[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / lib / Transforms / Utils / CodeExtractor.cpp
blobfa6d3f8ae8738042f4414a3e02c9277a64026d71
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
74 #define DEBUG_TYPE "code-extractor"
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82 cl::desc("Aggregate arguments to code-extracted functions"));
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86 const SetVector<BasicBlock *> &Result,
87 bool AllowVarArgs, bool AllowAlloca) {
88 // taking the address of a basic block moved to another function is illegal
89 if (BB.hasAddressTaken())
90 return false;
92 // don't hoist code that uses another basicblock address, as it's likely to
93 // lead to unexpected behavior, like cross-function jumps
94 SmallPtrSet<User const *, 16> Visited;
95 SmallVector<User const *, 16> ToVisit;
97 for (Instruction const &Inst : BB)
98 ToVisit.push_back(&Inst);
100 while (!ToVisit.empty()) {
101 User const *Curr = ToVisit.pop_back_val();
102 if (!Visited.insert(Curr).second)
103 continue;
104 if (isa<BlockAddress const>(Curr))
105 return false; // even a reference to self is likely to be not compatible
107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108 continue;
110 for (auto const &U : Curr->operands()) {
111 if (auto *UU = dyn_cast<User>(U))
112 ToVisit.push_back(UU);
116 // If explicitly requested, allow vastart and alloca. For invoke instructions
117 // verify that extraction is valid.
118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119 if (isa<AllocaInst>(I)) {
120 if (!AllowAlloca)
121 return false;
122 continue;
125 if (const auto *II = dyn_cast<InvokeInst>(I)) {
126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127 // must be a part of the subgraph which is being extracted.
128 if (auto *UBB = II->getUnwindDest())
129 if (!Result.count(UBB))
130 return false;
131 continue;
134 // All catch handlers of a catchswitch instruction as well as the unwind
135 // destination must be in the subgraph.
136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137 if (auto *UBB = CSI->getUnwindDest())
138 if (!Result.count(UBB))
139 return false;
140 for (auto *HBB : CSI->handlers())
141 if (!Result.count(const_cast<BasicBlock*>(HBB)))
142 return false;
143 continue;
146 // Make sure that entire catch handler is within subgraph. It is sufficient
147 // to check that catch return's block is in the list.
148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149 for (const auto *U : CPI->users())
150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152 return false;
153 continue;
156 // And do similar checks for cleanup handler - the entire handler must be
157 // in subgraph which is going to be extracted. For cleanup return should
158 // additionally check that the unwind destination is also in the subgraph.
159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160 for (const auto *U : CPI->users())
161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163 return false;
164 continue;
166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167 if (auto *UBB = CRI->getUnwindDest())
168 if (!Result.count(UBB))
169 return false;
170 continue;
173 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174 if (const Function *F = CI->getCalledFunction()) {
175 auto IID = F->getIntrinsicID();
176 if (IID == Intrinsic::vastart) {
177 if (AllowVarArgs)
178 continue;
179 else
180 return false;
183 // Currently, we miscompile outlined copies of eh_typid_for. There are
184 // proposals for fixing this in llvm.org/PR39545.
185 if (IID == Intrinsic::eh_typeid_for)
186 return false;
191 return true;
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197 bool AllowVarArgs, bool AllowAlloca) {
198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199 SetVector<BasicBlock *> Result;
201 // Loop over the blocks, adding them to our set-vector, and aborting with an
202 // empty set if we encounter invalid blocks.
203 for (BasicBlock *BB : BBs) {
204 // If this block is dead, don't process it.
205 if (DT && !DT->isReachableFromEntry(BB))
206 continue;
208 if (!Result.insert(BB))
209 llvm_unreachable("Repeated basic blocks in extraction input");
212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213 << '\n');
215 for (auto *BB : Result) {
216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217 return {};
219 // Make sure that the first block is not a landing pad.
220 if (BB == Result.front()) {
221 if (BB->isEHPad()) {
222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223 return {};
225 continue;
228 // All blocks other than the first must not have predecessors outside of
229 // the subgraph which is being extracted.
230 for (auto *PBB : predecessors(BB))
231 if (!Result.count(PBB)) {
232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233 "outside the region except for the first block!\n"
234 << "Problematic source BB: " << BB->getName() << "\n"
235 << "Problematic destination BB: " << PBB->getName()
236 << "\n");
237 return {};
241 return Result;
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245 bool AggregateArgs, BlockFrequencyInfo *BFI,
246 BranchProbabilityInfo *BPI, AssumptionCache *AC,
247 bool AllowVarArgs, bool AllowAlloca,
248 std::string Suffix)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252 Suffix(Suffix) {}
254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255 BlockFrequencyInfo *BFI,
256 BranchProbabilityInfo *BPI, AssumptionCache *AC,
257 std::string Suffix)
258 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259 BPI(BPI), AC(AC), AllowVarArgs(false),
260 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261 /* AllowVarArgs */ false,
262 /* AllowAlloca */ false)),
263 Suffix(Suffix) {}
265 /// definedInRegion - Return true if the specified value is defined in the
266 /// extracted region.
267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268 if (Instruction *I = dyn_cast<Instruction>(V))
269 if (Blocks.count(I->getParent()))
270 return true;
271 return false;
274 /// definedInCaller - Return true if the specified value is defined in the
275 /// function being code extracted, but not in the region being extracted.
276 /// These values must be passed in as live-ins to the function.
277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278 if (isa<Argument>(V)) return true;
279 if (Instruction *I = dyn_cast<Instruction>(V))
280 if (!Blocks.count(I->getParent()))
281 return true;
282 return false;
285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286 BasicBlock *CommonExitBlock = nullptr;
287 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288 for (auto *Succ : successors(Block)) {
289 // Internal edges, ok.
