[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Transforms / Scalar / LoopRerollPass.cpp
blob96e2c2a3ac6b7724a7d3be5bc259fc80fbdb7fa5
1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <iterator>
62 #include <map>
63 #include <utility>
65 using namespace llvm;
67 #define DEBUG_TYPE "loop-reroll"
69 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
71 static cl::opt<unsigned>
72 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
73 cl::Hidden,
74 cl::desc("The maximum number of failures to tolerate"
75 " during fuzzy matching. (default: 400)"));
77 // This loop re-rolling transformation aims to transform loops like this:
79 // int foo(int a);
80 // void bar(int *x) {
81 // for (int i = 0; i < 500; i += 3) {
82 // foo(i);
83 // foo(i+1);
84 // foo(i+2);
85 // }
86 // }
88 // into a loop like this:
90 // void bar(int *x) {
91 // for (int i = 0; i < 500; ++i)
92 // foo(i);
93 // }
95 // It does this by looking for loops that, besides the latch code, are composed
96 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
97 // to the induction variable, and where each DAG is isomorphic to the DAG
98 // rooted at the induction variable (excepting the sub-DAGs which root the
99 // other induction-variable increments). In other words, we're looking for loop
100 // bodies of the form:
102 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
103 // f(%iv)
104 // %iv.1 = add %iv, 1 <-- a root increment
105 // f(%iv.1)
106 // %iv.2 = add %iv, 2 <-- a root increment
107 // f(%iv.2)
108 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
109 // f(%iv.scale_m_1)
110 // ...
111 // %iv.next = add %iv, scale
112 // %cmp = icmp(%iv, ...)
113 // br %cmp, header, exit
115 // where each f(i) is a set of instructions that, collectively, are a function
116 // only of i (and other loop-invariant values).
118 // As a special case, we can also reroll loops like this:
120 // int foo(int);
121 // void bar(int *x) {
122 // for (int i = 0; i < 500; ++i) {
123 // x[3*i] = foo(0);
124 // x[3*i+1] = foo(0);
125 // x[3*i+2] = foo(0);
126 // }
127 // }
129 // into this:
131 // void bar(int *x) {
132 // for (int i = 0; i < 1500; ++i)
133 // x[i] = foo(0);
134 // }
136 // in which case, we're looking for inputs like this:
138 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
139 // %scaled.iv = mul %iv, scale
140 // f(%scaled.iv)
141 // %scaled.iv.1 = add %scaled.iv, 1
142 // f(%scaled.iv.1)
143 // %scaled.iv.2 = add %scaled.iv, 2
144 // f(%scaled.iv.2)
145 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
146 // f(%scaled.iv.scale_m_1)
147 // ...
148 // %iv.next = add %iv, 1
149 // %cmp = icmp(%iv, ...)
150 // br %cmp, header, exit
152 namespace {
154 enum IterationLimits {
155 /// The maximum number of iterations that we'll try and reroll.
156 IL_MaxRerollIterations = 32,
157 /// The bitvector index used by loop induction variables and other
158 /// instructions that belong to all iterations.
159 IL_All,
160 IL_End
163 class LoopReroll : public LoopPass {
164 public:
165 static char ID; // Pass ID, replacement for typeid
167 LoopReroll() : LoopPass(ID) {
168 initializeLoopRerollPass(*PassRegistry::getPassRegistry());
171 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
173 void getAnalysisUsage(AnalysisUsage &AU) const override {
174 AU.addRequired<TargetLibraryInfoWrapperPass>();
175 getLoopAnalysisUsage(AU);
178 protected:
179 AliasAnalysis *AA;
180 LoopInfo *LI;
181 ScalarEvolution *SE;
182 TargetLibraryInfo *TLI;
183 DominatorTree *DT;
184 bool PreserveLCSSA;
186 using SmallInstructionVector = SmallVector<Instruction *, 16>;
187 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
189 // Map between induction variable and its increment
190 DenseMap<Instruction *, int64_t> IVToIncMap;
192 // For loop with multiple induction variable, remember the one used only to
193 // control the loop.
194 Instruction *LoopControlIV;
196 // A chain of isomorphic instructions, identified by a single-use PHI
197 // representing a reduction. Only the last value may be used outside the
198 // loop.
199 struct SimpleLoopReduction {
200 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
201 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
202 add(L);
205 bool valid() const {
206 return Valid;
209 Instruction *getPHI() const {
210 assert(Valid && "Using invalid reduction");
211 return Instructions.front();
214 Instruction *getReducedValue() const {
215 assert(Valid && "Using invalid reduction");
216 return Instructions.back();
219 Instruction *get(size_t i) const {
220 assert(Valid && "Using invalid reduction");
221 return Instructions[i+1];
224 Instruction *operator [] (size_t i) const { return get(i); }
226 // The size, ignoring the initial PHI.
227 size_t size() const {
228 assert(Valid && "Using invalid reduction");
229 return Instructions.size()-1;
232 using iterator = SmallInstructionVector::iterator;
233 using const_iterator = SmallInstructionVector::const_iterator;
235 iterator begin() {
236 assert(Valid && "Using invalid reduction");
237 return std::next(Instructions.begin());
240 const_iterator begin() const {
241 assert(Valid && "Using invalid reduction");
242 return std::next(Instructions.begin());
245 iterator end() { return Instructions.end(); }
246 const_iterator end() const { return Instructions.end(); }
248 protected:
249 bool Valid = false;
250 SmallInstructionVector Instructions;
252 void add(Loop *L);
255 // The set of all reductions, and state tracking of possible reductions
256 // during loop instruction processing.
257 struct ReductionTracker {
258 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
260 // Add a new possible reduction.
261 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
263 // Setup to track possible reductions corresponding to the provided
264 // rerolling scale. Only reductions with a number of non-PHI instructions
265 // that is divisible by the scale are considered. Three instructions sets
266 // are filled in:
267 // - A set of all possible instructions in eligible reductions.
268 // - A set of all PHIs in eligible reductions
269 // - A set of all reduced values (last instructions) in eligible
270 // reductions.
