[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / tools / llvm-exegesis / lib / Uops.cpp
blob8fc8fd278d41d7f3c7f9e4911e0aaa8fa9b25a16
1 //===-- Uops.cpp ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Uops.h"
11 #include "Assembler.h"
12 #include "BenchmarkRunner.h"
13 #include "MCInstrDescView.h"
14 #include "Target.h"
16 // FIXME: Load constants into registers (e.g. with fld1) to not break
17 // instructions like x87.
19 // Ideally we would like the only limitation on executing uops to be the issue
20 // ports. Maximizing port pressure increases the likelihood that the load is
21 // distributed evenly across possible ports.
23 // To achieve that, one approach is to generate instructions that do not have
24 // data dependencies between them.
26 // For some instructions, this is trivial:
27 // mov rax, qword ptr [rsi]
28 // mov rax, qword ptr [rsi]
29 // mov rax, qword ptr [rsi]
30 // mov rax, qword ptr [rsi]
31 // For the above snippet, haswell just renames rax four times and executes the
32 // four instructions two at a time on P23 and P0126.
34 // For some instructions, we just need to make sure that the source is
35 // different from the destination. For example, IDIV8r reads from GPR and
36 // writes to AX. We just need to ensure that the Var is assigned a
37 // register which is different from AX:
38 // idiv bx
39 // idiv bx
40 // idiv bx
41 // idiv bx
42 // The above snippet will be able to fully saturate the ports, while the same
43 // with ax would issue one uop every `latency(IDIV8r)` cycles.
45 // Some instructions make this harder because they both read and write from
46 // the same register:
47 // inc rax
48 // inc rax
49 // inc rax
50 // inc rax
51 // This has a data dependency from each instruction to the next, limit the
52 // number of instructions that can be issued in parallel.
53 // It turns out that this is not a big issue on recent Intel CPUs because they
54 // have heuristics to balance port pressure. In the snippet above, subsequent
55 // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
56 // might end up executing them all on P0 (just because they can), or try
57 // avoiding P5 because it's usually under high pressure from vector
58 // instructions.
59 // This issue is even more important for high-latency instructions because
60 // they increase the idle time of the CPU, e.g. :
61 // imul rax, rbx
62 // imul rax, rbx
63 // imul rax, rbx
64 // imul rax, rbx
66 // To avoid that, we do the renaming statically by generating as many
67 // independent exclusive assignments as possible (until all possible registers
68 // are exhausted) e.g.:
69 // imul rax, rbx
70 // imul rcx, rbx
71 // imul rdx, rbx
72 // imul r8, rbx
74 // Some instruction even make the above static renaming impossible because
75 // they implicitly read and write from the same operand, e.g. ADC16rr reads
76 // and writes from EFLAGS.
77 // In that case we just use a greedy register assignment and hope for the
78 // best.
80 namespace llvm {
81 namespace exegesis {
83 static llvm::SmallVector<const Variable *, 8>
84 getVariablesWithTiedOperands(const Instruction &Instr) {
85 llvm::SmallVector<const Variable *, 8> Result;
86 for (const auto &Var : Instr.Variables)
87 if (Var.hasTiedOperands())
88 Result.push_back(&Var);
89 return Result;
92 static void remove(llvm::BitVector &a, const llvm::BitVector &b) {
93 assert(a.size() == b.size());
94 for (auto I : b.set_bits())
95 a.reset(I);
98 UopsBenchmarkRunner::~UopsBenchmarkRunner() = default;
100 UopsSnippetGenerator::~UopsSnippetGenerator() = default;
102 void UopsSnippetGenerator::instantiateMemoryOperands(
103 const unsigned ScratchSpacePointerInReg,
104 std::vector<InstructionTemplate> &Instructions) const {
105 if (ScratchSpacePointerInReg == 0)
106 return; // no memory operands.
