1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
84 using namespace PatternMatch
;
86 #define DEBUG_TYPE "simplifycfg"
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt
<unsigned> PHINodeFoldingThreshold(
93 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
95 "Control the amount of phi node folding to perform (default = 2)"));
97 static cl::opt
<bool> DupRet(
98 "simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
99 cl::desc("Duplicate return instructions into unconditional branches"));
102 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
103 cl::desc("Sink common instructions down to the end block"));
105 static cl::opt
<bool> HoistCondStores(
106 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
107 cl::desc("Hoist conditional stores if an unconditional store precedes"));
109 static cl::opt
<bool> MergeCondStores(
110 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
111 cl::desc("Hoist conditional stores even if an unconditional store does not "
112 "precede - hoist multiple conditional stores into a single "
113 "predicated store"));
115 static cl::opt
<bool> MergeCondStoresAggressively(
116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
117 cl::desc("When merging conditional stores, do so even if the resultant "
118 "basic blocks are unlikely to be if-converted as a result"));
120 static cl::opt
<bool> SpeculateOneExpensiveInst(
121 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
122 cl::desc("Allow exactly one expensive instruction to be speculatively "
125 static cl::opt
<unsigned> MaxSpeculationDepth(
126 "max-speculation-depth", cl::Hidden
, cl::init(10),
127 cl::desc("Limit maximum recursion depth when calculating costs of "
128 "speculatively executed instructions"));
130 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps
,
132 "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables
,
134 "Number of switch instructions turned into lookup tables");
136 NumLookupTablesHoles
,
137 "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons
,
140 "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy
=
149 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase
{
161 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
162 : Value(Value
), Dest(Dest
) {}
164 bool operator<(ValueEqualityComparisonCase RHS
) const {
165 // Comparing pointers is ok as we only rely on the order for uniquing.
166 return Value
< RHS
.Value
;
169 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
172 class SimplifyCFGOpt
{
173 const TargetTransformInfo
&TTI
;
174 const DataLayout
&DL
;
175 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
;
176 const SimplifyCFGOptions
&Options
;
179 Value
*isValueEqualityComparison(Instruction
*TI
);
180 BasicBlock
*GetValueEqualityComparisonCases(
181 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
184 IRBuilder
<> &Builder
);
185 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
186 IRBuilder
<> &Builder
);
188 bool SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
);
189 bool SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
190 bool SimplifySingleResume(ResumeInst
*RI
);
191 bool SimplifyCommonResume(ResumeInst
*RI
);
192 bool SimplifyCleanupReturn(CleanupReturnInst
*RI
);
193 bool SimplifyUnreachable(UnreachableInst
*UI
);
194 bool SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
195 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
196 bool SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
197 bool SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
200 IRBuilder
<> &Builder
);
203 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
204 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
,
205 const SimplifyCFGOptions
&Opts
)
206 : TTI(TTI
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {}
208 bool run(BasicBlock
*BB
);
209 bool simplifyOnce(BasicBlock
*BB
);
211 // Helper to set Resimplify and return change indication.
212 bool requestResimplify() {
218 } // end anonymous namespace
220 /// Return true if it is safe to merge these two
221 /// terminator instructions together.
223 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
224 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
226 return false; // Can't merge with self!
228 // It is not safe to merge these two switch instructions if they have a common
229 // successor, and if that successor has a PHI node, and if *that* PHI node has
230 // conflicting incoming values from the two switch blocks.
231 BasicBlock
*SI1BB
= SI1
->getParent();
232 BasicBlock
*SI2BB
= SI2
->getParent();
234 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
236 for (BasicBlock
*Succ
: successors(SI2BB
))
237 if (SI1Succs
.count(Succ
))
238 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
239 PHINode
*PN
= cast
<PHINode
>(BBI
);
240 if (PN
->getIncomingValueForBlock(SI1BB
) !=
241 PN
->getIncomingValueForBlock(SI2BB
)) {
243 FailBlocks
->insert(Succ
);
251 /// Return true if it is safe and profitable to merge these two terminator
252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
253 /// store all PHI nodes in common successors.
255 isProfitableToFoldUnconditional(BranchInst
*SI1
, BranchInst
*SI2
,
257 SmallVectorImpl
<PHINode
*> &PhiNodes
) {
259 return false; // Can't merge with self!
260 assert(SI1
->isUnconditional() && SI2
->isConditional());
262 // We fold the unconditional branch if we can easily update all PHI nodes in
263 // common successors:
264 // 1> We have a constant incoming value for the conditional branch;
265 // 2> We have "Cond" as the incoming value for the unconditional branch;
266 // 3> SI2->getCondition() and Cond have same operands.
267 CmpInst
*Ci2
= dyn_cast
<CmpInst
>(SI2
->getCondition());
270 if (!(Cond
->getOperand(0) == Ci2
->getOperand(0) &&
271 Cond
->getOperand(1) == Ci2
->getOperand(1)) &&
272 !(Cond
->getOperand(0) == Ci2
->getOperand(1) &&
273 Cond
->getOperand(1) == Ci2
->getOperand(0)))
276 BasicBlock
*SI1BB
= SI1
->getParent();
277 BasicBlock
*SI2BB
= SI2
->getParent();
278 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
279 for (BasicBlock
*Succ
: successors(SI2BB
))
280 if (SI1Succs
.count(Succ
))
281 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
282 PHINode
*PN
= cast
<PHINode
>(BBI
);
283 if (PN
->getIncomingValueForBlock(SI1BB
) != Cond
||
284 !isa
<ConstantInt
>(PN
->getIncomingValueForBlock(SI2BB
)))
286 PhiNodes
.push_back(PN
);
291 /// Update PHI nodes in Succ to indicate that there will now be entries in it
292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
293 /// will be the same as those coming in from ExistPred, an existing predecessor
295 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
296 BasicBlock
*ExistPred
,
297 MemorySSAUpdater
*MSSAU
= nullptr) {
298 for (PHINode
&PN
: Succ
->phis())
299 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
301 if (auto *MPhi
= MSSAU
->getMemorySSA()->getMemoryAccess(Succ
))
302 MPhi
->addIncoming(MPhi
->getIncomingValueForBlock(ExistPred
), NewPred
);
305 /// Compute an abstract "cost" of speculating the given instruction,
306 /// which is assumed to be safe to speculate. TCC_Free means cheap,
307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
309 static unsigned ComputeSpeculationCost(const User
*I
,
310 const TargetTransformInfo
&TTI
) {
311 assert(isSafeToSpeculativelyExecute(I
) &&
312 "Instruction is not safe to speculatively execute!");
313 return TTI
.getUserCost(I
);
316 /// If we have a merge point of an "if condition" as accepted above,
317 /// return true if the specified value dominates the block. We
318 /// don't handle the true generality of domination here, just a special case
319 /// which works well enough for us.
321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
322 /// see if V (which must be an instruction) and its recursive operands
323 /// that do not dominate BB have a combined cost lower than CostRemaining and
324 /// are non-trapping. If both are true, the instruction is inserted into the
325 /// set and true is returned.
327 /// The cost for most non-trapping instructions is defined as 1 except for
328 /// Select whose cost is 2.
330 /// After this function returns, CostRemaining is decreased by the cost of
331 /// V plus its non-dominating operands. If that cost is greater than
332 /// CostRemaining, false is returned and CostRemaining is undefined.
333 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
334 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
335 unsigned &CostRemaining
,
336 const TargetTransformInfo
&TTI
,
337 unsigned Depth
= 0) {
338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
339 // so limit the recursion depth.
340 // TODO: While this recursion limit does prevent pathological behavior, it
341 // would be better to track visited instructions to avoid cycles.
342 if (Depth
== MaxSpeculationDepth
)
345 Instruction
*I
= dyn_cast
<Instruction
>(V
);
347 // Non-instructions all dominate instructions, but not all constantexprs
348 // can be executed unconditionally.
349 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
354 BasicBlock
*PBB
= I
->getParent();
356 // We don't want to allow weird loops that might have the "if condition" in
357 // the bottom of this block.
361 // If this instruction is defined in a block that contains an unconditional
362 // branch to BB, then it must be in the 'conditional' part of the "if
363 // statement". If not, it definitely dominates the region.
364 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
365 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
368 // If we have seen this instruction before, don't count it again.
369 if (AggressiveInsts
.count(I
))
372 // Okay, it looks like the instruction IS in the "condition". Check to
373 // see if it's a cheap instruction to unconditionally compute, and if it
374 // only uses stuff defined outside of the condition. If so, hoist it out.
375 if (!isSafeToSpeculativelyExecute(I
))
378 unsigned Cost
= ComputeSpeculationCost(I
, TTI
);
380 // Allow exactly one instruction to be speculated regardless of its cost
381 // (as long as it is safe to do so).
382 // This is intended to flatten the CFG even if the instruction is a division
383 // or other expensive operation. The speculation of an expensive instruction
384 // is expected to be undone in CodeGenPrepare if the speculation has not
385 // enabled further IR optimizations.
386 if (Cost
> CostRemaining
&&
387 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0))
390 // Avoid unsigned wrap.
391 CostRemaining
= (Cost
> CostRemaining
) ? 0 : CostRemaining
- Cost
;
393 // Okay, we can only really hoist these out if their operands do
394 // not take us over the cost threshold.
395 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
396 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, CostRemaining
, TTI
,
399 // Okay, it's safe to do this! Remember this instruction.
400 AggressiveInsts
.insert(I
);
404 /// Extract ConstantInt from value, looking through IntToPtr
405 /// and PointerNullValue. Return NULL if value is not a constant int.
406 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
407 // Normal constant int.
408 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
409 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
412 // This is some kind of pointer constant. Turn it into a pointer-sized
413 // ConstantInt if possible.
414 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
417 if (isa
<ConstantPointerNull
>(V
))
418 return ConstantInt::get(PtrTy
, 0);
420 // IntToPtr const int.
421 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
422 if (CE
->getOpcode() == Instruction::IntToPtr
)
423 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
424 // The constant is very likely to have the right type already.
425 if (CI
->getType() == PtrTy
)
428 return cast
<ConstantInt
>(
429 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
436 /// Given a chain of or (||) or and (&&) comparison of a value against a
437 /// constant, this will try to recover the information required for a switch
439 /// It will depth-first traverse the chain of comparison, seeking for patterns
440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
441 /// representing the different cases for the switch.
442 /// Note that if the chain is composed of '||' it will build the set of elements
443 /// that matches the comparisons (i.e. any of this value validate the chain)
444 /// while for a chain of '&&' it will build the set elements that make the test
446 struct ConstantComparesGatherer
{
447 const DataLayout
&DL
;
449 /// Value found for the switch comparison
450 Value
*CompValue
= nullptr;
452 /// Extra clause to be checked before the switch
453 Value
*Extra
= nullptr;
455 /// Set of integers to match in switch
456 SmallVector
<ConstantInt
*, 8> Vals
;
458 /// Number of comparisons matched in the and/or chain
459 unsigned UsedICmps
= 0;
461 /// Construct and compute the result for the comparison instruction Cond
462 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
466 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
467 ConstantComparesGatherer
&
468 operator=(const ConstantComparesGatherer
&) = delete;
471 /// Try to set the current value used for the comparison, it succeeds only if
472 /// it wasn't set before or if the new value is the same as the old one
473 bool setValueOnce(Value
*NewVal
) {
474 if (CompValue
&& CompValue
!= NewVal
)
477 return (CompValue
!= nullptr);
480 /// Try to match Instruction "I" as a comparison against a constant and
481 /// populates the array Vals with the set of values that match (or do not
482 /// match depending on isEQ).
483 /// Return false on failure. On success, the Value the comparison matched
484 /// against is placed in CompValue.
485 /// If CompValue is already set, the function is expected to fail if a match
486 /// is found but the value compared to is different.
487 bool matchInstruction(Instruction
*I
, bool isEQ
) {
488 // If this is an icmp against a constant, handle this as one of the cases.
491 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
492 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
499 // Pattern match a special case
500 // (x & ~2^z) == y --> x == y || x == y|2^z
501 // This undoes a transformation done by instcombine to fuse 2 compares.
502 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
503 // It's a little bit hard to see why the following transformations are
504 // correct. Here is a CVC3 program to verify them for 64-bit values:
507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
511 mask : BITVECTOR(64) = BVSHL(ONE, z);
512 QUERY( (y & ~mask = y) =>
513 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
515 QUERY( (y | mask = y) =>
516 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
520 // Please note that each pattern must be a dual implication (<--> or
521 // iff). One directional implication can create spurious matches. If the
522 // implication is only one-way, an unsatisfiable condition on the left
523 // side can imply a satisfiable condition on the right side. Dual
524 // implication ensures that satisfiable conditions are transformed to
525 // other satisfiable conditions and unsatisfiable conditions are
526 // transformed to other unsatisfiable conditions.
528 // Here is a concrete example of a unsatisfiable condition on the left
529 // implying a satisfiable condition on the right:
532 // (x & ~mask) == y --> (x == y || x == (y | mask))
534 // Substituting y = 3, z = 0 yields:
535 // (x & -2) == 3 --> (x == 3 || x == 2)
537 // Pattern match a special case:
539 QUERY( (y & ~mask = y) =>
540 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
543 if (match(ICI
->getOperand(0),
544 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
546 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
547 // If we already have a value for the switch, it has to match!
548 if (!setValueOnce(RHSVal
))
553 ConstantInt::get(C
->getContext(),
554 C
->getValue() | Mask
));
560 // Pattern match a special case:
562 QUERY( (y | mask = y) =>
563 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
566 if (match(ICI
->getOperand(0),
567 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
569 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
570 // If we already have a value for the switch, it has to match!
571 if (!setValueOnce(RHSVal
))
575 Vals
.push_back(ConstantInt::get(C
->getContext(),
576 C
->getValue() & ~Mask
));
582 // If we already have a value for the switch, it has to match!
583 if (!setValueOnce(ICI
->getOperand(0)))
588 return ICI
->getOperand(0);
591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
592 ConstantRange Span
= ConstantRange::makeAllowedICmpRegion(
593 ICI
->getPredicate(), C
->getValue());
595 // Shift the range if the compare is fed by an add. This is the range
596 // compare idiom as emitted by instcombine.
597 Value
*CandidateVal
= I
->getOperand(0);
598 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
599 Span
= Span
.subtract(*RHSC
);
600 CandidateVal
= RHSVal
;
603 // If this is an and/!= check, then we are looking to build the set of
604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
607 Span
= Span
.inverse();
609 // If there are a ton of values, we don't want to make a ginormous switch.
610 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
614 // If we already have a value for the switch, it has to match!
615 if (!setValueOnce(CandidateVal
))
618 // Add all values from the range to the set
619 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
620 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
626 /// Given a potentially 'or'd or 'and'd together collection of icmp
627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
628 /// the value being compared, and stick the list constants into the Vals
630 /// One "Extra" case is allowed to differ from the other.
631 void gather(Value
*V
) {
632 Instruction
*I
= dyn_cast
<Instruction
>(V
);
633 bool isEQ
= (I
->getOpcode() == Instruction::Or
);
635 // Keep a stack (SmallVector for efficiency) for depth-first traversal
636 SmallVector
<Value
*, 8> DFT
;
637 SmallPtrSet
<Value
*, 8> Visited
;
643 while (!DFT
.empty()) {
644 V
= DFT
.pop_back_val();
646 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
647 // If it is a || (or && depending on isEQ), process the operands.
648 if (I
->getOpcode() == (isEQ
? Instruction::Or
: Instruction::And
)) {
649 if (Visited
.insert(I
->getOperand(1)).second
)
650 DFT
.push_back(I
->getOperand(1));
651 if (Visited
.insert(I
->getOperand(0)).second
)
652 DFT
.push_back(I
->getOperand(0));
656 // Try to match the current instruction
657 if (matchInstruction(I
, isEQ
))
658 // Match succeed, continue the loop
662 // One element of the sequence of || (or &&) could not be match as a
663 // comparison against the same value as the others.
664 // We allow only one "Extra" case to be checked before the switch
669 // Failed to parse a proper sequence, abort now
676 } // end anonymous namespace
678 static void EraseTerminatorAndDCECond(Instruction
*TI
,
679 MemorySSAUpdater
*MSSAU
= nullptr) {
680 Instruction
*Cond
= nullptr;
681 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
682 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
683 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
684 if (BI
->isConditional())
685 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
686 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
687 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
690 TI
->eraseFromParent();
692 RecursivelyDeleteTriviallyDeadInstructions(Cond
, nullptr, MSSAU
);
695 /// Return true if the specified terminator checks
696 /// to see if a value is equal to constant integer value.
697 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
699 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
700 // Do not permit merging of large switch instructions into their
701 // predecessors unless there is only one predecessor.
702 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
703 CV
= SI
->getCondition();
704 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
705 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
706 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
707 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
708 CV
= ICI
->getOperand(0);
711 // Unwrap any lossless ptrtoint cast.
713 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
714 Value
*Ptr
= PTII
->getPointerOperand();
715 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
722 /// Given a value comparison instruction,
723 /// decode all of the 'cases' that it represents and return the 'default' block.
724 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
725 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
726 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
727 Cases
.reserve(SI
->getNumCases());
728 for (auto Case
: SI
->cases())
729 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
730 Case
.getCaseSuccessor()));
731 return SI
->getDefaultDest();
734 BranchInst
*BI
= cast
<BranchInst
>(TI
);
735 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
736 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
737 Cases
.push_back(ValueEqualityComparisonCase(
738 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
739 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
742 /// Given a vector of bb/value pairs, remove any entries
743 /// in the list that match the specified block.
745 EliminateBlockCases(BasicBlock
*BB
,
746 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
747 Cases
.erase(std::remove(Cases
.begin(), Cases
.end(), BB
), Cases
.end());
750 /// Return true if there are any keys in C1 that exist in C2 as well.
751 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
752 std::vector
<ValueEqualityComparisonCase
> &C2
) {
753 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
755 // Make V1 be smaller than V2.
756 if (V1
->size() > V2
->size())
761 if (V1
->size() == 1) {
763 ConstantInt
*TheVal
= (*V1
)[0].Value
;
764 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
765 if (TheVal
== (*V2
)[i
].Value
)
769 // Otherwise, just sort both lists and compare element by element.
770 array_pod_sort(V1
->begin(), V1
->end());
771 array_pod_sort(V2
->begin(), V2
->end());
772 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
773 while (i1
!= e1
&& i2
!= e2
) {
774 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
776 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
784 // Set branch weights on SwitchInst. This sets the metadata if there is at
785 // least one non-zero weight.
786 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
787 // Check that there is at least one non-zero weight. Otherwise, pass
788 // nullptr to setMetadata which will erase the existing metadata.
790 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
791 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
792 SI
->setMetadata(LLVMContext::MD_prof
, N
);
795 // Similar to the above, but for branch and select instructions that take
796 // exactly 2 weights.
797 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
798 uint32_t FalseWeight
) {
799 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
800 // Check that there is at least one non-zero weight. Otherwise, pass
801 // nullptr to setMetadata which will erase the existing metadata.
803 if (TrueWeight
|| FalseWeight
)
804 N
= MDBuilder(I
->getParent()->getContext())
805 .createBranchWeights(TrueWeight
, FalseWeight
);
806 I
->setMetadata(LLVMContext::MD_prof
, N
);
809 /// If TI is known to be a terminator instruction and its block is known to
810 /// only have a single predecessor block, check to see if that predecessor is
811 /// also a value comparison with the same value, and if that comparison
812 /// determines the outcome of this comparison. If so, simplify TI. This does a
813 /// very limited form of jump threading.
814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
815 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
816 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
818 return false; // Not a value comparison in predecessor.
820 Value
*ThisVal
= isValueEqualityComparison(TI
);
821 assert(ThisVal
&& "This isn't a value comparison!!");
822 if (ThisVal
!= PredVal
)
823 return false; // Different predicates.
825 // TODO: Preserve branch weight metadata, similarly to how
826 // FoldValueComparisonIntoPredecessors preserves it.
828 // Find out information about when control will move from Pred to TI's block.
829 std::vector
<ValueEqualityComparisonCase
> PredCases
;
830 BasicBlock
*PredDef
=
831 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
832 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
834 // Find information about how control leaves this block.
835 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
836 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
837 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
839 // If TI's block is the default block from Pred's comparison, potentially
840 // simplify TI based on this knowledge.
841 if (PredDef
== TI
->getParent()) {
842 // If we are here, we know that the value is none of those cases listed in
843 // PredCases. If there are any cases in ThisCases that are in PredCases, we
845 if (!ValuesOverlap(PredCases
, ThisCases
))
848 if (isa
<BranchInst
>(TI
)) {
849 // Okay, one of the successors of this condbr is dead. Convert it to a
851 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
852 // Insert the new branch.
853 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
856 // Remove PHI node entries for the dead edge.
857 ThisCases
[0].Dest
->removePredecessor(TI
->getParent());
859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
860 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
863 EraseTerminatorAndDCECond(TI
);
867 SwitchInstProfUpdateWrapper SI
= *cast
<SwitchInst
>(TI
);
868 // Okay, TI has cases that are statically dead, prune them away.
869 SmallPtrSet
<Constant
*, 16> DeadCases
;
870 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
871 DeadCases
.insert(PredCases
[i
].Value
);
873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
874 << "Through successor TI: " << *TI
);
876 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
878 if (DeadCases
.count(i
->getCaseValue())) {
879 i
->getCaseSuccessor()->removePredecessor(TI
->getParent());
883 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
887 // Otherwise, TI's block must correspond to some matched value. Find out
888 // which value (or set of values) this is.
