[ARM] Masked load and store and predicate tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob33dbbf91cd644aad2582ac928ccac1ce6360c299
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
83 using namespace llvm;
84 using namespace PatternMatch;
86 #define DEBUG_TYPE "simplifycfg"
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94 cl::desc(
95 "Control the amount of phi node folding to perform (default = 2)"));
97 static cl::opt<bool> DupRet(
98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99 cl::desc("Duplicate return instructions into unconditional branches"));
101 static cl::opt<bool>
102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103 cl::desc("Sink common instructions down to the end block"));
105 static cl::opt<bool> HoistCondStores(
106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107 cl::desc("Hoist conditional stores if an unconditional store precedes"));
109 static cl::opt<bool> MergeCondStores(
110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111 cl::desc("Hoist conditional stores even if an unconditional store does not "
112 "precede - hoist multiple conditional stores into a single "
113 "predicated store"));
115 static cl::opt<bool> MergeCondStoresAggressively(
116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117 cl::desc("When merging conditional stores, do so even if the resultant "
118 "basic blocks are unlikely to be if-converted as a result"));
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122 cl::desc("Allow exactly one expensive instruction to be speculatively "
123 "executed"));
125 static cl::opt<unsigned> MaxSpeculationDepth(
126 "max-speculation-depth", cl::Hidden, cl::init(10),
127 cl::desc("Limit maximum recursion depth when calculating costs of "
128 "speculatively executed instructions"));
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132 "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134 "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136 NumLookupTablesHoles,
137 "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140 "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
143 namespace {
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158 ConstantInt *Value;
159 BasicBlock *Dest;
161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162 : Value(Value), Dest(Dest) {}
164 bool operator<(ValueEqualityComparisonCase RHS) const {
165 // Comparing pointers is ok as we only rely on the order for uniquing.
166 return Value < RHS.Value;
169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
172 class SimplifyCFGOpt {
173 const TargetTransformInfo &TTI;
174 const DataLayout &DL;
175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176 const SimplifyCFGOptions &Options;
177 bool Resimplify;
179 Value *isValueEqualityComparison(Instruction *TI);
180 BasicBlock *GetValueEqualityComparisonCases(
181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
183 BasicBlock *Pred,
184 IRBuilder<> &Builder);
185 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
186 IRBuilder<> &Builder);
188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
190 bool SimplifySingleResume(ResumeInst *RI);
191 bool SimplifyCommonResume(ResumeInst *RI);
192 bool SimplifyCleanupReturn(CleanupReturnInst *RI);
193 bool SimplifyUnreachable(UnreachableInst *UI);
194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
195 bool SimplifyIndirectBr(IndirectBrInst *IBI);
196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
200 IRBuilder<> &Builder);
202 public:
203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
205 const SimplifyCFGOptions &Opts)
206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
208 bool run(BasicBlock *BB);
209 bool simplifyOnce(BasicBlock *BB);
211 // Helper to set Resimplify and return change indication.
212 bool requestResimplify() {
213 Resimplify = true;
214 return true;
218 } // end anonymous namespace
220 /// Return true if it is safe to merge these two
221 /// terminator instructions together.
222 static bool
223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
225 if (SI1 == SI2)
226 return false; // Can't merge with self!
228 // It is not safe to merge these two switch instructions if they have a common
229 // successor, and if that successor has a PHI node, and if *that* PHI node has
230 // conflicting incoming values from the two switch blocks.
231 BasicBlock *SI1BB = SI1->getParent();
232 BasicBlock *SI2BB = SI2->getParent();
234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
235 bool Fail = false;
236 for (BasicBlock *Succ : successors(SI2BB))
237 if (SI1Succs.count(Succ))
238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
239 PHINode *PN = cast<PHINode>(BBI);
240 if (PN->getIncomingValueForBlock(SI1BB) !=
241 PN->getIncomingValueForBlock(SI2BB)) {
242 if (FailBlocks)
243 FailBlocks->insert(Succ);
244 Fail = true;
248 return !Fail;
251 /// Return true if it is safe and profitable to merge these two terminator
252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
253 /// store all PHI nodes in common successors.
254 static bool
255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
256 Instruction *Cond,
257 SmallVectorImpl<PHINode *> &PhiNodes) {
258 if (SI1 == SI2)
259 return false; // Can't merge with self!
260 assert(SI1->isUnconditional() && SI2->isConditional());
262 // We fold the unconditional branch if we can easily update all PHI nodes in
263 // common successors:
264 // 1> We have a constant incoming value for the conditional branch;
265 // 2> We have "Cond" as the incoming value for the unconditional branch;
266 // 3> SI2->getCondition() and Cond have same operands.
267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
268 if (!Ci2)
269 return false;
270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
271 Cond->getOperand(1) == Ci2->getOperand(1)) &&
272 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
273 Cond->getOperand(1) == Ci2->getOperand(0)))
274 return false;
276 BasicBlock *SI1BB = SI1->getParent();
277 BasicBlock *SI2BB = SI2->getParent();
278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
279 for (BasicBlock *Succ : successors(SI2BB))
280 if (SI1Succs.count(Succ))
281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
282 PHINode *PN = cast<PHINode>(BBI);
283 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
285 return false;
286 PhiNodes.push_back(PN);
288 return true;
291 /// Update PHI nodes in Succ to indicate that there will now be entries in it
292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
293 /// will be the same as those coming in from ExistPred, an existing predecessor
294 /// of Succ.
295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
296 BasicBlock *ExistPred,
297 MemorySSAUpdater *MSSAU = nullptr) {
298 for (PHINode &PN : Succ->phis())
299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
300 if (MSSAU)
301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
305 /// Compute an abstract "cost" of speculating the given instruction,
306 /// which is assumed to be safe to speculate. TCC_Free means cheap,
307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
308 /// expensive.
309 static unsigned ComputeSpeculationCost(const User *I,
310 const TargetTransformInfo &TTI) {
311 assert(isSafeToSpeculativelyExecute(I) &&
312 "Instruction is not safe to speculatively execute!");
313 return TTI.getUserCost(I);
316 /// If we have a merge point of an "if condition" as accepted above,
317 /// return true if the specified value dominates the block. We
318 /// don't handle the true generality of domination here, just a special case
319 /// which works well enough for us.
321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
322 /// see if V (which must be an instruction) and its recursive operands
323 /// that do not dominate BB have a combined cost lower than CostRemaining and
324 /// are non-trapping. If both are true, the instruction is inserted into the
325 /// set and true is returned.
327 /// The cost for most non-trapping instructions is defined as 1 except for
328 /// Select whose cost is 2.
330 /// After this function returns, CostRemaining is decreased by the cost of
331 /// V plus its non-dominating operands. If that cost is greater than
332 /// CostRemaining, false is returned and CostRemaining is undefined.
333 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
334 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
335 unsigned &CostRemaining,
336 const TargetTransformInfo &TTI,
337 unsigned Depth = 0) {
338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
339 // so limit the recursion depth.
340 // TODO: While this recursion limit does prevent pathological behavior, it
341 // would be better to track visited instructions to avoid cycles.
342 if (Depth == MaxSpeculationDepth)
343 return false;
345 Instruction *I = dyn_cast<Instruction>(V);
346 if (!I) {
347 // Non-instructions all dominate instructions, but not all constantexprs
348 // can be executed unconditionally.
349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
350 if (C->canTrap())
351 return false;
352 return true;
354 BasicBlock *PBB = I->getParent();
356 // We don't want to allow weird loops that might have the "if condition" in
357 // the bottom of this block.
358 if (PBB == BB)
359 return false;
361 // If this instruction is defined in a block that contains an unconditional
362 // branch to BB, then it must be in the 'conditional' part of the "if
363 // statement". If not, it definitely dominates the region.
364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
366 return true;
368 // If we have seen this instruction before, don't count it again.
369 if (AggressiveInsts.count(I))
370 return true;
372 // Okay, it looks like the instruction IS in the "condition". Check to
373 // see if it's a cheap instruction to unconditionally compute, and if it
374 // only uses stuff defined outside of the condition. If so, hoist it out.
375 if (!isSafeToSpeculativelyExecute(I))
376 return false;
378 unsigned Cost = ComputeSpeculationCost(I, TTI);
380 // Allow exactly one instruction to be speculated regardless of its cost
381 // (as long as it is safe to do so).
382 // This is intended to flatten the CFG even if the instruction is a division
383 // or other expensive operation. The speculation of an expensive instruction
384 // is expected to be undone in CodeGenPrepare if the speculation has not
385 // enabled further IR optimizations.
386 if (Cost > CostRemaining &&
387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
388 return false;
390 // Avoid unsigned wrap.
391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
393 // Okay, we can only really hoist these out if their operands do
394 // not take us over the cost threshold.
395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
397 Depth + 1))
398 return false;
399 // Okay, it's safe to do this! Remember this instruction.
400 AggressiveInsts.insert(I);
401 return true;
404 /// Extract ConstantInt from value, looking through IntToPtr
405 /// and PointerNullValue. Return NULL if value is not a constant int.
406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
407 // Normal constant int.
408 ConstantInt *CI = dyn_cast<ConstantInt>(V);
409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
410 return CI;
412 // This is some kind of pointer constant. Turn it into a pointer-sized
413 // ConstantInt if possible.
414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
417 if (isa<ConstantPointerNull>(V))
418 return ConstantInt::get(PtrTy, 0);
420 // IntToPtr const int.
421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
422 if (CE->getOpcode() == Instruction::IntToPtr)
423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
424 // The constant is very likely to have the right type already.
425 if (CI->getType() == PtrTy)
426 return CI;
427 else
428 return cast<ConstantInt>(
429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
431 return nullptr;
434 namespace {
436 /// Given a chain of or (||) or and (&&) comparison of a value against a
437 /// constant, this will try to recover the information required for a switch
438 /// structure.
439 /// It will depth-first traverse the chain of comparison, seeking for patterns
440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
441 /// representing the different cases for the switch.
442 /// Note that if the chain is composed of '||' it will build the set of elements
443 /// that matches the comparisons (i.e. any of this value validate the chain)
444 /// while for a chain of '&&' it will build the set elements that make the test
445 /// fail.
446 struct ConstantComparesGatherer {
447 const DataLayout &DL;
449 /// Value found for the switch comparison
450 Value *CompValue = nullptr;
452 /// Extra clause to be checked before the switch
453 Value *Extra = nullptr;
455 /// Set of integers to match in switch
456 SmallVector<ConstantInt *, 8> Vals;
458 /// Number of comparisons matched in the and/or chain
459 unsigned UsedICmps = 0;
461 /// Construct and compute the result for the comparison instruction Cond
462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
463 gather(Cond);
466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
467 ConstantComparesGatherer &
468 operator=(const ConstantComparesGatherer &) = delete;
470 private:
471 /// Try to set the current value used for the comparison, it succeeds only if
472 /// it wasn't set before or if the new value is the same as the old one
473 bool setValueOnce(Value *NewVal) {
474 if (CompValue && CompValue != NewVal)
475 return false;
476 CompValue = NewVal;
477 return (CompValue != nullptr);
480 /// Try to match Instruction "I" as a comparison against a constant and
481 /// populates the array Vals with the set of values that match (or do not
482 /// match depending on isEQ).
483 /// Return false on failure. On success, the Value the comparison matched
484 /// against is placed in CompValue.
485 /// If CompValue is already set, the function is expected to fail if a match
486 /// is found but the value compared to is different.
487 bool matchInstruction(Instruction *I, bool isEQ) {
488 // If this is an icmp against a constant, handle this as one of the cases.
489 ICmpInst *ICI;
490 ConstantInt *C;
491 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
492 (C = GetConstantInt(I->getOperand(1), DL)))) {
493 return false;
496 Value *RHSVal;
497 const APInt *RHSC;
499 // Pattern match a special case
500 // (x & ~2^z) == y --> x == y || x == y|2^z
501 // This undoes a transformation done by instcombine to fuse 2 compares.
502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
503 // It's a little bit hard to see why the following transformations are
504 // correct. Here is a CVC3 program to verify them for 64-bit values:
507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
508 x : BITVECTOR(64);
509 y : BITVECTOR(64);
510 z : BITVECTOR(64);
511 mask : BITVECTOR(64) = BVSHL(ONE, z);
512 QUERY( (y & ~mask = y) =>
513 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
515 QUERY( (y | mask = y) =>
516 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
520 // Please note that each pattern must be a dual implication (<--> or
521 // iff). One directional implication can create spurious matches. If the
522 // implication is only one-way, an unsatisfiable condition on the left
523 // side can imply a satisfiable condition on the right side. Dual
524 // implication ensures that satisfiable conditions are transformed to
525 // other satisfiable conditions and unsatisfiable conditions are
526 // transformed to other unsatisfiable conditions.
528 // Here is a concrete example of a unsatisfiable condition on the left
529 // implying a satisfiable condition on the right:
531 // mask = (1 << z)
532 // (x & ~mask) == y --> (x == y || x == (y | mask))
534 // Substituting y = 3, z = 0 yields:
535 // (x & -2) == 3 --> (x == 3 || x == 2)
537 // Pattern match a special case:
539 QUERY( (y & ~mask = y) =>
540 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
543 if (match(ICI->getOperand(0),
544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
545 APInt Mask = ~*RHSC;
546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
547 // If we already have a value for the switch, it has to match!
548 if (!setValueOnce(RHSVal))
549 return false;
551 Vals.push_back(C);
552 Vals.push_back(
553 ConstantInt::get(C->getContext(),
554 C->getValue() | Mask));
555 UsedICmps++;
556 return true;
560 // Pattern match a special case:
562 QUERY( (y | mask = y) =>
563 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
566 if (match(ICI->getOperand(0),
567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
568 APInt Mask = *RHSC;
569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
570 // If we already have a value for the switch, it has to match!
571 if (!setValueOnce(RHSVal))
572 return false;
574 Vals.push_back(C);
575 Vals.push_back(ConstantInt::get(C->getContext(),
576 C->getValue() & ~Mask));
577 UsedICmps++;
578 return true;
582 // If we already have a value for the switch, it has to match!
583 if (!setValueOnce(ICI->getOperand(0)))
584 return false;
586 UsedICmps++;
587 Vals.push_back(C);
588 return ICI->getOperand(0);
591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
593 ICI->getPredicate(), C->getValue());
595 // Shift the range if the compare is fed by an add. This is the range
596 // compare idiom as emitted by instcombine.
597 Value *CandidateVal = I->getOperand(0);
598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
599 Span = Span.subtract(*RHSC);
600 CandidateVal = RHSVal;
603 // If this is an and/!= check, then we are looking to build the set of
604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
605 // x != 0 && x != 1.
606 if (!isEQ)
607 Span = Span.inverse();
609 // If there are a ton of values, we don't want to make a ginormous switch.
610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
611 return false;
614 // If we already have a value for the switch, it has to match!
615 if (!setValueOnce(CandidateVal))
616 return false;
618 // Add all values from the range to the set
619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
622 UsedICmps++;
623 return true;
626 /// Given a potentially 'or'd or 'and'd together collection of icmp
627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
628 /// the value being compared, and stick the list constants into the Vals
629 /// vector.
630 /// One "Extra" case is allowed to differ from the other.
631 void gather(Value *V) {
632 Instruction *I = dyn_cast<Instruction>(V);
633 bool isEQ = (I->getOpcode() == Instruction::Or);
635 // Keep a stack (SmallVector for efficiency) for depth-first traversal
636 SmallVector<Value *, 8> DFT;
637 SmallPtrSet<Value *, 8> Visited;
639 // Initialize
640 Visited.insert(V);
641 DFT.push_back(V);
643 while (!DFT.empty()) {
644 V = DFT.pop_back_val();
646 if (Instruction *I = dyn_cast<Instruction>(V)) {
647 // If it is a || (or && depending on isEQ), process the operands.
648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
649 if (Visited.insert(I->getOperand(1)).second)
650 DFT.push_back(I->getOperand(1));
651 if (Visited.insert(I->getOperand(0)).second)
652 DFT.push_back(I->getOperand(0));
653 continue;
656 // Try to match the current instruction
657 if (matchInstruction(I, isEQ))
658 // Match succeed, continue the loop
659 continue;
662 // One element of the sequence of || (or &&) could not be match as a
663 // comparison against the same value as the others.
664 // We allow only one "Extra" case to be checked before the switch
665 if (!Extra) {
666 Extra = V;
667 continue;
669 // Failed to parse a proper sequence, abort now
670 CompValue = nullptr;
671 break;
676 } // end anonymous namespace
678 static void EraseTerminatorAndDCECond(Instruction *TI,
679 MemorySSAUpdater *MSSAU = nullptr) {
680 Instruction *Cond = nullptr;
681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682 Cond = dyn_cast<Instruction>(SI->getCondition());
683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
684 if (BI->isConditional())
685 Cond = dyn_cast<Instruction>(BI->getCondition());
686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
687 Cond = dyn_cast<Instruction>(IBI->getAddress());
690 TI->eraseFromParent();
691 if (Cond)
692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
695 /// Return true if the specified terminator checks
696 /// to see if a value is equal to constant integer value.
697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
698 Value *CV = nullptr;
699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
700 // Do not permit merging of large switch instructions into their
701 // predecessors unless there is only one predecessor.
702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
703 CV = SI->getCondition();
704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
705 if (BI->isConditional() && BI->getCondition()->hasOneUse())
706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
708 CV = ICI->getOperand(0);
711 // Unwrap any lossless ptrtoint cast.
712 if (CV) {
713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
714 Value *Ptr = PTII->getPointerOperand();
715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
716 CV = Ptr;
719 return CV;
722 /// Given a value comparison instruction,
723 /// decode all of the 'cases' that it represents and return the 'default' block.
724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
727 Cases.reserve(SI->getNumCases());
728 for (auto Case : SI->cases())
729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
730 Case.getCaseSuccessor()));
731 return SI->getDefaultDest();
734 BranchInst *BI = cast<BranchInst>(TI);
735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
737 Cases.push_back(ValueEqualityComparisonCase(
738 GetConstantInt(ICI->getOperand(1), DL), Succ));
739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
742 /// Given a vector of bb/value pairs, remove any entries
743 /// in the list that match the specified block.
744 static void
745 EliminateBlockCases(BasicBlock *BB,
746 std::vector<ValueEqualityComparisonCase> &Cases) {
747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
750 /// Return true if there are any keys in C1 that exist in C2 as well.
751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
752 std::vector<ValueEqualityComparisonCase> &C2) {
753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
755 // Make V1 be smaller than V2.
756 if (V1->size() > V2->size())
757 std::swap(V1, V2);
759 if (V1->empty())
760 return false;
761 if (V1->size() == 1) {
762 // Just scan V2.
763 ConstantInt *TheVal = (*V1)[0].Value;
764 for (unsigned i = 0, e = V2->size(); i != e; ++i)
765 if (TheVal == (*V2)[i].Value)
766 return true;
769 // Otherwise, just sort both lists and compare element by element.
770 array_pod_sort(V1->begin(), V1->end());
771 array_pod_sort(V2->begin(), V2->end());
772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
773 while (i1 != e1 && i2 != e2) {
774 if ((*V1)[i1].Value == (*V2)[i2].Value)
775 return true;
776 if ((*V1)[i1].Value < (*V2)[i2].Value)
777 ++i1;
778 else
779 ++i2;
781 return false;
784 // Set branch weights on SwitchInst. This sets the metadata if there is at
785 // least one non-zero weight.
786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
787 // Check that there is at least one non-zero weight. Otherwise, pass
788 // nullptr to setMetadata which will erase the existing metadata.
789 MDNode *N = nullptr;
790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
792 SI->setMetadata(LLVMContext::MD_prof, N);
795 // Similar to the above, but for branch and select instructions that take
796 // exactly 2 weights.
797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
798 uint32_t FalseWeight) {
799 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
800 // Check that there is at least one non-zero weight. Otherwise, pass
801 // nullptr to setMetadata which will erase the existing metadata.
802 MDNode *N = nullptr;
803 if (TrueWeight || FalseWeight)
804 N = MDBuilder(I->getParent()->getContext())
805 .createBranchWeights(TrueWeight, FalseWeight);
806 I->setMetadata(LLVMContext::MD_prof, N);
809 /// If TI is known to be a terminator instruction and its block is known to
810 /// only have a single predecessor block, check to see if that predecessor is
811 /// also a value comparison with the same value, and if that comparison
812 /// determines the outcome of this comparison. If so, simplify TI. This does a
813 /// very limited form of jump threading.
814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
817 if (!PredVal)
818 return false; // Not a value comparison in predecessor.
820 Value *ThisVal = isValueEqualityComparison(TI);
821 assert(ThisVal && "This isn't a value comparison!!");
822 if (ThisVal != PredVal)
823 return false; // Different predicates.
825 // TODO: Preserve branch weight metadata, similarly to how
826 // FoldValueComparisonIntoPredecessors preserves it.
828 // Find out information about when control will move from Pred to TI's block.
829 std::vector<ValueEqualityComparisonCase> PredCases;
830 BasicBlock *PredDef =
831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
834 // Find information about how control leaves this block.
835 std::vector<ValueEqualityComparisonCase> ThisCases;
836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
839 // If TI's block is the default block from Pred's comparison, potentially
840 // simplify TI based on this knowledge.
841 if (PredDef == TI->getParent()) {
842 // If we are here, we know that the value is none of those cases listed in
843 // PredCases. If there are any cases in ThisCases that are in PredCases, we
844 // can simplify TI.
845 if (!ValuesOverlap(PredCases, ThisCases))
846 return false;
848 if (isa<BranchInst>(TI)) {
849 // Okay, one of the successors of this condbr is dead. Convert it to a
850 // uncond br.
851 assert(ThisCases.size() == 1 && "Branch can only have one case!");
852 // Insert the new branch.
853 Instruction *NI = Builder.CreateBr(ThisDef);
854 (void)NI;
856 // Remove PHI node entries for the dead edge.
857 ThisCases[0].Dest->removePredecessor(TI->getParent());
859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
860 << "Through successor TI: " << *TI << "Leaving: " << *NI
861 << "\n");
863 EraseTerminatorAndDCECond(TI);
864 return true;
867 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
868 // Okay, TI has cases that are statically dead, prune them away.
869 SmallPtrSet<Constant *, 16> DeadCases;
870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
871 DeadCases.insert(PredCases[i].Value);
873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
874 << "Through successor TI: " << *TI);
876 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
877 --i;
878 if (DeadCases.count(i->getCaseValue())) {
879 i->getCaseSuccessor()->removePredecessor(TI->getParent());
880 SI.removeCase(i);
883 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
884 return true;
887 // Otherwise, TI's block must correspond to some matched value. Find out
888 // which value (or set of values) this is.
889 ConstantInt *TIV = nullptr;
890 BasicBlock *TIBB = TI->getParent();
891 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
892 if (PredCases[i].Dest == TIBB) {
893 if (TIV)
894 return false; // Cannot handle multiple values coming to this block.
895 TIV = PredCases[i].Value;
897 assert(TIV && "No edge from pred to succ?");
899 // Okay, we found the one constant that our value can be if we get into TI's
900 // BB. Find out which successor will unconditionally be branched to.