271 void restrictToScale(uint64_t Scale,
272 SmallInstructionSet &PossibleRedSet,
273 SmallInstructionSet &PossibleRedPHISet,
274 SmallInstructionSet &PossibleRedLastSet) {
275 PossibleRedIdx.clear();
276 PossibleRedIter.clear();
277 Reds.clear();
279 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
280 if (PossibleReds[i].size() % Scale == 0) {
281 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
282 PossibleRedPHISet.insert(PossibleReds[i].getPHI());
284 PossibleRedSet.insert(PossibleReds[i].getPHI());
285 PossibleRedIdx[PossibleReds[i].getPHI()] = i;
286 for (Instruction *J : PossibleReds[i]) {
287 PossibleRedSet.insert(J);
288 PossibleRedIdx[J] = i;
293 // The functions below are used while processing the loop instructions.
295 // Are the two instructions both from reductions, and furthermore, from
296 // the same reduction?
297 bool isPairInSame(Instruction *J1, Instruction *J2) {
298 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
299 if (J1I != PossibleRedIdx.end()) {
300 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
301 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
302 return true;
305 return false;
308 // The two provided instructions, the first from the base iteration, and
309 // the second from iteration i, form a matched pair. If these are part of
310 // a reduction, record that fact.
311 void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
312 if (PossibleRedIdx.count(J1)) {
313 assert(PossibleRedIdx.count(J2) &&
314 "Recording reduction vs. non-reduction instruction?");
316 PossibleRedIter[J1] = 0;
317 PossibleRedIter[J2] = i;
319 int Idx = PossibleRedIdx[J1];
320 assert(Idx == PossibleRedIdx[J2] &&
321 "Recording pair from different reductions?");
322 Reds.insert(Idx);
326 // The functions below can be called after we've finished processing all
327 // instructions in the loop, and we know which reductions were selected.
329 bool validateSelected();
330 void replaceSelected();
332 protected:
333 // The vector of all possible reductions (for any scale).
334 SmallReductionVector PossibleReds;
336 DenseMap<Instruction *, int> PossibleRedIdx;
337 DenseMap<Instruction *, int> PossibleRedIter;
338 DenseSet<int> Reds;
341 // A DAGRootSet models an induction variable being used in a rerollable
342 // loop. For example,
344 // x[i*3+0] = y1
345 // x[i*3+1] = y2
346 // x[i*3+2] = y3
348 // Base instruction -> i*3
349 // +---+----+
350 // / | \
351 // ST[y1] +1 +2 <-- Roots
352 // | |
353 // ST[y2] ST[y3]
355 // There may be multiple DAGRoots, for example:
357 // x[i*2+0] = ... (1)
358 // x[i*2+1] = ... (1)
359 // x[i*2+4] = ... (2)
360 // x[i*2+5] = ... (2)
361 // x[(i+1234)*2+5678] = ... (3)
362 // x[(i+1234)*2+5679] = ... (3)
364 // The loop will be rerolled by adding a new loop induction variable,
365 // one for the Base instruction in each DAGRootSet.
367 struct DAGRootSet {
368 Instruction *BaseInst;
369 SmallInstructionVector Roots;
371 // The instructions between IV and BaseInst (but not including BaseInst).
372 SmallInstructionSet SubsumedInsts;
375 // The set of all DAG roots, and state tracking of all roots
376 // for a particular induction variable.
377 struct DAGRootTracker {
378 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
379 ScalarEvolution *SE, AliasAnalysis *AA,
380 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
381 bool PreserveLCSSA,
382 DenseMap<Instruction *, int64_t> &IncrMap,
383 Instruction *LoopCtrlIV)
384 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
385 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
386 LoopControlIV(LoopCtrlIV) {}
388 /// Stage 1: Find all the DAG roots for the induction variable.
389 bool findRoots();
391 /// Stage 2: Validate if the found roots are valid.
392 bool validate(ReductionTracker &Reductions);
394 /// Stage 3: Assuming validate() returned true, perform the
395 /// replacement.
396 /// @param BackedgeTakenCount The backedge-taken count of L.
397 void replace(const SCEV *BackedgeTakenCount);
399 protected:
400 using UsesTy = MapVector<Instruction *, BitVector>;
402 void findRootsRecursive(Instruction *IVU,
403 SmallInstructionSet SubsumedInsts);
404 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
405 bool collectPossibleRoots(Instruction *Base,
406 std::map<int64_t,Instruction*> &Roots);
407 bool validateRootSet(DAGRootSet &DRS);
409 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
410 void collectInLoopUserSet(const SmallInstructionVector &Roots,
411 const SmallInstructionSet &Exclude,
412 const SmallInstructionSet &Final,
413 DenseSet<Instruction *> &Users);
414 void collectInLoopUserSet(Instruction *Root,
415 const SmallInstructionSet &Exclude,
416 const SmallInstructionSet &Final,
417 DenseSet<Instruction *> &Users);
419 UsesTy::iterator nextInstr(int Val, UsesTy &In,
420 const SmallInstructionSet &Exclude,
421 UsesTy::iterator *StartI=nullptr);
422 bool isBaseInst(Instruction *I);
423 bool isRootInst(Instruction *I);
424 bool instrDependsOn(Instruction *I,
425 UsesTy::iterator Start,
426 UsesTy::iterator End);
427 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
429 LoopReroll *Parent;
431 // Members of Parent, replicated here for brevity.
432 Loop *L;
433 ScalarEvolution *SE;
434 AliasAnalysis *AA;
435 TargetLibraryInfo *TLI;
436 DominatorTree *DT;
437 LoopInfo *LI;
438 bool PreserveLCSSA;
440 // The loop induction variable.
441 Instruction *IV;
443 // Loop step amount.
444 int64_t Inc;
446 // Loop reroll count; if Inc == 1, this records the scaling applied
447 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
448 // If Inc is not 1, Scale = Inc.
449 uint64_t Scale;
451 // The roots themselves.
452 SmallVector<DAGRootSet,16> RootSets;
454 // All increment instructions for IV.
455 SmallInstructionVector LoopIncs;
457 // Map of all instructions in the loop (in order) to the iterations
458 // they are used in (or specially, IL_All for instructions
459 // used in the loop increment mechanism).