290 if (Blocks.count(Succ))
291 continue;
292 if (!CommonExitBlock) {
293 CommonExitBlock = Succ;
294 continue;
296 if (CommonExitBlock == Succ)
297 continue;
299 return true;
301 return false;
304 if (any_of(Blocks, hasNonCommonExitSucc))
305 return nullptr;
307 return CommonExitBlock;
310 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
311 Instruction *Addr) const {
312 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
313 Function *Func = (*Blocks.begin())->getParent();
314 for (BasicBlock &BB : *Func) {
315 if (Blocks.count(&BB))
316 continue;
317 for (Instruction &II : BB) {
318 if (isa<DbgInfoIntrinsic>(II))
319 continue;
321 unsigned Opcode = II.getOpcode();
322 Value *MemAddr = nullptr;
323 switch (Opcode) {
324 case Instruction::Store:
325 case Instruction::Load: {
326 if (Opcode == Instruction::Store) {
327 StoreInst *SI = cast<StoreInst>(&II);
328 MemAddr = SI->getPointerOperand();
329 } else {
330 LoadInst *LI = cast<LoadInst>(&II);
331 MemAddr = LI->getPointerOperand();
333 // Global variable can not be aliased with locals.
334 if (dyn_cast<Constant>(MemAddr))
335 break;
336 Value *Base = MemAddr->stripInBoundsConstantOffsets();
337 if (!isa<AllocaInst>(Base) || Base == AI)
338 return false;
339 break;
341 default: {
342 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
343 if (IntrInst) {
344 if (IntrInst->isLifetimeStartOrEnd())
345 break;
346 return false;
348 // Treat all the other cases conservatively if it has side effects.
349 if (II.mayHaveSideEffects())
350 return false;
356 return true;
359 BasicBlock *
360 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
361 BasicBlock *SinglePredFromOutlineRegion = nullptr;
362 assert(!Blocks.count(CommonExitBlock) &&
363 "Expect a block outside the region!");
364 for (auto *Pred : predecessors(CommonExitBlock)) {
365 if (!Blocks.count(Pred))
366 continue;
367 if (!SinglePredFromOutlineRegion) {
368 SinglePredFromOutlineRegion = Pred;
369 } else if (SinglePredFromOutlineRegion != Pred) {
370 SinglePredFromOutlineRegion = nullptr;
371 break;
375 if (SinglePredFromOutlineRegion)
376 return SinglePredFromOutlineRegion;
378 #ifndef NDEBUG
379 auto getFirstPHI = [](BasicBlock *BB) {
380 BasicBlock::iterator I = BB->begin();
381 PHINode *FirstPhi = nullptr;
382 while (I != BB->end()) {
383 PHINode *Phi = dyn_cast<PHINode>(I);
384 if (!Phi)
385 break;
386 if (!FirstPhi) {
387 FirstPhi = Phi;
388 break;
391 return FirstPhi;
393 // If there are any phi nodes, the single pred either exists or has already
394 // be created before code extraction.
395 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
396 #endif
398 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
399 CommonExitBlock->getFirstNonPHI()->getIterator());
401 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
402 PI != PE;) {
403 BasicBlock *Pred = *PI++;
404 if (Blocks.count(Pred))
405 continue;
406 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
408 // Now add the old exit block to the outline region.
409 Blocks.insert(CommonExitBlock);
410 return CommonExitBlock;
413 // Find the pair of life time markers for address 'Addr' that are either
414 // defined inside the outline region or can legally be shrinkwrapped into the
415 // outline region. If there are not other untracked uses of the address, return
416 // the pair of markers if found; otherwise return a pair of nullptr.
417 CodeExtractor::LifetimeMarkerInfo
418 CodeExtractor::getLifetimeMarkers(Instruction *Addr,
419 BasicBlock *ExitBlock) const {
420 LifetimeMarkerInfo Info;
422 for (User *U : Addr->users()) {
423 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
424 if (IntrInst) {
425 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
426 // Do not handle the case where Addr has multiple start markers.
427 if (Info.LifeStart)
428 return {};
429 Info.LifeStart = IntrInst;
431 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
432 if (Info.LifeEnd)
433 return {};
434 Info.LifeEnd = IntrInst;
436 continue;
438 // Find untracked uses of the address, bail.
439 if (!definedInRegion(Blocks, U))
440 return {};
443 if (!Info.LifeStart || !Info.LifeEnd)
444 return {};
446 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
447 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
448 // Do legality check.
449 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
450 !isLegalToShrinkwrapLifetimeMarkers(Addr))
451 return {};
453 // Check to see if we have a place to do hoisting, if not, bail.
454 if (Info.HoistLifeEnd && !ExitBlock)
455 return {};
457 return Info;
460 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
461 BasicBlock *&ExitBlock) const {
462 Function *Func = (*Blocks.begin())->getParent();
463 ExitBlock = getCommonExitBlock(Blocks);
465 auto moveOrIgnoreLifetimeMarkers =
466 [&](const LifetimeMarkerInfo &LMI) -> bool {
467 if (!LMI.LifeStart)
468 return false;
469 if (LMI.SinkLifeStart) {
470 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
471 << "\n");
472 SinkCands.insert(LMI.LifeStart);
474 if (LMI.HoistLifeEnd) {
475 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
476 HoistCands.insert(LMI.LifeEnd);
478 return true;
481 for (BasicBlock &BB : *Func) {
482 if (Blocks.count(&BB))
483 continue;
484 for (Instruction &II : BB) {
485 auto *AI = dyn_cast<AllocaInst>(&II);
486 if (!AI)
487 continue;
489 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(AI, ExitBlock);
490 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
491 if (Moved) {
492 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
493 SinkCands.insert(AI);
494 continue;
497 // Follow any bitcasts.