901 BasicBlock *TheRealDest = nullptr;
902 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
903 if (ThisCases[i].Value == TIV) {
904 TheRealDest = ThisCases[i].Dest;
905 break;
908 // If not handled by any explicit cases, it is handled by the default case.
909 if (!TheRealDest)
910 TheRealDest = ThisDef;
912 // Remove PHI node entries for dead edges.
913 BasicBlock *CheckEdge = TheRealDest;
914 for (BasicBlock *Succ : successors(TIBB))
915 if (Succ != CheckEdge)
916 Succ->removePredecessor(TIBB);
917 else
918 CheckEdge = nullptr;
920 // Insert the new branch.
921 Instruction *NI = Builder.CreateBr(TheRealDest);
922 (void)NI;
924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
925 << "Through successor TI: " << *TI << "Leaving: " << *NI
926 << "\n");
928 EraseTerminatorAndDCECond(TI);
929 return true;
932 namespace {
934 /// This class implements a stable ordering of constant
935 /// integers that does not depend on their address. This is important for
936 /// applications that sort ConstantInt's to ensure uniqueness.
937 struct ConstantIntOrdering {
938 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
939 return LHS->getValue().ult(RHS->getValue());
943 } // end anonymous namespace
945 static int ConstantIntSortPredicate(ConstantInt *const *P1,
946 ConstantInt *const *P2) {
947 const ConstantInt *LHS = *P1;
948 const ConstantInt *RHS = *P2;
949 if (LHS == RHS)
950 return 0;
951 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
954 static inline bool HasBranchWeights(const Instruction *I) {
955 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
956 if (ProfMD && ProfMD->getOperand(0))
957 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
958 return MDS->getString().equals("branch_weights");
960 return false;
963 /// Get Weights of a given terminator, the default weight is at the front
964 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
965 /// metadata.
966 static void GetBranchWeights(Instruction *TI,
967 SmallVectorImpl<uint64_t> &Weights) {
968 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
969 assert(MD);
970 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
971 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
972 Weights.push_back(CI->getValue().getZExtValue());
975 // If TI is a conditional eq, the default case is the false case,
976 // and the corresponding branch-weight data is at index 2. We swap the
977 // default weight to be the first entry.
978 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
979 assert(Weights.size() == 2);
980 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
981 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
982 std::swap(Weights.front(), Weights.back());
986 /// Keep halving the weights until all can fit in uint32_t.
987 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
988 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
989 if (Max > UINT_MAX) {
990 unsigned Offset = 32 - countLeadingZeros(Max);
991 for (uint64_t &I : Weights)
992 I >>= Offset;
996 /// The specified terminator is a value equality comparison instruction
997 /// (either a switch or a branch on "X == c").
998 /// See if any of the predecessors of the terminator block are value comparisons
999 /// on the same value. If so, and if safe to do so, fold them together.
1000 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1001 IRBuilder<> &Builder) {
1002 BasicBlock *BB = TI->getParent();
1003 Value *CV = isValueEqualityComparison(TI); // CondVal
1004 assert(CV && "Not a comparison?");
1005 bool Changed = false;
1007 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1008 while (!Preds.empty()) {
1009 BasicBlock *Pred = Preds.pop_back_val();
1011 // See if the predecessor is a comparison with the same value.
1012 Instruction *PTI = Pred->getTerminator();
1013 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1015 if (PCV == CV && TI != PTI) {
1016 SmallSetVector<BasicBlock*, 4> FailBlocks;
1017 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1018 for (auto *Succ : FailBlocks) {
1019 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1020 return false;
1024 // Figure out which 'cases' to copy from SI to PSI.
1025 std::vector<ValueEqualityComparisonCase> BBCases;
1026 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1028 std::vector<ValueEqualityComparisonCase> PredCases;
1029 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1031 // Based on whether the default edge from PTI goes to BB or not, fill in
1032 // PredCases and PredDefault with the new switch cases we would like to
1033 // build.
1034 SmallVector<BasicBlock *, 8> NewSuccessors;
1036 // Update the branch weight metadata along the way
1037 SmallVector<uint64_t, 8> Weights;
1038 bool PredHasWeights = HasBranchWeights(PTI);
1039 bool SuccHasWeights = HasBranchWeights(TI);
1041 if (PredHasWeights) {
1042 GetBranchWeights(PTI, Weights);
1043 // branch-weight metadata is inconsistent here.
1044 if (Weights.size() != 1 + PredCases.size())
1045 PredHasWeights = SuccHasWeights = false;
1046 } else if (SuccHasWeights)
1047 // If there are no predecessor weights but there are successor weights,
1048 // populate Weights with 1, which will later be scaled to the sum of
1049 // successor's weights
1050 Weights.assign(1 + PredCases.size(), 1);
1052 SmallVector<uint64_t, 8> SuccWeights;
1053 if (SuccHasWeights) {
1054 GetBranchWeights(TI, SuccWeights);
1055 // branch-weight metadata is inconsistent here.
1056 if (SuccWeights.size() != 1 + BBCases.size())
1057 PredHasWeights = SuccHasWeights = false;
1058 } else if (PredHasWeights)
1059 SuccWeights.assign(1 + BBCases.size(), 1);
1061 if (PredDefault == BB) {
1062 // If this is the default destination from PTI, only the edges in TI
1063 // that don't occur in PTI, or that branch to BB will be activated.
1064 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1065 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1066 if (PredCases[i].Dest != BB)
1067 PTIHandled.insert(PredCases[i].Value);
1068 else {
1069 // The default destination is BB, we don't need explicit targets.
1070 std::swap(PredCases[i], PredCases.back());
1072 if (PredHasWeights || SuccHasWeights) {
1073 // Increase weight for the default case.
1074 Weights[0] += Weights[i + 1];
1075 std::swap(Weights[i + 1], Weights.back());
1076 Weights.pop_back();
1079 PredCases.pop_back();
1080 --i;
1081 --e;
1084 // Reconstruct the new switch statement we will be building.
1085 if (PredDefault != BBDefault) {
1086 PredDefault->removePredecessor(Pred);
1087 PredDefault = BBDefault;
1088 NewSuccessors.push_back(BBDefault);
1091 unsigned CasesFromPred = Weights.size();
1092 uint64_t ValidTotalSuccWeight = 0;
1093 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1094 if (!PTIHandled.count(BBCases[i].Value) &&
1095 BBCases[i].Dest != BBDefault) {
1096 PredCases.push_back(BBCases[i]);
1097 NewSuccessors.push_back(BBCases[i].Dest);
1098 if (SuccHasWeights || PredHasWeights) {
1099 // The default weight is at index 0, so weight for the ith case
1100 // should be at index i+1. Scale the cases from successor by
1101 // PredDefaultWeight (Weights[0]).
1102 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1103 ValidTotalSuccWeight += SuccWeights[i + 1];
1107 if (SuccHasWeights || PredHasWeights) {
1108 ValidTotalSuccWeight += SuccWeights[0];
1109 // Scale the cases from predecessor by ValidTotalSuccWeight.
1110 for (unsigned i = 1; i < CasesFromPred; ++i)
1111 Weights[i] *= ValidTotalSuccWeight;
1112 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1113 Weights[0] *= SuccWeights[0];
1115 } else {
1116 // If this is not the default destination from PSI, only the edges
1117 // in SI that occur in PSI with a destination of BB will be
1118 // activated.
1119 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1120 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1121 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1122 if (PredCases[i].Dest == BB) {
1123 PTIHandled.insert(PredCases[i].Value);
1125 if (PredHasWeights || SuccHasWeights) {
1126 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1127 std::swap(Weights[i + 1], Weights.back());
1128 Weights.pop_back();
1131 std::swap(PredCases[i], PredCases.back());
1132 PredCases.pop_back();
1133 --i;
1134 --e;
1137 // Okay, now we know which constants were sent to BB from the
1138 // predecessor. Figure out where they will all go now.
1139 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1140 if (PTIHandled.count(BBCases[i].Value)) {
1141 // If this is one we are capable of getting...
1142 if (PredHasWeights || SuccHasWeights)
1143 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1144 PredCases.push_back(BBCases[i]);
1145 NewSuccessors.push_back(BBCases[i].Dest);
1146 PTIHandled.erase(
1147 BBCases[i].Value); // This constant is taken care of
1150 // If there are any constants vectored to BB that TI doesn't handle,
1151 // they must go to the default destination of TI.
1152 for (ConstantInt *I : PTIHandled) {
1153 if (PredHasWeights || SuccHasWeights)
1154 Weights.push_back(WeightsForHandled[I]);
1155 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1156 NewSuccessors.push_back(BBDefault);
1160 // Okay, at this point, we know which new successor Pred will get. Make
1161 // sure we update the number of entries in the PHI nodes for these
1162 // successors.
1163 for (BasicBlock *NewSuccessor : NewSuccessors)
1164 AddPredecessorToBlock(NewSuccessor, Pred, BB);
1166 Builder.SetInsertPoint(PTI);
1167 // Convert pointer to int before we switch.
1168 if (CV->getType()->isPointerTy()) {
1169 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1170 "magicptr");
1173 // Now that the successors are updated, create the new Switch instruction.
1174 SwitchInst *NewSI =
1175 Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1176 NewSI->setDebugLoc(PTI->getDebugLoc());
1177 for (ValueEqualityComparisonCase &V : PredCases)
1178 NewSI->addCase(V.Value, V.Dest);
1180 if (PredHasWeights || SuccHasWeights) {
1181 // Halve the weights if any of them cannot fit in an uint32_t
1182 FitWeights(Weights);
1184 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1186 setBranchWeights(NewSI, MDWeights);
1189 EraseTerminatorAndDCECond(PTI);
1191 // Okay, last check. If BB is still a successor of PSI, then we must
1192 // have an infinite loop case. If so, add an infinitely looping block
1193 // to handle the case to preserve the behavior of the code.
1194 BasicBlock *InfLoopBlock = nullptr;
1195 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1196 if (NewSI->getSuccessor(i) == BB) {
1197 if (!InfLoopBlock) {
1198 // Insert it at the end of the function, because it's either code,
1199 // or it won't matter if it's hot. :)
1200 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1201 BB->getParent());
1202 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1204 NewSI->setSuccessor(i, InfLoopBlock);
1207 Changed = true;
1210 return Changed;
1213 // If we would need to insert a select that uses the value of this invoke
1214 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1215 // can't hoist the invoke, as there is nowhere to put the select in this case.
1216 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1217 Instruction *I1, Instruction *I2) {
1218 for (BasicBlock *Succ : successors(BB1)) {
1219 for (const PHINode &PN : Succ->phis()) {
1220 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1221 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1222 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1223 return false;
1227 return true;
1230 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1232 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1233 /// in the two blocks up into the branch block. The caller of this function
1234 /// guarantees that BI's block dominates BB1 and BB2.
1235 static bool HoistThenElseCodeToIf(BranchInst *BI,
1236 const TargetTransformInfo &TTI) {
1237 // This does very trivial matching, with limited scanning, to find identical
1238 // instructions in the two blocks. In particular, we don't want to get into
1239 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1240 // such, we currently just scan for obviously identical instructions in an
1241 // identical order.
1242 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1243 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1245 BasicBlock::iterator BB1_Itr = BB1->begin();
1246 BasicBlock::iterator BB2_Itr = BB2->begin();
1248 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1249 // Skip debug info if it is not identical.
1250 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1251 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1252 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1253 while (isa<DbgInfoIntrinsic>(I1))
1254 I1 = &*BB1_Itr++;
1255 while (isa<DbgInfoIntrinsic>(I2))
1256 I2 = &*BB2_Itr++;
1258 // FIXME: Can we define a safety predicate for CallBr?
1259 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1260 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1261 isa<CallBrInst>(I1))
1262 return false;
1264 BasicBlock *BIParent = BI->getParent();
1266 bool Changed = false;
1267 do {
1268 // If we are hoisting the terminator instruction, don't move one (making a
1269 // broken BB), instead clone it, and remove BI.
1270 if (I1->isTerminator())
1271 goto HoistTerminator;
1273 // If we're going to hoist a call, make sure that the two instructions we're
1274 // commoning/hoisting are both marked with musttail, or neither of them is
1275 // marked as such. Otherwise, we might end up in a situation where we hoist
1276 // from a block where the terminator is a `ret` to a block where the terminator
1277 // is a `br`, and `musttail` calls expect to be followed by a return.
1278 auto *C1 = dyn_cast<CallInst>(I1);
1279 auto *C2 = dyn_cast<CallInst>(I2);
1280 if (C1 && C2)
1281 if (C1->isMustTailCall() != C2->isMustTailCall())
1282 return Changed;
1284 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1285 return Changed;
1287 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1288 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1289 // The debug location is an integral part of a debug info intrinsic
1290 // and can't be separated from it or replaced. Instead of attempting
1291 // to merge locations, simply hoist both copies of the intrinsic.
1292 BIParent->getInstList().splice(BI->getIterator(),
1293 BB1->getInstList(), I1);
1294 BIParent->getInstList().splice(BI->getIterator(),
1295 BB2->getInstList(), I2);
1296 Changed = true;
1297 } else {
1298 // For a normal instruction, we just move one to right before the branch,
1299 // then replace all uses of the other with the first. Finally, we remove
1300 // the now redundant second instruction.
1301 BIParent->getInstList().splice(BI->getIterator(),
1302 BB1->getInstList(), I1);
1303 if (!I2->use_empty())
1304 I2->replaceAllUsesWith(I1);
1305 I1->andIRFlags(I2);
1306 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1307 LLVMContext::MD_range,
1308 LLVMContext::MD_fpmath,
1309 LLVMContext::MD_invariant_load,
1310 LLVMContext::MD_nonnull,
1311 LLVMContext::MD_invariant_group,
1312 LLVMContext::MD_align,
1313 LLVMContext::MD_dereferenceable,
1314 LLVMContext::MD_dereferenceable_or_null,
1315 LLVMContext::MD_mem_parallel_loop_access,
1316 LLVMContext::MD_access_group,
1317 LLVMContext::MD_preserve_access_index};
1318 combineMetadata(I1, I2, KnownIDs, true);
1320 // I1 and I2 are being combined into a single instruction. Its debug
1321 // location is the merged locations of the original instructions.
1322 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1324 I2->eraseFromParent();
1325 Changed = true;
1328 I1 = &*BB1_Itr++;
1329 I2 = &*BB2_Itr++;
1330 // Skip debug info if it is not identical.
1331 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1332 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1333 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1334 while (isa<DbgInfoIntrinsic>(I1))
1335 I1 = &*BB1_Itr++;
1336 while (isa<DbgInfoIntrinsic>(I2))
1337 I2 = &*BB2_Itr++;
1339 } while (I1->isIdenticalToWhenDefined(I2));
1341 return true;
1343 HoistTerminator:
1344 // It may not be possible to hoist an invoke.
1345 // FIXME: Can we define a safety predicate for CallBr?
1346 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1347 return Changed;
1349 // TODO: callbr hoisting currently disabled pending further study.
1350 if (isa<CallBrInst>(I1))
1351 return Changed;
1353 for (BasicBlock *Succ : successors(BB1)) {
1354 for (PHINode &PN : Succ->phis()) {
1355 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1356 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1357 if (BB1V == BB2V)
1358 continue;
1360 // Check for passingValueIsAlwaysUndefined here because we would rather
1361 // eliminate undefined control flow then converting it to a select.
1362 if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1363 passingValueIsAlwaysUndefined(BB2V, &PN))
1364 return Changed;
1366 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1367 return Changed;
1368 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1369 return Changed;
1373 // Okay, it is safe to hoist the terminator.
1374 Instruction *NT = I1->clone();
1375 BIParent->getInstList().insert(BI->getIterator(), NT);
1376 if (!NT->getType()->isVoidTy()) {
1377 I1->replaceAllUsesWith(NT);
1378 I2->replaceAllUsesWith(NT);
1379 NT->takeName(I1);
1382 // Ensure terminator gets a debug location, even an unknown one, in case
1383 // it involves inlinable calls.
1384 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1386 // PHIs created below will adopt NT's merged DebugLoc.
1387 IRBuilder<NoFolder> Builder(NT);
1389 // Hoisting one of the terminators from our successor is a great thing.
1390 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1391 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1392 // nodes, so we insert select instruction to compute the final result.
1393 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1394 for (BasicBlock *Succ : successors(BB1)) {
1395 for (PHINode &PN : Succ->phis()) {
1396 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1397 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1398 if (BB1V == BB2V)
1399 continue;
1401 // These values do not agree. Insert a select instruction before NT
1402 // that determines the right value.
1403 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1404 if (!SI)
1405 SI = cast<SelectInst>(
1406 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1407 BB1V->getName() + "." + BB2V->getName(), BI));
1409 // Make the PHI node use the select for all incoming values for BB1/BB2
1410 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1411 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1412 PN.setIncomingValue(i, SI);
1416 // Update any PHI nodes in our new successors.
1417 for (BasicBlock *Succ : successors(BB1))
1418 AddPredecessorToBlock(Succ, BIParent, BB1);
1420 EraseTerminatorAndDCECond(BI);
1421 return true;
1424 // All instructions in Insts belong to different blocks that all unconditionally
1425 // branch to a common successor. Analyze each instruction and return true if it
1426 // would be possible to sink them into their successor, creating one common
1427 // instruction instead. For every value that would be required to be provided by
1428 // PHI node (because an operand varies in each input block), add to PHIOperands.
1429 static bool canSinkInstructions(
1430 ArrayRef<Instruction *> Insts,
1431 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1432 // Prune out obviously bad instructions to move. Each instruction must have
1433 // exactly zero or one use, and we check later that use is by a single, common
1434 // PHI instruction in the successor.
1435 bool HasUse = !Insts.front()->user_empty();
1436 for (auto *I : Insts) {
1437 // These instructions may change or break semantics if moved.
1438 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1439 I->getType()->isTokenTy())
1440 return false;
1442 // Conservatively return false if I is an inline-asm instruction. Sinking
1443 // and merging inline-asm instructions can potentially create arguments
1444 // that cannot satisfy the inline-asm constraints.
1445 if (const auto *C = dyn_cast<CallBase>(I))
1446 if (C->isInlineAsm())
1447 return false;
1449 // Each instruction must have zero or one use.
1450 if (HasUse && !I->hasOneUse())
1451 return false;
1452 if (!HasUse && !I->user_empty())
1453 return false;
1456 const Instruction *I0 = Insts.front();
1457 for (auto *I : Insts)
1458 if (!I->isSameOperationAs(I0))
1459 return false;
1461 // All instructions in Insts are known to be the same opcode. If they have a
1462 // use, check that the only user is a PHI or in the same block as the
1463 // instruction, because if a user is in the same block as an instruction we're
1464 // contemplating sinking, it must already be determined to be sinkable.
1465 if (HasUse) {
1466 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1467 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1468 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1469 auto *U = cast<Instruction>(*I->user_begin());
1470 return (PNUse &&
1471 PNUse->getParent() == Succ &&
1472 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1473 U->getParent() == I->getParent();
1475 return false;
1478 // Because SROA can't handle speculating stores of selects, try not
1479 // to sink loads or stores of allocas when we'd have to create a PHI for
1480 // the address operand. Also, because it is likely that loads or stores
1481 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1482 // This can cause code churn which can have unintended consequences down
1483 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1484 // FIXME: This is a workaround for a deficiency in SROA - see
1485 // https://llvm.org/bugs/show_bug.cgi?id=30188
1486 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1487 return isa<AllocaInst>(I->getOperand(1));
1489 return false;
1490 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1491 return isa<AllocaInst>(I->getOperand(0));
1493 return false;
1495 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1496 if (I0->getOperand(OI)->getType()->isTokenTy())
1497 // Don't touch any operand of token type.
1498 return false;
1500 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1501 assert(I->getNumOperands() == I0->getNumOperands());
1502 return I->getOperand(OI) == I0->getOperand(OI);
1504 if (!all_of(Insts, SameAsI0)) {
1505 if (!canReplaceOperandWithVariable(I0, OI))
1506 // We can't create a PHI from this GEP.
1507 return false;
1508 // Don't create indirect calls! The called value is the final operand.
1509 if (isa<CallBase>(I0) && OI == OE - 1) {
1510 // FIXME: if the call was *already* indirect, we should do this.
1511 return false;
1513 for (auto *I : Insts)
1514 PHIOperands[I].push_back(I->getOperand(OI));
1517 return true;
1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1521 // instruction of every block in Blocks to their common successor, commoning
1522 // into one instruction.
1523 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1524 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1526 // canSinkLastInstruction returning true guarantees that every block has at
1527 // least one non-terminator instruction.
1528 SmallVector<Instruction*,4> Insts;
1529 for (auto *BB : Blocks) {
1530 Instruction *I = BB->getTerminator();
1531 do {
1532 I = I->getPrevNode();
1533 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1534 if (!isa<DbgInfoIntrinsic>(I))
1535 Insts.push_back(I);
1538 // The only checking we need to do now is that all users of all instructions
1539 // are the same PHI node. canSinkLastInstruction should have checked this but
1540 // it is slightly over-aggressive - it gets confused by commutative instructions
1541 // so double-check it here.
1542 Instruction *I0 = Insts.front();
1543 if (!I0->user_empty()) {
1544 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1545 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1546 auto *U = cast<Instruction>(*I->user_begin());
1547 return U == PNUse;
1549 return false;
1552 // We don't need to do any more checking here; canSinkLastInstruction should
1553 // have done it all for us.
1554 SmallVector<Value*, 4> NewOperands;
1555 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1556 // This check is different to that in canSinkLastInstruction. There, we
1557 // cared about the global view once simplifycfg (and instcombine) have
1558 // completed - it takes into account PHIs that become trivially
1559 // simplifiable. However here we need a more local view; if an operand
1560 // differs we create a PHI and rely on instcombine to clean up the very
1561 // small mess we may make.
1562 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1563 return I->getOperand(O) != I0->getOperand(O);
1565 if (!NeedPHI) {
1566 NewOperands.push_back(I0->getOperand(O));
1567 continue;
1570 // Create a new PHI in the successor block and populate it.
1571 auto *Op = I0->getOperand(O);
1572 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1573 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1574 Op->getName() + ".sink", &BBEnd->front());
1575 for (auto *I : Insts)
1576 PN->addIncoming(I->getOperand(O), I->getParent());
1577 NewOperands.push_back(PN);
1580 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1581 // and move it to the start of the successor block.
1582 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1583 I0->getOperandUse(O).set(NewOperands[O]);
1584 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1586 // Update metadata and IR flags, and merge debug locations.
1587 for (auto *I : Insts)
1588 if (I != I0) {
1589 // The debug location for the "common" instruction is the merged locations
1590 // of all the commoned instructions. We start with the original location
1591 // of the "common" instruction and iteratively merge each location in the
1592 // loop below.
1593 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1594 // However, as N-way merge for CallInst is rare, so we use simplified API
1595 // instead of using complex API for N-way merge.
