[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
blob6e20ef21d9c956aa4f7a4ab58775a2d7d87e82e3
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "basicblock-utils"
54 void llvm::DetatchDeadBlocks(
55 ArrayRef<BasicBlock *> BBs,
56 SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57 bool KeepOneInputPHIs) {
58 for (auto *BB : BBs) {
59 // Loop through all of our successors and make sure they know that one
60 // of their predecessors is going away.
61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62 for (BasicBlock *Succ : successors(BB)) {
63 Succ->removePredecessor(BB, KeepOneInputPHIs);
64 if (Updates && UniqueSuccessors.insert(Succ).second)
65 Updates->push_back({DominatorTree::Delete, BB, Succ});
68 // Zap all the instructions in the block.
69 while (!BB->empty()) {
70 Instruction &I = BB->back();
71 // If this instruction is used, replace uses with an arbitrary value.
72 // Because control flow can't get here, we don't care what we replace the
73 // value with. Note that since this block is unreachable, and all values
74 // contained within it must dominate their uses, that all uses will
75 // eventually be removed (they are themselves dead).
76 if (!I.use_empty())
77 I.replaceAllUsesWith(UndefValue::get(I.getType()));
78 BB->getInstList().pop_back();
80 new UnreachableInst(BB->getContext(), BB);
81 assert(BB->getInstList().size() == 1 &&
82 isa<UnreachableInst>(BB->getTerminator()) &&
83 "The successor list of BB isn't empty before "
84 "applying corresponding DTU updates.");
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89 bool KeepOneInputPHIs) {
90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94 bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96 // Make sure that all predecessors of each dead block is also dead.
97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99 for (auto *BB : Dead)
100 for (BasicBlock *Pred : predecessors(BB))
101 assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
104 SmallVector<DominatorTree::UpdateType, 4> Updates;
105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
107 if (DTU)
108 DTU->applyUpdatesPermissive(Updates);
110 for (BasicBlock *BB : BBs)
111 if (DTU)
112 DTU->deleteBB(BB);
113 else
114 BB->eraseFromParent();
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118 bool KeepOneInputPHIs) {
119 df_iterator_default_set<BasicBlock*> Reachable;
121 // Mark all reachable blocks.
122 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123 (void)BB/* Mark all reachable blocks */;
125 // Collect all dead blocks.
126 std::vector<BasicBlock*> DeadBlocks;
127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128 if (!Reachable.count(&*I)) {
129 BasicBlock *BB = &*I;
130 DeadBlocks.push_back(BB);
133 // Delete the dead blocks.
134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
136 return !DeadBlocks.empty();
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140 MemoryDependenceResults *MemDep) {
141 if (!isa<PHINode>(BB->begin())) return;
143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144 if (PN->getIncomingValue(0) != PN)
145 PN->replaceAllUsesWith(PN->getIncomingValue(0));
146 else
147 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
149 if (MemDep)
150 MemDep->removeInstruction(PN); // Memdep updates AA itself.
152 PN->eraseFromParent();
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157 // Recursively deleting a PHI may cause multiple PHIs to be deleted
158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159 SmallVector<WeakTrackingVH, 8> PHIs;
160 for (PHINode &PN : BB->phis())
161 PHIs.push_back(&PN);
163 bool Changed = false;
164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
168 return Changed;
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172 LoopInfo *LI, MemorySSAUpdater *MSSAU,
173 MemoryDependenceResults *MemDep) {
174 if (BB->hasAddressTaken())
175 return false;
177 // Can't merge if there are multiple predecessors, or no predecessors.
178 BasicBlock *PredBB = BB->getUniquePredecessor();
179 if (!PredBB) return false;
181 // Don't break self-loops.
182 if (PredBB == BB) return false;
183 // Don't break unwinding instructions.
184 if (PredBB->getTerminator()->isExceptionalTerminator())
185 return false;
187 // Can't merge if there are multiple distinct successors.