460 UsesTy Uses;
462 // Map between induction variable and its increment
463 DenseMap<Instruction *, int64_t> &IVToIncMap;
465 Instruction *LoopControlIV;
468 // Check if it is a compare-like instruction whose user is a branch
469 bool isCompareUsedByBranch(Instruction *I) {
470 auto *TI = I->getParent()->getTerminator();
471 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
472 return false;
473 return I->hasOneUse() && TI->getOperand(0) == I;
476 bool isLoopControlIV(Loop *L, Instruction *IV);
477 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
478 void collectPossibleReductions(Loop *L,
479 ReductionTracker &Reductions);
480 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
481 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
484 } // end anonymous namespace
486 char LoopReroll::ID = 0;
488 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
489 INITIALIZE_PASS_DEPENDENCY(LoopPass)
490 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
491 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
493 Pass *llvm::createLoopRerollPass() {
494 return new LoopReroll;
497 // Returns true if the provided instruction is used outside the given loop.
498 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
499 // non-loop blocks to be outside the loop.
500 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
501 for (User *U : I->users()) {
502 if (!L->contains(cast<Instruction>(U)))
503 return true;
505 return false;
508 // Check if an IV is only used to control the loop. There are two cases:
509 // 1. It only has one use which is loop increment, and the increment is only
510 // used by comparison and the PHI (could has sext with nsw in between), and the
511 // comparison is only used by branch.
512 // 2. It is used by loop increment and the comparison, the loop increment is
513 // only used by the PHI, and the comparison is used only by the branch.
514 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
515 unsigned IVUses = IV->getNumUses();
516 if (IVUses != 2 && IVUses != 1)
517 return false;
519 for (auto *User : IV->users()) {
520 int32_t IncOrCmpUses = User->getNumUses();
521 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
523 // User can only have one or two uses.
524 if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
525 return false;
527 // Case 1
528 if (IVUses == 1) {
529 // The only user must be the loop increment.
530 // The loop increment must have two uses.
531 if (IsCompInst || IncOrCmpUses != 2)
532 return false;
535 // Case 2
536 if (IVUses == 2 && IncOrCmpUses != 1)
537 return false;
539 // The users of the IV must be a binary operation or a comparison
540 if (auto *BO = dyn_cast<BinaryOperator>(User)) {
541 if (BO->getOpcode() == Instruction::Add) {
542 // Loop Increment
543 // User of Loop Increment should be either PHI or CMP
544 for (auto *UU : User->users()) {
545 if (PHINode *PN = dyn_cast<PHINode>(UU)) {
546 if (PN != IV)
547 return false;
549 // Must be a CMP or an ext (of a value with nsw) then CMP
550 else {
551 Instruction *UUser = dyn_cast<Instruction>(UU);
552 // Skip SExt if we are extending an nsw value
553 // TODO: Allow ZExt too
554 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
555 isa<SExtInst>(UUser))
556 UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
557 if (!isCompareUsedByBranch(UUser))
558 return false;
561 } else
562 return false;
563 // Compare : can only have one use, and must be branch
564 } else if (!IsCompInst)
565 return false;
567 return true;
570 // Collect the list of loop induction variables with respect to which it might
571 // be possible to reroll the loop.
572 void LoopReroll::collectPossibleIVs(Loop *L,
573 SmallInstructionVector &PossibleIVs) {
574 BasicBlock *Header = L->getHeader();
575 for (BasicBlock::iterator I = Header->begin(),
576 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
577 if (!isa<PHINode>(I))
578 continue;
579 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
580 continue;
582 if (const SCEVAddRecExpr *PHISCEV =
583 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
584 if (PHISCEV->getLoop() != L)
585 continue;
586 if (!PHISCEV->isAffine())
587 continue;
588 auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
589 if (IncSCEV) {
590 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
591 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
592 << "\n");
594 if (isLoopControlIV(L, &*I)) {
595 assert(!LoopControlIV && "Found two loop control only IV");
596 LoopControlIV = &(*I);
597 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
598 << " = " << *PHISCEV << "\n");
599 } else
600 PossibleIVs.push_back(&*I);
606 // Add the remainder of the reduction-variable chain to the instruction vector
607 // (the initial PHINode has already been added). If successful, the object is
608 // marked as valid.
609 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
610 assert(!Valid && "Cannot add to an already-valid chain");
612 // The reduction variable must be a chain of single-use instructions
613 // (including the PHI), except for the last value (which is used by the PHI
614 // and also outside the loop).
615 Instruction *C = Instructions.front();
616 if (C->user_empty())
617 return;
619 do {
620 C = cast<Instruction>(*C->user_begin());
621 if (C->hasOneUse()) {
622 if (!C->isBinaryOp())
623 return;
625 if (!(isa<PHINode>(Instructions.back()) ||
626 C->isSameOperationAs(Instructions.back())))
627 return;
629 Instructions.push_back(C);
631 } while (C->hasOneUse());
633 if (Instructions.size() < 2 ||
634 !C->isSameOperationAs(Instructions.back()) ||
635 C->use_empty())
636 return;
638 // C is now the (potential) last instruction in the reduction chain.
639 for (User *U : C->users()) {
640 // The only in-loop user can be the initial PHI.
641 if (L->contains(cast<Instruction>(U)))
642 if (cast<Instruction>(U) != Instructions.front())
643 return;
646 Instructions.push_back(C);
647 Valid = true;
650 // Collect the vector of possible reduction variables.
651 void LoopReroll::collectPossibleReductions(Loop *L,
652 ReductionTracker &Reductions) {
653 BasicBlock *Header = L->getHeader();
654 for (BasicBlock::iterator I = Header->begin(),
655 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
656 if (!isa<PHINode>(I))
657 continue;
658 if (!I->getType()->isSingleValueType())
659 continue;
661 SimpleLoopReduction SLR(&*I, L);
662 if (!SLR.valid())
663 continue;
665 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
666 << SLR.size() << " chained instructions)\n");
667 Reductions.addSLR(SLR);
671 // Collect the set of all users of the provided root instruction. This set of
672 // users contains not only the direct users of the root instruction, but also
673 // all users of those users, and so on. There are two exceptions:
675 // 1. Instructions in the set of excluded instructions are never added to the
676 // use set (even if they are users). This is used, for example, to exclude
677 // including root increments in the use set of the primary IV.
679 // 2. Instructions in the set of final instructions are added to the use set
680 // if they are users, but their users are not added. This is used, for
681 // example, to prevent a reduction update from forcing all later reduction
682 // updates into the use set.
