes.
1159 if (N->use_empty() || !N->isMachineOpcode())
1160 continue;
1162 if (tryOptimizeRem8Extend(N)) {
1163 MadeChange = true;
1164 continue;
1167 // Look for a TESTrr+ANDrr pattern where both operands of the test are
1168 // the same. Rewrite to remove the AND.
1169 unsigned Opc = N->getMachineOpcode();
1170 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1171 Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1172 N->getOperand(0) == N->getOperand(1) &&
1173 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1174 N->getOperand(0).isMachineOpcode()) {
1175 SDValue And = N->getOperand(0);
1176 unsigned N0Opc = And.getMachineOpcode();
1177 if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1178 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1179 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1180 MVT::i32,
1181 And.getOperand(0),
1182 And.getOperand(1));
1183 ReplaceUses(N, Test);
1184 MadeChange = true;
1185 continue;
1187 if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1188 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1189 unsigned NewOpc;
1190 switch (N0Opc) {
1191 case X86::AND8rm: NewOpc = X86::TEST8mr; break;
1192 case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1193 case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1194 case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1197 // Need to swap the memory and register operand.
1198 SDValue Ops[] = { And.getOperand(1),
1199 And.getOperand(2),
1200 And.getOperand(3),
1201 And.getOperand(4),
1202 And.getOperand(5),
1203 And.getOperand(0),
1204 And.getOperand(6) /* Chain */ };
1205 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1206 MVT::i32, MVT::Other, Ops);
1207 ReplaceUses(N, Test);
1208 MadeChange = true;
1209 continue;
1213 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1214 // used. We're doing this late so we can prefer to fold the AND into masked
1215 // comparisons. Doing that can be better for the live range of the mask
1216 // register.
1217 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1218 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1219 N->getOperand(0) == N->getOperand(1) &&
1220 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1221 N->getOperand(0).isMachineOpcode() &&
1222 onlyUsesZeroFlag(SDValue(N, 0))) {
1223 SDValue And = N->getOperand(0);
1224 unsigned N0Opc = And.getMachineOpcode();
1225 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1226 // KAND instructions and KTEST use the same ISA feature.
1227 if (N0Opc == X86::KANDBrr ||
1228 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1229 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1230 unsigned NewOpc;
1231 switch (Opc) {
1232 default: llvm_unreachable("Unexpected opcode!");
1233 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1234 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1235 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1236 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1238 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1239 MVT::i32,
1240 And.getOperand(0),
1241 And.getOperand(1));
1242 ReplaceUses(N, KTest);
1243 MadeChange = true;
1244 continue;
1248 // Attempt to remove vectors moves that were inserted to zero upper bits.
1249 if (Opc != TargetOpcode::SUBREG_TO_REG)
1250 continue;
1252 unsigned SubRegIdx = N->getConstantOperandVal(2);
1253 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1254 continue;
1256 SDValue Move = N->getOperand(1);
1257 if (!Move.isMachineOpcode())
1258 continue;
1260 // Make sure its one of the move opcodes we recognize.
1261 switch (Move.getMachineOpcode()) {
1262 default:
1263 continue;
1264 case X86::VMOVAPDrr: case X86::VMOVUPDrr:
1265 case X86::VMOVAPSrr: case X86::VMOVUPSrr:
1266 case X86::VMOVDQArr: case X86::VMOVDQUrr:
1267 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
1268 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
1269 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
1270 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
1271 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
1272 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1273 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1274 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
1275 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
1276 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1277 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1278 break;
1281 SDValue In = Move.getOperand(0);
1282 if (!In.isMachineOpcode() ||
1283 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1284 continue;
1286 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1287 // the SHA instructions which use a legacy encoding.
1288 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1289 if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1290 (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1291 (TSFlags & X86II::EncodingMask) != X86II::XOP)
1292 continue;
1294 // Producing instruction is another vector instruction. We can drop the
1295 // move.
1296 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1297 MadeChange = true;
1300 if (MadeChange)
1301 CurDAG->RemoveDeadNodes();
1305 /// Emit any code that needs to be executed only in the main function.
1306 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1307 if (Subtarget->isTargetCygMing()) {
1308 TargetLowering::ArgListTy Args;
1309 auto &DL = CurDAG->getDataLayout();
1311 TargetLowering::CallLoweringInfo CLI(*CurDAG);
1312 CLI.setChain(CurDAG->getRoot())
1313 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1314 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1315 std::move(Args));
1316 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1317 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1318 CurDAG->setRoot(Result.second);
1322 void X86DAGToDAGISel::EmitFunctionEntryCode() {
1323 // If this is main, emit special code for main.
1324 const Function &F = MF->getFunction();
1325 if (F.hasExternalLinkage() && F.getName() == "main")
1326 emitSpecialCodeForMain();
1329 static bool isDispSafeForFrameIndex(int64_t Val) {
1330 // On 64-bit platforms, we can run into an issue where a frame index
1331 // includes a displacement that, when added to the explicit displacement,
1332 // will overflow the displacement field. Assuming that the frame index
1333 // displacement fits into a 31-bit integer (which is only slightly more
1334 // aggressive than the current fundamental assumption that it fits into
1335 // a 32-bit integer), a 31-bit disp should always be safe.
1336 return isInt<31>(Val);
1339 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1340 X86ISelAddressMode &AM) {
1341 // If there's no offset to fold, we don't need to do any work.
1342 if (Offset == 0)
1343 return false;
1345 // Cannot combine ExternalSymbol displacements with integer offsets.
1346 if (AM.ES || AM.MCSym)
1347 return true;
1349 int64_t Val = AM.Disp + Offset;
1350 CodeModel::Model M = TM.getCodeModel();
1351 if (Subtarget->is64Bit()) {
1352 if (!X86::isOffsetSuitableForCodeModel(Val, M,
1353 AM.hasSymbolicDisplacement()))
1354 return true;
1355 // In addition to the checks required for a register base, check that
1356 // we do not try to use an unsafe Disp with a frame index.
1357 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1358 !isDispSafeForFrameIndex(Val))
1359 return true;
1361 AM.Disp = Val;
1362 return false;
1366 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
1367 SDValue Address = N->getOperand(1);
1369 // load gs:0 -> GS segment register.
1370 // load fs:0 -> FS segment register.
1372 // This optimization is valid because the GNU TLS model defines that
1373 // gs:0 (or fs:0 on X86-64) contains its own address.
1374 // For more information see http://people.redhat.com/drepper/tls.pdf
1375 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
1376 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1377 !IndirectTlsSegRefs &&
1378 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1379 Subtarget->isTargetFuchsia()))
1380 switch (N->getPointerInfo().getAddrSpace()) {
1381 case 256:
1382 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1383 return false;
1384 case 257:
1385 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1386 return false;
1387 // Address space 258 is not handled here, because it is not used to
1388 // address TLS areas.
1391 return true;
1394 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1395 /// mode. These wrap things that will resolve down into a symbol reference.
1396 /// If no match is possible, this returns true, otherwise it returns false.
1397 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1398 // If the addressing mode already has a symbol as the displacement, we can
1399 // never match another symbol.
1400 if (AM.hasSymbolicDisplacement())
1401 return true;
1403 bool IsRIPRelTLS = false;
1404 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1405 if (IsRIPRel) {
1406 SDValue Val = N.getOperand(0);
1407 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1408 IsRIPRelTLS = true;
1411 // We can't use an addressing mode in the 64-bit large code model.
1412 // Global TLS addressing is an exception. In the medium code model,
1413 // we use can use a mode when RIP wrappers are present.
1414 // That signifies access to globals that are known to be "near",
1415 // such as the GOT itself.
1416 CodeModel::Model M = TM.getCodeModel();
1417 if (Subtarget->is64Bit() &&
1418 ((M == CodeModel::Large && !IsRIPRelTLS) ||
1419 (M == CodeModel::Medium && !IsRIPRel)))
1420 return true;
1422 // Base and index reg must be 0 in order to use %rip as base.
1423 if (IsRIPRel && AM.hasBaseOrIndexReg())
1424 return true;
1426 // Make a local copy in case we can't do this fold.
1427 X86ISelAddressMode Backup = AM;
1429 int64_t Offset = 0;
1430 SDValue N0 = N.getOperand(0);
1431 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1432 AM.GV = G->getGlobal();
1433 AM.SymbolFlags = G->getTargetFlags();
1434 Offset = G->getOffset();
1435 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1436 AM.CP = CP->getConstVal();
1437 AM.Align = CP->getAlignment();
1438 AM.SymbolFlags = CP->getTargetFlags();
1439 Offset = CP->getOffset();
1440 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1441 AM.ES = S->getSymbol();
1442 AM.SymbolFlags = S->getTargetFlags();
1443 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1444 AM.MCSym = S->getMCSymbol();
1445 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1446 AM.JT = J->getIndex();
1447 AM.SymbolFlags = J->getTargetFlags();
1448 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1449 AM.BlockAddr = BA->getBlockAddress();
1450 AM.SymbolFlags = BA->getTargetFlags();
1451 Offset = BA->getOffset();
1452 } else
1453 llvm_unreachable("Unhandled symbol reference node.");
1455 if (foldOffsetIntoAddress(Offset, AM)) {
1456 AM = Backup;
1457 return true;
1460 if (IsRIPRel)
1461 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1463 // Commit the changes now that we know this fold is safe.
1464 return false;
1467 /// Add the specified node to the specified addressing mode, returning true if
1468 /// it cannot be done. This just pattern matches for the addressing mode.
1469 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1470 if (matchAddressRecursively(N, AM, 0))
1471 return true;
1473 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1474 // a smaller encoding and avoids a scaled-index.
1475 if (AM.Scale == 2 &&
1476 AM.BaseType == X86ISelAddressMode::RegBase &&
1477 AM.Base_Reg.getNode() == nullptr) {
1478 AM.Base_Reg = AM.IndexReg;
1479 AM.Scale = 1;
1482 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1483 // because it has a smaller encoding.
1484 // TODO: Which other code models can use this?
1485 switch (TM.getCodeModel()) {
1486 default: break;
1487 case CodeModel::Small:
1488 case CodeModel::Kernel:
1489 if (Subtarget->is64Bit() &&
1490 AM.Scale == 1 &&
1491 AM.BaseType == X86ISelAddressMode::RegBase &&
1492 AM.Base_Reg.getNode() == nullptr &&
1493 AM.IndexReg.getNode() == nullptr &&
1494 AM.SymbolFlags == X86II::MO_NO_FLAG &&
1495 AM.hasSymbolicDisplacement())
1496 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1497 break;
1500 return false;
1503 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1504 unsigned Depth) {
1505 // Add an artificial use to this node so that we can keep track of
1506 // it if it gets CSE'd with a different node.
1507 HandleSDNode Handle(N);
1509 X86ISelAddressMode Backup = AM;
1510 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1511 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1512 return false;
1513 AM = Backup;
1515 // Try again after commuting the operands.
1516 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
1517 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1518 return false;
1519 AM = Backup;
1521 // If we couldn't fold both operands into the address at the same time,
1522 // see if we can just put each operand into a register and fold at least
1523 // the add.
1524 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1525 !AM.Base_Reg.getNode() &&
1526 !AM.IndexReg.getNode()) {
1527 N = Handle.getValue();
1528 AM.Base_Reg = N.getOperand(0);
1529 AM.IndexReg = N.getOperand(1);
1530 AM.Scale = 1;
1531 return false;
1533 N = Handle.getValue();
1534 return true;
1537 // Insert a node into the DAG at least before the Pos node's position. This
1538 // will reposition the node as needed, and will assign it a node ID that is <=
1539 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1540 // IDs! The selection DAG must no longer depend on their uniqueness when this
1541 // is used.
1542 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1543 if (N->getNodeId() == -1 ||
1544 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1545 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1546 DAG.RepositionNode(Pos->getIterator(), N.getNode());
1547 // Mark Node as invalid for pruning as after this it may be a successor to a
1548 // selected node but otherwise be in the same position of Pos.
1549 // Conservatively mark it with the same -abs(Id) to assure node id
1550 // invariant is preserved.
1551 N->setNodeId(Pos->getNodeId());
1552 SelectionDAGISel::InvalidateNodeId(N.getNode());
1556 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1557 // safe. This allows us to convert the shift and and into an h-register
1558 // extract and a scaled index. Returns false if the simplification is
1559 // performed.
1560 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1561 uint64_t Mask,
1562 SDValue Shift, SDValue X,
1563 X86ISelAddressMode &AM) {
1564 if (Shift.getOpcode() != ISD::SRL ||
1565 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1566 !Shift.hasOneUse())
1567 return true;
1569 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1570 if (ScaleLog <= 0 || ScaleLog >= 4 ||
1571 Mask != (0xffu << ScaleLog))
1572 return true;
1574 MVT VT = N.getSimpleValueType();
1575 SDLoc DL(N);
1576 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1577 SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1578 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1579 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1580 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1581 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1583 // Insert the new nodes into the topological ordering. We must do this in
1584 // a valid topological ordering as nothing is going to go back and re-sort
1585 // these nodes. We continually insert before 'N' in sequence as this is
1586 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1587 // hierarchy left to express.
1588 insertDAGNode(DAG, N, Eight);
1589 insertDAGNode(DAG, N, Srl);
1590 insertDAGNode(DAG, N, NewMask);
1591 insertDAGNode(DAG, N, And);
1592 insertDAGNode(DAG, N, ShlCount);
1593 insertDAGNode(DAG, N, Shl);
1594 DAG.ReplaceAllUsesWith(N, Shl);
1595 DAG.RemoveDeadNode(N.getNode());
1596 AM.IndexReg = And;
1597 AM.Scale = (1 << ScaleLog);
1598 return false;
1601 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1602 // allows us to fold the shift into this addressing mode. Returns false if the
1603 // transform succeeded.
1604 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1605 X86ISelAddressMode &AM) {
1606 SDValue Shift = N.getOperand(0);
1608 // Use a signed mask so that shifting right will insert sign bits. These
1609 // bits will be removed when we shift the result left so it doesn't matter
1610 // what we use. This might allow a smaller immediate encoding.
1611 int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1613 // If we have an any_extend feeding the AND, look through it to see if there
1614 // is a shift behind it. But only if the AND doesn't use the extended bits.
1615 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1616 bool FoundAnyExtend = false;
1617 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1618 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1619 isUInt<32>(Mask)) {
1620 FoundAnyExtend = true;
1621 Shift = Shift.getOperand(0);
1624 if (Shift.getOpcode() != ISD::SHL ||
1625 !isa<ConstantSDNode>(Shift.getOperand(1)))
1626 return true;
1628 SDValue X = Shift.getOperand(0);
1630 // Not likely to be profitable if either the AND or SHIFT node has more
1631 // than one use (unless all uses are for address computation). Besides,
1632 // isel mechanism requires their node ids to be reused.
1633 if (!N.hasOneUse() || !Shift.hasOneUse())
1634 return true;
1636 // Verify that the shift amount is something we can fold.
1637 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1638 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1639 return true;
1641 MVT VT = N.getSimpleValueType();
1642 SDLoc DL(N);
1643 if (FoundAnyExtend) {
1644 SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1645 insertDAGNode(DAG, N, NewX);
1646 X = NewX;
1649 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1650 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1651 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1653 // Insert the new nodes into the topological ordering. We must do this in
1654 // a valid topological ordering as nothing is going to go back and re-sort
1655 // these nodes. We continually insert before 'N' in sequence as this is
1656 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1657 // hierarchy left to express.