188 if (PredBB->getUniqueSuccessor() != BB)
189 return false;
191 // Can't merge if there is PHI loop.
192 for (PHINode &PN : BB->phis())
193 for (Value *IncValue : PN.incoming_values())
194 if (IncValue == &PN)
195 return false;
197 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
198 << PredBB->getName() << "\n");
200 // Begin by getting rid of unneeded PHIs.
201 SmallVector<AssertingVH<Value>, 4> IncomingValues;
202 if (isa<PHINode>(BB->front())) {
203 for (PHINode &PN : BB->phis())
204 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
205 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
206 IncomingValues.push_back(PN.getIncomingValue(0));
207 FoldSingleEntryPHINodes(BB, MemDep);
210 // DTU update: Collect all the edges that exit BB.
211 // These dominator edges will be redirected from Pred.
212 std::vector<DominatorTree::UpdateType> Updates;
213 if (DTU) {
214 Updates.reserve(1 + (2 * succ_size(BB)));
215 // Add insert edges first. Experimentally, for the particular case of two
216 // blocks that can be merged, with a single successor and single predecessor
217 // respectively, it is beneficial to have all insert updates first. Deleting
218 // edges first may lead to unreachable blocks, followed by inserting edges
219 // making the blocks reachable again. Such DT updates lead to high compile
220 // times. We add inserts before deletes here to reduce compile time.
221 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
222 // This successor of BB may already have PredBB as a predecessor.
223 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
224 Updates.push_back({DominatorTree::Insert, PredBB, *I});
225 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
226 Updates.push_back({DominatorTree::Delete, BB, *I});
227 Updates.push_back({DominatorTree::Delete, PredBB, BB});
230 if (MSSAU)
231 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
233 // Delete the unconditional branch from the predecessor...
234 PredBB->getInstList().pop_back();
236 // Make all PHI nodes that referred to BB now refer to Pred as their
237 // source...
238 BB->replaceAllUsesWith(PredBB);
240 // Move all definitions in the successor to the predecessor...
241 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
242 new UnreachableInst(BB->getContext(), BB);
244 // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
245 for (auto Incoming : IncomingValues) {
246 if (isa<Instruction>(*Incoming)) {
247 SmallVector<DbgValueInst *, 2> DbgValues;
248 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
249 DbgValueSet;
250 llvm::findDbgValues(DbgValues, Incoming);
251 for (auto &DVI : DbgValues) {
252 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
253 if (!R.second)
254 DVI->eraseFromParent();
259 // Inherit predecessors name if it exists.
260 if (!PredBB->hasName())
261 PredBB->takeName(BB);
263 if (LI)
264 LI->removeBlock(BB);
266 if (MemDep)
267 MemDep->invalidateCachedPredecessors();
269 // Finally, erase the old block and update dominator info.
270 if (DTU) {
271 assert(BB->getInstList().size() == 1 &&
272 isa<UnreachableInst>(BB->getTerminator()) &&
273 "The successor list of BB isn't empty before "
274 "applying corresponding DTU updates.");
275 DTU->applyUpdatesPermissive(Updates);
276 DTU->deleteBB(BB);
279 else {
280 BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
282 return true;
285 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
286 BasicBlock::iterator &BI, Value *V) {
287 Instruction &I = *BI;
288 // Replaces all of the uses of the instruction with uses of the value
289 I.replaceAllUsesWith(V);
291 // Make sure to propagate a name if there is one already.
292 if (I.hasName() && !V->hasName())
293 V->takeName(&I);
295 // Delete the unnecessary instruction now...
296 BI = BIL.erase(BI);
299 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
300 BasicBlock::iterator &BI, Instruction *I) {
301 assert(I->getParent() == nullptr &&
302 "ReplaceInstWithInst: Instruction already inserted into basic block!");
304 // Copy debug location to newly added instruction, if it wasn't already set
305 // by the caller.
