[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Target / X86 / X86TargetMachine.cpp
blob9b74a593b182dd53705b317d7f34891b960313fc
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <memory>
50 #include <string>
52 using namespace llvm;
54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
55 cl::desc("Enable the machine combiner pass"),
56 cl::init(true), cl::Hidden);
58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
59 cl::desc("Enable the conditional branch "
60 "folding pass"),
61 cl::init(false), cl::Hidden);
63 extern "C" void LLVMInitializeX86Target() {
64 // Register the target.
65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68 PassRegistry &PR = *PassRegistry::getPassRegistry();
69 initializeGlobalISel(PR);
70 initializeWinEHStatePassPass(PR);
71 initializeFixupBWInstPassPass(PR);
72 initializeEvexToVexInstPassPass(PR);
73 initializeFixupLEAPassPass(PR);
74 initializeFPSPass(PR);
75 initializeX86CallFrameOptimizationPass(PR);
76 initializeX86CmovConverterPassPass(PR);
77 initializeX86ExpandPseudoPass(PR);
78 initializeX86ExecutionDomainFixPass(PR);
79 initializeX86DomainReassignmentPass(PR);
80 initializeX86AvoidSFBPassPass(PR);
81 initializeX86SpeculativeLoadHardeningPassPass(PR);
82 initializeX86FlagsCopyLoweringPassPass(PR);
83 initializeX86CondBrFoldingPassPass(PR);
84 initializeX86OptimizeLEAPassPass(PR);
87 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
88 if (TT.isOSBinFormatMachO()) {
89 if (TT.getArch() == Triple::x86_64)
90 return std::make_unique<X86_64MachoTargetObjectFile>();
91 return std::make_unique<TargetLoweringObjectFileMachO>();
94 if (TT.isOSFreeBSD())
95 return std::make_unique<X86FreeBSDTargetObjectFile>();
96 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
97 return std::make_unique<X86LinuxNaClTargetObjectFile>();
98 if (TT.isOSSolaris())
99 return std::make_unique<X86SolarisTargetObjectFile>();
100 if (TT.isOSFuchsia())
101 return std::make_unique<X86FuchsiaTargetObjectFile>();
102 if (TT.isOSBinFormatELF())
103 return std::make_unique<X86ELFTargetObjectFile>();
104 if (TT.isOSBinFormatCOFF())
105 return std::make_unique<TargetLoweringObjectFileCOFF>();
106 llvm_unreachable("unknown subtarget type");
109 static std::string computeDataLayout(const Triple &TT) {
110 // X86 is little endian
111 std::string Ret = "e";
113 Ret += DataLayout::getManglingComponent(TT);
114 // X86 and x32 have 32 bit pointers.
115 if ((TT.isArch64Bit() &&
116 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
117 !TT.isArch64Bit())
118 Ret += "-p:32:32";
120 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
121 Ret += "-p270:32:32-p271:32:32-p272:64:64";
123 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
124 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
125 Ret += "-i64:64";
126 else if (TT.isOSIAMCU())
127 Ret += "-i64:32-f64:32";
128 else
129 Ret += "-f64:32:64";
131 // Some ABIs align long double to 128 bits, others to 32.
132 if (TT.isOSNaCl() || TT.isOSIAMCU())
133 ; // No f80
134 else if (TT.isArch64Bit() || TT.isOSDarwin())
135 Ret += "-f80:128";
136 else
137 Ret += "-f80:32";
139 if (TT.isOSIAMCU())
140 Ret += "-f128:32";
142 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
143 if (TT.isArch64Bit())
144 Ret += "-n8:16:32:64";
145 else
146 Ret += "-n8:16:32";
148 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
149 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
150 Ret += "-a:0:32-S32";
151 else
152 Ret += "-S128";
154 return Ret;
157 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
158 bool JIT,
159 Optional<Reloc::Model> RM) {
160 bool is64Bit = TT.getArch() == Triple::x86_64;
161 if (!RM.hasValue()) {
162 // JIT codegen should use static relocations by default, since it's
163 // typically executed in process and not relocatable.
