[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Target / X86 / X86Subtarget.cpp
blob933d31575225826cb89fd00205e1d04f7fa918c2
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "X86.h"
15 #include "X86CallLowering.h"
16 #include "X86LegalizerInfo.h"
17 #include "X86MacroFusion.h"
18 #include "X86RegisterBankInfo.h"
19 #include "X86Subtarget.h"
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
41 using namespace llvm;
43 #define DEBUG_TYPE "subtarget"
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "X86GenSubtargetInfo.inc"
49 // Temporary option to control early if-conversion for x86 while adding machine
50 // models.
51 static cl::opt<bool>
52 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
53 cl::desc("Enable early if-conversion on X86"));
56 /// Classify a blockaddress reference for the current subtarget according to how
57 /// we should reference it in a non-pcrel context.
58 unsigned char X86Subtarget::classifyBlockAddressReference() const {
59 return classifyLocalReference(nullptr);
62 /// Classify a global variable reference for the current subtarget according to
63 /// how we should reference it in a non-pcrel context.
64 unsigned char
65 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
66 return classifyGlobalReference(GV, *GV->getParent());
69 unsigned char
70 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
71 // If we're not PIC, it's not very interesting.
72 if (!isPositionIndependent())
73 return X86II::MO_NO_FLAG;
75 if (is64Bit()) {
76 // 64-bit ELF PIC local references may use GOTOFF relocations.
77 if (isTargetELF()) {
78 switch (TM.getCodeModel()) {
79 // 64-bit small code model is simple: All rip-relative.
80 case CodeModel::Tiny:
81 llvm_unreachable("Tiny codesize model not supported on X86");
82 case CodeModel::Small:
83 case CodeModel::Kernel:
84 return X86II::MO_NO_FLAG;
86 // The large PIC code model uses GOTOFF.
87 case CodeModel::Large:
88 return X86II::MO_GOTOFF;
90 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
91 case CodeModel::Medium:
92 if (isa<Function>(GV))
93 return X86II::MO_NO_FLAG; // All code is RIP-relative
94 return X86II::MO_GOTOFF; // Local symbols use GOTOFF.
96 llvm_unreachable("invalid code model");
99 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
100 // both of which use MO_NO_FLAG.
101 return X86II::MO_NO_FLAG;
104 // The COFF dynamic linker just patches the executable sections.
105 if (isTargetCOFF())
106 return X86II::MO_NO_FLAG;
108 if (isTargetDarwin()) {
109 // 32 bit macho has no relocation for a-b if a is undefined, even if
110 // b is in the section that is being relocated.
111 // This means we have to use o load even for GVs that are known to be
112 // local to the dso.
113 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
114 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
116 return X86II::MO_PIC_BASE_OFFSET;
119 return X86II::MO_GOTOFF;
122 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
123 const Module &M) const {
124 // The static large model never uses stubs.
125 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
126 return X86II::MO_NO_FLAG;
128 // Absolute symbols can be referenced directly.
129 if (GV) {
130 if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
131 // See if we can use the 8-bit immediate form. Note that some instructions
132 // will sign extend the immediate operand, so to be conservative we only
133 // accept the range [0,128).
134 if (CR->getUnsignedMax().ult(128))
135 return X86II::MO_ABS8;
136 else
137 return X86II::MO_NO_FLAG;
141 if (TM.shouldAssumeDSOLocal(M, GV))
142 return classifyLocalReference(GV);
144 if (isTargetCOFF()) {
145 if (GV->hasDLLImportStorageClass())
146 return X86II::MO_DLLIMPORT;
147 return X86II::MO_COFFSTUB;
149 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
150 if (isOSWindows())
151 return X86II::MO_NO_FLAG;
153 if (is64Bit()) {
154 // ELF supports a large, truly PIC code model with non-PC relative GOT
155 // references. Other object file formats do not. Use the no-flag, 64-bit
156 // reference for them.
157 if (TM.getCodeModel() == CodeModel::Large)
158 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
159 return X86II::MO_GOTPCREL;
162 if (isTargetDarwin()) {
163 if (!isPositionIndependent())
164 return X86II::MO_DARWIN_NONLAZY;
165 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
168 return X86II::MO_GOT;
171 unsigned char
172 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
173 return classifyGlobalFunctionReference(GV, *GV->getParent());
176 unsigned char
177 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
178 const Module &M) const {
179 if (TM.shouldAssumeDSOLocal(M, GV))
180 return X86II::MO_NO_FLAG;
182 // Functions on COFF can be non-DSO local for two reasons:
183 // - They are marked dllimport
184 // - They are extern_weak, and a stub is needed
185 if (isTargetCOFF()) {
186 if (GV->hasDLLImportStorageClass())
187 return X86II::MO_DLLIMPORT;
188 return X86II::MO_COFFSTUB;
191 const Function *F = dyn_cast_or_null<Function>(GV);
193 if (isTargetELF()) {
194 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
195 // According to psABI, PLT stub clobbers XMM8-XMM15.
196 // In Regcall calling convention those registers are used for passing
197 // parameters. Thus we need to prevent lazy binding in Regcall.
198 return X86II::MO_GOTPCREL;
199 // If PLT must be avoided then the call should be via GOTPCREL.
200 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
201 (!F && M.getRtLibUseGOT())) &&
202 is64Bit())
203 return X86II::MO_GOTPCREL;
204 return X86II::MO_PLT;
207 if (is64Bit()) {
208 if (F && F->hasFnAttribute(Attribute::NonLazyBind))
209 // If the function is marked as non-lazy, generate an indirect call
210 // which loads from the GOT directly. This avoids runtime overhead
211 // at the cost of eager binding (and one extra byte of encoding).
