gn build: Extract git() and git_out() functions in sync script
[llvm-complete.git] / lib / CodeGen / MachineSink.cpp
blob3ebb76d5f208edf190d4fef9b01e4132ac342c1a
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <map>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 #define DEBUG_TYPE "machine-sink"
57 static cl::opt<bool>
58 SplitEdges("machine-sink-split",
59 cl::desc("Split critical edges during machine sinking"),
60 cl::init(true), cl::Hidden);
62 static cl::opt<bool>
63 UseBlockFreqInfo("machine-sink-bfi",
64 cl::desc("Use block frequency info to find successors to sink"),
65 cl::init(true), cl::Hidden);
67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68 "machine-sink-split-probability-threshold",
69 cl::desc(
70 "Percentage threshold for splitting single-instruction critical edge. "
71 "If the branch threshold is higher than this threshold, we allow "
72 "speculative execution of up to 1 instruction to avoid branching to "
73 "splitted critical edge"),
74 cl::init(40), cl::Hidden);
76 STATISTIC(NumSunk, "Number of machine instructions sunk");
77 STATISTIC(NumSplit, "Number of critical edges split");
78 STATISTIC(NumCoalesces, "Number of copies coalesced");
79 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 namespace {
83 class MachineSinking : public MachineFunctionPass {
84 const TargetInstrInfo *TII;
85 const TargetRegisterInfo *TRI;
86 MachineRegisterInfo *MRI; // Machine register information
87 MachineDominatorTree *DT; // Machine dominator tree
88 MachinePostDominatorTree *PDT; // Machine post dominator tree
89 MachineLoopInfo *LI;
90 const MachineBlockFrequencyInfo *MBFI;
91 const MachineBranchProbabilityInfo *MBPI;
92 AliasAnalysis *AA;
94 // Remember which edges have been considered for breaking.
95 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
96 CEBCandidates;
97 // Remember which edges we are about to split.
98 // This is different from CEBCandidates since those edges
99 // will be split.
100 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 SparseBitVector<> RegsToClearKillFlags;
104 using AllSuccsCache =
105 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 public:
108 static char ID; // Pass identification
110 MachineSinking() : MachineFunctionPass(ID) {
111 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
114 bool runOnMachineFunction(MachineFunction &MF) override;
116 void getAnalysisUsage(AnalysisUsage &AU) const override {
117 AU.setPreservesCFG();
118 MachineFunctionPass::getAnalysisUsage(AU);
119 AU.addRequired<AAResultsWrapperPass>();
120 AU.addRequired<MachineDominatorTree>();
121 AU.addRequired<MachinePostDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 AU.addRequired<MachineBranchProbabilityInfo>();
124 AU.addPreserved<MachineDominatorTree>();
125 AU.addPreserved<MachinePostDominatorTree>();
126 AU.addPreserved<MachineLoopInfo>();
127 if (UseBlockFreqInfo)
128 AU.addRequired<MachineBlockFrequencyInfo>();
131 void releaseMemory() override {
132 CEBCandidates.clear();
135 private:
136 bool ProcessBlock(MachineBasicBlock &MBB);
137 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
138 MachineBasicBlock *From,
139 MachineBasicBlock *To);
141 /// Postpone the splitting of the given critical
142 /// edge (\p From, \p To).
144 /// We do not split the edges on the fly. Indeed, this invalidates
145 /// the dominance information and thus triggers a lot of updates
146 /// of that information underneath.
147 /// Instead, we postpone all the splits after each iteration of
148 /// the main loop. That way, the information is at least valid
149 /// for the lifetime of an iteration.
151 /// \return True if the edge is marked as toSplit, false otherwise.
152 /// False can be returned if, for instance, this is not profitable.