683 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
684 Instruction *Root, const SmallInstructionSet &Exclude,
685 const SmallInstructionSet &Final,
686 DenseSet<Instruction *> &Users) {
687 SmallInstructionVector Queue(1, Root);
688 while (!Queue.empty()) {
689 Instruction *I = Queue.pop_back_val();
690 if (!Users.insert(I).second)
691 continue;
693 if (!Final.count(I))
694 for (Use &U : I->uses()) {
695 Instruction *User = cast<Instruction>(U.getUser());
696 if (PHINode *PN = dyn_cast<PHINode>(User)) {
697 // Ignore "wrap-around" uses to PHIs of this loop's header.
698 if (PN->getIncomingBlock(U) == L->getHeader())
699 continue;
702 if (L->contains(User) && !Exclude.count(User)) {
703 Queue.push_back(User);
707 // We also want to collect single-user "feeder" values.
708 for (User::op_iterator OI = I->op_begin(),
709 OIE = I->op_end(); OI != OIE; ++OI) {
710 if (Instruction *Op = dyn_cast<Instruction>(*OI))
711 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
712 !Final.count(Op))
713 Queue.push_back(Op);
718 // Collect all of the users of all of the provided root instructions (combined
719 // into a single set).
720 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
721 const SmallInstructionVector &Roots,
722 const SmallInstructionSet &Exclude,
723 const SmallInstructionSet &Final,
724 DenseSet<Instruction *> &Users) {
725 for (Instruction *Root : Roots)
726 collectInLoopUserSet(Root, Exclude, Final, Users);
729 static bool isUnorderedLoadStore(Instruction *I) {
730 if (LoadInst *LI = dyn_cast<LoadInst>(I))
731 return LI->isUnordered();
732 if (StoreInst *SI = dyn_cast<StoreInst>(I))
733 return SI->isUnordered();
734 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
735 return !MI->isVolatile();
736 return false;
739 /// Return true if IVU is a "simple" arithmetic operation.
740 /// This is used for narrowing the search space for DAGRoots; only arithmetic
741 /// and GEPs can be part of a DAGRoot.
742 static bool isSimpleArithmeticOp(User *IVU) {
743 if (Instruction *I = dyn_cast<Instruction>(IVU)) {
744 switch (I->getOpcode()) {
745 default: return false;
746 case Instruction::Add:
747 case Instruction::Sub:
748 case Instruction::Mul:
749 case Instruction::Shl:
750 case Instruction::AShr:
751 case Instruction::LShr:
752 case Instruction::GetElementPtr:
753 case Instruction::Trunc:
754 case Instruction::ZExt:
755 case Instruction::SExt:
756 return true;
759 return false;
762 static bool isLoopIncrement(User *U, Instruction *IV) {
763 BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
765 if ((BO && BO->getOpcode() != Instruction::Add) ||
766 (!BO && !isa<GetElementPtrInst>(U)))
767 return false;
769 for (auto *UU : U->users()) {
770 PHINode *PN = dyn_cast<PHINode>(UU);
771 if (PN && PN == IV)
772 return true;
774 return false;
777 bool LoopReroll::DAGRootTracker::
778 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
779 SmallInstructionVector BaseUsers;
781 for (auto *I : Base->users()) {
782 ConstantInt *CI = nullptr;
784 if (isLoopIncrement(I, IV)) {
785 LoopIncs.push_back(cast<Instruction>(I));
786 continue;
789 // The root nodes must be either GEPs, ORs or ADDs.
790 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
791 if (BO->getOpcode() == Instruction::Add ||
792 BO->getOpcode() == Instruction::Or)
793 CI = dyn_cast<ConstantInt>(BO->getOperand(1));
794 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
795 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
796 CI = dyn_cast<ConstantInt>(LastOperand);
799 if (!CI) {
800 if (Instruction *II = dyn_cast<Instruction>(I)) {
801 BaseUsers.push_back(II);
802 continue;
803 } else {
804 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
805 << "\n");
806 return false;
810 int64_t V = std::abs(CI->getValue().getSExtValue());
811 if (Roots.find(V) != Roots.end())
812 // No duplicates, please.
813 return false;
815 Roots[V] = cast<Instruction>(I);
818 // Make sure we have at least two roots.
819 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
820 return false;
822 // If we found non-loop-inc, non-root users of Base, assume they are
823 // for the zeroth root index. This is because "add %a, 0" gets optimized
824 // away.
825 if (BaseUsers.size()) {
826 if (Roots.find(0) != Roots.end()) {
827 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
828 return false;
830 Roots[0] = Base;
833 // Calculate the number of users of the base, or lowest indexed, iteration.
834 unsigned NumBaseUses = BaseUsers.size();
835 if (NumBaseUses == 0)
836 NumBaseUses = Roots.begin()->second->getNumUses();
838 // Check that every node has the same number of users.
839 for (auto &KV : Roots) {
840 if (KV.first == 0)
841 continue;
842 if (!KV.second->hasNUses(NumBaseUses)) {
843 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
844 << "#Base=" << NumBaseUses
845 << ", #Root=" << KV.second->getNumUses() << "\n");
846 return false;
850 return true;
853 void LoopReroll::DAGRootTracker::
854 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
855 // Does the user look like it could be part of a root set?
856 // All its users must be simple arithmetic ops.
857 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
858 return;
860 if (I != IV && findRootsBase(I, SubsumedInsts))
861 return;
863 SubsumedInsts.insert(I);
865 for (User *V : I->users()) {
866 Instruction *I = cast<Instruction>(V);
867 if (is_contained(LoopIncs, I))
868 continue;
870 if (!isSimpleArithmeticOp(I))
871 continue;
873 // The recursive call makes a copy of SubsumedInsts.
874 findRootsRecursive(I, SubsumedInsts);
878 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
879 if (DRS.Roots.empty())
880 return false;
882 // Consider a DAGRootSet with N-1 roots (so N different values including
883 // BaseInst).
884 // Define d = Roots[0] - BaseInst, which should be the same as
885 // Roots[I] - Roots[I-1] for all I in [1..N).
886 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
887 // loop iteration J.
889 // Now, For the loop iterations to be consecutive:
890 // D = d * N
891 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
892 if (!ADR)
893 return false;
895 // Check that the first root is evenly spaced.