306 if (!I->getDebugLoc())
307 I->setDebugLoc(BI->getDebugLoc());
309 // Insert the new instruction into the basic block...
310 BasicBlock::iterator New = BIL.insert(BI, I);
312 // Replace all uses of the old instruction, and delete it.
313 ReplaceInstWithValue(BIL, BI, I);
315 // Move BI back to point to the newly inserted instruction
316 BI = New;
319 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
320 BasicBlock::iterator BI(From);
321 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
324 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
325 LoopInfo *LI, MemorySSAUpdater *MSSAU) {
326 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
328 // If this is a critical edge, let SplitCriticalEdge do it.
329 Instruction *LatchTerm = BB->getTerminator();
330 if (SplitCriticalEdge(
331 LatchTerm, SuccNum,
332 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
333 return LatchTerm->getSuccessor(SuccNum);
335 // If the edge isn't critical, then BB has a single successor or Succ has a
336 // single pred. Split the block.
337 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
338 // If the successor only has a single pred, split the top of the successor
339 // block.
340 assert(SP == BB && "CFG broken");
341 SP = nullptr;
342 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
345 // Otherwise, if BB has a single successor, split it at the bottom of the
346 // block.
347 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
348 "Should have a single succ!");
349 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
352 unsigned
353 llvm::SplitAllCriticalEdges(Function &F,
354 const CriticalEdgeSplittingOptions &Options) {
355 unsigned NumBroken = 0;
356 for (BasicBlock &BB : F) {
357 Instruction *TI = BB.getTerminator();
358 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
359 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
360 if (SplitCriticalEdge(TI, i, Options))
361 ++NumBroken;
363 return NumBroken;
366 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
367 DominatorTree *DT, LoopInfo *LI,
368 MemorySSAUpdater *MSSAU, const Twine &BBName) {
369 BasicBlock::iterator SplitIt = SplitPt->getIterator();
370 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
371 ++SplitIt;
372 std::string Name = BBName.str();
373 BasicBlock *New = Old->splitBasicBlock(
374 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
376 // The new block lives in whichever loop the old one did. This preserves
377 // LCSSA as well, because we force the split point to be after any PHI nodes.
378 if (LI)
379 if (Loop *L = LI->getLoopFor(Old))
380 L->addBasicBlockToLoop(New, *LI);
382 if (DT)
383 // Old dominates New. New node dominates all other nodes dominated by Old.
384 if (DomTreeNode *OldNode = DT->getNode(Old)) {
385 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
387 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
388 for (DomTreeNode *I : Children)
389 DT->changeImmediateDominator(I, NewNode);
392 // Move MemoryAccesses still tracked in Old, but part of New now.
393 // Update accesses in successor blocks accordingly.
394 if (MSSAU)
395 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
397 return New;
400 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
401 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
402 ArrayRef<BasicBlock *> Preds,
403 DominatorTree *DT, LoopInfo *LI,
404 MemorySSAUpdater *MSSAU,
405 bool PreserveLCSSA, bool &HasLoopExit) {
406 // Update dominator tree if available.
407 if (DT) {
408 if (OldBB == DT->getRootNode()->getBlock()) {
409 assert(NewBB == &NewBB->getParent()->getEntryBlock());
410 DT->setNewRoot(NewBB);
411 } else {
412 // Split block expects NewBB to have a non-empty set of predecessors.
413 DT->splitBlock(NewBB);
417 // Update MemoryPhis after split if MemorySSA is available
418 if (MSSAU)
419 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
421 // The rest of the logic is only relevant for updating the loop structures.
422 if (!LI)
423 return;
425 assert(DT && "DT should be available to update LoopInfo!");
426 Loop *L = LI->getLoopFor(OldBB);
428 // If we need to preserve loop analyses, collect some information about how
429 // this split will affect loops.