498 SmallVector<Instruction *, 2> Bitcasts;
499 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
500 for (User *U : AI->users()) {
501 if (U->stripInBoundsConstantOffsets() == AI) {
502 Instruction *Bitcast = cast<Instruction>(U);
503 LifetimeMarkerInfo LMI = getLifetimeMarkers(Bitcast, ExitBlock);
504 if (LMI.LifeStart) {
505 Bitcasts.push_back(Bitcast);
506 BitcastLifetimeInfo.push_back(LMI);
507 continue;
511 // Found unknown use of AI.
512 if (!definedInRegion(Blocks, U)) {
513 Bitcasts.clear();
514 break;
518 // Either no bitcasts reference the alloca or there are unknown uses.
519 if (Bitcasts.empty())
520 continue;
522 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
523 SinkCands.insert(AI);
524 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
525 Instruction *BitcastAddr = Bitcasts[I];
526 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
527 assert(LMI.LifeStart &&
528 "Unsafe to sink bitcast without lifetime markers");
529 moveOrIgnoreLifetimeMarkers(LMI);
530 if (!definedInRegion(Blocks, BitcastAddr)) {
531 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
532 << "\n");
533 SinkCands.insert(BitcastAddr);
540 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
541 const ValueSet &SinkCands) const {
542 for (BasicBlock *BB : Blocks) {
543 // If a used value is defined outside the region, it's an input. If an
544 // instruction is used outside the region, it's an output.
545 for (Instruction &II : *BB) {
546 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
547 ++OI) {
548 Value *V = *OI;
549 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
550 Inputs.insert(V);
553 for (User *U : II.users())
554 if (!definedInRegion(Blocks, U)) {
555 Outputs.insert(&II);
556 break;
562 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
563 /// of the region, we need to split the entry block of the region so that the
564 /// PHI node is easier to deal with.
565 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
566 unsigned NumPredsFromRegion = 0;
567 unsigned NumPredsOutsideRegion = 0;
569 if (Header != &Header->getParent()->getEntryBlock()) {
570 PHINode *PN = dyn_cast<PHINode>(Header->begin());
571 if (!PN) return; // No PHI nodes.
573 // If the header node contains any PHI nodes, check to see if there is more
574 // than one entry from outside the region. If so, we need to sever the
575 // header block into two.
576 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
577 if (Blocks.count(PN->getIncomingBlock(i)))
578 ++NumPredsFromRegion;
579 else
580 ++NumPredsOutsideRegion;
582 // If there is one (or fewer) predecessor from outside the region, we don't
583 // need to do anything special.
584 if (NumPredsOutsideRegion <= 1) return;
587 // Otherwise, we need to split the header block into two pieces: one
588 // containing PHI nodes merging values from outside of the region, and a
589 // second that contains all of the code for the block and merges back any
590 // incoming values from inside of the region.
591 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
593 // We only want to code extract the second block now, and it becomes the new
594 // header of the region.
595 BasicBlock *OldPred = Header;
596 Blocks.remove(OldPred);
597 Blocks.insert(NewBB);
598 Header = NewBB;
600 // Okay, now we need to adjust the PHI nodes and any branches from within the
601 // region to go to the new header block instead of the old header block.
602 if (NumPredsFromRegion) {
603 PHINode *PN = cast<PHINode>(OldPred->begin());
604 // Loop over all of the predecessors of OldPred that are in the region,
605 // changing them to branch to NewBB instead.
606 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
607 if (Blocks.count(PN->getIncomingBlock(i))) {
608 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
609 TI->replaceUsesOfWith(OldPred, NewBB);
612 // Okay, everything within the region is now branching to the right block, we
613 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
614 BasicBlock::iterator AfterPHIs;
615 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
616 PHINode *PN = cast<PHINode>(AfterPHIs);
617 // Create a new PHI node in the new region, which has an incoming value
618 // from OldPred of PN.
619 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
620 PN->getName() + ".ce", &NewBB->front());
621 PN->replaceAllUsesWith(NewPN);
622 NewPN->addIncoming(PN, OldPred);
624 // Loop over all of the incoming value in PN, moving them to NewPN if they
625 // are from the extracted region.
626 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
627 if (Blocks.count(PN->getIncomingBlock(i))) {
628 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
629 PN->removeIncomingValue(i);
630 --i;
637 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
638 /// outlined region, we split these PHIs on two: one with inputs from region
639 /// and other with remaining incoming blocks; then first PHIs are placed in
640 /// outlined region.
641 void CodeExtractor::severSplitPHINodesOfExits(
642 const SmallPtrSetImpl<BasicBlock *> &Exits) {
643 for (BasicBlock *ExitBB : Exits) {
644 BasicBlock *NewBB = nullptr;
646 for (PHINode &PN : ExitBB->phis()) {
647 // Find all incoming values from the outlining region.
648 SmallVector<unsigned, 2> IncomingVals;
649 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
650 if (Blocks.count(PN.getIncomingBlock(i)))
651 IncomingVals.push_back(i);
653 // Do not process PHI if there is one (or fewer) predecessor from region.
654 // If PHI has exactly one predecessor from region, only this one incoming
655 // will be replaced on codeRepl block, so it should be safe to skip PHI.
656 if (IncomingVals.size() <= 1)
657 continue;
659 // Create block for new PHIs and add it to the list of outlined if it
660 // wasn't done before.
661 if (!NewBB) {
662 NewBB = BasicBlock::Create(ExitBB->getContext(),
663 ExitBB->getName() + ".split",
664 ExitBB->getParent(), ExitBB);
665 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
666 pred_end(ExitBB));
667 for (BasicBlock *PredBB : Preds)
668 if (Blocks.count(PredBB))
669 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
670 BranchInst::Create(ExitBB, NewBB);
671 Blocks.insert(NewBB);
674 // Split this PHI.