153 bool PostponeSplitCriticalEdge(MachineInstr &MI,
154 MachineBasicBlock *From,
155 MachineBasicBlock *To,
156 bool BreakPHIEdge);
157 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 AllSuccsCache &AllSuccessors);
160 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
161 MachineBasicBlock *DefMBB,
162 bool &BreakPHIEdge, bool &LocalUse) const;
163 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
164 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
165 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
166 MachineBasicBlock *MBB,
167 MachineBasicBlock *SuccToSinkTo,
168 AllSuccsCache &AllSuccessors);
170 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
171 MachineBasicBlock *MBB);
173 SmallVector<MachineBasicBlock *, 4> &
174 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
175 AllSuccsCache &AllSuccessors) const;
178 } // end anonymous namespace
180 char MachineSinking::ID = 0;
182 char &llvm::MachineSinkingID = MachineSinking::ID;
184 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
185 "Machine code sinking", false, false)
186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
190 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
191 "Machine code sinking", false, false)
193 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
194 MachineBasicBlock *MBB) {
195 if (!MI.isCopy())
196 return false;
198 unsigned SrcReg = MI.getOperand(1).getReg();
199 unsigned DstReg = MI.getOperand(0).getReg();
200 if (!Register::isVirtualRegister(SrcReg) ||
201 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
202 return false;
204 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
205 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
206 if (SRC != DRC)
207 return false;
209 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
210 if (DefMI->isCopyLike())
211 return false;
212 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
213 LLVM_DEBUG(dbgs() << "*** to: " << MI);
214 MRI->replaceRegWith(DstReg, SrcReg);
215 MI.eraseFromParent();
217 // Conservatively, clear any kill flags, since it's possible that they are no
218 // longer correct.
219 MRI->clearKillFlags(SrcReg);
221 ++NumCoalesces;
222 return true;
225 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
226 /// occur in blocks dominated by the specified block. If any use is in the
227 /// definition block, then return false since it is never legal to move def
228 /// after uses.
229 bool
230 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
231 MachineBasicBlock *MBB,
232 MachineBasicBlock *DefMBB,
233 bool &BreakPHIEdge,
234 bool &LocalUse) const {
235 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
237 // Ignore debug uses because debug info doesn't affect the code.
238 if (MRI->use_nodbg_empty(Reg))
239 return true;
241 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
242 // into and they are all PHI nodes. In this case, machine-sink must break
243 // the critical edge first. e.g.
245 // %bb.1: derived from LLVM BB %bb4.preheader
246 // Predecessors according to CFG: %bb.0
247 // ...
248 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
249 // ...
250 // JE_4 <%bb.37>, implicit %eflags
251 // Successors according to CFG: %bb.37 %bb.2
253 // %bb.2: derived from LLVM BB %bb.nph
254 // Predecessors according to CFG: %bb.0 %bb.1
255 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
256 BreakPHIEdge = true;
257 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
258 MachineInstr *UseInst = MO.getParent();
259 unsigned OpNo = &MO - &UseInst->getOperand(0);
260 MachineBasicBlock *UseBlock = UseInst->getParent();
261 if (!(UseBlock == MBB && UseInst->isPHI() &&
262 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
263 BreakPHIEdge = false;
264 break;
267 if (BreakPHIEdge)
268 return true;
270 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
271 // Determine the block of the use.
272 MachineInstr *UseInst = MO.getParent();
273 unsigned OpNo = &MO - &UseInst->getOperand(0);
274 MachineBasicBlock *UseBlock = UseInst->getParent();
275 if (UseInst->isPHI()) {
276 // PHI nodes use the operand in the predecessor block, not the block with
277 // the PHI.
278 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
279 } else if (UseBlock == DefMBB) {
280 LocalUse = true;
281 return false;
284 // Check that it dominates.
285 if (!DT->dominates(MBB, UseBlock))
286 return false;
289 return true;
292 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
293 if (skipFunction(MF.getFunction()))
294 return false;
296 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
298 TII = MF.getSubtarget().getInstrInfo();
299 TRI = MF.getSubtarget().getRegisterInfo();
300 MRI = &MF.getRegInfo();
301 DT = &getAnalysis<MachineDominatorTree>();
302 PDT = &getAnalysis<MachinePostDominatorTree>();
303 LI = &getAnalysis<MachineLoopInfo>();
304 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
305 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
306 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
308 bool EverMadeChange = false;
310 while (true) {
311 bool MadeChange = false;
313 // Process all basic blocks.
314 CEBCandidates.clear();
315 ToSplit.clear();
316 for (auto &MBB: MF)
317 MadeChange |= ProcessBlock(MBB);
319 // If we have anything we marked as toSplit, split it now.
320 for (auto &Pair : ToSplit) {
321 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
322 if (NewSucc != nullptr) {
323 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
324 << printMBBReference(*Pair.first) << " -- "
325 << printMBBReference(*NewSucc) << " -- "
326 << printMBBReference(*Pair.second) << '\n');
327 MadeChange = true;
328 ++NumSplit;
329 } else
330 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
332 // If this iteration over the code changed anything, keep iterating.