889 ConstantInt
*TIV
= nullptr;
890 BasicBlock
*TIBB
= TI
->getParent();
891 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
892 if (PredCases
[i
].Dest
== TIBB
) {
894 return false; // Cannot handle multiple values coming to this block.
895 TIV
= PredCases
[i
].Value
;
897 assert(TIV
&& "No edge from pred to succ?");
899 // Okay, we found the one constant that our value can be if we get into TI's
900 // BB. Find out which successor will unconditionally be branched to.
901 BasicBlock
*TheRealDest
= nullptr;
902 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
903 if (ThisCases
[i
].Value
== TIV
) {
904 TheRealDest
= ThisCases
[i
].Dest
;
908 // If not handled by any explicit cases, it is handled by the default case.
910 TheRealDest
= ThisDef
;
912 // Remove PHI node entries for dead edges.
913 BasicBlock
*CheckEdge
= TheRealDest
;
914 for (BasicBlock
*Succ
: successors(TIBB
))
915 if (Succ
!= CheckEdge
)
916 Succ
->removePredecessor(TIBB
);
920 // Insert the new branch.
921 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
925 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
928 EraseTerminatorAndDCECond(TI
);
934 /// This class implements a stable ordering of constant
935 /// integers that does not depend on their address. This is important for
936 /// applications that sort ConstantInt's to ensure uniqueness.
937 struct ConstantIntOrdering
{
938 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
939 return LHS
->getValue().ult(RHS
->getValue());
943 } // end anonymous namespace
945 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
946 ConstantInt
*const *P2
) {
947 const ConstantInt
*LHS
= *P1
;
948 const ConstantInt
*RHS
= *P2
;
951 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
954 static inline bool HasBranchWeights(const Instruction
*I
) {
955 MDNode
*ProfMD
= I
->getMetadata(LLVMContext::MD_prof
);
956 if (ProfMD
&& ProfMD
->getOperand(0))
957 if (MDString
*MDS
= dyn_cast
<MDString
>(ProfMD
->getOperand(0)))
958 return MDS
->getString().equals("branch_weights");
963 /// Get Weights of a given terminator, the default weight is at the front
964 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
966 static void GetBranchWeights(Instruction
*TI
,
967 SmallVectorImpl
<uint64_t> &Weights
) {
968 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
970 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
971 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
972 Weights
.push_back(CI
->getValue().getZExtValue());
975 // If TI is a conditional eq, the default case is the false case,
976 // and the corresponding branch-weight data is at index 2. We swap the
977 // default weight to be the first entry.
978 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
979 assert(Weights
.size() == 2);
980 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
981 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
982 std::swap(Weights
.front(), Weights
.back());
986 /// Keep halving the weights until all can fit in uint32_t.
987 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
988 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
989 if (Max
> UINT_MAX
) {
990 unsigned Offset
= 32 - countLeadingZeros(Max
);
991 for (uint64_t &I
: Weights
)
996 /// The specified terminator is a value equality comparison instruction
997 /// (either a switch or a branch on "X == c").
998 /// See if any of the predecessors of the terminator block are value comparisons
999 /// on the same value. If so, and if safe to do so, fold them together.
1000 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1001 IRBuilder
<> &Builder
) {
1002 BasicBlock
*BB
= TI
->getParent();
1003 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1004 assert(CV
&& "Not a comparison?");
1005 bool Changed
= false;
1007 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1008 while (!Preds
.empty()) {
1009 BasicBlock
*Pred
= Preds
.pop_back_val();
1011 // See if the predecessor is a comparison with the same value.
1012 Instruction
*PTI
= Pred
->getTerminator();
1013 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1015 if (PCV
== CV
&& TI
!= PTI
) {
1016 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1017 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1018 for (auto *Succ
: FailBlocks
) {
1019 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split"))
1024 // Figure out which 'cases' to copy from SI to PSI.
1025 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1026 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1028 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1029 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1031 // Based on whether the default edge from PTI goes to BB or not, fill in
1032 // PredCases and PredDefault with the new switch cases we would like to
1034 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
1036 // Update the branch weight metadata along the way
1037 SmallVector
<uint64_t, 8> Weights
;
1038 bool PredHasWeights
= HasBranchWeights(PTI
);
1039 bool SuccHasWeights
= HasBranchWeights(TI
);
1041 if (PredHasWeights
) {
1042 GetBranchWeights(PTI
, Weights
);
1043 // branch-weight metadata is inconsistent here.
1044 if (Weights
.size() != 1 + PredCases
.size())
1045 PredHasWeights
= SuccHasWeights
= false;
1046 } else if (SuccHasWeights
)
1047 // If there are no predecessor weights but there are successor weights,
1048 // populate Weights with 1, which will later be scaled to the sum of
1049 // successor's weights
1050 Weights
.assign(1 + PredCases
.size(), 1);
1052 SmallVector
<uint64_t, 8> SuccWeights
;
1053 if (SuccHasWeights
) {
1054 GetBranchWeights(TI
, SuccWeights
);
1055 // branch-weight metadata is inconsistent here.
1056 if (SuccWeights
.size() != 1 + BBCases
.size())
1057 PredHasWeights
= SuccHasWeights
= false;
1058 } else if (PredHasWeights
)
1059 SuccWeights
.assign(1 + BBCases
.size(), 1);
1061 if (PredDefault
== BB
) {
1062 // If this is the default destination from PTI, only the edges in TI
1063 // that don't occur in PTI, or that branch to BB will be activated.
1064 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1065 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1066 if (PredCases
[i
].Dest
!= BB
)
1067 PTIHandled
.insert(PredCases
[i
].Value
);
1069 // The default destination is BB, we don't need explicit targets.
1070 std::swap(PredCases
[i
], PredCases
.back());
1072 if (PredHasWeights
|| SuccHasWeights
) {
1073 // Increase weight for the default case.
1074 Weights
[0] += Weights
[i
+ 1];
1075 std::swap(Weights
[i
+ 1], Weights
.back());
1079 PredCases
.pop_back();
1084 // Reconstruct the new switch statement we will be building.
1085 if (PredDefault
!= BBDefault
) {
1086 PredDefault
->removePredecessor(Pred
);
1087 PredDefault
= BBDefault
;
1088 NewSuccessors
.push_back(BBDefault
);
1091 unsigned CasesFromPred
= Weights
.size();
1092 uint64_t ValidTotalSuccWeight
= 0;
1093 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1094 if (!PTIHandled
.count(BBCases
[i
].Value
) &&
1095 BBCases
[i
].Dest
!= BBDefault
) {
1096 PredCases
.push_back(BBCases
[i
]);
1097 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1098 if (SuccHasWeights
|| PredHasWeights
) {
1099 // The default weight is at index 0, so weight for the ith case
1100 // should be at index i+1. Scale the cases from successor by
1101 // PredDefaultWeight (Weights[0]).
1102 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1103 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1107 if (SuccHasWeights
|| PredHasWeights
) {
1108 ValidTotalSuccWeight
+= SuccWeights
[0];
1109 // Scale the cases from predecessor by ValidTotalSuccWeight.
1110 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1111 Weights
[i
] *= ValidTotalSuccWeight
;
1112 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1113 Weights
[0] *= SuccWeights
[0];
1116 // If this is not the default destination from PSI, only the edges
1117 // in SI that occur in PSI with a destination of BB will be
1119 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1120 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1121 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1122 if (PredCases
[i
].Dest
== BB
) {
1123 PTIHandled
.insert(PredCases
[i
].Value
);
1125 if (PredHasWeights
|| SuccHasWeights
) {
1126 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1127 std::swap(Weights
[i
+ 1], Weights
.back());
1131 std::swap(PredCases
[i
], PredCases
.back());
1132 PredCases
.pop_back();
1137 // Okay, now we know which constants were sent to BB from the
1138 // predecessor. Figure out where they will all go now.
1139 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1140 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1141 // If this is one we are capable of getting...
1142 if (PredHasWeights
|| SuccHasWeights
)
1143 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1144 PredCases
.push_back(BBCases
[i
]);
1145 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1147 BBCases
[i
].Value
); // This constant is taken care of
1150 // If there are any constants vectored to BB that TI doesn't handle,
1151 // they must go to the default destination of TI.
1152 for (ConstantInt
*I
: PTIHandled
) {
1153 if (PredHasWeights
|| SuccHasWeights
)
1154 Weights
.push_back(WeightsForHandled
[I
]);
1155 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1156 NewSuccessors
.push_back(BBDefault
);
1160 // Okay, at this point, we know which new successor Pred will get. Make
1161 // sure we update the number of entries in the PHI nodes for these
1163 for (BasicBlock
*NewSuccessor
: NewSuccessors
)
1164 AddPredecessorToBlock(NewSuccessor
, Pred
, BB
);
1166 Builder
.SetInsertPoint(PTI
);
1167 // Convert pointer to int before we switch.
1168 if (CV
->getType()->isPointerTy()) {
1169 CV
= Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()),
1173 // Now that the successors are updated, create the new Switch instruction.
1175 Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1176 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1177 for (ValueEqualityComparisonCase
&V
: PredCases
)
1178 NewSI
->addCase(V
.Value
, V
.Dest
);
1180 if (PredHasWeights
|| SuccHasWeights
) {
1181 // Halve the weights if any of them cannot fit in an uint32_t
1182 FitWeights(Weights
);
1184 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1186 setBranchWeights(NewSI
, MDWeights
);
1189 EraseTerminatorAndDCECond(PTI
);
1191 // Okay, last check. If BB is still a successor of PSI, then we must
1192 // have an infinite loop case. If so, add an infinitely looping block
1193 // to handle the case to preserve the behavior of the code.
1194 BasicBlock
*InfLoopBlock
= nullptr;
1195 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1196 if (NewSI
->getSuccessor(i
) == BB
) {
1197 if (!InfLoopBlock
) {
1198 // Insert it at the end of the function, because it's either code,
1199 // or it won't matter if it's hot. :)
1200 InfLoopBlock
= BasicBlock::Create(BB
->getContext(), "infloop",
1202 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1204 NewSI
->setSuccessor(i
, InfLoopBlock
);
1213 // If we would need to insert a select that uses the value of this invoke
1214 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1215 // can't hoist the invoke, as there is nowhere to put the select in this case.
1216 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1217 Instruction
*I1
, Instruction
*I2
) {
1218 for (BasicBlock
*Succ
: successors(BB1
)) {
1219 for (const PHINode
&PN
: Succ
->phis()) {
1220 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1221 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1222 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1230 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
);
1232 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1233 /// in the two blocks up into the branch block. The caller of this function
1234 /// guarantees that BI's block dominates BB1 and BB2.
1235 static bool HoistThenElseCodeToIf(BranchInst
*BI
,
1236 const TargetTransformInfo
&TTI
) {
1237 // This does very trivial matching, with limited scanning, to find identical
1238 // instructions in the two blocks. In particular, we don't want to get into
1239 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1240 // such, we currently just scan for obviously identical instructions in an
1242 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1243 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1245 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1246 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1248 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1249 // Skip debug info if it is not identical.
1250 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1251 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1252 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1253 while (isa
<DbgInfoIntrinsic
>(I1
))
1255 while (isa
<DbgInfoIntrinsic
>(I2
))
1258 // FIXME: Can we define a safety predicate for CallBr?
1259 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
1260 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)) ||
1261 isa
<CallBrInst
>(I1
))
1264 BasicBlock
*BIParent
= BI
->getParent();
1266 bool Changed
= false;
1268 // If we are hoisting the terminator instruction, don't move one (making a
1269 // broken BB), instead clone it, and remove BI.
1270 if (I1
->isTerminator())
1271 goto HoistTerminator
;
1273 // If we're going to hoist a call, make sure that the two instructions we're
1274 // commoning/hoisting are both marked with musttail, or neither of them is
1275 // marked as such. Otherwise, we might end up in a situation where we hoist
1276 // from a block where the terminator is a `ret` to a block where the terminator
1277 // is a `br`, and `musttail` calls expect to be followed by a return.
1278 auto *C1
= dyn_cast
<CallInst
>(I1
);
1279 auto *C2
= dyn_cast
<CallInst
>(I2
);
1281 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1284 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1287 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1288 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1289 // The debug location is an integral part of a debug info intrinsic
1290 // and can't be separated from it or replaced. Instead of attempting
1291 // to merge locations, simply hoist both copies of the intrinsic.
1292 BIParent
->getInstList().splice(BI
->getIterator(),
1293 BB1
->getInstList(), I1
);
1294 BIParent
->getInstList().splice(BI
->getIterator(),
1295 BB2
->getInstList(), I2
);
1298 // For a normal instruction, we just move one to right before the branch,
1299 // then replace all uses of the other with the first. Finally, we remove
1300 // the now redundant second instruction.
1301 BIParent
->getInstList().splice(BI
->getIterator(),
1302 BB1
->getInstList(), I1
);
1303 if (!I2
->use_empty())
1304 I2
->replaceAllUsesWith(I1
);
1306 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1307 LLVMContext::MD_range
,
1308 LLVMContext::MD_fpmath
,
1309 LLVMContext::MD_invariant_load
,
1310 LLVMContext::MD_nonnull
,
1311 LLVMContext::MD_invariant_group
,
1312 LLVMContext::MD_align
,
1313 LLVMContext::MD_dereferenceable
,
1314 LLVMContext::MD_dereferenceable_or_null
,
1315 LLVMContext::MD_mem_parallel_loop_access
,
1316 LLVMContext::MD_access_group
,
1317 LLVMContext::MD_preserve_access_index
};
1318 combineMetadata(I1
, I2
, KnownIDs
, true);
1320 // I1 and I2 are being combined into a single instruction. Its debug
1321 // location is the merged locations of the original instructions.
1322 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1324 I2
->eraseFromParent();
1330 // Skip debug info if it is not identical.
1331 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1332 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1333 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1334 while (isa
<DbgInfoIntrinsic
>(I1
))
1336 while (isa
<DbgInfoIntrinsic
>(I2
))
1339 } while (I1
->isIdenticalToWhenDefined(I2
));
1344 // It may not be possible to hoist an invoke.
1345 // FIXME: Can we define a safety predicate for CallBr?
1346 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1349 // TODO: callbr hoisting currently disabled pending further study.
1350 if (isa
<CallBrInst
>(I1
))
1353 for (BasicBlock
*Succ
: successors(BB1
)) {
1354 for (PHINode
&PN
: Succ
->phis()) {
1355 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1356 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1360 // Check for passingValueIsAlwaysUndefined here because we would rather
1361 // eliminate undefined control flow then converting it to a select.
1362 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1363 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1366 if (isa
<ConstantExpr
>(BB1V
) && !isSafeToSpeculativelyExecute(BB1V
))
1368 if (isa
<ConstantExpr
>(BB2V
) && !isSafeToSpeculativelyExecute(BB2V
))
1373 // Okay, it is safe to hoist the terminator.
1374 Instruction
*NT
= I1
->clone();
1375 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1376 if (!NT
->getType()->isVoidTy()) {
1377 I1
->replaceAllUsesWith(NT
);
1378 I2
->replaceAllUsesWith(NT
);
1382 // Ensure terminator gets a debug location, even an unknown one, in case
1383 // it involves inlinable calls.
1384 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1386 // PHIs created below will adopt NT's merged DebugLoc.
1387 IRBuilder
<NoFolder
> Builder(NT
);
1389 // Hoisting one of the terminators from our successor is a great thing.
1390 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1391 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1392 // nodes, so we insert select instruction to compute the final result.
1393 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1394 for (BasicBlock
*Succ
: successors(BB1
)) {
1395 for (PHINode
&PN
: Succ
->phis()) {
1396 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1397 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1401 // These values do not agree. Insert a select instruction before NT
1402 // that determines the right value.
1403 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1405 SI
= cast
<SelectInst
>(
1406 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1407 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1409 // Make the PHI node use the select for all incoming values for BB1/BB2
1410 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1411 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1412 PN
.setIncomingValue(i
, SI
);
1416 // Update any PHI nodes in our new successors.
1417 for (BasicBlock
*Succ
: successors(BB1
))
1418 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1420 EraseTerminatorAndDCECond(BI
);
1424 // All instructions in Insts belong to different blocks that all unconditionally
1425 // branch to a common successor. Analyze each instruction and return true if it
1426 // would be possible to sink them into their successor, creating one common
1427 // instruction instead. For every value that would be required to be provided by
1428 // PHI node (because an operand varies in each input block), add to PHIOperands.
1429 static bool canSinkInstructions(
1430 ArrayRef
<Instruction
*> Insts
,
1431 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1432 // Prune out obviously bad instructions to move. Each instruction must have
1433 // exactly zero or one use, and we check later that use is by a single, common
1434 // PHI instruction in the successor.
1435 bool HasUse
= !Insts
.front()->user_empty();
1436 for (auto *I
: Insts
) {
1437 // These instructions may change or break semantics if moved.
1438 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1439 I
->getType()->isTokenTy())
1442 // Conservatively return false if I is an inline-asm instruction. Sinking
1443 // and merging inline-asm instructions can potentially create arguments
1444 // that cannot satisfy the inline-asm constraints.
1445 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1446 if (C
->isInlineAsm())
1449 // Each instruction must have zero or one use.
1450 if (HasUse
&& !I
->hasOneUse())
1452 if (!HasUse
&& !I
->user_empty())
1456 const Instruction
*I0
= Insts
.front();
1457 for (auto *I
: Insts
)
1458 if (!I
->isSameOperationAs(I0
))
1461 // All instructions in Insts are known to be the same opcode. If they have a
1462 // use, check that the only user is a PHI or in the same block as the
1463 // instruction, because if a user is in the same block as an instruction we're
1464 // contemplating sinking, it must already be determined to be sinkable.
1466 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1467 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1468 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1469 auto *U
= cast
<Instruction
>(*I
->user_begin());
1471 PNUse
->getParent() == Succ
&&
1472 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1473 U
->getParent() == I
->getParent();
1478 // Because SROA can't handle speculating stores of selects, try not
1479 // to sink loads or stores of allocas when we'd have to create a PHI for
1480 // the address operand. Also, because it is likely that loads or stores
1481 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1482 // This can cause code churn which can have unintended consequences down
1483 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1484 // FIXME: This is a workaround for a deficiency in SROA - see
1485 // https://llvm.org/bugs/show_bug.cgi?id=30188
1486 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1487 return isa
<AllocaInst
>(I
->getOperand(1));
1490 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1491 return isa
<AllocaInst
>(I
->getOperand(0));
1495 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1496 if (I0
->getOperand(OI
)->getType()->isTokenTy())
1497 // Don't touch any operand of token type.
1500 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1501 assert(I
->getNumOperands() == I0
->getNumOperands());
1502 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1504 if (!all_of(Insts
, SameAsI0
)) {
1505 if (!canReplaceOperandWithVariable(I0
, OI
))
1506 // We can't create a PHI from this GEP.
1508 // Don't create indirect calls! The called value is the final operand.
1509 if (isa
<CallBase
>(I0
) && OI
== OE
- 1) {
1510 // FIXME: if the call was *already* indirect, we should do this.
1513 for (auto *I
: Insts
)
1514 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1521 // instruction of every block in Blocks to their common successor, commoning
1522 // into one instruction.
1523 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1524 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1526 // canSinkLastInstruction returning true guarantees that every block has at
1527 // least one non-terminator instruction.
1528 SmallVector
<Instruction
*,4> Insts
;
1529 for (auto *BB
: Blocks
) {
1530 Instruction
*I
= BB
->getTerminator();
1532 I
= I
->getPrevNode();
1533 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1534 if (!isa
<DbgInfoIntrinsic
>(I
))
1538 // The only checking we need to do now is that all users of all instructions
1539 // are the same PHI node. canSinkLastInstruction should have checked this but
1540 // it is slightly over-aggressive - it gets confused by commutative instructions
1541 // so double-check it here.
1542 Instruction
*I0
= Insts
.front();
1543 if (!I0
->user_empty()) {
1544 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1545 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1546 auto *U
= cast
<Instruction
>(*I
->user_begin());
1552 // We don't need to do any more checking here; canSinkLastInstruction should
1553 // have done it all for us.
1554 SmallVector
<Value
*, 4> NewOperands
;
1555 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1556 // This check is different to that in canSinkLastInstruction. There, we
1557 // cared about the global view once simplifycfg (and instcombine) have
1558 // completed - it takes into account PHIs that become trivially
1559 // simplifiable. However here we need a more local view; if an operand
1560 // differs we create a PHI and rely on instcombine to clean up the very
1561 // small mess we may make.
1562 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1563 return I
->getOperand(O
) != I0
->getOperand(O
);
1566 NewOperands
.push_back(I0
->getOperand(O
));
1570 // Create a new PHI in the successor block and populate it.
1571 auto *Op
= I0
->getOperand(O
);
1572 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1573 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1574 Op
->getName() + ".sink", &BBEnd
->front());
1575 for (auto *I
: Insts
)
1576 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1577 NewOperands
.push_back(PN
);
1580 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1581 // and move it to the start of the successor block.
1582 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1583 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1584 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1586 // Update metadata and IR flags, and merge debug locations.
1587 for (auto *I
: Insts
)
1589 // The debug location for the "common" instruction is the merged locations
1590 // of all the commoned instructions. We start with the original location
1591 // of the "common" instruction and iteratively merge each location in the
1593 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1594 // However, as N-way merge for CallInst is rare, so we use simplified API
1595 // instead of using complex API for N-way merge.
1596 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1597 combineMetadataForCSE(I0
, I
, true);
1601 if (!I0
->user_empty()) {
1602 // canSinkLastInstruction checked that all instructions were used by
1603 // one and only one PHI node. Find that now, RAUW it to our common
1604 // instruction and nuke it.
