[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / unittests / ADT / STLExtrasTest.cpp
blob4cbef904ca816e4ae3faa9eb5bd24bba3cebba61
1 //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/STLExtras.h"
10 #include "gtest/gtest.h"
12 #include <list>
13 #include <vector>
15 using namespace llvm;
17 namespace {
19 int f(rank<0>) { return 0; }
20 int f(rank<1>) { return 1; }
21 int f(rank<2>) { return 2; }
22 int f(rank<4>) { return 4; }
24 TEST(STLExtrasTest, Rank) {
25 // We shouldn't get ambiguities and should select the overload of the same
26 // rank as the argument.
27 EXPECT_EQ(0, f(rank<0>()));
28 EXPECT_EQ(1, f(rank<1>()));
29 EXPECT_EQ(2, f(rank<2>()));
31 // This overload is missing so we end up back at 2.
32 EXPECT_EQ(2, f(rank<3>()));
34 // But going past 3 should work fine.
35 EXPECT_EQ(4, f(rank<4>()));
37 // And we can even go higher and just fall back to the last overload.
38 EXPECT_EQ(4, f(rank<5>()));
39 EXPECT_EQ(4, f(rank<6>()));
42 TEST(STLExtrasTest, EnumerateLValue) {
43 // Test that a simple LValue can be enumerated and gives correct results with
44 // multiple types, including the empty container.
45 std::vector<char> foo = {'a', 'b', 'c'};
46 typedef std::pair<std::size_t, char> CharPairType;
47 std::vector<CharPairType> CharResults;
49 for (auto X : llvm::enumerate(foo)) {
50 CharResults.emplace_back(X.index(), X.value());
52 ASSERT_EQ(3u, CharResults.size());
53 EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
54 EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
55 EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
57 // Test a const range of a different type.
58 typedef std::pair<std::size_t, int> IntPairType;
59 std::vector<IntPairType> IntResults;
60 const std::vector<int> bar = {1, 2, 3};
61 for (auto X : llvm::enumerate(bar)) {
62 IntResults.emplace_back(X.index(), X.value());
64 ASSERT_EQ(3u, IntResults.size());
65 EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
66 EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
67 EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
69 // Test an empty range.
70 IntResults.clear();
71 const std::vector<int> baz{};
72 for (auto X : llvm::enumerate(baz)) {
73 IntResults.emplace_back(X.index(), X.value());
75 EXPECT_TRUE(IntResults.empty());
78 TEST(STLExtrasTest, EnumerateModifyLValue) {
79 // Test that you can modify the underlying entries of an lvalue range through
80 // the enumeration iterator.
81 std::vector<char> foo = {'a', 'b', 'c'};
83 for (auto X : llvm::enumerate(foo)) {
84 ++X.value();
86 EXPECT_EQ('b', foo[0]);
87 EXPECT_EQ('c', foo[1]);
88 EXPECT_EQ('d', foo[2]);
91 TEST(STLExtrasTest, EnumerateRValueRef) {
92 // Test that an rvalue can be enumerated.
93 typedef std::pair<std::size_t, int> PairType;
94 std::vector<PairType> Results;
96 auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
98 for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
99 Results.emplace_back(X.index(), X.value());
102 ASSERT_EQ(3u, Results.size());
103 EXPECT_EQ(PairType(0u, 1), Results[0]);
104 EXPECT_EQ(PairType(1u, 2), Results[1]);
105 EXPECT_EQ(PairType(2u, 3), Results[2]);
108 TEST(STLExtrasTest, EnumerateModifyRValue) {
109 // Test that when enumerating an rvalue, modification still works (even if
110 // this isn't terribly useful, it at least shows that we haven't snuck an
111 // extra const in there somewhere.
