1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
268 setOperationAction(ISD::CTPOP
, VT
, Expand
);
271 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
272 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
273 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
274 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
277 // Pre and Post inc are supported on loads and stores
278 for (unsigned im
= (unsigned)ISD::PRE_INC
;
279 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
280 setIndexedLoadAction(im
, VT
, Legal
);
281 setIndexedStoreAction(im
, VT
, Legal
);
285 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
286 for (auto VT
: FloatTypes
) {
287 addRegisterClass(VT
, &ARM::QPRRegClass
);
291 // These are legal or custom whether we have MVE.fp or not
292 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
293 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
294 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
295 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
296 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
297 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
298 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
299 setOperationAction(ISD::SETCC
, VT
, Custom
);
301 // Pre and Post inc are supported on loads and stores
302 for (unsigned im
= (unsigned)ISD::PRE_INC
;
303 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
304 setIndexedLoadAction(im
, VT
, Legal
);
305 setIndexedStoreAction(im
, VT
, Legal
);
309 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
310 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
311 setOperationAction(ISD::FROUND
, VT
, Legal
);
313 // No native support for these.
314 setOperationAction(ISD::FDIV
, VT
, Expand
);
315 setOperationAction(ISD::FREM
, VT
, Expand
);
316 setOperationAction(ISD::FSQRT
, VT
, Expand
);
317 setOperationAction(ISD::FSIN
, VT
, Expand
);
318 setOperationAction(ISD::FCOS
, VT
, Expand
);
319 setOperationAction(ISD::FPOW
, VT
, Expand
);
320 setOperationAction(ISD::FLOG
, VT
, Expand
);
321 setOperationAction(ISD::FLOG2
, VT
, Expand
);
322 setOperationAction(ISD::FLOG10
, VT
, Expand
);
323 setOperationAction(ISD::FEXP
, VT
, Expand
);
324 setOperationAction(ISD::FEXP2
, VT
, Expand
);
325 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
329 // We 'support' these types up to bitcast/load/store level, regardless of
330 // MVE integer-only / float support. Only doing FP data processing on the FP
331 // vector types is inhibited at integer-only level.
332 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
333 for (auto VT
: LongTypes
) {
334 addRegisterClass(VT
, &ARM::QPRRegClass
);
336 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
337 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
338 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
340 // We can do bitwise operations on v2i64 vectors
341 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
342 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
343 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
345 // It is legal to extload from v4i8 to v4i16 or v4i32.
346 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
347 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
348 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
350 // Some truncating stores are legal too.
351 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
352 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
353 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
355 // Pre and Post inc on these are legal, given the correct extends
356 for (unsigned im
= (unsigned)ISD::PRE_INC
;
357 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
358 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
359 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
360 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
361 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
362 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
363 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
367 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
368 for (auto VT
: pTypes
) {
369 addRegisterClass(VT
, &ARM::VCCRRegClass
);
370 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
371 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
372 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
373 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
374 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
375 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
376 setOperationAction(ISD::SETCC
, VT
, Custom
);
377 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
381 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
382 const ARMSubtarget
&STI
)
383 : TargetLowering(TM
), Subtarget(&STI
) {
384 RegInfo
= Subtarget
->getRegisterInfo();
385 Itins
= Subtarget
->getInstrItineraryData();
387 setBooleanContents(ZeroOrOneBooleanContent
);
388 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
390 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
391 !Subtarget
->isTargetWatchOS()) {
392 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
393 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
394 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
395 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
396 : CallingConv::ARM_AAPCS
);
399 if (Subtarget
->isTargetMachO()) {
400 // Uses VFP for Thumb libfuncs if available.
401 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
402 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
403 static const struct {
404 const RTLIB::Libcall Op
;
405 const char * const Name
;
406 const ISD::CondCode Cond
;
408 // Single-precision floating-point arithmetic.
409 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
410 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
411 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
412 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
414 // Double-precision floating-point arithmetic.
415 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
416 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
417 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
418 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
420 // Single-precision comparisons.
421 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
422 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
423 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
424 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
425 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
426 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
427 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
428 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
430 // Double-precision comparisons.
431 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
432 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
433 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
434 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
435 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
436 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
437 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
438 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
440 // Floating-point to integer conversions.
441 // i64 conversions are done via library routines even when generating VFP
442 // instructions, so use the same ones.
443 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
444 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
445 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
446 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
448 // Conversions between floating types.
449 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
450 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
452 // Integer to floating-point conversions.
453 // i64 conversions are done via library routines even when generating VFP
454 // instructions, so use the same ones.
455 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
456 // e.g., __floatunsidf vs. __floatunssidfvfp.
457 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
458 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
459 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
460 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
463 for (const auto &LC
: LibraryCalls
) {
464 setLibcallName(LC
.Op
, LC
.Name
);
465 if (LC
.Cond
!= ISD::SETCC_INVALID
)
466 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
471 // These libcalls are not available in 32-bit.
472 setLibcallName(RTLIB::SHL_I128
, nullptr);
473 setLibcallName(RTLIB::SRL_I128
, nullptr);
474 setLibcallName(RTLIB::SRA_I128
, nullptr);
477 if (Subtarget
->isAAPCS_ABI() &&
478 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
479 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
480 static const struct {
481 const RTLIB::Libcall Op
;
482 const char * const Name
;
483 const CallingConv::ID CC
;
484 const ISD::CondCode Cond
;
486 // Double-precision floating-point arithmetic helper functions
487 // RTABI chapter 4.1.2, Table 2
488 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
489 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
490 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
491 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
493 // Double-precision floating-point comparison helper functions
494 // RTABI chapter 4.1.2, Table 3
495 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
496 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
497 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
498 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
499 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
500 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
501 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
502 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
504 // Single-precision floating-point arithmetic helper functions
505 // RTABI chapter 4.1.2, Table 4
506 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
508 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
509 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 // Single-precision floating-point comparison helper functions
512 // RTABI chapter 4.1.2, Table 5
513 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
514 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
515 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
516 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
518 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
522 // Floating-point to integer conversions.
523 // RTABI chapter 4.1.2, Table 6
524 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
525 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
526 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
527 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
533 // Conversions between floating types.
534 // RTABI chapter 4.1.2, Table 7
535 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
537 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 // Integer to floating-point conversions.
540 // RTABI chapter 4.1.2, Table 8
541 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
543 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
544 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 // Long long helper functions
551 // RTABI chapter 4.2, Table 9
552 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
554 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
555 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 // Integer division functions
558 // RTABI chapter 4.3.1
559 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
561 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 for (const auto &LC
: LibraryCalls
) {
570 setLibcallName(LC
.Op
, LC
.Name
);
571 setLibcallCallingConv(LC
.Op
, LC
.CC
);
572 if (LC
.Cond
!= ISD::SETCC_INVALID
)
573 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
576 // EABI dependent RTLIB
577 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
578 TM
.Options
.EABIVersion
== EABI::EABI5
) {
579 static const struct {
580 const RTLIB::Libcall Op
;
581 const char *const Name
;
582 const CallingConv::ID CC
;
583 const ISD::CondCode Cond
;
584 } MemOpsLibraryCalls
[] = {
586 // RTABI chapter 4.3.4
587 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
588 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
589 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
592 for (const auto &LC
: MemOpsLibraryCalls
) {
593 setLibcallName(LC
.Op
, LC
.Name
);
594 setLibcallCallingConv(LC
.Op
, LC
.CC
);
595 if (LC
.Cond
!= ISD::SETCC_INVALID
)
596 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
601 if (Subtarget
->isTargetWindows()) {
602 static const struct {
603 const RTLIB::Libcall Op
;
604 const char * const Name
;
605 const CallingConv::ID CC
;
607 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
608 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
609 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
610 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
611 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
612 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
613 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
614 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
617 for (const auto &LC
: LibraryCalls
) {
618 setLibcallName(LC
.Op
, LC
.Name
);
619 setLibcallCallingConv(LC
.Op
, LC
.CC
);
623 // Use divmod compiler-rt calls for iOS 5.0 and later.
624 if (Subtarget
->isTargetMachO() &&
625 !(Subtarget
->isTargetIOS() &&
626 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
627 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
628 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
631 // The half <-> float conversion functions are always soft-float on
632 // non-watchos platforms, but are needed for some targets which use a
633 // hard-float calling convention by default.
634 if (!Subtarget
->isTargetWatchABI()) {
635 if (Subtarget
->isAAPCS_ABI()) {
636 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
637 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
638 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
640 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
641 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
642 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
646 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
647 // a __gnu_ prefix (which is the default).
648 if (Subtarget
->isTargetAEABI()) {
649 static const struct {
650 const RTLIB::Libcall Op
;
651 const char * const Name
;
652 const CallingConv::ID CC
;
654 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
655 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
656 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
659 for (const auto &LC
: LibraryCalls
) {
660 setLibcallName(LC
.Op
, LC
.Name
);
661 setLibcallCallingConv(LC
.Op
, LC
.CC
);
665 if (Subtarget
->isThumb1Only())
666 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
668 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
670 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
671 Subtarget
->hasFPRegs()) {
672 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
673 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
674 if (!Subtarget
->hasVFP2Base())
675 setAllExpand(MVT::f32
);
676 if (!Subtarget
->hasFP64())
677 setAllExpand(MVT::f64
);
680 if (Subtarget
->hasFullFP16()) {
681 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
682 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
683 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
684 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
686 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
687 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
690 for (MVT VT
: MVT::vector_valuetypes()) {
691 for (MVT InnerVT
: MVT::vector_valuetypes()) {
692 setTruncStoreAction(VT
, InnerVT
, Expand
);
693 addAllExtLoads(VT
, InnerVT
, Expand
);
696 setOperationAction(ISD::MULHS
, VT
, Expand
);
697 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
698 setOperationAction(ISD::MULHU
, VT
, Expand
);
699 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
701 setOperationAction(ISD::BSWAP
, VT
, Expand
);
704 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
705 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
707 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
708 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
710 if (Subtarget
->hasMVEIntegerOps())
711 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
713 // Combine low-overhead loop intrinsics so that we can lower i1 types.