1596 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1597 combineMetadataForCSE(I0, I, true);
1598 I0->andIRFlags(I);
1601 if (!I0->user_empty()) {
1602 // canSinkLastInstruction checked that all instructions were used by
1603 // one and only one PHI node. Find that now, RAUW it to our common
1604 // instruction and nuke it.
1605 auto *PN = cast<PHINode>(*I0->user_begin());
1606 PN->replaceAllUsesWith(I0);
1607 PN->eraseFromParent();
1610 // Finally nuke all instructions apart from the common instruction.
1611 for (auto *I : Insts)
1612 if (I != I0)
1613 I->eraseFromParent();
1615 return true;
1618 namespace {
1620 // LockstepReverseIterator - Iterates through instructions
1621 // in a set of blocks in reverse order from the first non-terminator.
1622 // For example (assume all blocks have size n):
1623 // LockstepReverseIterator I([B1, B2, B3]);
1624 // *I-- = [B1[n], B2[n], B3[n]];
1625 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1626 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1627 // ...
1628 class LockstepReverseIterator {
1629 ArrayRef<BasicBlock*> Blocks;
1630 SmallVector<Instruction*,4> Insts;
1631 bool Fail;
1633 public:
1634 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1635 reset();
1638 void reset() {
1639 Fail = false;
1640 Insts.clear();
1641 for (auto *BB : Blocks) {
1642 Instruction *Inst = BB->getTerminator();
1643 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1644 Inst = Inst->getPrevNode();
1645 if (!Inst) {
1646 // Block wasn't big enough.
1647 Fail = true;
1648 return;
1650 Insts.push_back(Inst);
1654 bool isValid() const {
1655 return !Fail;
1658 void operator--() {
1659 if (Fail)
1660 return;
1661 for (auto *&Inst : Insts) {
1662 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1663 Inst = Inst->getPrevNode();
1664 // Already at beginning of block.
1665 if (!Inst) {
1666 Fail = true;
1667 return;
1672 ArrayRef<Instruction*> operator * () const {
1673 return Insts;
1677 } // end anonymous namespace
1679 /// Check whether BB's predecessors end with unconditional branches. If it is
1680 /// true, sink any common code from the predecessors to BB.
1681 /// We also allow one predecessor to end with conditional branch (but no more
1682 /// than one).
1683 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1684 // We support two situations:
1685 // (1) all incoming arcs are unconditional
1686 // (2) one incoming arc is conditional
1688 // (2) is very common in switch defaults and
1689 // else-if patterns;
1691 // if (a) f(1);
1692 // else if (b) f(2);
1694 // produces:
1696 // [if]
1697 // / \
1698 // [f(1)] [if]
1699 // | | \
1700 // | | |
1701 // | [f(2)]|
1702 // \ | /
1703 // [ end ]
1705 // [end] has two unconditional predecessor arcs and one conditional. The
1706 // conditional refers to the implicit empty 'else' arc. This conditional
1707 // arc can also be caused by an empty default block in a switch.
1709 // In this case, we attempt to sink code from all *unconditional* arcs.
1710 // If we can sink instructions from these arcs (determined during the scan
1711 // phase below) we insert a common successor for all unconditional arcs and
1712 // connect that to [end], to enable sinking:
1714 // [if]
1715 // / \
1716 // [x(1)] [if]
1717 // | | \
1718 // | | \
1719 // | [x(2)] |
1720 // \ / |
1721 // [sink.split] |
1722 // \ /
1723 // [ end ]
1725 SmallVector<BasicBlock*,4> UnconditionalPreds;
1726 Instruction *Cond = nullptr;
1727 for (auto *B : predecessors(BB)) {
1728 auto *T = B->getTerminator();
1729 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1730 UnconditionalPreds.push_back(B);
1731 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1732 Cond = T;
1733 else
1734 return false;
1736 if (UnconditionalPreds.size() < 2)
1737 return false;
1739 bool Changed = false;
1740 // We take a two-step approach to tail sinking. First we scan from the end of
1741 // each block upwards in lockstep. If the n'th instruction from the end of each
1742 // block can be sunk, those instructions are added to ValuesToSink and we
1743 // carry on. If we can sink an instruction but need to PHI-merge some operands
1744 // (because they're not identical in each instruction) we add these to
1745 // PHIOperands.
1746 unsigned ScanIdx = 0;
1747 SmallPtrSet<Value*,4> InstructionsToSink;
1748 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1749 LockstepReverseIterator LRI(UnconditionalPreds);
1750 while (LRI.isValid() &&
1751 canSinkInstructions(*LRI, PHIOperands)) {
1752 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1753 << "\n");
1754 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1755 ++ScanIdx;
1756 --LRI;
1759 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1760 unsigned NumPHIdValues = 0;
1761 for (auto *I : *LRI)
1762 for (auto *V : PHIOperands[I])
1763 if (InstructionsToSink.count(V) == 0)
1764 ++NumPHIdValues;
1765 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1766 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1767 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1768 NumPHIInsts++;
1770 return NumPHIInsts <= 1;
1773 if (ScanIdx > 0 && Cond) {
1774 // Check if we would actually sink anything first! This mutates the CFG and
1775 // adds an extra block. The goal in doing this is to allow instructions that
1776 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1777 // (such as trunc, add) can be sunk and predicated already. So we check that
1778 // we're going to sink at least one non-speculatable instruction.
1779 LRI.reset();
1780 unsigned Idx = 0;
1781 bool Profitable = false;
1782 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1783 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1784 Profitable = true;
1785 break;
1787 --LRI;
1788 ++Idx;
1790 if (!Profitable)
1791 return false;
1793 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1794 // We have a conditional edge and we're going to sink some instructions.
1795 // Insert a new block postdominating all blocks we're going to sink from.
1796 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1797 // Edges couldn't be split.
1798 return false;
1799 Changed = true;
1802 // Now that we've analyzed all potential sinking candidates, perform the
1803 // actual sink. We iteratively sink the last non-terminator of the source
1804 // blocks into their common successor unless doing so would require too
1805 // many PHI instructions to be generated (currently only one PHI is allowed
1806 // per sunk instruction).
1808 // We can use InstructionsToSink to discount values needing PHI-merging that will
1809 // actually be sunk in a later iteration. This allows us to be more
1810 // aggressive in what we sink. This does allow a false positive where we
1811 // sink presuming a later value will also be sunk, but stop half way through
1812 // and never actually sink it which means we produce more PHIs than intended.
1813 // This is unlikely in practice though.
1814 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1815 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1816 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1817 << "\n");
1819 // Because we've sunk every instruction in turn, the current instruction to
1820 // sink is always at index 0.
1821 LRI.reset();
1822 if (!ProfitableToSinkInstruction(LRI)) {
1823 // Too many PHIs would be created.
1824 LLVM_DEBUG(
1825 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1826 break;
1829 if (!sinkLastInstruction(UnconditionalPreds))
1830 return Changed;
1831 NumSinkCommons++;
1832 Changed = true;
1834 return Changed;
1837 /// Determine if we can hoist sink a sole store instruction out of a
1838 /// conditional block.
1840 /// We are looking for code like the following:
1841 /// BrBB:
1842 /// store i32 %add, i32* %arrayidx2
1843 /// ... // No other stores or function calls (we could be calling a memory
1844 /// ... // function).
1845 /// %cmp = icmp ult %x, %y
1846 /// br i1 %cmp, label %EndBB, label %ThenBB
1847 /// ThenBB:
1848 /// store i32 %add5, i32* %arrayidx2
1849 /// br label EndBB
1850 /// EndBB:
1851 /// ...
1852 /// We are going to transform this into:
1853 /// BrBB:
1854 /// store i32 %add, i32* %arrayidx2
1855 /// ... //
1856 /// %cmp = icmp ult %x, %y
1857 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1858 /// store i32 %add.add5, i32* %arrayidx2
1859 /// ...
1861 /// \return The pointer to the value of the previous store if the store can be
1862 /// hoisted into the predecessor block. 0 otherwise.
1863 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1864 BasicBlock *StoreBB, BasicBlock *EndBB) {
1865 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1866 if (!StoreToHoist)
1867 return nullptr;
1869 // Volatile or atomic.
1870 if (!StoreToHoist->isSimple())
1871 return nullptr;
1873 Value *StorePtr = StoreToHoist->getPointerOperand();
1875 // Look for a store to the same pointer in BrBB.
1876 unsigned MaxNumInstToLookAt = 9;
1877 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1878 if (!MaxNumInstToLookAt)
1879 break;
1880 --MaxNumInstToLookAt;
1882 // Could be calling an instruction that affects memory like free().
1883 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1884 return nullptr;
1886 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1887 // Found the previous store make sure it stores to the same location.
1888 if (SI->getPointerOperand() == StorePtr)
1889 // Found the previous store, return its value operand.
1890 return SI->getValueOperand();
1891 return nullptr; // Unknown store.
1895 return nullptr;
1898 /// Speculate a conditional basic block flattening the CFG.
1900 /// Note that this is a very risky transform currently. Speculating
1901 /// instructions like this is most often not desirable. Instead, there is an MI
1902 /// pass which can do it with full awareness of the resource constraints.
1903 /// However, some cases are "obvious" and we should do directly. An example of
1904 /// this is speculating a single, reasonably cheap instruction.
1906 /// There is only one distinct advantage to flattening the CFG at the IR level:
1907 /// it makes very common but simplistic optimizations such as are common in
1908 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1909 /// modeling their effects with easier to reason about SSA value graphs.
1912 /// An illustration of this transform is turning this IR:
1913 /// \code
1914 /// BB:
1915 /// %cmp = icmp ult %x, %y
1916 /// br i1 %cmp, label %EndBB, label %ThenBB
1917 /// ThenBB:
1918 /// %sub = sub %x, %y
1919 /// br label BB2
1920 /// EndBB:
1921 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1922 /// ...
1923 /// \endcode
1925 /// Into this IR:
1926 /// \code
1927 /// BB:
1928 /// %cmp = icmp ult %x, %y
1929 /// %sub = sub %x, %y
1930 /// %cond = select i1 %cmp, 0, %sub
1931 /// ...
1932 /// \endcode
1934 /// \returns true if the conditional block is removed.
1935 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1936 const TargetTransformInfo &TTI) {
1937 // Be conservative for now. FP select instruction can often be expensive.
1938 Value *BrCond = BI->getCondition();
1939 if (isa<FCmpInst>(BrCond))
1940 return false;
1942 BasicBlock *BB = BI->getParent();
1943 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1945 // If ThenBB is actually on the false edge of the conditional branch, remember
1946 // to swap the select operands later.
1947 bool Invert = false;
1948 if (ThenBB != BI->getSuccessor(0)) {
1949 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1950 Invert = true;
1952 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1954 // Keep a count of how many times instructions are used within ThenBB when
1955 // they are candidates for sinking into ThenBB. Specifically:
1956 // - They are defined in BB, and
1957 // - They have no side effects, and
1958 // - All of their uses are in ThenBB.
1959 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1961 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1963 unsigned SpeculationCost = 0;
1964 Value *SpeculatedStoreValue = nullptr;
1965 StoreInst *SpeculatedStore = nullptr;
1966 for (BasicBlock::iterator BBI = ThenBB->begin(),
1967 BBE = std::prev(ThenBB->end());
1968 BBI != BBE; ++BBI) {
1969 Instruction *I = &*BBI;
1970 // Skip debug info.
1971 if (isa<DbgInfoIntrinsic>(I)) {
1972 SpeculatedDbgIntrinsics.push_back(I);
1973 continue;
1976 // Only speculatively execute a single instruction (not counting the
1977 // terminator) for now.
1978 ++SpeculationCost;
1979 if (SpeculationCost > 1)
1980 return false;
1982 // Don't hoist the instruction if it's unsafe or expensive.
1983 if (!isSafeToSpeculativelyExecute(I) &&
1984 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1985 I, BB, ThenBB, EndBB))))
1986 return false;
1987 if (!SpeculatedStoreValue &&
1988 ComputeSpeculationCost(I, TTI) >
1989 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1990 return false;
1992 // Store the store speculation candidate.
1993 if (SpeculatedStoreValue)
1994 SpeculatedStore = cast<StoreInst>(I);
1996 // Do not hoist the instruction if any of its operands are defined but not
1997 // used in BB. The transformation will prevent the operand from
1998 // being sunk into the use block.
1999 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2000 Instruction *OpI = dyn_cast<Instruction>(*i);
2001 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2002 continue; // Not a candidate for sinking.
2004 ++SinkCandidateUseCounts[OpI];
2008 // Consider any sink candidates which are only used in ThenBB as costs for
2009 // speculation. Note, while we iterate over a DenseMap here, we are summing
2010 // and so iteration order isn't significant.
2011 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2012 I = SinkCandidateUseCounts.begin(),
2013 E = SinkCandidateUseCounts.end();
2014 I != E; ++I)
2015 if (I->first->hasNUses(I->second)) {
2016 ++SpeculationCost;
2017 if (SpeculationCost > 1)
2018 return false;
2021 // Check that the PHI nodes can be converted to selects.
2022 bool HaveRewritablePHIs = false;
2023 for (PHINode &PN : EndBB->phis()) {
2024 Value *OrigV = PN.getIncomingValueForBlock(BB);
2025 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2027 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2028 // Skip PHIs which are trivial.
2029 if (ThenV == OrigV)
2030 continue;
2032 // Don't convert to selects if we could remove undefined behavior instead.
2033 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2034 passingValueIsAlwaysUndefined(ThenV, &PN))
2035 return false;
2037 HaveRewritablePHIs = true;
2038 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2039 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2040 if (!OrigCE && !ThenCE)
2041 continue; // Known safe and cheap.
2043 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2044 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2045 return false;
2046 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2047 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2048 unsigned MaxCost =
2049 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2050 if (OrigCost + ThenCost > MaxCost)
2051 return false;
2053 // Account for the cost of an unfolded ConstantExpr which could end up
2054 // getting expanded into Instructions.
2055 // FIXME: This doesn't account for how many operations are combined in the
2056 // constant expression.
2057 ++SpeculationCost;
2058 if (SpeculationCost > 1)
2059 return false;
2062 // If there are no PHIs to process, bail early. This helps ensure idempotence
2063 // as well.
2064 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2065 return false;
2067 // If we get here, we can hoist the instruction and if-convert.
2068 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2070 // Insert a select of the value of the speculated store.
2071 if (SpeculatedStoreValue) {
2072 IRBuilder<NoFolder> Builder(BI);
2073 Value *TrueV = SpeculatedStore->getValueOperand();
2074 Value *FalseV = SpeculatedStoreValue;
2075 if (Invert)
2076 std::swap(TrueV, FalseV);
2077 Value *S = Builder.CreateSelect(
2078 BrCond, TrueV, FalseV, "spec.store.select", BI);
2079 SpeculatedStore->setOperand(0, S);
2080 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2081 SpeculatedStore->getDebugLoc());
2084 // Metadata can be dependent on the condition we are hoisting above.
2085 // Conservatively strip all metadata on the instruction.
2086 for (auto &I : *ThenBB)
2087 I.dropUnknownNonDebugMetadata();
2089 // Hoist the instructions.
2090 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2091 ThenBB->begin(), std::prev(ThenBB->end()));
2093 // Insert selects and rewrite the PHI operands.
2094 IRBuilder<NoFolder> Builder(BI);
2095 for (PHINode &PN : EndBB->phis()) {
2096 unsigned OrigI = PN.getBasicBlockIndex(BB);
2097 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2098 Value *OrigV = PN.getIncomingValue(OrigI);
2099 Value *ThenV = PN.getIncomingValue(ThenI);
2101 // Skip PHIs which are trivial.
2102 if (OrigV == ThenV)
2103 continue;
2105 // Create a select whose true value is the speculatively executed value and
2106 // false value is the preexisting value. Swap them if the branch
2107 // destinations were inverted.
2108 Value *TrueV = ThenV, *FalseV = OrigV;
2109 if (Invert)
2110 std::swap(TrueV, FalseV);
2111 Value *V = Builder.CreateSelect(
2112 BrCond, TrueV, FalseV, "spec.select", BI);
2113 PN.setIncomingValue(OrigI, V);
2114 PN.setIncomingValue(ThenI, V);
2117 // Remove speculated dbg intrinsics.
2118 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2119 // dbg value for the different flows and inserting it after the select.
2120 for (Instruction *I : SpeculatedDbgIntrinsics)
2121 I->eraseFromParent();
2123 ++NumSpeculations;
2124 return true;
2127 /// Return true if we can thread a branch across this block.
2128 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2129 unsigned Size = 0;
2131 for (Instruction &I : BB->instructionsWithoutDebug()) {
2132 if (Size > 10)
2133 return false; // Don't clone large BB's.
2134 ++Size;
2136 // We can only support instructions that do not define values that are
2137 // live outside of the current basic block.
2138 for (User *U : I.users()) {
2139 Instruction *UI = cast<Instruction>(U);
2140 if (UI->getParent() != BB || isa<PHINode>(UI))
2141 return false;
2144 // Looks ok, continue checking.
2147 return true;
2150 /// If we have a conditional branch on a PHI node value that is defined in the
2151 /// same block as the branch and if any PHI entries are constants, thread edges
2152 /// corresponding to that entry to be branches to their ultimate destination.
2153 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2154 AssumptionCache *AC) {
2155 BasicBlock *BB = BI->getParent();
2156 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2157 // NOTE: we currently cannot transform this case if the PHI node is used
2158 // outside of the block.
2159 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2160 return false;
2162 // Degenerate case of a single entry PHI.
2163 if (PN->getNumIncomingValues() == 1) {
2164 FoldSingleEntryPHINodes(PN->getParent());
2165 return true;
2168 // Now we know that this block has multiple preds and two succs.
2169 if (!BlockIsSimpleEnoughToThreadThrough(BB))
2170 return false;
2172 // Can't fold blocks that contain noduplicate or convergent calls.
2173 if (any_of(*BB, [](const Instruction &I) {
2174 const CallInst *CI = dyn_cast<CallInst>(&I);
2175 return CI && (CI->cannotDuplicate() || CI->isConvergent());
2177 return false;
2179 // Okay, this is a simple enough basic block. See if any phi values are
2180 // constants.
2181 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2182 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2183 if (!CB || !CB->getType()->isIntegerTy(1))
2184 continue;
2186 // Okay, we now know that all edges from PredBB should be revectored to
2187 // branch to RealDest.
2188 BasicBlock *PredBB = PN->getIncomingBlock(i);
2189 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2191 if (RealDest == BB)
2192 continue; // Skip self loops.
2193 // Skip if the predecessor's terminator is an indirect branch.
2194 if (isa<IndirectBrInst>(PredBB->getTerminator()))
2195 continue;
2197 // The dest block might have PHI nodes, other predecessors and other
2198 // difficult cases. Instead of being smart about this, just insert a new
2199 // block that jumps to the destination block, effectively splitting
2200 // the edge we are about to create.
2201 BasicBlock *EdgeBB =
2202 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2203 RealDest->getParent(), RealDest);
2204 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2205 CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2207 // Update PHI nodes.
2208 AddPredecessorToBlock(RealDest, EdgeBB, BB);
2210 // BB may have instructions that are being threaded over. Clone these
2211 // instructions into EdgeBB. We know that there will be no uses of the
2212 // cloned instructions outside of EdgeBB.
2213 BasicBlock::iterator InsertPt = EdgeBB->begin();
2214 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2215 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2216 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2217 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2218 continue;
2220 // Clone the instruction.
2221 Instruction *N = BBI->clone();
2222 if (BBI->hasName())
2223 N->setName(BBI->getName() + ".c");
2225 // Update operands due to translation.
2226 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2227 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2228 if (PI != TranslateMap.end())
2229 *i = PI->second;
2232 // Check for trivial simplification.
2233 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2234 if (!BBI->use_empty())
2235 TranslateMap[&*BBI] = V;
2236 if (!N->mayHaveSideEffects()) {
2237 N->deleteValue(); // Instruction folded away, don't need actual inst
2238 N = nullptr;
2240 } else {
2241 if (!BBI->use_empty())
2242 TranslateMap[&*BBI] = N;
2244 // Insert the new instruction into its new home.
2245 if (N)
2246 EdgeBB->getInstList().insert(InsertPt, N);
2248 // Register the new instruction with the assumption cache if necessary.
2249 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2250 if (II->getIntrinsicID() == Intrinsic::assume)
2251 AC->registerAssumption(II);
2254 // Loop over all of the edges from PredBB to BB, changing them to branch
2255 // to EdgeBB instead.
2256 Instruction *PredBBTI = PredBB->getTerminator();
2257 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2258 if (PredBBTI->getSuccessor(i) == BB) {
2259 BB->removePredecessor(PredBB);
2260 PredBBTI->setSuccessor(i, EdgeBB);
2263 // Recurse, simplifying any other constants.
2264 return FoldCondBranchOnPHI(BI, DL, AC) || true;
2267 return false;
2270 /// Given a BB that starts with the specified two-entry PHI node,
2271 /// see if we can eliminate it.
2272 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2273 const DataLayout &DL) {
2274 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2275 // statement", which has a very simple dominance structure. Basically, we
2276 // are trying to find the condition that is being branched on, which
2277 // subsequently causes this merge to happen. We really want control
2278 // dependence information for this check, but simplifycfg can't keep it up
2279 // to date, and this catches most of the cases we care about anyway.
2280 BasicBlock *BB = PN->getParent();
2281 const Function *Fn = BB->getParent();
2282 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2283 return false;
2285 BasicBlock *IfTrue, *IfFalse;
2286 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2287 if (!IfCond ||
2288 // Don't bother if the branch will be constant folded trivially.
2289 isa<ConstantInt>(IfCond))
2290 return false;
2292 // Okay, we found that we can merge this two-entry phi node into a select.
2293 // Doing so would require us to fold *all* two entry phi nodes in this block.
2294 // At some point this becomes non-profitable (particularly if the target
2295 // doesn't support cmov's). Only do this transformation if there are two or
2296 // fewer PHI nodes in this block.
2297 unsigned NumPhis = 0;
2298 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2299 if (NumPhis > 2)
2300 return false;
2302 // Loop over the PHI's seeing if we can promote them all to select
2303 // instructions. While we are at it, keep track of the instructions
2304 // that need to be moved to the dominating block.
2305 SmallPtrSet<Instruction *, 4> AggressiveInsts;
2306 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2307 MaxCostVal1 = PHINodeFoldingThreshold;
2308 MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2309 MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2311 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2312 PHINode *PN = cast<PHINode>(II++);
2313 if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2314 PN->replaceAllUsesWith(V);
2315 PN->eraseFromParent();
2316 continue;
2319 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2320 MaxCostVal0, TTI) ||
2321 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2322 MaxCostVal1, TTI))
2323 return false;
2326 // If we folded the first phi, PN dangles at this point. Refresh it. If
2327 // we ran out of PHIs then we simplified them all.
2328 PN = dyn_cast<PHINode>(BB->begin());
2329 if (!PN)
2330 return true;
2332 // Don't fold i1 branches on PHIs which contain binary operators. These can
2333 // often be turned into switches and other things.
