[yaml2obj/obj2yaml] - Add support for .stack_sizes sections.
[llvm-complete.git] / utils / TableGen / X86RecognizableInstr.cpp
blob33dc6f3f9e2347cdeed311fea085f89cc4be944e
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
14 //===----------------------------------------------------------------------===//
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86ModRMFilters.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include <string>
22 using namespace llvm;
23 using namespace X86Disassembler;
25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
26 /// Useful for switch statements and the like.
27 ///
28 /// @param init - A reference to the BitsInit to be decoded.
29 /// @return - The field, with the first bit in the BitsInit as the lowest
30 /// order bit.
31 static uint8_t byteFromBitsInit(BitsInit &init) {
32 int width = init.getNumBits();
34 assert(width <= 8 && "Field is too large for uint8_t!");
36 int index;
37 uint8_t mask = 0x01;
39 uint8_t ret = 0;
41 for (index = 0; index < width; index++) {
42 if (cast<BitInit>(init.getBit(index))->getValue())
43 ret |= mask;
45 mask <<= 1;
48 return ret;
51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
52 /// name of the field.
53 ///
54 /// @param rec - The record from which to extract the value.
55 /// @param name - The name of the field in the record.
56 /// @return - The field, as translated by byteFromBitsInit().
57 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
58 BitsInit* bits = rec->getValueAsBitsInit(name);
59 return byteFromBitsInit(*bits);
62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
63 const CodeGenInstruction &insn,
64 InstrUID uid) {
65 UID = uid;
67 Rec = insn.TheDef;
68 Name = Rec->getName();
69 Spec = &tables.specForUID(UID);
71 if (!Rec->isSubClassOf("X86Inst")) {
72 ShouldBeEmitted = false;
73 return;
76 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
77 OpMap = byteFromRec(Rec, "OpMapBits");
78 Opcode = byteFromRec(Rec, "Opcode");
79 Form = byteFromRec(Rec, "FormBits");
80 Encoding = byteFromRec(Rec, "OpEncBits");
82 OpSize = byteFromRec(Rec, "OpSizeBits");
83 AdSize = byteFromRec(Rec, "AdSizeBits");
84 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
85 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
86 HasVEX_W = Rec->getValueAsBit("HasVEX_W");
87 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
88 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
89 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
90 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
91 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
92 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
93 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
94 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
95 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
97 Name = Rec->getName();
99 Operands = &insn.Operands.OperandList;
101 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L");
103 EncodeRC = HasEVEX_B &&
104 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
106 // Check for 64-bit inst which does not require REX
107 Is32Bit = false;
108 Is64Bit = false;
109 // FIXME: Is there some better way to check for In64BitMode?
110 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112 if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113 Predicates[i]->getName().find("In32Bit") != Name.npos) {
114 Is32Bit = true;
115 break;
117 if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118 Is64Bit = true;
119 break;
123 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124 ShouldBeEmitted = false;
125 return;
128 // Special case since there is no attribute class for 64-bit and VEX
129 if (Name == "VMASKMOVDQU64") {
130 ShouldBeEmitted = false;
131 return;
134 ShouldBeEmitted = true;
137 void RecognizableInstr::processInstr(DisassemblerTables &tables,
138 const CodeGenInstruction &insn,
139 InstrUID uid)
141 // Ignore "asm parser only" instructions.
142 if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
143 return;
145 RecognizableInstr recogInstr(tables, insn, uid);
147 if (recogInstr.shouldBeEmitted()) {
148 recogInstr.emitInstructionSpecifier();
149 recogInstr.emitDecodePath(tables);
153 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
154 (HasEVEX_K && HasEVEX_B ? n##_K_B : \
155 (HasEVEX_KZ ? n##_KZ : \
156 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
158 InstructionContext RecognizableInstr::insnContext() const {
159 InstructionContext insnContext;
161 if (Encoding == X86Local::EVEX) {
162 if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
163 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
164 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
166 // VEX_L & VEX_W
167 if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
168 if (OpPrefix == X86Local::PD)
169 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
170 else if (OpPrefix == X86Local::XS)
171 insnContext = EVEX_KB(IC_EVEX_L_W_XS);
172 else if (OpPrefix == X86Local::XD)
173 insnContext = EVEX_KB(IC_EVEX_L_W_XD);
174 else if (OpPrefix == X86Local::PS)
175 insnContext = EVEX_KB(IC_EVEX_L_W);
176 else {
177 errs() << "Instruction does not use a prefix: " << Name << "\n";
178 llvm_unreachable("Invalid prefix");
180 } else if (!EncodeRC && HasVEX_LPrefix) {
181 // VEX_L
182 if (OpPrefix == X86Local::PD)
183 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
184 else if (OpPrefix == X86Local::XS)
185 insnContext = EVEX_KB(IC_EVEX_L_XS);
186 else if (OpPrefix == X86Local::XD)
187 insnContext = EVEX_KB(IC_EVEX_L_XD);
188 else if (OpPrefix == X86Local::PS)
189 insnContext = EVEX_KB(IC_EVEX_L);
190 else {
191 errs() << "Instruction does not use a prefix: " << Name << "\n";
192 llvm_unreachable("Invalid prefix");
194 } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
195 // EVEX_L2 & VEX_W
196 if (OpPrefix == X86Local::PD)
197 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
198 else if (OpPrefix == X86Local::XS)
199 insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
200 else if (OpPrefix == X86Local::XD)
201 insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
202 else if (OpPrefix == X86Local::PS)
203 insnContext = EVEX_KB(IC_EVEX_L2_W);
204 else {
205 errs() << "Instruction does not use a prefix: " << Name << "\n";
206 llvm_unreachable("Invalid prefix");
208 } else if (!EncodeRC && HasEVEX_L2Prefix) {
209 // EVEX_L2
210 if (OpPrefix == X86Local::PD)
211 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
212 else if (OpPrefix == X86Local::XD)
213 insnContext = EVEX_KB(IC_EVEX_L2_XD);
214 else if (OpPrefix == X86Local::XS)
215 insnContext = EVEX_KB(IC_EVEX_L2_XS);
216 else if (OpPrefix == X86Local::PS)
217 insnContext = EVEX_KB(IC_EVEX_L2);
218 else {