1605 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1606 PN
->replaceAllUsesWith(I0
);
1607 PN
->eraseFromParent();
1610 // Finally nuke all instructions apart from the common instruction.
1611 for (auto *I
: Insts
)
1613 I
->eraseFromParent();
1620 // LockstepReverseIterator - Iterates through instructions
1621 // in a set of blocks in reverse order from the first non-terminator.
1622 // For example (assume all blocks have size n):
1623 // LockstepReverseIterator I([B1, B2, B3]);
1624 // *I-- = [B1[n], B2[n], B3[n]];
1625 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1626 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1628 class LockstepReverseIterator
{
1629 ArrayRef
<BasicBlock
*> Blocks
;
1630 SmallVector
<Instruction
*,4> Insts
;
1634 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1641 for (auto *BB
: Blocks
) {
1642 Instruction
*Inst
= BB
->getTerminator();
1643 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1644 Inst
= Inst
->getPrevNode();
1646 // Block wasn't big enough.
1650 Insts
.push_back(Inst
);
1654 bool isValid() const {
1661 for (auto *&Inst
: Insts
) {
1662 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1663 Inst
= Inst
->getPrevNode();
1664 // Already at beginning of block.
1672 ArrayRef
<Instruction
*> operator * () const {
1677 } // end anonymous namespace
1679 /// Check whether BB's predecessors end with unconditional branches. If it is
1680 /// true, sink any common code from the predecessors to BB.
1681 /// We also allow one predecessor to end with conditional branch (but no more
1683 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
) {
1684 // We support two situations:
1685 // (1) all incoming arcs are unconditional
1686 // (2) one incoming arc is conditional
1688 // (2) is very common in switch defaults and
1689 // else-if patterns;
1692 // else if (b) f(2);
1705 // [end] has two unconditional predecessor arcs and one conditional. The
1706 // conditional refers to the implicit empty 'else' arc. This conditional
1707 // arc can also be caused by an empty default block in a switch.
1709 // In this case, we attempt to sink code from all *unconditional* arcs.
1710 // If we can sink instructions from these arcs (determined during the scan
1711 // phase below) we insert a common successor for all unconditional arcs and
1712 // connect that to [end], to enable sinking:
1725 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
1726 Instruction
*Cond
= nullptr;
1727 for (auto *B
: predecessors(BB
)) {
1728 auto *T
= B
->getTerminator();
1729 if (isa
<BranchInst
>(T
) && cast
<BranchInst
>(T
)->isUnconditional())
1730 UnconditionalPreds
.push_back(B
);
1731 else if ((isa
<BranchInst
>(T
) || isa
<SwitchInst
>(T
)) && !Cond
)
1736 if (UnconditionalPreds
.size() < 2)
1739 bool Changed
= false;
1740 // We take a two-step approach to tail sinking. First we scan from the end of
1741 // each block upwards in lockstep. If the n'th instruction from the end of each
1742 // block can be sunk, those instructions are added to ValuesToSink and we
1743 // carry on. If we can sink an instruction but need to PHI-merge some operands
1744 // (because they're not identical in each instruction) we add these to
1746 unsigned ScanIdx
= 0;
1747 SmallPtrSet
<Value
*,4> InstructionsToSink
;
1748 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
1749 LockstepReverseIterator
LRI(UnconditionalPreds
);
1750 while (LRI
.isValid() &&
1751 canSinkInstructions(*LRI
, PHIOperands
)) {
1752 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
1754 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
1759 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
1760 unsigned NumPHIdValues
= 0;
1761 for (auto *I
: *LRI
)
1762 for (auto *V
: PHIOperands
[I
])
1763 if (InstructionsToSink
.count(V
) == 0)
1765 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
1766 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
1767 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
1770 return NumPHIInsts
<= 1;
1773 if (ScanIdx
> 0 && Cond
) {
1774 // Check if we would actually sink anything first! This mutates the CFG and
1775 // adds an extra block. The goal in doing this is to allow instructions that
1776 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1777 // (such as trunc, add) can be sunk and predicated already. So we check that
1778 // we're going to sink at least one non-speculatable instruction.
1781 bool Profitable
= false;
1782 while (ProfitableToSinkInstruction(LRI
) && Idx
< ScanIdx
) {
1783 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
1793 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1794 // We have a conditional edge and we're going to sink some instructions.
1795 // Insert a new block postdominating all blocks we're going to sink from.
1796 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split"))
1797 // Edges couldn't be split.
1802 // Now that we've analyzed all potential sinking candidates, perform the
1803 // actual sink. We iteratively sink the last non-terminator of the source
1804 // blocks into their common successor unless doing so would require too
1805 // many PHI instructions to be generated (currently only one PHI is allowed
1806 // per sunk instruction).
1808 // We can use InstructionsToSink to discount values needing PHI-merging that will
1809 // actually be sunk in a later iteration. This allows us to be more
1810 // aggressive in what we sink. This does allow a false positive where we
1811 // sink presuming a later value will also be sunk, but stop half way through
1812 // and never actually sink it which means we produce more PHIs than intended.
1813 // This is unlikely in practice though.
1814 for (unsigned SinkIdx
= 0; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
1815 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1816 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
1819 // Because we've sunk every instruction in turn, the current instruction to
1820 // sink is always at index 0.
1822 if (!ProfitableToSinkInstruction(LRI
)) {
1823 // Too many PHIs would be created.
1825 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1829 if (!sinkLastInstruction(UnconditionalPreds
))
1837 /// Determine if we can hoist sink a sole store instruction out of a
1838 /// conditional block.
1840 /// We are looking for code like the following:
1842 /// store i32 %add, i32* %arrayidx2
1843 /// ... // No other stores or function calls (we could be calling a memory
1844 /// ... // function).
1845 /// %cmp = icmp ult %x, %y
1846 /// br i1 %cmp, label %EndBB, label %ThenBB
1848 /// store i32 %add5, i32* %arrayidx2
1852 /// We are going to transform this into:
1854 /// store i32 %add, i32* %arrayidx2
1856 /// %cmp = icmp ult %x, %y
1857 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1858 /// store i32 %add.add5, i32* %arrayidx2
1861 /// \return The pointer to the value of the previous store if the store can be
1862 /// hoisted into the predecessor block. 0 otherwise.
1863 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
1864 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
1865 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
1869 // Volatile or atomic.
1870 if (!StoreToHoist
->isSimple())
1873 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
1875 // Look for a store to the same pointer in BrBB.
1876 unsigned MaxNumInstToLookAt
= 9;
1877 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug())) {
1878 if (!MaxNumInstToLookAt
)
1880 --MaxNumInstToLookAt
;
1882 // Could be calling an instruction that affects memory like free().
1883 if (CurI
.mayHaveSideEffects() && !isa
<StoreInst
>(CurI
))
1886 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
1887 // Found the previous store make sure it stores to the same location.
1888 if (SI
->getPointerOperand() == StorePtr
)
1889 // Found the previous store, return its value operand.
1890 return SI
->getValueOperand();
1891 return nullptr; // Unknown store.
1898 /// Speculate a conditional basic block flattening the CFG.
1900 /// Note that this is a very risky transform currently. Speculating
1901 /// instructions like this is most often not desirable. Instead, there is an MI
1902 /// pass which can do it with full awareness of the resource constraints.
1903 /// However, some cases are "obvious" and we should do directly. An example of
1904 /// this is speculating a single, reasonably cheap instruction.
1906 /// There is only one distinct advantage to flattening the CFG at the IR level:
1907 /// it makes very common but simplistic optimizations such as are common in
1908 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1909 /// modeling their effects with easier to reason about SSA value graphs.
1912 /// An illustration of this transform is turning this IR:
1915 /// %cmp = icmp ult %x, %y
1916 /// br i1 %cmp, label %EndBB, label %ThenBB
1918 /// %sub = sub %x, %y
1921 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1928 /// %cmp = icmp ult %x, %y
1929 /// %sub = sub %x, %y
1930 /// %cond = select i1 %cmp, 0, %sub
1934 /// \returns true if the conditional block is removed.
1935 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
1936 const TargetTransformInfo
&TTI
) {
1937 // Be conservative for now. FP select instruction can often be expensive.
1938 Value
*BrCond
= BI
->getCondition();
1939 if (isa
<FCmpInst
>(BrCond
))
1942 BasicBlock
*BB
= BI
->getParent();
1943 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
1945 // If ThenBB is actually on the false edge of the conditional branch, remember
1946 // to swap the select operands later.
1947 bool Invert
= false;
1948 if (ThenBB
!= BI
->getSuccessor(0)) {
1949 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1952 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
1954 // Keep a count of how many times instructions are used within ThenBB when
1955 // they are candidates for sinking into ThenBB. Specifically:
1956 // - They are defined in BB, and
1957 // - They have no side effects, and
1958 // - All of their uses are in ThenBB.
1959 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
1961 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
1963 unsigned SpeculationCost
= 0;
1964 Value
*SpeculatedStoreValue
= nullptr;
1965 StoreInst
*SpeculatedStore
= nullptr;
1966 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
1967 BBE
= std::prev(ThenBB
->end());
1968 BBI
!= BBE
; ++BBI
) {
1969 Instruction
*I
= &*BBI
;
1971 if (isa
<DbgInfoIntrinsic
>(I
)) {
1972 SpeculatedDbgIntrinsics
.push_back(I
);
1976 // Only speculatively execute a single instruction (not counting the
1977 // terminator) for now.
1979 if (SpeculationCost
> 1)
1982 // Don't hoist the instruction if it's unsafe or expensive.
1983 if (!isSafeToSpeculativelyExecute(I
) &&
1984 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
1985 I
, BB
, ThenBB
, EndBB
))))
1987 if (!SpeculatedStoreValue
&&
1988 ComputeSpeculationCost(I
, TTI
) >
1989 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
1992 // Store the store speculation candidate.
1993 if (SpeculatedStoreValue
)
1994 SpeculatedStore
= cast
<StoreInst
>(I
);
1996 // Do not hoist the instruction if any of its operands are defined but not
1997 // used in BB. The transformation will prevent the operand from
1998 // being sunk into the use block.
1999 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
) {
2000 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
2001 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2002 continue; // Not a candidate for sinking.
2004 ++SinkCandidateUseCounts
[OpI
];
2008 // Consider any sink candidates which are only used in ThenBB as costs for
2009 // speculation. Note, while we iterate over a DenseMap here, we are summing
2010 // and so iteration order isn't significant.
2011 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2012 I
= SinkCandidateUseCounts
.begin(),
2013 E
= SinkCandidateUseCounts
.end();
2015 if (I
->first
->hasNUses(I
->second
)) {
2017 if (SpeculationCost
> 1)
2021 // Check that the PHI nodes can be converted to selects.
2022 bool HaveRewritablePHIs
= false;
2023 for (PHINode
&PN
: EndBB
->phis()) {
2024 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2025 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2027 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2028 // Skip PHIs which are trivial.
2032 // Don't convert to selects if we could remove undefined behavior instead.
2033 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2034 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2037 HaveRewritablePHIs
= true;
2038 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2039 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2040 if (!OrigCE
&& !ThenCE
)
2041 continue; // Known safe and cheap.
2043 if ((ThenCE
&& !isSafeToSpeculativelyExecute(ThenCE
)) ||
2044 (OrigCE
&& !isSafeToSpeculativelyExecute(OrigCE
)))
2046 unsigned OrigCost
= OrigCE
? ComputeSpeculationCost(OrigCE
, TTI
) : 0;
2047 unsigned ThenCost
= ThenCE
? ComputeSpeculationCost(ThenCE
, TTI
) : 0;
2049 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2050 if (OrigCost
+ ThenCost
> MaxCost
)
2053 // Account for the cost of an unfolded ConstantExpr which could end up
2054 // getting expanded into Instructions.
2055 // FIXME: This doesn't account for how many operations are combined in the
2056 // constant expression.
2058 if (SpeculationCost
> 1)
2062 // If there are no PHIs to process, bail early. This helps ensure idempotence
2064 if (!HaveRewritablePHIs
&& !(HoistCondStores
&& SpeculatedStoreValue
))
2067 // If we get here, we can hoist the instruction and if-convert.
2068 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2070 // Insert a select of the value of the speculated store.
2071 if (SpeculatedStoreValue
) {
2072 IRBuilder
<NoFolder
> Builder(BI
);
2073 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2074 Value
*FalseV
= SpeculatedStoreValue
;
2076 std::swap(TrueV
, FalseV
);
2077 Value
*S
= Builder
.CreateSelect(
2078 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2079 SpeculatedStore
->setOperand(0, S
);
2080 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2081 SpeculatedStore
->getDebugLoc());
2084 // Metadata can be dependent on the condition we are hoisting above.
2085 // Conservatively strip all metadata on the instruction.
2086 for (auto &I
: *ThenBB
)
2087 I
.dropUnknownNonDebugMetadata();
2089 // Hoist the instructions.
2090 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2091 ThenBB
->begin(), std::prev(ThenBB
->end()));
2093 // Insert selects and rewrite the PHI operands.
2094 IRBuilder
<NoFolder
> Builder(BI
);
2095 for (PHINode
&PN
: EndBB
->phis()) {
2096 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2097 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2098 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2099 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2101 // Skip PHIs which are trivial.
2105 // Create a select whose true value is the speculatively executed value and
2106 // false value is the preexisting value. Swap them if the branch
2107 // destinations were inverted.
2108 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2110 std::swap(TrueV
, FalseV
);
2111 Value
*V
= Builder
.CreateSelect(
2112 BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2113 PN
.setIncomingValue(OrigI
, V
);
2114 PN
.setIncomingValue(ThenI
, V
);
2117 // Remove speculated dbg intrinsics.
2118 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2119 // dbg value for the different flows and inserting it after the select.
2120 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2121 I
->eraseFromParent();
2127 /// Return true if we can thread a branch across this block.
2128 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2131 for (Instruction
&I
: BB
->instructionsWithoutDebug()) {
2133 return false; // Don't clone large BB's.
2136 // We can only support instructions that do not define values that are
2137 // live outside of the current basic block.
2138 for (User
*U
: I
.users()) {
2139 Instruction
*UI
= cast
<Instruction
>(U
);
2140 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2144 // Looks ok, continue checking.
2150 /// If we have a conditional branch on a PHI node value that is defined in the
2151 /// same block as the branch and if any PHI entries are constants, thread edges
2152 /// corresponding to that entry to be branches to their ultimate destination.
2153 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const DataLayout
&DL
,
2154 AssumptionCache
*AC
) {
2155 BasicBlock
*BB
= BI
->getParent();
2156 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
2157 // NOTE: we currently cannot transform this case if the PHI node is used
2158 // outside of the block.
2159 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
2162 // Degenerate case of a single entry PHI.
2163 if (PN
->getNumIncomingValues() == 1) {
2164 FoldSingleEntryPHINodes(PN
->getParent());
2168 // Now we know that this block has multiple preds and two succs.
2169 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
2172 // Can't fold blocks that contain noduplicate or convergent calls.
2173 if (any_of(*BB
, [](const Instruction
&I
) {
2174 const CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
2175 return CI
&& (CI
->cannotDuplicate() || CI
->isConvergent());
2179 // Okay, this is a simple enough basic block. See if any phi values are
2181 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2182 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
2183 if (!CB
|| !CB
->getType()->isIntegerTy(1))
2186 // Okay, we now know that all edges from PredBB should be revectored to
2187 // branch to RealDest.
2188 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
2189 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
2192 continue; // Skip self loops.
2193 // Skip if the predecessor's terminator is an indirect branch.
2194 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
2197 // The dest block might have PHI nodes, other predecessors and other
2198 // difficult cases. Instead of being smart about this, just insert a new
2199 // block that jumps to the destination block, effectively splitting
2200 // the edge we are about to create.
2201 BasicBlock
*EdgeBB
=
2202 BasicBlock::Create(BB
->getContext(), RealDest
->getName() + ".critedge",
2203 RealDest
->getParent(), RealDest
);
2204 BranchInst
*CritEdgeBranch
= BranchInst::Create(RealDest
, EdgeBB
);
2205 CritEdgeBranch
->setDebugLoc(BI
->getDebugLoc());
2207 // Update PHI nodes.
2208 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
2210 // BB may have instructions that are being threaded over. Clone these
2211 // instructions into EdgeBB. We know that there will be no uses of the
2212 // cloned instructions outside of EdgeBB.
2213 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
2214 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
2215 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
2216 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
2217 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2220 // Clone the instruction.
2221 Instruction
*N
= BBI
->clone();
2223 N
->setName(BBI
->getName() + ".c");
2225 // Update operands due to translation.
2226 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end(); i
!= e
; ++i
) {
2227 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
2228 if (PI
!= TranslateMap
.end())
2232 // Check for trivial simplification.
2233 if (Value
*V
= SimplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
2234 if (!BBI
->use_empty())
2235 TranslateMap
[&*BBI
] = V
;
2236 if (!N
->mayHaveSideEffects()) {
2237 N
->deleteValue(); // Instruction folded away, don't need actual inst
2241 if (!BBI
->use_empty())
2242 TranslateMap
[&*BBI
] = N
;
2244 // Insert the new instruction into its new home.
2246 EdgeBB
->getInstList().insert(InsertPt
, N
);
2248 // Register the new instruction with the assumption cache if necessary.
2249 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(N
))
2250 if (II
->getIntrinsicID() == Intrinsic::assume
)
2251 AC
->registerAssumption(II
);
2254 // Loop over all of the edges from PredBB to BB, changing them to branch
2255 // to EdgeBB instead.
2256 Instruction
*PredBBTI
= PredBB
->getTerminator();
2257 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
2258 if (PredBBTI
->getSuccessor(i
) == BB
) {
2259 BB
->removePredecessor(PredBB
);
2260 PredBBTI
->setSuccessor(i
, EdgeBB
);
2263 // Recurse, simplifying any other constants.
2264 return FoldCondBranchOnPHI(BI
, DL
, AC
) || true;
2270 /// Given a BB that starts with the specified two-entry PHI node,
2271 /// see if we can eliminate it.
2272 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
2273 const DataLayout
&DL
) {
2274 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2275 // statement", which has a very simple dominance structure. Basically, we
2276 // are trying to find the condition that is being branched on, which
2277 // subsequently causes this merge to happen. We really want control
2278 // dependence information for this check, but simplifycfg can't keep it up
2279 // to date, and this catches most of the cases we care about anyway.
2280 BasicBlock
*BB
= PN
->getParent();
2281 const Function
*Fn
= BB
->getParent();
2282 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
2285 BasicBlock
*IfTrue
, *IfFalse
;
2286 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
2288 // Don't bother if the branch will be constant folded trivially.
2289 isa
<ConstantInt
>(IfCond
))
2292 // Okay, we found that we can merge this two-entry phi node into a select.
2293 // Doing so would require us to fold *all* two entry phi nodes in this block.
2294 // At some point this becomes non-profitable (particularly if the target
2295 // doesn't support cmov's). Only do this transformation if there are two or
2296 // fewer PHI nodes in this block.
2297 unsigned NumPhis
= 0;
2298 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
2302 // Loop over the PHI's seeing if we can promote them all to select
2303 // instructions. While we are at it, keep track of the instructions
2304 // that need to be moved to the dominating block.
2305 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
2306 unsigned MaxCostVal0
= PHINodeFoldingThreshold
,
2307 MaxCostVal1
= PHINodeFoldingThreshold
;
2308 MaxCostVal0
*= TargetTransformInfo::TCC_Basic
;
2309 MaxCostVal1
*= TargetTransformInfo::TCC_Basic
;
2311 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
2312 PHINode
*PN
= cast
<PHINode
>(II
++);
2313 if (Value
*V
= SimplifyInstruction(PN
, {DL
, PN
})) {
2314 PN
->replaceAllUsesWith(V
);
2315 PN
->eraseFromParent();
2319 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
2320 MaxCostVal0
, TTI
) ||
2321 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
2326 // If we folded the first phi, PN dangles at this point. Refresh it. If
2327 // we ran out of PHIs then we simplified them all.
2328 PN
= dyn_cast
<PHINode
>(BB
->begin());
2332 // Don't fold i1 branches on PHIs which contain binary operators. These can
2333 // often be turned into switches and other things.
2334 if (PN
->getType()->isIntegerTy(1) &&
2335 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
2336 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
2337 isa
<BinaryOperator
>(IfCond
)))
2340 // If all PHI nodes are promotable, check to make sure that all instructions
2341 // in the predecessor blocks can be promoted as well. If not, we won't be able
2342 // to get rid of the control flow, so it's not worth promoting to select
2344 BasicBlock
*DomBlock
= nullptr;
2345 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
2346 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
2347 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
2350 DomBlock
= *pred_begin(IfBlock1
);
2351 for (BasicBlock::iterator I
= IfBlock1
->begin(); !I
->isTerminator(); ++I
)
2352 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2353 // This is not an aggressive instruction that we can promote.
2354 // Because of this, we won't be able to get rid of the control flow, so
2355 // the xform is not worth it.
2360 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
2363 DomBlock
= *pred_begin(IfBlock2
);
2364 for (BasicBlock::iterator I
= IfBlock2
->begin(); !I
->isTerminator(); ++I
)
2365 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2366 // This is not an aggressive instruction that we can promote.
2367 // Because of this, we won't be able to get rid of the control flow, so
2368 // the xform is not worth it.
2373 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2374 << " T: " << IfTrue
->getName()
2375 << " F: " << IfFalse
->getName() << "\n");
2377 // If we can still promote the PHI nodes after this gauntlet of tests,
2378 // do all of the PHI's now.
