[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / test / Transforms / SROA / basictest.ll
blob498d2c869a3b3399f5a8ce50ad03902d73929875
1 ; RUN: opt < %s -sroa -S | FileCheck %s
2 ; RUN: opt < %s -passes=sroa -S | FileCheck %s
4 target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
6 declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
7 declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)
9 define i32 @test0() {
10 ; CHECK-LABEL: @test0(
11 ; CHECK-NOT: alloca
12 ; CHECK: ret i32
14 entry:
15   %a1 = alloca i32
16   %a2 = alloca float
18   %a1.i8 = bitcast i32* %a1 to i8*
19   call void @llvm.lifetime.start.p0i8(i64 4, i8* %a1.i8)
21   store i32 0, i32* %a1
22   %v1 = load i32, i32* %a1
24   call void @llvm.lifetime.end.p0i8(i64 4, i8* %a1.i8)
26   %a2.i8 = bitcast float* %a2 to i8*
27   call void @llvm.lifetime.start.p0i8(i64 4, i8* %a2.i8)
29   store float 0.0, float* %a2
30   %v2 = load float , float * %a2
31   %v2.int = bitcast float %v2 to i32
32   %sum1 = add i32 %v1, %v2.int
34   call void @llvm.lifetime.end.p0i8(i64 4, i8* %a2.i8)
36   ret i32 %sum1
39 define i32 @test1() {
40 ; CHECK-LABEL: @test1(
41 ; CHECK-NOT: alloca
42 ; CHECK: ret i32 0
44 entry:
45   %X = alloca { i32, float }
46   %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
47   store i32 0, i32* %Y
48   %Z = load i32, i32* %Y
49   ret i32 %Z
52 define i64 @test2(i64 %X) {
53 ; CHECK-LABEL: @test2(
54 ; CHECK-NOT: alloca
55 ; CHECK: ret i64 %X
57 entry:
58   %A = alloca [8 x i8]
59   %B = bitcast [8 x i8]* %A to i64*
60   store i64 %X, i64* %B
61   br label %L2
63 L2:
64   %Z = load i64, i64* %B
65   ret i64 %Z
68 define i64 @test2_addrspacecast(i64 %X) {
69 ; CHECK-LABEL: @test2_addrspacecast(
70 ; CHECK-NOT: alloca
71 ; CHECK: ret i64 %X
73 entry:
74   %A = alloca [8 x i8]
75   %B = addrspacecast [8 x i8]* %A to i64 addrspace(1)*
76   store i64 %X, i64 addrspace(1)* %B
77   br label %L2
79 L2:
80   %Z = load i64, i64 addrspace(1)* %B
81   ret i64 %Z
84 define i64 @test2_addrspacecast_gep(i64 %X, i16 %idx) {
85 ; CHECK-LABEL: @test2_addrspacecast_gep(
86 ; CHECK-NOT: alloca
87 ; CHECK: ret i64 %X
89 entry:
90   %A = alloca [256 x i8]
91   %B = addrspacecast [256 x i8]* %A to i64 addrspace(1)*
92   %gepA = getelementptr [256 x i8], [256 x i8]* %A, i16 0, i16 32
93   %gepB = getelementptr i64, i64 addrspace(1)* %B, i16 4
94   store i64 %X, i64 addrspace(1)* %gepB, align 1
95   br label %L2
97 L2:
98   %gepA.bc = bitcast i8* %gepA to i64*
99   %Z = load i64, i64* %gepA.bc, align 1
100   ret i64 %Z
103 ; Avoid crashing when load/storing at at different offsets.
104 define i64 @test2_addrspacecast_gep_offset(i64 %X) {
105 ; CHECK-LABEL: @test2_addrspacecast_gep_offset(
106 ; CHECK: %A.sroa.0 = alloca [10 x i8]
107 ; CHECK: [[GEP0:%.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %A.sroa.0, i16 0, i16 2
108 ; CHECK-NEXT: [[GEP1:%.*]] = addrspacecast i8* [[GEP0]] to i64 addrspace(1)*
109 ; CHECK-NEXT: store i64 %X, i64 addrspace(1)* [[GEP1]], align 1
110 ; CHECK: br
112 ; CHECK: [[BITCAST:%.*]] = bitcast [10 x i8]* %A.sroa.0 to i64*
113 ; CHECK: %A.sroa.0.0.A.sroa.0.30.Z = load i64, i64* [[BITCAST]], align 1
114 ; CHECK-NEXT: ret
115 entry:
116   %A = alloca [256 x i8]
117   %B = addrspacecast [256 x i8]* %A to i64 addrspace(1)*
118   %gepA = getelementptr [256 x i8], [256 x i8]* %A, i16 0, i16 30
119   %gepB = getelementptr i64, i64 addrspace(1)* %B, i16 4
120   store i64 %X, i64 addrspace(1)* %gepB, align 1
121   br label %L2
124   %gepA.bc = bitcast i8* %gepA to i64*
125   %Z = load i64, i64* %gepA.bc, align 1
126   ret i64 %Z
129 define void @test3(i8* %dst, i8* align 8 %src) {
130 ; CHECK-LABEL: @test3(
132 entry:
133   %a = alloca [300 x i8]
134 ; CHECK-NOT:  alloca
135 ; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
136 ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
137 ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
138 ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
139 ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
140 ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
141 ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
143   %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
144   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* align 8 %src, i32 300, i1 false), !tbaa !0
145 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
146 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %src, i32 42, {{.*}}), !tbaa [[TAG_0:!.*]]
147 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
148 ; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
149 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
150 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
151 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}}), !tbaa [[TAG_0:!.*]]
152 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
153 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
154 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 16, {{.*}}), !tbaa [[TAG_0:!.*]]
155 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
156 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
157 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 42, {{.*}}), !tbaa [[TAG_0:!.*]]
158 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
159 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
160 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0:!.*]]
161 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
162 ; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
163 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
164 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
165 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0:!.*]]
166 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
167 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
168 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}}), !tbaa [[TAG_0:!.*]]
170   ; Clobber a single element of the array, this should be promotable, and be deleted.
171   %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
172   store i8 0, i8* %c
174   ; Make a sequence of overlapping stores to the array. These overlap both in
175   ; forward strides and in shrinking accesses.
176   %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
177   %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
178   %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
179   %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
180   %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
181   %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
182   %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
183   %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
184   %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
185   %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
186   %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
187   %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
188   %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
189   %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
190   %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
191   %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
192   %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
193   %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
194   %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
195   %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
196   store i8 1, i8* %overlap.1.i8, !tbaa !3
197 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
198 ; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_3:!.*]]
199   store i16 1, i16* %overlap.1.i16, !tbaa !5
200 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
201 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_5:!.*]]
202   store i32 1, i32* %overlap.1.i32, !tbaa !7
203 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
204 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_7:!.*]]
205   store i64 1, i64* %overlap.1.i64, !tbaa !9
206 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
207 ; CHECK-NEXT: store i64 1, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_9:!.*]]
208   store i64 2, i64* %overlap.2.i64, !tbaa !11
209 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
210 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
211 ; CHECK-NEXT: store i64 2, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_11:!.*]]
212   store i64 3, i64* %overlap.3.i64, !tbaa !13
213 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
214 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
215 ; CHECK-NEXT: store i64 3, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_13:!.*]]
216   store i64 4, i64* %overlap.4.i64, !tbaa !15
217 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
218 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
219 ; CHECK-NEXT: store i64 4, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_15:!.*]]
220   store i64 5, i64* %overlap.5.i64, !tbaa !17
221 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
222 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
223 ; CHECK-NEXT: store i64 5, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_17:!.*]]
224   store i64 6, i64* %overlap.6.i64, !tbaa !19
225 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
226 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
227 ; CHECK-NEXT: store i64 6, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_19:!.*]]
228   store i64 7, i64* %overlap.7.i64, !tbaa !21
229 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
230 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
231 ; CHECK-NEXT: store i64 7, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_21:!.*]]
232   store i64 8, i64* %overlap.8.i64, !tbaa !23
233 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
234 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
235 ; CHECK-NEXT: store i64 8, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_23:!.*]]
236   store i64 9, i64* %overlap.9.i64, !tbaa !25
237 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
238 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
239 ; CHECK-NEXT: store i64 9, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_25:!.*]]
241   ; Make two sequences of overlapping stores with more gaps and irregularities.