333 if (!MadeChange) break;
334 EverMadeChange = true;
337 // Now clear any kill flags for recorded registers.
338 for (auto I : RegsToClearKillFlags)
339 MRI->clearKillFlags(I);
340 RegsToClearKillFlags.clear();
342 return EverMadeChange;
345 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
346 // Can't sink anything out of a block that has less than two successors.
347 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
349 // Don't bother sinking code out of unreachable blocks. In addition to being
350 // unprofitable, it can also lead to infinite looping, because in an
351 // unreachable loop there may be nowhere to stop.
352 if (!DT->isReachableFromEntry(&MBB)) return false;
354 bool MadeChange = false;
356 // Cache all successors, sorted by frequency info and loop depth.
357 AllSuccsCache AllSuccessors;
359 // Walk the basic block bottom-up. Remember if we saw a store.
360 MachineBasicBlock::iterator I = MBB.end();
361 --I;
362 bool ProcessedBegin, SawStore = false;
363 do {
364 MachineInstr &MI = *I; // The instruction to sink.
366 // Predecrement I (if it's not begin) so that it isn't invalidated by
367 // sinking.
368 ProcessedBegin = I == MBB.begin();
369 if (!ProcessedBegin)
370 --I;
372 if (MI.isDebugInstr())
373 continue;
375 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
376 if (Joined) {
377 MadeChange = true;
378 continue;
381 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
382 ++NumSunk;
383 MadeChange = true;
386 // If we just processed the first instruction in the block, we're done.
387 } while (!ProcessedBegin);
389 return MadeChange;
392 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
393 MachineBasicBlock *From,
394 MachineBasicBlock *To) {
395 // FIXME: Need much better heuristics.
397 // If the pass has already considered breaking this edge (during this pass
398 // through the function), then let's go ahead and break it. This means
399 // sinking multiple "cheap" instructions into the same block.
400 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
401 return true;
403 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
404 return true;
406 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
407 BranchProbability(SplitEdgeProbabilityThreshold, 100))
408 return true;
410 // MI is cheap, we probably don't want to break the critical edge for it.
411 // However, if this would allow some definitions of its source operands
412 // to be sunk then it's probably worth it.
413 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
414 const MachineOperand &MO = MI.getOperand(i);
415 if (!MO.isReg() || !MO.isUse())
416 continue;
417 unsigned Reg = MO.getReg();
418 if (Reg == 0)
419 continue;
421 // We don't move live definitions of physical registers,
422 // so sinking their uses won't enable any opportunities.
423 if (Register::isPhysicalRegister(Reg))
424 continue;
426 // If this instruction is the only user of a virtual register,
427 // check if breaking the edge will enable sinking
428 // both this instruction and the defining instruction.
429 if (MRI->hasOneNonDBGUse(Reg)) {
430 // If the definition resides in same MBB,
431 // claim it's likely we can sink these together.
432 // If definition resides elsewhere, we aren't
433 // blocking it from being sunk so don't break the edge.
434 MachineInstr *DefMI = MRI->getVRegDef(Reg);
435 if (DefMI->getParent() == MI.getParent())
436 return true;
440 return false;
443 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
444 MachineBasicBlock *FromBB,
445 MachineBasicBlock *ToBB,
446 bool BreakPHIEdge) {
447 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
448 return false;
450 // Avoid breaking back edge. From == To means backedge for single BB loop.
451 if (!SplitEdges || FromBB == ToBB)
452 return false;
454 // Check for backedges of more "complex" loops.
455 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
456 LI->isLoopHeader(ToBB))
457 return false;
459 // It's not always legal to break critical edges and sink the computation
460 // to the edge.
462 // %bb.1:
463 // v1024
464 // Beq %bb.3
465 // <fallthrough>
466 // %bb.2:
467 // ... no uses of v1024
468 // <fallthrough>
469 // %bb.3:
470 // ...
471 // = v1024
473 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
475 // %bb.1:
476 // ...
477 // Bne %bb.2
478 // %bb.4:
479 // v1024 =
480 // B %bb.3
481 // %bb.2:
482 // ... no uses of v1024
483 // <fallthrough>
484 // %bb.3:
485 // ...
486 // = v1024
488 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
489 // flow. We need to ensure the new basic block where the computation is
490 // sunk to dominates all the uses.