1658 insertDAGNode(DAG, N, NewMask);
1659 insertDAGNode(DAG, N, NewAnd);
1660 insertDAGNode(DAG, N, NewShift);
1661 DAG.ReplaceAllUsesWith(N, NewShift);
1662 DAG.RemoveDeadNode(N.getNode());
1664 AM.Scale = 1 << ShiftAmt;
1665 AM.IndexReg = NewAnd;
1666 return false;
1669 // Implement some heroics to detect shifts of masked values where the mask can
1670 // be replaced by extending the shift and undoing that in the addressing mode
1671 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1672 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1673 // the addressing mode. This results in code such as:
1675 // int f(short *y, int *lookup_table) {
1676 // ...
1677 // return *y + lookup_table[*y >> 11];
1678 // }
1680 // Turning into:
1681 // movzwl (%rdi), %eax
1682 // movl %eax, %ecx
1683 // shrl $11, %ecx
1684 // addl (%rsi,%rcx,4), %eax
1686 // Instead of:
1687 // movzwl (%rdi), %eax
1688 // movl %eax, %ecx
1689 // shrl $9, %ecx
1690 // andl $124, %rcx
1691 // addl (%rsi,%rcx), %eax
1693 // Note that this function assumes the mask is provided as a mask *after* the
1694 // value is shifted. The input chain may or may not match that, but computing
1695 // such a mask is trivial.
1696 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1697 uint64_t Mask,
1698 SDValue Shift, SDValue X,
1699 X86ISelAddressMode &AM) {
1700 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1701 !isa<ConstantSDNode>(Shift.getOperand(1)))
1702 return true;
1704 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1705 unsigned MaskLZ = countLeadingZeros(Mask);
1706 unsigned MaskTZ = countTrailingZeros(Mask);
1708 // The amount of shift we're trying to fit into the addressing mode is taken
1709 // from the trailing zeros of the mask.
1710 unsigned AMShiftAmt = MaskTZ;
1712 // There is nothing we can do here unless the mask is removing some bits.
1713 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1714 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1716 // We also need to ensure that mask is a continuous run of bits.
1717 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1719 // Scale the leading zero count down based on the actual size of the value.
1720 // Also scale it down based on the size of the shift.
1721 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1722 if (MaskLZ < ScaleDown)
1723 return true;
1724 MaskLZ -= ScaleDown;
1726 // The final check is to ensure that any masked out high bits of X are
1727 // already known to be zero. Otherwise, the mask has a semantic impact
1728 // other than masking out a couple of low bits. Unfortunately, because of
1729 // the mask, zero extensions will be removed from operands in some cases.
1730 // This code works extra hard to look through extensions because we can
1731 // replace them with zero extensions cheaply if necessary.
1732 bool ReplacingAnyExtend = false;
1733 if (X.getOpcode() == ISD::ANY_EXTEND) {
1734 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1735 X.getOperand(0).getSimpleValueType().getSizeInBits();
1736 // Assume that we'll replace the any-extend with a zero-extend, and
1737 // narrow the search to the extended value.
1738 X = X.getOperand(0);
1739 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1740 ReplacingAnyExtend = true;
1742 APInt MaskedHighBits =
1743 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1744 KnownBits Known = DAG.computeKnownBits(X);
1745 if (MaskedHighBits != Known.Zero) return true;
1747 // We've identified a pattern that can be transformed into a single shift
1748 // and an addressing mode. Make it so.
1749 MVT VT = N.getSimpleValueType();
1750 if (ReplacingAnyExtend) {
1751 assert(X.getValueType() != VT);
1752 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
1753 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
1754 insertDAGNode(DAG, N, NewX);
1755 X = NewX;
1757 SDLoc DL(N);
1758 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1759 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1760 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1761 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
1763 // Insert the new nodes into the topological ordering. We must do this in
1764 // a valid topological ordering as nothing is going to go back and re-sort
1765 // these nodes. We continually insert before 'N' in sequence as this is
1766 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1767 // hierarchy left to express.
1768 insertDAGNode(DAG, N, NewSRLAmt);
1769 insertDAGNode(DAG, N, NewSRL);
1770 insertDAGNode(DAG, N, NewSHLAmt);
1771 insertDAGNode(DAG, N, NewSHL);
1772 DAG.ReplaceAllUsesWith(N, NewSHL);
1773 DAG.RemoveDeadNode(N.getNode());
1775 AM.Scale = 1 << AMShiftAmt;
1776 AM.IndexReg = NewSRL;
1777 return false;
1780 // Transform "(X >> SHIFT) & (MASK << C1)" to
1781 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
1782 // matched to a BEXTR later. Returns false if the simplification is performed.
1783 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
1784 uint64_t Mask,
1785 SDValue Shift, SDValue X,
1786 X86ISelAddressMode &AM,
1787 const X86Subtarget &Subtarget) {
1788 if (Shift.getOpcode() != ISD::SRL ||
1789 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1790 !Shift.hasOneUse() || !N.hasOneUse())
1791 return true;
1793 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
1794 if (!Subtarget.hasTBM() &&
1795 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
1796 return true;
1798 // We need to ensure that mask is a continuous run of bits.
1799 if (!isShiftedMask_64(Mask)) return true;
1801 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1803 // The amount of shift we're trying to fit into the addressing mode is taken
1804 // from the trailing zeros of the mask.
1805 unsigned AMShiftAmt = countTrailingZeros(Mask);
1807 // There is nothing we can do here unless the mask is removing some bits.
1808 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1809 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1811 MVT VT = N.getSimpleValueType();
1812 SDLoc DL(N);
1813 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1814 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1815 SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
1816 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
1817 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1818 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
1820 // Insert the new nodes into the topological ordering. We must do this in
1821 // a valid topological ordering as nothing is going to go back and re-sort
1822 // these nodes. We continually insert before 'N' in sequence as this is
1823 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1824 // hierarchy left to express.
1825 insertDAGNode(DAG, N, NewSRLAmt);
1826 insertDAGNode(DAG, N, NewSRL);
1827 insertDAGNode(DAG, N, NewMask);
1828 insertDAGNode(DAG, N, NewAnd);
1829 insertDAGNode(DAG, N, NewSHLAmt);
1830 insertDAGNode(DAG, N, NewSHL);
1831 DAG.ReplaceAllUsesWith(N, NewSHL);
1832 DAG.RemoveDeadNode(N.getNode());
1834 AM.Scale = 1 << AMShiftAmt;
1835 AM.IndexReg = NewAnd;
1836 return false;
1839 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
1840 unsigned Depth) {
1841 SDLoc dl(N);
1842 LLVM_DEBUG({
1843 dbgs() << "MatchAddress: ";
1844 AM.dump(CurDAG);
1846 // Limit recursion.
1847 if (Depth > 5)
1848 return matchAddressBase(N, AM);
1850 // If this is already a %rip relative address, we can only merge immediates
1851 // into it. Instead of handling this in every case, we handle it here.
1852 // RIP relative addressing: %rip + 32-bit displacement!
1853 if (AM.isRIPRelative()) {
1854 // FIXME: JumpTable and ExternalSymbol address currently don't like
1855 // displacements. It isn't very important, but this should be fixed for
1856 // consistency.
1857 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
1858 return true;
1860 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1861 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
1862 return false;
1863 return true;
1866 switch (N.getOpcode()) {
1867 default: break;
1868 case ISD::LOCAL_RECOVER: {
1869 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
1870 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
1871 // Use the symbol and don't prefix it.
1872 AM.MCSym = ESNode->getMCSymbol();
1873 return false;
1875 break;
1877 case ISD::Constant: {
1878 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1879 if (!foldOffsetIntoAddress(Val, AM))
1880 return false;
1881 break;
1884 case X86ISD::Wrapper:
1885 case X86ISD::WrapperRIP:
1886 if (!matchWrapper(N, AM))
1887 return false;
1888 break;
1890 case ISD::LOAD:
1891 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
1892 return false;
1893 break;
1895 case ISD::FrameIndex:
1896 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1897 AM.Base_Reg.getNode() == nullptr &&
1898 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1899 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1900 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1901 return false;
1903 break;
1905 case ISD::SHL:
1906 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1907 break;
1909 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1910 unsigned Val = CN->getZExtValue();
1911 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1912 // that the base operand remains free for further matching. If
1913 // the base doesn't end up getting used, a post-processing step
1914 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1915 if (Val == 1 || Val == 2 || Val == 3) {
1916 AM.Scale = 1 << Val;
1917 SDValue ShVal = N.getOperand(0);
1919 // Okay, we know that we have a scale by now. However, if the scaled
1920 // value is an add of something and a constant, we can fold the
1921 // constant into the disp field here.
1922 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1923 AM.IndexReg = ShVal.getOperand(0);
1924 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
1925 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1926 if (!foldOffsetIntoAddress(Disp, AM))
1927 return false;
1930 AM.IndexReg = ShVal;
1931 return false;
1934 break;
1936 case ISD::SRL: {
1937 // Scale must not be used already.
1938 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1940 // We only handle up to 64-bit values here as those are what matter for
1941 // addressing mode optimizations.
1942 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
1943 "Unexpected value size!");
1945 SDValue And = N.getOperand(0);
1946 if (And.getOpcode() != ISD::AND) break;
1947 SDValue X = And.getOperand(0);
1949 // The mask used for the transform is expected to be post-shift, but we
1950 // found the shift first so just apply the shift to the mask before passing
1951 // it down.
1952 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1953 !isa<ConstantSDNode>(And.getOperand(1)))
1954 break;
1955 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1957 // Try to fold the mask and shift into the scale, and return false if we
1958 // succeed.
1959 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1960 return false;
1961 break;
1964 case ISD::SMUL_LOHI:
1965 case ISD::UMUL_LOHI:
1966 // A mul_lohi where we need the low part can be folded as a plain multiply.
1967 if (N.getResNo() != 0) break;
1968 LLVM_FALLTHROUGH;
1969 case ISD::MUL:
1970 case X86ISD::MUL_IMM:
1971 // X*[3,5,9] -> X+X*[2,4,8]
1972 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1973 AM.Base_Reg.getNode() == nullptr &&
1974 AM.IndexReg.getNode() == nullptr) {
1975 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
1976 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1977 CN->getZExtValue() == 9) {
1978 AM.Scale = unsigned(CN->getZExtValue())-1;
1980 SDValue MulVal = N.getOperand(0);
1981 SDValue Reg;
1983 // Okay, we know that we have a scale by now. However, if the scaled
1984 // value is an add of something and a constant, we can fold the
1985 // constant into the disp field here.
1986 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1987 isa<ConstantSDNode>(MulVal.getOperand(1))) {
1988 Reg = MulVal.getOperand(0);
1989 ConstantSDNode *AddVal =
1990 cast<ConstantSDNode>(MulVal.getOperand(1));
1991 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1992 if (foldOffsetIntoAddress(Disp, AM))
1993 Reg = N.getOperand(0);
1994 } else {
1995 Reg = N.getOperand(0);
1998 AM.IndexReg = AM.Base_Reg = Reg;
1999 return false;
2002 break;
2004 case ISD::SUB: {
2005 // Given A-B, if A can be completely folded into the address and
2006 // the index field with the index field unused, use -B as the index.
2007 // This is a win if a has multiple parts that can be folded into
2008 // the address. Also, this saves a mov if the base register has
2009 // other uses, since it avoids a two-address sub instruction, however
2010 // it costs an additional mov if the index register has other uses.
2012 // Add an artificial use to this node so that we can keep track of
2013 // it if it gets CSE'd with a different node.
2014 HandleSDNode Handle(N);
2016 // Test if the LHS of the sub can be folded.
2017 X86ISelAddressMode Backup = AM;
2018 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2019 N = Handle.getValue();
2020 AM = Backup;
2021 break;
2023 N = Handle.getValue();
2024 // Test if the index field is free for use.
2025 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2026 AM = Backup;
2027 break;
2030 int Cost = 0;
2031 SDValue RHS = N.getOperand(1);
2032 // If the RHS involves a register with multiple uses, this
2033 // transformation incurs an extra mov, due to the neg instruction
2034 // clobbering its operand.
2035 if (!RHS.getNode()->hasOneUse() ||
2036 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2037 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2038 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2039 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2040 RHS.getOperand(0).getValueType() == MVT::i32))
2041 ++Cost;
2042 // If the base is a register with multiple uses, this
2043 // transformation may save a mov.
2044 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2045 !AM.Base_Reg.getNode()->hasOneUse()) ||
2046 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2047 --Cost;
2048 // If the folded LHS was interesting, this transformation saves
2049 // address arithmetic.
2050 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2051 ((AM.Disp != 0) && (Backup.Disp == 0)) +
2052 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2053 --Cost;
2054 // If it doesn't look like it may be an overall win, don't do it.
2055 if (Cost >= 0) {
2056 AM = Backup;
2057 break;
2060 // Ok, the transformation is legal and appears profitable. Go for it.
2061 // Negation will be emitted later to avoid creating dangling nodes if this
2062 // was an unprofitable LEA.
2063 AM.IndexReg = RHS;
2064 AM.NegateIndex = true;
2065 AM.Scale = 1;
2066 return false;
2069 case ISD::ADD:
2070 if (!matchAdd(N, AM, Depth))
2071 return false;
2072 break;
2074 case ISD::OR:
2075 // We want to look through a transform in InstCombine and DAGCombiner that
2076 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2077 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2078 // An 'lea' can then be used to match the shift (multiply) and add:
2079 // and $1, %esi
2080 // lea (%rsi, %rdi, 8), %rax
2081 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2082 !matchAdd(N, AM, Depth))
2083 return false;
2084 break;
2086 case ISD::AND: {
2087 // Perform some heroic transforms on an and of a constant-count shift
2088 // with a constant to enable use of the scaled offset field.
2090 // Scale must not be used already.
2091 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2093 // We only handle up to 64-bit values here as those are what matter for
2094 // addressing mode optimizations.
2095 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2096 "Unexpected value size!");
2098 if (!isa<ConstantSDNode>(N.getOperand(1)))
2099 break;
2101 if (N.getOperand(0).getOpcode() == ISD::SRL) {
2102 SDValue Shift = N.getOperand(0);
2103 SDValue X = Shift.getOperand(0);
2105 uint64_t Mask = N.getConstantOperandVal(1);
2107 // Try to fold the mask and shift into an extract and scale.
2108 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2109 return false;
2111 // Try to fold the mask and shift directly into the scale.
2112 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2113 return false;
2115 // Try to fold the mask and shift into BEXTR and scale.
2116 if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2117 return false;
2120 // Try to swap the mask and shift to place shifts which can be done as
2121 // a scale on the outside of the mask.
2122 if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2123 return false;
2125 break;
2127 case ISD::ZERO_EXTEND: {
2128 // Try to widen a zexted shift left to the same size as its use, so we can
2129 // match the shift as a scale factor.
2130 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2131 break;
2132 if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2133 break;
2135 // Give up if the shift is not a valid scale factor [1,2,3].
2136 SDValue Shl = N.getOperand(0);
2137 auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2138 if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2139 break;
2141 // The narrow shift must only shift out zero bits (it must be 'nuw').
2142 // That makes it safe to widen to the destination type.
2143 APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2144 ShAmtC->getZExtValue());
2145 if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2146 break;
2148 // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2149 MVT VT = N.getSimpleValueType();
2150 SDLoc DL(N);
2151 SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2152 SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2154 // Convert the shift to scale factor.