242   %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
243   %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
244   %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
245   %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
247   %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
248   %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
249   %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
250   %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
252   %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
253   %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
254   %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
255   %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
256   %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
257   store i8 1,  i8*  %overlap2.1.0.i8, !tbaa !27
258 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
259 ; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_27:!.*]]
260   store i16 1, i16* %overlap2.1.0.i16, !tbaa !29
261 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
262 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_29:!.*]]
263   store i32 1, i32* %overlap2.1.0.i32, !tbaa !31
264 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
265 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_31:!.*]]
266   store i32 2, i32* %overlap2.1.1.i32, !tbaa !33
267 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
268 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
269 ; CHECK-NEXT: store i32 2, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_33:!.*]]
270   store i32 3, i32* %overlap2.1.2.i32, !tbaa !35
271 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
272 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
273 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_35:!.*]]
274   store i32 4, i32* %overlap2.1.3.i32, !tbaa !37
275 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
276 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
277 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_37:!.*]]
279   %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
280   %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
281   %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
282   %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
283   %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
284   store i32 1, i32* %overlap2.2.0.i32, !tbaa !39
285 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
286 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_39:!.*]]
287   store i8 1,  i8*  %overlap2.2.1.i8, !tbaa !41
288 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
289 ; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_41:!.*]]
290   store i16 1, i16* %overlap2.2.1.i16, !tbaa !43
291 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
292 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
293 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_43:!.*]]
294   store i32 1, i32* %overlap2.2.1.i32, !tbaa !45
295 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
296 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
297 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_45:!.*]]
298   store i32 3, i32* %overlap2.2.2.i32, !tbaa !47
299 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
300 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
301 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_47:!.*]]
302   store i32 4, i32* %overlap2.2.3.i32, !tbaa !49
303 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
304 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
305 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_49:!.*]]
307   %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
308   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i1 false), !tbaa !51
309 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
310 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %src, i32 3, {{.*}}), !tbaa [[TAG_51:!.*]]
311 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
312 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
313 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 5, {{.*}}), !tbaa [[TAG_51]]
315   ; Bridge between the overlapping areas
316   call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i1 false), !tbaa !53
317 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
318 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 5, {{.*}}), !tbaa [[TAG_53:!.*]]
319 ; ...promoted i8 store...
320 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
321 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 2, {{.*}}), !tbaa [[TAG_53]]
323   ; Entirely within the second overlap.
324   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i1 false), !tbaa !55
325 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
326 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_55:!.*]]
328   ; Trailing past the second overlap.
329   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i1 false), !tbaa !57
330 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
331 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_57:!.*]]
332 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
333 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
334 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 3, {{.*}}), !tbaa [[TAG_57]]
336   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i1 false), !tbaa !59
337 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
338 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 42, {{.*}}), !tbaa [[TAG_59:!.*]]
339 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
340 ; CHECK-NEXT: store i8 0, i8* %[[gep]], {{.*}}, !tbaa [[TAG_59]]
341 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
342 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
343 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}}), !tbaa [[TAG_59]]
344 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
345 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
346 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 16, {{.*}}), !tbaa [[TAG_59]]
347 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
348 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
349 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 42, {{.*}}), !tbaa [[TAG_59]]
350 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
351 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
352 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_59]]
353 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
354 ; CHECK-NEXT: store i8 42, i8* %[[gep]], {{.*}}, !tbaa [[TAG_59]]
355 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
356 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
357 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_59]]
358 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
359 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
360 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}}), !tbaa [[TAG_59]]
362   ret void
365 define void @test4(i8* %dst, i8* %src) {
366 ; CHECK-LABEL: @test4(
368 entry:
369   %a = alloca [100 x i8]
370 ; CHECK-NOT:  alloca
371 ; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
372 ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
373 ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
374 ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
375 ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
376 ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
378   %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
379   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i1 false), !tbaa !0
380 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
381 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 20, {{.*}}), !tbaa [[TAG_0]]
382 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
383 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
384 ; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
385 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
386 ; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
387 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
388 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
389 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
390 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
391 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
392 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}}), !tbaa [[TAG_0]]
393 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
394 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
395 ; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
396 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
397 ; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
398 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
399 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
400 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
401 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
402 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
403 ; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
404 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
405 ; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
406 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
407 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
408 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
409 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
410 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
411 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}}), !tbaa [[TAG_0]]
413   %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
414   %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
415   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i1 false), !tbaa !3
416 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
417 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
418 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_3]]
420   ; Clobber a single element of the array, this should be promotable, and be deleted.
421   %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
422   store i8 0, i8* %c
424   %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
425   call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i1 false), !tbaa !5
426 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
427 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
428 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_5]]
430   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i1 false), !tbaa !7
431 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
432 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 20, {{.*}}), !tbaa [[TAG_7]]
433 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
434 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
435 ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
436 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
437 ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
438 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
439 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
440 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
441 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
442 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
443 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}}), !tbaa [[TAG_7]]
444 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
445 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
446 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
447 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
448 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
449 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
450 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
451 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
452 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
453 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
454 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
455 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
456 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
457 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
458 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
459 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
460 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
461 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
462 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}}), !tbaa [[TAG_7]]
464   ret void
467 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
468 declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i1) nounwind
469 declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
470 declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i1) nounwind
472 define i16 @test5() {
473 ; CHECK-LABEL: @test5(
474 ; CHECK-NOT: alloca float
475 ; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
476 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
477 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
478 ; CHECK-NEXT: ret i16 %[[trunc]]
480 entry:
481   %a = alloca [4 x i8]
482   %fptr = bitcast [4 x i8]* %a to float*
483   store float 0.0, float* %fptr
484   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
485   %iptr = bitcast i8* %ptr to i16*
486   %val = load i16, i16* %iptr
487   ret i16 %val
490 define i16 @test5_multi_addrspace_access() {
491 ; CHECK-LABEL: @test5_multi_addrspace_access(
492 ; CHECK-NOT: alloca float
493 ; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
494 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
495 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
496 ; CHECK-NEXT: ret i16 %[[trunc]]
498 entry:
499   %a = alloca [4 x i8]
500   %fptr = bitcast [4 x i8]* %a to float*
501   %fptr.as1 = addrspacecast float* %fptr to float addrspace(1)*
502   store float 0.0, float addrspace(1)* %fptr.as1
503   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
504   %iptr = bitcast i8* %ptr to i16*
505   %val = load i16, i16* %iptr
506   ret i16 %val
509 define i32 @test6() {
510 ; CHECK-LABEL: @test6(
511 ; CHECK: alloca i32
512 ; CHECK-NEXT: store volatile i32
513 ; CHECK-NEXT: load i32, i32*
514 ; CHECK-NEXT: ret i32
516 entry:
517   %a = alloca [4 x i8]
518   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
519   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i1 true)
520   %iptr = bitcast i8* %ptr to i32*
521   %val = load i32, i32* %iptr
522   ret i32 %val
525 define void @test7(i8* %src, i8* %dst) {
526 ; CHECK-LABEL: @test7(
527 ; CHECK: alloca i32
528 ; CHECK-NEXT: bitcast i8* %src to i32*
529 ; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_0]]
530 ; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_0]]
531 ; CHECK-NEXT: bitcast i8* %dst to i32*
532 ; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_3]]
533 ; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_3]]
534 ; CHECK-NEXT: ret
536 entry:
537   %a = alloca [4 x i8]
538   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
539   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
540   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
541   ret void
545 %S1 = type { i32, i32, [16 x i8] }
546 %S2 = type { %S1*, %S2* }
548 define %S2 @test8(%S2* %s2) {
549 ; CHECK-LABEL: @test8(
550 entry:
551   %new = alloca %S2
552 ; CHECK-NOT: alloca
554   %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
555   %s2.next = load %S2*, %S2** %s2.next.ptr, !tbaa !0
556 ; CHECK:      %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
557 ; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]], !tbaa [[TAG_0]]
559   %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
560   %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr, !tbaa !3
561   %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
562   store %S1* %s2.next.s1, %S1** %new.s1.ptr, !tbaa !5
563   %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
564   %s2.next.next = load %S2*, %S2** %s2.next.next.ptr, !tbaa !7
565   %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
566   store %S2* %s2.next.next, %S2** %new.next.ptr, !tbaa !9
567 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
568 ; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]], !tbaa [[TAG_3]]
569 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
570 ; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]], !tbaa [[TAG_7]]
572   %new.s1 = load %S1*, %S1** %new.s1.ptr
573   %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
574 ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
575   %new.next = load %S2*, %S2** %new.next.ptr
576   %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
577 ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
578   ret %S2 %result2
579 ; CHECK-NEXT: ret %S2 %[[result2]]
582 define i64 @test9() {
583 ; Ensure we can handle loads off the end of an alloca even when wrapped in
584 ; weird bit casts and types. This is valid IR due to the alignment and masking
585 ; off the bits past the end of the alloca.
587 ; CHECK-LABEL: @test9(
588 ; CHECK-NOT: alloca
589 ; CHECK:      %[[b2:.*]] = zext i8 26 to i64
590 ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
591 ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
592 ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
593 ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
594 ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
595 ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
596 ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
597 ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
598 ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
599 ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
600 ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
601 ; CHECK-NEXT: ret i64 %[[result]]
603 entry:
604   %a = alloca { [3 x i8] }, align 8
605   %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
606   store i8 0, i8* %gep1, align 1
607   %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
608   store i8 0, i8* %gep2, align 1
609   %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
610   store i8 26, i8* %gep3, align 1
611   %cast = bitcast { [3 x i8] }* %a to { i64 }*
612   %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
613   %load = load i64, i64* %elt
614   %result = and i64 %load, 16777215
615   ret i64 %result
618 define %S2* @test10() {
619 ; CHECK-LABEL: @test10(
620 ; CHECK-NOT: alloca %S2*
621 ; CHECK: ret %S2* null
623 entry:
624   %a = alloca [8 x i8]
625   %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
626   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i1 false)
627   %s2ptrptr = bitcast i8* %ptr to %S2**
628   %s2ptr = load %S2*, %S2** %s2ptrptr
629   ret %S2* %s2ptr
632 define i32 @test11() {
633 ; CHECK-LABEL: @test11(
634 ; CHECK-NOT: alloca
635 ; CHECK: ret i32 0
637 entry:
638   %X = alloca i32
639   br i1 undef, label %good, label %bad
641 good:
642   %Y = getelementptr i32, i32* %X, i64 0
643   store i32 0, i32* %Y
644   %Z = load i32, i32* %Y
645   ret i32 %Z
647 bad:
648   %Y2 = getelementptr i32, i32* %X, i64 1
649   store i32 0, i32* %Y2
650   %Z2 = load i32, i32* %Y2
651   ret i32 %Z2
654 define i8 @test12() {
655 ; We fully promote these to the i24 load or store size, resulting in just masks
656 ; and other operations that instcombine will fold, but no alloca.