107 const auto &ET = State.getExegesisTarget();
108 const unsigned MemStep = ET.getMaxMemoryAccessSize();
109 const size_t OriginalInstructionsSize = Instructions.size();
110 size_t I = 0;
111 for (InstructionTemplate &IT : Instructions) {
112 ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
113 ++I;
116 while (Instructions.size() < kMinNumDifferentAddresses) {
117 InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
118 ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
119 ++I;
120 Instructions.push_back(std::move(IT));
122 assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
123 "not enough scratch space");
126 static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
127 const LLVMState &State, const InstructionTemplate &IT,
128 const ArrayRef<const Variable *> TiedVariables,
129 const BitVector *ScratchSpaceAliasedRegs) {
130 std::vector<InstructionTemplate> Instructions;
131 // Assign registers to variables in a round-robin manner. This is simple but
132 // ensures that the most register-constrained variable does not get starved.
133 std::vector<BitVector> PossibleRegsForVar;
134 for (const Variable *Var : TiedVariables) {
135 assert(Var);
136 const Operand &Op = IT.Instr.getPrimaryOperand(*Var);
137 assert(Op.isReg());
138 BitVector PossibleRegs = State.getRATC().emptyRegisters();
139 if (ScratchSpaceAliasedRegs) {
140 PossibleRegs |= *ScratchSpaceAliasedRegs;
142 PossibleRegs.flip();
143 PossibleRegs &= Op.getRegisterAliasing().sourceBits();
144 PossibleRegsForVar.push_back(std::move(PossibleRegs));
146 SmallVector<int, 2> Iterators(TiedVariables.size(), 0);
147 while (true) {
148 InstructionTemplate TmpIT = IT;
149 // Find a possible register for each variable in turn, marking the
150 // register as taken.
151 for (size_t VarId = 0; VarId < TiedVariables.size(); ++VarId) {
152 const int NextPossibleReg =
153 PossibleRegsForVar[VarId].find_next(Iterators[VarId]);
154 if (NextPossibleReg <= 0) {
155 return Instructions;
157 TmpIT.getValueFor(*TiedVariables[VarId]) =
158 llvm::MCOperand::createReg(NextPossibleReg);
159 // Bump iterator.
160 Iterators[VarId] = NextPossibleReg;
161 // Prevent other variables from using the register.
162 for (BitVector &OtherPossibleRegs : PossibleRegsForVar) {
163 OtherPossibleRegs.reset(NextPossibleReg);
166 Instructions.push_back(std::move(TmpIT));
170 llvm::Expected<std::vector<CodeTemplate>>
171 UopsSnippetGenerator::generateCodeTemplates(const Instruction &Instr) const {
172 CodeTemplate CT;
173 const llvm::BitVector *ScratchSpaceAliasedRegs = nullptr;
174 if (Instr.hasMemoryOperands()) {
175 const auto &ET = State.getExegesisTarget();
176 CT.ScratchSpacePointerInReg =
177 ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
178 if (CT.ScratchSpacePointerInReg == 0)
179 return llvm::make_error<BenchmarkFailure>(
180 "Infeasible : target does not support memory instructions");
181 ScratchSpaceAliasedRegs =
182 &State.getRATC().getRegister(CT.ScratchSpacePointerInReg).aliasedBits();
183 // If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
184 // FIXME: We could make a copy of the scratch register.