714 if (Subtarget
->hasLOB()) {
715 setTargetDAGCombine(ISD::BRCOND
);
716 setTargetDAGCombine(ISD::BR_CC
);
719 if (Subtarget
->hasNEON()) {
720 addDRTypeForNEON(MVT::v2f32
);
721 addDRTypeForNEON(MVT::v8i8
);
722 addDRTypeForNEON(MVT::v4i16
);
723 addDRTypeForNEON(MVT::v2i32
);
724 addDRTypeForNEON(MVT::v1i64
);
726 addQRTypeForNEON(MVT::v4f32
);
727 addQRTypeForNEON(MVT::v2f64
);
728 addQRTypeForNEON(MVT::v16i8
);
729 addQRTypeForNEON(MVT::v8i16
);
730 addQRTypeForNEON(MVT::v4i32
);
731 addQRTypeForNEON(MVT::v2i64
);
733 if (Subtarget
->hasFullFP16()) {
734 addQRTypeForNEON(MVT::v8f16
);
735 addDRTypeForNEON(MVT::v4f16
);
739 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
740 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
741 // none of Neon, MVE or VFP supports any arithmetic operations on it.
742 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
743 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
744 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
745 // FIXME: Code duplication: FDIV and FREM are expanded always, see
746 // ARMTargetLowering::addTypeForNEON method for details.
747 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
748 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
749 // FIXME: Create unittest.
750 // In another words, find a way when "copysign" appears in DAG with vector
752 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
753 // FIXME: Code duplication: SETCC has custom operation action, see
754 // ARMTargetLowering::addTypeForNEON method for details.
755 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
756 // FIXME: Create unittest for FNEG and for FABS.
757 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
758 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
759 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
760 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
761 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
762 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
766 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
768 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
769 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
770 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
771 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
772 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
773 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
774 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
777 if (Subtarget
->hasNEON()) {
778 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
779 // supported for v4f32.
780 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
781 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
782 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
783 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
784 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
785 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
786 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
787 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
788 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
789 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
790 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
791 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
792 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
793 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
795 // Mark v2f32 intrinsics.
796 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
797 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
798 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
799 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
800 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
801 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
802 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
803 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
804 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
805 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
806 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
807 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
808 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
809 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
811 // Neon does not support some operations on v1i64 and v2i64 types.
812 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
813 // Custom handling for some quad-vector types to detect VMULL.
814 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
815 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
816 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
817 // Custom handling for some vector types to avoid expensive expansions
818 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
819 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
820 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
821 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
822 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
823 // a destination type that is wider than the source, and nor does
824 // it have a FP_TO_[SU]INT instruction with a narrower destination than
826 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
827 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
828 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
829 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
830 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
831 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
832 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
833 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
835 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
836 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
838 // NEON does not have single instruction CTPOP for vectors with element
839 // types wider than 8-bits. However, custom lowering can leverage the
840 // v8i8/v16i8 vcnt instruction.
841 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
842 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
843 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
844 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
845 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
846 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
848 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
849 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
851 // NEON does not have single instruction CTTZ for vectors.
852 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
853 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
854 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
855 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
857 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
858 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
859 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
860 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
862 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
863 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
864 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
865 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
869 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
872 // NEON only has FMA instructions as of VFP4.
873 if (!Subtarget
->hasVFP4Base()) {
874 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
875 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
878 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
879 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
880 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
881 setTargetDAGCombine(ISD::SHL
);
882 setTargetDAGCombine(ISD::SRL
);
883 setTargetDAGCombine(ISD::SRA
);
884 setTargetDAGCombine(ISD::SIGN_EXTEND
);
885 setTargetDAGCombine(ISD::ZERO_EXTEND
);
886 setTargetDAGCombine(ISD::ANY_EXTEND
);
887 setTargetDAGCombine(ISD::STORE
);
888 setTargetDAGCombine(ISD::FP_TO_SINT
);
889 setTargetDAGCombine(ISD::FP_TO_UINT
);
890 setTargetDAGCombine(ISD::FDIV
);
891 setTargetDAGCombine(ISD::LOAD
);
893 // It is legal to extload from v4i8 to v4i16 or v4i32.
894 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
896 for (MVT VT
: MVT::integer_vector_valuetypes()) {
897 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
898 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
899 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
904 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
905 setTargetDAGCombine(ISD::BUILD_VECTOR
);
906 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
907 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
910 if (!Subtarget
->hasFP64()) {
911 // When targeting a floating-point unit with only single-precision
912 // operations, f64 is legal for the few double-precision instructions which
913 // are present However, no double-precision operations other than moves,
914 // loads and stores are provided by the hardware.
915 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
916 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
917 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
918 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
919 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
920 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
921 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
922 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
923 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
924 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
925 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
926 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
927 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
928 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
929 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
930 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
931 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
932 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
939 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
940 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
941 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
942 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
943 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
944 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
945 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
948 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
949 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
950 if (Subtarget
->hasFullFP16())
951 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
954 if (!Subtarget
->hasFP16())
955 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
957 if (!Subtarget
->hasFP64())
958 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
960 computeRegisterProperties(Subtarget
->getRegisterInfo());
962 // ARM does not have floating-point extending loads.
963 for (MVT VT
: MVT::fp_valuetypes()) {
964 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
965 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
968 // ... or truncating stores
969 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
970 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
971 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
973 // ARM does not have i1 sign extending load.
974 for (MVT VT
: MVT::integer_valuetypes())
975 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
977 // ARM supports all 4 flavors of integer indexed load / store.
978 if (!Subtarget
->isThumb1Only()) {
979 for (unsigned im
= (unsigned)ISD::PRE_INC
;
980 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
981 setIndexedLoadAction(im
, MVT::i1
, Legal
);
982 setIndexedLoadAction(im
, MVT::i8
, Legal
);
983 setIndexedLoadAction(im
, MVT::i16
, Legal
);
984 setIndexedLoadAction(im
, MVT::i32
, Legal
);
985 setIndexedStoreAction(im
, MVT::i1
, Legal
);
986 setIndexedStoreAction(im
, MVT::i8
, Legal
);
987 setIndexedStoreAction(im
, MVT::i16
, Legal
);
988 setIndexedStoreAction(im
, MVT::i32
, Legal
);
991 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
992 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
993 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
996 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
997 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
998 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
999 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1001 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1002 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1004 // i64 operation support.
1005 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1006 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1007 if (Subtarget
->isThumb1Only()) {
1008 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1009 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1011 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1012 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1013 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1015 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1016 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1017 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1018 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1019 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1020 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1022 // MVE lowers 64 bit shifts to lsll and lsrl
1023 // assuming that ISD::SRL and SRA of i64 are already marked custom
1024 if (Subtarget
->hasMVEIntegerOps())
1025 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1027 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1028 if (Subtarget
->isThumb1Only()) {
1029 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1030 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1031 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1034 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1035 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1037 // ARM does not have ROTL.
1038 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1039 for (MVT VT
: MVT::vector_valuetypes()) {
1040 setOperationAction(ISD::ROTL
, VT
, Expand
);
1041 setOperationAction(ISD::ROTR
, VT
, Expand
);
1043 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1044 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1045 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1046 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1047 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1050 // @llvm.readcyclecounter requires the Performance Monitors extension.
1051 // Default to the 0 expansion on unsupported platforms.
1052 // FIXME: Technically there are older ARM CPUs that have
1053 // implementation-specific ways of obtaining this information.
1054 if (Subtarget
->hasPerfMon())
1055 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1057 // Only ARMv6 has BSWAP.
1058 if (!Subtarget
->hasV6Ops())
1059 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1061 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1062 : Subtarget
->hasDivideInARMMode();
1064 // These are expanded into libcalls if the cpu doesn't have HW divider.
1065 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1066 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1069 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1070 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1071 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1073 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1074 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1077 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1078 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1080 // Register based DivRem for AEABI (RTABI 4.2)
1081 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1082 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1083 Subtarget
->isTargetWindows()) {
1084 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1085 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1086 HasStandaloneRem
= false;
1088 if (Subtarget
->isTargetWindows()) {
1090 const RTLIB::Libcall Op
;
1091 const char * const Name
;
1092 const CallingConv::ID CC
;
1093 } LibraryCalls
[] = {
1094 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1095 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1096 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1097 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1099 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1100 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1101 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1102 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1105 for (const auto &LC
: LibraryCalls
) {
1106 setLibcallName(LC
.Op
, LC
.Name
);
1107 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1111 const RTLIB::Libcall Op
;
1112 const char * const Name
;
1113 const CallingConv::ID CC
;
1114 } LibraryCalls
[] = {
1115 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1116 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1117 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1118 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1120 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1121 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1122 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1123 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1126 for (const auto &LC
: LibraryCalls
) {
1127 setLibcallName(LC
.Op
, LC
.Name
);
1128 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1132 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1133 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1134 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1135 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1137 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1138 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1141 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1142 for (auto &VT
: {MVT::f32
, MVT::f64
})
1143 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1145 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1146 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1147 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1148 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1150 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1151 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1153 // Use the default implementation.
1154 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1155 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1156 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1157 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1158 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1159 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1161 if (Subtarget
->isTargetWindows())
1162 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1164 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1166 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1167 // the default expansion.
1168 InsertFencesForAtomic
= false;
1169 if (Subtarget
->hasAnyDataBarrier() &&
1170 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1171 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1172 // to ldrex/strex loops already.
1173 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1174 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1175 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1177 // On v8, we have particularly efficient implementations of atomic fences
1178 // if they can be combined with nearby atomic loads and stores.
1179 if (!Subtarget
->hasAcquireRelease() ||
1180 getTargetMachine().getOptLevel() == 0) {
1181 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1182 InsertFencesForAtomic
= true;
1185 // If there's anything we can use as a barrier, go through custom lowering
1186 // for ATOMIC_FENCE.
1187 // If target has DMB in thumb, Fences can be inserted.
1188 if (Subtarget
->hasDataBarrier())
1189 InsertFencesForAtomic
= true;
1191 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1192 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1194 // Set them all for expansion, which will force libcalls.
1195 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1196 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1197 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1198 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1199 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1200 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1201 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1204 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1205 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1206 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1207 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1208 // Unordered/Monotonic case.
1209 if (!InsertFencesForAtomic
) {
1210 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1211 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1215 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1217 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1218 if (!Subtarget
->hasV6Ops()) {
1219 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1220 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1222 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1224 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1225 !Subtarget
->isThumb1Only()) {
1226 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1227 // iff target supports vfp2.