658 ; CHECK-LABEL: @test12(
660 entry:
661   %a = alloca [3 x i8]
662   %b = alloca [3 x i8]
663 ; CHECK-NOT: alloca
665   %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
666   store i8 0, i8* %a0ptr
667   %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
668   store i8 0, i8* %a1ptr
669   %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
670   store i8 0, i8* %a2ptr
671   %aiptr = bitcast [3 x i8]* %a to i24*
672   %ai = load i24, i24* %aiptr
673 ; CHECK-NOT: store
674 ; CHECK-NOT: load
675 ; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
676 ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
677 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
678 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
679 ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
680 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
681 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
682 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
683 ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
684 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
685 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
687   %biptr = bitcast [3 x i8]* %b to i24*
688   store i24 %ai, i24* %biptr
689   %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
690   %b0 = load i8, i8* %b0ptr
691   %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
692   %b1 = load i8, i8* %b1ptr
693   %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
694   %b2 = load i8, i8* %b2ptr
695 ; CHECK-NOT: store
696 ; CHECK-NOT: load
697 ; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
698 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
699 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
700 ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
701 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
703   %bsum0 = add i8 %b0, %b1
704   %bsum1 = add i8 %bsum0, %b2
705   ret i8 %bsum1
706 ; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
707 ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
708 ; CHECK-NEXT: ret i8 %[[sum1]]
711 define i32 @test13() {
712 ; Ensure we don't crash and handle undefined loads that straddle the end of the
713 ; allocation.
714 ; CHECK-LABEL: @test13(
715 ; CHECK:      %[[value:.*]] = zext i8 0 to i16
716 ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
717 ; CHECK-NEXT: ret i32 %[[ret]]
719 entry:
720   %a = alloca [3 x i8], align 2
721   %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
722   store i8 0, i8* %b0ptr
723   %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
724   store i8 0, i8* %b1ptr
725   %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
726   store i8 0, i8* %b2ptr
727   %iptrcast = bitcast [3 x i8]* %a to i16*
728   %iptrgep = getelementptr i16, i16* %iptrcast, i64 1
729   %i = load i16, i16* %iptrgep
730   %ret = zext i16 %i to i32
731   ret i32 %ret
734 %test14.struct = type { [3 x i32] }
736 define void @test14(...) nounwind uwtable {
737 ; This is a strange case where we split allocas into promotable partitions, but
738 ; also gain enough data to prove they must be dead allocas due to GEPs that walk
739 ; across two adjacent allocas. Test that we don't try to promote or otherwise
740 ; do bad things to these dead allocas, they should just be removed.
741 ; CHECK-LABEL: @test14(
742 ; CHECK-NEXT: entry:
743 ; CHECK-NEXT: ret void
745 entry:
746   %a = alloca %test14.struct
747   %p = alloca %test14.struct*
748   %0 = bitcast %test14.struct* %a to i8*
749   %1 = getelementptr i8, i8* %0, i64 12
750   %2 = bitcast i8* %1 to %test14.struct*
751   %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
752   %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
753   %5 = bitcast [3 x i32]* %3 to i32*
754   %6 = bitcast [3 x i32]* %4 to i32*
755   %7 = load i32, i32* %6, align 4
756   store i32 %7, i32* %5, align 4
757   %8 = getelementptr inbounds i32, i32* %5, i32 1
758   %9 = getelementptr inbounds i32, i32* %6, i32 1
759   %10 = load i32, i32* %9, align 4
760   store i32 %10, i32* %8, align 4
761   %11 = getelementptr inbounds i32, i32* %5, i32 2
762   %12 = getelementptr inbounds i32, i32* %6, i32 2
763   %13 = load i32, i32* %12, align 4
764   store i32 %13, i32* %11, align 4
765   ret void
768 define i32 @test15(i1 %flag) nounwind uwtable {
769 ; Ensure that when there are dead instructions using an alloca that are not
770 ; loads or stores we still delete them during partitioning and rewriting.
771 ; Otherwise we'll go to promote them while thy still have unpromotable uses.
772 ; CHECK-LABEL: @test15(
773 ; CHECK-NEXT: entry:
774 ; CHECK-NEXT:   br label %loop
775 ; CHECK:      loop:
776 ; CHECK-NEXT:   br label %loop
778 entry:
779   %l0 = alloca i64
780   %l1 = alloca i64
781   %l2 = alloca i64
782   %l3 = alloca i64
783   br label %loop
785 loop:
786   %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
788   store i64 1879048192, i64* %l0, align 8
789   %bc0 = bitcast i64* %l0 to i8*
790   %gep0 = getelementptr i8, i8* %bc0, i64 3
791   %dead0 = bitcast i8* %gep0 to i64*
793   store i64 1879048192, i64* %l1, align 8
794   %bc1 = bitcast i64* %l1 to i8*
795   %gep1 = getelementptr i8, i8* %bc1, i64 3
796   %dead1 = getelementptr i8, i8* %gep1, i64 1
798   store i64 1879048192, i64* %l2, align 8
799   %bc2 = bitcast i64* %l2 to i8*
800   %gep2.1 = getelementptr i8, i8* %bc2, i64 1
801   %gep2.2 = getelementptr i8, i8* %bc2, i64 3
802   ; Note that this select should get visited multiple times due to using two
803   ; different GEPs off the same alloca. We should only delete it once.
804   %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
806   store i64 1879048192, i64* %l3, align 8
807   %bc3 = bitcast i64* %l3 to i8*
808   %gep3 = getelementptr i8, i8* %bc3, i64 3
810   br label %loop
813 define void @test16(i8* %src, i8* %dst) {
814 ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
815 ; CHECK-LABEL: @test16(
816 ; CHECK-NOT: alloca
817 ; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
818 ; CHECK-NEXT: load i24, i24* %[[srccast]], {{.*}}, !tbaa [[TAG_0]]
819 ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
820 ; CHECK-NEXT: store i24 0, i24* %[[dstcast]], {{.*}}, !tbaa [[TAG_5]]
821 ; CHECK-NEXT: ret void
823 entry:
824   %a = alloca [3 x i8]
825   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
826   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 false), !tbaa !0
827   %cast = bitcast i8* %ptr to i24*
828   store i24 0, i24* %cast, !tbaa !3
829   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 false), !tbaa !5
830   ret void
833 define void @test17(i8* %src, i8* %dst) {
834 ; Ensure that we can rewrite unpromotable memcpys which extend past the end of
835 ; the alloca.
836 ; CHECK-LABEL: @test17(
837 ; CHECK:      %[[a:.*]] = alloca [3 x i8]
838 ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
839 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, {{.*}}), !tbaa [[TAG_0]]
840 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], {{.*}}), !tbaa [[TAG_3]]
841 ; CHECK-NEXT: ret void
843 entry:
844   %a = alloca [3 x i8]
845   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
846   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
847   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
848   ret void
851 define void @test18(i8* %src, i8* %dst, i32 %size) {
852 ; Preserve transfer instrinsics with a variable size, even if they overlap with
853 ; fixed size operations. Further, continue to split and promote allocas preceding
854 ; the variable sized intrinsic.
855 ; CHECK-LABEL: @test18(
856 ; CHECK:      %[[a:.*]] = alloca [34 x i8]
857 ; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
858 ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
859 ; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]], {{.*}}, !tbaa [[TAG_0]]
860 ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
861 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[agep1]], i8* %src, i32 %size, {{.*}}), !tbaa [[TAG_3]]
862 ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
863 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[agep2]], i8 42, i32 %size, {{.*}}), !tbaa [[TAG_5]]
864 ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
865 ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]], {{.*}}, !tbaa [[TAG_9]]
866 ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
867 ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
868 ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]], {{.*}}, !tbaa [[TAG_9]]
869 ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
870 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* align 1 %[[agep3]], i32 %size, {{.*}}), !tbaa [[TAG_11]]
871 ; CHECK-NEXT: ret void
873 entry:
874   %a = alloca [42 x i8]
875   %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
876   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 false), !tbaa !0
877   %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
878   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i1 false), !tbaa !3
879   call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i1 false), !tbaa !5
880   %cast = bitcast i8* %ptr to i32*
881   store i32 42, i32* %cast, !tbaa !7
882   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 false), !tbaa !9
883   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i1 false), !tbaa !11
884   ret void
887 %opaque = type opaque
889 define i32 @test19(%opaque* %x) {
890 ; This input will cause us to try to compute a natural GEP when rewriting
891 ; pointers in such a way that we try to GEP through the opaque type. Previously,
892 ; a check for an unsized type was missing and this crashed. Ensure it behaves
893 ; reasonably now.
894 ; CHECK-LABEL: @test19(
895 ; CHECK-NOT: alloca
896 ; CHECK: ret i32 undef
898 entry:
899   %a = alloca { i64, i8* }
900   %cast1 = bitcast %opaque* %x to i8*
901   %cast2 = bitcast { i64, i8* }* %a to i8*
902   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i1 false)
903   %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
904   %val = load i64, i64* %gep
905   ret i32 undef
908 declare void @llvm.memcpy.p0i8.p1i8.i32(i8* nocapture, i8 addrspace(1)* nocapture, i32, i32, i1) nounwind
910 define i32 @test19_addrspacecast(%opaque* %x) {
911 ; This input will cause us to try to compute a natural GEP when rewriting
912 ; pointers in such a way that we try to GEP through the opaque type. Previously,
913 ; a check for an unsized type was missing and this crashed. Ensure it behaves
914 ; reasonably now.