2379 Instruction
*InsertPt
= DomBlock
->getTerminator();
2380 IRBuilder
<NoFolder
> Builder(InsertPt
);
2382 // Move all 'aggressive' instructions, which are defined in the
2383 // conditional parts of the if's up to the dominating block.
2385 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock1
);
2387 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock2
);
2389 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
2390 // Change the PHI node into a select instruction.
2391 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
2392 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
2394 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", InsertPt
);
2395 PN
->replaceAllUsesWith(Sel
);
2397 PN
->eraseFromParent();
2400 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2401 // has been flattened. Change DomBlock to jump directly to our new block to
2402 // avoid other simplifycfg's kicking in on the diamond.
2403 Instruction
*OldTI
= DomBlock
->getTerminator();
2404 Builder
.SetInsertPoint(OldTI
);
2405 Builder
.CreateBr(BB
);
2406 OldTI
->eraseFromParent();
2410 /// If we found a conditional branch that goes to two returning blocks,
2411 /// try to merge them together into one return,
2412 /// introducing a select if the return values disagree.
2413 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
,
2414 IRBuilder
<> &Builder
) {
2415 assert(BI
->isConditional() && "Must be a conditional branch");
2416 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
2417 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
2418 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
2419 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
2421 // Check to ensure both blocks are empty (just a return) or optionally empty
2422 // with PHI nodes. If there are other instructions, merging would cause extra
2423 // computation on one path or the other.
2424 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
2426 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
2429 Builder
.SetInsertPoint(BI
);
2430 // Okay, we found a branch that is going to two return nodes. If
2431 // there is no return value for this function, just change the
2432 // branch into a return.
2433 if (FalseRet
->getNumOperands() == 0) {
2434 TrueSucc
->removePredecessor(BI
->getParent());
2435 FalseSucc
->removePredecessor(BI
->getParent());
2436 Builder
.CreateRetVoid();
2437 EraseTerminatorAndDCECond(BI
);
2441 // Otherwise, figure out what the true and false return values are
2442 // so we can insert a new select instruction.
2443 Value
*TrueValue
= TrueRet
->getReturnValue();
2444 Value
*FalseValue
= FalseRet
->getReturnValue();
2446 // Unwrap any PHI nodes in the return blocks.
2447 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
2448 if (TVPN
->getParent() == TrueSucc
)
2449 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
2450 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
2451 if (FVPN
->getParent() == FalseSucc
)
2452 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
2454 // In order for this transformation to be safe, we must be able to
2455 // unconditionally execute both operands to the return. This is
2456 // normally the case, but we could have a potentially-trapping
2457 // constant expression that prevents this transformation from being
2459 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
2462 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
2466 // Okay, we collected all the mapped values and checked them for sanity, and
2467 // defined to really do this transformation. First, update the CFG.
2468 TrueSucc
->removePredecessor(BI
->getParent());
2469 FalseSucc
->removePredecessor(BI
->getParent());
2471 // Insert select instructions where needed.
2472 Value
*BrCond
= BI
->getCondition();
2474 // Insert a select if the results differ.
2475 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
2476 } else if (isa
<UndefValue
>(TrueValue
)) {
2477 TrueValue
= FalseValue
;
2480 Builder
.CreateSelect(BrCond
, TrueValue
, FalseValue
, "retval", BI
);
2485 !TrueValue
? Builder
.CreateRetVoid() : Builder
.CreateRet(TrueValue
);
2489 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2490 << "\n " << *BI
<< "NewRet = " << *RI
<< "TRUEBLOCK: "
2491 << *TrueSucc
<< "FALSEBLOCK: " << *FalseSucc
);
2493 EraseTerminatorAndDCECond(BI
);
2498 /// Return true if the given instruction is available
2499 /// in its predecessor block. If yes, the instruction will be removed.
2500 static bool tryCSEWithPredecessor(Instruction
*Inst
, BasicBlock
*PB
) {
2501 if (!isa
<BinaryOperator
>(Inst
) && !isa
<CmpInst
>(Inst
))
2503 for (Instruction
&I
: *PB
) {
2504 Instruction
*PBI
= &I
;
2505 // Check whether Inst and PBI generate the same value.
2506 if (Inst
->isIdenticalTo(PBI
)) {
2507 Inst
->replaceAllUsesWith(PBI
);
2508 Inst
->eraseFromParent();
2515 /// Return true if either PBI or BI has branch weight available, and store
2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2517 /// not have branch weight, use 1:1 as its weight.
2518 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
2519 uint64_t &PredTrueWeight
,
2520 uint64_t &PredFalseWeight
,
2521 uint64_t &SuccTrueWeight
,
2522 uint64_t &SuccFalseWeight
) {
2523 bool PredHasWeights
=
2524 PBI
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
);
2525 bool SuccHasWeights
=
2526 BI
->extractProfMetadata(SuccTrueWeight
, SuccFalseWeight
);
2527 if (PredHasWeights
|| SuccHasWeights
) {
2528 if (!PredHasWeights
)
2529 PredTrueWeight
= PredFalseWeight
= 1;
2530 if (!SuccHasWeights
)
2531 SuccTrueWeight
= SuccFalseWeight
= 1;
2538 /// If this basic block is simple enough, and if a predecessor branches to us
2539 /// and one of our successors, fold the block into the predecessor and use
2540 /// logical operations to pick the right destination.
2541 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, MemorySSAUpdater
*MSSAU
,
2542 unsigned BonusInstThreshold
) {
2543 BasicBlock
*BB
= BI
->getParent();
2545 const unsigned PredCount
= pred_size(BB
);
2547 Instruction
*Cond
= nullptr;
2548 if (BI
->isConditional())
2549 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2551 // For unconditional branch, check for a simple CFG pattern, where
2552 // BB has a single predecessor and BB's successor is also its predecessor's
2553 // successor. If such pattern exists, check for CSE between BB and its
2555 if (BasicBlock
*PB
= BB
->getSinglePredecessor())
2556 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PB
->getTerminator()))
2557 if (PBI
->isConditional() &&
2558 (BI
->getSuccessor(0) == PBI
->getSuccessor(0) ||
2559 BI
->getSuccessor(0) == PBI
->getSuccessor(1))) {
2560 for (auto I
= BB
->instructionsWithoutDebug().begin(),
2561 E
= BB
->instructionsWithoutDebug().end();
2563 Instruction
*Curr
= &*I
++;
2564 if (isa
<CmpInst
>(Curr
)) {
2568 // Quit if we can't remove this instruction.
2569 if (!tryCSEWithPredecessor(Curr
, PB
))
2578 if (!Cond
|| (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
2579 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
2582 // Make sure the instruction after the condition is the cond branch.
2583 BasicBlock::iterator CondIt
= ++Cond
->getIterator();
2585 // Ignore dbg intrinsics.
2586 while (isa
<DbgInfoIntrinsic
>(CondIt
))
2592 // Only allow this transformation if computing the condition doesn't involve
2593 // too many instructions and these involved instructions can be executed
2594 // unconditionally. We denote all involved instructions except the condition
2595 // as "bonus instructions", and only allow this transformation when the
2596 // number of the bonus instructions we'll need to create when cloning into
2597 // each predecessor does not exceed a certain threshold.
2598 unsigned NumBonusInsts
= 0;
2599 for (auto I
= BB
->begin(); Cond
!= &*I
; ++I
) {
2600 // Ignore dbg intrinsics.
2601 if (isa
<DbgInfoIntrinsic
>(I
))
2603 if (!I
->hasOneUse() || !isSafeToSpeculativelyExecute(&*I
))
2605 // I has only one use and can be executed unconditionally.
2606 Instruction
*User
= dyn_cast
<Instruction
>(I
->user_back());
2607 if (User
== nullptr || User
->getParent() != BB
)
2609 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2610 // to use any other instruction, User must be an instruction between next(I)
2613 // Account for the cost of duplicating this instruction into each
2615 NumBonusInsts
+= PredCount
;
2616 // Early exits once we reach the limit.
2617 if (NumBonusInsts
> BonusInstThreshold
)
2621 // Cond is known to be a compare or binary operator. Check to make sure that
2622 // neither operand is a potentially-trapping constant expression.
2623 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
2626 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
2630 // Finally, don't infinitely unroll conditional loops.
2631 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2632 BasicBlock
*FalseDest
= (BI
->isConditional()) ? BI
->getSuccessor(1) : nullptr;
2633 if (TrueDest
== BB
|| FalseDest
== BB
)
2636 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2637 BasicBlock
*PredBlock
= *PI
;
2638 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
2640 // Check that we have two conditional branches. If there is a PHI node in
2641 // the common successor, verify that the same value flows in from both
2643 SmallVector
<PHINode
*, 4> PHIs
;
2644 if (!PBI
|| PBI
->isUnconditional() ||
2645 (BI
->isConditional() && !SafeToMergeTerminators(BI
, PBI
)) ||
2646 (!BI
->isConditional() &&
2647 !isProfitableToFoldUnconditional(BI
, PBI
, Cond
, PHIs
)))
2650 // Determine if the two branches share a common destination.
2651 Instruction::BinaryOps Opc
= Instruction::BinaryOpsEnd
;
2652 bool InvertPredCond
= false;
2654 if (BI
->isConditional()) {
2655 if (PBI
->getSuccessor(0) == TrueDest
) {
2656 Opc
= Instruction::Or
;
2657 } else if (PBI
->getSuccessor(1) == FalseDest
) {
2658 Opc
= Instruction::And
;
2659 } else if (PBI
->getSuccessor(0) == FalseDest
) {
2660 Opc
= Instruction::And
;
2661 InvertPredCond
= true;
2662 } else if (PBI
->getSuccessor(1) == TrueDest
) {
2663 Opc
= Instruction::Or
;
2664 InvertPredCond
= true;
2669 if (PBI
->getSuccessor(0) != TrueDest
&& PBI
->getSuccessor(1) != TrueDest
)
2673 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
2674 IRBuilder
<> Builder(PBI
);
2676 // If we need to invert the condition in the pred block to match, do so now.
2677 if (InvertPredCond
) {
2678 Value
*NewCond
= PBI
->getCondition();
2680 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
2681 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
2682 CI
->setPredicate(CI
->getInversePredicate());
2685 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
2688 PBI
->setCondition(NewCond
);
2689 PBI
->swapSuccessors();
2692 // If we have bonus instructions, clone them into the predecessor block.
2693 // Note that there may be multiple predecessor blocks, so we cannot move
2694 // bonus instructions to a predecessor block.
2695 ValueToValueMapTy VMap
; // maps original values to cloned values
2696 // We already make sure Cond is the last instruction before BI. Therefore,
2697 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2699 for (auto BonusInst
= BB
->begin(); Cond
!= &*BonusInst
; ++BonusInst
) {
2700 if (isa
<DbgInfoIntrinsic
>(BonusInst
))
2702 Instruction
*NewBonusInst
= BonusInst
->clone();
2703 RemapInstruction(NewBonusInst
, VMap
,
2704 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2705 VMap
[&*BonusInst
] = NewBonusInst
;
2707 // If we moved a load, we cannot any longer claim any knowledge about
2708 // its potential value. The previous information might have been valid
2709 // only given the branch precondition.
2710 // For an analogous reason, we must also drop all the metadata whose
2711 // semantics we don't understand.
2712 NewBonusInst
->dropUnknownNonDebugMetadata();
2714 PredBlock
->getInstList().insert(PBI
->getIterator(), NewBonusInst
);
2715 NewBonusInst
->takeName(&*BonusInst
);
2716 BonusInst
->setName(BonusInst
->getName() + ".old");
2719 // Clone Cond into the predecessor basic block, and or/and the
2720 // two conditions together.
2721 Instruction
*CondInPred
= Cond
->clone();
2722 RemapInstruction(CondInPred
, VMap
,
2723 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2724 PredBlock
->getInstList().insert(PBI
->getIterator(), CondInPred
);
2725 CondInPred
->takeName(Cond
);
2726 Cond
->setName(CondInPred
->getName() + ".old");
2728 if (BI
->isConditional()) {
2729 Instruction
*NewCond
= cast
<Instruction
>(
2730 Builder
.CreateBinOp(Opc
, PBI
->getCondition(), CondInPred
, "or.cond"));
2731 PBI
->setCondition(NewCond
);
2733 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
2735 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
2736 SuccTrueWeight
, SuccFalseWeight
);
2737 SmallVector
<uint64_t, 8> NewWeights
;
2739 if (PBI
->getSuccessor(0) == BB
) {
2741 // PBI: br i1 %x, BB, FalseDest
2742 // BI: br i1 %y, TrueDest, FalseDest
2743 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2744 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
2745 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2746 // TrueWeight for PBI * FalseWeight for BI.
2747 // We assume that total weights of a BranchInst can fit into 32 bits.
2748 // Therefore, we will not have overflow using 64-bit arithmetic.
2749 NewWeights
.push_back(PredFalseWeight
*
2750 (SuccFalseWeight
+ SuccTrueWeight
) +
2751 PredTrueWeight
* SuccFalseWeight
);
2753 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
, MSSAU
);
2754 PBI
->setSuccessor(0, TrueDest
);
2756 if (PBI
->getSuccessor(1) == BB
) {
2758 // PBI: br i1 %x, TrueDest, BB
2759 // BI: br i1 %y, TrueDest, FalseDest
2760 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2761 // FalseWeight for PBI * TrueWeight for BI.
2762 NewWeights
.push_back(PredTrueWeight
*
2763 (SuccFalseWeight
+ SuccTrueWeight
) +
2764 PredFalseWeight
* SuccTrueWeight
);
2765 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2766 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
2768 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
, MSSAU
);
2769 PBI
->setSuccessor(1, FalseDest
);
2771 if (NewWeights
.size() == 2) {
2772 // Halve the weights if any of them cannot fit in an uint32_t
2773 FitWeights(NewWeights
);
2775 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(),
2777 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
2779 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
2781 // Update PHI nodes in the common successors.
2782 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
) {
2783 ConstantInt
*PBI_C
= cast
<ConstantInt
>(
2784 PHIs
[i
]->getIncomingValueForBlock(PBI
->getParent()));
2785 assert(PBI_C
->getType()->isIntegerTy(1));
2786 Instruction
*MergedCond
= nullptr;
2787 if (PBI
->getSuccessor(0) == TrueDest
) {
2788 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2789 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2790 // is false: !PBI_Cond and BI_Value
2791 Instruction
*NotCond
= cast
<Instruction
>(
2792 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2793 MergedCond
= cast
<Instruction
>(
2794 Builder
.CreateBinOp(Instruction::And
, NotCond
, CondInPred
,
2797 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2798 Instruction::Or
, PBI
->getCondition(), MergedCond
, "or.cond"));
2800 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2801 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2802 // is false: PBI_Cond and BI_Value
2803 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2804 Instruction::And
, PBI
->getCondition(), CondInPred
, "and.cond"));
2805 if (PBI_C
->isOne()) {
2806 Instruction
*NotCond
= cast
<Instruction
>(
2807 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2808 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2809 Instruction::Or
, NotCond
, MergedCond
, "or.cond"));
2813 PHIs
[i
]->setIncomingValueForBlock(PBI
->getParent(), MergedCond
);
2816 // PBI is changed to branch to TrueDest below. Remove itself from
2817 // potential phis from all other successors.
2819 MSSAU
->changeCondBranchToUnconditionalTo(PBI
, TrueDest
);
2821 // Change PBI from Conditional to Unconditional.
2822 BranchInst
*New_PBI
= BranchInst::Create(TrueDest
, PBI
);
2823 EraseTerminatorAndDCECond(PBI
, MSSAU
);
2827 // If BI was a loop latch, it may have had associated loop metadata.
2828 // We need to copy it to the new latch, that is, PBI.
2829 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
2830 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
2832 // TODO: If BB is reachable from all paths through PredBlock, then we
2833 // could replace PBI's branch probabilities with BI's.
2835 // Copy any debug value intrinsics into the end of PredBlock.
2836 for (Instruction
&I
: *BB
)
2837 if (isa
<DbgInfoIntrinsic
>(I
))
2838 I
.clone()->insertBefore(PBI
);
2845 // If there is only one store in BB1 and BB2, return it, otherwise return
2847 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
2848 StoreInst
*S
= nullptr;
2849 for (auto *BB
: {BB1
, BB2
}) {
2853 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2855 // Multiple stores seen.
2864 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
2865 Value
*AlternativeV
= nullptr) {
2866 // PHI is going to be a PHI node that allows the value V that is defined in
2867 // BB to be referenced in BB's only successor.
2869 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2870 // doesn't matter to us what the other operand is (it'll never get used). We
2871 // could just create a new PHI with an undef incoming value, but that could
2872 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2873 // other PHI. So here we directly look for some PHI in BB's successor with V
2874 // as an incoming operand. If we find one, we use it, else we create a new
2877 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2878 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2879 // where OtherBB is the single other predecessor of BB's only successor.
2880 PHINode
*PHI
= nullptr;
2881 BasicBlock
*Succ
= BB
->getSingleSuccessor();
2883 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
2884 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
2885 PHI
= cast
<PHINode
>(I
);
2889 assert(Succ
->hasNPredecessors(2));
2890 auto PredI
= pred_begin(Succ
);
2891 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
2892 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
2899 // If V is not an instruction defined in BB, just return it.
2900 if (!AlternativeV
&&
2901 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
2904 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
2905 PHI
->addIncoming(V
, BB
);
2906 for (BasicBlock
*PredBB
: predecessors(Succ
))
2909 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
2913 static bool mergeConditionalStoreToAddress(BasicBlock
*PTB
, BasicBlock
*PFB
,
2914 BasicBlock
*QTB
, BasicBlock
*QFB
,
2915 BasicBlock
*PostBB
, Value
*Address
,
2916 bool InvertPCond
, bool InvertQCond
,
2917 const DataLayout
&DL
) {
2918 auto IsaBitcastOfPointerType
= [](const Instruction
&I
) {
2919 return Operator::getOpcode(&I
) == Instruction::BitCast
&&
2920 I
.getType()->isPointerTy();
2923 // If we're not in aggressive mode, we only optimize if we have some
2924 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2925 auto IsWorthwhile
= [&](BasicBlock
*BB
) {
2928 // Heuristic: if the block can be if-converted/phi-folded and the
2929 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2930 // thread this store.
2932 for (auto &I
: BB
->instructionsWithoutDebug()) {
2933 // Cheap instructions viable for folding.
2934 if (isa
<BinaryOperator
>(I
) || isa
<GetElementPtrInst
>(I
) ||
2937 // Free instructions.
2938 else if (I
.isTerminator() || IsaBitcastOfPointerType(I
))
2943 // The store we want to merge is counted in N, so add 1 to make sure
2944 // we're counting the instructions that would be left.
2945 return N
<= (PHINodeFoldingThreshold
+ 1);
2948 if (!MergeCondStoresAggressively
&&
2949 (!IsWorthwhile(PTB
) || !IsWorthwhile(PFB
) || !IsWorthwhile(QTB
) ||
2950 !IsWorthwhile(QFB
)))
2953 // For every pointer, there must be exactly two stores, one coming from
2954 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2955 // store (to any address) in PTB,PFB or QTB,QFB.
2956 // FIXME: We could relax this restriction with a bit more work and performance
2958 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
2959 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
2960 if (!PStore
|| !QStore
)
2963 // Now check the stores are compatible.
2964 if (!QStore
->isUnordered() || !PStore
->isUnordered())
2967 // Check that sinking the store won't cause program behavior changes. Sinking
2968 // the store out of the Q blocks won't change any behavior as we're sinking
2969 // from a block to its unconditional successor. But we're moving a store from
2970 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2971 // So we need to check that there are no aliasing loads or stores in
2972 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2973 // operations between PStore and the end of its parent block.
2975 // The ideal way to do this is to query AliasAnalysis, but we don't
2976 // preserve AA currently so that is dangerous. Be super safe and just
2977 // check there are no other memory operations at all.
2978 for (auto &I
: *QFB
->getSinglePredecessor())
2979 if (I
.mayReadOrWriteMemory())
2981 for (auto &I
: *QFB
)
2982 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2985 for (auto &I
: *QTB
)
2986 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2988 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
2990 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
2993 // If PostBB has more than two predecessors, we need to split it so we can
2995 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
2996 // We know that QFB's only successor is PostBB. And QFB has a single
2997 // predecessor. If QTB exists, then its only successor is also PostBB.
2998 // If QTB does not exist, then QFB's only predecessor has a conditional
2999 // branch to QFB and PostBB.
3000 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3001 BasicBlock
*NewBB
= SplitBlockPredecessors(PostBB
, { QFB
, TruePred
},
3008 // OK, we're going to sink the stores to PostBB. The store has to be
3009 // conditional though, so first create the predicate.
3010 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3012 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3015 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3016 PStore
->getParent());
3017 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3018 QStore
->getParent(), PPHI
);
3020 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3022 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3023 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3026 PPred
= QB
.CreateNot(PPred
);
3028 QPred
= QB
.CreateNot(QPred
);
3029 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3032 SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(), false);
3033 QB
.SetInsertPoint(T
);
3034 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3036 PStore
->getAAMetadata(AAMD
, /*Merge=*/false);
3037 PStore
->getAAMetadata(AAMD
, /*Merge=*/true);
3038 SI
->setAAMetadata(AAMD
);
3039 unsigned PAlignment
= PStore
->getAlignment();
3040 unsigned QAlignment
= QStore
->getAlignment();
3041 unsigned TypeAlignment
=
3042 DL
.getABITypeAlignment(SI
->getValueOperand()->getType());
3043 unsigned MinAlignment
;
3044 unsigned MaxAlignment
;
3045 std::tie(MinAlignment
, MaxAlignment
) = std::minmax(PAlignment
, QAlignment
);
3046 // Choose the minimum alignment. If we could prove both stores execute, we
3047 // could use biggest one. In this case, though, we only know that one of the
3048 // stores executes. And we don't know it's safe to take the alignment from a
3049 // store that doesn't execute.