219 errs() << "Instruction does not use a prefix: " << Name << "\n";
220 llvm_unreachable("Invalid prefix");
223 else if (HasVEX_W) {
224 // VEX_W
225 if (OpPrefix == X86Local::PD)
226 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
227 else if (OpPrefix == X86Local::XS)
228 insnContext = EVEX_KB(IC_EVEX_W_XS);
229 else if (OpPrefix == X86Local::XD)
230 insnContext = EVEX_KB(IC_EVEX_W_XD);
231 else if (OpPrefix == X86Local::PS)
232 insnContext = EVEX_KB(IC_EVEX_W);
233 else {
234 errs() << "Instruction does not use a prefix: " << Name << "\n";
235 llvm_unreachable("Invalid prefix");
238 // No L, no W
239 else if (OpPrefix == X86Local::PD)
240 insnContext = EVEX_KB(IC_EVEX_OPSIZE);
241 else if (OpPrefix == X86Local::XD)
242 insnContext = EVEX_KB(IC_EVEX_XD);
243 else if (OpPrefix == X86Local::XS)
244 insnContext = EVEX_KB(IC_EVEX_XS);
245 else if (OpPrefix == X86Local::PS)
246 insnContext = EVEX_KB(IC_EVEX);
247 else {
248 errs() << "Instruction does not use a prefix: " << Name << "\n";
249 llvm_unreachable("Invalid prefix");
251 /// eof EVEX
252 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
253 if (HasVEX_LPrefix && HasVEX_W) {
254 if (OpPrefix == X86Local::PD)
255 insnContext = IC_VEX_L_W_OPSIZE;
256 else if (OpPrefix == X86Local::XS)
257 insnContext = IC_VEX_L_W_XS;
258 else if (OpPrefix == X86Local::XD)
259 insnContext = IC_VEX_L_W_XD;
260 else if (OpPrefix == X86Local::PS)
261 insnContext = IC_VEX_L_W;
262 else {
263 errs() << "Instruction does not use a prefix: " << Name << "\n";
264 llvm_unreachable("Invalid prefix");
266 } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
267 insnContext = IC_VEX_L_OPSIZE;
268 else if (OpPrefix == X86Local::PD && HasVEX_W)
269 insnContext = IC_VEX_W_OPSIZE;
270 else if (OpPrefix == X86Local::PD)
271 insnContext = IC_VEX_OPSIZE;
272 else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
273 insnContext = IC_VEX_L_XS;
274 else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
275 insnContext = IC_VEX_L_XD;
276 else if (HasVEX_W && OpPrefix == X86Local::XS)
277 insnContext = IC_VEX_W_XS;
278 else if (HasVEX_W && OpPrefix == X86Local::XD)
279 insnContext = IC_VEX_W_XD;
280 else if (HasVEX_W && OpPrefix == X86Local::PS)
281 insnContext = IC_VEX_W;
282 else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
283 insnContext = IC_VEX_L;
284 else if (OpPrefix == X86Local::XD)
285 insnContext = IC_VEX_XD;
286 else if (OpPrefix == X86Local::XS)
287 insnContext = IC_VEX_XS;
288 else if (OpPrefix == X86Local::PS)
289 insnContext = IC_VEX;
290 else {
291 errs() << "Instruction does not use a prefix: " << Name << "\n";
292 llvm_unreachable("Invalid prefix");
294 } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
295 if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
296 insnContext = IC_64BIT_REXW_OPSIZE;
297 else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
298 insnContext = IC_64BIT_REXW_ADSIZE;
299 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
300 insnContext = IC_64BIT_XD_OPSIZE;
301 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
302 insnContext = IC_64BIT_XS_OPSIZE;
303 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
304 insnContext = IC_64BIT_OPSIZE_ADSIZE;
305 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
306 insnContext = IC_64BIT_OPSIZE_ADSIZE;
307 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
308 insnContext = IC_64BIT_OPSIZE;
309 else if (AdSize == X86Local::AdSize32)
310 insnContext = IC_64BIT_ADSIZE;
311 else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
312 insnContext = IC_64BIT_REXW_XS;
313 else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
314 insnContext = IC_64BIT_REXW_XD;
315 else if (OpPrefix == X86Local::XD)
316 insnContext = IC_64BIT_XD;
317 else if (OpPrefix == X86Local::XS)
318 insnContext = IC_64BIT_XS;
319 else if (HasREX_WPrefix)
320 insnContext = IC_64BIT_REXW;
321 else
322 insnContext = IC_64BIT;
323 } else {
324 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
325 insnContext = IC_XD_OPSIZE;
326 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
327 insnContext = IC_XS_OPSIZE;
328 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
329 insnContext = IC_XD_ADSIZE;
330 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
331 insnContext = IC_XS_ADSIZE;
332 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
333 insnContext = IC_OPSIZE_ADSIZE;
334 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
335 insnContext = IC_OPSIZE_ADSIZE;
336 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
337 insnContext = IC_OPSIZE;
338 else if (AdSize == X86Local::AdSize16)
339 insnContext = IC_ADSIZE;
340 else if (OpPrefix == X86Local::XD)
341 insnContext = IC_XD;
342 else if (OpPrefix == X86Local::XS)
343 insnContext = IC_XS;
344 else
345 insnContext = IC;
348 return insnContext;
351 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
352 // The scaling factor for AVX512 compressed displacement encoding is an
353 // instruction attribute. Adjust the ModRM encoding type to include the
354 // scale for compressed displacement.
355 if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0)
356 return;
357 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
358 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
359 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
360 "Invalid CDisp scaling");
363 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
364 unsigned &physicalOperandIndex,
365 unsigned numPhysicalOperands,
366 const unsigned *operandMapping,
367 OperandEncoding (*encodingFromString)
368 (const std::string&,
369 uint8_t OpSize)) {
370 if (optional) {
371 if (physicalOperandIndex >= numPhysicalOperands)
372 return;
373 } else {
374 assert(physicalOperandIndex < numPhysicalOperands);
377 while (operandMapping[operandIndex] != operandIndex) {
378 Spec->operands[operandIndex].encoding = ENCODING_DUP;
379 Spec->operands[operandIndex].type =
380 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
381 ++operandIndex;
384 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
386 OperandEncoding encoding = encodingFromString(typeName, OpSize);
387 // Adjust the encoding type for an operand based on the instruction.
388 adjustOperandEncoding(encoding);
389 Spec->operands[operandIndex].encoding = encoding;
390 Spec->operands[operandIndex].type = typeFromString(typeName,
391 HasREX_WPrefix, OpSize);
393 ++operandIndex;
394 ++physicalOperandIndex;
397 void RecognizableInstr::emitInstructionSpecifier() {
398 Spec->name = Name;
400 Spec->insnContext = insnContext();
402 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
404 unsigned numOperands = OperandList.size();
405 unsigned numPhysicalOperands = 0;
407 // operandMapping maps from operands in OperandList to their originals.