491 // It's only legal to break critical edge and sink the computation to the
492 // new block if all the predecessors of "To", except for "From", are
493 // not dominated by "From". Given SSA property, this means these
494 // predecessors are dominated by "To".
496 // There is no need to do this check if all the uses are PHI nodes. PHI
497 // sources are only defined on the specific predecessor edges.
498 if (!BreakPHIEdge) {
499 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
500 E = ToBB->pred_end(); PI != E; ++PI) {
501 if (*PI == FromBB)
502 continue;
503 if (!DT->dominates(ToBB, *PI))
504 return false;
508 ToSplit.insert(std::make_pair(FromBB, ToBB));
510 return true;
513 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
514 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
515 MachineBasicBlock *MBB,
516 MachineBasicBlock *SuccToSinkTo,
517 AllSuccsCache &AllSuccessors) {
518 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
520 if (MBB == SuccToSinkTo)
521 return false;
523 // It is profitable if SuccToSinkTo does not post dominate current block.
524 if (!PDT->dominates(SuccToSinkTo, MBB))
525 return true;
527 // It is profitable to sink an instruction from a deeper loop to a shallower
528 // loop, even if the latter post-dominates the former (PR21115).
529 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
530 return true;
532 // Check if only use in post dominated block is PHI instruction.
533 bool NonPHIUse = false;
534 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
535 MachineBasicBlock *UseBlock = UseInst.getParent();
536 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
537 NonPHIUse = true;
539 if (!NonPHIUse)
540 return true;
542 // If SuccToSinkTo post dominates then also it may be profitable if MI
543 // can further profitably sinked into another block in next round.
544 bool BreakPHIEdge = false;
545 // FIXME - If finding successor is compile time expensive then cache results.
546 if (MachineBasicBlock *MBB2 =
547 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
548 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
550 // If SuccToSinkTo is final destination and it is a post dominator of current
551 // block then it is not profitable to sink MI into SuccToSinkTo block.
552 return false;
555 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
556 /// computing it if it was not already cached.
557 SmallVector<MachineBasicBlock *, 4> &
558 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
559 AllSuccsCache &AllSuccessors) const {
560 // Do we have the sorted successors in cache ?
561 auto Succs = AllSuccessors.find(MBB);
562 if (Succs != AllSuccessors.end())
563 return Succs->second;
565 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
566 MBB->succ_end());
568 // Handle cases where sinking can happen but where the sink point isn't a
569 // successor. For example:
571 // x = computation
572 // if () {} else {}
573 // use x
575 const std::vector<MachineDomTreeNode *> &Children =
576 DT->getNode(MBB)->getChildren();
577 for (const auto &DTChild : Children)
578 // DomTree children of MBB that have MBB as immediate dominator are added.
579 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
580 // Skip MBBs already added to the AllSuccs vector above.
581 !MBB->isSuccessor(DTChild->getBlock()))
582 AllSuccs.push_back(DTChild->getBlock());
584 // Sort Successors according to their loop depth or block frequency info.
585 llvm::stable_sort(
586 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
587 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
588 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
589 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
590 return HasBlockFreq ? LHSFreq < RHSFreq
591 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
594 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
596 return it.first->second;
599 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
600 MachineBasicBlock *
601 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
602 bool &BreakPHIEdge,
603 AllSuccsCache &AllSuccessors) {
604 assert (MBB && "Invalid MachineBasicBlock!");
606 // Loop over all the operands of the specified instruction. If there is
607 // anything we can't handle, bail out.
609 // SuccToSinkTo - This is the successor to sink this instruction to, once we
610 // decide.
611 MachineBasicBlock *SuccToSinkTo = nullptr;
612 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
613 const MachineOperand &MO = MI.getOperand(i);
614 if (!MO.isReg()) continue; // Ignore non-register operands.
616 unsigned Reg = MO.getReg();
617 if (Reg == 0) continue;
619 if (Register::isPhysicalRegister(Reg)) {
620 if (MO.isUse()) {
621 // If the physreg has no defs anywhere, it's just an ambient register
622 // and we can freely move its uses. Alternatively, if it's allocatable,
623 // it could get allocated to something with a def during allocation.
624 if (!MRI->isConstantPhysReg(Reg))
625 return nullptr;
626 } else if (!MO.isDead()) {
627 // A def that isn't dead. We can't move it.