915 ; CHECK-LABEL: @test19_addrspacecast(
916 ; CHECK-NOT: alloca
917 ; CHECK: ret i32 undef
919 entry:
920   %a = alloca { i64, i8* }
921   %cast1 = addrspacecast %opaque* %x to i8 addrspace(1)*
922   %cast2 = bitcast { i64, i8* }* %a to i8*
923   call void @llvm.memcpy.p0i8.p1i8.i32(i8* %cast2, i8 addrspace(1)* %cast1, i32 16, i32 1, i1 false)
924   %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
925   %val = load i64, i64* %gep
926   ret i32 undef
929 define i32 @test20() {
930 ; Ensure we can track negative offsets (before the beginning of the alloca) and
931 ; negative relative offsets from offsets starting past the end of the alloca.
932 ; CHECK-LABEL: @test20(
933 ; CHECK-NOT: alloca
934 ; CHECK: %[[sum1:.*]] = add i32 1, 2
935 ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
936 ; CHECK: ret i32 %[[sum2]]
938 entry:
939   %a = alloca [3 x i32]
940   %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
941   store i32 1, i32* %gep1
942   %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
943   %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
944   store i32 2, i32* %gep2.2
945   %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
946   %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
947   store i32 3, i32* %gep3.2
949   %load1 = load i32, i32* %gep1
950   %load2 = load i32, i32* %gep2.2
951   %load3 = load i32, i32* %gep3.2
952   %sum1 = add i32 %load1, %load2
953   %sum2 = add i32 %sum1, %load3
954   ret i32 %sum2
957 declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i1) nounwind
959 define i8 @test21() {
960 ; Test allocations and offsets which border on overflow of the int64_t used
961 ; internally. This is really awkward to really test as LLVM doesn't really
962 ; support such extreme constructs cleanly.
963 ; CHECK-LABEL: @test21(
964 ; CHECK-NOT: alloca
965 ; CHECK: or i8 -1, -1
967 entry:
968   %a = alloca [2305843009213693951 x i8]
969   %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
970   store i8 255, i8* %gep0
971   %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
972   %gep2 = getelementptr i8, i8* %gep1, i64 -1
973   call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i1 false)
974   %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
975   %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
976   %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
977   store i8 255, i8* %gep5
978   %cast1 = bitcast i8* %gep4 to i32*
979   store i32 0, i32* %cast1
980   %load = load i8, i8* %gep0
981   %gep6 = getelementptr i8, i8* %gep0, i32 1
982   %load2 = load i8, i8* %gep6
983   %result = or i8 %load, %load2
984   ret i8 %result
987 %PR13916.struct = type { i8 }
989 define void @PR13916.1() {
990 ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
991 ; the case where there is a directly identical value for both source and dest.
992 ; CHECK: @PR13916.1
993 ; CHECK-NOT: alloca
994 ; CHECK: ret void
996 entry:
997   %a = alloca i8
998   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i1 false)
999   %tmp2 = load i8, i8* %a
1000   ret void
1003 define void @PR13916.2() {
1004 ; Check whether we continue to handle them correctly when they start off with
1005 ; different pointer value chains, but during rewriting we coalesce them into the
1006 ; same value.
1007 ; CHECK: @PR13916.2
1008 ; CHECK-NOT: alloca
1009 ; CHECK: ret void
1011 entry:
1012   %a = alloca %PR13916.struct, align 1
1013   br i1 undef, label %if.then, label %if.end
1015 if.then:
1016   %tmp0 = bitcast %PR13916.struct* %a to i8*
1017   %tmp1 = bitcast %PR13916.struct* %a to i8*
1018   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i1 false)
1019   br label %if.end
1021 if.end:
1022   %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
1023   %tmp2 = load i8, i8* %gep
1024   ret void
1027 define void @PR13990() {
1028 ; Ensure we can handle cases where processing one alloca causes the other
1029 ; alloca to become dead and get deleted. This might crash or fail under
1030 ; Valgrind if we regress.
1031 ; CHECK-LABEL: @PR13990(
1032 ; CHECK-NOT: alloca
1033 ; CHECK: unreachable
1034 ; CHECK: unreachable
1036 entry:
1037   %tmp1 = alloca i8*
1038   %tmp2 = alloca i8*
1039   br i1 undef, label %bb1, label %bb2
1041 bb1:
1042   store i8* undef, i8** %tmp2
1043   br i1 undef, label %bb2, label %bb3
1045 bb2:
1046   %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
1047   br i1 undef, label %bb3, label %bb4
1049 bb3:
1050   unreachable
1052 bb4:
1053   unreachable
1056 define double @PR13969(double %x) {
1057 ; Check that we detect when promotion will un-escape an alloca and iterate to
1058 ; re-try running SROA over that alloca. Without that, the two allocas that are
1059 ; stored into a dead alloca don't get rewritten and promoted.
1060 ; CHECK-LABEL: @PR13969(
1062 entry:
1063   %a = alloca double
1064   %b = alloca double*
1065   %c = alloca double
1066 ; CHECK-NOT: alloca
1068   store double %x, double* %a
1069   store double* %c, double** %b
1070   store double* %a, double** %b
1071   store double %x, double* %c
1072   %ret = load double, double* %a
1073 ; CHECK-NOT: store
1074 ; CHECK-NOT: load
1076   ret double %ret
1077 ; CHECK: ret double %x
1080 %PR14034.struct = type { { {} }, i32, %PR14034.list }
1081 %PR14034.list = type { %PR14034.list*, %PR14034.list* }
1083 define void @PR14034() {
1084 ; This test case tries to form GEPs into the empty leading struct members, and
1085 ; subsequently crashed (under valgrind) before we fixed the PR. The important
1086 ; thing is to handle empty structs gracefully.
1087 ; CHECK-LABEL: @PR14034(
1089 entry:
1090   %a = alloca %PR14034.struct
1091   %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
1092   %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
1093   store %PR14034.list* undef, %PR14034.list** %prev
1094   %cast0 = bitcast %PR14034.struct* undef to i8*
1095   %cast1 = bitcast %PR14034.struct* %a to i8*
1096   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i1 false)
1097   ret void
1100 define i32 @test22(i32 %x) {
1101 ; Test that SROA and promotion is not confused by a grab bax mixture of pointer
1102 ; types involving wrapper aggregates and zero-length aggregate members.
1103 ; CHECK-LABEL: @test22(
1105 entry:
1106   %a1 = alloca { { [1 x { i32 }] } }
1107   %a2 = alloca { {}, { float }, [0 x i8] }
1108   %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
1109 ; CHECK-NOT: alloca
1111   %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
1112   %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
1113   store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
1115   %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
1116   %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
1117   %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
1118   %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
1120   %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
1121   store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
1123   %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
1124   %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
1125   %load3 = load <4 x i8>, <4 x i8>* %ptrcast2
1126   %valcast1 = bitcast <4 x i8> %load3 to i32
1128   %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
1129   %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
1130   %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
1131   %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
1132   store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
1134   %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
1135   %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
1136   %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
1137   %unwrap2 = extractvalue { {}, float, {} } %load4, 1
1138   %valcast2 = bitcast float %unwrap2 to i32
1140   ret i32 %valcast2
1141 ; CHECK: ret i32
1144 define void @PR14059.1(double* %d) {
1145 ; In PR14059 a peculiar construct was identified as something that is used
1146 ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
1147 ; of doubles via an array of i32 in order to place the data into integer
1148 ; registers. This in turn was missed as an optimization by SROA due to the
1149 ; partial loads and stores of integers to the double alloca we were trying to
1150 ; form and promote. The solution is to widen the integer operations to be
1151 ; whole-alloca operations, and perform the appropriate bitcasting on the
1152 ; *values* rather than the pointers. When this works, partial reads and writes
1153 ; via integers can be promoted away.
1154 ; CHECK: @PR14059.1
1155 ; CHECK-NOT: alloca
1156 ; CHECK: ret void
1158 entry:
1159   %X.sroa.0.i = alloca double, align 8
1160   %0 = bitcast double* %X.sroa.0.i to i8*
1161   call void @llvm.lifetime.start.p0i8(i64 -1, i8* %0)
1163   ; Store to the low 32-bits...
1164   %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
1165   store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
1167   ; Also use a memset to the middle 32-bits for fun.
1168   %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
1169   call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i1 false)
1171   ; Or a memset of the whole thing.
1172   call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i1 false)
1174   ; Write to the high 32-bits with a memcpy.
1175   %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
1176   %d.raw = bitcast double* %d to i8*
1177   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i1 false)
1179   ; Store to the high 32-bits...
1180   %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
1181   store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
1183   ; Do the actual math...
1184   %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
1185   %accum.real.i = load double, double* %d, align 8
1186   %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
1187   store double %add.r.i, double* %d, align 8
1188   call void @llvm.lifetime.end.p0i8(i64 -1, i8* %0)
1189   ret void
1192 define i64 @PR14059.2({ float, float }* %phi) {
1193 ; Check that SROA can split up alloca-wide integer loads and stores where the
1194 ; underlying alloca has smaller components that are accessed independently. This
1195 ; shows up particularly with ABI lowering patterns coming out of Clang that rely
1196 ; on the particular register placement of a single large integer return value.