3050 if (MinAlignment
!= 0) {
3051 // Choose the minimum of all non-zero alignments.
3052 SI
->setAlignment(MinAlignment
);
3053 } else if (MaxAlignment
!= 0) {
3054 // Choose the minimal alignment between the non-zero alignment and the ABI
3055 // default alignment for the type of the stored value.
3056 SI
->setAlignment(std::min(MaxAlignment
, TypeAlignment
));
3058 // If both alignments are zero, use ABI default alignment for the type of
3059 // the stored value.
3060 SI
->setAlignment(TypeAlignment
);
3063 QStore
->eraseFromParent();
3064 PStore
->eraseFromParent();
3069 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3070 const DataLayout
&DL
) {
3071 // The intention here is to find diamonds or triangles (see below) where each
3072 // conditional block contains a store to the same address. Both of these
3073 // stores are conditional, so they can't be unconditionally sunk. But it may
3074 // be profitable to speculatively sink the stores into one merged store at the
3075 // end, and predicate the merged store on the union of the two conditions of
3078 // This can reduce the number of stores executed if both of the conditions are
3079 // true, and can allow the blocks to become small enough to be if-converted.
3080 // This optimization will also chain, so that ladders of test-and-set
3081 // sequences can be if-converted away.
3083 // We only deal with simple diamonds or triangles:
3085 // PBI or PBI or a combination of the two
3095 // We model triangles as a type of diamond with a nullptr "true" block.
3096 // Triangles are canonicalized so that the fallthrough edge is represented by
3097 // a true condition, as in the diagram above.
3098 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3099 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3100 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3101 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3102 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3104 // Make sure we have a good guess for PostBB. If QTB's only successor is
3105 // QFB, then QFB is a better PostBB.
3106 if (QTB
->getSingleSuccessor() == QFB
)
3109 // If we couldn't find a good PostBB, stop.
3113 bool InvertPCond
= false, InvertQCond
= false;
3114 // Canonicalize fallthroughs to the true branches.
3115 if (PFB
== QBI
->getParent()) {
3116 std::swap(PFB
, PTB
);
3119 if (QFB
== PostBB
) {
3120 std::swap(QFB
, QTB
);
3124 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3125 // and QFB may not. Model fallthroughs as a nullptr block.
3126 if (PTB
== QBI
->getParent())
3131 // Legality bailouts. We must have at least the non-fallthrough blocks and
3132 // the post-dominating block, and the non-fallthroughs must only have one
3134 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3135 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3137 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3138 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3140 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3141 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3143 if (!QBI
->getParent()->hasNUses(2))
3146 // OK, this is a sequence of two diamonds or triangles.
3147 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3148 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3149 for (auto *BB
: {PTB
, PFB
}) {
3153 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3154 PStoreAddresses
.insert(SI
->getPointerOperand());
3156 for (auto *BB
: {QTB
, QFB
}) {
3160 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3161 QStoreAddresses
.insert(SI
->getPointerOperand());
3164 set_intersect(PStoreAddresses
, QStoreAddresses
);
3165 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3166 // clear what it contains.
3167 auto &CommonAddresses
= PStoreAddresses
;
3169 bool Changed
= false;
3170 for (auto *Address
: CommonAddresses
)
3171 Changed
|= mergeConditionalStoreToAddress(
3172 PTB
, PFB
, QTB
, QFB
, PostBB
, Address
, InvertPCond
, InvertQCond
, DL
);
3176 /// If we have a conditional branch as a predecessor of another block,
3177 /// this function tries to simplify it. We know
3178 /// that PBI and BI are both conditional branches, and BI is in one of the
3179 /// successor blocks of PBI - PBI branches to BI.
3180 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3181 const DataLayout
&DL
) {
3182 assert(PBI
->isConditional() && BI
->isConditional());
3183 BasicBlock
*BB
= BI
->getParent();
3185 // If this block ends with a branch instruction, and if there is a
3186 // predecessor that ends on a branch of the same condition, make
3187 // this conditional branch redundant.
3188 if (PBI
->getCondition() == BI
->getCondition() &&
3189 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3190 // Okay, the outcome of this conditional branch is statically
3191 // knowable. If this block had a single pred, handle specially.
3192 if (BB
->getSinglePredecessor()) {
3193 // Turn this into a branch on constant.
3194 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3196 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
3197 return true; // Nuke the branch on constant.
3200 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3201 // in the constant and simplify the block result. Subsequent passes of
3202 // simplifycfg will thread the block.
3203 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
3204 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
3205 PHINode
*NewPN
= PHINode::Create(
3206 Type::getInt1Ty(BB
->getContext()), std::distance(PB
, PE
),
3207 BI
->getCondition()->getName() + ".pr", &BB
->front());
3208 // Okay, we're going to insert the PHI node. Since PBI is not the only
3209 // predecessor, compute the PHI'd conditional value for all of the preds.
3210 // Any predecessor where the condition is not computable we keep symbolic.
3211 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
3212 BasicBlock
*P
= *PI
;
3213 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) && PBI
!= BI
&&
3214 PBI
->isConditional() && PBI
->getCondition() == BI
->getCondition() &&
3215 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3216 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3218 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
),
3221 NewPN
->addIncoming(BI
->getCondition(), P
);
3225 BI
->setCondition(NewPN
);
3230 if (auto *CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
3234 // If both branches are conditional and both contain stores to the same
3235 // address, remove the stores from the conditionals and create a conditional
3236 // merged store at the end.
3237 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DL
))
3240 // If this is a conditional branch in an empty block, and if any
3241 // predecessors are a conditional branch to one of our destinations,
3242 // fold the conditions into logical ops and one cond br.
3244 // Ignore dbg intrinsics.
3245 if (&*BB
->instructionsWithoutDebug().begin() != BI
)
3249 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3252 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3255 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3258 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3265 // Check to make sure that the other destination of this branch
3266 // isn't BB itself. If so, this is an infinite loop that will
3267 // keep getting unwound.
3268 if (PBI
->getSuccessor(PBIOp
) == BB
)
3271 // Do not perform this transformation if it would require
3272 // insertion of a large number of select instructions. For targets
3273 // without predication/cmovs, this is a big pessimization.
3275 // Also do not perform this transformation if any phi node in the common
3276 // destination block can trap when reached by BB or PBB (PR17073). In that
3277 // case, it would be unsafe to hoist the operation into a select instruction.
3279 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
3280 unsigned NumPhis
= 0;
3281 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
3283 if (NumPhis
> 2) // Disable this xform.
3286 PHINode
*PN
= cast
<PHINode
>(II
);
3287 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
3288 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BIV
))
3292 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
3293 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
3294 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PBIV
))
3299 // Finally, if everything is ok, fold the branches to logical ops.
3300 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
3302 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
3303 << "AND: " << *BI
->getParent());
3305 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3306 // branch in it, where one edge (OtherDest) goes back to itself but the other
3307 // exits. We don't *know* that the program avoids the infinite loop
3308 // (even though that seems likely). If we do this xform naively, we'll end up
3309 // recursively unpeeling the loop. Since we know that (after the xform is
3310 // done) that the block *is* infinite if reached, we just make it an obviously
3311 // infinite loop with no cond branch.
3312 if (OtherDest
== BB
) {
3313 // Insert it at the end of the function, because it's either code,
3314 // or it won't matter if it's hot. :)
3315 BasicBlock
*InfLoopBlock
=
3316 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
3317 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
3318 OtherDest
= InfLoopBlock
;
3321 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3323 // BI may have other predecessors. Because of this, we leave
3324 // it alone, but modify PBI.
3326 // Make sure we get to CommonDest on True&True directions.
3327 Value
*PBICond
= PBI
->getCondition();
3328 IRBuilder
<NoFolder
> Builder(PBI
);
3330 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
3332 Value
*BICond
= BI
->getCondition();
3334 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
3336 // Merge the conditions.
3337 Value
*Cond
= Builder
.CreateOr(PBICond
, BICond
, "brmerge");
3339 // Modify PBI to branch on the new condition to the new dests.
3340 PBI
->setCondition(Cond
);
3341 PBI
->setSuccessor(0, CommonDest
);
3342 PBI
->setSuccessor(1, OtherDest
);
3344 // Update branch weight for PBI.
3345 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3346 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
3348 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3349 SuccTrueWeight
, SuccFalseWeight
);
3351 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3352 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3353 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3354 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3355 // The weight to CommonDest should be PredCommon * SuccTotal +
3356 // PredOther * SuccCommon.
3357 // The weight to OtherDest should be PredOther * SuccOther.
3358 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
3359 PredOther
* SuccCommon
,
3360 PredOther
* SuccOther
};
3361 // Halve the weights if any of them cannot fit in an uint32_t
3362 FitWeights(NewWeights
);
3364 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
3367 // OtherDest may have phi nodes. If so, add an entry from PBI's
3368 // block that are identical to the entries for BI's block.
3369 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
3371 // We know that the CommonDest already had an edge from PBI to
3372 // it. If it has PHIs though, the PHIs may have different
3373 // entries for BB and PBI's BB. If so, insert a select to make
3375 for (PHINode
&PN
: CommonDest
->phis()) {
3376 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
3377 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
3378 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
3380 // Insert a select in PBI to pick the right value.
3381 SelectInst
*NV
= cast
<SelectInst
>(
3382 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
3383 PN
.setIncomingValue(PBBIdx
, NV
);
3384 // Although the select has the same condition as PBI, the original branch
3385 // weights for PBI do not apply to the new select because the select's
3386 // 'logical' edges are incoming edges of the phi that is eliminated, not
3387 // the outgoing edges of PBI.
3389 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3390 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3391 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3392 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3393 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3394 // The weight to PredOtherDest should be PredOther * SuccCommon.
3395 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
3396 PredOther
* SuccCommon
};
3398 FitWeights(NewWeights
);
3400 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
3405 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
3406 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3408 // This basic block is probably dead. We know it has at least
3409 // one fewer predecessor.
3413 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3414 // true or to FalseBB if Cond is false.
3415 // Takes care of updating the successors and removing the old terminator.
3416 // Also makes sure not to introduce new successors by assuming that edges to
3417 // non-successor TrueBBs and FalseBBs aren't reachable.
3418 static bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
3419 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
3420 uint32_t TrueWeight
,
3421 uint32_t FalseWeight
) {
3422 // Remove any superfluous successor edges from the CFG.
3423 // First, figure out which successors to preserve.
3424 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3426 BasicBlock
*KeepEdge1
= TrueBB
;
3427 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
3429 // Then remove the rest.
3430 for (BasicBlock
*Succ
: successors(OldTerm
)) {
3431 // Make sure only to keep exactly one copy of each edge.
3432 if (Succ
== KeepEdge1
)
3433 KeepEdge1
= nullptr;
3434 else if (Succ
== KeepEdge2
)
3435 KeepEdge2
= nullptr;
3437 Succ
->removePredecessor(OldTerm
->getParent(),
3438 /*KeepOneInputPHIs=*/true);
3441 IRBuilder
<> Builder(OldTerm
);
3442 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
3444 // Insert an appropriate new terminator.
3445 if (!KeepEdge1
&& !KeepEdge2
) {
3446 if (TrueBB
== FalseBB
)
3447 // We were only looking for one successor, and it was present.
3448 // Create an unconditional branch to it.
3449 Builder
.CreateBr(TrueBB
);
3451 // We found both of the successors we were looking for.
3452 // Create a conditional branch sharing the condition of the select.
3453 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
3454 if (TrueWeight
!= FalseWeight
)
3455 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
3457 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
3458 // Neither of the selected blocks were successors, so this
3459 // terminator must be unreachable.
3460 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
3462 // One of the selected values was a successor, but the other wasn't.
3463 // Insert an unconditional branch to the one that was found;
3464 // the edge to the one that wasn't must be unreachable.
3466 // Only TrueBB was found.
3467 Builder
.CreateBr(TrueBB
);
3469 // Only FalseBB was found.
3470 Builder
.CreateBr(FalseBB
);
3473 EraseTerminatorAndDCECond(OldTerm
);
3478 // (switch (select cond, X, Y)) on constant X, Y
3479 // with a branch - conditional if X and Y lead to distinct BBs,
3480 // unconditional otherwise.
3481 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
3482 // Check for constant integer values in the select.
3483 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
3484 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
3485 if (!TrueVal
|| !FalseVal
)
3488 // Find the relevant condition and destinations.
3489 Value
*Condition
= Select
->getCondition();
3490 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
3491 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
3493 // Get weight for TrueBB and FalseBB.
3494 uint32_t TrueWeight
= 0, FalseWeight
= 0;
3495 SmallVector
<uint64_t, 8> Weights
;
3496 bool HasWeights
= HasBranchWeights(SI
);
3498 GetBranchWeights(SI
, Weights
);
3499 if (Weights
.size() == 1 + SI
->getNumCases()) {
3501 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
3503 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
3507 // Perform the actual simplification.
3508 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
3513 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3514 // blockaddress(@fn, BlockB)))
3516 // (br cond, BlockA, BlockB).
3517 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
3518 // Check that both operands of the select are block addresses.
3519 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
3520 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
3524 // Extract the actual blocks.
3525 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
3526 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
3528 // Perform the actual simplification.
3529 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
3533 /// This is called when we find an icmp instruction
3534 /// (a seteq/setne with a constant) as the only instruction in a
3535 /// block that ends with an uncond branch. We are looking for a very specific
3536 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3537 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3538 /// default value goes to an uncond block with a seteq in it, we get something
3541 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3543 /// %tmp = icmp eq i8 %A, 92
3546 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3548 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3549 /// the PHI, merging the third icmp into the switch.
3550 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3551 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
3552 BasicBlock
*BB
= ICI
->getParent();
3554 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3556 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
3559 Value
*V
= ICI
->getOperand(0);
3560 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
3562 // The pattern we're looking for is where our only predecessor is a switch on
3563 // 'V' and this block is the default case for the switch. In this case we can
3564 // fold the compared value into the switch to simplify things.
3565 BasicBlock
*Pred
= BB
->getSinglePredecessor();
3566 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
3569 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
3570 if (SI
->getCondition() != V
)
3573 // If BB is reachable on a non-default case, then we simply know the value of
3574 // V in this block. Substitute it and constant fold the icmp instruction
3576 if (SI
->getDefaultDest() != BB
) {
3577 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
3578 assert(VVal
&& "Should have a unique destination value");
3579 ICI
->setOperand(0, VVal
);
3581 if (Value
*V
= SimplifyInstruction(ICI
, {DL
, ICI
})) {
3582 ICI
->replaceAllUsesWith(V
);
3583 ICI
->eraseFromParent();
3585 // BB is now empty, so it is likely to simplify away.
3586 return requestResimplify();
3589 // Ok, the block is reachable from the default dest. If the constant we're
3590 // comparing exists in one of the other edges, then we can constant fold ICI
3592 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
3594 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3595 V
= ConstantInt::getFalse(BB
->getContext());
3597 V
= ConstantInt::getTrue(BB
->getContext());
3599 ICI
->replaceAllUsesWith(V
);
3600 ICI
->eraseFromParent();
3601 // BB is now empty, so it is likely to simplify away.
3602 return requestResimplify();
3605 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3607 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
3608 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
3609 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
3610 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
3613 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3615 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
3616 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
3618 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3619 std::swap(DefaultCst
, NewCst
);
3621 // Replace ICI (which is used by the PHI for the default value) with true or
3622 // false depending on if it is EQ or NE.
3623 ICI
->replaceAllUsesWith(DefaultCst
);
3624 ICI
->eraseFromParent();
3626 // Okay, the switch goes to this block on a default value. Add an edge from
3627 // the switch to the merge point on the compared value.
3629 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
3631 SwitchInstProfUpdateWrapper
SIW(*SI
);
3632 auto W0
= SIW
.getSuccessorWeight(0);
3633 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW
;
3635 NewW
= ((uint64_t(*W0
) + 1) >> 1);
3636 SIW
.setSuccessorWeight(0, *NewW
);
3638 SIW
.addCase(Cst
, NewBB
, NewW
);
3641 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3642 Builder
.SetInsertPoint(NewBB
);
3643 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
3644 Builder
.CreateBr(SuccBlock
);
3645 PHIUse
->addIncoming(NewCst
, NewBB
);
3649 /// The specified branch is a conditional branch.
3650 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3651 /// fold it into a switch instruction if so.
3652 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
3653 const DataLayout
&DL
) {
3654 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3658 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3659 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3660 // 'setne's and'ed together, collect them.
3662 // Try to gather values from a chain of and/or to be turned into a switch
3663 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
3664 // Unpack the result
3665 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
3666 Value
*CompVal
= ConstantCompare
.CompValue
;
3667 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
3668 Value
*ExtraCase
= ConstantCompare
.Extra
;
3670 // If we didn't have a multiply compared value, fail.
3674 // Avoid turning single icmps into a switch.
3678 bool TrueWhenEqual
= (Cond
->getOpcode() == Instruction::Or
);
3680 // There might be duplicate constants in the list, which the switch
3681 // instruction can't handle, remove them now.
3682 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
3683 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
3685 // If Extra was used, we require at least two switch values to do the
3686 // transformation. A switch with one value is just a conditional branch.
3687 if (ExtraCase
&& Values
.size() < 2)
3690 // TODO: Preserve branch weight metadata, similarly to how
3691 // FoldValueComparisonIntoPredecessors preserves it.
3693 // Figure out which block is which destination.
3694 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
3695 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
3697 std::swap(DefaultBB
, EdgeBB
);
3699 BasicBlock
*BB
= BI
->getParent();
3701 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
3702 << " cases into SWITCH. BB is:\n"
3705 // If there are any extra values that couldn't be folded into the switch
3706 // then we evaluate them with an explicit branch first. Split the block
3707 // right before the condbr to handle it.
3710 BB
->splitBasicBlock(BI
->getIterator(), "switch.early.test");
3711 // Remove the uncond branch added to the old block.
3712 Instruction
*OldTI
= BB
->getTerminator();
3713 Builder
.SetInsertPoint(OldTI
);
3716 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
3718 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
3720 OldTI
->eraseFromParent();
3722 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3723 // for the edge we just added.
3724 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
3726 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3727 << "\nEXTRABB = " << *BB
);
3731 Builder
.SetInsertPoint(BI
);
3732 // Convert pointer to int before we switch.
3733 if (CompVal
->getType()->isPointerTy()) {
3734 CompVal
= Builder
.CreatePtrToInt(
3735 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
3738 // Create the new switch instruction now.
3739 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
3741 // Add all of the 'cases' to the switch instruction.
3742 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
3743 New
->addCase(Values
[i
], EdgeBB
);
3745 // We added edges from PI to the EdgeBB. As such, if there were any
3746 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3747 // the number of edges added.
3748 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
3749 PHINode
*PN
= cast
<PHINode
>(BBI
);
3750 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
3751 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
3752 PN
->addIncoming(InVal
, BB
);
3755 // Erase the old branch instruction.
3756 EraseTerminatorAndDCECond(BI
);
3758 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
3762 bool SimplifyCFGOpt::SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
3763 if (isa
<PHINode
>(RI
->getValue()))
3764 return SimplifyCommonResume(RI
);
3765 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
3766 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
3767 // The resume must unwind the exception that caused control to branch here.
3768 return SimplifySingleResume(RI
);
3773 // Simplify resume that is shared by several landing pads (phi of landing pad).
3774 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst
*RI
) {
3775 BasicBlock
*BB
= RI
->getParent();
3777 // Check that there are no other instructions except for debug intrinsics
3778 // between the phi of landing pads (RI->getValue()) and resume instruction.
3779 BasicBlock::iterator I
= cast
<Instruction
>(RI
->getValue())->getIterator(),
3780 E
= RI
->getIterator();
3782 if (!isa
<DbgInfoIntrinsic
>(I
))
3785 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
3786 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
3788 // Check incoming blocks to see if any of them are trivial.
3789 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
3791 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
3792 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
3794 // If the block has other successors, we can not delete it because
3795 // it has other dependents.
3796 if (IncomingBB
->getUniqueSuccessor() != BB
)
3799 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
3800 // Not the landing pad that caused the control to branch here.
3801 if (IncomingValue
!= LandingPad
)
3804 bool isTrivial
= true;
3806 I
= IncomingBB
->getFirstNonPHI()->getIterator();
3807 E
= IncomingBB
->getTerminator()->getIterator();
3809 if (!isa
<DbgInfoIntrinsic
>(I
)) {
3815 TrivialUnwindBlocks
.insert(IncomingBB
);
3818 // If no trivial unwind blocks, don't do any simplifications.
3819 if (TrivialUnwindBlocks
.empty())
3822 // Turn all invokes that unwind here into calls.
3823 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
3824 // Blocks that will be simplified should be removed from the phi node.
3825 // Note there could be multiple edges to the resume block, and we need
3826 // to remove them all.
3827 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
3828 BB
->removePredecessor(TrivialBB
, true);
3830 for (pred_iterator PI
= pred_begin(TrivialBB
), PE
= pred_end(TrivialBB
);
3832 BasicBlock
*Pred
= *PI
++;
3833 removeUnwindEdge(Pred
);
3836 // In each SimplifyCFG run, only the current processed block can be erased.
3837 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3838 // of erasing TrivialBB, we only remove the branch to the common resume
3839 // block so that we can later erase the resume block since it has no
3841 TrivialBB
->getTerminator()->eraseFromParent();
3842 new UnreachableInst(RI
->getContext(), TrivialBB
);
3845 // Delete the resume block if all its predecessors have been removed.