675 PHINode *NewPN =
676 PHINode::Create(PN.getType(), IncomingVals.size(),
677 PN.getName() + ".ce", NewBB->getFirstNonPHI());
678 for (unsigned i : IncomingVals)
679 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
680 for (unsigned i : reverse(IncomingVals))
681 PN.removeIncomingValue(i, false);
682 PN.addIncoming(NewPN, NewBB);
687 void CodeExtractor::splitReturnBlocks() {
688 for (BasicBlock *Block : Blocks)
689 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
690 BasicBlock *New =
691 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
692 if (DT) {
693 // Old dominates New. New node dominates all other nodes dominated
694 // by Old.
695 DomTreeNode *OldNode = DT->getNode(Block);
696 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
697 OldNode->end());
699 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
701 for (DomTreeNode *I : Children)
702 DT->changeImmediateDominator(I, NewNode);
707 /// constructFunction - make a function based on inputs and outputs, as follows:
708 /// f(in0, ..., inN, out0, ..., outN)
709 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
710 const ValueSet &outputs,
711 BasicBlock *header,
712 BasicBlock *newRootNode,
713 BasicBlock *newHeader,
714 Function *oldFunction,
715 Module *M) {
716 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
717 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
719 // This function returns unsigned, outputs will go back by reference.
720 switch (NumExitBlocks) {
721 case 0:
722 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
723 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
724 default: RetTy = Type::getInt16Ty(header->getContext()); break;
727 std::vector<Type *> paramTy;
729 // Add the types of the input values to the function's argument list
730 for (Value *value : inputs) {
731 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
732 paramTy.push_back(value->getType());
735 // Add the types of the output values to the function's argument list.
736 for (Value *output : outputs) {
737 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
738 if (AggregateArgs)
739 paramTy.push_back(output->getType());
740 else
741 paramTy.push_back(PointerType::getUnqual(output->getType()));
744 LLVM_DEBUG({
745 dbgs() << "Function type: " << *RetTy << " f(";
746 for (Type *i : paramTy)
747 dbgs() << *i << ", ";
748 dbgs() << ")\n";
751 StructType *StructTy;
752 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
753 StructTy = StructType::get(M->getContext(), paramTy);
754 paramTy.clear();
755 paramTy.push_back(PointerType::getUnqual(StructTy));
757 FunctionType *funcType =
758 FunctionType::get(RetTy, paramTy,
759 AllowVarArgs && oldFunction->isVarArg());
761 std::string SuffixToUse =
762 Suffix.empty()
763 ? (header->getName().empty() ? "extracted" : header->getName().str())
764 : Suffix;
765 // Create the new function
766 Function *newFunction = Function::Create(
767 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
768 oldFunction->getName() + "." + SuffixToUse, M);
769 // If the old function is no-throw, so is the new one.
770 if (oldFunction->doesNotThrow())
771 newFunction->setDoesNotThrow();
773 // Inherit the uwtable attribute if we need to.
774 if (oldFunction->hasUWTable())
775 newFunction->setHasUWTable();
777 // Inherit all of the target dependent attributes and white-listed
778 // target independent attributes.
779 // (e.g. If the extracted region contains a call to an x86.sse
780 // instruction we need to make sure that the extracted region has the
781 // "target-features" attribute allowing it to be lowered.
782 // FIXME: This should be changed to check to see if a specific
783 // attribute can not be inherited.
784 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
785 if (Attr.isStringAttribute()) {
786 if (Attr.getKindAsString() == "thunk")
787 continue;
788 } else
789 switch (Attr.getKindAsEnum()) {
790 // Those attributes cannot be propagated safely. Explicitly list them
791 // here so we get a warning if new attributes are added. This list also
792 // includes non-function attributes.
793 case Attribute::Alignment:
794 case Attribute::AllocSize:
795 case Attribute::ArgMemOnly:
796 case Attribute::Builtin:
797 case Attribute::ByVal:
798 case Attribute::Convergent:
799 case Attribute::Dereferenceable:
800 case Attribute::DereferenceableOrNull:
801 case Attribute::InAlloca:
802 case Attribute::InReg:
803 case Attribute::InaccessibleMemOnly:
804 case Attribute::InaccessibleMemOrArgMemOnly:
805 case Attribute::JumpTable:
806 case Attribute::Naked:
807 case Attribute::Nest:
808 case Attribute::NoAlias:
809 case Attribute::NoBuiltin:
810 case Attribute::NoCapture:
811 case Attribute::NoReturn:
812 case Attribute::NoSync:
813 case Attribute::None:
814 case Attribute::NonNull:
815 case Attribute::ReadNone:
816 case Attribute::ReadOnly:
817 case Attribute::Returned:
818 case Attribute::ReturnsTwice:
819 case Attribute::SExt:
820 case Attribute::Speculatable:
821 case Attribute::StackAlignment:
822 case Attribute::StructRet:
823 case Attribute::SwiftError:
824 case Attribute::SwiftSelf:
825 case Attribute::WillReturn:
826 case Attribute::WriteOnly:
827 case Attribute::ZExt:
828 case Attribute::ImmArg:
829 case Attribute::EndAttrKinds:
830 continue;
831 // Those attributes should be safe to propagate to the extracted function.