1228 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1229 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1232 // We want to custom lower some of our intrinsics.
1233 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1234 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1235 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1236 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1237 if (Subtarget
->useSjLjEH())
1238 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1240 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1241 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1242 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1243 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1244 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1245 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1246 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1247 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1248 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1249 if (Subtarget
->hasFullFP16()) {
1250 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1251 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1252 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1255 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1257 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1258 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1259 if (Subtarget
->hasFullFP16())
1260 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1261 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1262 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1263 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1265 // We don't support sin/cos/fmod/copysign/pow
1266 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1267 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1268 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1269 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1270 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1271 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1272 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1273 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1274 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1275 !Subtarget
->isThumb1Only()) {
1276 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1277 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1279 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1280 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1282 if (!Subtarget
->hasVFP4Base()) {
1283 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1284 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1287 // Various VFP goodness
1288 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1289 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1290 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1291 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1292 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1295 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1296 if (!Subtarget
->hasFP16()) {
1297 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1298 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1302 // Use __sincos_stret if available.
1303 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1304 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1305 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1306 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1309 // FP-ARMv8 implements a lot of rounding-like FP operations.
1310 if (Subtarget
->hasFPARMv8Base()) {
1311 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1312 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1313 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1314 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1315 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1316 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1317 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1318 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1319 if (Subtarget
->hasNEON()) {
1320 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1321 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1322 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1323 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1326 if (Subtarget
->hasFP64()) {
1327 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1328 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1329 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1330 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1331 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1332 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1333 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1334 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1338 // FP16 often need to be promoted to call lib functions
1339 if (Subtarget
->hasFullFP16()) {
1340 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1341 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1342 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1343 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1344 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1345 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1346 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1347 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1348 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1349 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1350 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1351 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1353 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1356 if (Subtarget
->hasNEON()) {
1357 // vmin and vmax aren't available in a scalar form, so we use
1358 // a NEON instruction with an undef lane instead.
1359 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1360 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1361 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1362 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1363 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1364 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1365 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1366 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1368 if (Subtarget
->hasFullFP16()) {
1369 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1370 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1371 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1372 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1374 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1375 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1376 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1377 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1381 // We have target-specific dag combine patterns for the following nodes:
1382 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1383 setTargetDAGCombine(ISD::ADD
);
1384 setTargetDAGCombine(ISD::SUB
);
1385 setTargetDAGCombine(ISD::MUL
);
1386 setTargetDAGCombine(ISD::AND
);
1387 setTargetDAGCombine(ISD::OR
);
1388 setTargetDAGCombine(ISD::XOR
);
1390 if (Subtarget
->hasV6Ops())
1391 setTargetDAGCombine(ISD::SRL
);
1392 if (Subtarget
->isThumb1Only())
1393 setTargetDAGCombine(ISD::SHL
);
1395 setStackPointerRegisterToSaveRestore(ARM::SP
);
1397 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1398 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1399 setSchedulingPreference(Sched::RegPressure
);
1401 setSchedulingPreference(Sched::Hybrid
);
1403 //// temporary - rewrite interface to use type
1404 MaxStoresPerMemset
= 8;
1405 MaxStoresPerMemsetOptSize
= 4;
1406 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1407 MaxStoresPerMemcpyOptSize
= 2;
1408 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1409 MaxStoresPerMemmoveOptSize
= 2;
1411 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1412 // are at least 4 bytes aligned.
1413 setMinStackArgumentAlignment(4);
1415 // Prefer likely predicted branches to selects on out-of-order cores.
1416 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1418 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1420 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1422 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1423 setTargetDAGCombine(ISD::ABS
);
1426 bool ARMTargetLowering::useSoftFloat() const {
1427 return Subtarget
->useSoftFloat();
1430 // FIXME: It might make sense to define the representative register class as the
1431 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1432 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1433 // SPR's representative would be DPR_VFP2. This should work well if register
1434 // pressure tracking were modified such that a register use would increment the
1435 // pressure of the register class's representative and all of it's super
1436 // classes' representatives transitively. We have not implemented this because
1437 // of the difficulty prior to coalescing of modeling operand register classes
1438 // due to the common occurrence of cross class copies and subregister insertions
1440 std::pair
<const TargetRegisterClass
*, uint8_t>
1441 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1443 const TargetRegisterClass
*RRC
= nullptr;
1445 switch (VT
.SimpleTy
) {
1447 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1448 // Use DPR as representative register class for all floating point
1449 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1450 // the cost is 1 for both f32 and f64.
1451 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1452 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1453 RRC
= &ARM::DPRRegClass
;
1454 // When NEON is used for SP, only half of the register file is available
1455 // because operations that define both SP and DP results will be constrained
1456 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1457 // coalescing by double-counting the SP regs. See the FIXME above.
1458 if (Subtarget
->useNEONForSinglePrecisionFP())
1461 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1462 case MVT::v4f32
: case MVT::v2f64
:
1463 RRC
= &ARM::DPRRegClass
;
1467 RRC
= &ARM::DPRRegClass
;
1471 RRC
= &ARM::DPRRegClass
;
1475 return std::make_pair(RRC
, Cost
);
1478 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1479 switch ((ARMISD::NodeType
)Opcode
) {
1480 case ARMISD::FIRST_NUMBER
: break;
1481 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1482 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1483 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1484 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1485 case ARMISD::CALL
: return "ARMISD::CALL";
1486 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1487 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1488 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1489 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1490 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1491 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1492 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1493 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1494 case ARMISD::CMP
: return "ARMISD::CMP";
1495 case ARMISD::CMN
: return "ARMISD::CMN";
1496 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1497 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1498 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1499 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1500 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1502 case ARMISD::CMOV
: return "ARMISD::CMOV";
1503 case ARMISD::SUBS
: return "ARMISD::SUBS";
1505 case ARMISD::SSAT
: return "ARMISD::SSAT";
1506 case ARMISD::USAT
: return "ARMISD::USAT";
1508 case ARMISD::ASRL
: return "ARMISD::ASRL";
1509 case ARMISD::LSRL
: return "ARMISD::LSRL";
1510 case ARMISD::LSLL
: return "ARMISD::LSLL";
1512 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1513 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1514 case ARMISD::RRX
: return "ARMISD::RRX";
1516 case ARMISD::ADDC
: return "ARMISD::ADDC";
1517 case ARMISD::ADDE
: return "ARMISD::ADDE";
1518 case ARMISD::SUBC
: return "ARMISD::SUBC";
1519 case ARMISD::SUBE
: return "ARMISD::SUBE";
1520 case ARMISD::LSLS
: return "ARMISD::LSLS";
1522 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1523 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1524 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1525 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1526 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1528 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1529 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1530 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1532 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1534 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1536 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1538 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1540 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1542 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1543 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1545 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1546 case ARMISD::VCMP
: return "ARMISD::VCMP";
1547 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1548 case ARMISD::VTST
: return "ARMISD::VTST";
1550 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1551 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1552 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1553 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1554 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1555 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1556 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1557 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1558 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1559 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1560 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1561 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1562 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1563 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1564 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1565 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1566 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1567 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1568 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1569 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1570 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1571 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1572 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1573 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1574 case ARMISD::VDUP
: return "ARMISD::VDUP";
1575 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1576 case ARMISD::VEXT
: return "ARMISD::VEXT";
1577 case ARMISD::VREV64
: return "ARMISD::VREV64";
1578 case ARMISD::VREV32
: return "ARMISD::VREV32";
1579 case ARMISD::VREV16
: return "ARMISD::VREV16";
1580 case ARMISD::VZIP
: return "ARMISD::VZIP";
1581 case ARMISD::VUZP
: return "ARMISD::VUZP";
1582 case ARMISD::VTRN
: return "ARMISD::VTRN";
1583 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1584 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1585 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1586 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1587 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1588 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1589 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1590 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1591 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1592 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1593 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1594 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1595 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1596 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1597 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1598 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1599 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1600 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1601 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1602 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1603 case ARMISD::BFI
: return "ARMISD::BFI";
1604 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1605 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1606 case ARMISD::VBSL
: return "ARMISD::VBSL";
1607 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1608 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1609 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1610 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1611 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1612 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1613 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1614 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1615 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1616 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1617 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1618 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1619 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1620 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1621 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1622 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1623 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1624 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1625 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1626 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1627 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1628 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1629 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1630 case ARMISD::WLS
: return "ARMISD::WLS";
1631 case ARMISD::LE
: return "ARMISD::LE";
1632 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1637 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1640 return getPointerTy(DL
);
1642 // MVE has a predicate register.
1643 if (Subtarget
->hasMVEIntegerOps() &&
1644 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1645 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1646 return VT
.changeVectorElementTypeToInteger();
1649 /// getRegClassFor - Return the register class that should be used for the
1650 /// specified value type.
1651 const TargetRegisterClass
*
1652 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1654 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1655 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1656 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1658 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1659 if (VT
== MVT::v4i64
)
1660 return &ARM::QQPRRegClass
;
1661 if (VT
== MVT::v8i64
)
1662 return &ARM::QQQQPRRegClass
;
1664 return TargetLowering::getRegClassFor(VT
);
1667 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1668 // source/dest is aligned and the copy size is large enough. We therefore want
1669 // to align such objects passed to memory intrinsics.
1670 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1671 unsigned &PrefAlign
) const {
1672 if (!isa
<MemIntrinsic
>(CI
))
1675 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1676 // cycle faster than 4-byte aligned LDM.
1677 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1681 // Create a fast isel object.
1683 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1684 const TargetLibraryInfo
*libInfo
) const {
1685 return ARM::createFastISel(funcInfo
, libInfo
);
1688 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1689 unsigned NumVals
= N
->getNumValues();
1691 return Sched::RegPressure
;
1693 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1694 EVT VT
= N
->getValueType(i
);
1695 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1697 if (VT
.isFloatingPoint() || VT
.isVector())
1701 if (!N
->isMachineOpcode())
1702 return Sched::RegPressure
;
1704 // Load are scheduled for latency even if there instruction itinerary
1705 // is not available.