628 return nullptr;
630 } else {
631 // Virtual register uses are always safe to sink.
632 if (MO.isUse()) continue;
634 // If it's not safe to move defs of the register class, then abort.
635 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
636 return nullptr;
638 // Virtual register defs can only be sunk if all their uses are in blocks
639 // dominated by one of the successors.
640 if (SuccToSinkTo) {
641 // If a previous operand picked a block to sink to, then this operand
642 // must be sinkable to the same block.
643 bool LocalUse = false;
644 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
645 BreakPHIEdge, LocalUse))
646 return nullptr;
648 continue;
651 // Otherwise, we should look at all the successors and decide which one
652 // we should sink to. If we have reliable block frequency information
653 // (frequency != 0) available, give successors with smaller frequencies
654 // higher priority, otherwise prioritize smaller loop depths.
655 for (MachineBasicBlock *SuccBlock :
656 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
657 bool LocalUse = false;
658 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
659 BreakPHIEdge, LocalUse)) {
660 SuccToSinkTo = SuccBlock;
661 break;
663 if (LocalUse)
664 // Def is used locally, it's never safe to move this def.
665 return nullptr;
668 // If we couldn't find a block to sink to, ignore this instruction.
669 if (!SuccToSinkTo)
670 return nullptr;
671 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
672 return nullptr;
676 // It is not possible to sink an instruction into its own block. This can
677 // happen with loops.
678 if (MBB == SuccToSinkTo)
679 return nullptr;
681 // It's not safe to sink instructions to EH landing pad. Control flow into
682 // landing pad is implicitly defined.
683 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
684 return nullptr;
686 return SuccToSinkTo;
689 /// Return true if MI is likely to be usable as a memory operation by the
690 /// implicit null check optimization.
692 /// This is a "best effort" heuristic, and should not be relied upon for
693 /// correctness. This returning true does not guarantee that the implicit null
694 /// check optimization is legal over MI, and this returning false does not
695 /// guarantee MI cannot possibly be used to do a null check.
696 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
697 const TargetInstrInfo *TII,
698 const TargetRegisterInfo *TRI) {
699 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
701 auto *MBB = MI.getParent();
702 if (MBB->pred_size() != 1)
703 return false;
705 auto *PredMBB = *MBB->pred_begin();
706 auto *PredBB = PredMBB->getBasicBlock();
708 // Frontends that don't use implicit null checks have no reason to emit
709 // branches with make.implicit metadata, and this function should always
710 // return false for them.
711 if (!PredBB ||
712 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
713 return false;
715 const MachineOperand *BaseOp;
716 int64_t Offset;
717 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
718 return false;
720 if (!BaseOp->isReg())
721 return false;
723 if (!(MI.mayLoad() && !MI.isPredicable()))
724 return false;
726 MachineBranchPredicate MBP;
727 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
728 return false;
730 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
731 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
732 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
733 MBP.LHS.getReg() == BaseOp->getReg();
736 /// Sink an instruction and its associated debug instructions. If the debug
737 /// instructions to be sunk are already known, they can be provided in DbgVals.
738 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
739 MachineBasicBlock::iterator InsertPos,
740 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
741 // If debug values are provided use those, otherwise call collectDebugValues.
742 SmallVector<MachineInstr *, 2> DbgValuesToSink;
743 if (DbgVals)
744 DbgValuesToSink.insert(DbgValuesToSink.begin(),
745 DbgVals->begin(), DbgVals->end());
746 else
747 MI.collectDebugValues(DbgValuesToSink);
749 // If we cannot find a location to use (merge with), then we erase the debug
750 // location to prevent debug-info driven tools from potentially reporting
751 // wrong location information.
752 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
753 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
754 InsertPos->getDebugLoc()));
755 else
756 MI.setDebugLoc(DebugLoc());
758 // Move the instruction.
759 MachineBasicBlock *ParentBlock = MI.getParent();
760 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
761 ++MachineBasicBlock::iterator(MI));
763 // Move previously adjacent debug value instructions to the insert position.
764 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
765 DBE = DbgValuesToSink.end();
766 DBI != DBE; ++DBI) {
767 MachineInstr *DbgMI = *DBI;
768 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
769 ++MachineBasicBlock::iterator(DbgMI));
773 /// SinkInstruction - Determine whether it is safe to sink the specified machine
774 /// instruction out of its current block into a successor.