164 if (JIT)
165 return Reloc::Static;
167 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
168 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
169 // use static relocation model by default.
170 if (TT.isOSDarwin()) {
171 if (is64Bit)
172 return Reloc::PIC_;
173 return Reloc::DynamicNoPIC;
175 if (TT.isOSWindows() && is64Bit)
176 return Reloc::PIC_;
177 return Reloc::Static;
180 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
181 // is defined as a model for code which may be used in static or dynamic
182 // executables but not necessarily a shared library. On X86-32 we just
183 // compile in -static mode, in x86-64 we use PIC.
184 if (*RM == Reloc::DynamicNoPIC) {
185 if (is64Bit)
186 return Reloc::PIC_;
187 if (!TT.isOSDarwin())
188 return Reloc::Static;
191 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
192 // the Mach-O file format doesn't support it.
193 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
194 return Reloc::PIC_;
196 return *RM;
199 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
200 bool JIT, bool Is64Bit) {
201 if (CM) {
202 if (*CM == CodeModel::Tiny)
203 report_fatal_error("Target does not support the tiny CodeModel", false);
204 return *CM;
206 if (JIT)
207 return Is64Bit ? CodeModel::Large : CodeModel::Small;
208 return CodeModel::Small;
211 /// Create an X86 target.
213 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
214 StringRef CPU, StringRef FS,
215 const TargetOptions &Options,
216 Optional<Reloc::Model> RM,
217 Optional<CodeModel::Model> CM,
218 CodeGenOpt::Level OL, bool JIT)
219 : LLVMTargetMachine(
220 T, computeDataLayout(TT), TT, CPU, FS, Options,
221 getEffectiveRelocModel(TT, JIT, RM),
222 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
223 OL),
224 TLOF(createTLOF(getTargetTriple())) {
225 // On PS4, the "return address" of a 'noreturn' call must still be within
226 // the calling function, and TrapUnreachable is an easy way to get that.
227 if (TT.isPS4() || TT.isOSBinFormatMachO()) {
228 this->Options.TrapUnreachable = true;
229 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
232 // Outlining is available for x86-64.
233 if (TT.getArch() == Triple::x86_64)
234 setMachineOutliner(true);
236 initAsmInfo();
239 X86TargetMachine::~X86TargetMachine() = default;
241 const X86Subtarget *
242 X86TargetMachine::getSubtargetImpl(const Function &F) const {
243 Attribute CPUAttr = F.getFnAttribute("target-cpu");
244 Attribute FSAttr = F.getFnAttribute("target-features");
246 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
247 ? CPUAttr.getValueAsString()
248 : (StringRef)TargetCPU;
249 StringRef FS = !FSAttr.hasAttribute(Attribute::None)
250 ? FSAttr.getValueAsString()
251 : (StringRef)TargetFS;
253 SmallString<512> Key;
254 Key.reserve(CPU.size() + FS.size());
255 Key += CPU;
256 Key += FS;
258 // FIXME: This is related to the code below to reset the target options,
259 // we need to know whether or not the soft float flag is set on the
260 // function before we can generate a subtarget. We also need to use
261 // it as a key for the subtarget since that can be the only difference
262 // between two functions.
263 bool SoftFloat =
264 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
265 // If the soft float attribute is set on the function turn on the soft float
266 // subtarget feature.
267 if (SoftFloat)
268 Key += FS.empty() ? "+soft-float" : ",+soft-float";
270 // Keep track of the key width after all features are added so we can extract
271 // the feature string out later.
272 unsigned CPUFSWidth = Key.size();
274 // Extract prefer-vector-width attribute.
275 unsigned PreferVectorWidthOverride = 0;
276 if (F.hasFnAttribute("prefer-vector-width")) {
277 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
278 unsigned Width;
279 if (!Val.getAsInteger(0, Width)) {
280 Key += ",prefer-vector-width=";
281 Key += Val;
282 PreferVectorWidthOverride = Width;
286 // Extract min-legal-vector-width attribute.