2155 AM.Scale = 1 << ShAmtC->getZExtValue();
2156 AM.IndexReg = Zext;
2158 insertDAGNode(*CurDAG, N, Zext);
2159 insertDAGNode(*CurDAG, N, NewShl);
2160 CurDAG->ReplaceAllUsesWith(N, NewShl);
2161 CurDAG->RemoveDeadNode(N.getNode());
2162 return false;
2166 return matchAddressBase(N, AM);
2169 /// Helper for MatchAddress. Add the specified node to the
2170 /// specified addressing mode without any further recursion.
2171 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2172 // Is the base register already occupied?
2173 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2174 // If so, check to see if the scale index register is set.
2175 if (!AM.IndexReg.getNode()) {
2176 AM.IndexReg = N;
2177 AM.Scale = 1;
2178 return false;
2181 // Otherwise, we cannot select it.
2182 return true;
2185 // Default, generate it as a register.
2186 AM.BaseType = X86ISelAddressMode::RegBase;
2187 AM.Base_Reg = N;
2188 return false;
2191 /// Helper for selectVectorAddr. Handles things that can be folded into a
2192 /// gather scatter address. The index register and scale should have already
2193 /// been handled.
2194 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2195 // TODO: Support other operations.
2196 switch (N.getOpcode()) {
2197 case ISD::Constant: {
2198 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2199 if (!foldOffsetIntoAddress(Val, AM))
2200 return false;
2201 break;
2203 case X86ISD::Wrapper:
2204 if (!matchWrapper(N, AM))
2205 return false;
2206 break;
2209 return matchAddressBase(N, AM);
2212 bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
2213 SDValue &Scale, SDValue &Index,
2214 SDValue &Disp, SDValue &Segment) {
2215 X86ISelAddressMode AM;
2216 auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent);
2217 AM.IndexReg = Mgs->getIndex();
2218 AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue();
2220 unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2221 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
2222 if (AddrSpace == 256)
2223 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2224 if (AddrSpace == 257)
2225 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2226 if (AddrSpace == 258)
2227 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2229 SDLoc DL(N);
2230 MVT VT = N.getSimpleValueType();
2232 // Try to match into the base and displacement fields.
2233 if (matchVectorAddress(N, AM))
2234 return false;
2236 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2237 return true;
2240 /// Returns true if it is able to pattern match an addressing mode.
2241 /// It returns the operands which make up the maximal addressing mode it can
2242 /// match by reference.
2244 /// Parent is the parent node of the addr operand that is being matched. It
2245 /// is always a load, store, atomic node, or null. It is only null when
2246 /// checking memory operands for inline asm nodes.
2247 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2248 SDValue &Scale, SDValue &Index,
2249 SDValue &Disp, SDValue &Segment) {
2250 X86ISelAddressMode AM;
2252 if (Parent &&
2253 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2254 // that are not a MemSDNode, and thus don't have proper addrspace info.
2255 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2256 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2257 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2258 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2259 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2260 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2261 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2262 unsigned AddrSpace =
2263 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2264 // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
2265 if (AddrSpace == 256)
2266 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2267 if (AddrSpace == 257)
2268 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2269 if (AddrSpace == 258)
2270 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2273 // Save the DL and VT before calling matchAddress, it can invalidate N.
2274 SDLoc DL(N);
2275 MVT VT = N.getSimpleValueType();
2277 if (matchAddress(N, AM))
2278 return false;
2280 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2281 return true;
2284 // We can only fold a load if all nodes between it and the root node have a
2285 // single use. If there are additional uses, we could end up duplicating the
2286 // load.
2287 static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) {
2288 while (User != Root) {
2289 if (!User->hasOneUse())
2290 return false;
2291 User = *User->use_begin();
2294 return true;
2297 /// Match a scalar SSE load. In particular, we want to match a load whose top
2298 /// elements are either undef or zeros. The load flavor is derived from the
2299 /// type of N, which is either v4f32 or v2f64.
2301 /// We also return:
2302 /// PatternChainNode: this is the matched node that has a chain input and
2303 /// output.
2304 bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent,
2305 SDValue N, SDValue &Base,
2306 SDValue &Scale, SDValue &Index,
2307 SDValue &Disp, SDValue &Segment,
2308 SDValue &PatternNodeWithChain) {
2309 if (!hasSingleUsesFromRoot(Root, Parent))
2310 return false;
2312 // We can allow a full vector load here since narrowing a load is ok unless
2313 // it's volatile or atomic.
2314 if (ISD::isNON_EXTLoad(N.getNode())) {
2315 LoadSDNode *LD = cast<LoadSDNode>(N);
2316 if (LD->isSimple() &&
2317 IsProfitableToFold(N, LD, Root) &&
2318 IsLegalToFold(N, Parent, Root, OptLevel)) {
2319 PatternNodeWithChain = N;
2320 return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
2321 Segment);
2325 // We can also match the special zero extended load opcode.
2326 if (N.getOpcode() == X86ISD::VZEXT_LOAD) {
2327 PatternNodeWithChain = N;
2328 if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
2329 IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
2330 auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain);
2331 return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp,
2332 Segment);
2336 // Need to make sure that the SCALAR_TO_VECTOR and load are both only used
2337 // once. Otherwise the load might get duplicated and the chain output of the
2338 // duplicate load will not be observed by all dependencies.
2339 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) {
2340 PatternNodeWithChain = N.getOperand(0);
2341 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
2342 IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
2343 IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
2344 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
2345 return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
2346 Segment);
2350 return false;
2354 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2355 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2356 uint64_t ImmVal = CN->getZExtValue();
2357 if (!isUInt<32>(ImmVal))
2358 return false;
2360 Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
2361 return true;
2364 // In static codegen with small code model, we can get the address of a label
2365 // into a register with 'movl'
2366 if (N->getOpcode() != X86ISD::Wrapper)
2367 return false;
2369 N = N.getOperand(0);
2371 // At least GNU as does not accept 'movl' for TPOFF relocations.
2372 // FIXME: We could use 'movl' when we know we are targeting MC.
2373 if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2374 return false;
2376 Imm = N;
2377 if (N->getOpcode() != ISD::TargetGlobalAddress)
2378 return TM.getCodeModel() == CodeModel::Small;
2380 Optional<ConstantRange> CR =
2381 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2382 if (!CR)
2383 return TM.getCodeModel() == CodeModel::Small;
2385 return CR->getUnsignedMax().ult(1ull << 32);
2388 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2389 SDValue &Scale, SDValue &Index,
2390 SDValue &Disp, SDValue &Segment) {
2391 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2392 SDLoc DL(N);
2394 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2395 return false;
2397 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2398 if (RN && RN->getReg() == 0)
2399 Base = CurDAG->getRegister(0, MVT::i64);
2400 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2401 // Base could already be %rip, particularly in the x32 ABI.
2402 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2403 MVT::i64), 0);
2404 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2405 Base);
2408 RN = dyn_cast<RegisterSDNode>(Index);
2409 if (RN && RN->getReg() == 0)
2410 Index = CurDAG->getRegister(0, MVT::i64);
2411 else {
2412 assert(Index.getValueType() == MVT::i32 &&
2413 "Expect to be extending 32-bit registers for use in LEA");
2414 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2415 MVT::i64), 0);
2416 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2417 Index);
2420 return true;
2423 /// Calls SelectAddr and determines if the maximal addressing
2424 /// mode it matches can be cost effectively emitted as an LEA instruction.
2425 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2426 SDValue &Base, SDValue &Scale,
2427 SDValue &Index, SDValue &Disp,
2428 SDValue &Segment) {
2429 X86ISelAddressMode AM;
2431 // Save the DL and VT before calling matchAddress, it can invalidate N.
2432 SDLoc DL(N);
2433 MVT VT = N.getSimpleValueType();
2435 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2436 // segments.
2437 SDValue Copy = AM.Segment;
2438 SDValue T = CurDAG->getRegister(0, MVT::i32);
2439 AM.Segment = T;
2440 if (matchAddress(N, AM))
2441 return false;
2442 assert (T == AM.Segment);
2443 AM.Segment = Copy;
2445 unsigned Complexity = 0;
2446 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2447 Complexity = 1;
2448 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2449 Complexity = 4;
2451 if (AM.IndexReg.getNode())
2452 Complexity++;
2454 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2455 // a simple shift.
2456 if (AM.Scale > 1)
2457 Complexity++;
2459 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2460 // to a LEA. This is determined with some experimentation but is by no means
2461 // optimal (especially for code size consideration). LEA is nice because of
2462 // its three-address nature. Tweak the cost function again when we can run
2463 // convertToThreeAddress() at register allocation time.
2464 if (AM.hasSymbolicDisplacement()) {
2465 // For X86-64, always use LEA to materialize RIP-relative addresses.
2466 if (Subtarget->is64Bit())
2467 Complexity = 4;
2468 else
2469 Complexity += 2;
2472 // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2473 // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2474 // duplicating flag-producing instructions later in the pipeline.
2475 if (N.getOpcode() == ISD::ADD) {
2476 auto isMathWithFlags = [](SDValue V) {
2477 switch (V.getOpcode()) {
2478 case X86ISD::ADD:
2479 case X86ISD::SUB:
2480 case X86ISD::ADC:
2481 case X86ISD::SBB:
2482 /* TODO: These opcodes can be added safely, but we may want to justify
2483 their inclusion for different reasons (better for reg-alloc).
2484 case X86ISD::SMUL:
2485 case X86ISD::UMUL:
2486 case X86ISD::OR:
2487 case X86ISD::XOR:
2488 case X86ISD::AND:
2490 // Value 1 is the flag output of the node - verify it's not dead.
2491 return !SDValue(V.getNode(), 1).use_empty();
2492 default:
2493 return false;
2496 // TODO: This could be an 'or' rather than 'and' to make the transform more
2497 // likely to happen. We might want to factor in whether there's a
2498 // load folding opportunity for the math op that disappears with LEA.
2499 if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2500 Complexity++;
2503 if (AM.Disp)
2504 Complexity++;
2506 // If it isn't worth using an LEA, reject it.
2507 if (Complexity <= 2)
2508 return false;
2510 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2511 return true;
2514 /// This is only run on TargetGlobalTLSAddress nodes.
2515 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2516 SDValue &Scale, SDValue &Index,
2517 SDValue &Disp, SDValue &Segment) {
2518 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2519 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2521 X86ISelAddressMode AM;
2522 AM.GV = GA->getGlobal();
2523 AM.Disp += GA->getOffset();
2524 AM.SymbolFlags = GA->getTargetFlags();
2526 MVT VT = N.getSimpleValueType();
2527 if (VT == MVT::i32) {
2528 AM.Scale = 1;
2529 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2532 getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2533 return true;
2536 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2537 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2538 Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN),
2539 N.getValueType());
2540 return true;
2543 // Keep track of the original value type and whether this value was
2544 // truncated. If we see a truncation from pointer type to VT that truncates
2545 // bits that are known to be zero, we can use a narrow reference.
2546 EVT VT = N.getValueType();
2547 bool WasTruncated = false;
2548 if (N.getOpcode() == ISD::TRUNCATE) {
2549 WasTruncated = true;
2550 N = N.getOperand(0);
2553 if (N.getOpcode() != X86ISD::Wrapper)
2554 return false;
2556 // We can only use non-GlobalValues as immediates if they were not truncated,
2557 // as we do not have any range information. If we have a GlobalValue and the
2558 // address was not truncated, we can select it as an operand directly.
2559 unsigned Opc = N.getOperand(0)->getOpcode();
2560 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2561 Op = N.getOperand(0);
2562 // We can only select the operand directly if we didn't have to look past a
2563 // truncate.
2564 return !WasTruncated;
2567 // Check that the global's range fits into VT.
2568 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2569 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2570 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2571 return false;
2573 // Okay, we can use a narrow reference.
2574 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2575 GA->getOffset(), GA->getTargetFlags());
2576 return true;
2579 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2580 SDValue &Base, SDValue &Scale,
2581 SDValue &Index, SDValue &Disp,
2582 SDValue &Segment) {
2583 assert(Root && P && "Unknown root/parent nodes");
2584 if (!ISD::isNON_EXTLoad(N.getNode()) ||
2585 !IsProfitableToFold(N, P, Root) ||
2586 !IsLegalToFold(N, P, Root, OptLevel))
2587 return false;
2589 return selectAddr(N.getNode(),
2590 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2593 /// Return an SDNode that returns the value of the global base register.
2594 /// Output instructions required to initialize the global base register,
2595 /// if necessary.
2596 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2597 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2598 auto &DL = MF->getDataLayout();
2599 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2602 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2603 if (N->getOpcode() == ISD::TRUNCATE)
2604 N = N->getOperand(0).getNode();
2605 if (N->getOpcode() != X86ISD::Wrapper)
2606 return false;
2608 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2609 if (!GA)
2610 return false;
2612 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2613 return CR && CR->getSignedMin().sge(-1ull << Width) &&
2614 CR->getSignedMax().slt(1ull << Width);
2617 static X86::CondCode getCondFromNode(SDNode *N) {
2618 assert(N->isMachineOpcode() && "Unexpected node");
2619 X86::CondCode CC = X86::COND_INVALID;
2620 unsigned Opc = N->getMachineOpcode();
2621 if (Opc == X86::JCC_1)
2622 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2623 else if (Opc == X86::SETCCr)
2624 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2625 else if (Opc == X86::SETCCm)
2626 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2627 else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2628 Opc == X86::CMOV64rr)
2629 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2630 else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2631 Opc == X86::CMOV64rm)
2632 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2634 return CC;
2637 /// Test whether the given X86ISD::CMP node has any users that use a flag
2638 /// other than ZF.
2639 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2640 // Examine each user of the node.
2641 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2642 UI != UE; ++UI) {
2643 // Only check things that use the flags.
2644 if (UI.getUse().getResNo() != Flags.getResNo())
2645 continue;
2646 // Only examine CopyToReg uses that copy to EFLAGS.
2647 if (UI->getOpcode() != ISD::CopyToReg ||
2648 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2649 return false;
2650 // Examine each user of the CopyToReg use.
2651 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2652 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2653 // Only examine the Flag result.
2654 if (FlagUI.getUse().getResNo() != 1) continue;
2655 // Anything unusual: assume conservatively.
2656 if (!FlagUI->isMachineOpcode()) return false;
2657 // Examine the condition code of the user.
2658 X86::CondCode CC = getCondFromNode(*FlagUI);
2660 switch (CC) {
2661 // Comparisons which only use the zero flag.
2662 case X86::COND_E: case X86::COND_NE:
2663 continue;
2664 // Anything else: assume conservatively.
2665 default:
2666 return false;
2670 return true;
2673 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2674 /// flag to be accurate.
2675 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2676 // Examine each user of the node.
2677 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2678 UI != UE; ++UI) {
2679 // Only check things that use the flags.
2680 if (UI.getUse().getResNo() != Flags.getResNo())
2681 continue;
2682 // Only examine CopyToReg uses that copy to EFLAGS.
2683 if (UI->getOpcode() != ISD::CopyToReg ||
2684 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2685 return false;
2686 // Examine each user of the CopyToReg use.
2687 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2688 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2689 // Only examine the Flag result.
2690 if (FlagUI.getUse().getResNo() != 1) continue;
2691 // Anything unusual: assume conservatively.
2692 if (!FlagUI->isMachineOpcode()) return false;
2693 // Examine the condition code of the user.
2694 X86::CondCode CC = getCondFromNode(*FlagUI);
2696 switch (CC) {
2697 // Comparisons which don't examine the SF flag.
