[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Transforms / Instrumentation / PoisonChecking.cpp
blob81d92e724c7d2dde4a3c496c2801f9a650fcbe0b
1 //===- PoisonChecking.cpp - -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit. That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef. There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language. If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
16 //
17 // The rewritten semantics of each instruction will include the following
18 // components:
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 // state of each input to whether the dynamic output of the instruction
23 // produces poison.
24 // 3) A flag validation rule which validates any poison producing flags on the
25 // instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 // execute undefined behavior given the poison state of it's inputs.
29 // At the moment, the UB detection is done in a best effort manner; that is,
30 // the resulting code may produce a false negative result (not report UB when
31 // it actually exists according to the LangRef spec), but should never produce
32 // a false positive (report UB where it doesn't exist). The intention is to
33 // eventually support a "strict" mode which never dynamically reports a false
34 // negative at the cost of rejecting some valid inputs to translation.
36 // Use cases for this pass include:
37 // - Understanding (and testing!) the implications of the definition of poison
38 // from the LangRef.
39 // - Validating the output of a IR fuzzer to ensure that all programs produced
40 // are well defined on the specific input used.
41 // - Finding/confirming poison specific miscompiles by checking the poison
42 // status of an input/IR pair is the same before and after an optimization
43 // transform.
44 // - Checking that a bugpoint reduction does not introduce UB which didn't
45 // exist in the original program being reduced.
47 // The major sources of inaccuracy are currently:
48 // - Most validation rules not yet implemented for instructions with poison
49 // relavant flags. At the moment, only nsw/nuw on add/sub are supported.
50 // - UB which is control dependent on a branch on poison is not yet
51 // reported. Currently, only data flow dependence is modeled.
52 // - Poison which is propagated through memory is not modeled. As such,
53 // storing poison to memory and then reloading it will cause a false negative
54 // as we consider the reloaded value to not be poisoned.
55 // - Poison propagation across function boundaries is not modeled. At the
56 // moment, all arguments and return values are assumed not to be poison.
57 // - Undef is not modeled. In particular, the optimizer's freedom to pick
58 // concrete values for undef bits so as to maximize potential for producing
59 // poison is not modeled.
61 //===----------------------------------------------------------------------===//
63 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/MemoryBuiltins.h"
67 #include "llvm/Analysis/ValueTracking.h"
68 #include "llvm/IR/InstVisitor.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/PatternMatch.h"
72 #include "llvm/Support/Debug.h"
74 using namespace llvm;
76 #define DEBUG_TYPE "poison-checking"
78 static cl::opt<bool>
79 LocalCheck("poison-checking-function-local",
80 cl::init(false),
81 cl::desc("Check that returns are non-poison (for testing)"));
84 static bool isConstantFalse(Value* V) {
85 assert(V->getType()->isIntegerTy(1));
86 if (auto *CI = dyn_cast<ConstantInt>(V))
87 return CI->isZero();
88 return false;
91 static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
92 if (Ops.size() == 0)
93 return B.getFalse();
94 unsigned i = 0;
95 for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
96 if (i == Ops.size())
97 return B.getFalse();
98 Value *Accum = Ops[i++];
99 for (; i < Ops.size(); i++)
100 if (!isConstantFalse(Ops[i]))
101 Accum = B.CreateOr(Accum, Ops[i]);
102 return Accum;
105 static void generatePoisonChecksForBinOp(Instruction &I,
106 SmallVector<Value*, 2> &Checks) {
107 assert(isa<BinaryOperator>(I));
109 IRBuilder<> B(&I);
110 Value *LHS = I.getOperand(0);
111 Value *RHS = I.getOperand(1);
112 switch (I.getOpcode()) {
113 default:
114 return;
115 case Instruction::Add: {
116 if (I.hasNoSignedWrap()) {
117 auto *OverflowOp =
118 B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
119 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
121 if (I.hasNoUnsignedWrap()) {
122 auto *OverflowOp =
123 B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
124 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
126 break;
128 case Instruction::Sub: {
129 if (I.hasNoSignedWrap()) {
130 auto *OverflowOp =
131 B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
132 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
134 if (I.hasNoUnsignedWrap()) {
135 auto *OverflowOp =
136 B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
137 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
139 break;
141 case Instruction::Mul: {
142 if (I.hasNoSignedWrap()) {
143 auto *OverflowOp =
144 B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
145 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
147 if (I.hasNoUnsignedWrap()) {
148 auto *OverflowOp =
149 B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
150 Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
152 break;
154 case Instruction::UDiv: {
155 if (I.isExact()) {
156 auto *Check =
157 B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
158 ConstantInt::get(LHS->getType(), 0));
159 Checks.push_back(Check);
161 break;
163 case Instruction::SDiv: {
164 if (I.isExact()) {
165 auto *Check =
166 B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
167 ConstantInt::get(LHS->getType(), 0));
168 Checks.push_back(Check);
170 break;
172 case Instruction::AShr:
173 case Instruction::LShr:
174 case Instruction::Shl: {
175 Value *ShiftCheck =
176 B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
177 ConstantInt::get(RHS->getType(),
178 LHS->getType()->getScalarSizeInBits()));
179 Checks.push_back(ShiftCheck);
180 break;
185 static Value* generatePoisonChecks(Instruction &I) {
186 IRBuilder<> B(&I);
187 SmallVector<Value*, 2> Checks;
188 if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
189 generatePoisonChecksForBinOp(I, Checks);
191 // Handle non-binops seperately
192 switch (I.getOpcode()) {
193 default:
194 break;
195 case Instruction::ExtractElement: {
196 Value *Vec = I.getOperand(0);
197 if (Vec->getType()->getVectorIsScalable())
198 break;
199 Value *Idx = I.getOperand(1);
200 unsigned NumElts = Vec->getType()->getVectorNumElements();
201 Value *Check =
202 B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
203 ConstantInt::get(Idx->getType(), NumElts));
204 Checks.push_back(Check);
205 break;
207 case Instruction::InsertElement: {
208 Value *Vec = I.getOperand(0);
209 if (Vec->getType()->getVectorIsScalable())
210 break;
211 Value *Idx = I.getOperand(2);
212 unsigned NumElts = Vec->getType()->getVectorNumElements();
213 Value *Check =
214 B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
215 ConstantInt::get(Idx->getType(), NumElts));
216 Checks.push_back(Check);
217 break;
220 return buildOrChain(B, Checks);
223 static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
224 auto Itr = ValToPoison.find(V);
225 if (Itr != ValToPoison.end())
226 return Itr->second;
227 if (isa<Constant>(V)) {
228 return ConstantInt::getFalse(V->getContext());
230 // Return false for unknwon values - this implements a non-strict mode where
231 // unhandled IR constructs are simply considered to never produce poison. At
232 // some point in the future, we probably want a "strict mode" for testing if
233 // nothing else.