2334 if (PN->getType()->isIntegerTy(1) &&
2335 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2336 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2337 isa<BinaryOperator>(IfCond)))
2338 return false;
2340 // If all PHI nodes are promotable, check to make sure that all instructions
2341 // in the predecessor blocks can be promoted as well. If not, we won't be able
2342 // to get rid of the control flow, so it's not worth promoting to select
2343 // instructions.
2344 BasicBlock *DomBlock = nullptr;
2345 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2346 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2347 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2348 IfBlock1 = nullptr;
2349 } else {
2350 DomBlock = *pred_begin(IfBlock1);
2351 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2352 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2353 // This is not an aggressive instruction that we can promote.
2354 // Because of this, we won't be able to get rid of the control flow, so
2355 // the xform is not worth it.
2356 return false;
2360 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2361 IfBlock2 = nullptr;
2362 } else {
2363 DomBlock = *pred_begin(IfBlock2);
2364 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2365 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2366 // This is not an aggressive instruction that we can promote.
2367 // Because of this, we won't be able to get rid of the control flow, so
2368 // the xform is not worth it.
2369 return false;
2373 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2374 << " T: " << IfTrue->getName()
2375 << " F: " << IfFalse->getName() << "\n");
2377 // If we can still promote the PHI nodes after this gauntlet of tests,
2378 // do all of the PHI's now.
2379 Instruction *InsertPt = DomBlock->getTerminator();
2380 IRBuilder<NoFolder> Builder(InsertPt);
2382 // Move all 'aggressive' instructions, which are defined in the
2383 // conditional parts of the if's up to the dominating block.
2384 if (IfBlock1)
2385 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2386 if (IfBlock2)
2387 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2389 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2390 // Change the PHI node into a select instruction.
2391 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2392 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2394 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2395 PN->replaceAllUsesWith(Sel);
2396 Sel->takeName(PN);
2397 PN->eraseFromParent();
2400 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2401 // has been flattened. Change DomBlock to jump directly to our new block to
2402 // avoid other simplifycfg's kicking in on the diamond.
2403 Instruction *OldTI = DomBlock->getTerminator();
2404 Builder.SetInsertPoint(OldTI);
2405 Builder.CreateBr(BB);
2406 OldTI->eraseFromParent();
2407 return true;
2410 /// If we found a conditional branch that goes to two returning blocks,
2411 /// try to merge them together into one return,
2412 /// introducing a select if the return values disagree.
2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2414 IRBuilder<> &Builder) {
2415 assert(BI->isConditional() && "Must be a conditional branch");
2416 BasicBlock *TrueSucc = BI->getSuccessor(0);
2417 BasicBlock *FalseSucc = BI->getSuccessor(1);
2418 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2419 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2421 // Check to ensure both blocks are empty (just a return) or optionally empty
2422 // with PHI nodes. If there are other instructions, merging would cause extra
2423 // computation on one path or the other.
2424 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2425 return false;
2426 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2427 return false;
2429 Builder.SetInsertPoint(BI);
2430 // Okay, we found a branch that is going to two return nodes. If
2431 // there is no return value for this function, just change the
2432 // branch into a return.
2433 if (FalseRet->getNumOperands() == 0) {
2434 TrueSucc->removePredecessor(BI->getParent());
2435 FalseSucc->removePredecessor(BI->getParent());
2436 Builder.CreateRetVoid();
2437 EraseTerminatorAndDCECond(BI);
2438 return true;
2441 // Otherwise, figure out what the true and false return values are
2442 // so we can insert a new select instruction.
2443 Value *TrueValue = TrueRet->getReturnValue();
2444 Value *FalseValue = FalseRet->getReturnValue();
2446 // Unwrap any PHI nodes in the return blocks.
2447 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2448 if (TVPN->getParent() == TrueSucc)
2449 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2450 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2451 if (FVPN->getParent() == FalseSucc)
2452 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2454 // In order for this transformation to be safe, we must be able to
2455 // unconditionally execute both operands to the return. This is
2456 // normally the case, but we could have a potentially-trapping
2457 // constant expression that prevents this transformation from being
2458 // safe.
2459 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2460 if (TCV->canTrap())
2461 return false;
2462 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2463 if (FCV->canTrap())
2464 return false;
2466 // Okay, we collected all the mapped values and checked them for sanity, and
2467 // defined to really do this transformation. First, update the CFG.
2468 TrueSucc->removePredecessor(BI->getParent());
2469 FalseSucc->removePredecessor(BI->getParent());
2471 // Insert select instructions where needed.
2472 Value *BrCond = BI->getCondition();
2473 if (TrueValue) {
2474 // Insert a select if the results differ.
2475 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2476 } else if (isa<UndefValue>(TrueValue)) {
2477 TrueValue = FalseValue;
2478 } else {
2479 TrueValue =
2480 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2484 Value *RI =
2485 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2487 (void)RI;
2489 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2490 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2491 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2493 EraseTerminatorAndDCECond(BI);
2495 return true;
2498 /// Return true if the given instruction is available
2499 /// in its predecessor block. If yes, the instruction will be removed.
2500 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2501 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2502 return false;
2503 for (Instruction &I : *PB) {
2504 Instruction *PBI = &I;
2505 // Check whether Inst and PBI generate the same value.
2506 if (Inst->isIdenticalTo(PBI)) {
2507 Inst->replaceAllUsesWith(PBI);
2508 Inst->eraseFromParent();
2509 return true;
2512 return false;
2515 /// Return true if either PBI or BI has branch weight available, and store
2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2517 /// not have branch weight, use 1:1 as its weight.
2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2519 uint64_t &PredTrueWeight,
2520 uint64_t &PredFalseWeight,
2521 uint64_t &SuccTrueWeight,
2522 uint64_t &SuccFalseWeight) {
2523 bool PredHasWeights =
2524 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2525 bool SuccHasWeights =
2526 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2527 if (PredHasWeights || SuccHasWeights) {
2528 if (!PredHasWeights)
2529 PredTrueWeight = PredFalseWeight = 1;
2530 if (!SuccHasWeights)
2531 SuccTrueWeight = SuccFalseWeight = 1;
2532 return true;
2533 } else {
2534 return false;
2538 /// If this basic block is simple enough, and if a predecessor branches to us
2539 /// and one of our successors, fold the block into the predecessor and use
2540 /// logical operations to pick the right destination.
2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2542 unsigned BonusInstThreshold) {
2543 BasicBlock *BB = BI->getParent();
2545 const unsigned PredCount = pred_size(BB);
2547 Instruction *Cond = nullptr;
2548 if (BI->isConditional())
2549 Cond = dyn_cast<Instruction>(BI->getCondition());
2550 else {
2551 // For unconditional branch, check for a simple CFG pattern, where
2552 // BB has a single predecessor and BB's successor is also its predecessor's
2553 // successor. If such pattern exists, check for CSE between BB and its
2554 // predecessor.
2555 if (BasicBlock *PB = BB->getSinglePredecessor())
2556 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2557 if (PBI->isConditional() &&
2558 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2559 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2560 for (auto I = BB->instructionsWithoutDebug().begin(),
2561 E = BB->instructionsWithoutDebug().end();
2562 I != E;) {
2563 Instruction *Curr = &*I++;
2564 if (isa<CmpInst>(Curr)) {
2565 Cond = Curr;
2566 break;
2568 // Quit if we can't remove this instruction.
2569 if (!tryCSEWithPredecessor(Curr, PB))
2570 return false;
2574 if (!Cond)
2575 return false;
2578 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2579 Cond->getParent() != BB || !Cond->hasOneUse())
2580 return false;
2582 // Make sure the instruction after the condition is the cond branch.
2583 BasicBlock::iterator CondIt = ++Cond->getIterator();
2585 // Ignore dbg intrinsics.
2586 while (isa<DbgInfoIntrinsic>(CondIt))
2587 ++CondIt;
2589 if (&*CondIt != BI)
2590 return false;
2592 // Only allow this transformation if computing the condition doesn't involve
2593 // too many instructions and these involved instructions can be executed
2594 // unconditionally. We denote all involved instructions except the condition
2595 // as "bonus instructions", and only allow this transformation when the
2596 // number of the bonus instructions we'll need to create when cloning into
2597 // each predecessor does not exceed a certain threshold.
2598 unsigned NumBonusInsts = 0;
2599 for (auto I = BB->begin(); Cond != &*I; ++I) {
2600 // Ignore dbg intrinsics.
2601 if (isa<DbgInfoIntrinsic>(I))
2602 continue;
2603 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2604 return false;
2605 // I has only one use and can be executed unconditionally.
2606 Instruction *User = dyn_cast<Instruction>(I->user_back());
2607 if (User == nullptr || User->getParent() != BB)
2608 return false;
2609 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2610 // to use any other instruction, User must be an instruction between next(I)
2611 // and Cond.
2613 // Account for the cost of duplicating this instruction into each
2614 // predecessor.
2615 NumBonusInsts += PredCount;
2616 // Early exits once we reach the limit.
2617 if (NumBonusInsts > BonusInstThreshold)
2618 return false;
2621 // Cond is known to be a compare or binary operator. Check to make sure that
2622 // neither operand is a potentially-trapping constant expression.
2623 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2624 if (CE->canTrap())
2625 return false;
2626 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2627 if (CE->canTrap())
2628 return false;
2630 // Finally, don't infinitely unroll conditional loops.
2631 BasicBlock *TrueDest = BI->getSuccessor(0);
2632 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2633 if (TrueDest == BB || FalseDest == BB)
2634 return false;
2636 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2637 BasicBlock *PredBlock = *PI;
2638 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2640 // Check that we have two conditional branches. If there is a PHI node in
2641 // the common successor, verify that the same value flows in from both
2642 // blocks.
2643 SmallVector<PHINode *, 4> PHIs;
2644 if (!PBI || PBI->isUnconditional() ||
2645 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2646 (!BI->isConditional() &&
2647 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2648 continue;
2650 // Determine if the two branches share a common destination.
2651 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2652 bool InvertPredCond = false;
2654 if (BI->isConditional()) {
2655 if (PBI->getSuccessor(0) == TrueDest) {
2656 Opc = Instruction::Or;
2657 } else if (PBI->getSuccessor(1) == FalseDest) {
2658 Opc = Instruction::And;
2659 } else if (PBI->getSuccessor(0) == FalseDest) {
2660 Opc = Instruction::And;
2661 InvertPredCond = true;
2662 } else if (PBI->getSuccessor(1) == TrueDest) {
2663 Opc = Instruction::Or;
2664 InvertPredCond = true;
2665 } else {
2666 continue;
2668 } else {
2669 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2670 continue;
2673 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2674 IRBuilder<> Builder(PBI);
2676 // If we need to invert the condition in the pred block to match, do so now.
2677 if (InvertPredCond) {
2678 Value *NewCond = PBI->getCondition();
2680 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2681 CmpInst *CI = cast<CmpInst>(NewCond);
2682 CI->setPredicate(CI->getInversePredicate());
2683 } else {
2684 NewCond =
2685 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2688 PBI->setCondition(NewCond);
2689 PBI->swapSuccessors();
2692 // If we have bonus instructions, clone them into the predecessor block.
2693 // Note that there may be multiple predecessor blocks, so we cannot move
2694 // bonus instructions to a predecessor block.
2695 ValueToValueMapTy VMap; // maps original values to cloned values
2696 // We already make sure Cond is the last instruction before BI. Therefore,
2697 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2698 // instructions.
2699 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2700 if (isa<DbgInfoIntrinsic>(BonusInst))
2701 continue;
2702 Instruction *NewBonusInst = BonusInst->clone();
2703 RemapInstruction(NewBonusInst, VMap,
2704 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2705 VMap[&*BonusInst] = NewBonusInst;
2707 // If we moved a load, we cannot any longer claim any knowledge about
2708 // its potential value. The previous information might have been valid
2709 // only given the branch precondition.
2710 // For an analogous reason, we must also drop all the metadata whose
2711 // semantics we don't understand.
2712 NewBonusInst->dropUnknownNonDebugMetadata();
2714 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2715 NewBonusInst->takeName(&*BonusInst);
2716 BonusInst->setName(BonusInst->getName() + ".old");
2719 // Clone Cond into the predecessor basic block, and or/and the
2720 // two conditions together.
2721 Instruction *CondInPred = Cond->clone();
2722 RemapInstruction(CondInPred, VMap,
2723 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2724 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2725 CondInPred->takeName(Cond);
2726 Cond->setName(CondInPred->getName() + ".old");
2728 if (BI->isConditional()) {
2729 Instruction *NewCond = cast<Instruction>(
2730 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2731 PBI->setCondition(NewCond);
2733 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2734 bool HasWeights =
2735 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2736 SuccTrueWeight, SuccFalseWeight);
2737 SmallVector<uint64_t, 8> NewWeights;
2739 if (PBI->getSuccessor(0) == BB) {
2740 if (HasWeights) {
2741 // PBI: br i1 %x, BB, FalseDest
2742 // BI: br i1 %y, TrueDest, FalseDest
2743 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2744 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2745 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2746 // TrueWeight for PBI * FalseWeight for BI.
2747 // We assume that total weights of a BranchInst can fit into 32 bits.
2748 // Therefore, we will not have overflow using 64-bit arithmetic.
2749 NewWeights.push_back(PredFalseWeight *
2750 (SuccFalseWeight + SuccTrueWeight) +
2751 PredTrueWeight * SuccFalseWeight);
2753 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2754 PBI->setSuccessor(0, TrueDest);
2756 if (PBI->getSuccessor(1) == BB) {
2757 if (HasWeights) {
2758 // PBI: br i1 %x, TrueDest, BB
2759 // BI: br i1 %y, TrueDest, FalseDest
2760 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2761 // FalseWeight for PBI * TrueWeight for BI.
2762 NewWeights.push_back(PredTrueWeight *
2763 (SuccFalseWeight + SuccTrueWeight) +
2764 PredFalseWeight * SuccTrueWeight);
2765 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2766 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2768 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2769 PBI->setSuccessor(1, FalseDest);
2771 if (NewWeights.size() == 2) {
2772 // Halve the weights if any of them cannot fit in an uint32_t
2773 FitWeights(NewWeights);
2775 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2776 NewWeights.end());
2777 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2778 } else
2779 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2780 } else {
2781 // Update PHI nodes in the common successors.
2782 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2783 ConstantInt *PBI_C = cast<ConstantInt>(
2784 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2785 assert(PBI_C->getType()->isIntegerTy(1));
2786 Instruction *MergedCond = nullptr;
2787 if (PBI->getSuccessor(0) == TrueDest) {
2788 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2789 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2790 // is false: !PBI_Cond and BI_Value
2791 Instruction *NotCond = cast<Instruction>(
2792 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2793 MergedCond = cast<Instruction>(
2794 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2795 "and.cond"));
2796 if (PBI_C->isOne())
2797 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2798 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2799 } else {
2800 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2801 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2802 // is false: PBI_Cond and BI_Value
2803 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2804 Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2805 if (PBI_C->isOne()) {
2806 Instruction *NotCond = cast<Instruction>(
2807 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2808 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2809 Instruction::Or, NotCond, MergedCond, "or.cond"));
2812 // Update PHI Node.
2813 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2816 // PBI is changed to branch to TrueDest below. Remove itself from
2817 // potential phis from all other successors.
2818 if (MSSAU)
2819 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2821 // Change PBI from Conditional to Unconditional.
2822 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2823 EraseTerminatorAndDCECond(PBI, MSSAU);
2824 PBI = New_PBI;
2827 // If BI was a loop latch, it may have had associated loop metadata.
2828 // We need to copy it to the new latch, that is, PBI.
2829 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2830 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2832 // TODO: If BB is reachable from all paths through PredBlock, then we
2833 // could replace PBI's branch probabilities with BI's.
2835 // Copy any debug value intrinsics into the end of PredBlock.
2836 for (Instruction &I : *BB)
2837 if (isa<DbgInfoIntrinsic>(I))
2838 I.clone()->insertBefore(PBI);
2840 return true;
2842 return false;
2845 // If there is only one store in BB1 and BB2, return it, otherwise return
2846 // nullptr.
2847 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2848 StoreInst *S = nullptr;
2849 for (auto *BB : {BB1, BB2}) {
2850 if (!BB)
2851 continue;
2852 for (auto &I : *BB)
2853 if (auto *SI = dyn_cast<StoreInst>(&I)) {
2854 if (S)
2855 // Multiple stores seen.
2856 return nullptr;
2857 else
2858 S = SI;
2861 return S;
2864 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2865 Value *AlternativeV = nullptr) {
2866 // PHI is going to be a PHI node that allows the value V that is defined in
2867 // BB to be referenced in BB's only successor.
2869 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2870 // doesn't matter to us what the other operand is (it'll never get used). We
2871 // could just create a new PHI with an undef incoming value, but that could
2872 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2873 // other PHI. So here we directly look for some PHI in BB's successor with V
2874 // as an incoming operand. If we find one, we use it, else we create a new
2875 // one.
2877 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2878 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2879 // where OtherBB is the single other predecessor of BB's only successor.
2880 PHINode *PHI = nullptr;
2881 BasicBlock *Succ = BB->getSingleSuccessor();
2883 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2884 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2885 PHI = cast<PHINode>(I);
2886 if (!AlternativeV)
2887 break;
2889 assert(Succ->hasNPredecessors(2));
2890 auto PredI = pred_begin(Succ);
2891 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2892 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2893 break;
2894 PHI = nullptr;
2896 if (PHI)
2897 return PHI;
2899 // If V is not an instruction defined in BB, just return it.
2900 if (!AlternativeV &&
2901 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2902 return V;
2904 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2905 PHI->addIncoming(V, BB);
2906 for (BasicBlock *PredBB : predecessors(Succ))
2907 if (PredBB != BB)
2908 PHI->addIncoming(
2909 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2910 return PHI;
2913 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2914 BasicBlock *QTB, BasicBlock *QFB,
2915 BasicBlock *PostBB, Value *Address,
2916 bool InvertPCond, bool InvertQCond,
2917 const DataLayout &DL) {
2918 auto IsaBitcastOfPointerType = [](const Instruction &I) {
2919 return Operator::getOpcode(&I) == Instruction::BitCast &&
2920 I.getType()->isPointerTy();
2923 // If we're not in aggressive mode, we only optimize if we have some
2924 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2925 auto IsWorthwhile = [&](BasicBlock *BB) {
2926 if (!BB)
2927 return true;
2928 // Heuristic: if the block can be if-converted/phi-folded and the
2929 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2930 // thread this store.
2931 unsigned N = 0;
2932 for (auto &I : BB->instructionsWithoutDebug()) {
2933 // Cheap instructions viable for folding.
2934 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2935 isa<StoreInst>(I))
2936 ++N;
2937 // Free instructions.
2938 else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2939 continue;
2940 else
2941 return false;
2943 // The store we want to merge is counted in N, so add 1 to make sure
2944 // we're counting the instructions that would be left.
2945 return N <= (PHINodeFoldingThreshold + 1);
2948 if (!MergeCondStoresAggressively &&
2949 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2950 !IsWorthwhile(QFB)))
2951 return false;
2953 // For every pointer, there must be exactly two stores, one coming from
2954 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2955 // store (to any address) in PTB,PFB or QTB,QFB.
2956 // FIXME: We could relax this restriction with a bit more work and performance
2957 // testing.
2958 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2959 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2960 if (!PStore || !QStore)
2961 return false;
2963 // Now check the stores are compatible.
2964 if (!QStore->isUnordered() || !PStore->isUnordered())
2965 return false;
2967 // Check that sinking the store won't cause program behavior changes. Sinking
2968 // the store out of the Q blocks won't change any behavior as we're sinking
2969 // from a block to its unconditional successor. But we're moving a store from
2970 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2971 // So we need to check that there are no aliasing loads or stores in
2972 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2973 // operations between PStore and the end of its parent block.
2975 // The ideal way to do this is to query AliasAnalysis, but we don't
2976 // preserve AA currently so that is dangerous. Be super safe and just
2977 // check there are no other memory operations at all.
2978 for (auto &I : *QFB->getSinglePredecessor())
2979 if (I.mayReadOrWriteMemory())
2980 return false;
2981 for (auto &I : *QFB)
2982 if (&I != QStore && I.mayReadOrWriteMemory())
2983 return false;
2984 if (QTB)
2985 for (auto &I : *QTB)
2986 if (&I != QStore && I.mayReadOrWriteMemory())
2987 return false;
2988 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2989 I != E; ++I)
2990 if (&*I != PStore && I->mayReadOrWriteMemory())
2991 return false;
2993 // If PostBB has more than two predecessors, we need to split it so we can
2994 // sink the store.
2995 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2996 // We know that QFB's only successor is PostBB. And QFB has a single
2997 // predecessor. If QTB exists, then its only successor is also PostBB.
2998 // If QTB does not exist, then QFB's only predecessor has a conditional
2999 // branch to QFB and PostBB.
3000 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3001 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3002 "condstore.split");
3003 if (!NewBB)
3004 return false;
3005 PostBB = NewBB;
3008 // OK, we're going to sink the stores to PostBB. The store has to be
3009 // conditional though, so first create the predicate.
3010 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3011 ->getCondition();
3012 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3013 ->getCondition();
3015 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3016 PStore->getParent());
3017 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3018 QStore->getParent(), PPHI);
3020 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3022 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3023 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3025 if (InvertPCond)
3026 PPred = QB.CreateNot(PPred);
3027 if (InvertQCond)
3028 QPred = QB.CreateNot(QPred);
3029 Value *CombinedPred = QB.CreateOr(PPred, QPred);
3031 auto *T =
3032 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3033 QB.SetInsertPoint(T);
3034 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3035 AAMDNodes AAMD;
3036 PStore->getAAMetadata(AAMD, /*Merge=*/false);
3037 PStore->getAAMetadata(AAMD, /*Merge=*/true);
3038 SI->setAAMetadata(AAMD);
3039 unsigned PAlignment = PStore->getAlignment();
3040 unsigned QAlignment = QStore->getAlignment();
3041 unsigned TypeAlignment =
3042 DL.getABITypeAlignment(SI->getValueOperand()->getType());
3043 unsigned MinAlignment;
3044 unsigned MaxAlignment;
3045 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3046 // Choose the minimum alignment. If we could prove both stores execute, we
3047 // could use biggest one. In this case, though, we only know that one of the
3048 // stores executes. And we don't know it's safe to take the alignment from a
3049 // store that doesn't execute.
3050 if (MinAlignment != 0) {
3051 // Choose the minimum of all non-zero alignments.
3052 SI->setAlignment(MinAlignment);
3053 } else if (MaxAlignment != 0) {
3054 // Choose the minimal alignment between the non-zero alignment and the ABI
3055 // default alignment for the type of the stored value.
3056 SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3057 } else {
3058 // If both alignments are zero, use ABI default alignment for the type of
3059 // the stored value.