408 // If operandMapping[i] != i, then the entry is a duplicate.
409 unsigned operandMapping[X86_MAX_OPERANDS];
410 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
412 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
413 if (!OperandList[operandIndex].Constraints.empty()) {
414 const CGIOperandList::ConstraintInfo &Constraint =
415 OperandList[operandIndex].Constraints[0];
416 if (Constraint.isTied()) {
417 operandMapping[operandIndex] = operandIndex;
418 operandMapping[Constraint.getTiedOperand()] = operandIndex;
419 } else {
420 ++numPhysicalOperands;
421 operandMapping[operandIndex] = operandIndex;
423 } else {
424 ++numPhysicalOperands;
425 operandMapping[operandIndex] = operandIndex;
429 #define HANDLE_OPERAND(class) \
430 handleOperand(false, \
431 operandIndex, \
432 physicalOperandIndex, \
433 numPhysicalOperands, \
434 operandMapping, \
435 class##EncodingFromString);
437 #define HANDLE_OPTIONAL(class) \
438 handleOperand(true, \
439 operandIndex, \
440 physicalOperandIndex, \
441 numPhysicalOperands, \
442 operandMapping, \
443 class##EncodingFromString);
445 // operandIndex should always be < numOperands
446 unsigned operandIndex = 0;
447 // physicalOperandIndex should always be < numPhysicalOperands
448 unsigned physicalOperandIndex = 0;
450 #ifndef NDEBUG
451 // Given the set of prefix bits, how many additional operands does the
452 // instruction have?
453 unsigned additionalOperands = 0;
454 if (HasVEX_4V)
455 ++additionalOperands;
456 if (HasEVEX_K)
457 ++additionalOperands;
458 #endif
460 switch (Form) {
461 default: llvm_unreachable("Unhandled form");
462 case X86Local::RawFrmSrc:
463 HANDLE_OPERAND(relocation);
464 return;
465 case X86Local::RawFrmDst:
466 HANDLE_OPERAND(relocation);
467 return;
468 case X86Local::RawFrmDstSrc:
469 HANDLE_OPERAND(relocation);
470 HANDLE_OPERAND(relocation);
471 return;
472 case X86Local::RawFrm:
473 // Operand 1 (optional) is an address or immediate.
474 assert(numPhysicalOperands <= 1 &&
475 "Unexpected number of operands for RawFrm");
476 HANDLE_OPTIONAL(relocation)
477 break;
478 case X86Local::RawFrmMemOffs:
479 // Operand 1 is an address.
480 HANDLE_OPERAND(relocation);
481 break;
482 case X86Local::AddRegFrm:
483 // Operand 1 is added to the opcode.
484 // Operand 2 (optional) is an address.
485 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
486 "Unexpected number of operands for AddRegFrm");
487 HANDLE_OPERAND(opcodeModifier)
488 HANDLE_OPTIONAL(relocation)
489 break;
490 case X86Local::AddCCFrm:
491 // Operand 1 (optional) is an address or immediate.
492 assert(numPhysicalOperands == 2 &&
493 "Unexpected number of operands for AddCCFrm");
494 HANDLE_OPERAND(relocation)
495 HANDLE_OPERAND(opcodeModifier)
496 break;
497 case X86Local::MRMDestReg:
498 // Operand 1 is a register operand in the R/M field.
499 // - In AVX512 there may be a mask operand here -
500 // Operand 2 is a register operand in the Reg/Opcode field.
501 // - In AVX, there is a register operand in the VEX.vvvv field here -
502 // Operand 3 (optional) is an immediate.
503 assert(numPhysicalOperands >= 2 + additionalOperands &&
504 numPhysicalOperands <= 3 + additionalOperands &&
505 "Unexpected number of operands for MRMDestRegFrm");
507 HANDLE_OPERAND(rmRegister)
508 if (HasEVEX_K)
509 HANDLE_OPERAND(writemaskRegister)
511 if (HasVEX_4V)
512 // FIXME: In AVX, the register below becomes the one encoded
513 // in ModRMVEX and the one above the one in the VEX.VVVV field
514 HANDLE_OPERAND(vvvvRegister)
516 HANDLE_OPERAND(roRegister)
517 HANDLE_OPTIONAL(immediate)
518 break;
519 case X86Local::MRMDestMem:
520 // Operand 1 is a memory operand (possibly SIB-extended)
521 // Operand 2 is a register operand in the Reg/Opcode field.
522 // - In AVX, there is a register operand in the VEX.vvvv field here -
523 // Operand 3 (optional) is an immediate.
524 assert(numPhysicalOperands >= 2 + additionalOperands &&
525 numPhysicalOperands <= 3 + additionalOperands &&
526 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
528 HANDLE_OPERAND(memory)
530 if (HasEVEX_K)
531 HANDLE_OPERAND(writemaskRegister)
533 if (HasVEX_4V)
534 // FIXME: In AVX, the register below becomes the one encoded
535 // in ModRMVEX and the one above the one in the VEX.VVVV field
536 HANDLE_OPERAND(vvvvRegister)
538 HANDLE_OPERAND(roRegister)
539 HANDLE_OPTIONAL(immediate)
540 break;
541 case X86Local::MRMSrcReg:
542 // Operand 1 is a register operand in the Reg/Opcode field.
543 // Operand 2 is a register operand in the R/M field.
544 // - In AVX, there is a register operand in the VEX.vvvv field here -
545 // Operand 3 (optional) is an immediate.
546 // Operand 4 (optional) is an immediate.