2698 case X86::COND_A: case X86::COND_AE:
2699 case X86::COND_B: case X86::COND_BE:
2700 case X86::COND_E: case X86::COND_NE:
2701 case X86::COND_O: case X86::COND_NO:
2702 case X86::COND_P: case X86::COND_NP:
2703 continue;
2704 // Anything else: assume conservatively.
2705 default:
2706 return false;
2710 return true;
2713 static bool mayUseCarryFlag(X86::CondCode CC) {
2714 switch (CC) {
2715 // Comparisons which don't examine the CF flag.
2716 case X86::COND_O: case X86::COND_NO:
2717 case X86::COND_E: case X86::COND_NE:
2718 case X86::COND_S: case X86::COND_NS:
2719 case X86::COND_P: case X86::COND_NP:
2720 case X86::COND_L: case X86::COND_GE:
2721 case X86::COND_G: case X86::COND_LE:
2722 return false;
2723 // Anything else: assume conservatively.
2724 default:
2725 return true;
2729 /// Test whether the given node which sets flags has any uses which require the
2730 /// CF flag to be accurate.
2731 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2732 // Examine each user of the node.
2733 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2734 UI != UE; ++UI) {
2735 // Only check things that use the flags.
2736 if (UI.getUse().getResNo() != Flags.getResNo())
2737 continue;
2739 unsigned UIOpc = UI->getOpcode();
2741 if (UIOpc == ISD::CopyToReg) {
2742 // Only examine CopyToReg uses that copy to EFLAGS.
2743 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2744 return false;
2745 // Examine each user of the CopyToReg use.
2746 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2747 FlagUI != FlagUE; ++FlagUI) {
2748 // Only examine the Flag result.
2749 if (FlagUI.getUse().getResNo() != 1)
2750 continue;
2751 // Anything unusual: assume conservatively.
2752 if (!FlagUI->isMachineOpcode())
2753 return false;
2754 // Examine the condition code of the user.
2755 X86::CondCode CC = getCondFromNode(*FlagUI);
2757 if (mayUseCarryFlag(CC))
2758 return false;
2761 // This CopyToReg is ok. Move on to the next user.
2762 continue;
2765 // This might be an unselected node. So look for the pre-isel opcodes that
2766 // use flags.
2767 unsigned CCOpNo;
2768 switch (UIOpc) {
2769 default:
2770 // Something unusual. Be conservative.
2771 return false;
2772 case X86ISD::SETCC: CCOpNo = 0; break;
2773 case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2774 case X86ISD::CMOV: CCOpNo = 2; break;
2775 case X86ISD::BRCOND: CCOpNo = 2; break;
2778 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2779 if (mayUseCarryFlag(CC))
2780 return false;
2782 return true;
2785 /// Check whether or not the chain ending in StoreNode is suitable for doing
2786 /// the {load; op; store} to modify transformation.
2787 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2788 SDValue StoredVal, SelectionDAG *CurDAG,
2789 unsigned LoadOpNo,
2790 LoadSDNode *&LoadNode,
2791 SDValue &InputChain) {
2792 // Is the stored value result 0 of the operation?
2793 if (StoredVal.getResNo() != 0) return false;
2795 // Are there other uses of the operation other than the store?
2796 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
2798 // Is the store non-extending and non-indexed?
2799 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
2800 return false;
2802 SDValue Load = StoredVal->getOperand(LoadOpNo);
2803 // Is the stored value a non-extending and non-indexed load?
2804 if (!ISD::isNormalLoad(Load.getNode())) return false;
2806 // Return LoadNode by reference.
2807 LoadNode = cast<LoadSDNode>(Load);
2809 // Is store the only read of the loaded value?
2810 if (!Load.hasOneUse())
2811 return false;
2813 // Is the address of the store the same as the load?
2814 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
2815 LoadNode->getOffset() != StoreNode->getOffset())
2816 return false;
2818 bool FoundLoad = false;
2819 SmallVector<SDValue, 4> ChainOps;
2820 SmallVector<const SDNode *, 4> LoopWorklist;
2821 SmallPtrSet<const SDNode *, 16> Visited;
2822 const unsigned int Max = 1024;
2824 // Visualization of Load-Op-Store fusion:
2825 // -------------------------
2826 // Legend:
2827 // *-lines = Chain operand dependencies.
2828 // |-lines = Normal operand dependencies.
2829 // Dependencies flow down and right. n-suffix references multiple nodes.
2831 // C Xn C
2832 // * * *
2833 // * * *
2834 // Xn A-LD Yn TF Yn
2835 // * * \ | * |
2836 // * * \ | * |
2837 // * * \ | => A--LD_OP_ST
2838 // * * \| \
2839 // TF OP \
2840 // * | \ Zn
2841 // * | \
2842 // A-ST Zn
2845 // This merge induced dependences from: #1: Xn -> LD, OP, Zn
2846 // #2: Yn -> LD
2847 // #3: ST -> Zn
2849 // Ensure the transform is safe by checking for the dual
2850 // dependencies to make sure we do not induce a loop.
2852 // As LD is a predecessor to both OP and ST we can do this by checking:
2853 // a). if LD is a predecessor to a member of Xn or Yn.
2854 // b). if a Zn is a predecessor to ST.
2856 // However, (b) can only occur through being a chain predecessor to
2857 // ST, which is the same as Zn being a member or predecessor of Xn,
2858 // which is a subset of LD being a predecessor of Xn. So it's
2859 // subsumed by check (a).
2861 SDValue Chain = StoreNode->getChain();
2863 // Gather X elements in ChainOps.
2864 if (Chain == Load.getValue(1)) {
2865 FoundLoad = true;
2866 ChainOps.push_back(Load.getOperand(0));
2867 } else if (Chain.getOpcode() == ISD::TokenFactor) {
2868 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
2869 SDValue Op = Chain.getOperand(i);
2870 if (Op == Load.getValue(1)) {
2871 FoundLoad = true;
2872 // Drop Load, but keep its chain. No cycle check necessary.
2873 ChainOps.push_back(Load.getOperand(0));
2874 continue;
2876 LoopWorklist.push_back(Op.getNode());
2877 ChainOps.push_back(Op);
2881 if (!FoundLoad)
2882 return false;
2884 // Worklist is currently Xn. Add Yn to worklist.
2885 for (SDValue Op : StoredVal->ops())
2886 if (Op.getNode() != LoadNode)
2887 LoopWorklist.push_back(Op.getNode());
2889 // Check (a) if Load is a predecessor to Xn + Yn
2890 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
2891 true))
2892 return false;
2894 InputChain =
2895 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
2896 return true;
2899 // Change a chain of {load; op; store} of the same value into a simple op
2900 // through memory of that value, if the uses of the modified value and its
2901 // address are suitable.
2903 // The tablegen pattern memory operand pattern is currently not able to match
2904 // the case where the EFLAGS on the original operation are used.
2906 // To move this to tablegen, we'll need to improve tablegen to allow flags to
2907 // be transferred from a node in the pattern to the result node, probably with
2908 // a new keyword. For example, we have this
2909 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2910 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2911 // (implicit EFLAGS)]>;
2912 // but maybe need something like this
2913 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2914 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2915 // (transferrable EFLAGS)]>;
2917 // Until then, we manually fold these and instruction select the operation
2918 // here.
2919 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
2920 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2921 SDValue StoredVal = StoreNode->getOperand(1);
2922 unsigned Opc = StoredVal->getOpcode();
2924 // Before we try to select anything, make sure this is memory operand size
2925 // and opcode we can handle. Note that this must match the code below that
2926 // actually lowers the opcodes.
2927 EVT MemVT = StoreNode->getMemoryVT();
2928 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
2929 MemVT != MVT::i8)
2930 return false;
2932 bool IsCommutable = false;
2933 bool IsNegate = false;
2934 switch (Opc) {
2935 default:
2936 return false;
2937 case X86ISD::SUB:
2938 IsNegate = isNullConstant(StoredVal.getOperand(0));
2939 break;
2940 case X86ISD::SBB:
2941 break;
2942 case X86ISD::ADD:
2943 case X86ISD::ADC:
2944 case X86ISD::AND:
2945 case X86ISD::OR:
2946 case X86ISD::XOR:
2947 IsCommutable = true;
2948 break;
2951 unsigned LoadOpNo = IsNegate ? 1 : 0;
2952 LoadSDNode *LoadNode = nullptr;
2953 SDValue InputChain;
2954 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
2955 LoadNode, InputChain)) {
2956 if (!IsCommutable)
2957 return false;
2959 // This operation is commutable, try the other operand.
2960 LoadOpNo = 1;
2961 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
2962 LoadNode, InputChain))
2963 return false;
2966 SDValue Base, Scale, Index, Disp, Segment;
2967 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
2968 Segment))
2969 return false;
2971 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
2972 unsigned Opc8) {
2973 switch (MemVT.getSimpleVT().SimpleTy) {
2974 case MVT::i64:
2975 return Opc64;
2976 case MVT::i32:
2977 return Opc32;
2978 case MVT::i16:
2979 return Opc16;
2980 case MVT::i8:
2981 return Opc8;
2982 default:
2983 llvm_unreachable("Invalid size!");
2987 MachineSDNode *Result;
2988 switch (Opc) {
2989 case X86ISD::SUB:
2990 // Handle negate.
2991 if (IsNegate) {
2992 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
2993 X86::NEG8m);
2994 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
2995 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
2996 MVT::Other, Ops);
2997 break;
2999 LLVM_FALLTHROUGH;
3000 case X86ISD::ADD:
3001 // Try to match inc/dec.
3002 if (!Subtarget->slowIncDec() || OptForSize) {
3003 bool IsOne = isOneConstant(StoredVal.getOperand(1));
3004 bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3005 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3006 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3007 unsigned NewOpc =
3008 ((Opc == X86ISD::ADD) == IsOne)
3009 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3010 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3011 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3012 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3013 MVT::Other, Ops);
3014 break;
3017 LLVM_FALLTHROUGH;
3018 case X86ISD::ADC:
3019 case X86ISD::SBB:
3020 case X86ISD::AND:
3021 case X86ISD::OR:
3022 case X86ISD::XOR: {
3023 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3024 switch (Opc) {
3025 case X86ISD::ADD:
3026 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3027 X86::ADD8mr);
3028 case X86ISD::ADC:
3029 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3030 X86::ADC8mr);
3031 case X86ISD::SUB:
3032 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3033 X86::SUB8mr);
3034 case X86ISD::SBB:
3035 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3036 X86::SBB8mr);
3037 case X86ISD::AND:
3038 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3039 X86::AND8mr);
3040 case X86ISD::OR:
3041 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3042 case X86ISD::XOR:
3043 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3044 X86::XOR8mr);
3045 default:
3046 llvm_unreachable("Invalid opcode!");
3049 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3050 switch (Opc) {
3051 case X86ISD::ADD:
3052 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3053 case X86ISD::ADC:
3054 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3055 case X86ISD::SUB:
3056 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3057 case X86ISD::SBB:
3058 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3059 case X86ISD::AND:
3060 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3061 case X86ISD::OR:
3062 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3063 case X86ISD::XOR:
3064 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3065 default:
3066 llvm_unreachable("Invalid opcode!");
3069 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3070 switch (Opc) {
3071 case X86ISD::ADD:
3072 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3073 X86::ADD8mi);
3074 case X86ISD::ADC:
3075 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3076 X86::ADC8mi);
3077 case X86ISD::SUB:
3078 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3079 X86::SUB8mi);
3080 case X86ISD::SBB:
3081 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3082 X86::SBB8mi);
3083 case X86ISD::AND:
3084 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3085 X86::AND8mi);
3086 case X86ISD::OR:
3087 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3088 X86::OR8mi);
3089 case X86ISD::XOR:
3090 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3091 X86::XOR8mi);
3092 default:
3093 llvm_unreachable("Invalid opcode!");
3097 unsigned NewOpc = SelectRegOpcode(Opc);
3098 SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3100 // See if the operand is a constant that we can fold into an immediate
3101 // operand.
3102 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3103 int64_t OperandV = OperandC->getSExtValue();
3105 // Check if we can shrink the operand enough to fit in an immediate (or
3106 // fit into a smaller immediate) by negating it and switching the
3107 // operation.
3108 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3109 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3110 (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3111 isInt<32>(-OperandV))) &&
3112 hasNoCarryFlagUses(StoredVal.getValue(1))) {
3113 OperandV = -OperandV;
3114 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3117 // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3118 // the larger immediate operand.
3119 if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3120 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3121 NewOpc = SelectImm8Opcode(Opc);
3122 } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3123 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3124 NewOpc = SelectImmOpcode(Opc);
3128 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3129 SDValue CopyTo =
3130 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3131 StoredVal.getOperand(2), SDValue());
3133 const SDValue Ops[] = {Base, Scale, Index, Disp,
3134 Segment, Operand, CopyTo, CopyTo.getValue(1)};
3135 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3136 Ops);
3137 } else {
3138 const SDValue Ops[] = {Base, Scale, Index, Disp,
3139 Segment, Operand, InputChain};
3140 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3141 Ops);
3143 break;
3145 default:
3146 llvm_unreachable("Invalid opcode!");
3149 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3150 LoadNode->getMemOperand()};
3151 CurDAG->setNodeMemRefs(Result, MemOps);
3153 // Update Load Chain uses as well.
3154 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3155 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3156 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3157 CurDAG->RemoveDeadNode(Node);
3158 return true;
3161 // See if this is an X & Mask that we can match to BEXTR/BZHI.
3162 // Where Mask is one of the following patterns:
3163 // a) x & (1 << nbits) - 1
3164 // b) x & ~(-1 << nbits)
3165 // c) x & (-1 >> (32 - y))
3166 // d) x << (32 - y) >> (32 - y)
3167 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3168 assert(
3169 (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3170 "Should be either an and-mask, or right-shift after clearing high bits.");
3172 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3173 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3174 return false;
3176 MVT NVT = Node->getSimpleValueType(0);
3178 // Only supported for 32 and 64 bits.
3179 if (NVT != MVT::i32 && NVT != MVT::i64)
3180 return false;
3182 SDValue NBits;
3184 // If we have BMI2's BZHI, we are ok with muti-use patterns.
3185 // Else, if we only have BMI1's BEXTR, we require one-use.
3186 const bool CanHaveExtraUses = Subtarget->hasBMI2();
3187 auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3188 return CanHaveExtraUses ||
3189 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3191 auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3192 auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3194 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3195 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3196 assert(V.getSimpleValueType() == MVT::i32 &&
3197 V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3198 "Expected i64 -> i32 truncation");
3199 V = V.getOperand(0);
3201 return V;
3204 // a) x & ((1 << nbits) + (-1))
3205 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3206 &NBits](SDValue Mask) -> bool {
3207 // Match `add`. Must only have one use!
3208 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3209 return false;
3210 // We should be adding all-ones constant (i.e. subtracting one.)
3211 if (!isAllOnesConstant(Mask->getOperand(1)))
3212 return false;
3213 // Match `1 << nbits`. Might be truncated. Must only have one use!
3214 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3215 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3216 return false;
3217 if (!isOneConstant(M0->getOperand(0)))
3218 return false;
3219 NBits = M0->getOperand(1);
3220 return true;
3223 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3224 V = peekThroughOneUseTruncation(V);
3225 return CurDAG->MaskedValueIsAllOnes(
3226 V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3227 NVT.getSizeInBits()));
3230 // b) x & ~(-1 << nbits)
3231 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3232 &NBits](SDValue Mask) -> bool {
3233 // Match `~()`. Must only have one use!
3234 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3235 return false;
3236 // The -1 only has to be all-ones for the final Node's NVT.