212 return X86II::MO_GOTPCREL;
213 return X86II::MO_NO_FLAG;
216 return X86II::MO_NO_FLAG;
219 /// Return true if the subtarget allows calls to immediate address.
220 bool X86Subtarget::isLegalToCallImmediateAddr() const {
221 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
222 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
223 // the following check for Win32 should be removed.
224 if (In64BitMode || isTargetWin32())
225 return false;
226 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
229 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
230 std::string CPUName = CPU;
231 if (CPUName.empty())
232 CPUName = "generic";
234 std::string FullFS = FS;
235 if (In64BitMode) {
236 // SSE2 should default to enabled in 64-bit mode, but can be turned off
237 // explicitly.
238 if (!FullFS.empty())
239 FullFS = "+sse2," + FullFS;
240 else
241 FullFS = "+sse2";
243 // If no CPU was specified, enable 64bit feature to satisy later check.
244 if (CPUName == "generic") {
245 if (!FullFS.empty())
246 FullFS = "+64bit," + FullFS;
247 else
248 FullFS = "+64bit";
252 // LAHF/SAHF are always supported in non-64-bit mode.
253 if (!In64BitMode) {
254 if (!FullFS.empty())
255 FullFS = "+sahf," + FullFS;
256 else
257 FullFS = "+sahf";
260 // Parse features string and set the CPU.
261 ParseSubtargetFeatures(CPUName, FullFS);
263 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
264 // 16-bytes and under that are reasonably fast. These features were
265 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
266 // micro-architectures respectively.
267 if (hasSSE42() || hasSSE4A())
268 IsUAMem16Slow = false;
270 // It's important to keep the MCSubtargetInfo feature bits in sync with
271 // target data structure which is shared with MC code emitter, etc.
272 if (In64BitMode)
273 ToggleFeature(X86::Mode64Bit);
274 else if (In32BitMode)
275 ToggleFeature(X86::Mode32Bit);
276 else if (In16BitMode)
277 ToggleFeature(X86::Mode16Bit);
278 else
279 llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
281 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
282 << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
283 << HasX86_64 << "\n");
284 if (In64BitMode && !HasX86_64)
285 report_fatal_error("64-bit code requested on a subtarget that doesn't "
286 "support it!");
288 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
289 // 32 and 64 bit) and for all 64-bit targets.
290 if (StackAlignOverride)
291 stackAlignment = StackAlignOverride;
292 else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
293 isTargetKFreeBSD() || In64BitMode)
294 stackAlignment = 16;
296 // Some CPUs have more overhead for gather. The specified overhead is relative
297 // to the Load operation. "2" is the number provided by Intel architects. This
298 // parameter is used for cost estimation of Gather Op and comparison with
299 // other alternatives.
300 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
301 // enable gather with a -march.
302 if (hasAVX512() || (hasAVX2() && hasFastGather()))
303 GatherOverhead = 2;
304 if (hasAVX512())
305 ScatterOverhead = 2;
307 // Consume the vector width attribute or apply any target specific limit.
308 if (PreferVectorWidthOverride)
309 PreferVectorWidth = PreferVectorWidthOverride;
310 else if (Prefer128Bit)
311 PreferVectorWidth = 128;
312 else if (Prefer256Bit)
313 PreferVectorWidth = 256;
316 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
317 StringRef FS) {
318 initSubtargetFeatures(CPU, FS);
319 return *this;
322 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
323 const X86TargetMachine &TM,
324 unsigned StackAlignOverride,
325 unsigned PreferVectorWidthOverride,
326 unsigned RequiredVectorWidth)
327 : X86GenSubtargetInfo(TT, CPU, FS),
328 PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
329 StackAlignOverride(StackAlignOverride),
330 PreferVectorWidthOverride(PreferVectorWidthOverride),
331 RequiredVectorWidth(RequiredVectorWidth),
332 In64BitMode(TargetTriple.getArch() == Triple::x86_64),
333 In32BitMode(TargetTriple.getArch() == Triple::x86 &&
334 TargetTriple.getEnvironment() != Triple::CODE16),
335 In16BitMode(TargetTriple.getArch() == Triple::x86 &&
336 TargetTriple.getEnvironment() == Triple::CODE16),
337 InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
338 FrameLowering(*this, getStackAlignment()) {
339 // Determine the PICStyle based on the target selected.
340 if (!isPositionIndependent())
341 setPICStyle(PICStyles::None);
342 else if (is64Bit())
343 setPICStyle(PICStyles::RIPRel);
344 else if (isTargetCOFF())
345 setPICStyle(PICStyles::None);
346 else if (isTargetDarwin())
347 setPICStyle(PICStyles::StubPIC);
348 else if (isTargetELF())
349 setPICStyle(PICStyles::GOT);
351 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
352 Legalizer.reset(new X86LegalizerInfo(*this, TM));
354 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
355 RegBankInfo.reset(RBI);
356 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
359 const CallLowering *X86Subtarget::getCallLowering() const {
360 return CallLoweringInfo.get();
363 InstructionSelector *X86Subtarget::getInstructionSelector() const {
364 return InstSelector.get();
367 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
368 return Legalizer.get();
371 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
372 return RegBankInfo.get();
375 bool X86Subtarget::enableEarlyIfConversion() const {
376 return hasCMov() && X86EarlyIfConv;
379 void X86Subtarget::getPostRAMutations(
380 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
381 Mutations.push_back(createX86MacroFusionDAGMutation());