548 assert(numPhysicalOperands >= 2 + additionalOperands &&
549 numPhysicalOperands <= 4 + additionalOperands &&
550 "Unexpected number of operands for MRMSrcRegFrm");
552 HANDLE_OPERAND(roRegister)
554 if (HasEVEX_K)
555 HANDLE_OPERAND(writemaskRegister)
557 if (HasVEX_4V)
558 // FIXME: In AVX, the register below becomes the one encoded
559 // in ModRMVEX and the one above the one in the VEX.VVVV field
560 HANDLE_OPERAND(vvvvRegister)
562 HANDLE_OPERAND(rmRegister)
563 HANDLE_OPTIONAL(immediate)
564 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
565 break;
566 case X86Local::MRMSrcReg4VOp3:
567 assert(numPhysicalOperands == 3 &&
568 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
569 HANDLE_OPERAND(roRegister)
570 HANDLE_OPERAND(rmRegister)
571 HANDLE_OPERAND(vvvvRegister)
572 break;
573 case X86Local::MRMSrcRegOp4:
574 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
575 "Unexpected number of operands for MRMSrcRegOp4Frm");
576 HANDLE_OPERAND(roRegister)
577 HANDLE_OPERAND(vvvvRegister)
578 HANDLE_OPERAND(immediate) // Register in imm[7:4]
579 HANDLE_OPERAND(rmRegister)
580 HANDLE_OPTIONAL(immediate)
581 break;
582 case X86Local::MRMSrcRegCC:
583 assert(numPhysicalOperands == 3 &&
584 "Unexpected number of operands for MRMSrcRegCC");
585 HANDLE_OPERAND(roRegister)
586 HANDLE_OPERAND(rmRegister)
587 HANDLE_OPERAND(opcodeModifier)
588 break;
589 case X86Local::MRMSrcMem:
590 // Operand 1 is a register operand in the Reg/Opcode field.
591 // Operand 2 is a memory operand (possibly SIB-extended)
592 // - In AVX, there is a register operand in the VEX.vvvv field here -
593 // Operand 3 (optional) is an immediate.
595 assert(numPhysicalOperands >= 2 + additionalOperands &&
596 numPhysicalOperands <= 4 + additionalOperands &&
597 "Unexpected number of operands for MRMSrcMemFrm");
599 HANDLE_OPERAND(roRegister)
601 if (HasEVEX_K)
602 HANDLE_OPERAND(writemaskRegister)
604 if (HasVEX_4V)
605 // FIXME: In AVX, the register below becomes the one encoded
606 // in ModRMVEX and the one above the one in the VEX.VVVV field
607 HANDLE_OPERAND(vvvvRegister)
609 HANDLE_OPERAND(memory)
610 HANDLE_OPTIONAL(immediate)
611 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
612 break;
613 case X86Local::MRMSrcMem4VOp3:
614 assert(numPhysicalOperands == 3 &&
615 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
616 HANDLE_OPERAND(roRegister)
617 HANDLE_OPERAND(memory)
618 HANDLE_OPERAND(vvvvRegister)
619 break;
620 case X86Local::MRMSrcMemOp4:
621 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
622 "Unexpected number of operands for MRMSrcMemOp4Frm");
623 HANDLE_OPERAND(roRegister)
624 HANDLE_OPERAND(vvvvRegister)
625 HANDLE_OPERAND(immediate) // Register in imm[7:4]
626 HANDLE_OPERAND(memory)
627 HANDLE_OPTIONAL(immediate)
628 break;
629 case X86Local::MRMSrcMemCC:
630 assert(numPhysicalOperands == 3 &&
631 "Unexpected number of operands for MRMSrcMemCC");
632 HANDLE_OPERAND(roRegister)
633 HANDLE_OPERAND(memory)
634 HANDLE_OPERAND(opcodeModifier)
635 break;
636 case X86Local::MRMXrCC:
637 assert(numPhysicalOperands == 2 &&
638 "Unexpected number of operands for MRMXrCC");
639 HANDLE_OPERAND(rmRegister)
640 HANDLE_OPERAND(opcodeModifier)
641 break;
642 case X86Local::MRMXr:
643 case X86Local::MRM0r:
644 case X86Local::MRM1r:
645 case X86Local::MRM2r:
646 case X86Local::MRM3r:
647 case X86Local::MRM4r:
648 case X86Local::MRM5r:
649 case X86Local::MRM6r:
650 case X86Local::MRM7r:
651 // Operand 1 is a register operand in the R/M field.
652 // Operand 2 (optional) is an immediate or relocation.
653 // Operand 3 (optional) is an immediate.
654 assert(numPhysicalOperands >= 0 + additionalOperands &&
655 numPhysicalOperands <= 3 + additionalOperands &&
656 "Unexpected number of operands for MRMnr");
658 if (HasVEX_4V)
659 HANDLE_OPERAND(vvvvRegister)
661 if (HasEVEX_K)
662 HANDLE_OPERAND(writemaskRegister)
663 HANDLE_OPTIONAL(rmRegister)
664 HANDLE_OPTIONAL(relocation)
665 HANDLE_OPTIONAL(immediate)
666 break;
667 case X86Local::MRMXmCC:
668 assert(numPhysicalOperands == 2 &&
669 "Unexpected number of operands for MRMXm");
670 HANDLE_OPERAND(memory)
671 HANDLE_OPERAND(opcodeModifier)
672 break;
673 case X86Local::MRMXm:
674 case X86Local::MRM0m:
675 case X86Local::MRM1m:
676 case X86Local::MRM2m:
677 case X86Local::MRM3m:
678 case X86Local::MRM4m:
679 case X86Local::MRM5m:
680 case X86Local::MRM6m:
681 case X86Local::MRM7m:
682 // Operand 1 is a memory operand (possibly SIB-extended)
683 // Operand 2 (optional) is an immediate or relocation.