185 for (const auto &Op : Instr.Operands) {
186 if (Op.isDef() && Op.isImplicitReg() &&
187 ScratchSpaceAliasedRegs->test(Op.getImplicitReg()))
188 return llvm::make_error<BenchmarkFailure>(
189 "Infeasible : memory instruction uses scratch memory register");
193 const AliasingConfigurations SelfAliasing(Instr, Instr);
194 InstructionTemplate IT(Instr);
195 if (SelfAliasing.empty()) {
196 CT.Info = "instruction is parallel, repeating a random one.";
197 CT.Instructions.push_back(std::move(IT));
198 instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
199 return getSingleton(std::move(CT));
201 if (SelfAliasing.hasImplicitAliasing()) {
202 CT.Info = "instruction is serial, repeating a random one.";
203 CT.Instructions.push_back(std::move(IT));
204 instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
205 return getSingleton(std::move(CT));
207 const auto TiedVariables = getVariablesWithTiedOperands(Instr);
208 if (!TiedVariables.empty()) {
209 CT.Info = "instruction has tied variables, using static renaming.";
210 CT.Instructions = generateSnippetUsingStaticRenaming(
211 State, IT, TiedVariables, ScratchSpaceAliasedRegs);
212 instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
213 return getSingleton(std::move(CT));
215 const auto &ReservedRegisters = State.getRATC().reservedRegisters();
216 // No tied variables, we pick random values for defs.
217 llvm::BitVector Defs(State.getRegInfo().getNumRegs());
218 for (const auto &Op : Instr.Operands) {
219 if (Op.isReg() && Op.isExplicit() && Op.isDef() && !Op.isMemory()) {
220 auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
221 remove(PossibleRegisters, ReservedRegisters);
222 // Do not use the scratch memory address register.
223 if (ScratchSpaceAliasedRegs)
224 remove(PossibleRegisters, *ScratchSpaceAliasedRegs);
225 assert(PossibleRegisters.any() && "No register left to choose from");
226 const auto RandomReg = randomBit(PossibleRegisters);
227 Defs.set(RandomReg);
228 IT.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg);
231 // And pick random use values that are not reserved and don't alias with defs.
232 const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs);
233 for (const auto &Op : Instr.Operands) {
234 if (Op.isReg() && Op.isExplicit() && Op.isUse() && !Op.isMemory()) {
235 auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
236 remove(PossibleRegisters, ReservedRegisters);
237 // Do not use the scratch memory address register.
238 if (ScratchSpaceAliasedRegs)
239 remove(PossibleRegisters, *ScratchSpaceAliasedRegs);
240 remove(PossibleRegisters, DefAliases);
241 assert(PossibleRegisters.any() && "No register left to choose from");
242 const auto RandomReg = randomBit(PossibleRegisters);
243 IT.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg);
246 CT.Info =
247 "instruction has no tied variables picking Uses different from defs";
248 CT.Instructions.push_back(std::move(IT));
249 instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
250 return getSingleton(std::move(CT));
253 llvm::Expected<std::vector<BenchmarkMeasure>>
254 UopsBenchmarkRunner::runMeasurements(const FunctionExecutor &Executor) const {
255 std::vector<BenchmarkMeasure> Result;
256 const PfmCountersInfo &PCI = State.getPfmCounters();
257 // Uops per port.
258 for (const auto *IssueCounter = PCI.IssueCounters,
259 *IssueCounterEnd = PCI.IssueCounters + PCI.NumIssueCounters;
260 IssueCounter != IssueCounterEnd; ++IssueCounter) {
261 if (!IssueCounter->Counter)
262 continue;
263 auto ExpectedCounterValue = Executor.runAndMeasure(IssueCounter->Counter);
264 if (!ExpectedCounterValue)
265 return ExpectedCounterValue.takeError();
266 Result.push_back(BenchmarkMeasure::Create(IssueCounter->ProcResName,
267 *ExpectedCounterValue));
269 // NumMicroOps.
270 if (const char *const UopsCounter = PCI.UopsCounter) {
271 auto ExpectedCounterValue = Executor.runAndMeasure(UopsCounter);
272 if (!ExpectedCounterValue)
273 return ExpectedCounterValue.takeError();
274 Result.push_back(
275 BenchmarkMeasure::Create("NumMicroOps", *ExpectedCounterValue));
277 return std::move(Result);
280 constexpr const size_t UopsSnippetGenerator::kMinNumDifferentAddresses;
282 } // namespace exegesis
283 } // namespace llvm