1197 ; CHECK: @PR14059.2
1199 entry:
1200   %retval = alloca { float, float }, align 4
1201   ; CHECK-NOT: alloca
1203   %0 = bitcast { float, float }* %retval to i64*
1204   store i64 0, i64* %0
1205   ; CHECK-NOT: store
1207   %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1208   %phi.real = load float, float* %phi.realp
1209   %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1210   %phi.imag = load float, float* %phi.imagp
1211   ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1212   ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
1213   ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1214   ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
1216   %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
1217   %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
1218   store float %phi.real, float* %real
1219   store float %phi.imag, float* %imag
1220   ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
1221   ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
1222   ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
1223   ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
1224   ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
1225   ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
1226   ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
1227   ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
1228   ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
1230   %1 = load i64, i64* %0, align 1
1231   ret i64 %1
1232   ; CHECK-NEXT: ret i64 %[[real_insert]]
1235 define void @PR14105({ [16 x i8] }* %ptr) {
1236 ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
1237 ; sign as negative. We use a volatile memcpy to ensure promotion never actually
1238 ; occurs.
1239 ; CHECK-LABEL: @PR14105(
1241 entry:
1242   %a = alloca { [16 x i8] }, align 8
1243 ; CHECK: alloca [16 x i8], align 8
1245   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
1246 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
1248   %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
1249   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1250   call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1251   ret void
1252 ; CHECK: ret
1255 define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
1256 ; Make sure this the right address space pointer is used for type check.
1257 ; CHECK-LABEL: @PR14105_as1(
1258 ; CHECK: alloca { [16 x i8] }, align 8
1259 ; CHECK-NEXT: %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
1260 ; CHECK-NEXT: %cast1 = bitcast { [16 x i8] } addrspace(1)* %gep to i8 addrspace(1)*
1261 ; CHECK-NEXT: %cast2 = bitcast { [16 x i8] }* %a to i8*
1262 ; CHECK-NEXT: call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1264 entry:
1265   %a = alloca { [16 x i8] }, align 8
1266   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
1267   %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
1268   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1269   call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1270   ret void
1271 ; CHECK: ret
1274 define void @PR14465() {
1275 ; Ensure that we don't crash when analyzing a alloca larger than the maximum
1276 ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
1277 ; CHECK-LABEL: @PR14465(
1279   %stack = alloca [1048576 x i32], align 16
1280 ; CHECK: alloca [1048576 x i32]
1281   %cast = bitcast [1048576 x i32]* %stack to i8*
1282   call void @llvm.memset.p0i8.i64(i8* align 16 %cast, i8 -2, i64 4194304, i1 false)
1283   ret void
1284 ; CHECK: ret
1287 define void @PR14548(i1 %x) {
1288 ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
1289 ; pattern caused crashes and invalid output in the PR, and its nature will
1290 ; trigger a mixture in several permutations as we resolve each alloca
1291 ; iteratively.
1292 ; Note that we don't do a particularly good *job* of handling these mixtures,
1293 ; but the hope is that this is very rare.
1294 ; CHECK-LABEL: @PR14548(
1296 entry:
1297   %a = alloca <{ i1 }>, align 8
1298   %b = alloca <{ i1 }>, align 8
1299 ; CHECK:      %[[a:.*]] = alloca i8, align 8
1300 ; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8
1302   %b.i1 = bitcast <{ i1 }>* %b to i1*
1303   store i1 %x, i1* %b.i1, align 8
1304   %b.i8 = bitcast <{ i1 }>* %b to i8*
1305   %foo = load i8, i8* %b.i8, align 1
1306 ; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1*
1307 ; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8
1308 ; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8
1310   %a.i8 = bitcast <{ i1 }>* %a to i8*
1311   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i1 false) nounwind
1312   %bar = load i8, i8* %a.i8, align 1
1313   %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
1314   %baz = load i1, i1* %a.i1, align 1
1315 ; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8
1316 ; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8
1317 ; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
1318 ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
1319 ; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
1321   ret void
1324 define <3 x i8> @PR14572.1(i32 %x) {
1325 ; Ensure that a split integer store which is wider than the type size of the
1326 ; alloca (relying on the alloc size padding) doesn't trigger an assert.
1327 ; CHECK: @PR14572.1
1329 entry:
1330   %a = alloca <3 x i8>, align 4
1331 ; CHECK-NOT: alloca
1333   %cast = bitcast <3 x i8>* %a to i32*
1334   store i32 %x, i32* %cast, align 1
1335   %y = load <3 x i8>, <3 x i8>* %a, align 4
1336   ret <3 x i8> %y
1337 ; CHECK: ret <3 x i8>
1340 define i32 @PR14572.2(<3 x i8> %x) {
1341 ; Ensure that a split integer load which is wider than the type size of the
1342 ; alloca (relying on the alloc size padding) doesn't trigger an assert.
1343 ; CHECK: @PR14572.2
1345 entry:
1346   %a = alloca <3 x i8>, align 4
1347 ; CHECK-NOT: alloca
1349   store <3 x i8> %x, <3 x i8>* %a, align 1
1350   %cast = bitcast <3 x i8>* %a to i32*
1351   %y = load i32, i32* %cast, align 4
1352   ret i32 %y
1353 ; CHECK: ret i32
1356 define i32 @PR14601(i32 %x) {
1357 ; Don't try to form a promotable integer alloca when there is a variable length
1358 ; memory intrinsic.
1359 ; CHECK-LABEL: @PR14601(
1361 entry:
1362   %a = alloca i32
1363 ; CHECK: alloca
1365   %a.i8 = bitcast i32* %a to i8*
1366   call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i1 false)
1367   %v = load i32, i32* %a
1368   ret i32 %v
1371 define void @PR15674(i8* %data, i8* %src, i32 %size) {
1372 ; Arrange (via control flow) to have unmerged stores of a particular width to
1373 ; an alloca where we incrementally store from the end of the array toward the
1374 ; beginning of the array. Ensure that the final integer store, despite being
1375 ; convertable to the integer type that we end up promoting this alloca toward,
1376 ; doesn't get widened to a full alloca store.
1377 ; CHECK-LABEL: @PR15674(
1379 entry:
1380   %tmp = alloca [4 x i8], align 1
1381 ; CHECK: alloca i32
1383   switch i32 %size, label %end [
1384     i32 4, label %bb4
1385     i32 3, label %bb3
1386     i32 2, label %bb2
1387     i32 1, label %bb1
1388   ]
1390 bb4:
1391   %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
1392   %src.3 = load i8, i8* %src.gep3
1393   %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
1394   store i8 %src.3, i8* %tmp.gep3
1395 ; CHECK: store i8
1397   br label %bb3
1399 bb3:
1400   %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
1401   %src.2 = load i8, i8* %src.gep2
1402   %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
1403   store i8 %src.2, i8* %tmp.gep2
1404 ; CHECK: store i8
1406   br label %bb2
1408 bb2:
1409   %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
1410   %src.1 = load i8, i8* %src.gep1
1411   %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
1412   store i8 %src.1, i8* %tmp.gep1
1413 ; CHECK: store i8
1415   br label %bb1
1417 bb1:
1418   %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
1419   %src.0 = load i8, i8* %src.gep0
1420   %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
1421   store i8 %src.0, i8* %tmp.gep0
1422 ; CHECK: store i8
1424   br label %end
1426 end:
1427   %tmp.raw = bitcast [4 x i8]* %tmp to i8*
1428   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i1 false)
1429   ret void
1430 ; CHECK: ret void
1433 define void @PR15805(i1 %a, i1 %b) {
1434 ; CHECK-LABEL: @PR15805(
1435 ; CHECK-NOT: alloca
1436 ; CHECK: ret void
1438   %c = alloca i64, align 8
1439   %p.0.c = select i1 undef, i64* %c, i64* %c
1440   %cond.in = select i1 undef, i64* %p.0.c, i64* %c
1441   %cond = load i64, i64* %cond.in, align 8
1442   ret void
1445 define void @PR15805.1(i1 %a, i1 %b) {
1446 ; Same as the normal PR15805, but rigged to place the use before the def inside
1447 ; of looping unreachable code. This helps ensure that we aren't sensitive to the
1448 ; order in which the uses of the alloca are visited.
1450 ; CHECK-LABEL: @PR15805.1(
1451 ; CHECK-NOT: alloca
1452 ; CHECK: ret void
1454   %c = alloca i64, align 8
1455   br label %exit
1457 loop:
1458   %cond.in = select i1 undef, i64* %c, i64* %p.0.c
1459   %p.0.c = select i1 undef, i64* %c, i64* %c
1460   %cond = load i64, i64* %cond.in, align 8
1461   br i1 undef, label %loop, label %exit
1463 exit:
1464   ret void
1467 define void @PR16651.1(i8* %a) {
1468 ; This test case caused a crash due to the volatile memcpy in combination with
1469 ; lowering to integer loads and stores of a width other than that of the original
1470 ; memcpy.
1472 ; CHECK-LABEL: @PR16651.1(
1473 ; CHECK: alloca i16
1474 ; CHECK: alloca i8
1475 ; CHECK: alloca i8
1476 ; CHECK: unreachable
1478 entry:
1479   %b = alloca i32, align 4
1480   %b.cast = bitcast i32* %b to i8*
1481   call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %b.cast, i8* align 4 %a, i32 4, i1 true)
1482   %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
1483   load i8, i8* %b.gep, align 2
1484   unreachable
1487 define void @PR16651.2() {
1488 ; This test case caused a crash due to failing to promote given a select that
1489 ; can't be speculated. It shouldn't be promoted, but we missed that fact when
1490 ; analyzing whether we could form a vector promotion because that code didn't
1491 ; bail on select instructions.