775 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
776 AllSuccsCache &AllSuccessors) {
777 // Don't sink instructions that the target prefers not to sink.
778 if (!TII->shouldSink(MI))
779 return false;
781 // Check if it's safe to move the instruction.
782 if (!MI.isSafeToMove(AA, SawStore))
783 return false;
785 // Convergent operations may not be made control-dependent on additional
786 // values.
787 if (MI.isConvergent())
788 return false;
790 // Don't break implicit null checks. This is a performance heuristic, and not
791 // required for correctness.
792 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
793 return false;
795 // FIXME: This should include support for sinking instructions within the
796 // block they are currently in to shorten the live ranges. We often get
797 // instructions sunk into the top of a large block, but it would be better to
798 // also sink them down before their first use in the block. This xform has to
799 // be careful not to *increase* register pressure though, e.g. sinking
800 // "x = y + z" down if it kills y and z would increase the live ranges of y
801 // and z and only shrink the live range of x.
803 bool BreakPHIEdge = false;
804 MachineBasicBlock *ParentBlock = MI.getParent();
805 MachineBasicBlock *SuccToSinkTo =
806 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
808 // If there are no outputs, it must have side-effects.
809 if (!SuccToSinkTo)
810 return false;
812 // If the instruction to move defines a dead physical register which is live
813 // when leaving the basic block, don't move it because it could turn into a
814 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
815 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
816 const MachineOperand &MO = MI.getOperand(I);
817 if (!MO.isReg()) continue;
818 unsigned Reg = MO.getReg();
819 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
820 continue;
821 if (SuccToSinkTo->isLiveIn(Reg))
822 return false;
825 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
827 // If the block has multiple predecessors, this is a critical edge.
828 // Decide if we can sink along it or need to break the edge.
829 if (SuccToSinkTo->pred_size() > 1) {
830 // We cannot sink a load across a critical edge - there may be stores in
831 // other code paths.
832 bool TryBreak = false;
833 bool store = true;
834 if (!MI.isSafeToMove(AA, store)) {
835 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
836 TryBreak = true;
839 // We don't want to sink across a critical edge if we don't dominate the
840 // successor. We could be introducing calculations to new code paths.
841 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
842 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
843 TryBreak = true;
846 // Don't sink instructions into a loop.
847 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
848 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
849 TryBreak = true;
852 // Otherwise we are OK with sinking along a critical edge.
853 if (!TryBreak)
854 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
855 else {
856 // Mark this edge as to be split.
857 // If the edge can actually be split, the next iteration of the main loop
858 // will sink MI in the newly created block.
859 bool Status =
860 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
861 if (!Status)
862 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
863 "break critical edge\n");
864 // The instruction will not be sunk this time.
865 return false;
869 if (BreakPHIEdge) {
870 // BreakPHIEdge is true if all the uses are in the successor MBB being
871 // sunken into and they are all PHI nodes. In this case, machine-sink must
872 // break the critical edge first.
873 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
874 SuccToSinkTo, BreakPHIEdge);
875 if (!Status)
876 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
877 "break critical edge\n");
878 // The instruction will not be sunk this time.
879 return false;
882 // Determine where to insert into. Skip phi nodes.
883 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
884 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
885 ++InsertPos;
887 performSink(MI, *SuccToSinkTo, InsertPos);
889 // Conservatively, clear any kill flags, since it's possible that they are no
890 // longer correct.
891 // Note that we have to clear the kill flags for any register this instruction
892 // uses as we may sink over another instruction which currently kills the
893 // used registers.
894 for (MachineOperand &MO : MI.operands()) {
895 if (MO.isReg() && MO.isUse())
896 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
899 return true;
902 //===----------------------------------------------------------------------===//
903 // This pass is not intended to be a replacement or a complete alternative
904 // for the pre-ra machine sink pass. It is only designed to sink COPY
905 // instructions which should be handled after RA.
907 // This pass sinks COPY instructions into a successor block, if the COPY is not
908 // used in the current block and the COPY is live-in to a single successor
909 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
910 // copy on paths where their results aren't needed. This also exposes
911 // additional opportunites for dead copy elimination and shrink wrapping.
913 // These copies were either not handled by or are inserted after the MachineSink
914 // pass. As an example of the former case, the MachineSink pass cannot sink
915 // COPY instructions with allocatable source registers; for AArch64 these type
916 // of copy instructions are frequently used to move function parameters (PhyReg)
917 // into virtual registers in the entry block.