287 unsigned RequiredVectorWidth = UINT32_MAX;
288 if (F.hasFnAttribute("min-legal-vector-width")) {
289 StringRef Val =
290 F.getFnAttribute("min-legal-vector-width").getValueAsString();
291 unsigned Width;
292 if (!Val.getAsInteger(0, Width)) {
293 Key += ",min-legal-vector-width=";
294 Key += Val;
295 RequiredVectorWidth = Width;
299 // Extracted here so that we make sure there is backing for the StringRef. If
300 // we assigned earlier, its possible the SmallString reallocated leaving a
301 // dangling StringRef.
302 FS = Key.slice(CPU.size(), CPUFSWidth);
304 auto &I = SubtargetMap[Key];
305 if (!I) {
306 // This needs to be done before we create a new subtarget since any
307 // creation will depend on the TM and the code generation flags on the
308 // function that reside in TargetOptions.
309 resetTargetOptions(F);
310 I = std::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
311 Options.StackAlignmentOverride,
312 PreferVectorWidthOverride,
313 RequiredVectorWidth);
315 return I.get();
318 //===----------------------------------------------------------------------===//
319 // Command line options for x86
320 //===----------------------------------------------------------------------===//
321 static cl::opt<bool>
322 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
323 cl::desc("Minimize AVX to SSE transition penalty"),
324 cl::init(true));
326 //===----------------------------------------------------------------------===//
327 // X86 TTI query.
328 //===----------------------------------------------------------------------===//
330 TargetTransformInfo
331 X86TargetMachine::getTargetTransformInfo(const Function &F) {
332 return TargetTransformInfo(X86TTIImpl(this, F));
335 //===----------------------------------------------------------------------===//
336 // Pass Pipeline Configuration
337 //===----------------------------------------------------------------------===//
339 namespace {
341 /// X86 Code Generator Pass Configuration Options.
342 class X86PassConfig : public TargetPassConfig {
343 public:
344 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
345 : TargetPassConfig(TM, PM) {}
347 X86TargetMachine &getX86TargetMachine() const {
348 return getTM<X86TargetMachine>();
351 ScheduleDAGInstrs *
352 createMachineScheduler(MachineSchedContext *C) const override {
353 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
354 DAG->addMutation(createX86MacroFusionDAGMutation());
355 return DAG;
358 ScheduleDAGInstrs *
359 createPostMachineScheduler(MachineSchedContext *C) const override {
360 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
361 DAG->addMutation(createX86MacroFusionDAGMutation());
362 return DAG;
365 void addIRPasses() override;
366 bool addInstSelector() override;
367 bool addIRTranslator() override;
368 bool addLegalizeMachineIR() override;
369 bool addRegBankSelect() override;
370 bool addGlobalInstructionSelect() override;
371 bool addILPOpts() override;
372 bool addPreISel() override;
373 void addMachineSSAOptimization() override;
374 void addPreRegAlloc() override;
375 void addPostRegAlloc() override;
376 void addPreEmitPass() override;
377 void addPreEmitPass2() override;
378 void addPreSched2() override;
380 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
383 class X86ExecutionDomainFix : public ExecutionDomainFix {
384 public:
385 static char ID;
386 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
387 StringRef getPassName() const override {
388 return "X86 Execution Dependency Fix";
391 char X86ExecutionDomainFix::ID;
393 } // end anonymous namespace
395 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
396 "X86 Execution Domain Fix", false, false)
397 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
398 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
399 "X86 Execution Domain Fix", false, false)
401 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
402 return new X86PassConfig(*this, PM);
405 void X86PassConfig::addIRPasses() {
406 addPass(createAtomicExpandPass());
408 TargetPassConfig::addIRPasses();
410 if (TM->getOptLevel() != CodeGenOpt::None)
411 addPass(createInterleavedAccessPass());
413 // Add passes that handle indirect branch removal and insertion of a retpoline
414 // thunk. These will be a no-op unless a function subtarget has the retpoline
415 // feature enabled.