430 bool IsLoopEntry = !!L;
431 bool SplitMakesNewLoopHeader = false;
432 for (BasicBlock *Pred : Preds) {
433 // Preds that are not reachable from entry should not be used to identify if
434 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
435 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
436 // as true and make the NewBB the header of some loop. This breaks LI.
437 if (!DT->isReachableFromEntry(Pred))
438 continue;
439 // If we need to preserve LCSSA, determine if any of the preds is a loop
440 // exit.
441 if (PreserveLCSSA)
442 if (Loop *PL = LI->getLoopFor(Pred))
443 if (!PL->contains(OldBB))
444 HasLoopExit = true;
446 // If we need to preserve LoopInfo, note whether any of the preds crosses
447 // an interesting loop boundary.
448 if (!L)
449 continue;
450 if (L->contains(Pred))
451 IsLoopEntry = false;
452 else
453 SplitMakesNewLoopHeader = true;
456 // Unless we have a loop for OldBB, nothing else to do here.
457 if (!L)
458 return;
460 if (IsLoopEntry) {
461 // Add the new block to the nearest enclosing loop (and not an adjacent
462 // loop). To find this, examine each of the predecessors and determine which
463 // loops enclose them, and select the most-nested loop which contains the
464 // loop containing the block being split.
465 Loop *InnermostPredLoop = nullptr;
466 for (BasicBlock *Pred : Preds) {
467 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
468 // Seek a loop which actually contains the block being split (to avoid
469 // adjacent loops).
470 while (PredLoop && !PredLoop->contains(OldBB))
471 PredLoop = PredLoop->getParentLoop();
473 // Select the most-nested of these loops which contains the block.
474 if (PredLoop && PredLoop->contains(OldBB) &&
475 (!InnermostPredLoop ||
476 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
477 InnermostPredLoop = PredLoop;
481 if (InnermostPredLoop)
482 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
483 } else {
484 L->addBasicBlockToLoop(NewBB, *LI);
485 if (SplitMakesNewLoopHeader)
486 L->moveToHeader(NewBB);
490 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
491 /// This also updates AliasAnalysis, if available.
492 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
493 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
494 bool HasLoopExit) {
495 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
496 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
497 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
498 PHINode *PN = cast<PHINode>(I++);
500 // Check to see if all of the values coming in are the same. If so, we
501 // don't need to create a new PHI node, unless it's needed for LCSSA.
502 Value *InVal = nullptr;
503 if (!HasLoopExit) {
504 InVal = PN->getIncomingValueForBlock(Preds[0]);
505 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
506 if (!PredSet.count(PN->getIncomingBlock(i)))
507 continue;
508 if (!InVal)
509 InVal = PN->getIncomingValue(i);
510 else if (InVal != PN->getIncomingValue(i)) {
511 InVal = nullptr;
512 break;
517 if (InVal) {
518 // If all incoming values for the new PHI would be the same, just don't
519 // make a new PHI. Instead, just remove the incoming values from the old
520 // PHI.
522 // NOTE! This loop walks backwards for a reason! First off, this minimizes
523 // the cost of removal if we end up removing a large number of values, and
524 // second off, this ensures that the indices for the incoming values
525 // aren't invalidated when we remove one.
526 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
527 if (PredSet.count(PN->getIncomingBlock(i)))
528 PN->removeIncomingValue(i, false);
530 // Add an incoming value to the PHI node in the loop for the preheader
531 // edge.
532 PN->addIncoming(InVal, NewBB);
533 continue;
536 // If the values coming into the block are not the same, we need a new
537 // PHI.
538 // Create the new PHI node, insert it into NewBB at the end of the block
539 PHINode *NewPHI =
540 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
542 // NOTE! This loop walks backwards for a reason! First off, this minimizes
543 // the cost of removal if we end up removing a large number of values, and
544 // second off, this ensures that the indices for the incoming values aren't
545 // invalidated when we remove one.