1493 ; CHECK-LABEL: @PR16651.2(
1494 ; CHECK: alloca <2 x float>
1495 ; CHECK: ret void
1497 entry:
1498   %tv1 = alloca { <2 x float>, <2 x float> }, align 8
1499   %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
1500   store <2 x float> undef, <2 x float>* %0, align 8
1501   %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
1502   %cond105.in.i.i = select i1 undef, float* null, float* %1
1503   %cond105.i.i = load float, float* %cond105.in.i.i, align 8
1504   ret void
1507 define void @test23(i32 %x) {
1508 ; CHECK-LABEL: @test23(
1509 ; CHECK-NOT: alloca
1510 ; CHECK: ret void
1511 entry:
1512   %a = alloca i32, align 4
1513   store i32 %x, i32* %a, align 4
1514   %gep1 = getelementptr inbounds i32, i32* %a, i32 1
1515   %gep0 = getelementptr inbounds i32, i32* %a, i32 0
1516   %cast1 = bitcast i32* %gep1 to i8*
1517   %cast0 = bitcast i32* %gep0 to i8*
1518   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i1 false)
1519   ret void
1522 define void @PR18615() {
1523 ; CHECK-LABEL: @PR18615(
1524 ; CHECK-NOT: alloca
1525 ; CHECK: ret void
1526 entry:
1527   %f = alloca i8
1528   %gep = getelementptr i8, i8* %f, i64 -1
1529   call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i1 false)
1530   ret void
1533 define void @test24(i8* %src, i8* %dst) {
1534 ; CHECK-LABEL: @test24(
1535 ; CHECK: alloca i64, align 16
1536 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_0]]
1537 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_0]]
1538 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_3]]
1539 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_3]]
1541 entry:
1542   %a = alloca i64, align 16
1543   %ptr = bitcast i64* %a to i8*
1544   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 true), !tbaa !0
1545   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 true), !tbaa !3
1546   ret void
1549 define float @test25() {
1550 ; Check that we split up stores in order to promote the smaller SSA values.. These types
1551 ; of patterns can arise because LLVM maps small memcpy's to integer load and
1552 ; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
1553 ; produce, but so might any language frontend), this will in many cases turn into
1554 ; an integer load and store. SROA needs to be extremely powerful to correctly
1555 ; handle these cases and form splitable and promotable SSA values.
1557 ; CHECK-LABEL: @test25(
1558 ; CHECK-NOT: alloca
1559 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1560 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1561 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1562 ; CHECK: ret float %[[SUM]]
1564 entry:
1565   %a = alloca i64
1566   %b = alloca i64
1567   %a.cast = bitcast i64* %a to [2 x float]*
1568   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1569   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1570   %b.cast = bitcast i64* %b to [2 x float]*
1571   %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
1572   %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
1573   store float 0.0, float* %a.gep1
1574   store float 1.0, float* %a.gep2
1575   %v = load i64, i64* %a
1576   store i64 %v, i64* %b
1577   %f1 = load float, float* %b.gep1
1578   %f2 = load float, float* %b.gep2
1579   %ret = fadd float %f1, %f2
1580   ret float %ret
1583 @complex1 = external global [2 x float]
1584 @complex2 = external global [2 x float]
1586 define void @test26() {
1587 ; Test a case of splitting up loads and stores against a globals.
1589 ; CHECK-LABEL: @test26(
1590 ; CHECK-NOT: alloca
1591 ; CHECK: %[[L1:.*]] = load i32, i32* bitcast
1592 ; CHECK: %[[L2:.*]] = load i32, i32* bitcast
1593 ; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
1594 ; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
1595 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1596 ; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
1597 ; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
1598 ; CHECK: store i32 %[[C1]], i32* bitcast
1599 ; CHECK: store i32 %[[C2]], i32* bitcast
1600 ; CHECK: ret void
1602 entry:
1603   %a = alloca i64
1604   %a.cast = bitcast i64* %a to [2 x float]*
1605   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1606   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1607   %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
1608   store i64 %v1, i64* %a
1609   %f1 = load float, float* %a.gep1
1610   %f2 = load float, float* %a.gep2
1611   %sum = fadd float %f1, %f2
1612   store float %sum, float* %a.gep1
1613   store float %sum, float* %a.gep2
1614   %v2 = load i64, i64* %a
1615   store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
1616   ret void
1619 define float @test27() {
1620 ; Another, more complex case of splittable i64 loads and stores. This example
1621 ; is a particularly challenging one because the load and store both point into
1622 ; the alloca SROA is processing, and they overlap but at an offset.
1624 ; CHECK-LABEL: @test27(
1625 ; CHECK-NOT: alloca
1626 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1627 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1628 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1629 ; CHECK: ret float %[[SUM]]
1631 entry:
1632   %a = alloca [12 x i8]
1633   %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
1634   %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
1635   %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
1636   %iptr1 = bitcast i8* %gep1 to i64*
1637   %iptr2 = bitcast i8* %gep2 to i64*
1638   %fptr1 = bitcast i8* %gep1 to float*
1639   %fptr2 = bitcast i8* %gep2 to float*
1640   %fptr3 = bitcast i8* %gep3 to float*
1641   store float 0.0, float* %fptr1
1642   store float 1.0, float* %fptr2
1643   %v = load i64, i64* %iptr1
1644   store i64 %v, i64* %iptr2
1645   %f1 = load float, float* %fptr2
1646   %f2 = load float, float* %fptr3
1647   %ret = fadd float %f1, %f2
1648   ret float %ret
1651 define i32 @PR22093() {
1652 ; Test that we don't try to pre-split a splittable store of a splittable but
1653 ; not pre-splittable load over the same alloca. We "handle" this case when the
1654 ; load is unsplittable but unrelated to this alloca by just generating extra
1655 ; loads without touching the original, but when the original load was out of
1656 ; this alloca we need to handle it specially to ensure the splits line up
1657 ; properly for rewriting.
1659 ; CHECK-LABEL: @PR22093(
1660 ; CHECK-NOT: alloca
1661 ; CHECK: alloca i16
1662 ; CHECK-NOT: alloca
1663 ; CHECK: store volatile i16
1665 entry:
1666   %a = alloca i32
1667   %a.cast = bitcast i32* %a to i16*
1668   store volatile i16 42, i16* %a.cast
1669   %load = load i32, i32* %a
1670   store i32 %load, i32* %a
1671   ret i32 %load
1674 define void @PR22093.2() {
1675 ; Another way that we end up being unable to split a particular set of loads
1676 ; and stores can even have ordering importance. Here we have a load which is
1677 ; pre-splittable by itself, and the first store is also compatible. But the
1678 ; second store of the load makes the load unsplittable because of a mismatch of
1679 ; splits. Because this makes the load unsplittable, we also have to go back and
1680 ; remove the first store from the presplit candidates as its load won't be
1681 ; presplit.
1683 ; CHECK-LABEL: @PR22093.2(
1684 ; CHECK-NOT: alloca
1685 ; CHECK: alloca i16
1686 ; CHECK-NEXT: alloca i8
1687 ; CHECK-NOT: alloca
1688 ; CHECK: store volatile i16
1689 ; CHECK: store volatile i8
1691 entry:
1692   %a = alloca i64
1693   %a.cast1 = bitcast i64* %a to i32*
1694   %a.cast2 = bitcast i64* %a to i16*
1695   store volatile i16 42, i16* %a.cast2
1696   %load = load i32, i32* %a.cast1
1697   store i32 %load, i32* %a.cast1
1698   %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
1699   %a.cast3 = bitcast i32* %a.gep1 to i8*
1700   store volatile i8 13, i8* %a.cast3
1701   store i32 %load, i32* %a.gep1
1702   ret void
1705 define void @PR23737() {
1706 ; CHECK-LABEL: @PR23737(
1707 ; CHECK: store atomic volatile {{.*}} seq_cst
1708 ; CHECK: load atomic volatile {{.*}} seq_cst
1709 entry:
1710   %ptr = alloca i64, align 8
1711   store atomic volatile i64 0, i64* %ptr seq_cst, align 8
1712   %load = load atomic volatile i64, i64* %ptr seq_cst, align 8
1713   ret void
1716 define i16 @PR24463() {
1717 ; Ensure we can handle a very interesting case where there is an integer-based
1718 ; rewrite of the uses of the alloca, but where one of the integers in that is
1719 ; a sub-integer that requires extraction *and* extends past the end of the
1720 ; alloca. SROA can split the alloca to avoid shift or trunc.