896 unsigned N = DRS.Roots.size() + 1;
897 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
898 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
899 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
900 return false;
902 // Check that the remainling roots are evenly spaced.
903 for (unsigned i = 1; i < N - 1; ++i) {
904 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
905 SE->getSCEV(DRS.Roots[i-1]));
906 if (NewStepSCEV != StepSCEV)
907 return false;
910 return true;
913 bool LoopReroll::DAGRootTracker::
914 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
915 // The base of a RootSet must be an AddRec, so it can be erased.
916 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
917 if (!IVU_ADR || IVU_ADR->getLoop() != L)
918 return false;
920 std::map<int64_t, Instruction*> V;
921 if (!collectPossibleRoots(IVU, V))
922 return false;
924 // If we didn't get a root for index zero, then IVU must be
925 // subsumed.
926 if (V.find(0) == V.end())
927 SubsumedInsts.insert(IVU);
929 // Partition the vector into monotonically increasing indexes.
930 DAGRootSet DRS;
931 DRS.BaseInst = nullptr;
933 SmallVector<DAGRootSet, 16> PotentialRootSets;
935 for (auto &KV : V) {
936 if (!DRS.BaseInst) {
937 DRS.BaseInst = KV.second;
938 DRS.SubsumedInsts = SubsumedInsts;
939 } else if (DRS.Roots.empty()) {
940 DRS.Roots.push_back(KV.second);
941 } else if (V.find(KV.first - 1) != V.end()) {
942 DRS.Roots.push_back(KV.second);
943 } else {
944 // Linear sequence terminated.
945 if (!validateRootSet(DRS))
946 return false;
948 // Construct a new DAGRootSet with the next sequence.
949 PotentialRootSets.push_back(DRS);
950 DRS.BaseInst = KV.second;
951 DRS.Roots.clear();
955 if (!validateRootSet(DRS))
956 return false;
958 PotentialRootSets.push_back(DRS);
960 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
962 return true;
965 bool LoopReroll::DAGRootTracker::findRoots() {
966 Inc = IVToIncMap[IV];
968 assert(RootSets.empty() && "Unclean state!");
969 if (std::abs(Inc) == 1) {
970 for (auto *IVU : IV->users()) {
971 if (isLoopIncrement(IVU, IV))
972 LoopIncs.push_back(cast<Instruction>(IVU));
974 findRootsRecursive(IV, SmallInstructionSet());
975 LoopIncs.push_back(IV);
976 } else {
977 if (!findRootsBase(IV, SmallInstructionSet()))
978 return false;
981 // Ensure all sets have the same size.
982 if (RootSets.empty()) {
983 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
984 return false;
986 for (auto &V : RootSets) {
987 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
988 LLVM_DEBUG(
989 dbgs()
990 << "LRR: Aborting because not all root sets have the same size\n");
991 return false;
995 Scale = RootSets[0].Roots.size() + 1;
997 if (Scale > IL_MaxRerollIterations) {
998 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
999 << "#Found=" << Scale
1000 << ", #Max=" << IL_MaxRerollIterations << "\n");
1001 return false;
1004 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1005 << "\n");
1007 return true;
1010 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1011 // Populate the MapVector with all instructions in the block, in order first,
1012 // so we can iterate over the contents later in perfect order.
1013 for (auto &I : *L->getHeader()) {
1014 Uses[&I].resize(IL_End);
1017 SmallInstructionSet Exclude;
1018 for (auto &DRS : RootSets) {
1019 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1020 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1021 Exclude.insert(DRS.BaseInst);
1023 Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1025 for (auto &DRS : RootSets) {
1026 DenseSet<Instruction*> VBase;
1027 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1028 for (auto *I : VBase) {
1029 Uses[I].set(0);
1032 unsigned Idx = 1;
1033 for (auto *Root : DRS.Roots) {
1034 DenseSet<Instruction*> V;
1035 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1037 // While we're here, check the use sets are the same size.
1038 if (V.size() != VBase.size()) {
1039 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1040 return false;
1043 for (auto *I : V) {
1044 Uses[I].set(Idx);
1046 ++Idx;
1049 // Make sure our subsumed instructions are remembered too.
1050 for (auto *I : DRS.SubsumedInsts) {
1051 Uses[I].set(IL_All);
1055 // Make sure the loop increments are also accounted for.
1057 Exclude.clear();
1058 for (auto &DRS : RootSets) {
1059 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1060 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1061 Exclude.insert(DRS.BaseInst);
1064 DenseSet<Instruction*> V;
1065 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1066 for (auto *I : V) {
1067 Uses[I].set(IL_All);
1070 return true;
1073 /// Get the next instruction in "In" that is a member of set Val.
1074 /// Start searching from StartI, and do not return anything in Exclude.
1075 /// If StartI is not given, start from In.begin().
1076 LoopReroll::DAGRootTracker::UsesTy::iterator
1077 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1078 const SmallInstructionSet &Exclude,
1079 UsesTy::iterator *StartI) {
1080 UsesTy::iterator I = StartI ? *StartI : In.begin();
1081 while (I != In.end() && (I->second.test(Val) == 0 ||
1082 Exclude.count(I->first) != 0))
1083 ++I;
1084 return I;
1087 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1088 for (auto &DRS : RootSets) {
1089 if (DRS.BaseInst == I)
1090 return true;
1092 return false;
1095 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1096 for (auto &DRS : RootSets) {
1097 if (is_contained(DRS.Roots, I))
1098 return true;
1100 return false;
1103 /// Return true if instruction I depends on any instruction between
1104 /// Start and End.
1105 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1106 UsesTy::iterator Start,
1107 UsesTy::iterator End) {
1108 for (auto *U : I->users()) {
1109 for (auto It = Start; It != End; ++It)
1110 if (U == It->first)
1111 return true;
1113 return false;
1116 static bool isIgnorableInst(const Instruction *I) {
1117 if (isa<DbgInfoIntrinsic>(I))
1118 return true;
1119 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1120 if (!II)
1121 return false;
1122 switch (II->getIntrinsicID()) {
1123 default:
1124 return false;
1125 case Intrinsic::annotation:
1126 case Intrinsic::ptr_annotation:
1127 case Intrinsic::var_annotation:
1128 // TODO: the following intrinsics may also be whitelisted:
1129 // lifetime_start, lifetime_end, invariant_start, invariant_end
1130 return true;
1132 return false;
1135 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1136 // We now need to check for equivalence of the use graph of each root with
1137 // that of the primary induction variable (excluding the roots). Our goal
1138 // here is not to solve the full graph isomorphism problem, but rather to
1139 // catch common cases without a lot of work. As a result, we will assume
1140 // that the relative order of the instructions in each unrolled iteration
1141 // is the same (although we will not make an assumption about how the
1142 // different iterations are intermixed). Note that while the order must be
1143 // the same, the instructions may not be in the same basic block.