1706 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1707 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1709 if (MCID
.getNumDefs() == 0)
1710 return Sched::RegPressure
;
1711 if (!Itins
->isEmpty() &&
1712 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1715 return Sched::RegPressure
;
1718 //===----------------------------------------------------------------------===//
1720 //===----------------------------------------------------------------------===//
1722 static bool isSRL16(const SDValue
&Op
) {
1723 if (Op
.getOpcode() != ISD::SRL
)
1725 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1726 return Const
->getZExtValue() == 16;
1730 static bool isSRA16(const SDValue
&Op
) {
1731 if (Op
.getOpcode() != ISD::SRA
)
1733 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1734 return Const
->getZExtValue() == 16;
1738 static bool isSHL16(const SDValue
&Op
) {
1739 if (Op
.getOpcode() != ISD::SHL
)
1741 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1742 return Const
->getZExtValue() == 16;
1746 // Check for a signed 16-bit value. We special case SRA because it makes it
1747 // more simple when also looking for SRAs that aren't sign extending a
1748 // smaller value. Without the check, we'd need to take extra care with
1749 // checking order for some operations.
1750 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1752 return isSHL16(Op
.getOperand(0));
1753 return DAG
.ComputeNumSignBits(Op
) == 17;
1756 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1757 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1759 default: llvm_unreachable("Unknown condition code!");
1760 case ISD::SETNE
: return ARMCC::NE
;
1761 case ISD::SETEQ
: return ARMCC::EQ
;
1762 case ISD::SETGT
: return ARMCC::GT
;
1763 case ISD::SETGE
: return ARMCC::GE
;
1764 case ISD::SETLT
: return ARMCC::LT
;
1765 case ISD::SETLE
: return ARMCC::LE
;
1766 case ISD::SETUGT
: return ARMCC::HI
;
1767 case ISD::SETUGE
: return ARMCC::HS
;
1768 case ISD::SETULT
: return ARMCC::LO
;
1769 case ISD::SETULE
: return ARMCC::LS
;
1773 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1774 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1775 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1776 CondCode2
= ARMCC::AL
;
1777 InvalidOnQNaN
= true;
1779 default: llvm_unreachable("Unknown FP condition!");
1782 CondCode
= ARMCC::EQ
;
1783 InvalidOnQNaN
= false;
1786 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1788 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1789 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1790 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1792 CondCode
= ARMCC::MI
;
1793 CondCode2
= ARMCC::GT
;
1794 InvalidOnQNaN
= false;
1796 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1797 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1799 CondCode
= ARMCC::EQ
;
1800 CondCode2
= ARMCC::VS
;
1801 InvalidOnQNaN
= false;
1803 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1804 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1806 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1808 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1811 CondCode
= ARMCC::NE
;
1812 InvalidOnQNaN
= false;
1817 //===----------------------------------------------------------------------===//
1818 // Calling Convention Implementation
1819 //===----------------------------------------------------------------------===//
1821 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1822 /// account presence of floating point hardware and calling convention
1823 /// limitations, such as support for variadic functions.
1825 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1826 bool isVarArg
) const {
1829 report_fatal_error("Unsupported calling convention");
1830 case CallingConv::ARM_AAPCS
:
1831 case CallingConv::ARM_APCS
:
1832 case CallingConv::GHC
:
1834 case CallingConv::PreserveMost
:
1835 return CallingConv::PreserveMost
;
1836 case CallingConv::ARM_AAPCS_VFP
:
1837 case CallingConv::Swift
:
1838 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1839 case CallingConv::C
:
1840 if (!Subtarget
->isAAPCS_ABI())
1841 return CallingConv::ARM_APCS
;
1842 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1843 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1845 return CallingConv::ARM_AAPCS_VFP
;
1847 return CallingConv::ARM_AAPCS
;
1848 case CallingConv::Fast
:
1849 case CallingConv::CXX_FAST_TLS
:
1850 if (!Subtarget
->isAAPCS_ABI()) {
1851 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1852 return CallingConv::Fast
;
1853 return CallingConv::ARM_APCS
;
1854 } else if (Subtarget
->hasVFP2Base() &&
1855 !Subtarget
->isThumb1Only() && !isVarArg
)
1856 return CallingConv::ARM_AAPCS_VFP
;
1858 return CallingConv::ARM_AAPCS
;
1862 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1863 bool isVarArg
) const {
1864 return CCAssignFnForNode(CC
, false, isVarArg
);
1867 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1868 bool isVarArg
) const {
1869 return CCAssignFnForNode(CC
, true, isVarArg
);
1872 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1873 /// CallingConvention.
1874 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1876 bool isVarArg
) const {
1877 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1879 report_fatal_error("Unsupported calling convention");
1880 case CallingConv::ARM_APCS
:
1881 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1882 case CallingConv::ARM_AAPCS
:
1883 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1884 case CallingConv::ARM_AAPCS_VFP
:
1885 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1886 case CallingConv::Fast
:
1887 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1888 case CallingConv::GHC
:
1889 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1890 case CallingConv::PreserveMost
:
1891 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1895 /// LowerCallResult - Lower the result values of a call into the
1896 /// appropriate copies out of appropriate physical registers.
1897 SDValue
ARMTargetLowering::LowerCallResult(
1898 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1899 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1900 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1901 SDValue ThisVal
) const {
1902 // Assign locations to each value returned by this call.
1903 SmallVector
<CCValAssign
, 16> RVLocs
;
1904 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1906 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1908 // Copy all of the result registers out of their specified physreg.
1909 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1910 CCValAssign VA
= RVLocs
[i
];
1912 // Pass 'this' value directly from the argument to return value, to avoid
1913 // reg unit interference
1914 if (i
== 0 && isThisReturn
) {
1915 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1916 "unexpected return calling convention register assignment");
1917 InVals
.push_back(ThisVal
);
1922 if (VA
.needsCustom()) {
1923 // Handle f64 or half of a v2f64.
1924 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1926 Chain
= Lo
.getValue(1);
1927 InFlag
= Lo
.getValue(2);
1928 VA
= RVLocs
[++i
]; // skip ahead to next loc
1929 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1931 Chain
= Hi
.getValue(1);
1932 InFlag
= Hi
.getValue(2);
1933 if (!Subtarget
->isLittle())
1935 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1937 if (VA
.getLocVT() == MVT::v2f64
) {
1938 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1939 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1940 DAG
.getConstant(0, dl
, MVT::i32
));
1942 VA
= RVLocs
[++i
]; // skip ahead to next loc
1943 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1944 Chain
= Lo
.getValue(1);
1945 InFlag
= Lo
.getValue(2);
1946 VA
= RVLocs
[++i
]; // skip ahead to next loc
1947 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1948 Chain
= Hi
.getValue(1);
1949 InFlag
= Hi
.getValue(2);
1950 if (!Subtarget
->isLittle())
1952 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1953 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1954 DAG
.getConstant(1, dl
, MVT::i32
));
1957 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1959 Chain
= Val
.getValue(1);
1960 InFlag
= Val
.getValue(2);
1963 switch (VA
.getLocInfo()) {
1964 default: llvm_unreachable("Unknown loc info!");
1965 case CCValAssign::Full
: break;
1966 case CCValAssign::BCvt
:
1967 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1971 InVals
.push_back(Val
);
1977 /// LowerMemOpCallTo - Store the argument to the stack.
1978 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1979 SDValue Arg
, const SDLoc
&dl
,
1981 const CCValAssign
&VA
,
1982 ISD::ArgFlagsTy Flags
) const {
1983 unsigned LocMemOffset
= VA
.getLocMemOffset();
1984 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1985 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1987 return DAG
.getStore(
1988 Chain
, dl
, Arg
, PtrOff
,
1989 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1992 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1993 SDValue Chain
, SDValue
&Arg
,
1994 RegsToPassVector
&RegsToPass
,
1995 CCValAssign
&VA
, CCValAssign
&NextVA
,
1997 SmallVectorImpl
<SDValue
> &MemOpChains
,
1998 ISD::ArgFlagsTy Flags
) const {
1999 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2000 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2001 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2002 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2004 if (NextVA
.isRegLoc())
2005 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2007 assert(NextVA
.isMemLoc());
2008 if (!StackPtr
.getNode())
2009 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2010 getPointerTy(DAG
.getDataLayout()));
2012 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2018 /// LowerCall - Lowering a call into a callseq_start <-
2019 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2022 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2023 SmallVectorImpl
<SDValue
> &InVals
) const {
2024 SelectionDAG
&DAG
= CLI
.DAG
;
2026 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2027 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2028 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2029 SDValue Chain
= CLI
.Chain
;
2030 SDValue Callee
= CLI
.Callee
;
2031 bool &isTailCall
= CLI
.IsTailCall
;
2032 CallingConv::ID CallConv
= CLI
.CallConv
;
2033 bool doesNotRet
= CLI
.DoesNotReturn
;
2034 bool isVarArg
= CLI
.IsVarArg
;
2036 MachineFunction
&MF
= DAG
.getMachineFunction();
2037 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2038 bool isThisReturn
= false;
2039 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2040 bool PreferIndirect
= false;
2042 // Disable tail calls if they're not supported.
2043 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2046 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2047 // If we're optimizing for minimum size and the function is called three or
2048 // more times in this block, we can improve codesize by calling indirectly
2049 // as BLXr has a 16-bit encoding.
2050 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2052 auto *BB
= CLI
.CS
.getParent();
2053 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2054 count_if(GV
->users(), [&BB
](const User
*U
) {
2055 return isa
<Instruction
>(U
) &&
2056 cast
<Instruction
>(U
)->getParent() == BB
;
2061 // Check if it's really possible to do a tail call.
2062 isTailCall
= IsEligibleForTailCallOptimization(
2063 Callee
, CallConv
, isVarArg
, isStructRet
,
2064 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2066 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2067 report_fatal_error("failed to perform tail call elimination on a call "
2068 "site marked musttail");
2069 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2070 // detected sibcalls.
2075 // Analyze operands of the call, assigning locations to each operand.
2076 SmallVector
<CCValAssign
, 16> ArgLocs
;
2077 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2079 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2081 // Get a count of how many bytes are to be pushed on the stack.
2082 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2085 // For tail calls, memory operands are available in our caller's stack.
2088 // Adjust the stack pointer for the new arguments...