546 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
547 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
548 if (PredSet.count(IncomingBB)) {
549 Value *V = PN->removeIncomingValue(i, false);
550 NewPHI->addIncoming(V, IncomingBB);
554 PN->addIncoming(NewPHI, NewBB);
558 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
559 ArrayRef<BasicBlock *> Preds,
560 const char *Suffix, DominatorTree *DT,
561 LoopInfo *LI, MemorySSAUpdater *MSSAU,
562 bool PreserveLCSSA) {
563 // Do not attempt to split that which cannot be split.
564 if (!BB->canSplitPredecessors())
565 return nullptr;
567 // For the landingpads we need to act a bit differently.
568 // Delegate this work to the SplitLandingPadPredecessors.
569 if (BB->isLandingPad()) {
570 SmallVector<BasicBlock*, 2> NewBBs;
571 std::string NewName = std::string(Suffix) + ".split-lp";
573 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
574 LI, MSSAU, PreserveLCSSA);
575 return NewBBs[0];
578 // Create new basic block, insert right before the original block.
579 BasicBlock *NewBB = BasicBlock::Create(
580 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
582 // The new block unconditionally branches to the old block.
583 BranchInst *BI = BranchInst::Create(BB, NewBB);
584 // Splitting the predecessors of a loop header creates a preheader block.
585 if (LI && LI->isLoopHeader(BB))
586 // Using the loop start line number prevents debuggers stepping into the
587 // loop body for this instruction.
588 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
589 else
590 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
592 // Move the edges from Preds to point to NewBB instead of BB.
593 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
594 // This is slightly more strict than necessary; the minimum requirement
595 // is that there be no more than one indirectbr branching to BB. And
596 // all BlockAddress uses would need to be updated.
597 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
598 "Cannot split an edge from an IndirectBrInst");
599 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
600 "Cannot split an edge from a CallBrInst");
601 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
604 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
605 // node becomes an incoming value for BB's phi node. However, if the Preds
606 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
607 // account for the newly created predecessor.
608 if (Preds.empty()) {
609 // Insert dummy values as the incoming value.
610 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
611 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
614 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
615 bool HasLoopExit = false;
616 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
617 HasLoopExit);
619 if (!Preds.empty()) {
620 // Update the PHI nodes in BB with the values coming from NewBB.
621 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
624 return NewBB;
627 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
628 ArrayRef<BasicBlock *> Preds,
629 const char *Suffix1, const char *Suffix2,
630 SmallVectorImpl<BasicBlock *> &NewBBs,
631 DominatorTree *DT, LoopInfo *LI,
632 MemorySSAUpdater *MSSAU,
633 bool PreserveLCSSA) {
634 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
636 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
637 // it right before the original block.
638 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
639 OrigBB->getName() + Suffix1,
640 OrigBB->getParent(), OrigBB);
641 NewBBs.push_back(NewBB1);
643 // The new block unconditionally branches to the old block.
644 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
645 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
647 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
648 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
649 // This is slightly more strict than necessary; the minimum requirement
650 // is that there be no more than one indirectbr branching to BB. And
651 // all BlockAddress uses would need to be updated.
652 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
653 "Cannot split an edge from an IndirectBrInst");
654 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
657 bool HasLoopExit = false;
658 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
659 HasLoopExit);
661 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
662 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
664 // Move the remaining edges from OrigBB to point to NewBB2.
665 SmallVector<BasicBlock*, 8> NewBB2Preds;
666 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
667 i != e; ) {
668 BasicBlock *Pred = *i++;
669 if (Pred == NewBB1) continue;
670 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
671 "Cannot split an edge from an IndirectBrInst");
672 NewBB2Preds.push_back(Pred);
673 e = pred_end(OrigBB);
676 BasicBlock *NewBB2 = nullptr;
677 if (!NewBB2Preds.empty()) {
678 // Create another basic block for the rest of OrigBB's predecessors.