3237 if (!isAllOnes(Mask->getOperand(1)))
3238 return false;
3239 // Match `-1 << nbits`. Might be truncated. Must only have one use!
3240 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3241 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3242 return false;
3243 // The -1 only has to be all-ones for the final Node's NVT.
3244 if (!isAllOnes(M0->getOperand(0)))
3245 return false;
3246 NBits = M0->getOperand(1);
3247 return true;
3250 // Match potentially-truncated (bitwidth - y)
3251 auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3252 unsigned Bitwidth) {
3253 // Skip over a truncate of the shift amount.
3254 if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3255 ShiftAmt = ShiftAmt.getOperand(0);
3256 // The trunc should have been the only user of the real shift amount.
3257 if (!checkOneUse(ShiftAmt))
3258 return false;
3260 // Match the shift amount as: (bitwidth - y). It should go away, too.
3261 if (ShiftAmt.getOpcode() != ISD::SUB)
3262 return false;
3263 auto V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3264 if (!V0 || V0->getZExtValue() != Bitwidth)
3265 return false;
3266 NBits = ShiftAmt.getOperand(1);
3267 return true;
3270 // c) x & (-1 >> (32 - y))
3271 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3272 matchShiftAmt](SDValue Mask) -> bool {
3273 // The mask itself may be truncated.
3274 Mask = peekThroughOneUseTruncation(Mask);
3275 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3276 // Match `l>>`. Must only have one use!
3277 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3278 return false;
3279 // We should be shifting truly all-ones constant.
3280 if (!isAllOnesConstant(Mask.getOperand(0)))
3281 return false;
3282 SDValue M1 = Mask.getOperand(1);
3283 // The shift amount should not be used externally.
3284 if (!checkOneUse(M1))
3285 return false;
3286 return matchShiftAmt(M1, Bitwidth);
3289 SDValue X;
3291 // d) x << (32 - y) >> (32 - y)
3292 auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3293 &X](SDNode *Node) -> bool {
3294 if (Node->getOpcode() != ISD::SRL)
3295 return false;
3296 SDValue N0 = Node->getOperand(0);
3297 if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3298 return false;
3299 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3300 SDValue N1 = Node->getOperand(1);
3301 SDValue N01 = N0->getOperand(1);
3302 // Both of the shifts must be by the exact same value.
3303 // There should not be any uses of the shift amount outside of the pattern.
3304 if (N1 != N01 || !checkTwoUse(N1))
3305 return false;
3306 if (!matchShiftAmt(N1, Bitwidth))
3307 return false;
3308 X = N0->getOperand(0);
3309 return true;
3312 auto matchLowBitMask = [matchPatternA, matchPatternB,
3313 matchPatternC](SDValue Mask) -> bool {
3314 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3317 if (Node->getOpcode() == ISD::AND) {
3318 X = Node->getOperand(0);
3319 SDValue Mask = Node->getOperand(1);
3321 if (matchLowBitMask(Mask)) {
3322 // Great.
3323 } else {
3324 std::swap(X, Mask);
3325 if (!matchLowBitMask(Mask))
3326 return false;
3328 } else if (!matchPatternD(Node))
3329 return false;
3331 SDLoc DL(Node);
3333 // Truncate the shift amount.
3334 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3335 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3337 // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3338 // All the other bits are undefined, we do not care about them.
3339 SDValue ImplDef = SDValue(
3340 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3341 insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3343 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3344 insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3345 NBits = SDValue(
3346 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3347 NBits, SRIdxVal), 0);
3348 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3350 if (Subtarget->hasBMI2()) {
3351 // Great, just emit the the BZHI..
3352 if (NVT != MVT::i32) {
3353 // But have to place the bit count into the wide-enough register first.
3354 NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3355 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3358 SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3359 ReplaceNode(Node, Extract.getNode());
3360 SelectCode(Extract.getNode());
3361 return true;
3364 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3365 // *logically* shifted (potentially with one-use trunc inbetween),
3366 // and the truncation was the only use of the shift,
3367 // and if so look past one-use truncation.
3369 SDValue RealX = peekThroughOneUseTruncation(X);
3370 // FIXME: only if the shift is one-use?
3371 if (RealX != X && RealX.getOpcode() == ISD::SRL)
3372 X = RealX;
3375 MVT XVT = X.getSimpleValueType();
3377 // Else, emitting BEXTR requires one more step.
3378 // The 'control' of BEXTR has the pattern of:
3379 // [15...8 bit][ 7...0 bit] location
3380 // [ bit count][ shift] name
3381 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3383 // Shift NBits left by 8 bits, thus producing 'control'.
3384 // This makes the low 8 bits to be zero.
3385 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3386 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3387 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3389 // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3390 // FIXME: only if the shift is one-use?
3391 if (X.getOpcode() == ISD::SRL) {
3392 SDValue ShiftAmt = X.getOperand(1);
3393 X = X.getOperand(0);
3395 assert(ShiftAmt.getValueType() == MVT::i8 &&
3396 "Expected shift amount to be i8");
3398 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3399 // We could zext to i16 in some form, but we intentionally don't do that.
3400 SDValue OrigShiftAmt = ShiftAmt;
3401 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3402 insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3404 // And now 'or' these low 8 bits of shift amount into the 'control'.
3405 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3406 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3409 // But have to place the 'control' into the wide-enough register first.
3410 if (XVT != MVT::i32) {
3411 Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3412 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3415 // And finally, form the BEXTR itself.
3416 SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3418 // The 'X' was originally truncated. Do that now.
3419 if (XVT != NVT) {
3420 insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3421 Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3424 ReplaceNode(Node, Extract.getNode());
3425 SelectCode(Extract.getNode());
3427 return true;
3430 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3431 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3432 MVT NVT = Node->getSimpleValueType(0);
3433 SDLoc dl(Node);
3435 SDValue N0 = Node->getOperand(0);
3436 SDValue N1 = Node->getOperand(1);
3438 // If we have TBM we can use an immediate for the control. If we have BMI
3439 // we should only do this if the BEXTR instruction is implemented well.
3440 // Otherwise moving the control into a register makes this more costly.
3441 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3442 // hoisting the move immediate would make it worthwhile with a less optimal
3443 // BEXTR?
3444 bool PreferBEXTR =
3445 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3446 if (!PreferBEXTR && !Subtarget->hasBMI2())
3447 return nullptr;
3449 // Must have a shift right.
3450 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3451 return nullptr;
3453 // Shift can't have additional users.
3454 if (!N0->hasOneUse())
3455 return nullptr;
3457 // Only supported for 32 and 64 bits.
3458 if (NVT != MVT::i32 && NVT != MVT::i64)
3459 return nullptr;
3461 // Shift amount and RHS of and must be constant.
3462 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3463 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3464 if (!MaskCst || !ShiftCst)
3465 return nullptr;
3467 // And RHS must be a mask.
3468 uint64_t Mask = MaskCst->getZExtValue();
3469 if (!isMask_64(Mask))
3470 return nullptr;
3472 uint64_t Shift = ShiftCst->getZExtValue();
3473 uint64_t MaskSize = countPopulation(Mask);
3475 // Don't interfere with something that can be handled by extracting AH.
3476 // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3477 if (Shift == 8 && MaskSize == 8)
3478 return nullptr;
3480 // Make sure we are only using bits that were in the original value, not
3481 // shifted in.
3482 if (Shift + MaskSize > NVT.getSizeInBits())
3483 return nullptr;
3485 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3486 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3487 // does not fit into 32 bits. Load folding is not a sufficient reason.
3488 if (!PreferBEXTR && MaskSize <= 32)
3489 return nullptr;
3491 SDValue Control;
3492 unsigned ROpc, MOpc;
3494 if (!PreferBEXTR) {
3495 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3496 // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3497 // Let's perform the mask first, and apply shift later. Note that we need to
3498 // widen the mask to account for the fact that we'll apply shift afterwards!
3499 Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3500 ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3501 MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3502 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3503 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3504 } else {
3505 // The 'control' of BEXTR has the pattern of:
3506 // [15...8 bit][ 7...0 bit] location
3507 // [ bit count][ shift] name
3508 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3509 Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3510 if (Subtarget->hasTBM()) {
3511 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3512 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3513 } else {
3514 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3515 // BMI requires the immediate to placed in a register.
3516 ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3517 MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3518 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3519 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3523 MachineSDNode *NewNode;
3524 SDValue Input = N0->getOperand(0);
3525 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3526 if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3527 SDValue Ops[] = {
3528 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3529 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3530 NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3531 // Update the chain.
3532 ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3533 // Record the mem-refs
3534 CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3535 } else {
3536 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3539 if (!PreferBEXTR) {
3540 // We still need to apply the shift.
3541 SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3542 unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3543 NewNode =
3544 CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3547 return NewNode;
3550 // Emit a PCMISTR(I/M) instruction.
3551 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3552 bool MayFoldLoad, const SDLoc &dl,
3553 MVT VT, SDNode *Node) {
3554 SDValue N0 = Node->getOperand(0);
3555 SDValue N1 = Node->getOperand(1);
3556 SDValue Imm = Node->getOperand(2);
3557 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3558 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3560 // Try to fold a load. No need to check alignment.
3561 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3562 if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3563 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3564 N1.getOperand(0) };
3565 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3566 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3567 // Update the chain.
3568 ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3569 // Record the mem-refs
3570 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3571 return CNode;
3574 SDValue Ops[] = { N0, N1, Imm };
3575 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3576 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3577 return CNode;
3580 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3581 // to emit a second instruction after this one. This is needed since we have two
3582 // copyToReg nodes glued before this and we need to continue that glue through.
3583 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3584 bool MayFoldLoad, const SDLoc &dl,
3585 MVT VT, SDNode *Node,
3586 SDValue &InFlag) {
3587 SDValue N0 = Node->getOperand(0);
3588 SDValue N2 = Node->getOperand(2);
3589 SDValue Imm = Node->getOperand(4);
3590 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3591 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3593 // Try to fold a load. No need to check alignment.
3594 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3595 if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3596 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3597 N2.getOperand(0), InFlag };
3598 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3599 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3600 InFlag = SDValue(CNode, 3);
3601 // Update the chain.
3602 ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3603 // Record the mem-refs
3604 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3605 return CNode;
3608 SDValue Ops[] = { N0, N2, Imm, InFlag };
3609 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3610 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3611 InFlag = SDValue(CNode, 2);
3612 return CNode;
3615 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3616 EVT VT = N->getValueType(0);
3618 // Only handle scalar shifts.
3619 if (VT.isVector())
3620 return false;
3622 // Narrower shifts only mask to 5 bits in hardware.
3623 unsigned Size = VT == MVT::i64 ? 64 : 32;
3625 SDValue OrigShiftAmt = N->getOperand(1);
3626 SDValue ShiftAmt = OrigShiftAmt;
3627 SDLoc DL(N);
3629 // Skip over a truncate of the shift amount.
3630 if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3631 ShiftAmt = ShiftAmt->getOperand(0);
3633 // This function is called after X86DAGToDAGISel::matchBitExtract(),
3634 // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3636 SDValue NewShiftAmt;
3637 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3638 SDValue Add0 = ShiftAmt->getOperand(0);
3639 SDValue Add1 = ShiftAmt->getOperand(1);
3640 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3641 // to avoid the ADD/SUB.
3642 if (isa<ConstantSDNode>(Add1) &&
3643 cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
3644 NewShiftAmt = Add0;
3645 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
3646 // generate a NEG instead of a SUB of a constant.
3647 } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3648 isa<ConstantSDNode>(Add0) &&
3649 cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
3650 cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
3651 // Insert a negate op.
3652 // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3653 // that uses it that's not a shift.
3654 EVT SubVT = ShiftAmt.getValueType();
3655 SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3656 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
3657 NewShiftAmt = Neg;
3659 // Insert these operands into a valid topological order so they can
3660 // get selected independently.
3661 insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3662 insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3663 } else
3664 return false;
3665 } else
3666 return false;
3668 if (NewShiftAmt.getValueType() != MVT::i8) {
3669 // Need to truncate the shift amount.
3670 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3671 // Add to a correct topological ordering.
3672 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3675 // Insert a new mask to keep the shift amount legal. This should be removed
3676 // by isel patterns.
3677 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3678 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3679 // Place in a correct topological ordering.
3680 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3682 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3683 NewShiftAmt);
3684 if (UpdatedNode != N) {
3685 // If we found an existing node, we should replace ourselves with that node
3686 // and wait for it to be selected after its other users.
3687 ReplaceNode(N, UpdatedNode);
3688 return true;
3691 // If the original shift amount is now dead, delete it so that we don't run
3692 // it through isel.
3693 if (OrigShiftAmt.getNode()->use_empty())
3694 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3696 // Now that we've optimized the shift amount, defer to normal isel to get
3697 // load folding and legacy vs BMI2 selection without repeating it here.
3698 SelectCode(N);
3699 return true;
3702 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3703 MVT NVT = N->getSimpleValueType(0);
3704 unsigned Opcode = N->getOpcode();
3705 SDLoc dl(N);
3707 // For operations of the form (x << C1) op C2, check if we can use a smaller
3708 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3709 SDValue Shift = N->getOperand(0);
3710 SDValue N1 = N->getOperand(1);
3712 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3713 if (!Cst)
3714 return false;
3716 int64_t Val = Cst->getSExtValue();
3718 // If we have an any_extend feeding the AND, look through it to see if there
3719 // is a shift behind it. But only if the AND doesn't use the extended bits.
3720 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3721 bool FoundAnyExtend = false;
3722 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3723 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3724 isUInt<32>(Val)) {
3725 FoundAnyExtend = true;
3726 Shift = Shift.getOperand(0);
3729 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3730 return false;
3732 // i8 is unshrinkable, i16 should be promoted to i32.
3733 if (NVT != MVT::i32 && NVT != MVT::i64)
3734 return false;
3736 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3737 if (!ShlCst)
3738 return false;
3740 uint64_t ShAmt = ShlCst->getZExtValue();
3742 // Make sure that we don't change the operation by removing bits.
3743 // This only matters for OR and XOR, AND is unaffected.
3744 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3745 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3746 return false;
3748 // Check the minimum bitwidth for the new constant.
3749 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3750 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3751 if (Opcode == ISD::AND) {
3752 // AND32ri is the same as AND64ri32 with zext imm.
3753 // Try this before sign extended immediates below.
3754 ShiftedVal = (uint64_t)Val >> ShAmt;
3755 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3756 return true;
3757 // Also swap order when the AND can become MOVZX.
3758 if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
3759 return true;
3761 ShiftedVal = Val >> ShAmt;
3762 if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3763 (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3764 return true;
3765 if (Opcode != ISD::AND) {
3766 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3767 ShiftedVal = (uint64_t)Val >> ShAmt;
3768 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3769 return true;
3771 return false;
3774 int64_t ShiftedVal;
3775 if (!CanShrinkImmediate(ShiftedVal))
3776 return false;
3778 // Ok, we can reorder to get a smaller immediate.
3780 // But, its possible the original immediate allowed an AND to become MOVZX.
3781 // Doing this late due to avoid the MakedValueIsZero call as late as
3782 // possible.
3783 if (Opcode == ISD::AND) {
3784 // Find the smallest zext this could possibly be.
3785 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
3786 ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
3788 // Figure out which bits need to be zero to achieve that mask.