3060 SI->setAlignment(TypeAlignment);
3063 QStore->eraseFromParent();
3064 PStore->eraseFromParent();
3066 return true;
3069 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3070 const DataLayout &DL) {
3071 // The intention here is to find diamonds or triangles (see below) where each
3072 // conditional block contains a store to the same address. Both of these
3073 // stores are conditional, so they can't be unconditionally sunk. But it may
3074 // be profitable to speculatively sink the stores into one merged store at the
3075 // end, and predicate the merged store on the union of the two conditions of
3076 // PBI and QBI.
3078 // This can reduce the number of stores executed if both of the conditions are
3079 // true, and can allow the blocks to become small enough to be if-converted.
3080 // This optimization will also chain, so that ladders of test-and-set
3081 // sequences can be if-converted away.
3083 // We only deal with simple diamonds or triangles:
3085 // PBI or PBI or a combination of the two
3086 // / \ | \
3087 // PTB PFB | PFB
3088 // \ / | /
3089 // QBI QBI
3090 // / \ | \
3091 // QTB QFB | QFB
3092 // \ / | /
3093 // PostBB PostBB
3095 // We model triangles as a type of diamond with a nullptr "true" block.
3096 // Triangles are canonicalized so that the fallthrough edge is represented by
3097 // a true condition, as in the diagram above.
3098 BasicBlock *PTB = PBI->getSuccessor(0);
3099 BasicBlock *PFB = PBI->getSuccessor(1);
3100 BasicBlock *QTB = QBI->getSuccessor(0);
3101 BasicBlock *QFB = QBI->getSuccessor(1);
3102 BasicBlock *PostBB = QFB->getSingleSuccessor();
3104 // Make sure we have a good guess for PostBB. If QTB's only successor is
3105 // QFB, then QFB is a better PostBB.
3106 if (QTB->getSingleSuccessor() == QFB)
3107 PostBB = QFB;
3109 // If we couldn't find a good PostBB, stop.
3110 if (!PostBB)
3111 return false;
3113 bool InvertPCond = false, InvertQCond = false;
3114 // Canonicalize fallthroughs to the true branches.
3115 if (PFB == QBI->getParent()) {
3116 std::swap(PFB, PTB);
3117 InvertPCond = true;
3119 if (QFB == PostBB) {
3120 std::swap(QFB, QTB);
3121 InvertQCond = true;
3124 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3125 // and QFB may not. Model fallthroughs as a nullptr block.
3126 if (PTB == QBI->getParent())
3127 PTB = nullptr;
3128 if (QTB == PostBB)
3129 QTB = nullptr;
3131 // Legality bailouts. We must have at least the non-fallthrough blocks and
3132 // the post-dominating block, and the non-fallthroughs must only have one
3133 // predecessor.
3134 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3135 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3137 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3138 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3139 return false;
3140 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3141 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3142 return false;
3143 if (!QBI->getParent()->hasNUses(2))
3144 return false;
3146 // OK, this is a sequence of two diamonds or triangles.
3147 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3148 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3149 for (auto *BB : {PTB, PFB}) {
3150 if (!BB)
3151 continue;
3152 for (auto &I : *BB)
3153 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3154 PStoreAddresses.insert(SI->getPointerOperand());
3156 for (auto *BB : {QTB, QFB}) {
3157 if (!BB)
3158 continue;
3159 for (auto &I : *BB)
3160 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3161 QStoreAddresses.insert(SI->getPointerOperand());
3164 set_intersect(PStoreAddresses, QStoreAddresses);
3165 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3166 // clear what it contains.
3167 auto &CommonAddresses = PStoreAddresses;
3169 bool Changed = false;
3170 for (auto *Address : CommonAddresses)
3171 Changed |= mergeConditionalStoreToAddress(
3172 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3173 return Changed;
3176 /// If we have a conditional branch as a predecessor of another block,
3177 /// this function tries to simplify it. We know
3178 /// that PBI and BI are both conditional branches, and BI is in one of the
3179 /// successor blocks of PBI - PBI branches to BI.
3180 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3181 const DataLayout &DL) {
3182 assert(PBI->isConditional() && BI->isConditional());
3183 BasicBlock *BB = BI->getParent();
3185 // If this block ends with a branch instruction, and if there is a
3186 // predecessor that ends on a branch of the same condition, make
3187 // this conditional branch redundant.
3188 if (PBI->getCondition() == BI->getCondition() &&
3189 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3190 // Okay, the outcome of this conditional branch is statically
3191 // knowable. If this block had a single pred, handle specially.
3192 if (BB->getSinglePredecessor()) {
3193 // Turn this into a branch on constant.
3194 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3195 BI->setCondition(
3196 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3197 return true; // Nuke the branch on constant.
3200 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3201 // in the constant and simplify the block result. Subsequent passes of
3202 // simplifycfg will thread the block.
3203 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3204 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3205 PHINode *NewPN = PHINode::Create(
3206 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3207 BI->getCondition()->getName() + ".pr", &BB->front());
3208 // Okay, we're going to insert the PHI node. Since PBI is not the only
3209 // predecessor, compute the PHI'd conditional value for all of the preds.
3210 // Any predecessor where the condition is not computable we keep symbolic.
3211 for (pred_iterator PI = PB; PI != PE; ++PI) {
3212 BasicBlock *P = *PI;
3213 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3214 PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3215 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3216 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3217 NewPN->addIncoming(
3218 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3220 } else {
3221 NewPN->addIncoming(BI->getCondition(), P);
3225 BI->setCondition(NewPN);
3226 return true;
3230 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3231 if (CE->canTrap())
3232 return false;
3234 // If both branches are conditional and both contain stores to the same
3235 // address, remove the stores from the conditionals and create a conditional
3236 // merged store at the end.
3237 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3238 return true;
3240 // If this is a conditional branch in an empty block, and if any
3241 // predecessors are a conditional branch to one of our destinations,
3242 // fold the conditions into logical ops and one cond br.
3244 // Ignore dbg intrinsics.
3245 if (&*BB->instructionsWithoutDebug().begin() != BI)
3246 return false;
3248 int PBIOp, BIOp;
3249 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3250 PBIOp = 0;
3251 BIOp = 0;
3252 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3253 PBIOp = 0;
3254 BIOp = 1;
3255 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3256 PBIOp = 1;
3257 BIOp = 0;
3258 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3259 PBIOp = 1;
3260 BIOp = 1;
3261 } else {
3262 return false;
3265 // Check to make sure that the other destination of this branch
3266 // isn't BB itself. If so, this is an infinite loop that will
3267 // keep getting unwound.
3268 if (PBI->getSuccessor(PBIOp) == BB)
3269 return false;
3271 // Do not perform this transformation if it would require
3272 // insertion of a large number of select instructions. For targets
3273 // without predication/cmovs, this is a big pessimization.
3275 // Also do not perform this transformation if any phi node in the common
3276 // destination block can trap when reached by BB or PBB (PR17073). In that
3277 // case, it would be unsafe to hoist the operation into a select instruction.
3279 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3280 unsigned NumPhis = 0;
3281 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3282 ++II, ++NumPhis) {
3283 if (NumPhis > 2) // Disable this xform.
3284 return false;
3286 PHINode *PN = cast<PHINode>(II);
3287 Value *BIV = PN->getIncomingValueForBlock(BB);
3288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3289 if (CE->canTrap())
3290 return false;
3292 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3293 Value *PBIV = PN->getIncomingValue(PBBIdx);
3294 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3295 if (CE->canTrap())
3296 return false;
3299 // Finally, if everything is ok, fold the branches to logical ops.
3300 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3302 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3303 << "AND: " << *BI->getParent());
3305 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3306 // branch in it, where one edge (OtherDest) goes back to itself but the other
3307 // exits. We don't *know* that the program avoids the infinite loop
3308 // (even though that seems likely). If we do this xform naively, we'll end up
3309 // recursively unpeeling the loop. Since we know that (after the xform is
3310 // done) that the block *is* infinite if reached, we just make it an obviously
3311 // infinite loop with no cond branch.
3312 if (OtherDest == BB) {
3313 // Insert it at the end of the function, because it's either code,
3314 // or it won't matter if it's hot. :)
3315 BasicBlock *InfLoopBlock =
3316 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3317 BranchInst::Create(InfLoopBlock, InfLoopBlock);
3318 OtherDest = InfLoopBlock;
3321 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3323 // BI may have other predecessors. Because of this, we leave
3324 // it alone, but modify PBI.
3326 // Make sure we get to CommonDest on True&True directions.
3327 Value *PBICond = PBI->getCondition();
3328 IRBuilder<NoFolder> Builder(PBI);
3329 if (PBIOp)
3330 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3332 Value *BICond = BI->getCondition();
3333 if (BIOp)
3334 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3336 // Merge the conditions.
3337 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3339 // Modify PBI to branch on the new condition to the new dests.
3340 PBI->setCondition(Cond);
3341 PBI->setSuccessor(0, CommonDest);
3342 PBI->setSuccessor(1, OtherDest);
3344 // Update branch weight for PBI.
3345 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3346 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3347 bool HasWeights =
3348 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3349 SuccTrueWeight, SuccFalseWeight);
3350 if (HasWeights) {
3351 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3352 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3353 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3354 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3355 // The weight to CommonDest should be PredCommon * SuccTotal +
3356 // PredOther * SuccCommon.
3357 // The weight to OtherDest should be PredOther * SuccOther.
3358 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3359 PredOther * SuccCommon,
3360 PredOther * SuccOther};
3361 // Halve the weights if any of them cannot fit in an uint32_t
3362 FitWeights(NewWeights);
3364 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3367 // OtherDest may have phi nodes. If so, add an entry from PBI's
3368 // block that are identical to the entries for BI's block.
3369 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3371 // We know that the CommonDest already had an edge from PBI to
3372 // it. If it has PHIs though, the PHIs may have different
3373 // entries for BB and PBI's BB. If so, insert a select to make
3374 // them agree.
3375 for (PHINode &PN : CommonDest->phis()) {
3376 Value *BIV = PN.getIncomingValueForBlock(BB);
3377 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3378 Value *PBIV = PN.getIncomingValue(PBBIdx);
3379 if (BIV != PBIV) {
3380 // Insert a select in PBI to pick the right value.
3381 SelectInst *NV = cast<SelectInst>(
3382 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3383 PN.setIncomingValue(PBBIdx, NV);
3384 // Although the select has the same condition as PBI, the original branch
3385 // weights for PBI do not apply to the new select because the select's
3386 // 'logical' edges are incoming edges of the phi that is eliminated, not
3387 // the outgoing edges of PBI.
3388 if (HasWeights) {
3389 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3390 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3391 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3392 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3393 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3394 // The weight to PredOtherDest should be PredOther * SuccCommon.
3395 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3396 PredOther * SuccCommon};
3398 FitWeights(NewWeights);
3400 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3405 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3406 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3408 // This basic block is probably dead. We know it has at least
3409 // one fewer predecessor.
3410 return true;
3413 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3414 // true or to FalseBB if Cond is false.
3415 // Takes care of updating the successors and removing the old terminator.
3416 // Also makes sure not to introduce new successors by assuming that edges to
3417 // non-successor TrueBBs and FalseBBs aren't reachable.
3418 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3419 BasicBlock *TrueBB, BasicBlock *FalseBB,
3420 uint32_t TrueWeight,
3421 uint32_t FalseWeight) {
3422 // Remove any superfluous successor edges from the CFG.
3423 // First, figure out which successors to preserve.
3424 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3425 // successor.
3426 BasicBlock *KeepEdge1 = TrueBB;
3427 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3429 // Then remove the rest.
3430 for (BasicBlock *Succ : successors(OldTerm)) {
3431 // Make sure only to keep exactly one copy of each edge.
3432 if (Succ == KeepEdge1)
3433 KeepEdge1 = nullptr;
3434 else if (Succ == KeepEdge2)
3435 KeepEdge2 = nullptr;
3436 else
3437 Succ->removePredecessor(OldTerm->getParent(),
3438 /*KeepOneInputPHIs=*/true);
3441 IRBuilder<> Builder(OldTerm);
3442 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3444 // Insert an appropriate new terminator.
3445 if (!KeepEdge1 && !KeepEdge2) {
3446 if (TrueBB == FalseBB)
3447 // We were only looking for one successor, and it was present.
3448 // Create an unconditional branch to it.
3449 Builder.CreateBr(TrueBB);
3450 else {
3451 // We found both of the successors we were looking for.
3452 // Create a conditional branch sharing the condition of the select.
3453 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3454 if (TrueWeight != FalseWeight)
3455 setBranchWeights(NewBI, TrueWeight, FalseWeight);
3457 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3458 // Neither of the selected blocks were successors, so this
3459 // terminator must be unreachable.
3460 new UnreachableInst(OldTerm->getContext(), OldTerm);
3461 } else {
3462 // One of the selected values was a successor, but the other wasn't.
3463 // Insert an unconditional branch to the one that was found;
3464 // the edge to the one that wasn't must be unreachable.
3465 if (!KeepEdge1)
3466 // Only TrueBB was found.
3467 Builder.CreateBr(TrueBB);
3468 else
3469 // Only FalseBB was found.
3470 Builder.CreateBr(FalseBB);
3473 EraseTerminatorAndDCECond(OldTerm);
3474 return true;
3477 // Replaces
3478 // (switch (select cond, X, Y)) on constant X, Y
3479 // with a branch - conditional if X and Y lead to distinct BBs,
3480 // unconditional otherwise.
3481 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3482 // Check for constant integer values in the select.
3483 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3484 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3485 if (!TrueVal || !FalseVal)
3486 return false;
3488 // Find the relevant condition and destinations.
3489 Value *Condition = Select->getCondition();
3490 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3491 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3493 // Get weight for TrueBB and FalseBB.
3494 uint32_t TrueWeight = 0, FalseWeight = 0;
3495 SmallVector<uint64_t, 8> Weights;
3496 bool HasWeights = HasBranchWeights(SI);
3497 if (HasWeights) {
3498 GetBranchWeights(SI, Weights);
3499 if (Weights.size() == 1 + SI->getNumCases()) {
3500 TrueWeight =
3501 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3502 FalseWeight =
3503 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3507 // Perform the actual simplification.
3508 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3509 FalseWeight);
3512 // Replaces
3513 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3514 // blockaddress(@fn, BlockB)))
3515 // with
3516 // (br cond, BlockA, BlockB).
3517 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3518 // Check that both operands of the select are block addresses.
3519 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3520 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3521 if (!TBA || !FBA)
3522 return false;
3524 // Extract the actual blocks.
3525 BasicBlock *TrueBB = TBA->getBasicBlock();
3526 BasicBlock *FalseBB = FBA->getBasicBlock();
3528 // Perform the actual simplification.
3529 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3533 /// This is called when we find an icmp instruction
3534 /// (a seteq/setne with a constant) as the only instruction in a
3535 /// block that ends with an uncond branch. We are looking for a very specific
3536 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3537 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3538 /// default value goes to an uncond block with a seteq in it, we get something
3539 /// like:
3541 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3542 /// DEFAULT:
3543 /// %tmp = icmp eq i8 %A, 92
3544 /// br label %end
3545 /// end:
3546 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3548 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3549 /// the PHI, merging the third icmp into the switch.
3550 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3551 ICmpInst *ICI, IRBuilder<> &Builder) {
3552 BasicBlock *BB = ICI->getParent();
3554 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3555 // complex.
3556 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3557 return false;
3559 Value *V = ICI->getOperand(0);
3560 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3562 // The pattern we're looking for is where our only predecessor is a switch on
3563 // 'V' and this block is the default case for the switch. In this case we can
3564 // fold the compared value into the switch to simplify things.
3565 BasicBlock *Pred = BB->getSinglePredecessor();
3566 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3567 return false;
3569 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3570 if (SI->getCondition() != V)
3571 return false;
3573 // If BB is reachable on a non-default case, then we simply know the value of
3574 // V in this block. Substitute it and constant fold the icmp instruction
3575 // away.
3576 if (SI->getDefaultDest() != BB) {
3577 ConstantInt *VVal = SI->findCaseDest(BB);
3578 assert(VVal && "Should have a unique destination value");
3579 ICI->setOperand(0, VVal);
3581 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3582 ICI->replaceAllUsesWith(V);
3583 ICI->eraseFromParent();
3585 // BB is now empty, so it is likely to simplify away.
3586 return requestResimplify();
3589 // Ok, the block is reachable from the default dest. If the constant we're
3590 // comparing exists in one of the other edges, then we can constant fold ICI
3591 // and zap it.
3592 if (SI->findCaseValue(Cst) != SI->case_default()) {
3593 Value *V;
3594 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3595 V = ConstantInt::getFalse(BB->getContext());
3596 else
3597 V = ConstantInt::getTrue(BB->getContext());
3599 ICI->replaceAllUsesWith(V);
3600 ICI->eraseFromParent();
3601 // BB is now empty, so it is likely to simplify away.
3602 return requestResimplify();
3605 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3606 // the block.
3607 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3608 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3609 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3610 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3611 return false;
3613 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3614 // true in the PHI.
3615 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3616 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3618 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3619 std::swap(DefaultCst, NewCst);
3621 // Replace ICI (which is used by the PHI for the default value) with true or
3622 // false depending on if it is EQ or NE.
3623 ICI->replaceAllUsesWith(DefaultCst);
3624 ICI->eraseFromParent();
3626 // Okay, the switch goes to this block on a default value. Add an edge from
3627 // the switch to the merge point on the compared value.
3628 BasicBlock *NewBB =
3629 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3631 SwitchInstProfUpdateWrapper SIW(*SI);
3632 auto W0 = SIW.getSuccessorWeight(0);
3633 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3634 if (W0) {
3635 NewW = ((uint64_t(*W0) + 1) >> 1);
3636 SIW.setSuccessorWeight(0, *NewW);
3638 SIW.addCase(Cst, NewBB, NewW);
3641 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3642 Builder.SetInsertPoint(NewBB);
3643 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3644 Builder.CreateBr(SuccBlock);
3645 PHIUse->addIncoming(NewCst, NewBB);
3646 return true;
3649 /// The specified branch is a conditional branch.
3650 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3651 /// fold it into a switch instruction if so.
3652 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3653 const DataLayout &DL) {
3654 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3655 if (!Cond)
3656 return false;
3658 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3659 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3660 // 'setne's and'ed together, collect them.
3662 // Try to gather values from a chain of and/or to be turned into a switch
3663 ConstantComparesGatherer ConstantCompare(Cond, DL);
3664 // Unpack the result
3665 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3666 Value *CompVal = ConstantCompare.CompValue;
3667 unsigned UsedICmps = ConstantCompare.UsedICmps;
3668 Value *ExtraCase = ConstantCompare.Extra;
3670 // If we didn't have a multiply compared value, fail.
3671 if (!CompVal)
3672 return false;
3674 // Avoid turning single icmps into a switch.
3675 if (UsedICmps <= 1)
3676 return false;
3678 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3680 // There might be duplicate constants in the list, which the switch
3681 // instruction can't handle, remove them now.
3682 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3683 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3685 // If Extra was used, we require at least two switch values to do the
3686 // transformation. A switch with one value is just a conditional branch.
3687 if (ExtraCase && Values.size() < 2)
3688 return false;
3690 // TODO: Preserve branch weight metadata, similarly to how
3691 // FoldValueComparisonIntoPredecessors preserves it.
3693 // Figure out which block is which destination.
3694 BasicBlock *DefaultBB = BI->getSuccessor(1);
3695 BasicBlock *EdgeBB = BI->getSuccessor(0);
3696 if (!TrueWhenEqual)
3697 std::swap(DefaultBB, EdgeBB);
3699 BasicBlock *BB = BI->getParent();
3701 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3702 << " cases into SWITCH. BB is:\n"
3703 << *BB);
3705 // If there are any extra values that couldn't be folded into the switch
3706 // then we evaluate them with an explicit branch first. Split the block
3707 // right before the condbr to handle it.
3708 if (ExtraCase) {
3709 BasicBlock *NewBB =
3710 BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3711 // Remove the uncond branch added to the old block.
3712 Instruction *OldTI = BB->getTerminator();
3713 Builder.SetInsertPoint(OldTI);
3715 if (TrueWhenEqual)
3716 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3717 else
3718 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3720 OldTI->eraseFromParent();
3722 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3723 // for the edge we just added.
3724 AddPredecessorToBlock(EdgeBB, BB, NewBB);
3726 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3727 << "\nEXTRABB = " << *BB);
3728 BB = NewBB;
3731 Builder.SetInsertPoint(BI);
3732 // Convert pointer to int before we switch.
3733 if (CompVal->getType()->isPointerTy()) {
3734 CompVal = Builder.CreatePtrToInt(
3735 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3738 // Create the new switch instruction now.
3739 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3741 // Add all of the 'cases' to the switch instruction.
3742 for (unsigned i = 0, e = Values.size(); i != e; ++i)
3743 New->addCase(Values[i], EdgeBB);
3745 // We added edges from PI to the EdgeBB. As such, if there were any
3746 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3747 // the number of edges added.
3748 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3749 PHINode *PN = cast<PHINode>(BBI);
3750 Value *InVal = PN->getIncomingValueForBlock(BB);
3751 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3752 PN->addIncoming(InVal, BB);
3755 // Erase the old branch instruction.
3756 EraseTerminatorAndDCECond(BI);
3758 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
3759 return true;
3762 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3763 if (isa<PHINode>(RI->getValue()))
3764 return SimplifyCommonResume(RI);
3765 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3766 RI->getValue() == RI->getParent()->getFirstNonPHI())
3767 // The resume must unwind the exception that caused control to branch here.
3768 return SimplifySingleResume(RI);
3770 return false;
3773 // Simplify resume that is shared by several landing pads (phi of landing pad).
3774 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3775 BasicBlock *BB = RI->getParent();
3777 // Check that there are no other instructions except for debug intrinsics
3778 // between the phi of landing pads (RI->getValue()) and resume instruction.
3779 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3780 E = RI->getIterator();
3781 while (++I != E)
3782 if (!isa<DbgInfoIntrinsic>(I))
3783 return false;
3785 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3786 auto *PhiLPInst = cast<PHINode>(RI->getValue());
3788 // Check incoming blocks to see if any of them are trivial.
3789 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3790 Idx++) {
3791 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3792 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3794 // If the block has other successors, we can not delete it because
3795 // it has other dependents.
3796 if (IncomingBB->getUniqueSuccessor() != BB)
3797 continue;
3799 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3800 // Not the landing pad that caused the control to branch here.
3801 if (IncomingValue != LandingPad)
3802 continue;
3804 bool isTrivial = true;
3806 I = IncomingBB->getFirstNonPHI()->getIterator();
3807 E = IncomingBB->getTerminator()->getIterator();
3808 while (++I != E)
3809 if (!isa<DbgInfoIntrinsic>(I)) {
3810 isTrivial = false;
3811 break;
3814 if (isTrivial)
3815 TrivialUnwindBlocks.insert(IncomingBB);
3818 // If no trivial unwind blocks, don't do any simplifications.
3819 if (TrivialUnwindBlocks.empty())
3820 return false;
3822 // Turn all invokes that unwind here into calls.
3823 for (auto *TrivialBB : TrivialUnwindBlocks) {
3824 // Blocks that will be simplified should be removed from the phi node.