679 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
680 OrigBB->getName() + Suffix2,
681 OrigBB->getParent(), OrigBB);
682 NewBBs.push_back(NewBB2);
684 // The new block unconditionally branches to the old block.
685 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
686 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
688 // Move the remaining edges from OrigBB to point to NewBB2.
689 for (BasicBlock *NewBB2Pred : NewBB2Preds)
690 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
692 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
693 HasLoopExit = false;
694 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
695 PreserveLCSSA, HasLoopExit);
697 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
698 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
701 LandingPadInst *LPad = OrigBB->getLandingPadInst();
702 Instruction *Clone1 = LPad->clone();
703 Clone1->setName(Twine("lpad") + Suffix1);
704 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
706 if (NewBB2) {
707 Instruction *Clone2 = LPad->clone();
708 Clone2->setName(Twine("lpad") + Suffix2);
709 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
711 // Create a PHI node for the two cloned landingpad instructions only
712 // if the original landingpad instruction has some uses.
713 if (!LPad->use_empty()) {
714 assert(!LPad->getType()->isTokenTy() &&
715 "Split cannot be applied if LPad is token type. Otherwise an "
716 "invalid PHINode of token type would be created.");
717 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
718 PN->addIncoming(Clone1, NewBB1);
719 PN->addIncoming(Clone2, NewBB2);
720 LPad->replaceAllUsesWith(PN);
722 LPad->eraseFromParent();
723 } else {
724 // There is no second clone. Just replace the landing pad with the first
725 // clone.
726 LPad->replaceAllUsesWith(Clone1);
727 LPad->eraseFromParent();
731 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
732 BasicBlock *Pred,
733 DomTreeUpdater *DTU) {
734 Instruction *UncondBranch = Pred->getTerminator();
735 // Clone the return and add it to the end of the predecessor.
736 Instruction *NewRet = RI->clone();
737 Pred->getInstList().push_back(NewRet);
739 // If the return instruction returns a value, and if the value was a
740 // PHI node in "BB", propagate the right value into the return.
741 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
742 i != e; ++i) {
743 Value *V = *i;
744 Instruction *NewBC = nullptr;
745 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
746 // Return value might be bitcasted. Clone and insert it before the
747 // return instruction.
748 V = BCI->getOperand(0);
749 NewBC = BCI->clone();
750 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
751 *i = NewBC;
753 if (PHINode *PN = dyn_cast<PHINode>(V)) {
754 if (PN->getParent() == BB) {
755 if (NewBC)
756 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
757 else
758 *i = PN->getIncomingValueForBlock(Pred);
763 // Update any PHI nodes in the returning block to realize that we no
764 // longer branch to them.
765 BB->removePredecessor(Pred);
766 UncondBranch->eraseFromParent();
768 if (DTU)
769 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
771 return cast<ReturnInst>(NewRet);
774 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
775 Instruction *SplitBefore,
776 bool Unreachable,
777 MDNode *BranchWeights,
778 DominatorTree *DT, LoopInfo *LI,
779 BasicBlock *ThenBlock) {
780 BasicBlock *Head = SplitBefore->getParent();
781 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
782 Instruction *HeadOldTerm = Head->getTerminator();
783 LLVMContext &C = Head->getContext();
784 Instruction *CheckTerm;
785 bool CreateThenBlock = (ThenBlock == nullptr);
786 if (CreateThenBlock) {
787 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
788 if (Unreachable)
789 CheckTerm = new UnreachableInst(C, ThenBlock);
790 else
791 CheckTerm = BranchInst::Create(Tail, ThenBlock);
792 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
793 } else
794 CheckTerm = ThenBlock->getTerminator();
795 BranchInst *HeadNewTerm =
796 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
797 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
798 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
800 if (DT) {
801 if (DomTreeNode *OldNode = DT->getNode(Head)) {
802 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
804 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
805 for (DomTreeNode *Child : Children)
806 DT->changeImmediateDominator(Child, NewNode);
808 // Head dominates ThenBlock.