3789 APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
3790 ZExtWidth);
3791 NeededMask &= ~Cst->getAPIntValue();
3793 if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
3794 return false;
3797 SDValue X = Shift.getOperand(0);
3798 if (FoundAnyExtend) {
3799 SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
3800 insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
3801 X = NewX;
3804 SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
3805 insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
3806 SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
3807 insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
3808 SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
3809 Shift.getOperand(1));
3810 ReplaceNode(N, NewSHL.getNode());
3811 SelectCode(NewSHL.getNode());
3812 return true;
3815 /// Convert vector increment or decrement to sub/add with an all-ones constant:
3816 /// add X, <1, 1...> --> sub X, <-1, -1...>
3817 /// sub X, <1, 1...> --> add X, <-1, -1...>
3818 /// The all-ones vector constant can be materialized using a pcmpeq instruction
3819 /// that is commonly recognized as an idiom (has no register dependency), so
3820 /// that's better/smaller than loading a splat 1 constant.
3821 bool X86DAGToDAGISel::combineIncDecVector(SDNode *Node) {
3822 assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB) &&
3823 "Unexpected opcode for increment/decrement transform");
3825 EVT VT = Node->getValueType(0);
3826 assert(VT.isVector() && "Should only be called for vectors.");
3828 SDValue X = Node->getOperand(0);
3829 SDValue OneVec = Node->getOperand(1);
3831 APInt SplatVal;
3832 if (!X86::isConstantSplat(OneVec, SplatVal) || !SplatVal.isOneValue())
3833 return false;
3835 SDLoc DL(Node);
3836 SDValue OneConstant, AllOnesVec;
3838 APInt Ones = APInt::getAllOnesValue(32);
3839 assert(VT.getSizeInBits() % 32 == 0 &&
3840 "Expected bit count to be a multiple of 32");
3841 OneConstant = CurDAG->getConstant(Ones, DL, MVT::i32);
3842 insertDAGNode(*CurDAG, X, OneConstant);
3844 unsigned NumElts = VT.getSizeInBits() / 32;
3845 assert(NumElts > 0 && "Expected to get non-empty vector.");
3846 AllOnesVec = CurDAG->getSplatBuildVector(MVT::getVectorVT(MVT::i32, NumElts),
3847 DL, OneConstant);
3848 insertDAGNode(*CurDAG, X, AllOnesVec);
3850 AllOnesVec = CurDAG->getBitcast(VT, AllOnesVec);
3851 insertDAGNode(*CurDAG, X, AllOnesVec);
3853 unsigned NewOpcode = Node->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
3854 SDValue NewNode = CurDAG->getNode(NewOpcode, DL, VT, X, AllOnesVec);
3856 ReplaceNode(Node, NewNode.getNode());
3857 SelectCode(NewNode.getNode());
3858 return true;
3861 /// If the high bits of an 'and' operand are known zero, try setting the
3862 /// high bits of an 'and' constant operand to produce a smaller encoding by
3863 /// creating a small, sign-extended negative immediate rather than a large
3864 /// positive one. This reverses a transform in SimplifyDemandedBits that
3865 /// shrinks mask constants by clearing bits. There is also a possibility that
3866 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
3867 /// case, just replace the 'and'. Return 'true' if the node is replaced.
3868 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
3869 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
3870 // have immediate operands.
3871 MVT VT = And->getSimpleValueType(0);
3872 if (VT != MVT::i32 && VT != MVT::i64)
3873 return false;
3875 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
3876 if (!And1C)
3877 return false;
3879 // Bail out if the mask constant is already negative. It's can't shrink more.
3880 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
3881 // patterns to use a 32-bit and instead of a 64-bit and by relying on the
3882 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
3883 // are negative too.
3884 APInt MaskVal = And1C->getAPIntValue();
3885 unsigned MaskLZ = MaskVal.countLeadingZeros();
3886 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
3887 return false;
3889 // Don't extend into the upper 32 bits of a 64 bit mask.
3890 if (VT == MVT::i64 && MaskLZ >= 32) {
3891 MaskLZ -= 32;
3892 MaskVal = MaskVal.trunc(32);
3895 SDValue And0 = And->getOperand(0);
3896 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
3897 APInt NegMaskVal = MaskVal | HighZeros;
3899 // If a negative constant would not allow a smaller encoding, there's no need
3900 // to continue. Only change the constant when we know it's a win.
3901 unsigned MinWidth = NegMaskVal.getMinSignedBits();
3902 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
3903 return false;
3905 // Extend masks if we truncated above.
3906 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
3907 NegMaskVal = NegMaskVal.zext(64);
3908 HighZeros = HighZeros.zext(64);
3911 // The variable operand must be all zeros in the top bits to allow using the
3912 // new, negative constant as the mask.
3913 if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
3914 return false;
3916 // Check if the mask is -1. In that case, this is an unnecessary instruction
3917 // that escaped earlier analysis.
3918 if (NegMaskVal.isAllOnesValue()) {
3919 ReplaceNode(And, And0.getNode());
3920 return true;
3923 // A negative mask allows a smaller encoding. Create a new 'and' node.
3924 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
3925 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
3926 ReplaceNode(And, NewAnd.getNode());
3927 SelectCode(NewAnd.getNode());
3928 return true;
3931 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
3932 bool FoldedBCast, bool Masked) {
3933 if (Masked) {
3934 if (FoldedLoad) {
3935 switch (TestVT.SimpleTy) {
3936 default: llvm_unreachable("Unexpected VT!");
3937 case MVT::v16i8:
3938 return IsTestN ? X86::VPTESTNMBZ128rmk : X86::VPTESTMBZ128rmk;
3939 case MVT::v8i16:
3940 return IsTestN ? X86::VPTESTNMWZ128rmk : X86::VPTESTMWZ128rmk;
3941 case MVT::v4i32:
3942 return IsTestN ? X86::VPTESTNMDZ128rmk : X86::VPTESTMDZ128rmk;
3943 case MVT::v2i64:
3944 return IsTestN ? X86::VPTESTNMQZ128rmk : X86::VPTESTMQZ128rmk;
3945 case MVT::v32i8:
3946 return IsTestN ? X86::VPTESTNMBZ256rmk : X86::VPTESTMBZ256rmk;
3947 case MVT::v16i16:
3948 return IsTestN ? X86::VPTESTNMWZ256rmk : X86::VPTESTMWZ256rmk;
3949 case MVT::v8i32:
3950 return IsTestN ? X86::VPTESTNMDZ256rmk : X86::VPTESTMDZ256rmk;
3951 case MVT::v4i64:
3952 return IsTestN ? X86::VPTESTNMQZ256rmk : X86::VPTESTMQZ256rmk;
3953 case MVT::v64i8:
3954 return IsTestN ? X86::VPTESTNMBZrmk : X86::VPTESTMBZrmk;
3955 case MVT::v32i16:
3956 return IsTestN ? X86::VPTESTNMWZrmk : X86::VPTESTMWZrmk;
3957 case MVT::v16i32:
3958 return IsTestN ? X86::VPTESTNMDZrmk : X86::VPTESTMDZrmk;
3959 case MVT::v8i64:
3960 return IsTestN ? X86::VPTESTNMQZrmk : X86::VPTESTMQZrmk;
3964 if (FoldedBCast) {
3965 switch (TestVT.SimpleTy) {
3966 default: llvm_unreachable("Unexpected VT!");
3967 case MVT::v4i32:
3968 return IsTestN ? X86::VPTESTNMDZ128rmbk : X86::VPTESTMDZ128rmbk;
3969 case MVT::v2i64:
3970 return IsTestN ? X86::VPTESTNMQZ128rmbk : X86::VPTESTMQZ128rmbk;
3971 case MVT::v8i32:
3972 return IsTestN ? X86::VPTESTNMDZ256rmbk : X86::VPTESTMDZ256rmbk;
3973 case MVT::v4i64:
3974 return IsTestN ? X86::VPTESTNMQZ256rmbk : X86::VPTESTMQZ256rmbk;
3975 case MVT::v16i32:
3976 return IsTestN ? X86::VPTESTNMDZrmbk : X86::VPTESTMDZrmbk;
3977 case MVT::v8i64:
3978 return IsTestN ? X86::VPTESTNMQZrmbk : X86::VPTESTMQZrmbk;
3982 switch (TestVT.SimpleTy) {
3983 default: llvm_unreachable("Unexpected VT!");
3984 case MVT::v16i8:
3985 return IsTestN ? X86::VPTESTNMBZ128rrk : X86::VPTESTMBZ128rrk;
3986 case MVT::v8i16:
3987 return IsTestN ? X86::VPTESTNMWZ128rrk : X86::VPTESTMWZ128rrk;
3988 case MVT::v4i32:
3989 return IsTestN ? X86::VPTESTNMDZ128rrk : X86::VPTESTMDZ128rrk;
3990 case MVT::v2i64:
3991 return IsTestN ? X86::VPTESTNMQZ128rrk : X86::VPTESTMQZ128rrk;
3992 case MVT::v32i8:
3993 return IsTestN ? X86::VPTESTNMBZ256rrk : X86::VPTESTMBZ256rrk;
3994 case MVT::v16i16:
3995 return IsTestN ? X86::VPTESTNMWZ256rrk : X86::VPTESTMWZ256rrk;
3996 case MVT::v8i32:
3997 return IsTestN ? X86::VPTESTNMDZ256rrk : X86::VPTESTMDZ256rrk;
3998 case MVT::v4i64:
3999 return IsTestN ? X86::VPTESTNMQZ256rrk : X86::VPTESTMQZ256rrk;
4000 case MVT::v64i8:
4001 return IsTestN ? X86::VPTESTNMBZrrk : X86::VPTESTMBZrrk;
4002 case MVT::v32i16:
4003 return IsTestN ? X86::VPTESTNMWZrrk : X86::VPTESTMWZrrk;
4004 case MVT::v16i32:
4005 return IsTestN ? X86::VPTESTNMDZrrk : X86::VPTESTMDZrrk;
4006 case MVT::v8i64:
4007 return IsTestN ? X86::VPTESTNMQZrrk : X86::VPTESTMQZrrk;
4011 if (FoldedLoad) {
4012 switch (TestVT.SimpleTy) {
4013 default: llvm_unreachable("Unexpected VT!");
4014 case MVT::v16i8:
4015 return IsTestN ? X86::VPTESTNMBZ128rm : X86::VPTESTMBZ128rm;
4016 case MVT::v8i16:
4017 return IsTestN ? X86::VPTESTNMWZ128rm : X86::VPTESTMWZ128rm;
4018 case MVT::v4i32:
4019 return IsTestN ? X86::VPTESTNMDZ128rm : X86::VPTESTMDZ128rm;
4020 case MVT::v2i64:
4021 return IsTestN ? X86::VPTESTNMQZ128rm : X86::VPTESTMQZ128rm;
4022 case MVT::v32i8:
4023 return IsTestN ? X86::VPTESTNMBZ256rm : X86::VPTESTMBZ256rm;
4024 case MVT::v16i16:
4025 return IsTestN ? X86::VPTESTNMWZ256rm : X86::VPTESTMWZ256rm;
4026 case MVT::v8i32:
4027 return IsTestN ? X86::VPTESTNMDZ256rm : X86::VPTESTMDZ256rm;
4028 case MVT::v4i64:
4029 return IsTestN ? X86::VPTESTNMQZ256rm : X86::VPTESTMQZ256rm;
4030 case MVT::v64i8:
4031 return IsTestN ? X86::VPTESTNMBZrm : X86::VPTESTMBZrm;
4032 case MVT::v32i16:
4033 return IsTestN ? X86::VPTESTNMWZrm : X86::VPTESTMWZrm;
4034 case MVT::v16i32:
4035 return IsTestN ? X86::VPTESTNMDZrm : X86::VPTESTMDZrm;
4036 case MVT::v8i64:
4037 return IsTestN ? X86::VPTESTNMQZrm : X86::VPTESTMQZrm;
4041 if (FoldedBCast) {
4042 switch (TestVT.SimpleTy) {
4043 default: llvm_unreachable("Unexpected VT!");
4044 case MVT::v4i32:
4045 return IsTestN ? X86::VPTESTNMDZ128rmb : X86::VPTESTMDZ128rmb;
4046 case MVT::v2i64:
4047 return IsTestN ? X86::VPTESTNMQZ128rmb : X86::VPTESTMQZ128rmb;
4048 case MVT::v8i32:
4049 return IsTestN ? X86::VPTESTNMDZ256rmb : X86::VPTESTMDZ256rmb;
4050 case MVT::v4i64:
4051 return IsTestN ? X86::VPTESTNMQZ256rmb : X86::VPTESTMQZ256rmb;
4052 case MVT::v16i32:
4053 return IsTestN ? X86::VPTESTNMDZrmb : X86::VPTESTMDZrmb;
4054 case MVT::v8i64:
4055 return IsTestN ? X86::VPTESTNMQZrmb : X86::VPTESTMQZrmb;
4059 switch (TestVT.SimpleTy) {
4060 default: llvm_unreachable("Unexpected VT!");
4061 case MVT::v16i8:
4062 return IsTestN ? X86::VPTESTNMBZ128rr : X86::VPTESTMBZ128rr;
4063 case MVT::v8i16:
4064 return IsTestN ? X86::VPTESTNMWZ128rr : X86::VPTESTMWZ128rr;
4065 case MVT::v4i32:
4066 return IsTestN ? X86::VPTESTNMDZ128rr : X86::VPTESTMDZ128rr;
4067 case MVT::v2i64:
4068 return IsTestN ? X86::VPTESTNMQZ128rr : X86::VPTESTMQZ128rr;
4069 case MVT::v32i8:
4070 return IsTestN ? X86::VPTESTNMBZ256rr : X86::VPTESTMBZ256rr;
4071 case MVT::v16i16:
4072 return IsTestN ? X86::VPTESTNMWZ256rr : X86::VPTESTMWZ256rr;
4073 case MVT::v8i32:
4074 return IsTestN ? X86::VPTESTNMDZ256rr : X86::VPTESTMDZ256rr;
4075 case MVT::v4i64:
4076 return IsTestN ? X86::VPTESTNMQZ256rr : X86::VPTESTMQZ256rr;
4077 case MVT::v64i8:
4078 return IsTestN ? X86::VPTESTNMBZrr : X86::VPTESTMBZrr;
4079 case MVT::v32i16:
4080 return IsTestN ? X86::VPTESTNMWZrr : X86::VPTESTMWZrr;
4081 case MVT::v16i32:
4082 return IsTestN ? X86::VPTESTNMDZrr : X86::VPTESTMDZrr;
4083 case MVT::v8i64:
4084 return IsTestN ? X86::VPTESTNMQZrr : X86::VPTESTMQZrr;
4088 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4089 // to form a masked operation.
4090 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4091 SDValue InMask) {
4092 assert(Subtarget->hasAVX512() && "Expected AVX512!");
4093 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4094 "Unexpected VT!");
4096 // Look for equal and not equal compares.
4097 ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4098 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4099 return false;
4101 SDValue SetccOp0 = Setcc.getOperand(0);
4102 SDValue SetccOp1 = Setcc.getOperand(1);
4104 // Canonicalize the all zero vector to the RHS.
4105 if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4106 std::swap(SetccOp0, SetccOp1);
4108 // See if we're comparing against zero.
4109 if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4110 return false;
4112 SDValue N0 = SetccOp0;
4114 MVT CmpVT = N0.getSimpleValueType();
4115 MVT CmpSVT = CmpVT.getVectorElementType();
4117 // Start with both operands the same. We'll try to refine this.
4118 SDValue Src0 = N0;
4119 SDValue Src1 = N0;
4122 // Look through single use bitcasts.