3847 BB
->eraseFromParent();
3849 return !TrivialUnwindBlocks
.empty();
3852 // Simplify resume that is only used by a single (non-phi) landing pad.
3853 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst
*RI
) {
3854 BasicBlock
*BB
= RI
->getParent();
3855 LandingPadInst
*LPInst
= dyn_cast
<LandingPadInst
>(BB
->getFirstNonPHI());
3856 assert(RI
->getValue() == LPInst
&&
3857 "Resume must unwind the exception that caused control to here");
3859 // Check that there are no other instructions except for debug intrinsics.
3860 BasicBlock::iterator I
= LPInst
->getIterator(), E
= RI
->getIterator();
3862 if (!isa
<DbgInfoIntrinsic
>(I
))
3865 // Turn all invokes that unwind here into calls and delete the basic block.
3866 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
3867 BasicBlock
*Pred
= *PI
++;
3868 removeUnwindEdge(Pred
);
3871 // The landingpad is now unreachable. Zap it.
3873 LoopHeaders
->erase(BB
);
3874 BB
->eraseFromParent();
3878 static bool removeEmptyCleanup(CleanupReturnInst
*RI
) {
3879 // If this is a trivial cleanup pad that executes no instructions, it can be
3880 // eliminated. If the cleanup pad continues to the caller, any predecessor
3881 // that is an EH pad will be updated to continue to the caller and any
3882 // predecessor that terminates with an invoke instruction will have its invoke
3883 // instruction converted to a call instruction. If the cleanup pad being
3884 // simplified does not continue to the caller, each predecessor will be
3885 // updated to continue to the unwind destination of the cleanup pad being
3887 BasicBlock
*BB
= RI
->getParent();
3888 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
3889 if (CPInst
->getParent() != BB
)
3890 // This isn't an empty cleanup.
3893 // We cannot kill the pad if it has multiple uses. This typically arises
3894 // from unreachable basic blocks.
3895 if (!CPInst
->hasOneUse())
3898 // Check that there are no other instructions except for benign intrinsics.
3899 BasicBlock::iterator I
= CPInst
->getIterator(), E
= RI
->getIterator();
3901 auto *II
= dyn_cast
<IntrinsicInst
>(I
);
3905 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
3906 switch (IntrinsicID
) {
3907 case Intrinsic::dbg_declare
:
3908 case Intrinsic::dbg_value
:
3909 case Intrinsic::dbg_label
:
3910 case Intrinsic::lifetime_end
:
3917 // If the cleanup return we are simplifying unwinds to the caller, this will
3918 // set UnwindDest to nullptr.
3919 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
3920 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
3922 // We're about to remove BB from the control flow. Before we do, sink any
3923 // PHINodes into the unwind destination. Doing this before changing the
3924 // control flow avoids some potentially slow checks, since we can currently
3925 // be certain that UnwindDest and BB have no common predecessors (since they
3926 // are both EH pads).
3928 // First, go through the PHI nodes in UnwindDest and update any nodes that
3929 // reference the block we are removing
3930 for (BasicBlock::iterator I
= UnwindDest
->begin(),
3931 IE
= DestEHPad
->getIterator();
3933 PHINode
*DestPN
= cast
<PHINode
>(I
);
3935 int Idx
= DestPN
->getBasicBlockIndex(BB
);
3936 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3938 // This PHI node has an incoming value that corresponds to a control
3939 // path through the cleanup pad we are removing. If the incoming
3940 // value is in the cleanup pad, it must be a PHINode (because we
3941 // verified above that the block is otherwise empty). Otherwise, the
3942 // value is either a constant or a value that dominates the cleanup
3943 // pad being removed.
3945 // Because BB and UnwindDest are both EH pads, all of their
3946 // predecessors must unwind to these blocks, and since no instruction
3947 // can have multiple unwind destinations, there will be no overlap in
3948 // incoming blocks between SrcPN and DestPN.
3949 Value
*SrcVal
= DestPN
->getIncomingValue(Idx
);
3950 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
3952 // Remove the entry for the block we are deleting.
3953 DestPN
->removeIncomingValue(Idx
, false);
3955 if (SrcPN
&& SrcPN
->getParent() == BB
) {
3956 // If the incoming value was a PHI node in the cleanup pad we are
3957 // removing, we need to merge that PHI node's incoming values into
3959 for (unsigned SrcIdx
= 0, SrcE
= SrcPN
->getNumIncomingValues();
3960 SrcIdx
!= SrcE
; ++SrcIdx
) {
3961 DestPN
->addIncoming(SrcPN
->getIncomingValue(SrcIdx
),
3962 SrcPN
->getIncomingBlock(SrcIdx
));
3965 // Otherwise, the incoming value came from above BB and
3966 // so we can just reuse it. We must associate all of BB's
3967 // predecessors with this value.
3968 for (auto *pred
: predecessors(BB
)) {
3969 DestPN
->addIncoming(SrcVal
, pred
);
3974 // Sink any remaining PHI nodes directly into UnwindDest.
3975 Instruction
*InsertPt
= DestEHPad
;
3976 for (BasicBlock::iterator I
= BB
->begin(),
3977 IE
= BB
->getFirstNonPHI()->getIterator();
3979 // The iterator must be incremented here because the instructions are
3980 // being moved to another block.
3981 PHINode
*PN
= cast
<PHINode
>(I
++);
3982 if (PN
->use_empty())
3983 // If the PHI node has no uses, just leave it. It will be erased
3984 // when we erase BB below.
3987 // Otherwise, sink this PHI node into UnwindDest.
3988 // Any predecessors to UnwindDest which are not already represented
3989 // must be back edges which inherit the value from the path through
3990 // BB. In this case, the PHI value must reference itself.
3991 for (auto *pred
: predecessors(UnwindDest
))
3993 PN
->addIncoming(PN
, pred
);
3994 PN
->moveBefore(InsertPt
);
3998 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
3999 // The iterator must be updated here because we are removing this pred.
4000 BasicBlock
*PredBB
= *PI
++;
4001 if (UnwindDest
== nullptr) {
4002 removeUnwindEdge(PredBB
);
4004 Instruction
*TI
= PredBB
->getTerminator();
4005 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4009 // The cleanup pad is now unreachable. Zap it.
4010 BB
->eraseFromParent();
4014 // Try to merge two cleanuppads together.
4015 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4016 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4018 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4022 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4023 // be safe to merge without code duplication.
4024 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4027 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4028 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4029 if (!SuccessorCleanupPad
)
4032 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4033 // Replace any uses of the successor cleanupad with the predecessor pad
4034 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4035 // funclet bundle operands.
4036 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4037 // Remove the old cleanuppad.
4038 SuccessorCleanupPad
->eraseFromParent();
4039 // Now, we simply replace the cleanupret with a branch to the unwind
4041 BranchInst::Create(UnwindDest
, RI
->getParent());
4042 RI
->eraseFromParent();
4047 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst
*RI
) {
4048 // It is possible to transiantly have an undef cleanuppad operand because we
4049 // have deleted some, but not all, dead blocks.
4050 // Eventually, this block will be deleted.
4051 if (isa
<UndefValue
>(RI
->getOperand(0)))
4054 if (mergeCleanupPad(RI
))
4057 if (removeEmptyCleanup(RI
))
4063 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
) {
4064 BasicBlock
*BB
= RI
->getParent();
4065 if (!BB
->getFirstNonPHIOrDbg()->isTerminator())
4068 // Find predecessors that end with branches.
4069 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
4070 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
4071 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
4072 BasicBlock
*P
= *PI
;
4073 Instruction
*PTI
= P
->getTerminator();
4074 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
4075 if (BI
->isUnconditional())
4076 UncondBranchPreds
.push_back(P
);
4078 CondBranchPreds
.push_back(BI
);
4082 // If we found some, do the transformation!
4083 if (!UncondBranchPreds
.empty() && DupRet
) {
4084 while (!UncondBranchPreds
.empty()) {
4085 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
4086 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4087 << "INTO UNCOND BRANCH PRED: " << *Pred
);
4088 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
4091 // If we eliminated all predecessors of the block, delete the block now.
4092 if (pred_empty(BB
)) {
4093 // We know there are no successors, so just nuke the block.
4095 LoopHeaders
->erase(BB
);
4096 BB
->eraseFromParent();
4102 // Check out all of the conditional branches going to this return
4103 // instruction. If any of them just select between returns, change the
4104 // branch itself into a select/return pair.
4105 while (!CondBranchPreds
.empty()) {
4106 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
4108 // Check to see if the non-BB successor is also a return block.
4109 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
4110 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
4111 SimplifyCondBranchToTwoReturns(BI
, Builder
))
4117 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
4118 BasicBlock
*BB
= UI
->getParent();
4120 bool Changed
= false;
4122 // If there are any instructions immediately before the unreachable that can
4123 // be removed, do so.
4124 while (UI
->getIterator() != BB
->begin()) {
4125 BasicBlock::iterator BBI
= UI
->getIterator();
4127 // Do not delete instructions that can have side effects which might cause
4128 // the unreachable to not be reachable; specifically, calls and volatile
4129 // operations may have this effect.
4130 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
))
4133 if (BBI
->mayHaveSideEffects()) {
4134 if (auto *SI
= dyn_cast
<StoreInst
>(BBI
)) {
4135 if (SI
->isVolatile())
4137 } else if (auto *LI
= dyn_cast
<LoadInst
>(BBI
)) {
4138 if (LI
->isVolatile())
4140 } else if (auto *RMWI
= dyn_cast
<AtomicRMWInst
>(BBI
)) {
4141 if (RMWI
->isVolatile())
4143 } else if (auto *CXI
= dyn_cast
<AtomicCmpXchgInst
>(BBI
)) {
4144 if (CXI
->isVolatile())
4146 } else if (isa
<CatchPadInst
>(BBI
)) {
4147 // A catchpad may invoke exception object constructors and such, which
4148 // in some languages can be arbitrary code, so be conservative by
4150 // For CoreCLR, it just involves a type test, so can be removed.
4151 if (classifyEHPersonality(BB
->getParent()->getPersonalityFn()) !=
4152 EHPersonality::CoreCLR
)
4154 } else if (!isa
<FenceInst
>(BBI
) && !isa
<VAArgInst
>(BBI
) &&
4155 !isa
<LandingPadInst
>(BBI
)) {
4158 // Note that deleting LandingPad's here is in fact okay, although it
4159 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4160 // all the predecessors of this block will be the unwind edges of Invokes,
4161 // and we can therefore guarantee this block will be erased.
4164 // Delete this instruction (any uses are guaranteed to be dead)
4165 if (!BBI
->use_empty())
4166 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
4167 BBI
->eraseFromParent();
4171 // If the unreachable instruction is the first in the block, take a gander
4172 // at all of the predecessors of this instruction, and simplify them.
4173 if (&BB
->front() != UI
)
4176 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4177 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4178 Instruction
*TI
= Preds
[i
]->getTerminator();
4179 IRBuilder
<> Builder(TI
);
4180 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4181 if (BI
->isUnconditional()) {
4182 assert(BI
->getSuccessor(0) == BB
&& "Incorrect CFG");
4183 new UnreachableInst(TI
->getContext(), TI
);
4184 TI
->eraseFromParent();
4187 Value
* Cond
= BI
->getCondition();
4188 if (BI
->getSuccessor(0) == BB
) {
4189 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
4190 Builder
.CreateBr(BI
->getSuccessor(1));
4192 assert(BI
->getSuccessor(1) == BB
&& "Incorrect CFG");
4193 Builder
.CreateAssumption(Cond
);
4194 Builder
.CreateBr(BI
->getSuccessor(0));
4196 EraseTerminatorAndDCECond(BI
);
4199 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4200 SwitchInstProfUpdateWrapper
SU(*SI
);
4201 for (auto i
= SU
->case_begin(), e
= SU
->case_end(); i
!= e
;) {
4202 if (i
->getCaseSuccessor() != BB
) {
4206 BB
->removePredecessor(SU
->getParent());
4207 i
= SU
.removeCase(i
);
4211 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4212 if (II
->getUnwindDest() == BB
) {
4213 removeUnwindEdge(TI
->getParent());
4216 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4217 if (CSI
->getUnwindDest() == BB
) {
4218 removeUnwindEdge(TI
->getParent());
4223 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
4224 E
= CSI
->handler_end();
4227 CSI
->removeHandler(I
);
4233 if (CSI
->getNumHandlers() == 0) {
4234 BasicBlock
*CatchSwitchBB
= CSI
->getParent();
4235 if (CSI
->hasUnwindDest()) {
4236 // Redirect preds to the unwind dest
4237 CatchSwitchBB
->replaceAllUsesWith(CSI
->getUnwindDest());
4239 // Rewrite all preds to unwind to caller (or from invoke to call).
4240 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(CatchSwitchBB
));
4241 for (BasicBlock
*EHPred
: EHPreds
)
4242 removeUnwindEdge(EHPred
);
4244 // The catchswitch is no longer reachable.
4245 new UnreachableInst(CSI
->getContext(), CSI
);
4246 CSI
->eraseFromParent();
4249 } else if (isa
<CleanupReturnInst
>(TI
)) {
4250 new UnreachableInst(TI
->getContext(), TI
);
4251 TI
->eraseFromParent();
4256 // If this block is now dead, remove it.
4257 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
4258 // We know there are no successors, so just nuke the block.
4260 LoopHeaders
->erase(BB
);
4261 BB
->eraseFromParent();
4268 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
4269 assert(Cases
.size() >= 1);
4271 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
4272 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
4273 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
4279 static void createUnreachableSwitchDefault(SwitchInst
*Switch
) {
4280 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4281 BasicBlock
*NewDefaultBlock
=
4282 SplitBlockPredecessors(Switch
->getDefaultDest(), Switch
->getParent(), "");
4283 Switch
->setDefaultDest(&*NewDefaultBlock
);
4284 SplitBlock(&*NewDefaultBlock
, &NewDefaultBlock
->front());
4285 auto *NewTerminator
= NewDefaultBlock
->getTerminator();
4286 new UnreachableInst(Switch
->getContext(), NewTerminator
);
4287 EraseTerminatorAndDCECond(NewTerminator
);
4290 /// Turn a switch with two reachable destinations into an integer range
4291 /// comparison and branch.
4292 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
4293 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
4296 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4298 // Partition the cases into two sets with different destinations.
4299 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
4300 BasicBlock
*DestB
= nullptr;
4301 SmallVector
<ConstantInt
*, 16> CasesA
;
4302 SmallVector
<ConstantInt
*, 16> CasesB
;
4304 for (auto Case
: SI
->cases()) {
4305 BasicBlock
*Dest
= Case
.getCaseSuccessor();
4308 if (Dest
== DestA
) {
4309 CasesA
.push_back(Case
.getCaseValue());
4314 if (Dest
== DestB
) {
4315 CasesB
.push_back(Case
.getCaseValue());
4318 return false; // More than two destinations.
4321 assert(DestA
&& DestB
&&
4322 "Single-destination switch should have been folded.");
4323 assert(DestA
!= DestB
);
4324 assert(DestB
!= SI
->getDefaultDest());
4325 assert(!CasesB
.empty() && "There must be non-default cases.");
4326 assert(!CasesA
.empty() || HasDefault
);
4328 // Figure out if one of the sets of cases form a contiguous range.
4329 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
4330 BasicBlock
*ContiguousDest
= nullptr;
4331 BasicBlock
*OtherDest
= nullptr;
4332 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
4333 ContiguousCases
= &CasesA
;
4334 ContiguousDest
= DestA
;
4336 } else if (CasesAreContiguous(CasesB
)) {
4337 ContiguousCases
= &CasesB
;
4338 ContiguousDest
= DestB
;
4343 // Start building the compare and branch.
4345 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
4346 Constant
*NumCases
=
4347 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
4349 Value
*Sub
= SI
->getCondition();
4350 if (!Offset
->isNullValue())
4351 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
4354 // If NumCases overflowed, then all possible values jump to the successor.
4355 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
4356 Cmp
= ConstantInt::getTrue(SI
->getContext());
4358 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
4359 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
4361 // Update weight for the newly-created conditional branch.
4362 if (HasBranchWeights(SI
)) {
4363 SmallVector
<uint64_t, 8> Weights
;
4364 GetBranchWeights(SI
, Weights
);
4365 if (Weights
.size() == 1 + SI
->getNumCases()) {
4366 uint64_t TrueWeight
= 0;
4367 uint64_t FalseWeight
= 0;
4368 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
4369 if (SI
->getSuccessor(I
) == ContiguousDest
)
4370 TrueWeight
+= Weights
[I
];
4372 FalseWeight
+= Weights
[I
];
4374 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
4378 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4382 // Prune obsolete incoming values off the successors' PHI nodes.
4383 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4384 unsigned PreviousEdges
= ContiguousCases
->size();
4385 if (ContiguousDest
== SI
->getDefaultDest())
4387 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4388 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4390 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4391 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
4392 if (OtherDest
== SI
->getDefaultDest())
4394 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4395 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4398 // Clean up the default block - it may have phis or other instructions before
4399 // the unreachable terminator.
4401 createUnreachableSwitchDefault(SI
);
4404 SI
->eraseFromParent();
4409 /// Compute masked bits for the condition of a switch
4410 /// and use it to remove dead cases.
4411 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, AssumptionCache
*AC
,
4412 const DataLayout
&DL
) {
4413 Value
*Cond
= SI
->getCondition();
4414 unsigned Bits
= Cond
->getType()->getIntegerBitWidth();
4415 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
4417 // We can also eliminate cases by determining that their values are outside of
4418 // the limited range of the condition based on how many significant (non-sign)
4419 // bits are in the condition value.
4420 unsigned ExtraSignBits
= ComputeNumSignBits(Cond
, DL
, 0, AC
, SI
) - 1;
4421 unsigned MaxSignificantBitsInCond
= Bits
- ExtraSignBits
;
4423 // Gather dead cases.
4424 SmallVector
<ConstantInt
*, 8> DeadCases
;
4425 for (auto &Case
: SI
->cases()) {
4426 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
4427 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
4428 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
4429 DeadCases
.push_back(Case
.getCaseValue());
4430 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4435 // If we can prove that the cases must cover all possible values, the
4436 // default destination becomes dead and we can remove it. If we know some
4437 // of the bits in the value, we can use that to more precisely compute the
4438 // number of possible unique case values.
4440 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4441 const unsigned NumUnknownBits
=
4442 Bits
- (Known
.Zero
| Known
.One
).countPopulation();
4443 assert(NumUnknownBits
<= Bits
);
4444 if (HasDefault
&& DeadCases
.empty() &&
4445 NumUnknownBits
< 64 /* avoid overflow */ &&
4446 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
4447 createUnreachableSwitchDefault(SI
);
4451 if (DeadCases
.empty())
4454 SwitchInstProfUpdateWrapper
SIW(*SI
);
4455 for (ConstantInt
*DeadCase
: DeadCases
) {
4456 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
4457 assert(CaseI
!= SI
->case_default() &&
4458 "Case was not found. Probably mistake in DeadCases forming.");
4459 // Prune unused values from PHI nodes.
4460 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
4461 SIW
.removeCase(CaseI
);
4467 /// If BB would be eligible for simplification by
4468 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4469 /// by an unconditional branch), look at the phi node for BB in the successor
4470 /// block and see if the incoming value is equal to CaseValue. If so, return
4471 /// the phi node, and set PhiIndex to BB's index in the phi node.
4472 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
4473 BasicBlock
*BB
, int *PhiIndex
) {
4474 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
4475 return nullptr; // BB must be empty to be a candidate for simplification.
4476 if (!BB
->getSinglePredecessor())
4477 return nullptr; // BB must be dominated by the switch.
4479 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
4480 if (!Branch
|| !Branch
->isUnconditional())
4481 return nullptr; // Terminator must be unconditional branch.
4483 BasicBlock
*Succ
= Branch
->getSuccessor(0);
4485 for (PHINode
&PHI
: Succ
->phis()) {
4486 int Idx
= PHI
.getBasicBlockIndex(BB
);
4487 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
4489 Value
*InValue
= PHI
.getIncomingValue(Idx
);
4490 if (InValue
!= CaseValue
)
4500 /// Try to forward the condition of a switch instruction to a phi node
4501 /// dominated by the switch, if that would mean that some of the destination
4502 /// blocks of the switch can be folded away. Return true if a change is made.
4503 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
4504 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
4506 ForwardingNodesMap ForwardingNodes
;
4507 BasicBlock
*SwitchBlock
= SI
->getParent();
4508 bool Changed
= false;
4509 for (auto &Case
: SI
->cases()) {
4510 ConstantInt
*CaseValue
= Case
.getCaseValue();
4511 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
4513 // Replace phi operands in successor blocks that are using the constant case
4514 // value rather than the switch condition variable:
4516 // switch i32 %x, label %default [
4517 // i32 17, label %succ
4520 // %r = phi i32 ... [ 17, %switchbb ] ...
4522 // %r = phi i32 ... [ %x, %switchbb ] ...
4524 for (PHINode
&Phi
: CaseDest
->phis()) {
4525 // This only works if there is exactly 1 incoming edge from the switch to
4526 // a phi. If there is >1, that means multiple cases of the switch map to 1
4527 // value in the phi, and that phi value is not the switch condition. Thus,
4528 // this transform would not make sense (the phi would be invalid because
4529 // a phi can't have different incoming values from the same block).
4530 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
4531 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
4532 count(Phi
.blocks(), SwitchBlock
) == 1) {
4533 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
4538 // Collect phi nodes that are indirectly using this switch's case constants.