832 case Attribute::AlwaysInline:
833 case Attribute::Cold:
834 case Attribute::NoRecurse:
835 case Attribute::InlineHint:
836 case Attribute::MinSize:
837 case Attribute::NoDuplicate:
838 case Attribute::NoFree:
839 case Attribute::NoImplicitFloat:
840 case Attribute::NoInline:
841 case Attribute::NonLazyBind:
842 case Attribute::NoRedZone:
843 case Attribute::NoUnwind:
844 case Attribute::OptForFuzzing:
845 case Attribute::OptimizeNone:
846 case Attribute::OptimizeForSize:
847 case Attribute::SafeStack:
848 case Attribute::ShadowCallStack:
849 case Attribute::SanitizeAddress:
850 case Attribute::SanitizeMemory:
851 case Attribute::SanitizeThread:
852 case Attribute::SanitizeHWAddress:
853 case Attribute::SanitizeMemTag:
854 case Attribute::SpeculativeLoadHardening:
855 case Attribute::StackProtect:
856 case Attribute::StackProtectReq:
857 case Attribute::StackProtectStrong:
858 case Attribute::StrictFP:
859 case Attribute::UWTable:
860 case Attribute::NoCfCheck:
861 break;
864 newFunction->addFnAttr(Attr);
866 newFunction->getBasicBlockList().push_back(newRootNode);
868 // Create an iterator to name all of the arguments we inserted.
869 Function::arg_iterator AI = newFunction->arg_begin();
871 // Rewrite all users of the inputs in the extracted region to use the
872 // arguments (or appropriate addressing into struct) instead.
873 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
874 Value *RewriteVal;
875 if (AggregateArgs) {
876 Value *Idx[2];
877 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
878 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
879 Instruction *TI = newFunction->begin()->getTerminator();
880 GetElementPtrInst *GEP = GetElementPtrInst::Create(
881 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
882 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
883 "loadgep_" + inputs[i]->getName(), TI);
884 } else
885 RewriteVal = &*AI++;
887 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
888 for (User *use : Users)
889 if (Instruction *inst = dyn_cast<Instruction>(use))
890 if (Blocks.count(inst->getParent()))
891 inst->replaceUsesOfWith(inputs[i], RewriteVal);
894 // Set names for input and output arguments.
895 if (!AggregateArgs) {
896 AI = newFunction->arg_begin();
897 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
898 AI->setName(inputs[i]->getName());
899 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
900 AI->setName(outputs[i]->getName()+".out");
903 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
904 // within the new function. This must be done before we lose track of which
905 // blocks were originally in the code region.
906 std::vector<User *> Users(header->user_begin(), header->user_end());
907 for (unsigned i = 0, e = Users.size(); i != e; ++i)
908 // The BasicBlock which contains the branch is not in the region
909 // modify the branch target to a new block
910 if (Instruction *I = dyn_cast<Instruction>(Users[i]))
911 if (I->isTerminator() && !Blocks.count(I->getParent()) &&
912 I->getParent()->getParent() == oldFunction)
913 I->replaceUsesOfWith(header, newHeader);
915 return newFunction;
918 /// Erase lifetime.start markers which reference inputs to the extraction
919 /// region, and insert the referenced memory into \p LifetimesStart.
921 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
922 /// of allocas which will be moved from the caller function into the extracted
923 /// function (\p SunkAllocas).
924 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
925 const SetVector<Value *> &SunkAllocas,
926 SetVector<Value *> &LifetimesStart) {
927 for (BasicBlock *BB : Blocks) {
928 for (auto It = BB->begin(), End = BB->end(); It != End;) {
929 auto *II = dyn_cast<IntrinsicInst>(&*It);
930 ++It;
931 if (!II || !II->isLifetimeStartOrEnd())
932 continue;
934 // Get the memory operand of the lifetime marker. If the underlying
935 // object is a sunk alloca, or is otherwise defined in the extraction
936 // region, the lifetime marker must not be erased.
937 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
938 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
939 continue;
941 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
942 LifetimesStart.insert(Mem);
943 II->eraseFromParent();
948 /// Insert lifetime start/end markers surrounding the call to the new function
949 /// for objects defined in the caller.
950 static void insertLifetimeMarkersSurroundingCall(
951 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
952 CallInst *TheCall) {
953 LLVMContext &Ctx = M->getContext();
954 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
955 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
956 Instruction *Term = TheCall->getParent()->getTerminator();
958 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
959 // needed to satisfy this requirement so they may be reused.
960 DenseMap<Value *, Value *> Bitcasts;
962 // Emit lifetime markers for the pointers given in \p Objects. Insert the
963 // markers before the call if \p InsertBefore, and after the call otherwise.
964 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
965 bool InsertBefore) {
966 for (Value *Mem : Objects) {
967 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
968 TheCall->getFunction()) &&
969 "Input memory not defined in original function");
970 Value *&MemAsI8Ptr = Bitcasts[Mem];
971 if (!MemAsI8Ptr) {
972 if (Mem->getType() == Int8PtrTy)
973 MemAsI8Ptr = Mem;
974 else
975 MemAsI8Ptr =
976 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
979 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
980 if (InsertBefore)
981 Marker->insertBefore(TheCall);
982 else
983 Marker->insertBefore(Term);
987 if (!LifetimesStart.empty()) {
988 auto StartFn = llvm::Intrinsic::getDeclaration(
989 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
990 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
993 if (!LifetimesEnd.empty()) {
994 auto EndFn = llvm::Intrinsic::getDeclaration(
995 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
996 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1000 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1001 /// the call instruction, splitting any PHI nodes in the header block as
1002 /// necessary.