684 assert(numPhysicalOperands >= 1 + additionalOperands &&
685 numPhysicalOperands <= 2 + additionalOperands &&
686 "Unexpected number of operands for MRMnm");
688 if (HasVEX_4V)
689 HANDLE_OPERAND(vvvvRegister)
690 if (HasEVEX_K)
691 HANDLE_OPERAND(writemaskRegister)
692 HANDLE_OPERAND(memory)
693 HANDLE_OPTIONAL(relocation)
694 break;
695 case X86Local::RawFrmImm8:
696 // operand 1 is a 16-bit immediate
697 // operand 2 is an 8-bit immediate
698 assert(numPhysicalOperands == 2 &&
699 "Unexpected number of operands for X86Local::RawFrmImm8");
700 HANDLE_OPERAND(immediate)
701 HANDLE_OPERAND(immediate)
702 break;
703 case X86Local::RawFrmImm16:
704 // operand 1 is a 16-bit immediate
705 // operand 2 is a 16-bit immediate
706 HANDLE_OPERAND(immediate)
707 HANDLE_OPERAND(immediate)
708 break;
709 #define MAP(from, to) case X86Local::MRM_##from:
710 X86_INSTR_MRM_MAPPING
711 #undef MAP
712 HANDLE_OPTIONAL(relocation)
713 break;
716 #undef HANDLE_OPERAND
717 #undef HANDLE_OPTIONAL
720 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
721 // Special cases where the LLVM tables are not complete
723 #define MAP(from, to) \
724 case X86Local::MRM_##from:
726 llvm::Optional<OpcodeType> opcodeType;
727 switch (OpMap) {
728 default: llvm_unreachable("Invalid map!");
729 case X86Local::OB: opcodeType = ONEBYTE; break;
730 case X86Local::TB: opcodeType = TWOBYTE; break;
731 case X86Local::T8: opcodeType = THREEBYTE_38; break;
732 case X86Local::TA: opcodeType = THREEBYTE_3A; break;
733 case X86Local::XOP8: opcodeType = XOP8_MAP; break;
734 case X86Local::XOP9: opcodeType = XOP9_MAP; break;
735 case X86Local::XOPA: opcodeType = XOPA_MAP; break;
736 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
739 std::unique_ptr<ModRMFilter> filter;
740 switch (Form) {
741 default: llvm_unreachable("Invalid form!");
742 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
743 case X86Local::RawFrm:
744 case X86Local::AddRegFrm:
745 case X86Local::RawFrmMemOffs:
746 case X86Local::RawFrmSrc:
747 case X86Local::RawFrmDst:
748 case X86Local::RawFrmDstSrc:
749 case X86Local::RawFrmImm8:
750 case X86Local::RawFrmImm16:
751 case X86Local::AddCCFrm:
752 filter = std::make_unique<DumbFilter>();
753 break;
754 case X86Local::MRMDestReg:
755 case X86Local::MRMSrcReg:
756 case X86Local::MRMSrcReg4VOp3:
757 case X86Local::MRMSrcRegOp4:
758 case X86Local::MRMSrcRegCC:
759 case X86Local::MRMXrCC:
760 case X86Local::MRMXr:
761 filter = std::make_unique<ModFilter>(true);
762 break;
763 case X86Local::MRMDestMem:
764 case X86Local::MRMSrcMem:
765 case X86Local::MRMSrcMem4VOp3:
766 case X86Local::MRMSrcMemOp4:
767 case X86Local::MRMSrcMemCC:
768 case X86Local::MRMXmCC:
769 case X86Local::MRMXm:
770 filter = std::make_unique<ModFilter>(false);
771 break;
772 case X86Local::MRM0r: case X86Local::MRM1r:
773 case X86Local::MRM2r: case X86Local::MRM3r:
774 case X86Local::MRM4r: case X86Local::MRM5r:
775 case X86Local::MRM6r: case X86Local::MRM7r:
776 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
777 break;
778 case X86Local::MRM0m: case X86Local::MRM1m:
779 case X86Local::MRM2m: case X86Local::MRM3m:
780 case X86Local::MRM4m: case X86Local::MRM5m:
781 case X86Local::MRM6m: case X86Local::MRM7m:
782 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
783 break;
784 X86_INSTR_MRM_MAPPING
785 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
786 break;
787 } // switch (Form)
789 uint8_t opcodeToSet = Opcode;
791 unsigned AddressSize = 0;
792 switch (AdSize) {
793 case X86Local::AdSize16: AddressSize = 16; break;
794 case X86Local::AdSize32: AddressSize = 32; break;
795 case X86Local::AdSize64: AddressSize = 64; break;
798 assert(opcodeType && "Opcode type not set");
799 assert(filter && "Filter not set");
801 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
802 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
803 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
804 unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
805 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
807 uint8_t currentOpcode;
809 for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
810 ++currentOpcode)
811 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
812 UID, Is32Bit, OpPrefix == 0,
813 IgnoresVEX_L || EncodeRC,
814 IgnoresVEX_W, AddressSize);
815 } else {
816 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
817 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
818 IgnoresVEX_W, AddressSize);
821 #undef MAP
824 #define TYPE(str, type) if (s == str) return type;
825 OperandType RecognizableInstr::typeFromString(const std::string &s,
826 bool hasREX_WPrefix,
827 uint8_t OpSize) {
828 if(hasREX_WPrefix) {
829 // For instructions with a REX_W prefix, a declared 32-bit register encoding
830 // is special.
831 TYPE("GR32", TYPE_R32)
833 if(OpSize == X86Local::OpSize16) {
834 // For OpSize16 instructions, a declared 16-bit register or
835 // immediate encoding is special.
836 TYPE("GR16", TYPE_Rv)
837 } else if(OpSize == X86Local::OpSize32) {
838 // For OpSize32 instructions, a declared 32-bit register or
839 // immediate encoding is special.