1145 // An array of just the possible reductions for this scale factor. When we
1146 // collect the set of all users of some root instructions, these reduction
1147 // instructions are treated as 'final' (their uses are not considered).
1148 // This is important because we don't want the root use set to search down
1149 // the reduction chain.
1150 SmallInstructionSet PossibleRedSet;
1151 SmallInstructionSet PossibleRedLastSet;
1152 SmallInstructionSet PossibleRedPHISet;
1153 Reductions.restrictToScale(Scale, PossibleRedSet,
1154 PossibleRedPHISet, PossibleRedLastSet);
1156 // Populate "Uses" with where each instruction is used.
1157 if (!collectUsedInstructions(PossibleRedSet))
1158 return false;
1160 // Make sure we mark the reduction PHIs as used in all iterations.
1161 for (auto *I : PossibleRedPHISet) {
1162 Uses[I].set(IL_All);
1165 // Make sure we mark loop-control-only PHIs as used in all iterations. See
1166 // comment above LoopReroll::isLoopControlIV for more information.
1167 BasicBlock *Header = L->getHeader();
1168 if (LoopControlIV && LoopControlIV != IV) {
1169 for (auto *U : LoopControlIV->users()) {
1170 Instruction *IVUser = dyn_cast<Instruction>(U);
1171 // IVUser could be loop increment or compare
1172 Uses[IVUser].set(IL_All);
1173 for (auto *UU : IVUser->users()) {
1174 Instruction *UUser = dyn_cast<Instruction>(UU);
1175 // UUser could be compare, PHI or branch
1176 Uses[UUser].set(IL_All);
1177 // Skip SExt
1178 if (isa<SExtInst>(UUser)) {
1179 UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1180 Uses[UUser].set(IL_All);
1182 // Is UUser a compare instruction?
1183 if (UU->hasOneUse()) {
1184 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1185 if (BI == cast<BranchInst>(Header->getTerminator()))
1186 Uses[BI].set(IL_All);
1192 // Make sure all instructions in the loop are in one and only one
1193 // set.
1194 for (auto &KV : Uses) {
1195 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1196 LLVM_DEBUG(
1197 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1198 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1199 return false;
1203 LLVM_DEBUG(for (auto &KV
1204 : Uses) {
1205 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1208 for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1209 // In addition to regular aliasing information, we need to look for
1210 // instructions from later (future) iterations that have side effects
1211 // preventing us from reordering them past other instructions with side
1212 // effects.
1213 bool FutureSideEffects = false;
1214 AliasSetTracker AST(*AA);
1215 // The map between instructions in f(%iv.(i+1)) and f(%iv).
1216 DenseMap<Value *, Value *> BaseMap;
1218 // Compare iteration Iter to the base.
1219 SmallInstructionSet Visited;
1220 auto BaseIt = nextInstr(0, Uses, Visited);
1221 auto RootIt = nextInstr(Iter, Uses, Visited);
1222 auto LastRootIt = Uses.begin();
1224 while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1225 Instruction *BaseInst = BaseIt->first;
1226 Instruction *RootInst = RootIt->first;
1228 // Skip over the IV or root instructions; only match their users.
1229 bool Continue = false;
1230 if (isBaseInst(BaseInst)) {
1231 Visited.insert(BaseInst);
1232 BaseIt = nextInstr(0, Uses, Visited);
1233 Continue = true;
1235 if (isRootInst(RootInst)) {
1236 LastRootIt = RootIt;
1237 Visited.insert(RootInst);
1238 RootIt = nextInstr(Iter, Uses, Visited);
1239 Continue = true;
1241 if (Continue) continue;
1243 if (!BaseInst->isSameOperationAs(RootInst)) {
1244 // Last chance saloon. We don't try and solve the full isomorphism
1245 // problem, but try and at least catch the case where two instructions
1246 // *of different types* are round the wrong way. We won't be able to
1247 // efficiently tell, given two ADD instructions, which way around we
1248 // should match them, but given an ADD and a SUB, we can at least infer
1249 // which one is which.
1251 // This should allow us to deal with a greater subset of the isomorphism
1252 // problem. It does however change a linear algorithm into a quadratic
1253 // one, so limit the number of probes we do.
1254 auto TryIt = RootIt;
1255 unsigned N = NumToleratedFailedMatches;
1256 while (TryIt != Uses.end() &&
1257 !BaseInst->isSameOperationAs(TryIt->first) &&
1258 N--) {
1259 ++TryIt;
1260 TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1263 if (TryIt == Uses.end() || TryIt == RootIt ||
1264 instrDependsOn(TryIt->first, RootIt, TryIt)) {
1265 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1266 << *BaseInst << " vs. " << *RootInst << "\n");
1267 return false;
1270 RootIt = TryIt;
1271 RootInst = TryIt->first;
1274 // All instructions between the last root and this root
1275 // may belong to some other iteration. If they belong to a
1276 // future iteration, then they're dangerous to alias with.
1278 // Note that because we allow a limited amount of flexibility in the order
1279 // that we visit nodes, LastRootIt might be *before* RootIt, in which
1280 // case we've already checked this set of instructions so we shouldn't
1281 // do anything.
1282 for (; LastRootIt < RootIt; ++LastRootIt) {
1283 Instruction *I = LastRootIt->first;
1284 if (LastRootIt->second.find_first() < (int)Iter)
1285 continue;
1286 if (I->mayWriteToMemory())
1287 AST.add(I);
1288 // Note: This is specifically guarded by a check on isa<PHINode>,
1289 // which while a valid (somewhat arbitrary) micro-optimization, is
1290 // needed because otherwise isSafeToSpeculativelyExecute returns
1291 // false on PHI nodes.