4540 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
4541 ForwardingNodes
[Phi
].push_back(PhiIdx
);
4544 for (auto &ForwardingNode
: ForwardingNodes
) {
4545 PHINode
*Phi
= ForwardingNode
.first
;
4546 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
4547 if (Indexes
.size() < 2)
4550 for (int Index
: Indexes
)
4551 Phi
->setIncomingValue(Index
, SI
->getCondition());
4558 /// Return true if the backend will be able to handle
4559 /// initializing an array of constants like C.
4560 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
4561 if (C
->isThreadDependent())
4563 if (C
->isDLLImportDependent())
4566 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
4567 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
4568 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
4571 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
4572 if (!CE
->isGEPWithNoNotionalOverIndexing())
4574 if (!ValidLookupTableConstant(CE
->getOperand(0), TTI
))
4578 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
4584 /// If V is a Constant, return it. Otherwise, try to look up
4585 /// its constant value in ConstantPool, returning 0 if it's not there.
4587 LookupConstant(Value
*V
,
4588 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4589 if (Constant
*C
= dyn_cast
<Constant
>(V
))
4591 return ConstantPool
.lookup(V
);
4594 /// Try to fold instruction I into a constant. This works for
4595 /// simple instructions such as binary operations where both operands are
4596 /// constant or can be replaced by constants from the ConstantPool. Returns the
4597 /// resulting constant on success, 0 otherwise.
4599 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
4600 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4601 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
4602 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
4605 if (A
->isAllOnesValue())
4606 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
4607 if (A
->isNullValue())
4608 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
4612 SmallVector
<Constant
*, 4> COps
;
4613 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
4614 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
4620 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
4621 return ConstantFoldCompareInstOperands(Cmp
->getPredicate(), COps
[0],
4625 return ConstantFoldInstOperands(I
, COps
, DL
);
4628 /// Try to determine the resulting constant values in phi nodes
4629 /// at the common destination basic block, *CommonDest, for one of the case
4630 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4631 /// case), of a switch instruction SI.
4633 GetCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
4634 BasicBlock
**CommonDest
,
4635 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
4636 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
4637 // The block from which we enter the common destination.
4638 BasicBlock
*Pred
= SI
->getParent();
4640 // If CaseDest is empty except for some side-effect free instructions through
4641 // which we can constant-propagate the CaseVal, continue to its successor.
4642 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
4643 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
4644 for (Instruction
&I
:CaseDest
->instructionsWithoutDebug()) {
4645 if (I
.isTerminator()) {
4646 // If the terminator is a simple branch, continue to the next block.
4647 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
4650 CaseDest
= I
.getSuccessor(0);
4651 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
4652 // Instruction is side-effect free and constant.
4654 // If the instruction has uses outside this block or a phi node slot for
4655 // the block, it is not safe to bypass the instruction since it would then
4656 // no longer dominate all its uses.
4657 for (auto &Use
: I
.uses()) {
4658 User
*User
= Use
.getUser();
4659 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
4660 if (I
->getParent() == CaseDest
)
4662 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
4663 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
4668 ConstantPool
.insert(std::make_pair(&I
, C
));
4674 // If we did not have a CommonDest before, use the current one.
4676 *CommonDest
= CaseDest
;
4677 // If the destination isn't the common one, abort.
4678 if (CaseDest
!= *CommonDest
)
4681 // Get the values for this case from phi nodes in the destination block.
4682 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
4683 int Idx
= PHI
.getBasicBlockIndex(Pred
);
4687 Constant
*ConstVal
=
4688 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
4692 // Be conservative about which kinds of constants we support.
4693 if (!ValidLookupTableConstant(ConstVal
, TTI
))
4696 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
4699 return Res
.size() > 0;
4702 // Helper function used to add CaseVal to the list of cases that generate
4703 // Result. Returns the updated number of cases that generate this result.
4704 static uintptr_t MapCaseToResult(ConstantInt
*CaseVal
,
4705 SwitchCaseResultVectorTy
&UniqueResults
,
4707 for (auto &I
: UniqueResults
) {
4708 if (I
.first
== Result
) {
4709 I
.second
.push_back(CaseVal
);
4710 return I
.second
.size();
4713 UniqueResults
.push_back(
4714 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
4718 // Helper function that initializes a map containing
4719 // results for the PHI node of the common destination block for a switch
4720 // instruction. Returns false if multiple PHI nodes have been found or if
4721 // there is not a common destination block for the switch.
4723 InitializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
, BasicBlock
*&CommonDest
,
4724 SwitchCaseResultVectorTy
&UniqueResults
,
4725 Constant
*&DefaultResult
, const DataLayout
&DL
,
4726 const TargetTransformInfo
&TTI
,
4727 uintptr_t MaxUniqueResults
, uintptr_t MaxCasesPerResult
) {
4728 for (auto &I
: SI
->cases()) {
4729 ConstantInt
*CaseVal
= I
.getCaseValue();
4731 // Resulting value at phi nodes for this case value.
4732 SwitchCaseResultsTy Results
;
4733 if (!GetCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
4737 // Only one value per case is permitted.
4738 if (Results
.size() > 1)
4741 // Add the case->result mapping to UniqueResults.
4742 const uintptr_t NumCasesForResult
=
4743 MapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
4745 // Early out if there are too many cases for this result.
4746 if (NumCasesForResult
> MaxCasesPerResult
)
4749 // Early out if there are too many unique results.
4750 if (UniqueResults
.size() > MaxUniqueResults
)
4753 // Check the PHI consistency.
4755 PHI
= Results
[0].first
;
4756 else if (PHI
!= Results
[0].first
)
4759 // Find the default result value.
4760 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
4761 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
4762 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
4764 // If the default value is not found abort unless the default destination
4767 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
4768 if ((!DefaultResult
&&
4769 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
4775 // Helper function that checks if it is possible to transform a switch with only
4776 // two cases (or two cases + default) that produces a result into a select.
4779 // case 10: %0 = icmp eq i32 %a, 10
4780 // return 10; %1 = select i1 %0, i32 10, i32 4
4781 // case 20: ----> %2 = icmp eq i32 %a, 20
4782 // return 2; %3 = select i1 %2, i32 2, i32 %1
4786 static Value
*ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy
&ResultVector
,
4787 Constant
*DefaultResult
, Value
*Condition
,
4788 IRBuilder
<> &Builder
) {
4789 assert(ResultVector
.size() == 2 &&
4790 "We should have exactly two unique results at this point");
4791 // If we are selecting between only two cases transform into a simple
4792 // select or a two-way select if default is possible.
4793 if (ResultVector
[0].second
.size() == 1 &&
4794 ResultVector
[1].second
.size() == 1) {
4795 ConstantInt
*const FirstCase
= ResultVector
[0].second
[0];
4796 ConstantInt
*const SecondCase
= ResultVector
[1].second
[0];
4798 bool DefaultCanTrigger
= DefaultResult
;
4799 Value
*SelectValue
= ResultVector
[1].first
;
4800 if (DefaultCanTrigger
) {
4801 Value
*const ValueCompare
=
4802 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
4803 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
4804 DefaultResult
, "switch.select");
4806 Value
*const ValueCompare
=
4807 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
4808 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
4809 SelectValue
, "switch.select");
4815 // Helper function to cleanup a switch instruction that has been converted into
4816 // a select, fixing up PHI nodes and basic blocks.
4817 static void RemoveSwitchAfterSelectConversion(SwitchInst
*SI
, PHINode
*PHI
,
4819 IRBuilder
<> &Builder
) {
4820 BasicBlock
*SelectBB
= SI
->getParent();
4821 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
4822 PHI
->removeIncomingValue(SelectBB
);
4823 PHI
->addIncoming(SelectValue
, SelectBB
);
4825 Builder
.CreateBr(PHI
->getParent());
4827 // Remove the switch.
4828 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
4829 BasicBlock
*Succ
= SI
->getSuccessor(i
);
4831 if (Succ
== PHI
->getParent())
4833 Succ
->removePredecessor(SelectBB
);
4835 SI
->eraseFromParent();
4838 /// If the switch is only used to initialize one or more
4839 /// phi nodes in a common successor block with only two different
4840 /// constant values, replace the switch with select.
4841 static bool switchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
4842 const DataLayout
&DL
,
4843 const TargetTransformInfo
&TTI
) {
4844 Value
*const Cond
= SI
->getCondition();
4845 PHINode
*PHI
= nullptr;
4846 BasicBlock
*CommonDest
= nullptr;
4847 Constant
*DefaultResult
;
4848 SwitchCaseResultVectorTy UniqueResults
;
4849 // Collect all the cases that will deliver the same value from the switch.
4850 if (!InitializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
4853 // Selects choose between maximum two values.
4854 if (UniqueResults
.size() != 2)
4856 assert(PHI
!= nullptr && "PHI for value select not found");
4858 Builder
.SetInsertPoint(SI
);
4859 Value
*SelectValue
=
4860 ConvertTwoCaseSwitch(UniqueResults
, DefaultResult
, Cond
, Builder
);
4862 RemoveSwitchAfterSelectConversion(SI
, PHI
, SelectValue
, Builder
);
4865 // The switch couldn't be converted into a select.
4871 /// This class represents a lookup table that can be used to replace a switch.
4872 class SwitchLookupTable
{
4874 /// Create a lookup table to use as a switch replacement with the contents
4875 /// of Values, using DefaultValue to fill any holes in the table.
4877 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4878 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4879 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
4881 /// Build instructions with Builder to retrieve the value at
4882 /// the position given by Index in the lookup table.
4883 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
4885 /// Return true if a table with TableSize elements of
4886 /// type ElementType would fit in a target-legal register.
4887 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
4891 // Depending on the contents of the table, it can be represented in
4894 // For tables where each element contains the same value, we just have to
4895 // store that single value and return it for each lookup.
4898 // For tables where there is a linear relationship between table index
4899 // and values. We calculate the result with a simple multiplication
4900 // and addition instead of a table lookup.
4903 // For small tables with integer elements, we can pack them into a bitmap
4904 // that fits into a target-legal register. Values are retrieved by
4905 // shift and mask operations.
4908 // The table is stored as an array of values. Values are retrieved by load
4909 // instructions from the table.
4913 // For SingleValueKind, this is the single value.
4914 Constant
*SingleValue
= nullptr;
4916 // For BitMapKind, this is the bitmap.
4917 ConstantInt
*BitMap
= nullptr;
4918 IntegerType
*BitMapElementTy
= nullptr;
4920 // For LinearMapKind, these are the constants used to derive the value.
4921 ConstantInt
*LinearOffset
= nullptr;
4922 ConstantInt
*LinearMultiplier
= nullptr;
4924 // For ArrayKind, this is the array.
4925 GlobalVariable
*Array
= nullptr;
4928 } // end anonymous namespace
4930 SwitchLookupTable::SwitchLookupTable(
4931 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4932 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4933 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
4934 assert(Values
.size() && "Can't build lookup table without values!");
4935 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
4937 // If all values in the table are equal, this is that value.
4938 SingleValue
= Values
.begin()->second
;
4940 Type
*ValueType
= Values
.begin()->second
->getType();
4942 // Build up the table contents.
4943 SmallVector
<Constant
*, 64> TableContents(TableSize
);
4944 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
4945 ConstantInt
*CaseVal
= Values
[I
].first
;
4946 Constant
*CaseRes
= Values
[I
].second
;
4947 assert(CaseRes
->getType() == ValueType
);
4949 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
4950 TableContents
[Idx
] = CaseRes
;
4952 if (CaseRes
!= SingleValue
)
4953 SingleValue
= nullptr;
4956 // Fill in any holes in the table with the default result.
4957 if (Values
.size() < TableSize
) {
4958 assert(DefaultValue
&&
4959 "Need a default value to fill the lookup table holes.");
4960 assert(DefaultValue
->getType() == ValueType
);
4961 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
4962 if (!TableContents
[I
])
4963 TableContents
[I
] = DefaultValue
;
4966 if (DefaultValue
!= SingleValue
)
4967 SingleValue
= nullptr;
4970 // If each element in the table contains the same value, we only need to store
4971 // that single value.
4973 Kind
= SingleValueKind
;
4977 // Check if we can derive the value with a linear transformation from the
4979 if (isa
<IntegerType
>(ValueType
)) {
4980 bool LinearMappingPossible
= true;
4983 assert(TableSize
>= 2 && "Should be a SingleValue table.");
4984 // Check if there is the same distance between two consecutive values.
4985 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
4986 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
4988 // This is an undef. We could deal with it, but undefs in lookup tables
4989 // are very seldom. It's probably not worth the additional complexity.
4990 LinearMappingPossible
= false;
4993 const APInt
&Val
= ConstVal
->getValue();
4995 APInt Dist
= Val
- PrevVal
;
4998 } else if (Dist
!= DistToPrev
) {
4999 LinearMappingPossible
= false;
5005 if (LinearMappingPossible
) {
5006 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5007 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5008 Kind
= LinearMapKind
;
5014 // If the type is integer and the table fits in a register, build a bitmap.
5015 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5016 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5017 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5018 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5019 TableInt
<<= IT
->getBitWidth();
5020 // Insert values into the bitmap. Undef values are set to zero.
5021 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5022 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5023 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5026 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5027 BitMapElementTy
= IT
;
5033 // Store the table in an array.
5034 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5035 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5037 Array
= new GlobalVariable(M
, ArrayTy
, /*isConstant=*/true,
5038 GlobalVariable::PrivateLinkage
, Initializer
,
5039 "switch.table." + FuncName
);
5040 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5041 // Set the alignment to that of an array items. We will be only loading one
5043 Array
->setAlignment(DL
.getPrefTypeAlignment(ValueType
));
5047 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5049 case SingleValueKind
:
5051 case LinearMapKind
: {
5052 // Derive the result value from the input value.
5053 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5054 false, "switch.idx.cast");
5055 if (!LinearMultiplier
->isOne())
5056 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5057 if (!LinearOffset
->isZero())
5058 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5062 // Type of the bitmap (e.g. i59).
5063 IntegerType
*MapTy
= BitMap
->getType();
5065 // Cast Index to the same type as the bitmap.
5066 // Note: The Index is <= the number of elements in the table, so
5067 // truncating it to the width of the bitmask is safe.
5068 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5070 // Multiply the shift amount by the element width.
5071 ShiftAmt
= Builder
.CreateMul(
5072 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5076 Value
*DownShifted
=
5077 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5079 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5082 // Make sure the table index will not overflow when treated as signed.
5083 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5084 uint64_t TableSize
=
5085 Array
->getInitializer()->getType()->getArrayNumElements();
5086 if (TableSize
> (1ULL << (IT
->getBitWidth() - 1)))
5087 Index
= Builder
.CreateZExt(
5088 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
5089 "switch.tableidx.zext");
5091 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
5092 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
5093 GEPIndices
, "switch.gep");
5094 return Builder
.CreateLoad(
5095 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
5099 llvm_unreachable("Unknown lookup table kind!");
5102 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
5104 Type
*ElementType
) {
5105 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
5108 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5109 // are <= 15, we could try to narrow the type.
5111 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5112 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
5114 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
5117 /// Determine whether a lookup table should be built for this switch, based on
5118 /// the number of cases, size of the table, and the types of the results.
5120 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
5121 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
5122 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
5123 if (SI
->getNumCases() > TableSize
|| TableSize
>= UINT64_MAX
/ 10)
5124 return false; // TableSize overflowed, or mul below might overflow.
5126 bool AllTablesFitInRegister
= true;
5127 bool HasIllegalType
= false;
5128 for (const auto &I
: ResultTypes
) {
5129 Type
*Ty
= I
.second
;
5131 // Saturate this flag to true.
5132 HasIllegalType
= HasIllegalType
|| !TTI
.isTypeLegal(Ty
);
5134 // Saturate this flag to false.
5135 AllTablesFitInRegister
=
5136 AllTablesFitInRegister
&&
5137 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
5139 // If both flags saturate, we're done. NOTE: This *only* works with
5140 // saturating flags, and all flags have to saturate first due to the
5141 // non-deterministic behavior of iterating over a dense map.
5142 if (HasIllegalType
&& !AllTablesFitInRegister
)
5146 // If each table would fit in a register, we should build it anyway.
5147 if (AllTablesFitInRegister
)
5150 // Don't build a table that doesn't fit in-register if it has illegal types.
5154 // The table density should be at least 40%. This is the same criterion as for
5155 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5156 // FIXME: Find the best cut-off.
5157 return SI
->getNumCases() * 10 >= TableSize
* 4;
5160 /// Try to reuse the switch table index compare. Following pattern:
5162 /// if (idx < tablesize)
5163 /// r = table[idx]; // table does not contain default_value
5165 /// r = default_value;
5166 /// if (r != default_value)
5169 /// Is optimized to:
5171 /// cond = idx < tablesize;
5175 /// r = default_value;
5179 /// Jump threading will then eliminate the second if(cond).
5180 static void reuseTableCompare(
5181 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
5182 Constant
*DefaultValue
,
5183 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
5184 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
5188 // We require that the compare is in the same block as the phi so that jump
5189 // threading can do its work afterwards.
5190 if (CmpInst
->getParent() != PhiBlock
)
5193 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
5197 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
5198 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
5199 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
5201 // Check if the compare with the default value is constant true or false.
5202 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5203 DefaultValue
, CmpOp1
, true);
5204 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
5207 // Check if the compare with the case values is distinct from the default
5209 for (auto ValuePair
: Values
) {
5210 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5211 ValuePair
.second
, CmpOp1
, true);
5212 if (!CaseConst
|| CaseConst
== DefaultConst
|| isa
<UndefValue
>(CaseConst
))
5214 assert((CaseConst
== TrueConst
|| CaseConst
== FalseConst
) &&
5215 "Expect true or false as compare result.");
5218 // Check if the branch instruction dominates the phi node. It's a simple
5219 // dominance check, but sufficient for our needs.
5220 // Although this check is invariant in the calling loops, it's better to do it
5221 // at this late stage. Practically we do it at most once for a switch.
5222 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
5223 for (auto PI
= pred_begin(PhiBlock
), E
= pred_end(PhiBlock
); PI
!= E
; ++PI
) {
5224 BasicBlock
*Pred
= *PI
;
5225 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
5229 if (DefaultConst
== FalseConst
) {
5230 // The compare yields the same result. We can replace it.
5231 CmpInst
->replaceAllUsesWith(RangeCmp
);
5232 ++NumTableCmpReuses
;
5234 // The compare yields the same result, just inverted. We can replace it.
5235 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
5236 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
5238 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
5239 ++NumTableCmpReuses
;
5243 /// If the switch is only used to initialize one or more phi nodes in a common
5244 /// successor block with different constant values, replace the switch with
5246 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5247 const DataLayout
&DL
,
5248 const TargetTransformInfo
&TTI
) {
5249 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5251 Function
*Fn
= SI
->getParent()->getParent();
5252 // Only build lookup table when we have a target that supports it or the
5253 // attribute is not set.
5254 if (!TTI
.shouldBuildLookupTables() ||
5255 (Fn
->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5258 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5259 // split off a dense part and build a lookup table for that.
5261 // FIXME: This creates arrays of GEPs to constant strings, which means each
5262 // GEP needs a runtime relocation in PIC code. We should just build one big
5263 // string and lookup indices into that.
5265 // Ignore switches with less than three cases. Lookup tables will not make
5266 // them faster, so we don't analyze them.
5267 if (SI
->getNumCases() < 3)
5270 // Figure out the corresponding result for each case value and phi node in the
5271 // common destination, as well as the min and max case values.
5272 assert(!empty(SI
->cases()));
5273 SwitchInst::CaseIt CI
= SI
->case_begin();
5274 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
5275 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
5277 BasicBlock
*CommonDest
= nullptr;
5279 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
5280 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
5282 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
5283 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
5284 SmallVector
<PHINode
*, 4> PHIs
;
5286 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
5287 ConstantInt
*CaseVal
= CI
->getCaseValue();
5288 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
5289 MinCaseVal
= CaseVal
;
5290 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
5291 MaxCaseVal
= CaseVal
;
5293 // Resulting value at phi nodes for this case value.
5294 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
5296 if (!GetCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
5300 // Append the result from this case to the list for each phi.
5301 for (const auto &I
: Results
) {
5302 PHINode
*PHI
= I
.first
;
5303 Constant
*Value
= I
.second
;
5304 if (!ResultLists
.count(PHI
))
5305 PHIs
.push_back(PHI
);
5306 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
5310 // Keep track of the result types.
5311 for (PHINode
*PHI
: PHIs
) {
5312 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
5315 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
5316 APInt RangeSpread
= MaxCaseVal
->getValue() - MinCaseVal
->getValue();
5317 uint64_t TableSize
= RangeSpread
.getLimitedValue() + 1;
5318 bool TableHasHoles
= (NumResults
< TableSize
);
5320 // If the table has holes, we need a constant result for the default case
5321 // or a bitmask that fits in a register.
5322 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
5323 bool HasDefaultResults
=
5324 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
5325 DefaultResultsList
, DL
, TTI
);
5327 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
5329 // As an extra penalty for the validity test we require more cases.
5330 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5332 if (!DL
.fitsInLegalInteger(TableSize
))
5336 for (const auto &I
: DefaultResultsList
) {
5337 PHINode
*PHI
= I
.first
;
5338 Constant
*Result
= I
.second
;
5339 DefaultResults
[PHI
] = Result
;
5342 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
5345 // Create the BB that does the lookups.
5346 Module
&Mod
= *CommonDest
->getParent()->getParent();
5347 BasicBlock
*LookupBB
= BasicBlock::Create(
5348 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
5350 // Compute the table index value.