840 TYPE("GR32", TYPE_Rv)
842 TYPE("i16mem", TYPE_M)
843 TYPE("i16imm", TYPE_IMM)
844 TYPE("i16i8imm", TYPE_IMM)
845 TYPE("GR16", TYPE_R16)
846 TYPE("i32mem", TYPE_M)
847 TYPE("i32imm", TYPE_IMM)
848 TYPE("i32i8imm", TYPE_IMM)
849 TYPE("GR32", TYPE_R32)
850 TYPE("GR32orGR64", TYPE_R32)
851 TYPE("i64mem", TYPE_M)
852 TYPE("i64i32imm", TYPE_IMM)
853 TYPE("i64i8imm", TYPE_IMM)
854 TYPE("GR64", TYPE_R64)
855 TYPE("i8mem", TYPE_M)
856 TYPE("i8imm", TYPE_IMM)
857 TYPE("u4imm", TYPE_UIMM8)
858 TYPE("u8imm", TYPE_UIMM8)
859 TYPE("i16u8imm", TYPE_UIMM8)
860 TYPE("i32u8imm", TYPE_UIMM8)
861 TYPE("i64u8imm", TYPE_UIMM8)
862 TYPE("GR8", TYPE_R8)
863 TYPE("VR128", TYPE_XMM)
864 TYPE("VR128X", TYPE_XMM)
865 TYPE("f128mem", TYPE_M)
866 TYPE("f256mem", TYPE_M)
867 TYPE("f512mem", TYPE_M)
868 TYPE("FR128", TYPE_XMM)
869 TYPE("FR64", TYPE_XMM)
870 TYPE("FR64X", TYPE_XMM)
871 TYPE("f64mem", TYPE_M)
872 TYPE("sdmem", TYPE_M)
873 TYPE("FR32", TYPE_XMM)
874 TYPE("FR32X", TYPE_XMM)
875 TYPE("f32mem", TYPE_M)
876 TYPE("ssmem", TYPE_M)
877 TYPE("RST", TYPE_ST)
878 TYPE("RSTi", TYPE_ST)
879 TYPE("i128mem", TYPE_M)
880 TYPE("i256mem", TYPE_M)
881 TYPE("i512mem", TYPE_M)
882 TYPE("i64i32imm_pcrel", TYPE_REL)
883 TYPE("i16imm_pcrel", TYPE_REL)
884 TYPE("i32imm_pcrel", TYPE_REL)
885 TYPE("ccode", TYPE_IMM)
886 TYPE("AVX512RC", TYPE_IMM)
887 TYPE("brtarget32", TYPE_REL)
888 TYPE("brtarget16", TYPE_REL)
889 TYPE("brtarget8", TYPE_REL)
890 TYPE("f80mem", TYPE_M)
891 TYPE("lea64_32mem", TYPE_M)
892 TYPE("lea64mem", TYPE_M)
893 TYPE("VR64", TYPE_MM64)
894 TYPE("i64imm", TYPE_IMM)
895 TYPE("anymem", TYPE_M)
896 TYPE("opaquemem", TYPE_M)
897 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
898 TYPE("DEBUG_REG", TYPE_DEBUGREG)
899 TYPE("CONTROL_REG", TYPE_CONTROLREG)
900 TYPE("srcidx8", TYPE_SRCIDX)
901 TYPE("srcidx16", TYPE_SRCIDX)
902 TYPE("srcidx32", TYPE_SRCIDX)
903 TYPE("srcidx64", TYPE_SRCIDX)
904 TYPE("dstidx8", TYPE_DSTIDX)
905 TYPE("dstidx16", TYPE_DSTIDX)
906 TYPE("dstidx32", TYPE_DSTIDX)
907 TYPE("dstidx64", TYPE_DSTIDX)
908 TYPE("offset16_8", TYPE_MOFFS)
909 TYPE("offset16_16", TYPE_MOFFS)
910 TYPE("offset16_32", TYPE_MOFFS)
911 TYPE("offset32_8", TYPE_MOFFS)
912 TYPE("offset32_16", TYPE_MOFFS)
913 TYPE("offset32_32", TYPE_MOFFS)
914 TYPE("offset32_64", TYPE_MOFFS)
915 TYPE("offset64_8", TYPE_MOFFS)
916 TYPE("offset64_16", TYPE_MOFFS)
917 TYPE("offset64_32", TYPE_MOFFS)
918 TYPE("offset64_64", TYPE_MOFFS)
919 TYPE("VR256", TYPE_YMM)
920 TYPE("VR256X", TYPE_YMM)
921 TYPE("VR512", TYPE_ZMM)
922 TYPE("VK1", TYPE_VK)
923 TYPE("VK1WM", TYPE_VK)
924 TYPE("VK2", TYPE_VK)
925 TYPE("VK2WM", TYPE_VK)
926 TYPE("VK4", TYPE_VK)
927 TYPE("VK4WM", TYPE_VK)
928 TYPE("VK8", TYPE_VK)
929 TYPE("VK8WM", TYPE_VK)
930 TYPE("VK16", TYPE_VK)
931 TYPE("VK16WM", TYPE_VK)
932 TYPE("VK32", TYPE_VK)
933 TYPE("VK32WM", TYPE_VK)
934 TYPE("VK64", TYPE_VK)
935 TYPE("VK64WM", TYPE_VK)
936 TYPE("VK1Pair", TYPE_VK_PAIR)
937 TYPE("VK2Pair", TYPE_VK_PAIR)
938 TYPE("VK4Pair", TYPE_VK_PAIR)
939 TYPE("VK8Pair", TYPE_VK_PAIR)
940 TYPE("VK16Pair", TYPE_VK_PAIR)
941 TYPE("vx64mem", TYPE_MVSIBX)
942 TYPE("vx128mem", TYPE_MVSIBX)
943 TYPE("vx256mem", TYPE_MVSIBX)
944 TYPE("vy128mem", TYPE_MVSIBY)
945 TYPE("vy256mem", TYPE_MVSIBY)
946 TYPE("vx64xmem", TYPE_MVSIBX)
947 TYPE("vx128xmem", TYPE_MVSIBX)
948 TYPE("vx256xmem", TYPE_MVSIBX)
949 TYPE("vy128xmem", TYPE_MVSIBY)
950 TYPE("vy256xmem", TYPE_MVSIBY)
951 TYPE("vy512xmem", TYPE_MVSIBY)
952 TYPE("vz256mem", TYPE_MVSIBZ)
953 TYPE("vz512mem", TYPE_MVSIBZ)
954 TYPE("BNDR", TYPE_BNDR)
955 errs() << "Unhandled type string " << s << "\n";
956 llvm_unreachable("Unhandled type string");
958 #undef TYPE
960 #define ENCODING(str, encoding) if (s == str) return encoding;
961 OperandEncoding
962 RecognizableInstr::immediateEncodingFromString(const std::string &s,
963 uint8_t OpSize) {
964 if(OpSize != X86Local::OpSize16) {
965 // For instructions without an OpSize prefix, a declared 16-bit register or
966 // immediate encoding is special.
967 ENCODING("i16imm", ENCODING_IW)
969 ENCODING("i32i8imm", ENCODING_IB)
970 ENCODING("AVX512RC", ENCODING_IRC)
971 ENCODING("i16imm", ENCODING_Iv)
972 ENCODING("i16i8imm", ENCODING_IB)
973 ENCODING("i32imm", ENCODING_Iv)
974 ENCODING("i64i32imm", ENCODING_ID)
975 ENCODING("i64i8imm", ENCODING_IB)
976 ENCODING("i8imm", ENCODING_IB)
977 ENCODING("u4imm", ENCODING_IB)
978 ENCODING("u8imm", ENCODING_IB)
979 ENCODING("i16u8imm", ENCODING_IB)
980 ENCODING("i32u8imm", ENCODING_IB)
981 ENCODING("i64u8imm", ENCODING_IB)
982 // This is not a typo. Instructions like BLENDVPD put
983 // register IDs in 8-bit immediates nowadays.