1292 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1293 !isSafeToSpeculativelyExecute(I))
1294 // Intervening instructions cause side effects.
1295 FutureSideEffects = true;
1298 // Make sure that this instruction, which is in the use set of this
1299 // root instruction, does not also belong to the base set or the set of
1300 // some other root instruction.
1301 if (RootIt->second.count() > 1) {
1302 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1303 << " vs. " << *RootInst << " (prev. case overlap)\n");
1304 return false;
1307 // Make sure that we don't alias with any instruction in the alias set
1308 // tracker. If we do, then we depend on a future iteration, and we
1309 // can't reroll.
1310 if (RootInst->mayReadFromMemory())
1311 for (auto &K : AST) {
1312 if (K.aliasesUnknownInst(RootInst, *AA)) {
1313 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1314 << *BaseInst << " vs. " << *RootInst
1315 << " (depends on future store)\n");
1316 return false;
1320 // If we've past an instruction from a future iteration that may have
1321 // side effects, and this instruction might also, then we can't reorder
1322 // them, and this matching fails. As an exception, we allow the alias
1323 // set tracker to handle regular (unordered) load/store dependencies.
1324 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1325 !isSafeToSpeculativelyExecute(BaseInst)) ||
1326 (!isUnorderedLoadStore(RootInst) &&
1327 !isSafeToSpeculativelyExecute(RootInst)))) {
1328 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1329 << " vs. " << *RootInst
1330 << " (side effects prevent reordering)\n");
1331 return false;
1334 // For instructions that are part of a reduction, if the operation is
1335 // associative, then don't bother matching the operands (because we
1336 // already know that the instructions are isomorphic, and the order
1337 // within the iteration does not matter). For non-associative reductions,
1338 // we do need to match the operands, because we need to reject
1339 // out-of-order instructions within an iteration!
1340 // For example (assume floating-point addition), we need to reject this:
1341 // x += a[i]; x += b[i];
1342 // x += a[i+1]; x += b[i+1];
1343 // x += b[i+2]; x += a[i+2];
1344 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1346 if (!(InReduction && BaseInst->isAssociative())) {
1347 bool Swapped = false, SomeOpMatched = false;
1348 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1349 Value *Op2 = RootInst->getOperand(j);
1351 // If this is part of a reduction (and the operation is not
1352 // associatve), then we match all operands, but not those that are
1353 // part of the reduction.
1354 if (InReduction)
1355 if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1356 if (Reductions.isPairInSame(RootInst, Op2I))
1357 continue;
1359 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1360 if (BMI != BaseMap.end()) {
1361 Op2 = BMI->second;
1362 } else {
1363 for (auto &DRS : RootSets) {
1364 if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1365 Op2 = DRS.BaseInst;
1366 break;
1371 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1372 // If we've not already decided to swap the matched operands, and
1373 // we've not already matched our first operand (note that we could
1374 // have skipped matching the first operand because it is part of a
1375 // reduction above), and the instruction is commutative, then try
1376 // the swapped match.
1377 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1378 BaseInst->getOperand(!j) == Op2) {
1379 Swapped = true;
1380 } else {
1381 LLVM_DEBUG(dbgs()
1382 << "LRR: iteration root match failed at " << *BaseInst
1383 << " vs. " << *RootInst << " (operand " << j << ")\n");
1384 return false;
1388 SomeOpMatched = true;
1392 if ((!PossibleRedLastSet.count(BaseInst) &&
1393 hasUsesOutsideLoop(BaseInst, L)) ||
1394 (!PossibleRedLastSet.count(RootInst) &&
1395 hasUsesOutsideLoop(RootInst, L))) {
1396 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1397 << " vs. " << *RootInst << " (uses outside loop)\n");
1398 return false;
1401 Reductions.recordPair(BaseInst, RootInst, Iter);
1402 BaseMap.insert(std::make_pair(RootInst, BaseInst));
1404 LastRootIt = RootIt;
1405 Visited.insert(BaseInst);
1406 Visited.insert(RootInst);
1407 BaseIt = nextInstr(0, Uses, Visited);
1408 RootIt = nextInstr(Iter, Uses, Visited);
1410 assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1411 "Mismatched set sizes!");
1414 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1415 << "\n");
1417 return true;
1420 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1421 BasicBlock *Header = L->getHeader();
1423 // Compute the start and increment for each BaseInst before we start erasing
1424 // instructions.
1425 SmallVector<const SCEV *, 8> StartExprs;
1426 SmallVector<const SCEV *, 8> IncrExprs;
1427 for (auto &DRS : RootSets) {
1428 const SCEVAddRecExpr *IVSCEV =
1429 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1430 StartExprs.push_back(IVSCEV->getStart());
1431 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1434 // Remove instructions associated with non-base iterations.
1435 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1436 J != JE;) {
1437 unsigned I = Uses[&*J].find_first();
1438 if (I > 0 && I < IL_All) {
1439 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1440 J++->eraseFromParent();
1441 continue;
1444 ++J;
1447 // Rewrite each BaseInst using SCEV.
1448 for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1449 // Insert the new induction variable.
1450 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1452 { // Limit the lifetime of SCEVExpander.
1453 BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1454 const DataLayout &DL = Header->getModule()->getDataLayout();
1455 SCEVExpander Expander(*SE, DL, "reroll");
1456 auto Zero = SE->getZero(BackedgeTakenCount->getType());
1457 auto One = SE->getOne(BackedgeTakenCount->getType());
1458 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1459 Value *NewIV =
1460 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1461 Header->getFirstNonPHIOrDbg());
1462 // FIXME: This arithmetic can overflow.
1463 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1464 auto ScaledTripCount = SE->getMulExpr(
1465 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1466 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1467 Value *TakenCount =
1468 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1469 Header->getFirstNonPHIOrDbg());
1470 Value *Cond =
1471 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1472 BI->setCondition(Cond);
1474 if (BI->getSuccessor(1) != Header)
1475 BI->swapSuccessors();
1478 SimplifyInstructionsInBlock(Header, TLI);
1479 DeleteDeadPHIs(Header, TLI);
1482 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1483 const SCEV *Start,
1484 const SCEV *IncrExpr) {
1485 BasicBlock *Header = L->getHeader();
1486 Instruction *Inst = DRS.BaseInst;
1488 const SCEV *NewIVSCEV =
1489 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1491 { // Limit the lifetime of SCEVExpander.