1003 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1004 BasicBlock *codeReplacer,
1005 ValueSet &inputs,
1006 ValueSet &outputs) {
1007 // Emit a call to the new function, passing in: *pointer to struct (if
1008 // aggregating parameters), or plan inputs and allocated memory for outputs
1009 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1011 Module *M = newFunction->getParent();
1012 LLVMContext &Context = M->getContext();
1013 const DataLayout &DL = M->getDataLayout();
1014 CallInst *call = nullptr;
1016 // Add inputs as params, or to be filled into the struct
1017 unsigned ArgNo = 0;
1018 SmallVector<unsigned, 1> SwiftErrorArgs;
1019 for (Value *input : inputs) {
1020 if (AggregateArgs)
1021 StructValues.push_back(input);
1022 else {
1023 params.push_back(input);
1024 if (input->isSwiftError())
1025 SwiftErrorArgs.push_back(ArgNo);
1027 ++ArgNo;
1030 // Create allocas for the outputs
1031 for (Value *output : outputs) {
1032 if (AggregateArgs) {
1033 StructValues.push_back(output);
1034 } else {
1035 AllocaInst *alloca =
1036 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1037 nullptr, output->getName() + ".loc",
1038 &codeReplacer->getParent()->front().front());
1039 ReloadOutputs.push_back(alloca);
1040 params.push_back(alloca);
1044 StructType *StructArgTy = nullptr;
1045 AllocaInst *Struct = nullptr;
1046 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1047 std::vector<Type *> ArgTypes;
1048 for (ValueSet::iterator v = StructValues.begin(),
1049 ve = StructValues.end(); v != ve; ++v)
1050 ArgTypes.push_back((*v)->getType());
1052 // Allocate a struct at the beginning of this function
1053 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1054 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1055 "structArg",
1056 &codeReplacer->getParent()->front().front());
1057 params.push_back(Struct);
1059 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1060 Value *Idx[2];
1061 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1062 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1063 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1064 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1065 codeReplacer->getInstList().push_back(GEP);
1066 StoreInst *SI = new StoreInst(StructValues[i], GEP);
1067 codeReplacer->getInstList().push_back(SI);
1071 // Emit the call to the function
1072 call = CallInst::Create(newFunction, params,
1073 NumExitBlocks > 1 ? "targetBlock" : "");
1074 // Add debug location to the new call, if the original function has debug
1075 // info. In that case, the terminator of the entry block of the extracted
1076 // function contains the first debug location of the extracted function,
1077 // set in extractCodeRegion.
1078 if (codeReplacer->getParent()->getSubprogram()) {
1079 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1080 call->setDebugLoc(DL);
1082 codeReplacer->getInstList().push_back(call);
1084 // Set swifterror parameter attributes.
1085 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1086 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1087 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1090 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1091 unsigned FirstOut = inputs.size();
1092 if (!AggregateArgs)
1093 std::advance(OutputArgBegin, inputs.size());
1095 // Reload the outputs passed in by reference.
1096 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1097 Value *Output = nullptr;
1098 if (AggregateArgs) {
1099 Value *Idx[2];
1100 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1101 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1102 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1103 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1104 codeReplacer->getInstList().push_back(GEP);
1105 Output = GEP;
1106 } else {
1107 Output = ReloadOutputs[i];
1109 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1110 outputs[i]->getName() + ".reload");
1111 Reloads.push_back(load);
1112 codeReplacer->getInstList().push_back(load);
1113 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1114 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1115 Instruction *inst = cast<Instruction>(Users[u]);
1116 if (!Blocks.count(inst->getParent()))
1117 inst->replaceUsesOfWith(outputs[i], load);
1121 // Now we can emit a switch statement using the call as a value.
1122 SwitchInst *TheSwitch =
1123 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1124 codeReplacer, 0, codeReplacer);
1126 // Since there may be multiple exits from the original region, make the new
1127 // function return an unsigned, switch on that number. This loop iterates
1128 // over all of the blocks in the extracted region, updating any terminator
1129 // instructions in the to-be-extracted region that branch to blocks that are
1130 // not in the region to be extracted.
1131 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1133 unsigned switchVal = 0;
1134 for (BasicBlock *Block : Blocks) {
1135 Instruction *TI = Block->getTerminator();
1136 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1137 if (!Blocks.count(TI->getSuccessor(i))) {
1138 BasicBlock *OldTarget = TI->getSuccessor(i);
1139 // add a new basic block which returns the appropriate value
1140 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1141 if (!NewTarget) {
1142 // If we don't already have an exit stub for this non-extracted
1143 // destination, create one now!
1144 NewTarget = BasicBlock::Create(Context,
1145 OldTarget->getName() + ".exitStub",
1146 newFunction);
1147 unsigned SuccNum = switchVal++;
1149 Value *brVal = nullptr;
1150 switch (NumExitBlocks) {
1151 case 0:
1152 case 1: break; // No value needed.
1153 case 2: // Conditional branch, return a bool
1154 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1155 break;
1156 default:
1157 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1158 break;
1161 ReturnInst::Create(Context, brVal, NewTarget);
1163 // Update the switch instruction.
1164 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1165 SuccNum),
1166 OldTarget);
1169 // rewrite the original branch instruction with this new target
1170 TI->setSuccessor(i, NewTarget);
1174 // Store the arguments right after the definition of output value.
1175 // This should be proceeded after creating exit stubs to be ensure that invoke
1176 // result restore will be placed in the outlined function.
1177 Function::arg_iterator OAI = OutputArgBegin;
1178 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1179 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1180 if (!OutI)
1181 continue;
1183 // Find proper insertion point.
1184 BasicBlock::iterator InsertPt;
1185 // In case OutI is an invoke, we insert the store at the beginning in the
1186 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1187 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1188 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1189 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1190 InsertPt = Phi->getParent()->getFirstInsertionPt();
1191 else
1192 InsertPt = std::next(OutI->getIterator());
1194 Instruction *InsertBefore = &*InsertPt;
1195 assert((InsertBefore->getFunction() == newFunction ||
1196 Blocks.count(InsertBefore->getParent())) &&
1197 "InsertPt should be in new function");
1198 assert(OAI != newFunction->arg_end() &&
1199 "Number of output arguments should match "
1200 "the amount of defined values");
1201 if (AggregateArgs) {
1202 Value *Idx[2];
1203 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1204 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1205 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1206 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1207 InsertBefore);
1208 new StoreInst(outputs[i], GEP, InsertBefore);
1209 // Since there should be only one struct argument aggregating
1210 // all the output values, we shouldn't increment OAI, which always
1211 // points to the struct argument, in this case.