919 // For the machine IR below, this pass will sink %w19 in the entry into its
920 // successor (%bb.1) because %w19 is only live-in in %bb.1.
921 // %bb.0:
922 // %wzr = SUBSWri %w1, 1
923 // %w19 = COPY %w0
924 // Bcc 11, %bb.2
925 // %bb.1:
926 // Live Ins: %w19
927 // BL @fun
928 // %w0 = ADDWrr %w0, %w19
929 // RET %w0
930 // %bb.2:
931 // %w0 = COPY %wzr
932 // RET %w0
933 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
934 // able to see %bb.0 as a candidate.
935 //===----------------------------------------------------------------------===//
936 namespace {
938 class PostRAMachineSinking : public MachineFunctionPass {
939 public:
940 bool runOnMachineFunction(MachineFunction &MF) override;
942 static char ID;
943 PostRAMachineSinking() : MachineFunctionPass(ID) {}
944 StringRef getPassName() const override { return "PostRA Machine Sink"; }
946 void getAnalysisUsage(AnalysisUsage &AU) const override {
947 AU.setPreservesCFG();
948 MachineFunctionPass::getAnalysisUsage(AU);
951 MachineFunctionProperties getRequiredProperties() const override {
952 return MachineFunctionProperties().set(
953 MachineFunctionProperties::Property::NoVRegs);
956 private:
957 /// Track which register units have been modified and used.
958 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
960 /// Track DBG_VALUEs of (unmodified) register units.
961 DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
963 /// Sink Copy instructions unused in the same block close to their uses in
964 /// successors.
965 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
966 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
968 } // namespace
970 char PostRAMachineSinking::ID = 0;
971 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
973 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
974 "PostRA Machine Sink", false, false)
976 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
977 const TargetRegisterInfo *TRI) {
978 LiveRegUnits LiveInRegUnits(*TRI);
979 LiveInRegUnits.addLiveIns(MBB);
980 return !LiveInRegUnits.available(Reg);
983 static MachineBasicBlock *
984 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
985 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
986 unsigned Reg, const TargetRegisterInfo *TRI) {
987 // Try to find a single sinkable successor in which Reg is live-in.
988 MachineBasicBlock *BB = nullptr;
989 for (auto *SI : SinkableBBs) {
990 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
991 // If BB is set here, Reg is live-in to at least two sinkable successors,
992 // so quit.
993 if (BB)
994 return nullptr;
995 BB = SI;
998 // Reg is not live-in to any sinkable successors.
999 if (!BB)
1000 return nullptr;
1002 // Check if any register aliased with Reg is live-in in other successors.
1003 for (auto *SI : CurBB.successors()) {
1004 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1005 return nullptr;
1007 return BB;
1010 static MachineBasicBlock *
1011 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1012 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1013 ArrayRef<unsigned> DefedRegsInCopy,
1014 const TargetRegisterInfo *TRI) {
1015 MachineBasicBlock *SingleBB = nullptr;
1016 for (auto DefReg : DefedRegsInCopy) {
1017 MachineBasicBlock *BB =
1018 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1019 if (!BB || (SingleBB && SingleBB != BB))
1020 return nullptr;
1021 SingleBB = BB;
1023 return SingleBB;
1026 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1027 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1028 LiveRegUnits &UsedRegUnits,
1029 const TargetRegisterInfo *TRI) {
1030 for (auto U : UsedOpsInCopy) {
1031 MachineOperand &MO = MI->getOperand(U);
1032 unsigned SrcReg = MO.getReg();
1033 if (!UsedRegUnits.available(SrcReg)) {
1034 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1035 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1036 if (UI.killsRegister(SrcReg, TRI)) {
1037 UI.clearRegisterKills(SrcReg, TRI);
1038 MO.setIsKill(true);
1039 break;
1046 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1047 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1048 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1049 MachineFunction &MF = *SuccBB->getParent();
1050 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1051 for (unsigned DefReg : DefedRegsInCopy)
1052 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1053 SuccBB->removeLiveIn(*S);
1054 for (auto U : UsedOpsInCopy) {
1055 unsigned Reg = MI->getOperand(U).getReg();
1056 if (!SuccBB->isLiveIn(Reg))
1057 SuccBB->addLiveIn(Reg);
1061 static bool hasRegisterDependency(MachineInstr *MI,
1062 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1063 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1064 LiveRegUnits &ModifiedRegUnits,
1065 LiveRegUnits &UsedRegUnits) {
1066 bool HasRegDependency = false;
1067 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1068 MachineOperand &MO = MI->getOperand(i);
1069 if (!MO.isReg())
1070 continue;
1071 unsigned Reg = MO.getReg();
1072 if (!Reg)
1073 continue;
1074 if (MO.isDef()) {
1075 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1076 HasRegDependency = true;
1077 break;
1079 DefedRegsInCopy.push_back(Reg);
1081 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1082 // For example, we can ignore modifications in reg with undef. However,
1083 // it's not perfectly clear if skipping the internal read is safe in all
1084 // other targets.