2089 // These operations are automatically eliminated by the prolog/epilog pass
2090 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2094 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2096 RegsToPassVector RegsToPass
;
2097 SmallVector
<SDValue
, 8> MemOpChains
;
2099 // Walk the register/memloc assignments, inserting copies/loads. In the case
2100 // of tail call optimization, arguments are handled later.
2101 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2103 ++i
, ++realArgIdx
) {
2104 CCValAssign
&VA
= ArgLocs
[i
];
2105 SDValue Arg
= OutVals
[realArgIdx
];
2106 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2107 bool isByVal
= Flags
.isByVal();
2109 // Promote the value if needed.
2110 switch (VA
.getLocInfo()) {
2111 default: llvm_unreachable("Unknown loc info!");
2112 case CCValAssign::Full
: break;
2113 case CCValAssign::SExt
:
2114 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2116 case CCValAssign::ZExt
:
2117 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2119 case CCValAssign::AExt
:
2120 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2122 case CCValAssign::BCvt
:
2123 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2127 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2128 if (VA
.needsCustom()) {
2129 if (VA
.getLocVT() == MVT::v2f64
) {
2130 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2131 DAG
.getConstant(0, dl
, MVT::i32
));
2132 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2133 DAG
.getConstant(1, dl
, MVT::i32
));
2135 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2136 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2138 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2139 if (VA
.isRegLoc()) {
2140 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2141 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2143 assert(VA
.isMemLoc());
2145 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2146 dl
, DAG
, VA
, Flags
));
2149 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2150 StackPtr
, MemOpChains
, Flags
);
2152 } else if (VA
.isRegLoc()) {
2153 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2154 Outs
[0].VT
== MVT::i32
) {
2155 assert(VA
.getLocVT() == MVT::i32
&&
2156 "unexpected calling convention register assignment");
2157 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2158 "unexpected use of 'returned'");
2159 isThisReturn
= true;
2161 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2162 } else if (isByVal
) {
2163 assert(VA
.isMemLoc());
2164 unsigned offset
= 0;
2166 // True if this byval aggregate will be split between registers
2168 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2169 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2171 if (CurByValIdx
< ByValArgsCount
) {
2173 unsigned RegBegin
, RegEnd
;
2174 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2177 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2179 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2180 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2181 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2182 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2183 MachinePointerInfo(),
2184 DAG
.InferPtrAlignment(AddArg
));
2185 MemOpChains
.push_back(Load
.getValue(1));
2186 RegsToPass
.push_back(std::make_pair(j
, Load
));
2189 // If parameter size outsides register area, "offset" value
2190 // helps us to calculate stack slot for remained part properly.
2191 offset
= RegEnd
- RegBegin
;
2193 CCInfo
.nextInRegsParam();
2196 if (Flags
.getByValSize() > 4*offset
) {
2197 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2198 unsigned LocMemOffset
= VA
.getLocMemOffset();
2199 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2200 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2201 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2202 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2203 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2205 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2208 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2209 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2210 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2213 } else if (!isTailCall
) {
2214 assert(VA
.isMemLoc());
2216 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2217 dl
, DAG
, VA
, Flags
));
2221 if (!MemOpChains
.empty())
2222 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2224 // Build a sequence of copy-to-reg nodes chained together with token chain
2225 // and flag operands which copy the outgoing args into the appropriate regs.
2227 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2228 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2229 RegsToPass
[i
].second
, InFlag
);
2230 InFlag
= Chain
.getValue(1);
2233 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2234 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2235 // node so that legalize doesn't hack it.
2236 bool isDirect
= false;
2238 const TargetMachine
&TM
= getTargetMachine();
2239 const Module
*Mod
= MF
.getFunction().getParent();
2240 const GlobalValue
*GV
= nullptr;
2241 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2242 GV
= G
->getGlobal();
2244 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2246 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2247 bool isLocalARMFunc
= false;
2248 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2249 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2251 if (Subtarget
->genLongCalls()) {
2252 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2253 "long-calls codegen is not position independent!");
2254 // Handle a global address or an external symbol. If it's not one of
2255 // those, the target's already in a register, so we don't need to do
2257 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2258 // Create a constant pool entry for the callee address
2259 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2260 ARMConstantPoolValue
*CPV
=
2261 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2263 // Get the address of the callee into a register
2264 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2265 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2266 Callee
= DAG
.getLoad(
2267 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2268 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2269 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2270 const char *Sym
= S
->getSymbol();
2272 // Create a constant pool entry for the callee address
2273 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2274 ARMConstantPoolValue
*CPV
=
2275 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2276 ARMPCLabelIndex
, 0);
2277 // Get the address of the callee into a register
2278 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2279 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2280 Callee
= DAG
.getLoad(
2281 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2282 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2284 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2285 if (!PreferIndirect
) {
2287 bool isDef
= GV
->isStrongDefinitionForLinker();
2289 // ARM call to a local ARM function is predicable.
2290 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2291 // tBX takes a register source operand.
2292 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2293 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2294 Callee
= DAG
.getNode(
2295 ARMISD::WrapperPIC
, dl
, PtrVt
,
2296 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2297 Callee
= DAG
.getLoad(
2298 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2299 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2300 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2301 MachineMemOperand::MOInvariant
);
2302 } else if (Subtarget
->isTargetCOFF()) {
2303 assert(Subtarget
->isTargetWindows() &&
2304 "Windows is the only supported COFF target");
2305 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2306 ? ARMII::MO_DLLIMPORT
2307 : ARMII::MO_NO_FLAG
;
2308 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2310 if (GV
->hasDLLImportStorageClass())
2312 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2313 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2314 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2316 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2319 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2321 // tBX takes a register source operand.
2322 const char *Sym
= S
->getSymbol();
2323 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2324 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2325 ARMConstantPoolValue
*CPV
=
2326 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2327 ARMPCLabelIndex
, 4);
2328 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2329 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2330 Callee
= DAG
.getLoad(
2331 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2332 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2333 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2334 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2336 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2340 // FIXME: handle tail calls differently.
2342 if (Subtarget
->isThumb()) {
2343 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2344 CallOpc
= ARMISD::CALL_NOLINK
;
2346 CallOpc
= ARMISD::CALL
;
2348 if (!isDirect
&& !Subtarget
->hasV5TOps())
2349 CallOpc
= ARMISD::CALL_NOLINK
;
2350 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2351 // Emit regular call when code size is the priority
2352 !Subtarget
->hasMinSize())
2353 // "mov lr, pc; b _foo" to avoid confusing the RSP
2354 CallOpc
= ARMISD::CALL_NOLINK
;
2356 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2359 std::vector
<SDValue
> Ops
;
2360 Ops
.push_back(Chain
);
2361 Ops
.push_back(Callee
);
2363 // Add argument registers to the end of the list so that they are known live
2365 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2366 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2367 RegsToPass
[i
].second
.getValueType()));
2369 // Add a register mask operand representing the call-preserved registers.
2371 const uint32_t *Mask
;
2372 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2374 // For 'this' returns, use the R0-preserving mask if applicable
2375 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2377 // Set isThisReturn to false if the calling convention is not one that
2378 // allows 'returned' to be modeled in this way, so LowerCallResult does
2379 // not try to pass 'this' straight through
2380 isThisReturn
= false;
2381 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2384 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2386 assert(Mask
&& "Missing call preserved mask for calling convention");
2387 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2390 if (InFlag
.getNode())
2391 Ops
.push_back(InFlag
);
2393 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2395 MF
.getFrameInfo().setHasTailCall();
2396 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2399 // Returns a chain and a flag for retval copy to use.
2400 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2401 InFlag
= Chain
.getValue(1);
2403 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2404 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2406 InFlag
= Chain
.getValue(1);
2408 // Handle result values, copying them out of physregs into vregs that we
2410 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2411 InVals
, isThisReturn
,
2412 isThisReturn
? OutVals
[0] : SDValue());
2415 /// HandleByVal - Every parameter *after* a byval parameter is passed
2416 /// on the stack. Remember the next parameter register to allocate,
2417 /// and then confiscate the rest of the parameter registers to insure
2419 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2420 unsigned Align
) const {
2421 // Byval (as with any stack) slots are always at least 4 byte aligned.
2422 Align
= std::max(Align
, 4U);
2424 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2428 unsigned AlignInRegs
= Align
/ 4;
2429 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2430 for (unsigned i
= 0; i
< Waste
; ++i
)
2431 Reg
= State
->AllocateReg(GPRArgRegs
);
2436 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2438 // Special case when NSAA != SP and parameter size greater than size of
2439 // all remained GPR regs. In that case we can't split parameter, we must
2440 // send it to stack. We also must set NCRN to R4, so waste all
2441 // remained registers.
2442 const unsigned NSAAOffset
= State
->getNextStackOffset();
2443 if (NSAAOffset
!= 0 && Size
> Excess
) {
2444 while (State
->AllocateReg(GPRArgRegs
))
2449 // First register for byval parameter is the first register that wasn't
2450 // allocated before this method call, so it would be "reg".
2451 // If parameter is small enough to be saved in range [reg, r4), then
2452 // the end (first after last) register would be reg + param-size-in-regs,
2453 // else parameter would be splitted between registers and stack,
2454 // end register would be r4 in this case.
2455 unsigned ByValRegBegin
= Reg
;
2456 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2457 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2458 // Note, first register is allocated in the beginning of function already,
2459 // allocate remained amount of registers we need.
2460 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2461 State
->AllocateReg(GPRArgRegs
);
2462 // A byval parameter that is split between registers and memory needs its
2463 // size truncated here.
2464 // In the case where the entire structure fits in registers, we set the
2465 // size in memory to zero.
2466 Size
= std::max
<int>(Size
- Excess
, 0);
2469 /// MatchingStackOffset - Return true if the given stack call argument is
2470 /// already available in the same position (relatively) of the caller's
2471 /// incoming argument stack.
2473 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2474 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2475 const TargetInstrInfo
*TII
) {
2476 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2477 int FI
= std::numeric_limits
<int>::max();
2478 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2479 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2480 if (!Register::isVirtualRegister(VR
))
2482 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2485 if (!Flags
.isByVal()) {
2486 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2491 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2492 if (Flags
.isByVal())
2493 // ByVal argument is passed in as a pointer but it's now being
2494 // dereferenced. e.g.