984 ENCODING("FR32", ENCODING_IB)
985 ENCODING("FR64", ENCODING_IB)
986 ENCODING("FR128", ENCODING_IB)
987 ENCODING("VR128", ENCODING_IB)
988 ENCODING("VR256", ENCODING_IB)
989 ENCODING("FR32X", ENCODING_IB)
990 ENCODING("FR64X", ENCODING_IB)
991 ENCODING("VR128X", ENCODING_IB)
992 ENCODING("VR256X", ENCODING_IB)
993 ENCODING("VR512", ENCODING_IB)
994 errs() << "Unhandled immediate encoding " << s << "\n";
995 llvm_unreachable("Unhandled immediate encoding");
998 OperandEncoding
999 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1000 uint8_t OpSize) {
1001 ENCODING("RST", ENCODING_FP)
1002 ENCODING("RSTi", ENCODING_FP)
1003 ENCODING("GR16", ENCODING_RM)
1004 ENCODING("GR32", ENCODING_RM)
1005 ENCODING("GR32orGR64", ENCODING_RM)
1006 ENCODING("GR64", ENCODING_RM)
1007 ENCODING("GR8", ENCODING_RM)
1008 ENCODING("VR128", ENCODING_RM)
1009 ENCODING("VR128X", ENCODING_RM)
1010 ENCODING("FR128", ENCODING_RM)
1011 ENCODING("FR64", ENCODING_RM)
1012 ENCODING("FR32", ENCODING_RM)
1013 ENCODING("FR64X", ENCODING_RM)
1014 ENCODING("FR32X", ENCODING_RM)
1015 ENCODING("VR64", ENCODING_RM)
1016 ENCODING("VR256", ENCODING_RM)
1017 ENCODING("VR256X", ENCODING_RM)
1018 ENCODING("VR512", ENCODING_RM)
1019 ENCODING("VK1", ENCODING_RM)
1020 ENCODING("VK2", ENCODING_RM)
1021 ENCODING("VK4", ENCODING_RM)
1022 ENCODING("VK8", ENCODING_RM)
1023 ENCODING("VK16", ENCODING_RM)
1024 ENCODING("VK32", ENCODING_RM)
1025 ENCODING("VK64", ENCODING_RM)
1026 ENCODING("VK1PAIR", ENCODING_RM)
1027 ENCODING("VK2PAIR", ENCODING_RM)
1028 ENCODING("VK4PAIR", ENCODING_RM)
1029 ENCODING("VK8PAIR", ENCODING_RM)
1030 ENCODING("VK16PAIR", ENCODING_RM)
1031 ENCODING("BNDR", ENCODING_RM)
1032 errs() << "Unhandled R/M register encoding " << s << "\n";
1033 llvm_unreachable("Unhandled R/M register encoding");
1036 OperandEncoding
1037 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1038 uint8_t OpSize) {
1039 ENCODING("GR16", ENCODING_REG)
1040 ENCODING("GR32", ENCODING_REG)
1041 ENCODING("GR32orGR64", ENCODING_REG)
1042 ENCODING("GR64", ENCODING_REG)
1043 ENCODING("GR8", ENCODING_REG)
1044 ENCODING("VR128", ENCODING_REG)
1045 ENCODING("FR128", ENCODING_REG)
1046 ENCODING("FR64", ENCODING_REG)
1047 ENCODING("FR32", ENCODING_REG)
1048 ENCODING("VR64", ENCODING_REG)
1049 ENCODING("SEGMENT_REG", ENCODING_REG)
1050 ENCODING("DEBUG_REG", ENCODING_REG)
1051 ENCODING("CONTROL_REG", ENCODING_REG)
1052 ENCODING("VR256", ENCODING_REG)
1053 ENCODING("VR256X", ENCODING_REG)
1054 ENCODING("VR128X", ENCODING_REG)
1055 ENCODING("FR64X", ENCODING_REG)
1056 ENCODING("FR32X", ENCODING_REG)
1057 ENCODING("VR512", ENCODING_REG)
1058 ENCODING("VK1", ENCODING_REG)
1059 ENCODING("VK2", ENCODING_REG)
1060 ENCODING("VK4", ENCODING_REG)
1061 ENCODING("VK8", ENCODING_REG)
1062 ENCODING("VK16", ENCODING_REG)
1063 ENCODING("VK32", ENCODING_REG)
1064 ENCODING("VK64", ENCODING_REG)
1065 ENCODING("VK1Pair", ENCODING_REG)
1066 ENCODING("VK2Pair", ENCODING_REG)
1067 ENCODING("VK4Pair", ENCODING_REG)
1068 ENCODING("VK8Pair", ENCODING_REG)
1069 ENCODING("VK16Pair", ENCODING_REG)
1070 ENCODING("VK1WM", ENCODING_REG)
1071 ENCODING("VK2WM", ENCODING_REG)
1072 ENCODING("VK4WM", ENCODING_REG)
1073 ENCODING("VK8WM", ENCODING_REG)
1074 ENCODING("VK16WM", ENCODING_REG)
1075 ENCODING("VK32WM", ENCODING_REG)
1076 ENCODING("VK64WM", ENCODING_REG)
1077 ENCODING("BNDR", ENCODING_REG)
1078 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1079 llvm_unreachable("Unhandled reg/opcode register encoding");
1082 OperandEncoding
1083 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1084 uint8_t OpSize) {
1085 ENCODING("GR32", ENCODING_VVVV)
1086 ENCODING("GR64", ENCODING_VVVV)
1087 ENCODING("FR32", ENCODING_VVVV)
1088 ENCODING("FR128", ENCODING_VVVV)
1089 ENCODING("FR64", ENCODING_VVVV)
1090 ENCODING("VR128", ENCODING_VVVV)
1091 ENCODING("VR256", ENCODING_VVVV)
1092 ENCODING("FR32X", ENCODING_VVVV)
1093 ENCODING("FR64X", ENCODING_VVVV)
1094 ENCODING("VR128X", ENCODING_VVVV)
1095 ENCODING("VR256X", ENCODING_VVVV)
1096 ENCODING("VR512", ENCODING_VVVV)
1097 ENCODING("VK1", ENCODING_VVVV)
1098 ENCODING("VK2", ENCODING_VVVV)
1099 ENCODING("VK4", ENCODING_VVVV)
1100 ENCODING("VK8", ENCODING_VVVV)
1101 ENCODING("VK16", ENCODING_VVVV)
1102 ENCODING("VK32", ENCODING_VVVV)
1103 ENCODING("VK64", ENCODING_VVVV)
1104 ENCODING("VK1PAIR", ENCODING_VVVV)
1105 ENCODING("VK2PAIR", ENCODING_VVVV)
1106 ENCODING("VK4PAIR", ENCODING_VVVV)
1107 ENCODING("VK8PAIR", ENCODING_VVVV)