416 addPass(createIndirectBrExpandPass());
419 bool X86PassConfig::addInstSelector() {
420 // Install an instruction selector.
421 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
423 // For ELF, cleanup any local-dynamic TLS accesses.
424 if (TM->getTargetTriple().isOSBinFormatELF() &&
425 getOptLevel() != CodeGenOpt::None)
426 addPass(createCleanupLocalDynamicTLSPass());
428 addPass(createX86GlobalBaseRegPass());
429 return false;
432 bool X86PassConfig::addIRTranslator() {
433 addPass(new IRTranslator());
434 return false;
437 bool X86PassConfig::addLegalizeMachineIR() {
438 addPass(new Legalizer());
439 return false;
442 bool X86PassConfig::addRegBankSelect() {
443 addPass(new RegBankSelect());
444 return false;
447 bool X86PassConfig::addGlobalInstructionSelect() {
448 addPass(new InstructionSelect());
449 return false;
452 bool X86PassConfig::addILPOpts() {
453 if (EnableCondBrFoldingPass)
454 addPass(createX86CondBrFolding());
455 addPass(&EarlyIfConverterID);
456 if (EnableMachineCombinerPass)
457 addPass(&MachineCombinerID);
458 addPass(createX86CmovConverterPass());
459 return true;
462 bool X86PassConfig::addPreISel() {
463 // Only add this pass for 32-bit x86 Windows.
464 const Triple &TT = TM->getTargetTriple();
465 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
466 addPass(createX86WinEHStatePass());
467 return true;
470 void X86PassConfig::addPreRegAlloc() {
471 if (getOptLevel() != CodeGenOpt::None) {
472 addPass(&LiveRangeShrinkID);
473 addPass(createX86FixupSetCC());
474 addPass(createX86OptimizeLEAs());
475 addPass(createX86CallFrameOptimization());
476 addPass(createX86AvoidStoreForwardingBlocks());
479 addPass(createX86SpeculativeLoadHardeningPass());
480 addPass(createX86FlagsCopyLoweringPass());
481 addPass(createX86WinAllocaExpander());
483 void X86PassConfig::addMachineSSAOptimization() {
484 addPass(createX86DomainReassignmentPass());
485 TargetPassConfig::addMachineSSAOptimization();
488 void X86PassConfig::addPostRegAlloc() {
489 addPass(createX86FloatingPointStackifierPass());
492 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
494 void X86PassConfig::addPreEmitPass() {
495 if (getOptLevel() != CodeGenOpt::None) {
496 addPass(new X86ExecutionDomainFix());
497 addPass(createBreakFalseDeps());
500 addPass(createX86IndirectBranchTrackingPass());
502 if (UseVZeroUpper)
503 addPass(createX86IssueVZeroUpperPass());
505 if (getOptLevel() != CodeGenOpt::None) {
506 addPass(createX86FixupBWInsts());
507 addPass(createX86PadShortFunctions());
508 addPass(createX86FixupLEAs());
509 addPass(createX86EvexToVexInsts());
511 addPass(createX86DiscriminateMemOpsPass());
512 addPass(createX86InsertPrefetchPass());
515 void X86PassConfig::addPreEmitPass2() {
516 const Triple &TT = TM->getTargetTriple();
517 const MCAsmInfo *MAI = TM->getMCAsmInfo();
519 addPass(createX86RetpolineThunksPass());
521 // Insert extra int3 instructions after trailing call instructions to avoid
522 // issues in the unwinder.
523 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
524 addPass(createX86AvoidTrailingCallPass());
526 // Verify basic block incoming and outgoing cfa offset and register values and
527 // correct CFA calculation rule where needed by inserting appropriate CFI
528 // instructions.
529 if (!TT.isOSDarwin() &&
530 (!TT.isOSWindows() ||
531 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
532 addPass(createCFIInstrInserter());
535 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
536 return getStandardCSEConfigForOpt(TM->getOptLevel());