2495 // define @foo(%struct.X* %A) {
2496 // tail call @bar(%struct.X* byval %A)
2499 SDValue Ptr
= Ld
->getBasePtr();
2500 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2503 FI
= FINode
->getIndex();
2507 assert(FI
!= std::numeric_limits
<int>::max());
2508 if (!MFI
.isFixedObjectIndex(FI
))
2510 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2513 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2514 /// for tail call optimization. Targets which want to do tail call
2515 /// optimization should implement this function.
2516 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2517 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2518 bool isCalleeStructRet
, bool isCallerStructRet
,
2519 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2520 const SmallVectorImpl
<SDValue
> &OutVals
,
2521 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2522 const bool isIndirect
) const {
2523 MachineFunction
&MF
= DAG
.getMachineFunction();
2524 const Function
&CallerF
= MF
.getFunction();
2525 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2527 assert(Subtarget
->supportsTailCall());
2529 // Indirect tail calls cannot be optimized for Thumb1 if the args
2530 // to the call take up r0-r3. The reason is that there are no legal registers
2531 // left to hold the pointer to the function to be called.
2532 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2533 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2536 // Look for obvious safe cases to perform tail call optimization that do not
2537 // require ABI changes. This is what gcc calls sibcall.
2539 // Exception-handling functions need a special set of instructions to indicate
2540 // a return to the hardware. Tail-calling another function would probably
2542 if (CallerF
.hasFnAttribute("interrupt"))
2545 // Also avoid sibcall optimization if either caller or callee uses struct
2546 // return semantics.
2547 if (isCalleeStructRet
|| isCallerStructRet
)
2550 // Externally-defined functions with weak linkage should not be
2551 // tail-called on ARM when the OS does not support dynamic
2552 // pre-emption of symbols, as the AAELF spec requires normal calls
2553 // to undefined weak functions to be replaced with a NOP or jump to the
2554 // next instruction. The behaviour of branch instructions in this
2555 // situation (as used for tail calls) is implementation-defined, so we
2556 // cannot rely on the linker replacing the tail call with a return.
2557 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2558 const GlobalValue
*GV
= G
->getGlobal();
2559 const Triple
&TT
= getTargetMachine().getTargetTriple();
2560 if (GV
->hasExternalWeakLinkage() &&
2561 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2565 // Check that the call results are passed in the same way.
2566 LLVMContext
&C
= *DAG
.getContext();
2567 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2568 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2569 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2571 // The callee has to preserve all registers the caller needs to preserve.
2572 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2573 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2574 if (CalleeCC
!= CallerCC
) {
2575 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2576 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2580 // If Caller's vararg or byval argument has been split between registers and
2581 // stack, do not perform tail call, since part of the argument is in caller's
2583 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2584 if (AFI_Caller
->getArgRegsSaveSize())
2587 // If the callee takes no arguments then go on to check the results of the
2589 if (!Outs
.empty()) {
2590 // Check if stack adjustment is needed. For now, do not do this if any
2591 // argument is passed on the stack.
2592 SmallVector
<CCValAssign
, 16> ArgLocs
;
2593 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2594 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2595 if (CCInfo
.getNextStackOffset()) {
2596 // Check if the arguments are already laid out in the right way as
2597 // the caller's fixed stack objects.
2598 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2599 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2600 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2601 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2603 ++i
, ++realArgIdx
) {
2604 CCValAssign
&VA
= ArgLocs
[i
];
2605 EVT RegVT
= VA
.getLocVT();
2606 SDValue Arg
= OutVals
[realArgIdx
];
2607 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2608 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2610 if (VA
.needsCustom()) {
2611 // f64 and vector types are split into multiple registers or
2612 // register/stack-slot combinations. The types will not match
2613 // the registers; give up on memory f64 refs until we figure
2614 // out what to do about this.
2617 if (!ArgLocs
[++i
].isRegLoc())
2619 if (RegVT
== MVT::v2f64
) {
2620 if (!ArgLocs
[++i
].isRegLoc())
2622 if (!ArgLocs
[++i
].isRegLoc())
2625 } else if (!VA
.isRegLoc()) {
2626 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2633 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2634 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2642 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2643 MachineFunction
&MF
, bool isVarArg
,
2644 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2645 LLVMContext
&Context
) const {
2646 SmallVector
<CCValAssign
, 16> RVLocs
;
2647 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2648 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2651 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2652 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2653 const MachineFunction
&MF
= DAG
.getMachineFunction();
2654 const Function
&F
= MF
.getFunction();
2656 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2658 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2659 // version of the "preferred return address". These offsets affect the return
2660 // instruction if this is a return from PL1 without hypervisor extensions.
2661 // IRQ/FIQ: +4 "subs pc, lr, #4"
2662 // SWI: 0 "subs pc, lr, #0"
2663 // ABORT: +4 "subs pc, lr, #4"
2664 // UNDEF: +4/+2 "subs pc, lr, #0"
2665 // UNDEF varies depending on where the exception came from ARM or Thumb
2666 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2669 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2672 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2675 report_fatal_error("Unsupported interrupt attribute. If present, value "
2676 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2678 RetOps
.insert(RetOps
.begin() + 1,
2679 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2681 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2685 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2687 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2688 const SmallVectorImpl
<SDValue
> &OutVals
,
2689 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2690 // CCValAssign - represent the assignment of the return value to a location.
2691 SmallVector
<CCValAssign
, 16> RVLocs
;
2693 // CCState - Info about the registers and stack slots.
2694 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2697 // Analyze outgoing return values.
2698 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2701 SmallVector
<SDValue
, 4> RetOps
;
2702 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2703 bool isLittleEndian
= Subtarget
->isLittle();
2705 MachineFunction
&MF
= DAG
.getMachineFunction();
2706 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2707 AFI
->setReturnRegsCount(RVLocs
.size());
2709 // Copy the result values into the output registers.
2710 for (unsigned i
= 0, realRVLocIdx
= 0;
2712 ++i
, ++realRVLocIdx
) {
2713 CCValAssign
&VA
= RVLocs
[i
];
2714 assert(VA
.isRegLoc() && "Can only return in registers!");
2716 SDValue Arg
= OutVals
[realRVLocIdx
];
2717 bool ReturnF16
= false;
2719 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2720 // Half-precision return values can be returned like this:
2722 // t11 f16 = fadd ...
2723 // t12: i16 = bitcast t11
2724 // t13: i32 = zero_extend t12
2725 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2727 // to avoid code generation for bitcasts, we simply set Arg to the node
2728 // that produces the f16 value, t11 in this case.
2730 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2731 SDValue ZE
= Arg
.getOperand(0);
2732 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2733 SDValue BC
= ZE
.getOperand(0);
2734 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2735 Arg
= BC
.getOperand(0);
2742 switch (VA
.getLocInfo()) {
2743 default: llvm_unreachable("Unknown loc info!");
2744 case CCValAssign::Full
: break;
2745 case CCValAssign::BCvt
:
2747 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2751 if (VA
.needsCustom()) {
2752 if (VA
.getLocVT() == MVT::v2f64
) {
2753 // Extract the first half and return it in two registers.
2754 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2755 DAG
.getConstant(0, dl
, MVT::i32
));
2756 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2757 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2759 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2760 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2762 Flag
= Chain
.getValue(1);
2763 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2764 VA
= RVLocs
[++i
]; // skip ahead to next loc
2765 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2766 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2768 Flag
= Chain
.getValue(1);
2769 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2770 VA
= RVLocs
[++i
]; // skip ahead to next loc
2772 // Extract the 2nd half and fall through to handle it as an f64 value.
2773 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2774 DAG
.getConstant(1, dl
, MVT::i32
));
2776 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2778 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2779 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2780 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2781 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2783 Flag
= Chain
.getValue(1);
2784 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2785 VA
= RVLocs
[++i
]; // skip ahead to next loc
2786 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2787 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2790 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2792 // Guarantee that all emitted copies are
2793 // stuck together, avoiding something bad.
2794 Flag
= Chain
.getValue(1);
2795 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2796 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2798 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2799 const MCPhysReg
*I
=
2800 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2803 if (ARM::GPRRegClass
.contains(*I
))
2804 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2805 else if (ARM::DPRRegClass
.contains(*I
))
2806 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2808 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2812 // Update chain and glue.
2815 RetOps
.push_back(Flag
);
2817 // CPUs which aren't M-class use a special sequence to return from
2818 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2819 // though we use "subs pc, lr, #N").
2821 // M-class CPUs actually use a normal return sequence with a special
2822 // (hardware-provided) value in LR, so the normal code path works.
2823 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2824 !Subtarget
->isMClass()) {
2825 if (Subtarget
->isThumb1Only())
2826 report_fatal_error("interrupt attribute is not supported in Thumb1");
2827 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2830 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2833 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2834 if (N
->getNumValues() != 1)
2836 if (!N
->hasNUsesOfValue(1, 0))
2839 SDValue TCChain
= Chain
;
2840 SDNode
*Copy
= *N
->use_begin();
2841 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2842 // If the copy has a glue operand, we conservatively assume it isn't safe to
2843 // perform a tail call.
2844 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2846 TCChain
= Copy
->getOperand(0);
2847 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2848 SDNode
*VMov
= Copy
;
2849 // f64 returned in a pair of GPRs.
2850 SmallPtrSet
<SDNode
*, 2> Copies
;
2851 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2853 if (UI
->getOpcode() != ISD::CopyToReg
)
2857 if (Copies
.size() > 2)
2860 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2862 SDValue UseChain
= UI
->getOperand(0);
2863 if (Copies
.count(UseChain
.getNode()))
2867 // We are at the top of this chain.
2868 // If the copy has a glue operand, we conservatively assume it
2869 // isn't safe to perform a tail call.
2870 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2876 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2877 // f32 returned in a single GPR.
2878 if (!Copy
->hasOneUse())
2880 Copy
= *Copy
->use_begin();
2881 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2883 // If the copy has a glue operand, we conservatively assume it isn't safe to
2884 // perform a tail call.
2885 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2887 TCChain
= Copy
->getOperand(0);
2892 bool HasRet
= false;
2893 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2895 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2896 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2908 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2909 if (!Subtarget
->supportsTailCall())
2913 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2914 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2920 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2921 // and pass the lower and high parts through.