1492 const DataLayout &DL = Header->getModule()->getDataLayout();
1493 SCEVExpander Expander(*SE, DL, "reroll");
1494 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1495 Header->getFirstNonPHIOrDbg());
1497 for (auto &KV : Uses)
1498 if (KV.second.find_first() == 0)
1499 KV.first->replaceUsesOfWith(Inst, NewIV);
1503 // Validate the selected reductions. All iterations must have an isomorphic
1504 // part of the reduction chain and, for non-associative reductions, the chain
1505 // entries must appear in order.
1506 bool LoopReroll::ReductionTracker::validateSelected() {
1507 // For a non-associative reduction, the chain entries must appear in order.
1508 for (int i : Reds) {
1509 int PrevIter = 0, BaseCount = 0, Count = 0;
1510 for (Instruction *J : PossibleReds[i]) {
1511 // Note that all instructions in the chain must have been found because
1512 // all instructions in the function must have been assigned to some
1513 // iteration.
1514 int Iter = PossibleRedIter[J];
1515 if (Iter != PrevIter && Iter != PrevIter + 1 &&
1516 !PossibleReds[i].getReducedValue()->isAssociative()) {
1517 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1518 << J << "\n");
1519 return false;
1522 if (Iter != PrevIter) {
1523 if (Count != BaseCount) {
1524 LLVM_DEBUG(dbgs()
1525 << "LRR: Iteration " << PrevIter << " reduction use count "
1526 << Count << " is not equal to the base use count "
1527 << BaseCount << "\n");
1528 return false;
1531 Count = 0;
1534 ++Count;
1535 if (Iter == 0)
1536 ++BaseCount;
1538 PrevIter = Iter;
1542 return true;
1545 // For all selected reductions, remove all parts except those in the first
1546 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1547 // of the first-iteration reduced value (in other words, reroll the selected
1548 // reductions).
1549 void LoopReroll::ReductionTracker::replaceSelected() {
1550 // Fixup reductions to refer to the last instruction associated with the
1551 // first iteration (not the last).
1552 for (int i : Reds) {
1553 int j = 0;
1554 for (int e = PossibleReds[i].size(); j != e; ++j)
1555 if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1556 --j;
1557 break;
1560 // Replace users with the new end-of-chain value.
1561 SmallInstructionVector Users;
1562 for (User *U : PossibleReds[i].getReducedValue()->users()) {
1563 Users.push_back(cast<Instruction>(U));
1566 for (Instruction *User : Users)
1567 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1568 PossibleReds[i][j]);
1572 // Reroll the provided loop with respect to the provided induction variable.
1573 // Generally, we're looking for a loop like this:
1575 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1576 // f(%iv)
1577 // %iv.1 = add %iv, 1 <-- a root increment
1578 // f(%iv.1)
1579 // %iv.2 = add %iv, 2 <-- a root increment
1580 // f(%iv.2)
1581 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
1582 // f(%iv.scale_m_1)
1583 // ...
1584 // %iv.next = add %iv, scale
1585 // %cmp = icmp(%iv, ...)
1586 // br %cmp, header, exit
1588 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1589 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1590 // be intermixed with eachother. The restriction imposed by this algorithm is
1591 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1592 // etc. be the same.
1594 // First, we collect the use set of %iv, excluding the other increment roots.
1595 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1596 // times, having collected the use set of f(%iv.(i+1)), during which we:
1597 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1598 // the next unmatched instruction in f(%iv.(i+1)).
1599 // - Ensure that both matched instructions don't have any external users
1600 // (with the exception of last-in-chain reduction instructions).
1601 // - Track the (aliasing) write set, and other side effects, of all
1602 // instructions that belong to future iterations that come before the matched
1603 // instructions. If the matched instructions read from that write set, then
1604 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1605 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1606 // if any of these future instructions had side effects (could not be
1607 // speculatively executed), and so do the matched instructions, when we
1608 // cannot reorder those side-effect-producing instructions, and rerolling
1609 // fails.
1611 // Finally, we make sure that all loop instructions are either loop increment
1612 // roots, belong to simple latch code, parts of validated reductions, part of
1613 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1614 // have been validated), then we reroll the loop.
1615 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1616 const SCEV *BackedgeTakenCount,
1617 ReductionTracker &Reductions) {
1618 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1619 IVToIncMap, LoopControlIV);
1621 if (!DAGRoots.findRoots())
1622 return false;
1623 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1624 << "\n");
1626 if (!DAGRoots.validate(Reductions))
1627 return false;
1628 if (!Reductions.validateSelected())
1629 return false;
1630 // At this point, we've validated the rerolling, and we're committed to
1631 // making changes!
1633 Reductions.replaceSelected();
1634 DAGRoots.replace(BackedgeTakenCount);
1636 ++NumRerolledLoops;
1637 return true;
1640 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1641 if (skipLoop(L))
1642 return false;
1644 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1645 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1646 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1647 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1648 *L->getHeader()->getParent());
1649 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1650 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1652 BasicBlock *Header = L->getHeader();
1653 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1654 << Header->getName() << " (" << L->getNumBlocks()
1655 << " block(s))\n");
1657 // For now, we'll handle only single BB loops.
1658 if (L->getNumBlocks() > 1)
1659 return false;
1661 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1662 return false;
1664 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1665 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1666 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1667 << "\n");
1669 // First, we need to find the induction variable with respect to which we can
1670 // reroll (there may be several possible options).
1671 SmallInstructionVector PossibleIVs;
1672 IVToIncMap.clear();
1673 LoopControlIV = nullptr;
1674 collectPossibleIVs(L, PossibleIVs);
1676 if (PossibleIVs.empty()) {
1677 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1678 return false;
1681 ReductionTracker Reductions;
1682 collectPossibleReductions(L, Reductions);
1683 bool Changed = false;
1685 // For each possible IV, collect the associated possible set of 'root' nodes
1686 // (i+1, i+2, etc.).
1687 for (Instruction *PossibleIV : PossibleIVs)
1688 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1689 Changed = true;
1690 break;
1692 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1694 // Trip count of L has changed so SE must be re-evaluated.
1695 if (Changed)
1696 SE->forgetLoop(L);
1698 return Changed;