112 typedef std::pair<std::size_t, char> PairType;
113 std::vector<PairType> Results;
115 for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
116 ++X.value();
117 Results.emplace_back(X.index(), X.value());
120 ASSERT_EQ(3u, Results.size());
121 EXPECT_EQ(PairType(0u, '2'), Results[0]);
122 EXPECT_EQ(PairType(1u, '3'), Results[1]);
123 EXPECT_EQ(PairType(2u, '4'), Results[2]);
126 template <bool B> struct CanMove {};
127 template <> struct CanMove<false> {
128 CanMove(CanMove &&) = delete;
130 CanMove() = default;
131 CanMove(const CanMove &) = default;
134 template <bool B> struct CanCopy {};
135 template <> struct CanCopy<false> {
136 CanCopy(const CanCopy &) = delete;
138 CanCopy() = default;
139 CanCopy(CanCopy &&) = default;
142 template <bool Moveable, bool Copyable>
143 struct Range : CanMove<Moveable>, CanCopy<Copyable> {
144 explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
145 Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
146 Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
147 ++M;
149 ~Range() { ++D; }
151 int &C;
152 int &M;
153 int &D;
155 int *begin() { return nullptr; }
156 int *end() { return nullptr; }
159 TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
160 // Test that when enumerating lvalues and rvalues, there are no surprise
161 // copies or moves.
163 // With an rvalue, it should not be destroyed until the end of the scope.
164 int Copies = 0;
165 int Moves = 0;
166 int Destructors = 0;
168 auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
169 // Doesn't compile. rvalue ranges must be moveable.
170 // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
171 EXPECT_EQ(0, Copies);
172 EXPECT_EQ(1, Moves);
173 EXPECT_EQ(1, Destructors);
175 EXPECT_EQ(0, Copies);
176 EXPECT_EQ(1, Moves);
177 EXPECT_EQ(2, Destructors);
179 Copies = Moves = Destructors = 0;
180 // With an lvalue, it should not be destroyed even after the end of the scope.
181 // lvalue ranges need be neither copyable nor moveable.
182 Range<false, false> R(Copies, Moves, Destructors);
184 auto Enumerator = enumerate(R);
185 (void)Enumerator;
186 EXPECT_EQ(0, Copies);
187 EXPECT_EQ(0, Moves);
188 EXPECT_EQ(0, Destructors);
190 EXPECT_EQ(0, Copies);
191 EXPECT_EQ(0, Moves);
192 EXPECT_EQ(0, Destructors);
195 TEST(STLExtrasTest, ApplyTuple) {
196 auto T = std::make_tuple(1, 3, 7);
197 auto U = llvm::apply_tuple(
198 [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
201 EXPECT_EQ(-2, std::get<0>(U));
202 EXPECT_EQ(-4, std::get<1>(U));
203 EXPECT_EQ(6, std::get<2>(U));
205 auto V = llvm::apply_tuple(
206 [](int A, int B, int C) {
207 return std::make_tuple(std::make_pair(A, char('A' + A)),
208 std::make_pair(B, char('A' + B)),
209 std::make_pair(C, char('A' + C)));
213 EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
214 EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
215 EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
218 class apply_variadic {
219 static int apply_one(int X) { return X + 1; }
220 static char apply_one(char C) { return C + 1; }
221 static StringRef apply_one(StringRef S) { return S.drop_back(); }
223 public:
224 template <typename... Ts>
225 auto operator()(Ts &&... Items)
226 -> decltype(std::make_tuple(apply_one(Items)...)) {
227 return std::make_tuple(apply_one(Items)...);
231 TEST(STLExtrasTest, ApplyTupleVariadic) {
232 auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
233 auto Values = apply_tuple(apply_variadic(), Items);
235 EXPECT_EQ(2, std::get<0>(Values));
236 EXPECT_EQ("Tes", std::get<1>(Values));
237 EXPECT_EQ('Y', std::get<2>(Values));
240 TEST(STLExtrasTest, CountAdaptor) {
241 std::vector<int> v;
243 v.push_back(1);
244 v.push_back(2);
245 v.push_back(1);
246 v.push_back(4);
247 v.push_back(3);
248 v.push_back(2);
249 v.push_back(1);
251 EXPECT_EQ(3, count(v, 1));