2922 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2924 SDValue WriteValue
= Op
->getOperand(2);
2926 // This function is only supposed to be called for i64 type argument.
2927 assert(WriteValue
.getValueType() == MVT::i64
2928 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2930 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2931 DAG
.getConstant(0, DL
, MVT::i32
));
2932 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2933 DAG
.getConstant(1, DL
, MVT::i32
));
2934 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2935 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2938 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2939 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2940 // one of the above mentioned nodes. It has to be wrapped because otherwise
2941 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2942 // be used to form addressing mode. These wrapped nodes will be selected
2944 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2945 SelectionDAG
&DAG
) const {
2946 EVT PtrVT
= Op
.getValueType();
2947 // FIXME there is no actual debug info here
2949 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2952 // When generating execute-only code Constant Pools must be promoted to the
2953 // global data section. It's a bit ugly that we can't share them across basic
2954 // blocks, but this way we guarantee that execute-only behaves correct with
2955 // position-independent addressing modes.
2956 if (Subtarget
->genExecuteOnly()) {
2957 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2958 auto T
= const_cast<Type
*>(CP
->getType());
2959 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2960 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2961 getFunction().getParent());
2962 auto GV
= new GlobalVariable(
2963 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2964 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2965 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2966 Twine(AFI
->createPICLabelUId())
2968 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2970 return LowerGlobalAddress(GA
, DAG
);
2973 if (CP
->isMachineConstantPoolEntry())
2974 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2975 CP
->getAlignment());
2977 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2978 CP
->getAlignment());
2979 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2982 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2983 return MachineJumpTableInfo::EK_Inline
;
2986 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2987 SelectionDAG
&DAG
) const {
2988 MachineFunction
&MF
= DAG
.getMachineFunction();
2989 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2990 unsigned ARMPCLabelIndex
= 0;
2992 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2993 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2995 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
2996 if (!IsPositionIndependent
) {
2997 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
2999 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3000 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3001 ARMConstantPoolValue
*CPV
=
3002 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3003 ARMCP::CPBlockAddress
, PCAdj
);
3004 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3006 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3007 SDValue Result
= DAG
.getLoad(
3008 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3009 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3010 if (!IsPositionIndependent
)
3012 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3013 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3016 /// Convert a TLS address reference into the correct sequence of loads
3017 /// and calls to compute the variable's address for Darwin, and return an
3018 /// SDValue containing the final node.
3020 /// Darwin only has one TLS scheme which must be capable of dealing with the
3021 /// fully general situation, in the worst case. This means:
3022 /// + "extern __thread" declaration.
3023 /// + Defined in a possibly unknown dynamic library.
3025 /// The general system is that each __thread variable has a [3 x i32] descriptor
3026 /// which contains information used by the runtime to calculate the address. The
3027 /// only part of this the compiler needs to know about is the first word, which
3028 /// contains a function pointer that must be called with the address of the
3029 /// entire descriptor in "r0".
3031 /// Since this descriptor may be in a different unit, in general access must
3032 /// proceed along the usual ARM rules. A common sequence to produce is:
3034 /// movw rT1, :lower16:_var$non_lazy_ptr
3035 /// movt rT1, :upper16:_var$non_lazy_ptr
3039 /// [...address now in r0...]
3041 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3042 SelectionDAG
&DAG
) const {
3043 assert(Subtarget
->isTargetDarwin() &&
3044 "This function expects a Darwin target");
3047 // First step is to get the address of the actua global symbol. This is where
3048 // the TLS descriptor lives.
3049 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3051 // The first entry in the descriptor is a function pointer that we must call
3052 // to obtain the address of the variable.
3053 SDValue Chain
= DAG
.getEntryNode();
3054 SDValue FuncTLVGet
= DAG
.getLoad(
3055 MVT::i32
, DL
, Chain
, DescAddr
,
3056 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3057 /* Alignment = */ 4,
3058 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3059 MachineMemOperand::MOInvariant
);
3060 Chain
= FuncTLVGet
.getValue(1);
3062 MachineFunction
&F
= DAG
.getMachineFunction();
3063 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3064 MFI
.setAdjustsStack(true);
3066 // TLS calls preserve all registers except those that absolutely must be
3067 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3070 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3071 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3072 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3074 // Finally, we can make the call. This is just a degenerate version of a
3075 // normal AArch64 call node: r0 takes the address of the descriptor, and
3076 // returns the address of the variable in this thread.
3077 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3079 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3080 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3081 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3082 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3086 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3087 SelectionDAG
&DAG
) const {
3088 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3090 SDValue Chain
= DAG
.getEntryNode();
3091 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3094 // Load the current TEB (thread environment block)
3095 SDValue Ops
[] = {Chain
,
3096 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3097 DAG
.getConstant(15, DL
, MVT::i32
),
3098 DAG
.getConstant(0, DL
, MVT::i32
),
3099 DAG
.getConstant(13, DL
, MVT::i32
),
3100 DAG
.getConstant(0, DL
, MVT::i32
),
3101 DAG
.getConstant(2, DL
, MVT::i32
)};
3102 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3103 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3105 SDValue TEB
= CurrentTEB
.getValue(0);
3106 Chain
= CurrentTEB
.getValue(1);
3108 // Load the ThreadLocalStoragePointer from the TEB
3109 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3111 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3112 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3114 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3115 // offset into the TLSArray.
3117 // Load the TLS index from the C runtime
3119 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3120 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3121 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3123 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3124 DAG
.getConstant(2, DL
, MVT::i32
));
3125 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3126 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3127 MachinePointerInfo());
3129 // Get the offset of the start of the .tls section (section base)
3130 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3131 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3132 SDValue Offset
= DAG
.getLoad(
3133 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3134 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3135 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3137 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3140 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3142 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3143 SelectionDAG
&DAG
) const {
3145 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3146 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3147 MachineFunction
&MF
= DAG
.getMachineFunction();
3148 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3149 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3150 ARMConstantPoolValue
*CPV
=
3151 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3152 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3153 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3154 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3155 Argument
= DAG
.getLoad(
3156 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3157 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3158 SDValue Chain
= Argument
.getValue(1);
3160 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3161 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3163 // call __tls_get_addr.
3166 Entry
.Node
= Argument
;
3167 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3168 Args
.push_back(Entry
);
3170 // FIXME: is there useful debug info available here?
3171 TargetLowering::CallLoweringInfo
CLI(DAG
);
3172 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3173 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3174 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3176 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3177 return CallResult
.first
;
3180 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3181 // "local exec" model.
3183 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3185 TLSModel::Model model
) const {
3186 const GlobalValue
*GV
= GA
->getGlobal();
3189 SDValue Chain
= DAG
.getEntryNode();
3190 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3191 // Get the Thread Pointer
3192 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3194 if (model
== TLSModel::InitialExec
) {
3195 MachineFunction
&MF
= DAG
.getMachineFunction();
3196 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3197 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3198 // Initial exec model.
3199 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3200 ARMConstantPoolValue
*CPV
=
3201 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3202 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3204 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3205 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3206 Offset
= DAG
.getLoad(
3207 PtrVT
, dl
, Chain
, Offset
,
3208 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3209 Chain
= Offset
.getValue(1);
3211 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3212 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3214 Offset
= DAG
.getLoad(
3215 PtrVT
, dl
, Chain
, Offset
,
3216 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3219 assert(model
== TLSModel::LocalExec
);
3220 ARMConstantPoolValue
*CPV
=
3221 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3222 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3223 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3224 Offset
= DAG
.getLoad(
3225 PtrVT
, dl
, Chain
, Offset
,
3226 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3229 // The address of the thread local variable is the add of the thread
3230 // pointer with the offset of the variable.
3231 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3235 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3236 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3237 if (DAG
.getTarget().useEmulatedTLS())
3238 return LowerToTLSEmulatedModel(GA
, DAG
);
3240 if (Subtarget
->isTargetDarwin())
3241 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3243 if (Subtarget
->isTargetWindows())
3244 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3246 // TODO: implement the "local dynamic" model
3247 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3248 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3251 case TLSModel::GeneralDynamic
:
3252 case TLSModel::LocalDynamic
:
3253 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3254 case TLSModel::InitialExec
:
3255 case TLSModel::LocalExec
:
3256 return LowerToTLSExecModels(GA
, DAG
, model
);
3258 llvm_unreachable("bogus TLS model");
3261 /// Return true if all users of V are within function F, looking through
3263 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3264 SmallVector
<const User
*,4> Worklist
;
3265 for (auto *U
: V
->users())
3266 Worklist
.push_back(U
);
3267 while (!Worklist
.empty()) {
3268 auto *U
= Worklist
.pop_back_val();
3269 if (isa
<ConstantExpr
>(U
)) {
3270 for (auto *UU
: U
->users())
3271 Worklist
.push_back(UU
);
3275 auto *I
= dyn_cast
<Instruction
>(U
);
3276 if (!I
|| I
->getParent()->getParent() != F
)
3282 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3283 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3284 EVT PtrVT
, const SDLoc
&dl
) {
3285 // If we're creating a pool entry for a constant global with unnamed address,
3286 // and the global is small enough, we can emit it inline into the constant pool
3287 // to save ourselves an indirection.
3289 // This is a win if the constant is only used in one function (so it doesn't
3290 // need to be duplicated) or duplicating the constant wouldn't increase code
3291 // size (implying the constant is no larger than 4 bytes).
3292 const Function
&F
= DAG
.getMachineFunction().getFunction();
3294 // We rely on this decision to inline being idemopotent and unrelated to the
3295 // use-site. We know that if we inline a variable at one use site, we'll
3296 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3297 // doesn't know about this optimization, so bail out if it's enabled else
3298 // we could decide to inline here (and thus never emit the GV) but require
3299 // the GV from fast-isel generated code.
3300 if (!EnableConstpoolPromotion
||
3301 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3304 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3305 if (!GVar
|| !GVar
->hasInitializer() ||
3306 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3307 !GVar
->hasLocalLinkage())
3310 // If we inline a value that contains relocations, we move the relocations
3311 // from .data to .text. This is not allowed in position-independent code.