1212 } else {
1213 new StoreInst(outputs[i], &*OAI, InsertBefore);
1214 ++OAI;
1218 // Now that we've done the deed, simplify the switch instruction.
1219 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1220 switch (NumExitBlocks) {
1221 case 0:
1222 // There are no successors (the block containing the switch itself), which
1223 // means that previously this was the last part of the function, and hence
1224 // this should be rewritten as a `ret'
1226 // Check if the function should return a value
1227 if (OldFnRetTy->isVoidTy()) {
1228 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1229 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1230 // return what we have
1231 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1232 } else {
1233 // Otherwise we must have code extracted an unwind or something, just
1234 // return whatever we want.
1235 ReturnInst::Create(Context,
1236 Constant::getNullValue(OldFnRetTy), TheSwitch);
1239 TheSwitch->eraseFromParent();
1240 break;
1241 case 1:
1242 // Only a single destination, change the switch into an unconditional
1243 // branch.
1244 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1245 TheSwitch->eraseFromParent();
1246 break;
1247 case 2:
1248 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1249 call, TheSwitch);
1250 TheSwitch->eraseFromParent();
1251 break;
1252 default:
1253 // Otherwise, make the default destination of the switch instruction be one
1254 // of the other successors.
1255 TheSwitch->setCondition(call);
1256 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1257 // Remove redundant case
1258 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1259 break;
1262 // Insert lifetime markers around the reloads of any output values. The
1263 // allocas output values are stored in are only in-use in the codeRepl block.
1264 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1266 return call;
1269 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1270 Function *oldFunc = (*Blocks.begin())->getParent();
1271 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1272 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1274 for (BasicBlock *Block : Blocks) {
1275 // Delete the basic block from the old function, and the list of blocks
1276 oldBlocks.remove(Block);
1278 // Insert this basic block into the new function
1279 newBlocks.push_back(Block);
1281 // Remove @llvm.assume calls that were moved to the new function from the
1282 // old function's assumption cache.
1283 if (AC)
1284 for (auto &I : *Block)
1285 if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1286 AC->unregisterAssumption(cast<CallInst>(&I));
1290 void CodeExtractor::calculateNewCallTerminatorWeights(
1291 BasicBlock *CodeReplacer,
1292 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1293 BranchProbabilityInfo *BPI) {
1294 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1295 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1297 // Update the branch weights for the exit block.
1298 Instruction *TI = CodeReplacer->getTerminator();
1299 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1301 // Block Frequency distribution with dummy node.
1302 Distribution BranchDist;
1304 // Add each of the frequencies of the successors.
1305 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1306 BlockNode ExitNode(i);
1307 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1308 if (ExitFreq != 0)
1309 BranchDist.addExit(ExitNode, ExitFreq);
1310 else
1311 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1314 // Check for no total weight.
1315 if (BranchDist.Total == 0)
1316 return;
1318 // Normalize the distribution so that they can fit in unsigned.
1319 BranchDist.normalize();
1321 // Create normalized branch weights and set the metadata.
1322 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1323 const auto &Weight = BranchDist.Weights[I];
1325 // Get the weight and update the current BFI.
1326 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1327 BranchProbability BP(Weight.Amount, BranchDist.Total);
1328 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1330 TI->setMetadata(
1331 LLVMContext::MD_prof,
1332 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1335 Function *CodeExtractor::extractCodeRegion() {
1336 if (!isEligible())
1337 return nullptr;
1339 // Assumption: this is a single-entry code region, and the header is the first
1340 // block in the region.
1341 BasicBlock *header = *Blocks.begin();
1342 Function *oldFunction = header->getParent();
1344 // For functions with varargs, check that varargs handling is only done in the
1345 // outlined function, i.e vastart and vaend are only used in outlined blocks.
1346 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1347 auto containsVarArgIntrinsic = [](Instruction &I) {
1348 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1349 if (const Function *F = CI->getCalledFunction())
1350 return F->getIntrinsicID() == Intrinsic::vastart ||
1351 F->getIntrinsicID() == Intrinsic::vaend;
1352 return false;
1355 for (auto &BB : *oldFunction) {
1356 if (Blocks.count(&BB))
1357 continue;
1358 if (llvm::any_of(BB, containsVarArgIntrinsic))
1359 return nullptr;
1362 ValueSet inputs, outputs, SinkingCands, HoistingCands;
1363 BasicBlock *CommonExit = nullptr;
1365 // Calculate the entry frequency of the new function before we change the root
1366 // block.
1367 BlockFrequency EntryFreq;
1368 if (BFI) {
1369 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1370 for (BasicBlock *Pred : predecessors(header)) {
1371 if (Blocks.count(Pred))
1372 continue;
1373 EntryFreq +=
1374 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1378 // If we have any return instructions in the region, split those blocks so
1379 // that the return is not in the region.
1380 splitReturnBlocks();
1382 // Calculate the exit blocks for the extracted region and the total exit
1383 // weights for each of those blocks.
1384 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1385 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1386 for (BasicBlock *Block : Blocks) {
1387 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1388 ++SI) {
1389 if (!Blocks.count(*SI)) {
1390 // Update the branch weight for this successor.