4123 SDValue N0Temp = N0;
4124 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4125 N0Temp = N0.getOperand(0);
4127 // Look for single use AND.
4128 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4129 Src0 = N0Temp.getOperand(0);
4130 Src1 = N0Temp.getOperand(1);
4134 // Without VLX we need to widen the load.
4135 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4137 // We can only fold loads if the sources are unique.
4138 bool CanFoldLoads = Src0 != Src1;
4140 // Try to fold loads unless we need to widen.
4141 bool FoldedLoad = false;
4142 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Load;
4143 if (!Widen && CanFoldLoads) {
4144 Load = Src1;
4145 FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2, Tmp3,
4146 Tmp4);
4147 if (!FoldedLoad) {
4148 // And is computative.
4149 Load = Src0;
4150 FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2,
4151 Tmp3, Tmp4);
4152 if (FoldedLoad)
4153 std::swap(Src0, Src1);
4157 auto findBroadcastedOp = [](SDValue Src, MVT CmpSVT, SDNode *&Parent) {
4158 // Look through single use bitcasts.
4159 if (Src.getOpcode() == ISD::BITCAST && Src.hasOneUse())
4160 Src = Src.getOperand(0);
4162 if (Src.getOpcode() == X86ISD::VBROADCAST && Src.hasOneUse()) {
4163 Parent = Src.getNode();
4164 Src = Src.getOperand(0);
4165 if (Src.getSimpleValueType() == CmpSVT)
4166 return Src;
4169 return SDValue();
4172 // If we didn't fold a load, try to match broadcast. No widening limitation
4173 // for this. But only 32 and 64 bit types are supported.
4174 bool FoldedBCast = false;
4175 if (!FoldedLoad && CanFoldLoads &&
4176 (CmpSVT == MVT::i32 || CmpSVT == MVT::i64)) {
4177 SDNode *ParentNode = nullptr;
4178 if ((Load = findBroadcastedOp(Src1, CmpSVT, ParentNode))) {
4179 FoldedBCast = tryFoldLoad(Root, ParentNode, Load, Tmp0,
4180 Tmp1, Tmp2, Tmp3, Tmp4);
4183 // Try the other operand.
4184 if (!FoldedBCast) {
4185 if ((Load = findBroadcastedOp(Src0, CmpSVT, ParentNode))) {
4186 FoldedBCast = tryFoldLoad(Root, ParentNode, Load, Tmp0,
4187 Tmp1, Tmp2, Tmp3, Tmp4);
4188 if (FoldedBCast)
4189 std::swap(Src0, Src1);
4194 auto getMaskRC = [](MVT MaskVT) {
4195 switch (MaskVT.SimpleTy) {
4196 default: llvm_unreachable("Unexpected VT!");
4197 case MVT::v2i1: return X86::VK2RegClassID;
4198 case MVT::v4i1: return X86::VK4RegClassID;
4199 case MVT::v8i1: return X86::VK8RegClassID;
4200 case MVT::v16i1: return X86::VK16RegClassID;
4201 case MVT::v32i1: return X86::VK32RegClassID;
4202 case MVT::v64i1: return X86::VK64RegClassID;
4206 bool IsMasked = InMask.getNode() != nullptr;
4208 SDLoc dl(Root);
4210 MVT ResVT = Setcc.getSimpleValueType();
4211 MVT MaskVT = ResVT;
4212 if (Widen) {
4213 // Widen the inputs using insert_subreg or copy_to_regclass.
4214 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4215 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4216 unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4217 CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4218 MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4219 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4220 CmpVT), 0);
4221 Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4223 assert(!FoldedLoad && "Shouldn't have folded the load");
4224 if (!FoldedBCast)
4225 Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4227 if (IsMasked) {
4228 // Widen the mask.
4229 unsigned RegClass = getMaskRC(MaskVT);
4230 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4231 InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4232 dl, MaskVT, InMask, RC), 0);
4236 bool IsTestN = CC == ISD::SETEQ;
4237 unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4238 IsMasked);
4240 MachineSDNode *CNode;
4241 if (FoldedLoad || FoldedBCast) {
4242 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4244 if (IsMasked) {
4245 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4246 Load.getOperand(0) };
4247 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4248 } else {
4249 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4250 Load.getOperand(0) };
4251 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4254 // Update the chain.
4255 ReplaceUses(Load.getValue(1), SDValue(CNode, 1));
4256 // Record the mem-refs
4257 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(Load)->getMemOperand()});
4258 } else {
4259 if (IsMasked)
4260 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4261 else
4262 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4265 // If we widened, we need to shrink the mask VT.
4266 if (Widen) {
4267 unsigned RegClass = getMaskRC(ResVT);
4268 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4269 CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4270 dl, ResVT, SDValue(CNode, 0), RC);
4273 ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4274 CurDAG->RemoveDeadNode(Root);
4275 return true;
4278 void X86DAGToDAGISel::Select(SDNode *Node) {
4279 MVT NVT = Node->getSimpleValueType(0);
4280 unsigned Opcode = Node->getOpcode();
4281 SDLoc dl(Node);
4283 if (Node->isMachineOpcode()) {
4284 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4285 Node->setNodeId(-1);
4286 return; // Already selected.
4289 switch (Opcode) {
4290 default: break;
4291 case ISD::INTRINSIC_VOID: {
4292 unsigned IntNo = Node->getConstantOperandVal(1);
4293 switch (IntNo) {
4294 default: break;
4295 case Intrinsic::x86_sse3_monitor:
4296 case Intrinsic::x86_monitorx:
4297 case Intrinsic::x86_clzero: {
4298 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4300 unsigned Opc = 0;
4301 switch (IntNo) {
4302 default: llvm_unreachable("Unexpected intrinsic!");
4303 case Intrinsic::x86_sse3_monitor:
4304 if (!Subtarget->hasSSE3())
4305 break;
4306 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4307 break;
4308 case Intrinsic::x86_monitorx:
4309 if (!Subtarget->hasMWAITX())
4310 break;
4311 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4312 break;
4313 case Intrinsic::x86_clzero:
4314 if (!Subtarget->hasCLZERO())
4315 break;
4316 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4317 break;
4320 if (Opc) {
4321 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4322 SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4323 Node->getOperand(2), SDValue());
4324 SDValue InFlag = Chain.getValue(1);
4326 if (IntNo == Intrinsic::x86_sse3_monitor ||
4327 IntNo == Intrinsic::x86_monitorx) {
4328 // Copy the other two operands to ECX and EDX.
4329 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4330 InFlag);
4331 InFlag = Chain.getValue(1);
4332 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4333 InFlag);
4334 InFlag = Chain.getValue(1);
4337 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4338 { Chain, InFlag});
4339 ReplaceNode(Node, CNode);
4340 return;
4345 break;
4347 case ISD::BRIND: {
4348 if (Subtarget->isTargetNaCl())
4349 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4350 // leave the instruction alone.
4351 break;
4352 if (Subtarget->isTarget64BitILP32()) {
4353 // Converts a 32-bit register to a 64-bit, zero-extended version of
4354 // it. This is needed because x86-64 can do many things, but jmp %r32
4355 // ain't one of them.
4356 const SDValue &Target = Node->getOperand(1);
4357 assert(Target.getSimpleValueType() == llvm::MVT::i32);
4358 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
4359 SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
4360 Node->getOperand(0), ZextTarget);
4361 ReplaceNode(Node, Brind.getNode());
4362 SelectCode(ZextTarget.getNode());
4363 SelectCode(Brind.getNode());
4364 return;
4366 break;
4368 case X86ISD::GlobalBaseReg:
4369 ReplaceNode(Node, getGlobalBaseReg());
4370 return;
4372 case ISD::BITCAST:
4373 // Just drop all 128/256/512-bit bitcasts.
4374 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4375 NVT == MVT::f128) {
4376 ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4377 CurDAG->RemoveDeadNode(Node);
4378 return;
4380 break;
4382 case ISD::VSELECT: {
4383 // Replace VSELECT with non-mask conditions with with BLENDV.
4384 if (Node->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
4385 break;
4387 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
4388 SDValue Blendv = CurDAG->getNode(
4389 X86ISD::BLENDV, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
4390 Node->getOperand(1), Node->getOperand(2));
4391 ReplaceNode(Node, Blendv.getNode());
4392 SelectCode(Blendv.getNode());
4393 // We already called ReplaceUses.
4394 return;
4397 case ISD::SRL:
4398 if (matchBitExtract(Node))
4399 return;
4400 LLVM_FALLTHROUGH;
4401 case ISD::SRA:
4402 case ISD::SHL:
4403 if (tryShiftAmountMod(Node))
4404 return;
4405 break;
4407 case ISD::AND:
4408 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4409 // Try to form a masked VPTESTM. Operands can be in either order.
4410 SDValue N0 = Node->getOperand(0);
4411 SDValue N1 = Node->getOperand(1);
4412 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4413 tryVPTESTM(Node, N0, N1))
4414 return;
4415 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4416 tryVPTESTM(Node, N1, N0))
4417 return;
4420 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4421 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4422 CurDAG->RemoveDeadNode(Node);
4423 return;
4425 if (matchBitExtract(Node))
4426 return;
4427 if (AndImmShrink && shrinkAndImmediate(Node))
4428 return;
4430 LLVM_FALLTHROUGH;
4431 case ISD::OR:
4432 case ISD::XOR:
4433 if (tryShrinkShlLogicImm(Node))
4434 return;
4436 LLVM_FALLTHROUGH;
4437 case ISD::ADD:
4438 case ISD::SUB: {
4439 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && NVT.isVector() &&
4440 combineIncDecVector(Node))
4441 return;
4443 // Try to avoid folding immediates with multiple uses for optsize.
4444 // This code tries to select to register form directly to avoid going
4445 // through the isel table which might fold the immediate. We can't change
4446 // the patterns on the add/sub/and/or/xor with immediate paterns in the
4447 // tablegen files to check immediate use count without making the patterns
4448 // unavailable to the fast-isel table.
4449 if (!OptForSize)
4450 break;
4452 // Only handle i8/i16/i32/i64.
4453 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4454 break;
4456 SDValue N0 = Node->getOperand(0);
4457 SDValue N1 = Node->getOperand(1);
4459 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4460 if (!Cst)
4461 break;
4463 int64_t Val = Cst->getSExtValue();
4465 // Make sure its an immediate that is considered foldable.
4466 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4467 if (!isInt<8>(Val) && !isInt<32>(Val))
4468 break;
4470 // If this can match to INC/DEC, let it go.
4471 if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4472 break;
4474 // Check if we should avoid folding this immediate.
4475 if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4476 break;
4478 // We should not fold the immediate. So we need a register form instead.
4479 unsigned ROpc, MOpc;
4480 switch (NVT.SimpleTy) {
4481 default: llvm_unreachable("Unexpected VT!");
4482 case MVT::i8:
4483 switch (Opcode) {
4484 default: llvm_unreachable("Unexpected opcode!");
4485 case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4486 case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4487 case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4488 case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break;
4489 case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4491 break;
4492 case MVT::i16:
4493 switch (Opcode) {
4494 default: llvm_unreachable("Unexpected opcode!");
4495 case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4496 case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4497 case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4498 case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break;
4499 case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4501 break;
4502 case MVT::i32:
4503 switch (Opcode) {
4504 default: llvm_unreachable("Unexpected opcode!");
4505 case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4506 case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4507 case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4508 case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break;
4509 case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4511 break;
4512 case MVT::i64:
4513 switch (Opcode) {
4514 default: llvm_unreachable("Unexpected opcode!");
4515 case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4516 case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4517 case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4518 case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break;
4519 case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4521 break;
4524 // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4526 // If this is a not a subtract, we can still try to fold a load.
4527 if (Opcode != ISD::SUB) {
4528 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4529 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4530 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4531 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4532 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4533 // Update the chain.
4534 ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4535 // Record the mem-refs
4536 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4537 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4538 CurDAG->RemoveDeadNode(Node);
4539 return;
4543 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4544 return;
4547 case X86ISD::SMUL:
4548 // i16/i32/i64 are handled with isel patterns.
4549 if (NVT != MVT::i8)
4550 break;
4551 LLVM_FALLTHROUGH;
4552 case X86ISD::UMUL: {
4553 SDValue N0 = Node->getOperand(0);
4554 SDValue N1 = Node->getOperand(1);
4556 unsigned LoReg, ROpc, MOpc;
4557 switch (NVT.SimpleTy) {
4558 default: llvm_unreachable("Unsupported VT!");
4559 case MVT::i8:
4560 LoReg = X86::AL;
4561 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4562 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4563 break;
4564 case MVT::i16:
4565 LoReg = X86::AX;
4566 ROpc = X86::MUL16r;
4567 MOpc = X86::MUL16m;
4568 break;
4569 case MVT::i32:
4570 LoReg = X86::EAX;
4571 ROpc = X86::MUL32r;
4572 MOpc = X86::MUL32m;
4573 break;
4574 case MVT::i64:
4575 LoReg = X86::RAX;
4576 ROpc = X86::MUL64r;
4577 MOpc = X86::MUL64m;
4578 break;
4581 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4582 bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4583 // Multiply is commmutative.
4584 if (!FoldedLoad) {
4585 FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4586 if (FoldedLoad)
4587 std::swap(N0, N1);
4590 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
4591 N0, SDValue()).getValue(1);
4593 MachineSDNode *CNode;
4594 if (FoldedLoad) {
4595 // i16/i32/i64 use an instruction that produces a low and high result even
4596 // though only the low result is used.
4597 SDVTList VTs;
4598 if (NVT == MVT::i8)
4599 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4600 else
4601 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
4603 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4604 InFlag };
4605 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4607 // Update the chain.
4608 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
4609 // Record the mem-refs
4610 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4611 } else {
4612 // i16/i32/i64 use an instruction that produces a low and high result even
4613 // though only the low result is used.
4614 SDVTList VTs;
4615 if (NVT == MVT::i8)
4616 VTs = CurDAG->getVTList(NVT, MVT::i32);
4617 else
4618 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
4620 CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
4623 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4624 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
4625 CurDAG->RemoveDeadNode(Node);
4626 return;
4629 case ISD::SMUL_LOHI:
4630 case ISD::UMUL_LOHI: {
4631 SDValue N0 = Node->getOperand(0);
4632 SDValue N1 = Node->getOperand(1);
4634 unsigned Opc, MOpc;
4635 bool isSigned = Opcode == ISD::SMUL_LOHI;
4636 if (!isSigned) {
4637 switch (NVT.SimpleTy) {
4638 default: llvm_unreachable("Unsupported VT!");
4639 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
4640 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
4642 } else {
4643 switch (NVT.SimpleTy) {
4644 default: llvm_unreachable("Unsupported VT!");
4645 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
4646 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
4650 unsigned SrcReg, LoReg, HiReg;
4651 switch (Opc) {
4652 default: llvm_unreachable("Unknown MUL opcode!");
4653 case X86::IMUL32r:
4654 case X86::MUL32r:
4655 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
4656 break;
4657 case X86::IMUL64r:
4658 case X86::MUL64r:
4659 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
4660 break;
4663 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4664 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4665 // Multiply is commmutative.
4666 if (!foldedLoad) {
4667 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4668 if (foldedLoad)
4669 std::swap(N0, N1);
4672 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
4673 N0, SDValue()).getValue(1);
4674 if (foldedLoad) {
4675 SDValue Chain;
4676 MachineSDNode *CNode = nullptr;
4677 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4678 InFlag };
4679 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
4680 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4681 Chain = SDValue(CNode, 0);
4682 InFlag = SDValue(CNode, 1);
4684 // Update the chain.