3825 // Note there could be multiple edges to the resume block, and we need
3826 // to remove them all.
3827 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3828 BB->removePredecessor(TrivialBB, true);
3830 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3831 PI != PE;) {
3832 BasicBlock *Pred = *PI++;
3833 removeUnwindEdge(Pred);
3836 // In each SimplifyCFG run, only the current processed block can be erased.
3837 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3838 // of erasing TrivialBB, we only remove the branch to the common resume
3839 // block so that we can later erase the resume block since it has no
3840 // predecessors.
3841 TrivialBB->getTerminator()->eraseFromParent();
3842 new UnreachableInst(RI->getContext(), TrivialBB);
3845 // Delete the resume block if all its predecessors have been removed.
3846 if (pred_empty(BB))
3847 BB->eraseFromParent();
3849 return !TrivialUnwindBlocks.empty();
3852 // Simplify resume that is only used by a single (non-phi) landing pad.
3853 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3854 BasicBlock *BB = RI->getParent();
3855 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3856 assert(RI->getValue() == LPInst &&
3857 "Resume must unwind the exception that caused control to here");
3859 // Check that there are no other instructions except for debug intrinsics.
3860 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3861 while (++I != E)
3862 if (!isa<DbgInfoIntrinsic>(I))
3863 return false;
3865 // Turn all invokes that unwind here into calls and delete the basic block.
3866 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3867 BasicBlock *Pred = *PI++;
3868 removeUnwindEdge(Pred);
3871 // The landingpad is now unreachable. Zap it.
3872 if (LoopHeaders)
3873 LoopHeaders->erase(BB);
3874 BB->eraseFromParent();
3875 return true;
3878 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3879 // If this is a trivial cleanup pad that executes no instructions, it can be
3880 // eliminated. If the cleanup pad continues to the caller, any predecessor
3881 // that is an EH pad will be updated to continue to the caller and any
3882 // predecessor that terminates with an invoke instruction will have its invoke
3883 // instruction converted to a call instruction. If the cleanup pad being
3884 // simplified does not continue to the caller, each predecessor will be
3885 // updated to continue to the unwind destination of the cleanup pad being
3886 // simplified.
3887 BasicBlock *BB = RI->getParent();
3888 CleanupPadInst *CPInst = RI->getCleanupPad();
3889 if (CPInst->getParent() != BB)
3890 // This isn't an empty cleanup.
3891 return false;
3893 // We cannot kill the pad if it has multiple uses. This typically arises
3894 // from unreachable basic blocks.
3895 if (!CPInst->hasOneUse())
3896 return false;
3898 // Check that there are no other instructions except for benign intrinsics.
3899 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3900 while (++I != E) {
3901 auto *II = dyn_cast<IntrinsicInst>(I);
3902 if (!II)
3903 return false;
3905 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3906 switch (IntrinsicID) {
3907 case Intrinsic::dbg_declare:
3908 case Intrinsic::dbg_value:
3909 case Intrinsic::dbg_label:
3910 case Intrinsic::lifetime_end:
3911 break;
3912 default:
3913 return false;
3917 // If the cleanup return we are simplifying unwinds to the caller, this will
3918 // set UnwindDest to nullptr.
3919 BasicBlock *UnwindDest = RI->getUnwindDest();
3920 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3922 // We're about to remove BB from the control flow. Before we do, sink any
3923 // PHINodes into the unwind destination. Doing this before changing the
3924 // control flow avoids some potentially slow checks, since we can currently
3925 // be certain that UnwindDest and BB have no common predecessors (since they
3926 // are both EH pads).
3927 if (UnwindDest) {
3928 // First, go through the PHI nodes in UnwindDest and update any nodes that
3929 // reference the block we are removing
3930 for (BasicBlock::iterator I = UnwindDest->begin(),
3931 IE = DestEHPad->getIterator();
3932 I != IE; ++I) {
3933 PHINode *DestPN = cast<PHINode>(I);
3935 int Idx = DestPN->getBasicBlockIndex(BB);
3936 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3937 assert(Idx != -1);
3938 // This PHI node has an incoming value that corresponds to a control
3939 // path through the cleanup pad we are removing. If the incoming
3940 // value is in the cleanup pad, it must be a PHINode (because we
3941 // verified above that the block is otherwise empty). Otherwise, the
3942 // value is either a constant or a value that dominates the cleanup
3943 // pad being removed.
3945 // Because BB and UnwindDest are both EH pads, all of their
3946 // predecessors must unwind to these blocks, and since no instruction
3947 // can have multiple unwind destinations, there will be no overlap in
3948 // incoming blocks between SrcPN and DestPN.
3949 Value *SrcVal = DestPN->getIncomingValue(Idx);
3950 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3952 // Remove the entry for the block we are deleting.
3953 DestPN->removeIncomingValue(Idx, false);
3955 if (SrcPN && SrcPN->getParent() == BB) {
3956 // If the incoming value was a PHI node in the cleanup pad we are
3957 // removing, we need to merge that PHI node's incoming values into
3958 // DestPN.
3959 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3960 SrcIdx != SrcE; ++SrcIdx) {
3961 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3962 SrcPN->getIncomingBlock(SrcIdx));
3964 } else {
3965 // Otherwise, the incoming value came from above BB and
3966 // so we can just reuse it. We must associate all of BB's
3967 // predecessors with this value.
3968 for (auto *pred : predecessors(BB)) {
3969 DestPN->addIncoming(SrcVal, pred);
3974 // Sink any remaining PHI nodes directly into UnwindDest.
3975 Instruction *InsertPt = DestEHPad;
3976 for (BasicBlock::iterator I = BB->begin(),
3977 IE = BB->getFirstNonPHI()->getIterator();
3978 I != IE;) {
3979 // The iterator must be incremented here because the instructions are
3980 // being moved to another block.
3981 PHINode *PN = cast<PHINode>(I++);
3982 if (PN->use_empty())
3983 // If the PHI node has no uses, just leave it. It will be erased
3984 // when we erase BB below.
3985 continue;
3987 // Otherwise, sink this PHI node into UnwindDest.
3988 // Any predecessors to UnwindDest which are not already represented
3989 // must be back edges which inherit the value from the path through
3990 // BB. In this case, the PHI value must reference itself.
3991 for (auto *pred : predecessors(UnwindDest))
3992 if (pred != BB)
3993 PN->addIncoming(PN, pred);
3994 PN->moveBefore(InsertPt);
3998 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3999 // The iterator must be updated here because we are removing this pred.
4000 BasicBlock *PredBB = *PI++;
4001 if (UnwindDest == nullptr) {
4002 removeUnwindEdge(PredBB);
4003 } else {
4004 Instruction *TI = PredBB->getTerminator();
4005 TI->replaceUsesOfWith(BB, UnwindDest);
4009 // The cleanup pad is now unreachable. Zap it.
4010 BB->eraseFromParent();
4011 return true;
4014 // Try to merge two cleanuppads together.
4015 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4016 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4017 // with.
4018 BasicBlock *UnwindDest = RI->getUnwindDest();
4019 if (!UnwindDest)
4020 return false;
4022 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4023 // be safe to merge without code duplication.
4024 if (UnwindDest->getSinglePredecessor() != RI->getParent())
4025 return false;
4027 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4028 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4029 if (!SuccessorCleanupPad)
4030 return false;
4032 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4033 // Replace any uses of the successor cleanupad with the predecessor pad
4034 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4035 // funclet bundle operands.
4036 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4037 // Remove the old cleanuppad.
4038 SuccessorCleanupPad->eraseFromParent();
4039 // Now, we simply replace the cleanupret with a branch to the unwind
4040 // destination.
4041 BranchInst::Create(UnwindDest, RI->getParent());
4042 RI->eraseFromParent();
4044 return true;
4047 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4048 // It is possible to transiantly have an undef cleanuppad operand because we
4049 // have deleted some, but not all, dead blocks.
4050 // Eventually, this block will be deleted.
4051 if (isa<UndefValue>(RI->getOperand(0)))
4052 return false;
4054 if (mergeCleanupPad(RI))
4055 return true;
4057 if (removeEmptyCleanup(RI))
4058 return true;
4060 return false;
4063 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4064 BasicBlock *BB = RI->getParent();
4065 if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4066 return false;
4068 // Find predecessors that end with branches.
4069 SmallVector<BasicBlock *, 8> UncondBranchPreds;
4070 SmallVector<BranchInst *, 8> CondBranchPreds;
4071 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4072 BasicBlock *P = *PI;
4073 Instruction *PTI = P->getTerminator();
4074 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4075 if (BI->isUnconditional())
4076 UncondBranchPreds.push_back(P);
4077 else
4078 CondBranchPreds.push_back(BI);
4082 // If we found some, do the transformation!
4083 if (!UncondBranchPreds.empty() && DupRet) {
4084 while (!UncondBranchPreds.empty()) {
4085 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4086 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4087 << "INTO UNCOND BRANCH PRED: " << *Pred);
4088 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4091 // If we eliminated all predecessors of the block, delete the block now.
4092 if (pred_empty(BB)) {
4093 // We know there are no successors, so just nuke the block.
4094 if (LoopHeaders)
4095 LoopHeaders->erase(BB);
4096 BB->eraseFromParent();
4099 return true;
4102 // Check out all of the conditional branches going to this return
4103 // instruction. If any of them just select between returns, change the
4104 // branch itself into a select/return pair.
4105 while (!CondBranchPreds.empty()) {
4106 BranchInst *BI = CondBranchPreds.pop_back_val();
4108 // Check to see if the non-BB successor is also a return block.
4109 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4110 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4111 SimplifyCondBranchToTwoReturns(BI, Builder))
4112 return true;
4114 return false;
4117 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4118 BasicBlock *BB = UI->getParent();
4120 bool Changed = false;
4122 // If there are any instructions immediately before the unreachable that can
4123 // be removed, do so.
4124 while (UI->getIterator() != BB->begin()) {
4125 BasicBlock::iterator BBI = UI->getIterator();
4126 --BBI;
4127 // Do not delete instructions that can have side effects which might cause
4128 // the unreachable to not be reachable; specifically, calls and volatile
4129 // operations may have this effect.
4130 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4131 break;
4133 if (BBI->mayHaveSideEffects()) {
4134 if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4135 if (SI->isVolatile())
4136 break;
4137 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4138 if (LI->isVolatile())
4139 break;
4140 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4141 if (RMWI->isVolatile())
4142 break;
4143 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4144 if (CXI->isVolatile())
4145 break;
4146 } else if (isa<CatchPadInst>(BBI)) {
4147 // A catchpad may invoke exception object constructors and such, which
4148 // in some languages can be arbitrary code, so be conservative by
4149 // default.
4150 // For CoreCLR, it just involves a type test, so can be removed.
4151 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4152 EHPersonality::CoreCLR)
4153 break;
4154 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4155 !isa<LandingPadInst>(BBI)) {
4156 break;
4158 // Note that deleting LandingPad's here is in fact okay, although it
4159 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4160 // all the predecessors of this block will be the unwind edges of Invokes,
4161 // and we can therefore guarantee this block will be erased.
4164 // Delete this instruction (any uses are guaranteed to be dead)
4165 if (!BBI->use_empty())
4166 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4167 BBI->eraseFromParent();
4168 Changed = true;
4171 // If the unreachable instruction is the first in the block, take a gander
4172 // at all of the predecessors of this instruction, and simplify them.
4173 if (&BB->front() != UI)
4174 return Changed;
4176 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4177 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4178 Instruction *TI = Preds[i]->getTerminator();
4179 IRBuilder<> Builder(TI);
4180 if (auto *BI = dyn_cast<BranchInst>(TI)) {
4181 if (BI->isUnconditional()) {
4182 assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4183 new UnreachableInst(TI->getContext(), TI);
4184 TI->eraseFromParent();
4185 Changed = true;
4186 } else {
4187 Value* Cond = BI->getCondition();
4188 if (BI->getSuccessor(0) == BB) {
4189 Builder.CreateAssumption(Builder.CreateNot(Cond));
4190 Builder.CreateBr(BI->getSuccessor(1));
4191 } else {
4192 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4193 Builder.CreateAssumption(Cond);
4194 Builder.CreateBr(BI->getSuccessor(0));
4196 EraseTerminatorAndDCECond(BI);
4197 Changed = true;
4199 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4200 SwitchInstProfUpdateWrapper SU(*SI);
4201 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4202 if (i->getCaseSuccessor() != BB) {
4203 ++i;
4204 continue;
4206 BB->removePredecessor(SU->getParent());
4207 i = SU.removeCase(i);
4208 e = SU->case_end();
4209 Changed = true;
4211 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4212 if (II->getUnwindDest() == BB) {
4213 removeUnwindEdge(TI->getParent());
4214 Changed = true;
4216 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4217 if (CSI->getUnwindDest() == BB) {
4218 removeUnwindEdge(TI->getParent());
4219 Changed = true;
4220 continue;
4223 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4224 E = CSI->handler_end();
4225 I != E; ++I) {
4226 if (*I == BB) {
4227 CSI->removeHandler(I);
4228 --I;
4229 --E;
4230 Changed = true;
4233 if (CSI->getNumHandlers() == 0) {
4234 BasicBlock *CatchSwitchBB = CSI->getParent();
4235 if (CSI->hasUnwindDest()) {
4236 // Redirect preds to the unwind dest
4237 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4238 } else {
4239 // Rewrite all preds to unwind to caller (or from invoke to call).
4240 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4241 for (BasicBlock *EHPred : EHPreds)
4242 removeUnwindEdge(EHPred);
4244 // The catchswitch is no longer reachable.
4245 new UnreachableInst(CSI->getContext(), CSI);
4246 CSI->eraseFromParent();
4247 Changed = true;
4249 } else if (isa<CleanupReturnInst>(TI)) {
4250 new UnreachableInst(TI->getContext(), TI);
4251 TI->eraseFromParent();
4252 Changed = true;
4256 // If this block is now dead, remove it.
4257 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4258 // We know there are no successors, so just nuke the block.
4259 if (LoopHeaders)
4260 LoopHeaders->erase(BB);
4261 BB->eraseFromParent();
4262 return true;
4265 return Changed;
4268 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4269 assert(Cases.size() >= 1);
4271 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4272 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4273 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4274 return false;
4276 return true;
4279 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4280 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4281 BasicBlock *NewDefaultBlock =
4282 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4283 Switch->setDefaultDest(&*NewDefaultBlock);
4284 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4285 auto *NewTerminator = NewDefaultBlock->getTerminator();
4286 new UnreachableInst(Switch->getContext(), NewTerminator);
4287 EraseTerminatorAndDCECond(NewTerminator);
4290 /// Turn a switch with two reachable destinations into an integer range
4291 /// comparison and branch.
4292 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4293 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4295 bool HasDefault =
4296 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4298 // Partition the cases into two sets with different destinations.
4299 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4300 BasicBlock *DestB = nullptr;
4301 SmallVector<ConstantInt *, 16> CasesA;
4302 SmallVector<ConstantInt *, 16> CasesB;
4304 for (auto Case : SI->cases()) {
4305 BasicBlock *Dest = Case.getCaseSuccessor();
4306 if (!DestA)
4307 DestA = Dest;
4308 if (Dest == DestA) {
4309 CasesA.push_back(Case.getCaseValue());
4310 continue;
4312 if (!DestB)
4313 DestB = Dest;
4314 if (Dest == DestB) {
4315 CasesB.push_back(Case.getCaseValue());
4316 continue;
4318 return false; // More than two destinations.
4321 assert(DestA && DestB &&
4322 "Single-destination switch should have been folded.");
4323 assert(DestA != DestB);
4324 assert(DestB != SI->getDefaultDest());
4325 assert(!CasesB.empty() && "There must be non-default cases.");
4326 assert(!CasesA.empty() || HasDefault);
4328 // Figure out if one of the sets of cases form a contiguous range.
4329 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4330 BasicBlock *ContiguousDest = nullptr;
4331 BasicBlock *OtherDest = nullptr;
4332 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4333 ContiguousCases = &CasesA;
4334 ContiguousDest = DestA;
4335 OtherDest = DestB;
4336 } else if (CasesAreContiguous(CasesB)) {
4337 ContiguousCases = &CasesB;
4338 ContiguousDest = DestB;
4339 OtherDest = DestA;
4340 } else
4341 return false;
4343 // Start building the compare and branch.
4345 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4346 Constant *NumCases =
4347 ConstantInt::get(Offset->getType(), ContiguousCases->size());
4349 Value *Sub = SI->getCondition();
4350 if (!Offset->isNullValue())
4351 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4353 Value *Cmp;
4354 // If NumCases overflowed, then all possible values jump to the successor.
4355 if (NumCases->isNullValue() && !ContiguousCases->empty())
4356 Cmp = ConstantInt::getTrue(SI->getContext());
4357 else
4358 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4359 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4361 // Update weight for the newly-created conditional branch.
4362 if (HasBranchWeights(SI)) {
4363 SmallVector<uint64_t, 8> Weights;
4364 GetBranchWeights(SI, Weights);
4365 if (Weights.size() == 1 + SI->getNumCases()) {
4366 uint64_t TrueWeight = 0;
4367 uint64_t FalseWeight = 0;
4368 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4369 if (SI->getSuccessor(I) == ContiguousDest)
4370 TrueWeight += Weights[I];
4371 else
4372 FalseWeight += Weights[I];
4374 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4375 TrueWeight /= 2;
4376 FalseWeight /= 2;
4378 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4382 // Prune obsolete incoming values off the successors' PHI nodes.
4383 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4384 unsigned PreviousEdges = ContiguousCases->size();
4385 if (ContiguousDest == SI->getDefaultDest())
4386 ++PreviousEdges;
4387 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4388 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4390 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4391 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4392 if (OtherDest == SI->getDefaultDest())
4393 ++PreviousEdges;
4394 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4395 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4398 // Clean up the default block - it may have phis or other instructions before
4399 // the unreachable terminator.
4400 if (!HasDefault)
4401 createUnreachableSwitchDefault(SI);
4403 // Drop the switch.
4404 SI->eraseFromParent();
4406 return true;
4409 /// Compute masked bits for the condition of a switch
4410 /// and use it to remove dead cases.
4411 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4412 const DataLayout &DL) {
4413 Value *Cond = SI->getCondition();
4414 unsigned Bits = Cond->getType()->getIntegerBitWidth();
4415 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4417 // We can also eliminate cases by determining that their values are outside of
4418 // the limited range of the condition based on how many significant (non-sign)
4419 // bits are in the condition value.
4420 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4421 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4423 // Gather dead cases.
4424 SmallVector<ConstantInt *, 8> DeadCases;
4425 for (auto &Case : SI->cases()) {
4426 const APInt &CaseVal = Case.getCaseValue()->getValue();
4427 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4428 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4429 DeadCases.push_back(Case.getCaseValue());
4430 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4431 << " is dead.\n");
4435 // If we can prove that the cases must cover all possible values, the
4436 // default destination becomes dead and we can remove it. If we know some
4437 // of the bits in the value, we can use that to more precisely compute the
4438 // number of possible unique case values.
4439 bool HasDefault =
4440 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4441 const unsigned NumUnknownBits =
4442 Bits - (Known.Zero | Known.One).countPopulation();
4443 assert(NumUnknownBits <= Bits);
4444 if (HasDefault && DeadCases.empty() &&
4445 NumUnknownBits < 64 /* avoid overflow */ &&
4446 SI->getNumCases() == (1ULL << NumUnknownBits)) {
4447 createUnreachableSwitchDefault(SI);
4448 return true;
4451 if (DeadCases.empty())
4452 return false;
4454 SwitchInstProfUpdateWrapper SIW(*SI);
4455 for (ConstantInt *DeadCase : DeadCases) {
4456 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4457 assert(CaseI != SI->case_default() &&
4458 "Case was not found. Probably mistake in DeadCases forming.");
4459 // Prune unused values from PHI nodes.
4460 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4461 SIW.removeCase(CaseI);
4464 return true;
4467 /// If BB would be eligible for simplification by
4468 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4469 /// by an unconditional branch), look at the phi node for BB in the successor
4470 /// block and see if the incoming value is equal to CaseValue. If so, return
4471 /// the phi node, and set PhiIndex to BB's index in the phi node.
4472 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4473 BasicBlock *BB, int *PhiIndex) {
4474 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4475 return nullptr; // BB must be empty to be a candidate for simplification.
4476 if (!BB->getSinglePredecessor())
4477 return nullptr; // BB must be dominated by the switch.
4479 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4480 if (!Branch || !Branch->isUnconditional())
4481 return nullptr; // Terminator must be unconditional branch.
4483 BasicBlock *Succ = Branch->getSuccessor(0);
4485 for (PHINode &PHI : Succ->phis()) {
4486 int Idx = PHI.getBasicBlockIndex(BB);
4487 assert(Idx >= 0 && "PHI has no entry for predecessor?");
4489 Value *InValue = PHI.getIncomingValue(Idx);
4490 if (InValue != CaseValue)
4491 continue;
4493 *PhiIndex = Idx;
4494 return &PHI;
4497 return nullptr;
4500 /// Try to forward the condition of a switch instruction to a phi node
4501 /// dominated by the switch, if that would mean that some of the destination
4502 /// blocks of the switch can be folded away. Return true if a change is made.
4503 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4504 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4506 ForwardingNodesMap ForwardingNodes;
4507 BasicBlock *SwitchBlock = SI->getParent();
4508 bool Changed = false;
4509 for (auto &Case : SI->cases()) {
4510 ConstantInt *CaseValue = Case.getCaseValue();
4511 BasicBlock *CaseDest = Case.getCaseSuccessor();
4513 // Replace phi operands in successor blocks that are using the constant case
4514 // value rather than the switch condition variable:
4515 // switchbb:
4516 // switch i32 %x, label %default [
4517 // i32 17, label %succ
4518 // ...
4519 // succ:
4520 // %r = phi i32 ... [ 17, %switchbb ] ...
4521 // -->
4522 // %r = phi i32 ... [ %x, %switchbb ] ...
4524 for (PHINode &Phi : CaseDest->phis()) {
4525 // This only works if there is exactly 1 incoming edge from the switch to
4526 // a phi. If there is >1, that means multiple cases of the switch map to 1
4527 // value in the phi, and that phi value is not the switch condition. Thus,
4528 // this transform would not make sense (the phi would be invalid because
4529 // a phi can't have different incoming values from the same block).
4530 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4531 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4532 count(Phi.blocks(), SwitchBlock) == 1) {
4533 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4534 Changed = true;
4538 // Collect phi nodes that are indirectly using this switch's case constants.
4539 int PhiIdx;
4540 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4541 ForwardingNodes[Phi].push_back(PhiIdx);
4544 for (auto &ForwardingNode : ForwardingNodes) {
4545 PHINode *Phi = ForwardingNode.first;
4546 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4547 if (Indexes.size() < 2)
4548 continue;
4550 for (int Index : Indexes)
4551 Phi->setIncomingValue(Index, SI->getCondition());
4552 Changed = true;
4555 return Changed;
4558 /// Return true if the backend will be able to handle
4559 /// initializing an array of constants like C.