5351 Builder
.SetInsertPoint(SI
);
5353 if (MinCaseVal
->isNullValue())
5354 TableIndex
= SI
->getCondition();
5356 TableIndex
= Builder
.CreateSub(SI
->getCondition(), MinCaseVal
,
5359 // Compute the maximum table size representable by the integer type we are
5361 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
5362 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
5363 assert(MaxTableSize
>= TableSize
&&
5364 "It is impossible for a switch to have more entries than the max "
5365 "representable value of its input integer type's size.");
5367 // If the default destination is unreachable, or if the lookup table covers
5368 // all values of the conditional variable, branch directly to the lookup table
5369 // BB. Otherwise, check that the condition is within the case range.
5370 const bool DefaultIsReachable
=
5371 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5372 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
5373 BranchInst
*RangeCheckBranch
= nullptr;
5375 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5376 Builder
.CreateBr(LookupBB
);
5377 // Note: We call removeProdecessor later since we need to be able to get the
5378 // PHI value for the default case in case we're using a bit mask.
5380 Value
*Cmp
= Builder
.CreateICmpULT(
5381 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
5383 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
5386 // Populate the BB that does the lookups.
5387 Builder
.SetInsertPoint(LookupBB
);
5390 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5391 // re-purposed to do the hole check, and we create a new LookupBB.
5392 BasicBlock
*MaskBB
= LookupBB
;
5393 MaskBB
->setName("switch.hole_check");
5394 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
5395 CommonDest
->getParent(), CommonDest
);
5397 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5398 // unnecessary illegal types.
5399 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
5400 APInt
MaskInt(TableSizePowOf2
, 0);
5401 APInt
One(TableSizePowOf2
, 1);
5402 // Build bitmask; fill in a 1 bit for every case.
5403 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
5404 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
5405 uint64_t Idx
= (ResultList
[I
].first
->getValue() - MinCaseVal
->getValue())
5407 MaskInt
|= One
<< Idx
;
5409 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
5411 // Get the TableIndex'th bit of the bitmask.
5412 // If this bit is 0 (meaning hole) jump to the default destination,
5413 // else continue with table lookup.
5414 IntegerType
*MapTy
= TableMask
->getType();
5416 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
5417 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
5418 Value
*LoBit
= Builder
.CreateTrunc(
5419 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
5420 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
5422 Builder
.SetInsertPoint(LookupBB
);
5423 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, SI
->getParent());
5426 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5427 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5428 // do not delete PHINodes here.
5429 SI
->getDefaultDest()->removePredecessor(SI
->getParent(),
5430 /*KeepOneInputPHIs=*/true);
5433 bool ReturnedEarly
= false;
5434 for (PHINode
*PHI
: PHIs
) {
5435 const ResultListTy
&ResultList
= ResultLists
[PHI
];
5437 // If using a bitmask, use any value to fill the lookup table holes.
5438 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
5439 StringRef FuncName
= Fn
->getName();
5440 SwitchLookupTable
Table(Mod
, TableSize
, MinCaseVal
, ResultList
, DV
, DL
,
5443 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
5445 // If the result is used to return immediately from the function, we want to
5446 // do that right here.
5447 if (PHI
->hasOneUse() && isa
<ReturnInst
>(*PHI
->user_begin()) &&
5448 PHI
->user_back() == CommonDest
->getFirstNonPHIOrDbg()) {
5449 Builder
.CreateRet(Result
);
5450 ReturnedEarly
= true;
5454 // Do a small peephole optimization: re-use the switch table compare if
5456 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
5457 BasicBlock
*PhiBlock
= PHI
->getParent();
5458 // Search for compare instructions which use the phi.
5459 for (auto *User
: PHI
->users()) {
5460 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
5464 PHI
->addIncoming(Result
, LookupBB
);
5468 Builder
.CreateBr(CommonDest
);
5470 // Remove the switch.
5471 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5472 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5474 if (Succ
== SI
->getDefaultDest())
5476 Succ
->removePredecessor(SI
->getParent());
5478 SI
->eraseFromParent();
5482 ++NumLookupTablesHoles
;
5486 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
5487 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5488 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
5489 uint64_t Range
= Diff
+ 1;
5490 uint64_t NumCases
= Values
.size();
5491 // 40% is the default density for building a jump table in optsize/minsize mode.
5492 uint64_t MinDensity
= 40;
5494 return NumCases
* 100 >= Range
* MinDensity
;
5497 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5500 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5501 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5503 /// This converts a sparse switch into a dense switch which allows better
5504 /// lowering and could also allow transforming into a lookup table.
5505 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5506 const DataLayout
&DL
,
5507 const TargetTransformInfo
&TTI
) {
5508 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
5509 if (CondTy
->getIntegerBitWidth() > 64 ||
5510 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
5512 // Only bother with this optimization if there are more than 3 switch cases;
5513 // SDAG will only bother creating jump tables for 4 or more cases.
5514 if (SI
->getNumCases() < 4)
5517 // This transform is agnostic to the signedness of the input or case values. We
5518 // can treat the case values as signed or unsigned. We can optimize more common
5519 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5521 SmallVector
<int64_t,4> Values
;
5522 for (auto &C
: SI
->cases())
5523 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
5526 // If the switch is already dense, there's nothing useful to do here.
5527 if (isSwitchDense(Values
))
5530 // First, transform the values such that they start at zero and ascend.
5531 int64_t Base
= Values
[0];
5532 for (auto &V
: Values
)
5533 V
-= (uint64_t)(Base
);
5535 // Now we have signed numbers that have been shifted so that, given enough
5536 // precision, there are no negative values. Since the rest of the transform
5537 // is bitwise only, we switch now to an unsigned representation.
5539 // This transform can be done speculatively because it is so cheap - it
5540 // results in a single rotate operation being inserted.
5541 // FIXME: It's possible that optimizing a switch on powers of two might also
5542 // be beneficial - flag values are often powers of two and we could use a CLZ
5543 // as the key function.
5545 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5546 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5548 unsigned Shift
= 64;
5549 for (auto &V
: Values
)
5550 Shift
= std::min(Shift
, countTrailingZeros((uint64_t)V
));
5553 for (auto &V
: Values
)
5554 V
= (int64_t)((uint64_t)V
>> Shift
);
5556 if (!isSwitchDense(Values
))
5557 // Transform didn't create a dense switch.
5560 // The obvious transform is to shift the switch condition right and emit a
5561 // check that the condition actually cleanly divided by GCD, i.e.
5562 // C & (1 << Shift - 1) == 0
5563 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5565 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5566 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5567 // are nonzero then the switch condition will be very large and will hit the
5570 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
5571 Builder
.SetInsertPoint(SI
);
5572 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
5573 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
5574 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
5575 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
5576 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
5577 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
5579 for (auto Case
: SI
->cases()) {
5580 auto *Orig
= Case
.getCaseValue();
5581 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
5583 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
5589 BasicBlock
*BB
= SI
->getParent();
5591 if (isValueEqualityComparison(SI
)) {
5592 // If we only have one predecessor, and if it is a branch on this value,
5593 // see if that predecessor totally determines the outcome of this switch.
5594 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
5596 return requestResimplify();
5598 Value
*Cond
= SI
->getCondition();
5599 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
5600 if (SimplifySwitchOnSelect(SI
, Select
))
5601 return requestResimplify();
5603 // If the block only contains the switch, see if we can fold the block
5604 // away into any preds.
5605 if (SI
== &*BB
->instructionsWithoutDebug().begin())
5606 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
5607 return requestResimplify();
5610 // Try to transform the switch into an icmp and a branch.
5611 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
5612 return requestResimplify();
5614 // Remove unreachable cases.
5615 if (eliminateDeadSwitchCases(SI
, Options
.AC
, DL
))
5616 return requestResimplify();
5618 if (switchToSelect(SI
, Builder
, DL
, TTI
))
5619 return requestResimplify();
5621 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
5622 return requestResimplify();
5624 // The conversion from switch to lookup tables results in difficult-to-analyze
5625 // code and makes pruning branches much harder. This is a problem if the
5626 // switch expression itself can still be restricted as a result of inlining or
5627 // CVP. Therefore, only apply this transformation during late stages of the
5628 // optimisation pipeline.
5629 if (Options
.ConvertSwitchToLookupTable
&&
5630 SwitchToLookupTable(SI
, Builder
, DL
, TTI
))
5631 return requestResimplify();
5633 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
5634 return requestResimplify();
5639 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
5640 BasicBlock
*BB
= IBI
->getParent();
5641 bool Changed
= false;
5643 // Eliminate redundant destinations.
5644 SmallPtrSet
<Value
*, 8> Succs
;
5645 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
5646 BasicBlock
*Dest
= IBI
->getDestination(i
);
5647 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
5648 Dest
->removePredecessor(BB
);
5649 IBI
->removeDestination(i
);
5656 if (IBI
->getNumDestinations() == 0) {
5657 // If the indirectbr has no successors, change it to unreachable.
5658 new UnreachableInst(IBI
->getContext(), IBI
);
5659 EraseTerminatorAndDCECond(IBI
);
5663 if (IBI
->getNumDestinations() == 1) {
5664 // If the indirectbr has one successor, change it to a direct branch.
5665 BranchInst::Create(IBI
->getDestination(0), IBI
);
5666 EraseTerminatorAndDCECond(IBI
);
5670 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
5671 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
5672 return requestResimplify();
5677 /// Given an block with only a single landing pad and a unconditional branch
5678 /// try to find another basic block which this one can be merged with. This
5679 /// handles cases where we have multiple invokes with unique landing pads, but
5680 /// a shared handler.
5682 /// We specifically choose to not worry about merging non-empty blocks
5683 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5684 /// practice, the optimizer produces empty landing pad blocks quite frequently
5685 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5686 /// sinking in this file)
5688 /// This is primarily a code size optimization. We need to avoid performing
5689 /// any transform which might inhibit optimization (such as our ability to
5690 /// specialize a particular handler via tail commoning). We do this by not
5691 /// merging any blocks which require us to introduce a phi. Since the same
5692 /// values are flowing through both blocks, we don't lose any ability to
5693 /// specialize. If anything, we make such specialization more likely.
5695 /// TODO - This transformation could remove entries from a phi in the target
5696 /// block when the inputs in the phi are the same for the two blocks being
5697 /// merged. In some cases, this could result in removal of the PHI entirely.
5698 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
5700 auto Succ
= BB
->getUniqueSuccessor();
5702 // If there's a phi in the successor block, we'd likely have to introduce
5703 // a phi into the merged landing pad block.
5704 if (isa
<PHINode
>(*Succ
->begin()))
5707 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
5708 if (BB
== OtherPred
)
5710 BasicBlock::iterator I
= OtherPred
->begin();
5711 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
5712 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
5714 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5716 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
5717 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
5720 // We've found an identical block. Update our predecessors to take that
5721 // path instead and make ourselves dead.
5722 SmallPtrSet
<BasicBlock
*, 16> Preds
;
5723 Preds
.insert(pred_begin(BB
), pred_end(BB
));
5724 for (BasicBlock
*Pred
: Preds
) {
5725 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
5726 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
5727 "unexpected successor");
5728 II
->setUnwindDest(OtherPred
);
5731 // The debug info in OtherPred doesn't cover the merged control flow that
5732 // used to go through BB. We need to delete it or update it.
5733 for (auto I
= OtherPred
->begin(), E
= OtherPred
->end(); I
!= E
;) {
5734 Instruction
&Inst
= *I
;
5736 if (isa
<DbgInfoIntrinsic
>(Inst
))
5737 Inst
.eraseFromParent();
5740 SmallPtrSet
<BasicBlock
*, 16> Succs
;
5741 Succs
.insert(succ_begin(BB
), succ_end(BB
));
5742 for (BasicBlock
*Succ
: Succs
) {
5743 Succ
->removePredecessor(BB
);
5746 IRBuilder
<> Builder(BI
);
5747 Builder
.CreateUnreachable();
5748 BI
->eraseFromParent();
5754 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
,
5755 IRBuilder
<> &Builder
) {
5756 BasicBlock
*BB
= BI
->getParent();
5757 BasicBlock
*Succ
= BI
->getSuccessor(0);
5759 // If the Terminator is the only non-phi instruction, simplify the block.
5760 // If LoopHeader is provided, check if the block or its successor is a loop
5761 // header. (This is for early invocations before loop simplify and
5762 // vectorization to keep canonical loop forms for nested loops. These blocks
5763 // can be eliminated when the pass is invoked later in the back-end.)
5764 // Note that if BB has only one predecessor then we do not introduce new
5765 // backedge, so we can eliminate BB.
5766 bool NeedCanonicalLoop
=
5767 Options
.NeedCanonicalLoop
&&
5768 (LoopHeaders
&& BB
->hasNPredecessorsOrMore(2) &&
5769 (LoopHeaders
->count(BB
) || LoopHeaders
->count(Succ
)));
5770 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg()->getIterator();
5771 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
5772 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
))
5775 // If the only instruction in the block is a seteq/setne comparison against a
5776 // constant, try to simplify the block.
5777 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
5778 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
5779 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5781 if (I
->isTerminator() &&
5782 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
5786 // See if we can merge an empty landing pad block with another which is
5788 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
5789 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5791 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
))
5795 // If this basic block is ONLY a compare and a branch, and if a predecessor
5796 // branches to us and our successor, fold the comparison into the
5797 // predecessor and use logical operations to update the incoming value
5798 // for PHI nodes in common successor.
5799 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5800 return requestResimplify();
5804 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
5805 BasicBlock
*PredPred
= nullptr;
5806 for (auto *P
: predecessors(BB
)) {
5807 BasicBlock
*PPred
= P
->getSinglePredecessor();
5808 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
5815 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
5816 BasicBlock
*BB
= BI
->getParent();
5817 const Function
*Fn
= BB
->getParent();
5818 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
5821 // Conditional branch
5822 if (isValueEqualityComparison(BI
)) {
5823 // If we only have one predecessor, and if it is a branch on this value,
5824 // see if that predecessor totally determines the outcome of this
5826 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5827 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
5828 return requestResimplify();
5830 // This block must be empty, except for the setcond inst, if it exists.
5831 // Ignore dbg intrinsics.
5832 auto I
= BB
->instructionsWithoutDebug().begin();
5834 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
5835 return requestResimplify();
5836 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
5838 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
5839 return requestResimplify();
5843 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5844 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
5847 // If this basic block has dominating predecessor blocks and the dominating
5848 // blocks' conditions imply BI's condition, we know the direction of BI.
5849 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
5851 // Turn this into a branch on constant.
5852 auto *OldCond
= BI
->getCondition();
5853 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
5854 : ConstantInt::getFalse(BB
->getContext());
5855 BI
->setCondition(TorF
);
5856 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
5857 return requestResimplify();
5860 // If this basic block is ONLY a compare and a branch, and if a predecessor
5861 // branches to us and one of our successors, fold the comparison into the
5862 // predecessor and use logical operations to pick the right destination.
5863 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5864 return requestResimplify();
5866 // We have a conditional branch to two blocks that are only reachable
5867 // from BI. We know that the condbr dominates the two blocks, so see if
5868 // there is any identical code in the "then" and "else" blocks. If so, we
5869 // can hoist it up to the branching block.
5870 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
5871 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5872 if (HoistThenElseCodeToIf(BI
, TTI
))
5873 return requestResimplify();
5875 // If Successor #1 has multiple preds, we may be able to conditionally
5876 // execute Successor #0 if it branches to Successor #1.
5877 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
5878 if (Succ0TI
->getNumSuccessors() == 1 &&
5879 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
5880 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
5881 return requestResimplify();
5883 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5884 // If Successor #0 has multiple preds, we may be able to conditionally
5885 // execute Successor #1 if it branches to Successor #0.
5886 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
5887 if (Succ1TI
->getNumSuccessors() == 1 &&
5888 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
5889 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
5890 return requestResimplify();
5893 // If this is a branch on a phi node in the current block, thread control
5894 // through this block if any PHI node entries are constants.
5895 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
5896 if (PN
->getParent() == BI
->getParent())
5897 if (FoldCondBranchOnPHI(BI
, DL
, Options
.AC
))
5898 return requestResimplify();
5900 // Scan predecessor blocks for conditional branches.
5901 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
5902 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
5903 if (PBI
!= BI
&& PBI
->isConditional())
5904 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DL
))
5905 return requestResimplify();
5907 // Look for diamond patterns.
5908 if (MergeCondStores
)
5909 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
5910 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
5911 if (PBI
!= BI
&& PBI
->isConditional())
5912 if (mergeConditionalStores(PBI
, BI
, DL
))
5913 return requestResimplify();
5918 /// Check if passing a value to an instruction will cause undefined behavior.
5919 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
) {
5920 Constant
*C
= dyn_cast
<Constant
>(V
);
5927 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
5928 // Only look at the first use, avoid hurting compile time with long uselists
5929 User
*Use
= *I
->user_begin();
5931 // Now make sure that there are no instructions in between that can alter
5932 // control flow (eg. calls)
5933 for (BasicBlock::iterator
5934 i
= ++BasicBlock::iterator(I
),
5935 UI
= BasicBlock::iterator(dyn_cast
<Instruction
>(Use
));
5937 if (i
== I
->getParent()->end() || i
->mayHaveSideEffects())
5940 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5941 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
5942 if (GEP
->getPointerOperand() == I
)
5943 return passingValueIsAlwaysUndefined(V
, GEP
);
5945 // Look through bitcasts.
5946 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
5947 return passingValueIsAlwaysUndefined(V
, BC
);
5949 // Load from null is undefined.
5950 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
5951 if (!LI
->isVolatile())
5952 return !NullPointerIsDefined(LI
->getFunction(),
5953 LI
->getPointerAddressSpace());
5955 // Store to null is undefined.
5956 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
5957 if (!SI
->isVolatile())
5958 return (!NullPointerIsDefined(SI
->getFunction(),
5959 SI
->getPointerAddressSpace())) &&
5960 SI
->getPointerOperand() == I
;
5962 // A call to null is undefined.
5963 if (auto CS
= CallSite(Use
))
5964 return !NullPointerIsDefined(CS
->getFunction()) &&
5965 CS
.getCalledValue() == I
;
5970 /// If BB has an incoming value that will always trigger undefined behavior
5971 /// (eg. null pointer dereference), remove the branch leading here.
5972 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
) {
5973 for (PHINode
&PHI
: BB
->phis())
5974 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
5975 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
5976 Instruction
*T
= PHI
.getIncomingBlock(i
)->getTerminator();
5977 IRBuilder
<> Builder(T
);
5978 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
5979 BB
->removePredecessor(PHI
.getIncomingBlock(i
));
5980 // Turn uncoditional branches into unreachables and remove the dead
5981 // destination from conditional branches.
5982 if (BI
->isUnconditional())
5983 Builder
.CreateUnreachable();
5985 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
5986 : BI
->getSuccessor(0));
5987 BI
->eraseFromParent();
5990 // TODO: SwitchInst.
5996 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
5997 bool Changed
= false;
5999 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
6000 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
6002 // Remove basic blocks that have no predecessors (except the entry block)...
6003 // or that just have themself as a predecessor. These are unreachable.
6004 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
6005 BB
->getSinglePredecessor() == BB
) {
6006 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
6007 DeleteDeadBlock(BB
);
6011 // Check to see if we can constant propagate this terminator instruction
6013 Changed
|= ConstantFoldTerminator(BB
, true);
6015 // Check for and eliminate duplicate PHI nodes in this block.
6016 Changed
|= EliminateDuplicatePHINodes(BB
);
6018 // Check for and remove branches that will always cause undefined behavior.
6019 Changed
|= removeUndefIntroducingPredecessor(BB
);
6021 // Merge basic blocks into their predecessor if there is only one distinct
6022 // pred, and if there is only one distinct successor of the predecessor, and
6023 // if there are no PHI nodes.
6024 if (MergeBlockIntoPredecessor(BB
))
6027 if (SinkCommon
&& Options
.SinkCommonInsts
)
6028 Changed
|= SinkCommonCodeFromPredecessors(BB
);
6030 IRBuilder
<> Builder(BB
);
6032 // If there is a trivial two-entry PHI node in this basic block, and we can
6033 // eliminate it, do so now.
6034 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
6035 if (PN
->getNumIncomingValues() == 2)
6036 Changed
|= FoldTwoEntryPHINode(PN
, TTI
, DL
);
6038 Builder
.SetInsertPoint(BB
->getTerminator());
6039 if (auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
6040 if (BI
->isUnconditional()) {
6041 if (SimplifyUncondBranch(BI
, Builder
))
6044 if (SimplifyCondBranch(BI
, Builder
))
6047 } else if (auto *RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
6048 if (SimplifyReturn(RI
, Builder
))
6050 } else if (auto *RI
= dyn_cast
<ResumeInst
>(BB
->getTerminator())) {
6051 if (SimplifyResume(RI
, Builder
))
6053 } else if (auto *RI
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator())) {
6054 if (SimplifyCleanupReturn(RI
))
6056 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
6057 if (SimplifySwitch(SI
, Builder
))
6059 } else if (auto *UI
= dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
6060 if (SimplifyUnreachable(UI
))
6062 } else if (auto *IBI
= dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
6063 if (SimplifyIndirectBr(IBI
))
6070 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
6071 bool Changed
= false;
6073 // Repeated simplify BB as long as resimplification is requested.
6077 // Perform one round of simplifcation. Resimplify flag will be set if
6078 // another iteration is requested.
6079 Changed
|= simplifyOnce(BB
);
6080 } while (Resimplify
);
6085 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
6086 const SimplifyCFGOptions
&Options
,
6087 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
) {
6088 return SimplifyCFGOpt(TTI
, BB
->getModule()->getDataLayout(), LoopHeaders
,