234 return ConstantInt::getFalse(V->getContext());
237 static void CreateAssert(IRBuilder<> &B, Value *Cond) {
238 assert(Cond->getType()->isIntegerTy(1));
239 if (auto *CI = dyn_cast<ConstantInt>(Cond))
240 if (CI->isAllOnesValue())
241 return;
243 Module *M = B.GetInsertBlock()->getModule();
244 M->getOrInsertFunction("__poison_checker_assert",
245 Type::getVoidTy(M->getContext()),
246 Type::getInt1Ty(M->getContext()));
247 Function *TrapFunc = M->getFunction("__poison_checker_assert");
248 B.CreateCall(TrapFunc, Cond);
251 static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
252 assert(Cond->getType()->isIntegerTy(1));
253 CreateAssert(B, B.CreateNot(Cond));
256 static bool rewrite(Function &F) {
257 auto * const Int1Ty = Type::getInt1Ty(F.getContext());
259 DenseMap<Value *, Value *> ValToPoison;
261 for (BasicBlock &BB : F)
262 for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
263 auto *OldPHI = cast<PHINode>(&*I);
264 auto *NewPHI = PHINode::Create(Int1Ty,
265 OldPHI->getNumIncomingValues());
266 for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
267 NewPHI->addIncoming(UndefValue::get(Int1Ty),
268 OldPHI->getIncomingBlock(i));
269 NewPHI->insertBefore(OldPHI);
270 ValToPoison[OldPHI] = NewPHI;
273 for (BasicBlock &BB : F)
274 for (Instruction &I : BB) {
275 if (isa<PHINode>(I)) continue;
277 IRBuilder<> B(cast<Instruction>(&I));
279 // Note: There are many more sources of documented UB, but this pass only
280 // attempts to find UB triggered by propagation of poison.
281 if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I)))
282 CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
284 if (LocalCheck)
285 if (auto *RI = dyn_cast<ReturnInst>(&I))
286 if (RI->getNumOperands() != 0) {
287 Value *Op = RI->getOperand(0);
288 CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
291 SmallVector<Value*, 4> Checks;
292 if (propagatesFullPoison(&I))
293 for (Value *V : I.operands())
294 Checks.push_back(getPoisonFor(ValToPoison, V));
296 if (auto *Check = generatePoisonChecks(I))
297 Checks.push_back(Check);
298 ValToPoison[&I] = buildOrChain(B, Checks);
301 for (BasicBlock &BB : F)
302 for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
303 auto *OldPHI = cast<PHINode>(&*I);
304 if (!ValToPoison.count(OldPHI))
305 continue; // skip the newly inserted phis
306 auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
307 for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
308 auto *OldVal = OldPHI->getIncomingValue(i);
309 NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
312 return true;
316 PreservedAnalyses PoisonCheckingPass::run(Module &M,
317 ModuleAnalysisManager &AM) {
318 bool Changed = false;
319 for (auto &F : M)
320 Changed |= rewrite(F);
322 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
325 PreservedAnalyses PoisonCheckingPass::run(Function &F,
326 FunctionAnalysisManager &AM) {
327 return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
331 /* Major TODO Items:
332 - Control dependent poison UB
333 - Strict mode - (i.e. must analyze every operand)
334 - Poison through memory
335 - Function ABIs
336 - Full coverage of intrinsics, etc.. (ouch)
338 Instructions w/Unclear Semantics:
339 - shufflevector - It would seem reasonable for an out of bounds mask element
340 to produce poison, but the LangRef does not state.
341 - and/or - It would seem reasonable for poison to propagate from both
342 arguments, but LangRef doesn't state and propagatesFullPoison doesn't
343 include these two.
344 - all binary ops w/vector operands - The likely interpretation would be that
345 any element overflowing should produce poison for the entire result, but
346 the LangRef does not state.
347 - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
348 strange that only certian flags should be documented as producing poison.
350 Cases of clear poison semantics not yet implemented:
351 - Exact flags on ashr/lshr produce poison
352 - NSW/NUW flags on shl produce poison
353 - Inbounds flag on getelementptr produce poison
354 - fptosi/fptoui (out of bounds input) produce poison
355 - Scalable vector types for insertelement/extractelement
356 - Floating point binary ops w/fmf nnan/noinfs flags produce poison