4560 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4561 if (C->isThreadDependent())
4562 return false;
4563 if (C->isDLLImportDependent())
4564 return false;
4566 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4567 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4568 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4569 return false;
4571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4572 if (!CE->isGEPWithNoNotionalOverIndexing())
4573 return false;
4574 if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4575 return false;
4578 if (!TTI.shouldBuildLookupTablesForConstant(C))
4579 return false;
4581 return true;
4584 /// If V is a Constant, return it. Otherwise, try to look up
4585 /// its constant value in ConstantPool, returning 0 if it's not there.
4586 static Constant *
4587 LookupConstant(Value *V,
4588 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4589 if (Constant *C = dyn_cast<Constant>(V))
4590 return C;
4591 return ConstantPool.lookup(V);
4594 /// Try to fold instruction I into a constant. This works for
4595 /// simple instructions such as binary operations where both operands are
4596 /// constant or can be replaced by constants from the ConstantPool. Returns the
4597 /// resulting constant on success, 0 otherwise.
4598 static Constant *
4599 ConstantFold(Instruction *I, const DataLayout &DL,
4600 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4601 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4602 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4603 if (!A)
4604 return nullptr;
4605 if (A->isAllOnesValue())
4606 return LookupConstant(Select->getTrueValue(), ConstantPool);
4607 if (A->isNullValue())
4608 return LookupConstant(Select->getFalseValue(), ConstantPool);
4609 return nullptr;
4612 SmallVector<Constant *, 4> COps;
4613 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4614 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4615 COps.push_back(A);
4616 else
4617 return nullptr;
4620 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4621 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4622 COps[1], DL);
4625 return ConstantFoldInstOperands(I, COps, DL);
4628 /// Try to determine the resulting constant values in phi nodes
4629 /// at the common destination basic block, *CommonDest, for one of the case
4630 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4631 /// case), of a switch instruction SI.
4632 static bool
4633 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4634 BasicBlock **CommonDest,
4635 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4636 const DataLayout &DL, const TargetTransformInfo &TTI) {
4637 // The block from which we enter the common destination.
4638 BasicBlock *Pred = SI->getParent();
4640 // If CaseDest is empty except for some side-effect free instructions through
4641 // which we can constant-propagate the CaseVal, continue to its successor.
4642 SmallDenseMap<Value *, Constant *> ConstantPool;
4643 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4644 for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4645 if (I.isTerminator()) {
4646 // If the terminator is a simple branch, continue to the next block.
4647 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4648 return false;
4649 Pred = CaseDest;
4650 CaseDest = I.getSuccessor(0);
4651 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4652 // Instruction is side-effect free and constant.
4654 // If the instruction has uses outside this block or a phi node slot for
4655 // the block, it is not safe to bypass the instruction since it would then
4656 // no longer dominate all its uses.
4657 for (auto &Use : I.uses()) {
4658 User *User = Use.getUser();
4659 if (Instruction *I = dyn_cast<Instruction>(User))
4660 if (I->getParent() == CaseDest)
4661 continue;
4662 if (PHINode *Phi = dyn_cast<PHINode>(User))
4663 if (Phi->getIncomingBlock(Use) == CaseDest)
4664 continue;
4665 return false;
4668 ConstantPool.insert(std::make_pair(&I, C));
4669 } else {
4670 break;
4674 // If we did not have a CommonDest before, use the current one.
4675 if (!*CommonDest)
4676 *CommonDest = CaseDest;
4677 // If the destination isn't the common one, abort.
4678 if (CaseDest != *CommonDest)
4679 return false;
4681 // Get the values for this case from phi nodes in the destination block.
4682 for (PHINode &PHI : (*CommonDest)->phis()) {
4683 int Idx = PHI.getBasicBlockIndex(Pred);
4684 if (Idx == -1)
4685 continue;
4687 Constant *ConstVal =
4688 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4689 if (!ConstVal)
4690 return false;
4692 // Be conservative about which kinds of constants we support.
4693 if (!ValidLookupTableConstant(ConstVal, TTI))
4694 return false;
4696 Res.push_back(std::make_pair(&PHI, ConstVal));
4699 return Res.size() > 0;
4702 // Helper function used to add CaseVal to the list of cases that generate
4703 // Result. Returns the updated number of cases that generate this result.
4704 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4705 SwitchCaseResultVectorTy &UniqueResults,
4706 Constant *Result) {
4707 for (auto &I : UniqueResults) {
4708 if (I.first == Result) {
4709 I.second.push_back(CaseVal);
4710 return I.second.size();
4713 UniqueResults.push_back(
4714 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4715 return 1;
4718 // Helper function that initializes a map containing
4719 // results for the PHI node of the common destination block for a switch
4720 // instruction. Returns false if multiple PHI nodes have been found or if
4721 // there is not a common destination block for the switch.
4722 static bool
4723 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4724 SwitchCaseResultVectorTy &UniqueResults,
4725 Constant *&DefaultResult, const DataLayout &DL,
4726 const TargetTransformInfo &TTI,
4727 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4728 for (auto &I : SI->cases()) {
4729 ConstantInt *CaseVal = I.getCaseValue();
4731 // Resulting value at phi nodes for this case value.
4732 SwitchCaseResultsTy Results;
4733 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4734 DL, TTI))
4735 return false;
4737 // Only one value per case is permitted.
4738 if (Results.size() > 1)
4739 return false;
4741 // Add the case->result mapping to UniqueResults.
4742 const uintptr_t NumCasesForResult =
4743 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4745 // Early out if there are too many cases for this result.
4746 if (NumCasesForResult > MaxCasesPerResult)
4747 return false;
4749 // Early out if there are too many unique results.
4750 if (UniqueResults.size() > MaxUniqueResults)
4751 return false;
4753 // Check the PHI consistency.
4754 if (!PHI)
4755 PHI = Results[0].first;
4756 else if (PHI != Results[0].first)
4757 return false;
4759 // Find the default result value.
4760 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4761 BasicBlock *DefaultDest = SI->getDefaultDest();
4762 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4763 DL, TTI);
4764 // If the default value is not found abort unless the default destination
4765 // is unreachable.
4766 DefaultResult =
4767 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4768 if ((!DefaultResult &&
4769 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4770 return false;
4772 return true;
4775 // Helper function that checks if it is possible to transform a switch with only
4776 // two cases (or two cases + default) that produces a result into a select.
4777 // Example:
4778 // switch (a) {
4779 // case 10: %0 = icmp eq i32 %a, 10
4780 // return 10; %1 = select i1 %0, i32 10, i32 4
4781 // case 20: ----> %2 = icmp eq i32 %a, 20
4782 // return 2; %3 = select i1 %2, i32 2, i32 %1
4783 // default:
4784 // return 4;
4785 // }
4786 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4787 Constant *DefaultResult, Value *Condition,
4788 IRBuilder<> &Builder) {
4789 assert(ResultVector.size() == 2 &&
4790 "We should have exactly two unique results at this point");
4791 // If we are selecting between only two cases transform into a simple
4792 // select or a two-way select if default is possible.
4793 if (ResultVector[0].second.size() == 1 &&
4794 ResultVector[1].second.size() == 1) {
4795 ConstantInt *const FirstCase = ResultVector[0].second[0];
4796 ConstantInt *const SecondCase = ResultVector[1].second[0];
4798 bool DefaultCanTrigger = DefaultResult;
4799 Value *SelectValue = ResultVector[1].first;
4800 if (DefaultCanTrigger) {
4801 Value *const ValueCompare =
4802 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4803 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4804 DefaultResult, "switch.select");
4806 Value *const ValueCompare =
4807 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4808 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4809 SelectValue, "switch.select");
4812 return nullptr;
4815 // Helper function to cleanup a switch instruction that has been converted into
4816 // a select, fixing up PHI nodes and basic blocks.
4817 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4818 Value *SelectValue,
4819 IRBuilder<> &Builder) {
4820 BasicBlock *SelectBB = SI->getParent();
4821 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4822 PHI->removeIncomingValue(SelectBB);
4823 PHI->addIncoming(SelectValue, SelectBB);
4825 Builder.CreateBr(PHI->getParent());
4827 // Remove the switch.
4828 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4829 BasicBlock *Succ = SI->getSuccessor(i);
4831 if (Succ == PHI->getParent())
4832 continue;
4833 Succ->removePredecessor(SelectBB);
4835 SI->eraseFromParent();
4838 /// If the switch is only used to initialize one or more
4839 /// phi nodes in a common successor block with only two different
4840 /// constant values, replace the switch with select.
4841 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4842 const DataLayout &DL,
4843 const TargetTransformInfo &TTI) {
4844 Value *const Cond = SI->getCondition();
4845 PHINode *PHI = nullptr;
4846 BasicBlock *CommonDest = nullptr;
4847 Constant *DefaultResult;
4848 SwitchCaseResultVectorTy UniqueResults;
4849 // Collect all the cases that will deliver the same value from the switch.
4850 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4851 DL, TTI, 2, 1))
4852 return false;
4853 // Selects choose between maximum two values.
4854 if (UniqueResults.size() != 2)
4855 return false;
4856 assert(PHI != nullptr && "PHI for value select not found");
4858 Builder.SetInsertPoint(SI);
4859 Value *SelectValue =
4860 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4861 if (SelectValue) {
4862 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4863 return true;
4865 // The switch couldn't be converted into a select.
4866 return false;
4869 namespace {
4871 /// This class represents a lookup table that can be used to replace a switch.
4872 class SwitchLookupTable {
4873 public:
4874 /// Create a lookup table to use as a switch replacement with the contents
4875 /// of Values, using DefaultValue to fill any holes in the table.
4876 SwitchLookupTable(
4877 Module &M, uint64_t TableSize, ConstantInt *Offset,
4878 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4879 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4881 /// Build instructions with Builder to retrieve the value at
4882 /// the position given by Index in the lookup table.
4883 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4885 /// Return true if a table with TableSize elements of
4886 /// type ElementType would fit in a target-legal register.
4887 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4888 Type *ElementType);
4890 private:
4891 // Depending on the contents of the table, it can be represented in
4892 // different ways.
4893 enum {
4894 // For tables where each element contains the same value, we just have to
4895 // store that single value and return it for each lookup.
4896 SingleValueKind,
4898 // For tables where there is a linear relationship between table index
4899 // and values. We calculate the result with a simple multiplication
4900 // and addition instead of a table lookup.
4901 LinearMapKind,
4903 // For small tables with integer elements, we can pack them into a bitmap
4904 // that fits into a target-legal register. Values are retrieved by
4905 // shift and mask operations.
4906 BitMapKind,
4908 // The table is stored as an array of values. Values are retrieved by load
4909 // instructions from the table.
4910 ArrayKind
4911 } Kind;
4913 // For SingleValueKind, this is the single value.
4914 Constant *SingleValue = nullptr;
4916 // For BitMapKind, this is the bitmap.
4917 ConstantInt *BitMap = nullptr;
4918 IntegerType *BitMapElementTy = nullptr;
4920 // For LinearMapKind, these are the constants used to derive the value.
4921 ConstantInt *LinearOffset = nullptr;
4922 ConstantInt *LinearMultiplier = nullptr;
4924 // For ArrayKind, this is the array.
4925 GlobalVariable *Array = nullptr;
4928 } // end anonymous namespace
4930 SwitchLookupTable::SwitchLookupTable(
4931 Module &M, uint64_t TableSize, ConstantInt *Offset,
4932 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4933 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4934 assert(Values.size() && "Can't build lookup table without values!");
4935 assert(TableSize >= Values.size() && "Can't fit values in table!");
4937 // If all values in the table are equal, this is that value.
4938 SingleValue = Values.begin()->second;
4940 Type *ValueType = Values.begin()->second->getType();
4942 // Build up the table contents.
4943 SmallVector<Constant *, 64> TableContents(TableSize);
4944 for (size_t I = 0, E = Values.size(); I != E; ++I) {
4945 ConstantInt *CaseVal = Values[I].first;
4946 Constant *CaseRes = Values[I].second;
4947 assert(CaseRes->getType() == ValueType);
4949 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4950 TableContents[Idx] = CaseRes;
4952 if (CaseRes != SingleValue)
4953 SingleValue = nullptr;
4956 // Fill in any holes in the table with the default result.
4957 if (Values.size() < TableSize) {
4958 assert(DefaultValue &&
4959 "Need a default value to fill the lookup table holes.");
4960 assert(DefaultValue->getType() == ValueType);
4961 for (uint64_t I = 0; I < TableSize; ++I) {
4962 if (!TableContents[I])
4963 TableContents[I] = DefaultValue;
4966 if (DefaultValue != SingleValue)
4967 SingleValue = nullptr;
4970 // If each element in the table contains the same value, we only need to store
4971 // that single value.
4972 if (SingleValue) {
4973 Kind = SingleValueKind;
4974 return;
4977 // Check if we can derive the value with a linear transformation from the
4978 // table index.
4979 if (isa<IntegerType>(ValueType)) {
4980 bool LinearMappingPossible = true;
4981 APInt PrevVal;
4982 APInt DistToPrev;
4983 assert(TableSize >= 2 && "Should be a SingleValue table.");
4984 // Check if there is the same distance between two consecutive values.
4985 for (uint64_t I = 0; I < TableSize; ++I) {
4986 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4987 if (!ConstVal) {
4988 // This is an undef. We could deal with it, but undefs in lookup tables
4989 // are very seldom. It's probably not worth the additional complexity.
4990 LinearMappingPossible = false;
4991 break;
4993 const APInt &Val = ConstVal->getValue();
4994 if (I != 0) {
4995 APInt Dist = Val - PrevVal;
4996 if (I == 1) {
4997 DistToPrev = Dist;
4998 } else if (Dist != DistToPrev) {
4999 LinearMappingPossible = false;
5000 break;
5003 PrevVal = Val;
5005 if (LinearMappingPossible) {
5006 LinearOffset = cast<ConstantInt>(TableContents[0]);
5007 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5008 Kind = LinearMapKind;
5009 ++NumLinearMaps;
5010 return;
5014 // If the type is integer and the table fits in a register, build a bitmap.
5015 if (WouldFitInRegister(DL, TableSize, ValueType)) {
5016 IntegerType *IT = cast<IntegerType>(ValueType);
5017 APInt TableInt(TableSize * IT->getBitWidth(), 0);
5018 for (uint64_t I = TableSize; I > 0; --I) {
5019 TableInt <<= IT->getBitWidth();
5020 // Insert values into the bitmap. Undef values are set to zero.
5021 if (!isa<UndefValue>(TableContents[I - 1])) {
5022 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5023 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5026 BitMap = ConstantInt::get(M.getContext(), TableInt);
5027 BitMapElementTy = IT;
5028 Kind = BitMapKind;
5029 ++NumBitMaps;
5030 return;
5033 // Store the table in an array.
5034 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5035 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5037 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5038 GlobalVariable::PrivateLinkage, Initializer,
5039 "switch.table." + FuncName);
5040 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5041 // Set the alignment to that of an array items. We will be only loading one
5042 // value out of it.
5043 Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5044 Kind = ArrayKind;
5047 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5048 switch (Kind) {
5049 case SingleValueKind:
5050 return SingleValue;
5051 case LinearMapKind: {
5052 // Derive the result value from the input value.
5053 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5054 false, "switch.idx.cast");
5055 if (!LinearMultiplier->isOne())
5056 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5057 if (!LinearOffset->isZero())
5058 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5059 return Result;
5061 case BitMapKind: {
5062 // Type of the bitmap (e.g. i59).
5063 IntegerType *MapTy = BitMap->getType();
5065 // Cast Index to the same type as the bitmap.
5066 // Note: The Index is <= the number of elements in the table, so
5067 // truncating it to the width of the bitmask is safe.
5068 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5070 // Multiply the shift amount by the element width.
5071 ShiftAmt = Builder.CreateMul(
5072 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5073 "switch.shiftamt");
5075 // Shift down.
5076 Value *DownShifted =
5077 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5078 // Mask off.
5079 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5081 case ArrayKind: {
5082 // Make sure the table index will not overflow when treated as signed.
5083 IntegerType *IT = cast<IntegerType>(Index->getType());
5084 uint64_t TableSize =
5085 Array->getInitializer()->getType()->getArrayNumElements();
5086 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5087 Index = Builder.CreateZExt(
5088 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5089 "switch.tableidx.zext");
5091 Value *GEPIndices[] = {Builder.getInt32(0), Index};
5092 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5093 GEPIndices, "switch.gep");
5094 return Builder.CreateLoad(
5095 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5096 "switch.load");
5099 llvm_unreachable("Unknown lookup table kind!");
5102 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5103 uint64_t TableSize,
5104 Type *ElementType) {
5105 auto *IT = dyn_cast<IntegerType>(ElementType);
5106 if (!IT)
5107 return false;
5108 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5109 // are <= 15, we could try to narrow the type.
5111 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5112 if (TableSize >= UINT_MAX / IT->getBitWidth())
5113 return false;
5114 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5117 /// Determine whether a lookup table should be built for this switch, based on
5118 /// the number of cases, size of the table, and the types of the results.
5119 static bool
5120 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5121 const TargetTransformInfo &TTI, const DataLayout &DL,
5122 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5123 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5124 return false; // TableSize overflowed, or mul below might overflow.
5126 bool AllTablesFitInRegister = true;
5127 bool HasIllegalType = false;
5128 for (const auto &I : ResultTypes) {
5129 Type *Ty = I.second;
5131 // Saturate this flag to true.
5132 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5134 // Saturate this flag to false.
5135 AllTablesFitInRegister =
5136 AllTablesFitInRegister &&
5137 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5139 // If both flags saturate, we're done. NOTE: This *only* works with
5140 // saturating flags, and all flags have to saturate first due to the
5141 // non-deterministic behavior of iterating over a dense map.
5142 if (HasIllegalType && !AllTablesFitInRegister)
5143 break;
5146 // If each table would fit in a register, we should build it anyway.
5147 if (AllTablesFitInRegister)
5148 return true;
5150 // Don't build a table that doesn't fit in-register if it has illegal types.
5151 if (HasIllegalType)
5152 return false;
5154 // The table density should be at least 40%. This is the same criterion as for
5155 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5156 // FIXME: Find the best cut-off.
5157 return SI->getNumCases() * 10 >= TableSize * 4;
5160 /// Try to reuse the switch table index compare. Following pattern:
5161 /// \code
5162 /// if (idx < tablesize)
5163 /// r = table[idx]; // table does not contain default_value
5164 /// else
5165 /// r = default_value;
5166 /// if (r != default_value)
5167 /// ...
5168 /// \endcode
5169 /// Is optimized to:
5170 /// \code
5171 /// cond = idx < tablesize;
5172 /// if (cond)
5173 /// r = table[idx];
5174 /// else
5175 /// r = default_value;
5176 /// if (cond)
5177 /// ...
5178 /// \endcode
5179 /// Jump threading will then eliminate the second if(cond).
5180 static void reuseTableCompare(
5181 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5182 Constant *DefaultValue,
5183 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5184 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5185 if (!CmpInst)
5186 return;
5188 // We require that the compare is in the same block as the phi so that jump
5189 // threading can do its work afterwards.
5190 if (CmpInst->getParent() != PhiBlock)
5191 return;
5193 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5194 if (!CmpOp1)
5195 return;
5197 Value *RangeCmp = RangeCheckBranch->getCondition();
5198 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5199 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5201 // Check if the compare with the default value is constant true or false.
5202 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5203 DefaultValue, CmpOp1, true);
5204 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5205 return;
5207 // Check if the compare with the case values is distinct from the default
5208 // compare result.
5209 for (auto ValuePair : Values) {
5210 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5211 ValuePair.second, CmpOp1, true);
5212 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5213 return;
5214 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5215 "Expect true or false as compare result.");
5218 // Check if the branch instruction dominates the phi node. It's a simple
5219 // dominance check, but sufficient for our needs.
5220 // Although this check is invariant in the calling loops, it's better to do it
5221 // at this late stage. Practically we do it at most once for a switch.
5222 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5223 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5224 BasicBlock *Pred = *PI;
5225 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5226 return;
5229 if (DefaultConst == FalseConst) {
5230 // The compare yields the same result. We can replace it.
5231 CmpInst->replaceAllUsesWith(RangeCmp);
5232 ++NumTableCmpReuses;
5233 } else {
5234 // The compare yields the same result, just inverted. We can replace it.
5235 Value *InvertedTableCmp = BinaryOperator::CreateXor(
5236 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5237 RangeCheckBranch);
5238 CmpInst->replaceAllUsesWith(InvertedTableCmp);
5239 ++NumTableCmpReuses;
5243 /// If the switch is only used to initialize one or more phi nodes in a common
5244 /// successor block with different constant values, replace the switch with
5245 /// lookup tables.
5246 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5247 const DataLayout &DL,
5248 const TargetTransformInfo &TTI) {
5249 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5251 Function *Fn = SI->getParent()->getParent();
5252 // Only build lookup table when we have a target that supports it or the
5253 // attribute is not set.
5254 if (!TTI.shouldBuildLookupTables() ||
5255 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5256 return false;
5258 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5259 // split off a dense part and build a lookup table for that.
5261 // FIXME: This creates arrays of GEPs to constant strings, which means each
5262 // GEP needs a runtime relocation in PIC code. We should just build one big
5263 // string and lookup indices into that.
5265 // Ignore switches with less than three cases. Lookup tables will not make
5266 // them faster, so we don't analyze them.
5267 if (SI->getNumCases() < 3)
5268 return false;
5270 // Figure out the corresponding result for each case value and phi node in the
5271 // common destination, as well as the min and max case values.
5272 assert(!empty(SI->cases()));
5273 SwitchInst::CaseIt CI = SI->case_begin();
5274 ConstantInt *MinCaseVal = CI->getCaseValue();
5275 ConstantInt *MaxCaseVal = CI->getCaseValue();
5277 BasicBlock *CommonDest = nullptr;
5279 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5280 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5282 SmallDenseMap<PHINode *, Constant *> DefaultResults;
5283 SmallDenseMap<PHINode *, Type *> ResultTypes;
5284 SmallVector<PHINode *, 4> PHIs;
5286 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5287 ConstantInt *CaseVal = CI->getCaseValue();
5288 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5289 MinCaseVal = CaseVal;
5290 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5291 MaxCaseVal = CaseVal;
5293 // Resulting value at phi nodes for this case value.
5294 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5295 ResultsTy Results;
5296 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5297 Results, DL, TTI))
5298 return false;
5300 // Append the result from this case to the list for each phi.
5301 for (const auto &I : Results) {
5302 PHINode *PHI = I.first;
5303 Constant *Value = I.second;
5304 if (!ResultLists.count(PHI))
5305 PHIs.push_back(PHI);
5306 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5310 // Keep track of the result types.
5311 for (PHINode *PHI : PHIs) {
5312 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5315 uint64_t NumResults = ResultLists[PHIs[0]].size();
5316 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5317 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5318 bool TableHasHoles = (NumResults < TableSize);
5320 // If the table has holes, we need a constant result for the default case
5321 // or a bitmask that fits in a register.