809 if (CreateThenBlock)
810 DT->addNewBlock(ThenBlock, Head);
811 else
812 DT->changeImmediateDominator(ThenBlock, Head);
816 if (LI) {
817 if (Loop *L = LI->getLoopFor(Head)) {
818 L->addBasicBlockToLoop(ThenBlock, *LI);
819 L->addBasicBlockToLoop(Tail, *LI);
823 return CheckTerm;
826 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
827 Instruction **ThenTerm,
828 Instruction **ElseTerm,
829 MDNode *BranchWeights) {
830 BasicBlock *Head = SplitBefore->getParent();
831 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
832 Instruction *HeadOldTerm = Head->getTerminator();
833 LLVMContext &C = Head->getContext();
834 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
835 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
836 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
837 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
838 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
839 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
840 BranchInst *HeadNewTerm =
841 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
842 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
843 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
846 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
847 BasicBlock *&IfFalse) {
848 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
849 BasicBlock *Pred1 = nullptr;
850 BasicBlock *Pred2 = nullptr;
852 if (SomePHI) {
853 if (SomePHI->getNumIncomingValues() != 2)
854 return nullptr;
855 Pred1 = SomePHI->getIncomingBlock(0);
856 Pred2 = SomePHI->getIncomingBlock(1);
857 } else {
858 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
859 if (PI == PE) // No predecessor
860 return nullptr;
861 Pred1 = *PI++;
862 if (PI == PE) // Only one predecessor
863 return nullptr;
864 Pred2 = *PI++;
865 if (PI != PE) // More than two predecessors
866 return nullptr;
869 // We can only handle branches. Other control flow will be lowered to
870 // branches if possible anyway.
871 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
872 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
873 if (!Pred1Br || !Pred2Br)
874 return nullptr;
876 // Eliminate code duplication by ensuring that Pred1Br is conditional if
877 // either are.
878 if (Pred2Br->isConditional()) {
879 // If both branches are conditional, we don't have an "if statement". In
880 // reality, we could transform this case, but since the condition will be
881 // required anyway, we stand no chance of eliminating it, so the xform is
882 // probably not profitable.
883 if (Pred1Br->isConditional())
884 return nullptr;
886 std::swap(Pred1, Pred2);
887 std::swap(Pred1Br, Pred2Br);
890 if (Pred1Br->isConditional()) {
891 // The only thing we have to watch out for here is to make sure that Pred2
892 // doesn't have incoming edges from other blocks. If it does, the condition
893 // doesn't dominate BB.
894 if (!Pred2->getSinglePredecessor())
895 return nullptr;
897 // If we found a conditional branch predecessor, make sure that it branches
898 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
899 if (Pred1Br->getSuccessor(0) == BB &&
900 Pred1Br->getSuccessor(1) == Pred2) {
901 IfTrue = Pred1;
902 IfFalse = Pred2;
903 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
904 Pred1Br->getSuccessor(1) == BB) {
905 IfTrue = Pred2;
906 IfFalse = Pred1;
907 } else {
908 // We know that one arm of the conditional goes to BB, so the other must
909 // go somewhere unrelated, and this must not be an "if statement".
910 return nullptr;
913 return Pred1Br->getCondition();
916 // Ok, if we got here, both predecessors end with an unconditional branch to
917 // BB. Don't panic! If both blocks only have a single (identical)
918 // predecessor, and THAT is a conditional branch, then we're all ok!
919 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
920 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
921 return nullptr;
923 // Otherwise, if this is a conditional branch, then we can use it!
924 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
925 if (!BI) return nullptr;
927 assert(BI->isConditional() && "Two successors but not conditional?");
928 if (BI->getSuccessor(0) == Pred1) {
929 IfTrue = Pred1;
930 IfFalse = Pred2;
931 } else {
932 IfTrue = Pred2;
933 IfFalse = Pred1;
935 return BI->getCondition();