1391 if (BFI) {
1392 BlockFrequency &BF = ExitWeights[*SI];
1393 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1395 ExitBlocks.insert(*SI);
1399 NumExitBlocks = ExitBlocks.size();
1401 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1402 severSplitPHINodesOfEntry(header);
1403 severSplitPHINodesOfExits(ExitBlocks);
1405 // This takes place of the original loop
1406 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1407 "codeRepl", oldFunction,
1408 header);
1410 // The new function needs a root node because other nodes can branch to the
1411 // head of the region, but the entry node of a function cannot have preds.
1412 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1413 "newFuncRoot");
1414 auto *BranchI = BranchInst::Create(header);
1415 // If the original function has debug info, we have to add a debug location
1416 // to the new branch instruction from the artificial entry block.
1417 // We use the debug location of the first instruction in the extracted
1418 // blocks, as there is no other equivalent line in the source code.
1419 if (oldFunction->getSubprogram()) {
1420 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1421 return any_of(*BB, [&BranchI](const Instruction &I) {
1422 if (!I.getDebugLoc())
1423 return false;
1424 BranchI->setDebugLoc(I.getDebugLoc());
1425 return true;
1429 newFuncRoot->getInstList().push_back(BranchI);
1431 findAllocas(SinkingCands, HoistingCands, CommonExit);
1432 assert(HoistingCands.empty() || CommonExit);
1434 // Find inputs to, outputs from the code region.
1435 findInputsOutputs(inputs, outputs, SinkingCands);
1437 // Now sink all instructions which only have non-phi uses inside the region.
1438 // Group the allocas at the start of the block, so that any bitcast uses of
1439 // the allocas are well-defined.
1440 AllocaInst *FirstSunkAlloca = nullptr;
1441 for (auto *II : SinkingCands) {
1442 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1443 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1444 if (!FirstSunkAlloca)
1445 FirstSunkAlloca = AI;
1448 assert((SinkingCands.empty() || FirstSunkAlloca) &&
1449 "Did not expect a sink candidate without any allocas");
1450 for (auto *II : SinkingCands) {
1451 if (!isa<AllocaInst>(II)) {
1452 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1456 if (!HoistingCands.empty()) {
1457 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1458 Instruction *TI = HoistToBlock->getTerminator();
1459 for (auto *II : HoistingCands)
1460 cast<Instruction>(II)->moveBefore(TI);
1463 // Collect objects which are inputs to the extraction region and also
1464 // referenced by lifetime start markers within it. The effects of these
1465 // markers must be replicated in the calling function to prevent the stack
1466 // coloring pass from merging slots which store input objects.
1467 ValueSet LifetimesStart;
1468 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1470 // Construct new function based on inputs/outputs & add allocas for all defs.
1471 Function *newFunction =
1472 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1473 oldFunction, oldFunction->getParent());
1475 // Update the entry count of the function.
1476 if (BFI) {
1477 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1478 if (Count.hasValue())
1479 newFunction->setEntryCount(
1480 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1481 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1484 CallInst *TheCall =
1485 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1487 moveCodeToFunction(newFunction);
1489 // Replicate the effects of any lifetime start/end markers which referenced
1490 // input objects in the extraction region by placing markers around the call.
1491 insertLifetimeMarkersSurroundingCall(
1492 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1494 // Propagate personality info to the new function if there is one.
1495 if (oldFunction->hasPersonalityFn())
1496 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1498 // Update the branch weights for the exit block.
1499 if (BFI && NumExitBlocks > 1)
1500 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1502 // Loop over all of the PHI nodes in the header and exit blocks, and change
1503 // any references to the old incoming edge to be the new incoming edge.
1504 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1505 PHINode *PN = cast<PHINode>(I);
1506 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1507 if (!Blocks.count(PN->getIncomingBlock(i)))
1508 PN->setIncomingBlock(i, newFuncRoot);
1511 for (BasicBlock *ExitBB : ExitBlocks)
1512 for (PHINode &PN : ExitBB->phis()) {
1513 Value *IncomingCodeReplacerVal = nullptr;
1514 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1515 // Ignore incoming values from outside of the extracted region.
1516 if (!Blocks.count(PN.getIncomingBlock(i)))
1517 continue;
1519 // Ensure that there is only one incoming value from codeReplacer.
1520 if (!IncomingCodeReplacerVal) {
1521 PN.setIncomingBlock(i, codeReplacer);
1522 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1523 } else
1524 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1525 "PHI has two incompatbile incoming values from codeRepl");
1529 // Erase debug info intrinsics. Variable updates within the new function are
1530 // invisible to debuggers. This could be improved by defining a DISubprogram
1531 // for the new function.
1532 for (BasicBlock &BB : *newFunction) {
1533 auto BlockIt = BB.begin();
1534 // Remove debug info intrinsics from the new function.
1535 while (BlockIt != BB.end()) {
1536 Instruction *Inst = &*BlockIt;
1537 ++BlockIt;
1538 if (isa<DbgInfoIntrinsic>(Inst))
1539 Inst->eraseFromParent();
1541 // Remove debug info intrinsics which refer to values in the new function
1542 // from the old function.
1543 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1544 for (Instruction &I : BB)
1545 findDbgUsers(DbgUsers, &I);
1546 for (DbgVariableIntrinsic *DVI : DbgUsers)
1547 DVI->eraseFromParent();
1550 // Mark the new function `noreturn` if applicable. Terminators which resume
1551 // exception propagation are treated as returning instructions. This is to
1552 // avoid inserting traps after calls to outlined functions which unwind.
1553 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1554 const Instruction *Term = BB.getTerminator();
1555 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1557 if (doesNotReturn)
1558 newFunction->setDoesNotReturn();
1560 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1561 newFunction->dump();
1562 report_fatal_error("verification of newFunction failed!");
1564 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1565 report_fatal_error("verification of oldFunction failed!"));
1566 return newFunction;