5322 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5323 bool HasDefaultResults =
5324 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5325 DefaultResultsList, DL, TTI);
5327 bool NeedMask = (TableHasHoles && !HasDefaultResults);
5328 if (NeedMask) {
5329 // As an extra penalty for the validity test we require more cases.
5330 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5331 return false;
5332 if (!DL.fitsInLegalInteger(TableSize))
5333 return false;
5336 for (const auto &I : DefaultResultsList) {
5337 PHINode *PHI = I.first;
5338 Constant *Result = I.second;
5339 DefaultResults[PHI] = Result;
5342 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5343 return false;
5345 // Create the BB that does the lookups.
5346 Module &Mod = *CommonDest->getParent()->getParent();
5347 BasicBlock *LookupBB = BasicBlock::Create(
5348 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5350 // Compute the table index value.
5351 Builder.SetInsertPoint(SI);
5352 Value *TableIndex;
5353 if (MinCaseVal->isNullValue())
5354 TableIndex = SI->getCondition();
5355 else
5356 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5357 "switch.tableidx");
5359 // Compute the maximum table size representable by the integer type we are
5360 // switching upon.
5361 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5362 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5363 assert(MaxTableSize >= TableSize &&
5364 "It is impossible for a switch to have more entries than the max "
5365 "representable value of its input integer type's size.");
5367 // If the default destination is unreachable, or if the lookup table covers
5368 // all values of the conditional variable, branch directly to the lookup table
5369 // BB. Otherwise, check that the condition is within the case range.
5370 const bool DefaultIsReachable =
5371 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5372 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5373 BranchInst *RangeCheckBranch = nullptr;
5375 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5376 Builder.CreateBr(LookupBB);
5377 // Note: We call removeProdecessor later since we need to be able to get the
5378 // PHI value for the default case in case we're using a bit mask.
5379 } else {
5380 Value *Cmp = Builder.CreateICmpULT(
5381 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5382 RangeCheckBranch =
5383 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5386 // Populate the BB that does the lookups.
5387 Builder.SetInsertPoint(LookupBB);
5389 if (NeedMask) {
5390 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5391 // re-purposed to do the hole check, and we create a new LookupBB.
5392 BasicBlock *MaskBB = LookupBB;
5393 MaskBB->setName("switch.hole_check");
5394 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5395 CommonDest->getParent(), CommonDest);
5397 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5398 // unnecessary illegal types.
5399 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5400 APInt MaskInt(TableSizePowOf2, 0);
5401 APInt One(TableSizePowOf2, 1);
5402 // Build bitmask; fill in a 1 bit for every case.
5403 const ResultListTy &ResultList = ResultLists[PHIs[0]];
5404 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5405 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5406 .getLimitedValue();
5407 MaskInt |= One << Idx;
5409 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5411 // Get the TableIndex'th bit of the bitmask.
5412 // If this bit is 0 (meaning hole) jump to the default destination,
5413 // else continue with table lookup.
5414 IntegerType *MapTy = TableMask->getType();
5415 Value *MaskIndex =
5416 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5417 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5418 Value *LoBit = Builder.CreateTrunc(
5419 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5420 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5422 Builder.SetInsertPoint(LookupBB);
5423 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5426 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5427 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5428 // do not delete PHINodes here.
5429 SI->getDefaultDest()->removePredecessor(SI->getParent(),
5430 /*KeepOneInputPHIs=*/true);
5433 bool ReturnedEarly = false;
5434 for (PHINode *PHI : PHIs) {
5435 const ResultListTy &ResultList = ResultLists[PHI];
5437 // If using a bitmask, use any value to fill the lookup table holes.
5438 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5439 StringRef FuncName = Fn->getName();
5440 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5441 FuncName);
5443 Value *Result = Table.BuildLookup(TableIndex, Builder);
5445 // If the result is used to return immediately from the function, we want to
5446 // do that right here.
5447 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5448 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5449 Builder.CreateRet(Result);
5450 ReturnedEarly = true;
5451 break;
5454 // Do a small peephole optimization: re-use the switch table compare if
5455 // possible.
5456 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5457 BasicBlock *PhiBlock = PHI->getParent();
5458 // Search for compare instructions which use the phi.
5459 for (auto *User : PHI->users()) {
5460 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5464 PHI->addIncoming(Result, LookupBB);
5467 if (!ReturnedEarly)
5468 Builder.CreateBr(CommonDest);
5470 // Remove the switch.
5471 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5472 BasicBlock *Succ = SI->getSuccessor(i);
5474 if (Succ == SI->getDefaultDest())
5475 continue;
5476 Succ->removePredecessor(SI->getParent());
5478 SI->eraseFromParent();
5480 ++NumLookupTables;
5481 if (NeedMask)
5482 ++NumLookupTablesHoles;
5483 return true;
5486 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5487 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5488 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5489 uint64_t Range = Diff + 1;
5490 uint64_t NumCases = Values.size();
5491 // 40% is the default density for building a jump table in optsize/minsize mode.
5492 uint64_t MinDensity = 40;
5494 return NumCases * 100 >= Range * MinDensity;
5497 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5498 /// of cases.
5500 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5501 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5503 /// This converts a sparse switch into a dense switch which allows better
5504 /// lowering and could also allow transforming into a lookup table.
5505 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5506 const DataLayout &DL,
5507 const TargetTransformInfo &TTI) {
5508 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5509 if (CondTy->getIntegerBitWidth() > 64 ||
5510 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5511 return false;
5512 // Only bother with this optimization if there are more than 3 switch cases;
5513 // SDAG will only bother creating jump tables for 4 or more cases.
5514 if (SI->getNumCases() < 4)
5515 return false;
5517 // This transform is agnostic to the signedness of the input or case values. We
5518 // can treat the case values as signed or unsigned. We can optimize more common
5519 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5520 // as signed.
5521 SmallVector<int64_t,4> Values;
5522 for (auto &C : SI->cases())
5523 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5524 llvm::sort(Values);
5526 // If the switch is already dense, there's nothing useful to do here.
5527 if (isSwitchDense(Values))
5528 return false;
5530 // First, transform the values such that they start at zero and ascend.
5531 int64_t Base = Values[0];
5532 for (auto &V : Values)
5533 V -= (uint64_t)(Base);
5535 // Now we have signed numbers that have been shifted so that, given enough
5536 // precision, there are no negative values. Since the rest of the transform
5537 // is bitwise only, we switch now to an unsigned representation.
5539 // This transform can be done speculatively because it is so cheap - it
5540 // results in a single rotate operation being inserted.
5541 // FIXME: It's possible that optimizing a switch on powers of two might also
5542 // be beneficial - flag values are often powers of two and we could use a CLZ
5543 // as the key function.
5545 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5546 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5547 // less than 64.
5548 unsigned Shift = 64;
5549 for (auto &V : Values)
5550 Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5551 assert(Shift < 64);
5552 if (Shift > 0)
5553 for (auto &V : Values)
5554 V = (int64_t)((uint64_t)V >> Shift);
5556 if (!isSwitchDense(Values))
5557 // Transform didn't create a dense switch.
5558 return false;
5560 // The obvious transform is to shift the switch condition right and emit a
5561 // check that the condition actually cleanly divided by GCD, i.e.
5562 // C & (1 << Shift - 1) == 0
5563 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5565 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5566 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5567 // are nonzero then the switch condition will be very large and will hit the
5568 // default case.
5570 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5571 Builder.SetInsertPoint(SI);
5572 auto *ShiftC = ConstantInt::get(Ty, Shift);
5573 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5574 auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5575 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5576 auto *Rot = Builder.CreateOr(LShr, Shl);
5577 SI->replaceUsesOfWith(SI->getCondition(), Rot);
5579 for (auto Case : SI->cases()) {
5580 auto *Orig = Case.getCaseValue();
5581 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5582 Case.setValue(
5583 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5585 return true;
5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5589 BasicBlock *BB = SI->getParent();
5591 if (isValueEqualityComparison(SI)) {
5592 // If we only have one predecessor, and if it is a branch on this value,
5593 // see if that predecessor totally determines the outcome of this switch.
5594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5596 return requestResimplify();
5598 Value *Cond = SI->getCondition();
5599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5600 if (SimplifySwitchOnSelect(SI, Select))
5601 return requestResimplify();
5603 // If the block only contains the switch, see if we can fold the block
5604 // away into any preds.
5605 if (SI == &*BB->instructionsWithoutDebug().begin())
5606 if (FoldValueComparisonIntoPredecessors(SI, Builder))
5607 return requestResimplify();
5610 // Try to transform the switch into an icmp and a branch.
5611 if (TurnSwitchRangeIntoICmp(SI, Builder))
5612 return requestResimplify();
5614 // Remove unreachable cases.
5615 if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5616 return requestResimplify();
5618 if (switchToSelect(SI, Builder, DL, TTI))
5619 return requestResimplify();
5621 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5622 return requestResimplify();
5624 // The conversion from switch to lookup tables results in difficult-to-analyze
5625 // code and makes pruning branches much harder. This is a problem if the
5626 // switch expression itself can still be restricted as a result of inlining or
5627 // CVP. Therefore, only apply this transformation during late stages of the
5628 // optimisation pipeline.
5629 if (Options.ConvertSwitchToLookupTable &&
5630 SwitchToLookupTable(SI, Builder, DL, TTI))
5631 return requestResimplify();
5633 if (ReduceSwitchRange(SI, Builder, DL, TTI))
5634 return requestResimplify();
5636 return false;
5639 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5640 BasicBlock *BB = IBI->getParent();
5641 bool Changed = false;
5643 // Eliminate redundant destinations.
5644 SmallPtrSet<Value *, 8> Succs;
5645 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5646 BasicBlock *Dest = IBI->getDestination(i);
5647 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5648 Dest->removePredecessor(BB);
5649 IBI->removeDestination(i);
5650 --i;
5651 --e;
5652 Changed = true;
5656 if (IBI->getNumDestinations() == 0) {
5657 // If the indirectbr has no successors, change it to unreachable.
5658 new UnreachableInst(IBI->getContext(), IBI);
5659 EraseTerminatorAndDCECond(IBI);
5660 return true;
5663 if (IBI->getNumDestinations() == 1) {
5664 // If the indirectbr has one successor, change it to a direct branch.
5665 BranchInst::Create(IBI->getDestination(0), IBI);
5666 EraseTerminatorAndDCECond(IBI);
5667 return true;
5670 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5671 if (SimplifyIndirectBrOnSelect(IBI, SI))
5672 return requestResimplify();
5674 return Changed;
5677 /// Given an block with only a single landing pad and a unconditional branch
5678 /// try to find another basic block which this one can be merged with. This
5679 /// handles cases where we have multiple invokes with unique landing pads, but
5680 /// a shared handler.
5682 /// We specifically choose to not worry about merging non-empty blocks
5683 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5684 /// practice, the optimizer produces empty landing pad blocks quite frequently
5685 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5686 /// sinking in this file)
5688 /// This is primarily a code size optimization. We need to avoid performing
5689 /// any transform which might inhibit optimization (such as our ability to
5690 /// specialize a particular handler via tail commoning). We do this by not
5691 /// merging any blocks which require us to introduce a phi. Since the same
5692 /// values are flowing through both blocks, we don't lose any ability to
5693 /// specialize. If anything, we make such specialization more likely.
5695 /// TODO - This transformation could remove entries from a phi in the target
5696 /// block when the inputs in the phi are the same for the two blocks being
5697 /// merged. In some cases, this could result in removal of the PHI entirely.
5698 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5699 BasicBlock *BB) {
5700 auto Succ = BB->getUniqueSuccessor();
5701 assert(Succ);
5702 // If there's a phi in the successor block, we'd likely have to introduce
5703 // a phi into the merged landing pad block.
5704 if (isa<PHINode>(*Succ->begin()))
5705 return false;
5707 for (BasicBlock *OtherPred : predecessors(Succ)) {
5708 if (BB == OtherPred)
5709 continue;
5710 BasicBlock::iterator I = OtherPred->begin();
5711 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5712 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5713 continue;
5714 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5716 BranchInst *BI2 = dyn_cast<BranchInst>(I);
5717 if (!BI2 || !BI2->isIdenticalTo(BI))
5718 continue;
5720 // We've found an identical block. Update our predecessors to take that
5721 // path instead and make ourselves dead.
5722 SmallPtrSet<BasicBlock *, 16> Preds;
5723 Preds.insert(pred_begin(BB), pred_end(BB));
5724 for (BasicBlock *Pred : Preds) {
5725 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5726 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5727 "unexpected successor");
5728 II->setUnwindDest(OtherPred);
5731 // The debug info in OtherPred doesn't cover the merged control flow that
5732 // used to go through BB. We need to delete it or update it.
5733 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5734 Instruction &Inst = *I;
5735 I++;
5736 if (isa<DbgInfoIntrinsic>(Inst))
5737 Inst.eraseFromParent();
5740 SmallPtrSet<BasicBlock *, 16> Succs;
5741 Succs.insert(succ_begin(BB), succ_end(BB));
5742 for (BasicBlock *Succ : Succs) {
5743 Succ->removePredecessor(BB);
5746 IRBuilder<> Builder(BI);
5747 Builder.CreateUnreachable();
5748 BI->eraseFromParent();
5749 return true;
5751 return false;
5754 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5755 IRBuilder<> &Builder) {
5756 BasicBlock *BB = BI->getParent();
5757 BasicBlock *Succ = BI->getSuccessor(0);
5759 // If the Terminator is the only non-phi instruction, simplify the block.
5760 // If LoopHeader is provided, check if the block or its successor is a loop
5761 // header. (This is for early invocations before loop simplify and
5762 // vectorization to keep canonical loop forms for nested loops. These blocks
5763 // can be eliminated when the pass is invoked later in the back-end.)
5764 // Note that if BB has only one predecessor then we do not introduce new
5765 // backedge, so we can eliminate BB.
5766 bool NeedCanonicalLoop =
5767 Options.NeedCanonicalLoop &&
5768 (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5769 (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5770 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5771 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5772 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5773 return true;
5775 // If the only instruction in the block is a seteq/setne comparison against a
5776 // constant, try to simplify the block.
5777 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5778 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5779 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5781 if (I->isTerminator() &&
5782 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5783 return true;
5786 // See if we can merge an empty landing pad block with another which is
5787 // equivalent.
5788 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5789 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5791 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5792 return true;
5795 // If this basic block is ONLY a compare and a branch, and if a predecessor
5796 // branches to us and our successor, fold the comparison into the
5797 // predecessor and use logical operations to update the incoming value
5798 // for PHI nodes in common successor.
5799 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5800 return requestResimplify();
5801 return false;
5804 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5805 BasicBlock *PredPred = nullptr;
5806 for (auto *P : predecessors(BB)) {
5807 BasicBlock *PPred = P->getSinglePredecessor();
5808 if (!PPred || (PredPred && PredPred != PPred))
5809 return nullptr;
5810 PredPred = PPred;
5812 return PredPred;
5815 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5816 BasicBlock *BB = BI->getParent();
5817 const Function *Fn = BB->getParent();
5818 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5819 return false;
5821 // Conditional branch
5822 if (isValueEqualityComparison(BI)) {
5823 // If we only have one predecessor, and if it is a branch on this value,
5824 // see if that predecessor totally determines the outcome of this
5825 // switch.
5826 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5827 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5828 return requestResimplify();
5830 // This block must be empty, except for the setcond inst, if it exists.
5831 // Ignore dbg intrinsics.
5832 auto I = BB->instructionsWithoutDebug().begin();
5833 if (&*I == BI) {
5834 if (FoldValueComparisonIntoPredecessors(BI, Builder))
5835 return requestResimplify();
5836 } else if (&*I == cast<Instruction>(BI->getCondition())) {
5837 ++I;
5838 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5839 return requestResimplify();
5843 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5844 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5845 return true;
5847 // If this basic block has dominating predecessor blocks and the dominating
5848 // blocks' conditions imply BI's condition, we know the direction of BI.
5849 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5850 if (Imp) {
5851 // Turn this into a branch on constant.
5852 auto *OldCond = BI->getCondition();
5853 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5854 : ConstantInt::getFalse(BB->getContext());
5855 BI->setCondition(TorF);
5856 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5857 return requestResimplify();
5860 // If this basic block is ONLY a compare and a branch, and if a predecessor
5861 // branches to us and one of our successors, fold the comparison into the
5862 // predecessor and use logical operations to pick the right destination.
5863 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5864 return requestResimplify();
5866 // We have a conditional branch to two blocks that are only reachable
5867 // from BI. We know that the condbr dominates the two blocks, so see if
5868 // there is any identical code in the "then" and "else" blocks. If so, we
5869 // can hoist it up to the branching block.
5870 if (BI->getSuccessor(0)->getSinglePredecessor()) {
5871 if (BI->getSuccessor(1)->getSinglePredecessor()) {
5872 if (HoistThenElseCodeToIf(BI, TTI))
5873 return requestResimplify();
5874 } else {
5875 // If Successor #1 has multiple preds, we may be able to conditionally
5876 // execute Successor #0 if it branches to Successor #1.
5877 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5878 if (Succ0TI->getNumSuccessors() == 1 &&
5879 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5880 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5881 return requestResimplify();
5883 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5884 // If Successor #0 has multiple preds, we may be able to conditionally
5885 // execute Successor #1 if it branches to Successor #0.
5886 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5887 if (Succ1TI->getNumSuccessors() == 1 &&
5888 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5889 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5890 return requestResimplify();
5893 // If this is a branch on a phi node in the current block, thread control
5894 // through this block if any PHI node entries are constants.
5895 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5896 if (PN->getParent() == BI->getParent())
5897 if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5898 return requestResimplify();
5900 // Scan predecessor blocks for conditional branches.
5901 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5902 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5903 if (PBI != BI && PBI->isConditional())
5904 if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5905 return requestResimplify();
5907 // Look for diamond patterns.
5908 if (MergeCondStores)
5909 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5910 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5911 if (PBI != BI && PBI->isConditional())
5912 if (mergeConditionalStores(PBI, BI, DL))
5913 return requestResimplify();
5915 return false;
5918 /// Check if passing a value to an instruction will cause undefined behavior.
5919 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5920 Constant *C = dyn_cast<Constant>(V);
5921 if (!C)
5922 return false;
5924 if (I->use_empty())
5925 return false;
5927 if (C->isNullValue() || isa<UndefValue>(C)) {
5928 // Only look at the first use, avoid hurting compile time with long uselists
5929 User *Use = *I->user_begin();
5931 // Now make sure that there are no instructions in between that can alter
5932 // control flow (eg. calls)
5933 for (BasicBlock::iterator
5934 i = ++BasicBlock::iterator(I),
5935 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5936 i != UI; ++i)
5937 if (i == I->getParent()->end() || i->mayHaveSideEffects())
5938 return false;
5940 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5942 if (GEP->getPointerOperand() == I)
5943 return passingValueIsAlwaysUndefined(V, GEP);
5945 // Look through bitcasts.
5946 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5947 return passingValueIsAlwaysUndefined(V, BC);
5949 // Load from null is undefined.
5950 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5951 if (!LI->isVolatile())
5952 return !NullPointerIsDefined(LI->getFunction(),
5953 LI->getPointerAddressSpace());
5955 // Store to null is undefined.
5956 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5957 if (!SI->isVolatile())
5958 return (!NullPointerIsDefined(SI->getFunction(),
5959 SI->getPointerAddressSpace())) &&
5960 SI->getPointerOperand() == I;
5962 // A call to null is undefined.
5963 if (auto CS = CallSite(Use))
5964 return !NullPointerIsDefined(CS->getFunction()) &&
5965 CS.getCalledValue() == I;
5967 return false;
5970 /// If BB has an incoming value that will always trigger undefined behavior
5971 /// (eg. null pointer dereference), remove the branch leading here.
5972 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5973 for (PHINode &PHI : BB->phis())
5974 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5975 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5976 Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5977 IRBuilder<> Builder(T);
5978 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5979 BB->removePredecessor(PHI.getIncomingBlock(i));
5980 // Turn uncoditional branches into unreachables and remove the dead
5981 // destination from conditional branches.
5982 if (BI->isUnconditional())
5983 Builder.CreateUnreachable();
5984 else
5985 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5986 : BI->getSuccessor(0));
5987 BI->eraseFromParent();
5988 return true;
5990 // TODO: SwitchInst.
5993 return false;
5996 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
5997 bool Changed = false;
5999 assert(BB && BB->getParent() && "Block not embedded in function!");
6000 assert(BB->getTerminator() && "Degenerate basic block encountered!");
6002 // Remove basic blocks that have no predecessors (except the entry block)...
6003 // or that just have themself as a predecessor. These are unreachable.
6004 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6005 BB->getSinglePredecessor() == BB) {
6006 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6007 DeleteDeadBlock(BB);
6008 return true;
6011 // Check to see if we can constant propagate this terminator instruction
6012 // away...
6013 Changed |= ConstantFoldTerminator(BB, true);
6015 // Check for and eliminate duplicate PHI nodes in this block.
6016 Changed |= EliminateDuplicatePHINodes(BB);
6018 // Check for and remove branches that will always cause undefined behavior.
6019 Changed |= removeUndefIntroducingPredecessor(BB);
6021 // Merge basic blocks into their predecessor if there is only one distinct
6022 // pred, and if there is only one distinct successor of the predecessor, and
6023 // if there are no PHI nodes.
6024 if (MergeBlockIntoPredecessor(BB))
6025 return true;
6027 if (SinkCommon && Options.SinkCommonInsts)
6028 Changed |= SinkCommonCodeFromPredecessors(BB);
6030 IRBuilder<> Builder(BB);
6032 // If there is a trivial two-entry PHI node in this basic block, and we can
6033 // eliminate it, do so now.
6034 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6035 if (PN->getNumIncomingValues() == 2)
6036 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6038 Builder.SetInsertPoint(BB->getTerminator());
6039 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6040 if (BI->isUnconditional()) {
6041 if (SimplifyUncondBranch(BI, Builder))
6042 return true;
6043 } else {
6044 if (SimplifyCondBranch(BI, Builder))
6045 return true;
6047 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6048 if (SimplifyReturn(RI, Builder))
6049 return true;
6050 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6051 if (SimplifyResume(RI, Builder))
6052 return true;
6053 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6054 if (SimplifyCleanupReturn(RI))
6055 return true;
6056 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6057 if (SimplifySwitch(SI, Builder))
6058 return true;
6059 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6060 if (SimplifyUnreachable(UI))
6061 return true;
6062 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6063 if (SimplifyIndirectBr(IBI))
6064 return true;
6067 return Changed;
6070 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6071 bool Changed = false;
6073 // Repeated simplify BB as long as resimplification is requested.
6074 do {
6075 Resimplify = false;
6077 // Perform one round of simplifcation. Resimplify flag will be set if
6078 // another iteration is requested.
6079 Changed |= simplifyOnce(BB);
6080 } while (Resimplify);
6082 return Changed;
6085 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6086 const SimplifyCFGOptions &Options,
6087 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6088 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6089 Options)
6090 .run(BB);