1108 ENCODING("VK16PAIR", ENCODING_VVVV)
1109 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1110 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1113 OperandEncoding
1114 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1115 uint8_t OpSize) {
1116 ENCODING("VK1WM", ENCODING_WRITEMASK)
1117 ENCODING("VK2WM", ENCODING_WRITEMASK)
1118 ENCODING("VK4WM", ENCODING_WRITEMASK)
1119 ENCODING("VK8WM", ENCODING_WRITEMASK)
1120 ENCODING("VK16WM", ENCODING_WRITEMASK)
1121 ENCODING("VK32WM", ENCODING_WRITEMASK)
1122 ENCODING("VK64WM", ENCODING_WRITEMASK)
1123 errs() << "Unhandled mask register encoding " << s << "\n";
1124 llvm_unreachable("Unhandled mask register encoding");
1127 OperandEncoding
1128 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1129 uint8_t OpSize) {
1130 ENCODING("i16mem", ENCODING_RM)
1131 ENCODING("i32mem", ENCODING_RM)
1132 ENCODING("i64mem", ENCODING_RM)
1133 ENCODING("i8mem", ENCODING_RM)
1134 ENCODING("ssmem", ENCODING_RM)
1135 ENCODING("sdmem", ENCODING_RM)
1136 ENCODING("f128mem", ENCODING_RM)
1137 ENCODING("f256mem", ENCODING_RM)
1138 ENCODING("f512mem", ENCODING_RM)
1139 ENCODING("f64mem", ENCODING_RM)
1140 ENCODING("f32mem", ENCODING_RM)
1141 ENCODING("i128mem", ENCODING_RM)
1142 ENCODING("i256mem", ENCODING_RM)
1143 ENCODING("i512mem", ENCODING_RM)
1144 ENCODING("f80mem", ENCODING_RM)
1145 ENCODING("lea64_32mem", ENCODING_RM)
1146 ENCODING("lea64mem", ENCODING_RM)
1147 ENCODING("anymem", ENCODING_RM)
1148 ENCODING("opaquemem", ENCODING_RM)
1149 ENCODING("vx64mem", ENCODING_VSIB)
1150 ENCODING("vx128mem", ENCODING_VSIB)
1151 ENCODING("vx256mem", ENCODING_VSIB)
1152 ENCODING("vy128mem", ENCODING_VSIB)
1153 ENCODING("vy256mem", ENCODING_VSIB)
1154 ENCODING("vx64xmem", ENCODING_VSIB)
1155 ENCODING("vx128xmem", ENCODING_VSIB)
1156 ENCODING("vx256xmem", ENCODING_VSIB)
1157 ENCODING("vy128xmem", ENCODING_VSIB)
1158 ENCODING("vy256xmem", ENCODING_VSIB)
1159 ENCODING("vy512xmem", ENCODING_VSIB)
1160 ENCODING("vz256mem", ENCODING_VSIB)
1161 ENCODING("vz512mem", ENCODING_VSIB)
1162 errs() << "Unhandled memory encoding " << s << "\n";
1163 llvm_unreachable("Unhandled memory encoding");
1166 OperandEncoding
1167 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1168 uint8_t OpSize) {
1169 if(OpSize != X86Local::OpSize16) {
1170 // For instructions without an OpSize prefix, a declared 16-bit register or
1171 // immediate encoding is special.
1172 ENCODING("i16imm", ENCODING_IW)
1174 ENCODING("i16imm", ENCODING_Iv)
1175 ENCODING("i16i8imm", ENCODING_IB)
1176 ENCODING("i32imm", ENCODING_Iv)
1177 ENCODING("i32i8imm", ENCODING_IB)
1178 ENCODING("i64i32imm", ENCODING_ID)
1179 ENCODING("i64i8imm", ENCODING_IB)
1180 ENCODING("i8imm", ENCODING_IB)
1181 ENCODING("u8imm", ENCODING_IB)
1182 ENCODING("i16u8imm", ENCODING_IB)
1183 ENCODING("i32u8imm", ENCODING_IB)
1184 ENCODING("i64u8imm", ENCODING_IB)
1185 ENCODING("i64i32imm_pcrel", ENCODING_ID)
1186 ENCODING("i16imm_pcrel", ENCODING_IW)
1187 ENCODING("i32imm_pcrel", ENCODING_ID)
1188 ENCODING("brtarget32", ENCODING_ID)
1189 ENCODING("brtarget16", ENCODING_IW)
1190 ENCODING("brtarget8", ENCODING_IB)
1191 ENCODING("i64imm", ENCODING_IO)
1192 ENCODING("offset16_8", ENCODING_Ia)
1193 ENCODING("offset16_16", ENCODING_Ia)
1194 ENCODING("offset16_32", ENCODING_Ia)
1195 ENCODING("offset32_8", ENCODING_Ia)
1196 ENCODING("offset32_16", ENCODING_Ia)
1197 ENCODING("offset32_32", ENCODING_Ia)
1198 ENCODING("offset32_64", ENCODING_Ia)
1199 ENCODING("offset64_8", ENCODING_Ia)
1200 ENCODING("offset64_16", ENCODING_Ia)
1201 ENCODING("offset64_32", ENCODING_Ia)
1202 ENCODING("offset64_64", ENCODING_Ia)
1203 ENCODING("srcidx8", ENCODING_SI)
1204 ENCODING("srcidx16", ENCODING_SI)
1205 ENCODING("srcidx32", ENCODING_SI)
1206 ENCODING("srcidx64", ENCODING_SI)
1207 ENCODING("dstidx8", ENCODING_DI)
1208 ENCODING("dstidx16", ENCODING_DI)
1209 ENCODING("dstidx32", ENCODING_DI)
1210 ENCODING("dstidx64", ENCODING_DI)
1211 errs() << "Unhandled relocation encoding " << s << "\n";
1212 llvm_unreachable("Unhandled relocation encoding");
1215 OperandEncoding
1216 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1217 uint8_t OpSize) {
1218 ENCODING("GR32", ENCODING_Rv)
1219 ENCODING("GR64", ENCODING_RO)
1220 ENCODING("GR16", ENCODING_Rv)
1221 ENCODING("GR8", ENCODING_RB)
1222 ENCODING("ccode", ENCODING_CC)
1223 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1224 llvm_unreachable("Unhandled opcode modifier encoding");
1226 #undef ENCODING