252 EXPECT_EQ(2, count(v, 2));
253 EXPECT_EQ(1, count(v, 3));
254 EXPECT_EQ(1, count(v, 4));
257 TEST(STLExtrasTest, for_each) {
258 std::vector<int> v{0, 1, 2, 3, 4};
259 int count = 0;
261 llvm::for_each(v, [&count](int) { ++count; });
262 EXPECT_EQ(5, count);
265 TEST(STLExtrasTest, ToVector) {
266 std::vector<char> v = {'a', 'b', 'c'};
267 auto Enumerated = to_vector<4>(enumerate(v));
268 ASSERT_EQ(3u, Enumerated.size());
269 for (size_t I = 0; I < v.size(); ++I) {
270 EXPECT_EQ(I, Enumerated[I].index());
271 EXPECT_EQ(v[I], Enumerated[I].value());
275 TEST(STLExtrasTest, ConcatRange) {
276 std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
277 std::vector<int> Test;
279 std::vector<int> V1234 = {1, 2, 3, 4};
280 std::list<int> L56 = {5, 6};
281 SmallVector<int, 2> SV78 = {7, 8};
283 // Use concat across different sized ranges of different types with different
284 // iterators.
285 for (int &i : concat<int>(V1234, L56, SV78))
286 Test.push_back(i);
287 EXPECT_EQ(Expected, Test);
289 // Use concat between a temporary, an L-value, and an R-value to make sure
290 // complex lifetimes work well.
291 Test.clear();
292 for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
293 Test.push_back(i);
294 EXPECT_EQ(Expected, Test);
297 TEST(STLExtrasTest, PartitionAdaptor) {
298 std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
300 auto I = partition(V, [](int i) { return i % 2 == 0; });
301 ASSERT_EQ(V.begin() + 4, I);
303 // Sort the two halves as partition may have messed with the order.
304 llvm::sort(V.begin(), I);
305 llvm::sort(I, V.end());
307 EXPECT_EQ(2, V[0]);
308 EXPECT_EQ(4, V[1]);
309 EXPECT_EQ(6, V[2]);
310 EXPECT_EQ(8, V[3]);
311 EXPECT_EQ(1, V[4]);
312 EXPECT_EQ(3, V[5]);
313 EXPECT_EQ(5, V[6]);
314 EXPECT_EQ(7, V[7]);
317 TEST(STLExtrasTest, EraseIf) {
318 std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
320 erase_if(V, [](int i) { return i % 2 == 0; });
321 EXPECT_EQ(4u, V.size());
322 EXPECT_EQ(1, V[0]);
323 EXPECT_EQ(3, V[1]);
324 EXPECT_EQ(5, V[2]);
325 EXPECT_EQ(7, V[3]);
328 namespace some_namespace {
329 struct some_struct {
330 std::vector<int> data;
331 std::string swap_val;
334 std::vector<int>::const_iterator begin(const some_struct &s) {
335 return s.data.begin();
338 std::vector<int>::const_iterator end(const some_struct &s) {
339 return s.data.end();
342 void swap(some_struct &lhs, some_struct &rhs) {
343 // make swap visible as non-adl swap would even seem to
344 // work with std::swap which defaults to moving
345 lhs.swap_val = "lhs";
346 rhs.swap_val = "rhs";
348 } // namespace some_namespace
350 TEST(STLExtrasTest, ADLTest) {
351 some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
352 some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
354 EXPECT_EQ(*adl_begin(s), 1);
355 EXPECT_EQ(*(adl_end(s) - 1), 5);
357 adl_swap(s, s2);
358 EXPECT_EQ(s.swap_val, "lhs");
359 EXPECT_EQ(s2.swap_val, "rhs");
361 int count = 0;
362 llvm::for_each(s, [&count](int) { ++count; });
363 EXPECT_EQ(5, count);
366 TEST(STLExtrasTest, EmptyTest) {
367 std::vector<void*> V;
368 EXPECT_TRUE(llvm::empty(V));
369 V.push_back(nullptr);
370 EXPECT_FALSE(llvm::empty(V));
372 std::initializer_list<int> E = {};
373 std::initializer_list<int> NotE = {7, 13, 42};
374 EXPECT_TRUE(llvm::empty(E));
375 EXPECT_FALSE(llvm::empty(NotE));
377 auto R0 = make_range(V.begin(), V.begin());
378 EXPECT_TRUE(llvm::empty(R0));
379 auto R1 = make_range(V.begin(), V.end());
380 EXPECT_FALSE(llvm::empty(R1));
383 TEST(STLExtrasTest, EarlyIncrementTest) {
384 std::list<int> L = {1, 2, 3, 4};
386 auto EIR = make_early_inc_range(L);
388 auto I = EIR.begin();
389 auto EI = EIR.end();
390 EXPECT_NE(I, EI);
392 EXPECT_EQ(1, *I);
393 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
394 #ifndef NDEBUG
395 // Repeated dereferences are not allowed.