1722 ; CHECK-LABEL: @PR24463(
1723 ; CHECK-NOT: alloca
1724 ; CHECK-NOT: trunc
1725 ; CHECK-NOT: lshr
1726 ; CHECK: %[[ZEXT:.*]] = zext i8 {{.*}} to i16
1727 ; CHECK: ret i16 %[[ZEXT]]
1728 entry:
1729   %alloca = alloca [3 x i8]
1730   %gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
1731   %bc1 = bitcast i8* %gep1 to i16*
1732   store i16 0, i16* %bc1
1733   %gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
1734   %bc2 = bitcast i8* %gep2 to i16*
1735   %load = load i16, i16* %bc2
1736   ret i16 %load
1739 %struct.STest = type { %struct.SPos, %struct.SPos }
1740 %struct.SPos = type { float, float }
1742 define void @PR25873(%struct.STest* %outData) {
1743 ; CHECK-LABEL: @PR25873(
1744 ; CHECK: store i32 1123418112
1745 ; CHECK: store i32 1139015680
1746 ; CHECK: %[[HIZEXT:.*]] = zext i32 1139015680 to i64
1747 ; CHECK: %[[HISHL:.*]] = shl i64 %[[HIZEXT]], 32
1748 ; CHECK: %[[HIMASK:.*]] = and i64 undef, 4294967295
1749 ; CHECK: %[[HIINSERT:.*]] = or i64 %[[HIMASK]], %[[HISHL]]
1750 ; CHECK: %[[LOZEXT:.*]] = zext i32 1123418112 to i64
1751 ; CHECK: %[[LOMASK:.*]] = and i64 %[[HIINSERT]], -4294967296
1752 ; CHECK: %[[LOINSERT:.*]] = or i64 %[[LOMASK]], %[[LOZEXT]]
1753 ; CHECK: store i64 %[[LOINSERT]]
1754 entry:
1755   %tmpData = alloca %struct.STest, align 8
1756   %0 = bitcast %struct.STest* %tmpData to i8*
1757   call void @llvm.lifetime.start.p0i8(i64 16, i8* %0)
1758   %x = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 0
1759   store float 1.230000e+02, float* %x, align 8
1760   %y = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 1
1761   store float 4.560000e+02, float* %y, align 4
1762   %m_posB = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 1
1763   %1 = bitcast %struct.STest* %tmpData to i64*
1764   %2 = bitcast %struct.SPos* %m_posB to i64*
1765   %3 = load i64, i64* %1, align 8
1766   store i64 %3, i64* %2, align 8
1767   %4 = bitcast %struct.STest* %outData to i8*
1768   call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %4, i8* align 4 %0, i64 16, i1 false)
1769   call void @llvm.lifetime.end.p0i8(i64 16, i8* %0)
1770   ret void
1773 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i1) nounwind
1775 define void @PR27999() unnamed_addr {
1776 ; CHECK-LABEL: @PR27999(
1777 ; CHECK: entry-block:
1778 ; CHECK-NEXT: ret void
1779 entry-block:
1780   %0 = alloca [2 x i64], align 8
1781   %1 = bitcast [2 x i64]* %0 to i8*
1782   call void @llvm.lifetime.start.p0i8(i64 16, i8* %1)
1783   %2 = getelementptr inbounds [2 x i64], [2 x i64]* %0, i32 0, i32 1
1784   %3 = bitcast i64* %2 to i8*
1785   call void @llvm.lifetime.end.p0i8(i64 8, i8* %3)
1786   ret void
1789 define void @PR29139() {
1790 ; CHECK-LABEL: @PR29139(
1791 ; CHECK: bb1:
1792 ; CHECK-NEXT: ret void
1793 bb1:
1794   %e.7.sroa.6.i = alloca i32, align 1
1795   %e.7.sroa.6.0.load81.i = load i32, i32* %e.7.sroa.6.i, align 1
1796   %0 = bitcast i32* %e.7.sroa.6.i to i8*
1797   call void @llvm.lifetime.end.p0i8(i64 2, i8* %0)
1798   ret void
1801 ; PR35657 reports assertion failure with this code
1802 define void @PR35657(i64 %v) {
1803 ; CHECK-LABEL: @PR35657
1804 ; CHECK: call void @callee16(i16 %{{.*}})
1805 ; CHECK: call void @callee48(i48 %{{.*}})
1806 ; CHECK: ret void
1807 entry:
1808   %a48 = alloca i48
1809   %a48.cast64 = bitcast i48* %a48 to i64*
1810   store i64 %v, i64* %a48.cast64
1811   %a48.cast16 = bitcast i48* %a48 to i16*
1812   %b0_15 = load i16, i16* %a48.cast16
1813   %a48.cast8 = bitcast i48* %a48 to i8*
1814   %a48_offset2 = getelementptr inbounds i8, i8* %a48.cast8, i64 2
1815   %a48_offset2.cast48 = bitcast i8* %a48_offset2 to i48*
1816   %b16_63 = load i48, i48* %a48_offset2.cast48, align 2
1817   call void @callee16(i16 %b0_15)
1818   call void @callee48(i48 %b16_63)
1819   ret void
1822 declare void @callee16(i16 %a)
1823 declare void @callee48(i48 %a)
1825 define void @test28(i64 %v) #0 {
1826 ; SROA should split the first i64 store to avoid additional and/or instructions
1827 ; when storing into i32 fields
1829 ; CHECK-LABEL: @test28(
1830 ; CHECK-NOT: alloca
1831 ; CHECK-NOT: and
1832 ; CHECK-NOT: or
1833 ; CHECK:      %[[shift:.*]] = lshr i64 %v, 32
1834 ; CHECK-NEXT: %{{.*}} = trunc i64 %[[shift]] to i32
1835 ; CHECK-NEXT: ret void
1837 entry:
1838   %t = alloca { i64, i32, i32 }
1840   %b = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 1
1841   %0 = bitcast i32* %b to i64*
1842   store i64 %v, i64* %0
1844   %1 = load i32, i32* %b
1845   %c = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 2
1846   store i32 %1, i32* %c
1847   ret void
1850 declare void @llvm.lifetime.start.isVoid.i64.p0i8(i64, [10 x float]* nocapture)
1851 declare void @llvm.lifetime.end.isVoid.i64.p0i8(i64, [10 x float]* nocapture)
1852 @array = dso_local global [10 x float] undef, align 4
1854 define void @test29(i32 %num, i32 %tid) {
1855 ; CHECK-LABEL: @test29(
1856 ; CHECK-NOT: alloca [10 x float]
1857 ; CHECK: ret void
1859 entry:
1860   %ra = alloca [10 x float], align 4
1861   call void @llvm.lifetime.start.isVoid.i64.p0i8(i64 40, [10 x float]* nonnull %ra)
1863   %cmp1 = icmp sgt i32 %num, 0
1864   br i1 %cmp1, label %bb1, label %bb7
1866 bb1:
1867   %tobool = icmp eq i32 %tid, 0
1868   %conv.i = zext i32 %tid to i64
1869   %0 = bitcast [10 x float]* %ra to i32*
1870   %1 = load i32, i32* %0, align 4
1871   %arrayidx5 = getelementptr inbounds [10 x float], [10 x float]* @array, i64 0, i64 %conv.i
1872   %2 = bitcast float* %arrayidx5 to i32*
1873   br label %bb2
1875 bb2:
1876   %i.02 = phi i32 [ %num, %bb1 ], [ %sub, %bb5 ]
1877   br i1 %tobool, label %bb3, label %bb4
1879 bb3:
1880   br label %bb5
1882 bb4:
1883   store i32 %1, i32* %2, align 4
1884   br label %bb5
1886 bb5:
1887   %sub = add i32 %i.02, -1
1888   %cmp = icmp sgt i32 %sub, 0
1889   br i1 %cmp, label %bb2, label %bb6
1891 bb6:
1892   br label %bb7
1894 bb7:
1895   call void @llvm.lifetime.end.isVoid.i64.p0i8(i64 40, [10 x float]* nonnull %ra)
1896   ret void
1899 !0 = !{!1, !1, i64 0, i64 1}
1900 !1 = !{!2, i64 1, !"type_0"}