4685 ReplaceUses(N1.getValue(1), Chain);
4686 // Record the mem-refs
4687 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4688 } else {
4689 SDValue Ops[] = { N1, InFlag };
4690 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
4691 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4692 InFlag = SDValue(CNode, 0);
4695 // Copy the low half of the result, if it is needed.
4696 if (!SDValue(Node, 0).use_empty()) {
4697 assert(LoReg && "Register for low half is not defined!");
4698 SDValue ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
4699 NVT, InFlag);
4700 InFlag = ResLo.getValue(2);
4701 ReplaceUses(SDValue(Node, 0), ResLo);
4702 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
4703 dbgs() << '\n');
4705 // Copy the high half of the result, if it is needed.
4706 if (!SDValue(Node, 1).use_empty()) {
4707 assert(HiReg && "Register for high half is not defined!");
4708 SDValue ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
4709 NVT, InFlag);
4710 InFlag = ResHi.getValue(2);
4711 ReplaceUses(SDValue(Node, 1), ResHi);
4712 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
4713 dbgs() << '\n');
4716 CurDAG->RemoveDeadNode(Node);
4717 return;
4720 case ISD::SDIVREM:
4721 case ISD::UDIVREM: {
4722 SDValue N0 = Node->getOperand(0);
4723 SDValue N1 = Node->getOperand(1);
4725 unsigned Opc, MOpc;
4726 bool isSigned = Opcode == ISD::SDIVREM;
4727 if (!isSigned) {
4728 switch (NVT.SimpleTy) {
4729 default: llvm_unreachable("Unsupported VT!");
4730 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
4731 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
4732 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
4733 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
4735 } else {
4736 switch (NVT.SimpleTy) {
4737 default: llvm_unreachable("Unsupported VT!");
4738 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
4739 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
4740 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
4741 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
4745 unsigned LoReg, HiReg, ClrReg;
4746 unsigned SExtOpcode;
4747 switch (NVT.SimpleTy) {
4748 default: llvm_unreachable("Unsupported VT!");
4749 case MVT::i8:
4750 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
4751 SExtOpcode = 0; // Not used.
4752 break;
4753 case MVT::i16:
4754 LoReg = X86::AX; HiReg = X86::DX;
4755 ClrReg = X86::DX;
4756 SExtOpcode = X86::CWD;
4757 break;
4758 case MVT::i32:
4759 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
4760 SExtOpcode = X86::CDQ;
4761 break;
4762 case MVT::i64:
4763 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
4764 SExtOpcode = X86::CQO;
4765 break;
4768 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4769 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4770 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
4772 SDValue InFlag;
4773 if (NVT == MVT::i8) {
4774 // Special case for div8, just use a move with zero extension to AX to
4775 // clear the upper 8 bits (AH).
4776 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
4777 MachineSDNode *Move;
4778 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4779 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4780 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
4781 : X86::MOVZX16rm8;
4782 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
4783 Chain = SDValue(Move, 1);
4784 ReplaceUses(N0.getValue(1), Chain);
4785 // Record the mem-refs
4786 CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
4787 } else {
4788 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
4789 : X86::MOVZX16rr8;
4790 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
4791 Chain = CurDAG->getEntryNode();
4793 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
4794 SDValue());
4795 InFlag = Chain.getValue(1);
4796 } else {
4797 InFlag =
4798 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
4799 LoReg, N0, SDValue()).getValue(1);
4800 if (isSigned && !signBitIsZero) {
4801 // Sign extend the low part into the high part.
4802 InFlag =
4803 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
4804 } else {
4805 // Zero out the high part, effectively zero extending the input.
4806 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
4807 switch (NVT.SimpleTy) {
4808 case MVT::i16:
4809 ClrNode =
4810 SDValue(CurDAG->getMachineNode(
4811 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
4812 CurDAG->getTargetConstant(X86::sub_16bit, dl,
4813 MVT::i32)),
4815 break;
4816 case MVT::i32:
4817 break;
4818 case MVT::i64:
4819 ClrNode =
4820 SDValue(CurDAG->getMachineNode(
4821 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
4822 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
4823 CurDAG->getTargetConstant(X86::sub_32bit, dl,
4824 MVT::i32)),
4826 break;
4827 default:
4828 llvm_unreachable("Unexpected division source");
4831 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
4832 ClrNode, InFlag).getValue(1);
4836 if (foldedLoad) {
4837 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4838 InFlag };
4839 MachineSDNode *CNode =
4840 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
4841 InFlag = SDValue(CNode, 1);
4842 // Update the chain.
4843 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
4844 // Record the mem-refs
4845 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4846 } else {
4847 InFlag =
4848 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
4851 // Prevent use of AH in a REX instruction by explicitly copying it to
4852 // an ABCD_L register.
4854 // The current assumption of the register allocator is that isel
4855 // won't generate explicit references to the GR8_ABCD_H registers. If
4856 // the allocator and/or the backend get enhanced to be more robust in
4857 // that regard, this can be, and should be, removed.
4858 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
4859 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
4860 unsigned AHExtOpcode =
4861 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
4863 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
4864 MVT::Glue, AHCopy, InFlag);
4865 SDValue Result(RNode, 0);
4866 InFlag = SDValue(RNode, 1);
4868 Result =
4869 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
4871 ReplaceUses(SDValue(Node, 1), Result);
4872 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
4873 dbgs() << '\n');
4875 // Copy the division (low) result, if it is needed.
4876 if (!SDValue(Node, 0).use_empty()) {
4877 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
4878 LoReg, NVT, InFlag);
4879 InFlag = Result.getValue(2);
4880 ReplaceUses(SDValue(Node, 0), Result);
4881 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
4882 dbgs() << '\n');
4884 // Copy the remainder (high) result, if it is needed.
4885 if (!SDValue(Node, 1).use_empty()) {
4886 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
4887 HiReg, NVT, InFlag);
4888 InFlag = Result.getValue(2);
4889 ReplaceUses(SDValue(Node, 1), Result);
4890 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
4891 dbgs() << '\n');
4893 CurDAG->RemoveDeadNode(Node);
4894 return;
4897 case X86ISD::CMP: {
4898 SDValue N0 = Node->getOperand(0);
4899 SDValue N1 = Node->getOperand(1);
4901 // Optimizations for TEST compares.
4902 if (!isNullConstant(N1))
4903 break;
4905 // Save the original VT of the compare.
4906 MVT CmpVT = N0.getSimpleValueType();
4908 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
4909 // by a test instruction. The test should be removed later by
4910 // analyzeCompare if we are using only the zero flag.
4911 // TODO: Should we check the users and use the BEXTR flags directly?
4912 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4913 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
4914 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
4915 : X86::TEST32rr;
4916 SDValue BEXTR = SDValue(NewNode, 0);
4917 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
4918 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4919 CurDAG->RemoveDeadNode(Node);
4920 return;
4924 // We can peek through truncates, but we need to be careful below.
4925 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
4926 N0 = N0.getOperand(0);
4928 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
4929 // use a smaller encoding.
4930 // Look past the truncate if CMP is the only use of it.
4931 if (N0.getOpcode() == ISD::AND &&
4932 N0.getNode()->hasOneUse() &&
4933 N0.getValueType() != MVT::i8) {
4934 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4935 if (!C) break;
4936 uint64_t Mask = C->getZExtValue();
4938 // Check if we can replace AND+IMM64 with a shift. This is possible for
4939 // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
4940 // flag.
4941 if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
4942 onlyUsesZeroFlag(SDValue(Node, 0))) {
4943 if (isMask_64(~Mask)) {
4944 unsigned TrailingZeros = countTrailingZeros(Mask);
4945 SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
4946 SDValue Shift =
4947 SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
4948 N0.getOperand(0), Imm), 0);
4949 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
4950 MVT::i32, Shift, Shift);
4951 ReplaceNode(Node, Test);
4952 return;
4954 if (isMask_64(Mask)) {
4955 unsigned LeadingZeros = countLeadingZeros(Mask);
4956 SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
4957 SDValue Shift =
4958 SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
4959 N0.getOperand(0), Imm), 0);
4960 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
4961 MVT::i32, Shift, Shift);
4962 ReplaceNode(Node, Test);
4963 return;
4967 MVT VT;
4968 int SubRegOp;
4969 unsigned ROpc, MOpc;
4971 // For each of these checks we need to be careful if the sign flag is
4972 // being used. It is only safe to use the sign flag in two conditions,
4973 // either the sign bit in the shrunken mask is zero or the final test
4974 // size is equal to the original compare size.
4976 if (isUInt<8>(Mask) &&
4977 (!(Mask & 0x80) || CmpVT == MVT::i8 ||
4978 hasNoSignFlagUses(SDValue(Node, 0)))) {
4979 // For example, convert "testl %eax, $8" to "testb %al, $8"
4980 VT = MVT::i8;
4981 SubRegOp = X86::sub_8bit;
4982 ROpc = X86::TEST8ri;
4983 MOpc = X86::TEST8mi;
4984 } else if (OptForMinSize && isUInt<16>(Mask) &&
4985 (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
4986 hasNoSignFlagUses(SDValue(Node, 0)))) {
4987 // For example, "testl %eax, $32776" to "testw %ax, $32776".
4988 // NOTE: We only want to form TESTW instructions if optimizing for
4989 // min size. Otherwise we only save one byte and possibly get a length
4990 // changing prefix penalty in the decoders.
4991 VT = MVT::i16;
4992 SubRegOp = X86::sub_16bit;
4993 ROpc = X86::TEST16ri;
4994 MOpc = X86::TEST16mi;
4995 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
4996 ((!(Mask & 0x80000000) &&
4997 // Without minsize 16-bit Cmps can get here so we need to
4998 // be sure we calculate the correct sign flag if needed.
4999 (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5000 CmpVT == MVT::i32 ||
5001 hasNoSignFlagUses(SDValue(Node, 0)))) {
5002 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5003 // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5004 // Otherwize, we find ourselves in a position where we have to do
5005 // promotion. If previous passes did not promote the and, we assume
5006 // they had a good reason not to and do not promote here.
5007 VT = MVT::i32;
5008 SubRegOp = X86::sub_32bit;
5009 ROpc = X86::TEST32ri;
5010 MOpc = X86::TEST32mi;
5011 } else {
5012 // No eligible transformation was found.
5013 break;
5016 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5017 SDValue Reg = N0.getOperand(0);
5019 // Emit a testl or testw.
5020 MachineSDNode *NewNode;
5021 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5022 if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5023 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5024 Reg.getOperand(0) };
5025 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5026 // Update the chain.
5027 ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5028 // Record the mem-refs
5029 CurDAG->setNodeMemRefs(NewNode,
5030 {cast<LoadSDNode>(Reg)->getMemOperand()});
5031 } else {
5032 // Extract the subregister if necessary.
5033 if (N0.getValueType() != VT)
5034 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5036 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5038 // Replace CMP with TEST.
5039 ReplaceNode(Node, NewNode);
5040 return;
5042 break;
5044 case X86ISD::PCMPISTR: {
5045 if (!Subtarget->hasSSE42())
5046 break;
5048 bool NeedIndex = !SDValue(Node, 0).use_empty();
5049 bool NeedMask = !SDValue(Node, 1).use_empty();
5050 // We can't fold a load if we are going to make two instructions.
5051 bool MayFoldLoad = !NeedIndex || !NeedMask;
5053 MachineSDNode *CNode;
5054 if (NeedMask) {
5055 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5056 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5057 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5058 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5060 if (NeedIndex || !NeedMask) {
5061 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5062 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5063 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5064 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5067 // Connect the flag usage to the last instruction created.
5068 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5069 CurDAG->RemoveDeadNode(Node);
5070 return;
5072 case X86ISD::PCMPESTR: {
5073 if (!Subtarget->hasSSE42())
5074 break;
5076 // Copy the two implicit register inputs.
5077 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5078 Node->getOperand(1),
5079 SDValue()).getValue(1);
5080 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5081 Node->getOperand(3), InFlag).getValue(1);
5083 bool NeedIndex = !SDValue(Node, 0).use_empty();
5084 bool NeedMask = !SDValue(Node, 1).use_empty();
5085 // We can't fold a load if we are going to make two instructions.
5086 bool MayFoldLoad = !NeedIndex || !NeedMask;
5088 MachineSDNode *CNode;
5089 if (NeedMask) {
5090 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5091 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5092 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5093 InFlag);
5094 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5096 if (NeedIndex || !NeedMask) {
5097 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5098 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5099 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5100 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5102 // Connect the flag usage to the last instruction created.
5103 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5104 CurDAG->RemoveDeadNode(Node);
5105 return;
5108 case ISD::SETCC: {
5109 if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5110 return;
5112 break;
5115 case ISD::STORE:
5116 if (foldLoadStoreIntoMemOperand(Node))
5117 return;
5118 break;
5119 case ISD::FCEIL:
5120 case ISD::FFLOOR:
5121 case ISD::FTRUNC:
5122 case ISD::FNEARBYINT:
5123 case ISD::FRINT: {
5124 // Replace fp rounding with their X86 specific equivalent so we don't
5125 // need 2 sets of patterns.
5126 // FIXME: This can only happen when the nodes started as STRICT_* and have
5127 // been mutated into their non-STRICT equivalents. Eventually this
5128 // mutation will be removed and we should switch the STRICT_ nodes to a
5129 // strict version of RNDSCALE in PreProcessISelDAG.
5130 unsigned Imm;
5131 switch (Node->getOpcode()) {
5132 default: llvm_unreachable("Unexpected opcode!");
5133 case ISD::FCEIL: Imm = 0xA; break;
5134 case ISD::FFLOOR: Imm = 0x9; break;
5135 case ISD::FTRUNC: Imm = 0xB; break;
5136 case ISD::FNEARBYINT: Imm = 0xC; break;
5137 case ISD::FRINT: Imm = 0x4; break;
5139 SDLoc dl(Node);
5140 SDValue Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, Node->getValueType(0),
5141 Node->getOperand(0),
5142 CurDAG->getTargetConstant(Imm, dl, MVT::i8));
5143 ReplaceNode(Node, Res.getNode());
5144 SelectCode(Res.getNode());
5145 return;
5149 SelectCode(Node);
5152 bool X86DAGToDAGISel::
5153 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5154 std::vector<SDValue> &OutOps) {
5155 SDValue Op0, Op1, Op2, Op3, Op4;
5156 switch (ConstraintID) {
5157 default:
5158 llvm_unreachable("Unexpected asm memory constraint");
5159 case InlineAsm::Constraint_i:
5160 // FIXME: It seems strange that 'i' is needed here since it's supposed to
5161 // be an immediate and not a memory constraint.
5162 LLVM_FALLTHROUGH;
5163 case InlineAsm::Constraint_o: // offsetable ??
5164 case InlineAsm::Constraint_v: // not offsetable ??
5165 case InlineAsm::Constraint_m: // memory
5166 case InlineAsm::Constraint_X:
5167 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
5168 return true;
5169 break;
5172 OutOps.push_back(Op0);
5173 OutOps.push_back(Op1);
5174 OutOps.push_back(Op2);
5175 OutOps.push_back(Op3);
5176 OutOps.push_back(Op4);
5177 return false;
5180 /// This pass converts a legalized DAG into a X86-specific DAG,
5181 /// ready for instruction scheduling.
5182 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
5183 CodeGenOpt::Level OptLevel) {
5184 return new X86DAGToDAGISel(TM, OptLevel);