396 EXPECT_DEATH(*I, "Cannot dereference");
397 // Comparison after dereference is not allowed.
398 EXPECT_DEATH((void)(I == EI), "Cannot compare");
399 EXPECT_DEATH((void)(I != EI), "Cannot compare");
400 #endif
401 #endif
403 ++I;
404 EXPECT_NE(I, EI);
405 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
406 #ifndef NDEBUG
407 // You cannot increment prior to dereference.
408 EXPECT_DEATH(++I, "Cannot increment");
409 #endif
410 #endif
411 EXPECT_EQ(2, *I);
412 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
413 #ifndef NDEBUG
414 // Repeated dereferences are not allowed.
415 EXPECT_DEATH(*I, "Cannot dereference");
416 #endif
417 #endif
419 // Inserting shouldn't break anything. We should be able to keep dereferencing
420 // the currrent iterator and increment. The increment to go to the "next"
421 // iterator from before we inserted.
422 L.insert(std::next(L.begin(), 2), -1);
423 ++I;
424 EXPECT_EQ(3, *I);
426 // Erasing the front including the current doesn't break incrementing.
427 L.erase(L.begin(), std::prev(L.end()));
428 ++I;
429 EXPECT_EQ(4, *I);
430 ++I;
431 EXPECT_EQ(EIR.end(), I);
434 TEST(STLExtrasTest, splat) {
435 std::vector<int> V;
436 EXPECT_FALSE(is_splat(V));
438 V.push_back(1);
439 EXPECT_TRUE(is_splat(V));
441 V.push_back(1);
442 V.push_back(1);
443 EXPECT_TRUE(is_splat(V));
445 V.push_back(2);
446 EXPECT_FALSE(is_splat(V));
449 TEST(STLExtrasTest, to_address) {
450 int *V1 = new int;
451 EXPECT_EQ(V1, to_address(V1));
453 // Check fancy pointer overload for unique_ptr
454 std::unique_ptr<int> V2 = std::make_unique<int>(0);
455 EXPECT_EQ(V2.get(), to_address(V2));
457 V2.reset(V1);
458 EXPECT_EQ(V1, to_address(V2));
459 V2.release();
461 // Check fancy pointer overload for shared_ptr
462 std::shared_ptr<int> V3 = std::make_shared<int>(0);
463 std::shared_ptr<int> V4 = V3;
464 EXPECT_EQ(V3.get(), V4.get());
465 EXPECT_EQ(V3.get(), to_address(V3));
466 EXPECT_EQ(V4.get(), to_address(V4));
468 V3.reset(V1);
469 EXPECT_EQ(V1, to_address(V3));
472 TEST(STLExtrasTest, partition_point) {
473 std::vector<int> V = {1, 3, 5, 7, 9};
475 // Range version.
476 EXPECT_EQ(V.begin() + 3,
477 partition_point(V, [](unsigned X) { return X < 7; }));
478 EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
479 EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
482 } // namespace