1085 } else if (MO.isUse()) {
1086 if (!ModifiedRegUnits.available(Reg)) {
1087 HasRegDependency = true;
1088 break;
1090 UsedOpsInCopy.push_back(i);
1093 return HasRegDependency;
1096 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1097 MachineFunction &MF,
1098 const TargetRegisterInfo *TRI,
1099 const TargetInstrInfo *TII) {
1100 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1101 // FIXME: For now, we sink only to a successor which has a single predecessor
1102 // so that we can directly sink COPY instructions to the successor without
1103 // adding any new block or branch instruction.
1104 for (MachineBasicBlock *SI : CurBB.successors())
1105 if (!SI->livein_empty() && SI->pred_size() == 1)
1106 SinkableBBs.insert(SI);
1108 if (SinkableBBs.empty())
1109 return false;
1111 bool Changed = false;
1113 // Track which registers have been modified and used between the end of the
1114 // block and the current instruction.
1115 ModifiedRegUnits.clear();
1116 UsedRegUnits.clear();
1117 SeenDbgInstrs.clear();
1119 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1120 MachineInstr *MI = &*I;
1121 ++I;
1123 // Track the operand index for use in Copy.
1124 SmallVector<unsigned, 2> UsedOpsInCopy;
1125 // Track the register number defed in Copy.
1126 SmallVector<unsigned, 2> DefedRegsInCopy;
1128 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1129 // for DBG_VALUEs later, record them when they're encountered.
1130 if (MI->isDebugValue()) {
1131 auto &MO = MI->getOperand(0);
1132 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1133 // Bail if we can already tell the sink would be rejected, rather
1134 // than needlessly accumulating lots of DBG_VALUEs.
1135 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1136 ModifiedRegUnits, UsedRegUnits))
1137 continue;
1139 // Record debug use of this register.
1140 SeenDbgInstrs[MO.getReg()].push_back(MI);
1142 continue;
1145 if (MI->isDebugInstr())
1146 continue;
1148 // Do not move any instruction across function call.
1149 if (MI->isCall())
1150 return false;
1152 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1153 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1154 TRI);
1155 continue;
1158 // Don't sink the COPY if it would violate a register dependency.
1159 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1160 ModifiedRegUnits, UsedRegUnits)) {
1161 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1162 TRI);
1163 continue;
1165 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1166 "Unexpect SrcReg or DefReg");
1167 MachineBasicBlock *SuccBB =
1168 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1169 // Don't sink if we cannot find a single sinkable successor in which Reg
1170 // is live-in.
1171 if (!SuccBB) {
1172 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1173 TRI);
1174 continue;
1176 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1177 "Unexpected predecessor");
1179 // Collect DBG_VALUEs that must sink with this copy.
1180 SmallVector<MachineInstr *, 4> DbgValsToSink;
1181 for (auto &MO : MI->operands()) {
1182 if (!MO.isReg() || !MO.isDef())
1183 continue;
1184 unsigned reg = MO.getReg();
1185 for (auto *MI : SeenDbgInstrs.lookup(reg))
1186 DbgValsToSink.push_back(MI);
1189 // Clear the kill flag if SrcReg is killed between MI and the end of the
1190 // block.
1191 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1192 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1193 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1194 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1196 Changed = true;
1197 ++NumPostRACopySink;
1199 return Changed;
1202 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1203 if (skipFunction(MF.getFunction()))
1204 return false;
1206 bool Changed = false;
1207 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1208 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1210 ModifiedRegUnits.init(*TRI);
1211 UsedRegUnits.init(*TRI);
1212 for (auto &BB : MF)
1213 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1215 return Changed;