1901 !2 = !{!"root"}
1902 !3 = !{!4, !4, i64 0, i64 1}
1903 !4 = !{!2, i64 1, !"type_3"}
1904 !5 = !{!6, !6, i64 0, i64 1}
1905 !6 = !{!2, i64 1, !"type_5"}
1906 !7 = !{!8, !8, i64 0, i64 1}
1907 !8 = !{!2, i64 1, !"type_7"}
1908 !9 = !{!10, !10, i64 0, i64 1}
1909 !10 = !{!2, i64 1, !"type_9"}
1910 !11 = !{!12, !12, i64 0, i64 1}
1911 !12 = !{!2, i64 1, !"type_11"}
1912 !13 = !{!14, !14, i64 0, i64 1}
1913 !14 = !{!2, i64 1, !"type_13"}
1914 !15 = !{!16, !16, i64 0, i64 1}
1915 !16 = !{!2, i64 1, !"type_15"}
1916 !17 = !{!18, !18, i64 0, i64 1}
1917 !18 = !{!2, i64 1, !"type_17"}
1918 !19 = !{!20, !20, i64 0, i64 1}
1919 !20 = !{!2, i64 1, !"type_19"}
1920 !21 = !{!22, !22, i64 0, i64 1}
1921 !22 = !{!2, i64 1, !"type_21"}
1922 !23 = !{!24, !24, i64 0, i64 1}
1923 !24 = !{!2, i64 1, !"type_23"}
1924 !25 = !{!26, !26, i64 0, i64 1}
1925 !26 = !{!2, i64 1, !"type_25"}
1926 !27 = !{!28, !28, i64 0, i64 1}
1927 !28 = !{!2, i64 1, !"type_27"}
1928 !29 = !{!30, !30, i64 0, i64 1}
1929 !30 = !{!2, i64 1, !"type_29"}
1930 !31 = !{!32, !32, i64 0, i64 1}
1931 !32 = !{!2, i64 1, !"type_31"}
1932 !33 = !{!34, !34, i64 0, i64 1}
1933 !34 = !{!2, i64 1, !"type_33"}
1934 !35 = !{!36, !36, i64 0, i64 1}
1935 !36 = !{!2, i64 1, !"type_35"}
1936 !37 = !{!38, !38, i64 0, i64 1}
1937 !38 = !{!2, i64 1, !"type_37"}
1938 !39 = !{!40, !40, i64 0, i64 1}
1939 !40 = !{!2, i64 1, !"type_39"}
1940 !41 = !{!42, !42, i64 0, i64 1}
1941 !42 = !{!2, i64 1, !"type_41"}
1942 !43 = !{!44, !44, i64 0, i64 1}
1943 !44 = !{!2, i64 1, !"type_43"}
1944 !45 = !{!46, !46, i64 0, i64 1}
1945 !46 = !{!2, i64 1, !"type_45"}
1946 !47 = !{!48, !48, i64 0, i64 1}
1947 !48 = !{!2, i64 1, !"type_47"}
1948 !49 = !{!50, !50, i64 0, i64 1}
1949 !50 = !{!2, i64 1, !"type_49"}
1950 !51 = !{!52, !52, i64 0, i64 1}
1951 !52 = !{!2, i64 1, !"type_51"}
1952 !53 = !{!54, !54, i64 0, i64 1}
1953 !54 = !{!2, i64 1, !"type_53"}
1954 !55 = !{!56, !56, i64 0, i64 1}
1955 !56 = !{!2, i64 1, !"type_55"}
1956 !57 = !{!58, !58, i64 0, i64 1}
1957 !58 = !{!2, i64 1, !"type_57"}
1958 !59 = !{!60, !60, i64 0, i64 1}
1959 !60 = !{!2, i64 1, !"type_59"}
1961 ; CHECK-DAG: [[TYPE_0:!.*]] = !{{{.*}}, !"type_0"}
1962 ; CHECK-DAG: [[TAG_0]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 1}
1963 ; CHECK-DAG: [[TYPE_3:!.*]] = !{{{.*}}, !"type_3"}
1964 ; CHECK-DAG: [[TAG_3]] = !{[[TYPE_3]], [[TYPE_3]], i64 0, i64 1}
1965 ; CHECK-DAG: [[TYPE_5:!.*]] = !{{{.*}}, !"type_5"}
1966 ; CHECK-DAG: [[TAG_5]] = !{[[TYPE_5]], [[TYPE_5]], i64 0, i64 1}
1967 ; CHECK-DAG: [[TYPE_7:!.*]] = !{{{.*}}, !"type_7"}
1968 ; CHECK-DAG: [[TAG_7]] = !{[[TYPE_7]], [[TYPE_7]], i64 0, i64 1}
1969 ; CHECK-DAG: [[TYPE_9:!.*]] = !{{{.*}}, !"type_9"}
1970 ; CHECK-DAG: [[TAG_9]] = !{[[TYPE_9]], [[TYPE_9]], i64 0, i64 1}
1971 ; CHECK-DAG: [[TYPE_11:!.*]] = !{{{.*}}, !"type_11"}
1972 ; CHECK-DAG: [[TAG_11]] = !{[[TYPE_11]], [[TYPE_11]], i64 0, i64 1}
1973 ; CHECK-DAG: [[TYPE_13:!.*]] = !{{{.*}}, !"type_13"}
1974 ; CHECK-DAG: [[TAG_13]] = !{[[TYPE_13]], [[TYPE_13]], i64 0, i64 1}
1975 ; CHECK-DAG: [[TYPE_15:!.*]] = !{{{.*}}, !"type_15"}
1976 ; CHECK-DAG: [[TAG_15]] = !{[[TYPE_15]], [[TYPE_15]], i64 0, i64 1}
1977 ; CHECK-DAG: [[TYPE_17:!.*]] = !{{{.*}}, !"type_17"}
1978 ; CHECK-DAG: [[TAG_17]] = !{[[TYPE_17]], [[TYPE_17]], i64 0, i64 1}
1979 ; CHECK-DAG: [[TYPE_19:!.*]] = !{{{.*}}, !"type_19"}
1980 ; CHECK-DAG: [[TAG_19]] = !{[[TYPE_19]], [[TYPE_19]], i64 0, i64 1}
1981 ; CHECK-DAG: [[TYPE_21:!.*]] = !{{{.*}}, !"type_21"}
1982 ; CHECK-DAG: [[TAG_21]] = !{[[TYPE_21]], [[TYPE_21]], i64 0, i64 1}
1983 ; CHECK-DAG: [[TYPE_23:!.*]] = !{{{.*}}, !"type_23"}
1984 ; CHECK-DAG: [[TAG_23]] = !{[[TYPE_23]], [[TYPE_23]], i64 0, i64 1}
1985 ; CHECK-DAG: [[TYPE_25:!.*]] = !{{{.*}}, !"type_25"}
1986 ; CHECK-DAG: [[TAG_25]] = !{[[TYPE_25]], [[TYPE_25]], i64 0, i64 1}
1987 ; CHECK-DAG: [[TYPE_27:!.*]] = !{{{.*}}, !"type_27"}
1988 ; CHECK-DAG: [[TAG_27]] = !{[[TYPE_27]], [[TYPE_27]], i64 0, i64 1}
1989 ; CHECK-DAG: [[TYPE_29:!.*]] = !{{{.*}}, !"type_29"}
1990 ; CHECK-DAG: [[TAG_29]] = !{[[TYPE_29]], [[TYPE_29]], i64 0, i64 1}
1991 ; CHECK-DAG: [[TYPE_31:!.*]] = !{{{.*}}, !"type_31"}
1992 ; CHECK-DAG: [[TAG_31]] = !{[[TYPE_31]], [[TYPE_31]], i64 0, i64 1}
1993 ; CHECK-DAG: [[TYPE_33:!.*]] = !{{{.*}}, !"type_33"}
1994 ; CHECK-DAG: [[TAG_33]] = !{[[TYPE_33]], [[TYPE_33]], i64 0, i64 1}
1995 ; CHECK-DAG: [[TYPE_35:!.*]] = !{{{.*}}, !"type_35"}
1996 ; CHECK-DAG: [[TAG_35]] = !{[[TYPE_35]], [[TYPE_35]], i64 0, i64 1}
1997 ; CHECK-DAG: [[TYPE_37:!.*]] = !{{{.*}}, !"type_37"}
1998 ; CHECK-DAG: [[TAG_37]] = !{[[TYPE_37]], [[TYPE_37]], i64 0, i64 1}
1999 ; CHECK-DAG: [[TYPE_39:!.*]] = !{{{.*}}, !"type_39"}
2000 ; CHECK-DAG: [[TAG_39]] = !{[[TYPE_39]], [[TYPE_39]], i64 0, i64 1}
2001 ; CHECK-DAG: [[TYPE_41:!.*]] = !{{{.*}}, !"type_41"}
2002 ; CHECK-DAG: [[TAG_41]] = !{[[TYPE_41]], [[TYPE_41]], i64 0, i64 1}
2003 ; CHECK-DAG: [[TYPE_43:!.*]] = !{{{.*}}, !"type_43"}
2004 ; CHECK-DAG: [[TAG_43]] = !{[[TYPE_43]], [[TYPE_43]], i64 0, i64 1}
2005 ; CHECK-DAG: [[TYPE_45:!.*]] = !{{{.*}}, !"type_45"}
2006 ; CHECK-DAG: [[TAG_45]] = !{[[TYPE_45]], [[TYPE_45]], i64 0, i64 1}
2007 ; CHECK-DAG: [[TYPE_47:!.*]] = !{{{.*}}, !"type_47"}
2008 ; CHECK-DAG: [[TAG_47]] = !{[[TYPE_47]], [[TYPE_47]], i64 0, i64 1}
2009 ; CHECK-DAG: [[TYPE_49:!.*]] = !{{{.*}}, !"type_49"}
2010 ; CHECK-DAG: [[TAG_49]] = !{[[TYPE_49]], [[TYPE_49]], i64 0, i64 1}
2011 ; CHECK-DAG: [[TYPE_51:!.*]] = !{{{.*}}, !"type_51"}
2012 ; CHECK-DAG: [[TAG_51]] = !{[[TYPE_51]], [[TYPE_51]], i64 0, i64 1}
2013 ; CHECK-DAG: [[TYPE_53:!.*]] = !{{{.*}}, !"type_53"}
2014 ; CHECK-DAG: [[TAG_53]] = !{[[TYPE_53]], [[TYPE_53]], i64 0, i64 1}
2015 ; CHECK-DAG: [[TYPE_55:!.*]] = !{{{.*}}, !"type_55"}
2016 ; CHECK-DAG: [[TAG_55]] = !{[[TYPE_55]], [[TYPE_55]], i64 0, i64 1}
2017 ; CHECK-DAG: [[TYPE_57:!.*]] = !{{{.*}}, !"type_57"}
2018 ; CHECK-DAG: [[TAG_57]] = !{[[TYPE_57]], [[TYPE_57]], i64 0, i64 1}
2019 ; CHECK-DAG: [[TYPE_59:!.*]] = !{{{.*}}, !"type_59"}
2020 ; CHECK-DAG: [[TAG_59]] = !{[[TYPE_59]], [[TYPE_59]], i64 0, i64 1}