3312 auto *Init
= GVar
->getInitializer();
3313 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3314 Init
->needsRelocation())
3317 // The constant islands pass can only really deal with alignment requests
3318 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3319 // any type wanting greater alignment requirements than 4 bytes. We also
3320 // can only promote constants that are multiples of 4 bytes in size or
3321 // are paddable to a multiple of 4. Currently we only try and pad constants
3322 // that are strings for simplicity.
3323 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3324 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3325 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3326 unsigned RequiredPadding
= 4 - (Size
% 4);
3327 bool PaddingPossible
=
3328 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3329 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3333 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3334 MachineFunction
&MF
= DAG
.getMachineFunction();
3335 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3337 // We can't bloat the constant pool too much, else the ConstantIslands pass
3338 // may fail to converge. If we haven't promoted this global yet (it may have
3339 // multiple uses), and promoting it would increase the constant pool size (Sz
3340 // > 4), ensure we have space to do so up to MaxTotal.
3341 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3342 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3343 ConstpoolPromotionMaxTotal
)
3346 // This is only valid if all users are in a single function; we can't clone
3347 // the constant in general. The LLVM IR unnamed_addr allows merging
3348 // constants, but not cloning them.
3350 // We could potentially allow cloning if we could prove all uses of the
3351 // constant in the current function don't care about the address, like
3352 // printf format strings. But that isn't implemented for now.
3353 if (!allUsersAreInFunction(GVar
, &F
))
3356 // We're going to inline this global. Pad it out if needed.
3357 if (RequiredPadding
!= 4) {
3358 StringRef S
= CDAInit
->getAsString();
3360 SmallVector
<uint8_t,16> V(S
.size());
3361 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3362 while (RequiredPadding
--)
3364 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3367 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3369 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3370 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3371 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3372 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3375 ++NumConstpoolPromoted
;
3376 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3379 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3380 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3381 if (!(GV
= GA
->getBaseObject()))
3383 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3384 return V
->isConstant();
3385 return isa
<Function
>(GV
);
3388 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3389 SelectionDAG
&DAG
) const {
3390 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3391 default: llvm_unreachable("unknown object format");
3393 return LowerGlobalAddressWindows(Op
, DAG
);
3395 return LowerGlobalAddressELF(Op
, DAG
);
3397 return LowerGlobalAddressDarwin(Op
, DAG
);
3401 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3402 SelectionDAG
&DAG
) const {
3403 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3405 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3406 const TargetMachine
&TM
= getTargetMachine();
3407 bool IsRO
= isReadOnly(GV
);
3409 // promoteToConstantPool only if not generating XO text section
3410 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3411 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3414 if (isPositionIndependent()) {
3415 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3416 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3417 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3418 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3421 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3422 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3424 } else if (Subtarget
->isROPI() && IsRO
) {
3426 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3427 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3429 } else if (Subtarget
->isRWPI() && !IsRO
) {
3432 if (Subtarget
->useMovt()) {
3434 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3435 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3436 } else { // use literal pool for address constant
3437 ARMConstantPoolValue
*CPV
=
3438 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3439 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3440 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3441 RelAddr
= DAG
.getLoad(
3442 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3443 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3445 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3446 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3450 // If we have T2 ops, we can materialize the address directly via movt/movw
3451 // pair. This is always cheaper.
3452 if (Subtarget
->useMovt()) {
3454 // FIXME: Once remat is capable of dealing with instructions with register
3455 // operands, expand this into two nodes.
3456 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3457 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3459 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3460 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3462 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3463 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3467 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3468 SelectionDAG
&DAG
) const {
3469 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3470 "ROPI/RWPI not currently supported for Darwin");
3471 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3473 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3475 if (Subtarget
->useMovt())
3478 // FIXME: Once remat is capable of dealing with instructions with register
3479 // operands, expand this into multiple nodes
3481 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3483 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3484 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3486 if (Subtarget
->isGVIndirectSymbol(GV
))
3487 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3488 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3492 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3493 SelectionDAG
&DAG
) const {
3494 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3495 assert(Subtarget
->useMovt() &&
3496 "Windows on ARM expects to use movw/movt");
3497 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3498 "ROPI/RWPI not currently supported for Windows");
3500 const TargetMachine
&TM
= getTargetMachine();
3501 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3502 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3503 if (GV
->hasDLLImportStorageClass())
3504 TargetFlags
= ARMII::MO_DLLIMPORT
;
3505 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3506 TargetFlags
= ARMII::MO_COFFSTUB
;
3507 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3513 // FIXME: Once remat is capable of dealing with instructions with register
3514 // operands, expand this into two nodes.
3515 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3516 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3518 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3519 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3520 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3525 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3527 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3528 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3529 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3530 Op
.getOperand(1), Val
);
3534 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3536 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3537 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3540 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3541 SelectionDAG
&DAG
) const {
3543 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3548 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3549 const ARMSubtarget
*Subtarget
) const {
3550 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3553 default: return SDValue(); // Don't custom lower most intrinsics.
3554 case Intrinsic::thread_pointer
: {
3555 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3556 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3558 case Intrinsic::eh_sjlj_lsda
: {
3559 MachineFunction
&MF
= DAG
.getMachineFunction();
3560 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3561 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3562 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3564 bool IsPositionIndependent
= isPositionIndependent();
3565 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3566 ARMConstantPoolValue
*CPV
=
3567 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3568 ARMCP::CPLSDA
, PCAdj
);
3569 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3570 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3571 SDValue Result
= DAG
.getLoad(
3572 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3573 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3575 if (IsPositionIndependent
) {
3576 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3577 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3581 case Intrinsic::arm_neon_vabs
:
3582 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3584 case Intrinsic::arm_neon_vmulls
:
3585 case Intrinsic::arm_neon_vmullu
: {
3586 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3587 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3588 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3589 Op
.getOperand(1), Op
.getOperand(2));
3591 case Intrinsic::arm_neon_vminnm
:
3592 case Intrinsic::arm_neon_vmaxnm
: {
3593 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3594 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3595 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3596 Op
.getOperand(1), Op
.getOperand(2));
3598 case Intrinsic::arm_neon_vminu
:
3599 case Intrinsic::arm_neon_vmaxu
: {
3600 if (Op
.getValueType().isFloatingPoint())
3602 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3603 ? ISD::UMIN
: ISD::UMAX
;
3604 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3605 Op
.getOperand(1), Op
.getOperand(2));
3607 case Intrinsic::arm_neon_vmins
:
3608 case Intrinsic::arm_neon_vmaxs
: {
3609 // v{min,max}s is overloaded between signed integers and floats.
3610 if (!Op
.getValueType().isFloatingPoint()) {
3611 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3612 ? ISD::SMIN
: ISD::SMAX
;
3613 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3614 Op
.getOperand(1), Op
.getOperand(2));
3616 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3617 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3618 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3619 Op
.getOperand(1), Op
.getOperand(2));
3621 case Intrinsic::arm_neon_vtbl1
:
3622 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3623 Op
.getOperand(1), Op
.getOperand(2));
3624 case Intrinsic::arm_neon_vtbl2
:
3625 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3626 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3630 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3631 const ARMSubtarget
*Subtarget
) {
3633 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3634 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3635 if (SSID
== SyncScope::SingleThread
)
3638 if (!Subtarget
->hasDataBarrier()) {
3639 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3640 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3642 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3643 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3644 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3645 DAG
.getConstant(0, dl
, MVT::i32
));
3648 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3649 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3650 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3651 if (Subtarget
->isMClass()) {
3652 // Only a full system barrier exists in the M-class architectures.
3653 Domain
= ARM_MB::SY
;
3654 } else if (Subtarget
->preferISHSTBarriers() &&
3655 Ord
== AtomicOrdering::Release
) {
3656 // Swift happens to implement ISHST barriers in a way that's compatible with
3657 // Release semantics but weaker than ISH so we'd be fools not to use
3658 // it. Beware: other processors probably don't!
3659 Domain
= ARM_MB::ISHST
;
3662 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3663 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3664 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3667 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3668 const ARMSubtarget
*Subtarget
) {
3669 // ARM pre v5TE and Thumb1 does not have preload instructions.
3670 if (!(Subtarget
->isThumb2() ||
3671 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3672 // Just preserve the chain.
3673 return Op
.getOperand(0);
3676 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3678 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3679 // ARMv7 with MP extension has PLDW.
3680 return Op
.getOperand(0);
3682 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3683 if (Subtarget
->isThumb()) {
3685 isRead
= ~isRead
& 1;
3686 isData
= ~isData
& 1;
3689 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3690 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3691 DAG
.getConstant(isData
, dl
, MVT::i32
));
3694 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3695 MachineFunction
&MF
= DAG
.getMachineFunction();
3696 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3698 // vastart just stores the address of the VarArgsFrameIndex slot into the
3699 // memory location argument.
3701 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3702 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3703 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3704 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3705 MachinePointerInfo(SV
));
3708 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3709 CCValAssign
&NextVA
,
3712 const SDLoc
&dl
) const {
3713 MachineFunction
&MF
= DAG
.getMachineFunction();
3714 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3716 const TargetRegisterClass
*RC
;
3717 if (AFI
->isThumb1OnlyFunction())
3718 RC
= &ARM::tGPRRegClass
;
3720 RC
= &ARM::GPRRegClass
;
3722 // Transform the arguments stored in physical registers into virtual ones.
3723 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3724 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3727 if (NextVA
.isMemLoc()) {
3728 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3729 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3731 // Create load node to retrieve arguments from the stack.
3732 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3733 ArgValue2
= DAG
.getLoad(
3734 MVT::i32
, dl
, Root
, FIN
,
3735 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3737 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3738 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3740 if (!Subtarget
->isLittle())
3741 std::swap (ArgValue
, ArgValue2
);
3742 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3745 // The remaining GPRs hold either the beginning of variable-argument
3746 // data, or the beginning of an aggregate passed by value (usually
3747 // byval). Either way, we allocate stack slots adjacent to the data
3748 // provided by our caller, and store the unallocated registers there.
3749 // If this is a variadic function, the va_list pointer will begin with
3750 // these values; otherwise, this reassembles a (byval) structure that
3751 // was split between registers and memory.
3752 // Return: The frame index registers were stored into.
3753 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3754 const SDLoc
&dl
, SDValue
&Chain
,
3755 const Value
*OrigArg
,
3756 unsigned InRegsParamRecordIdx
,
3757 int ArgOffset
, unsigned ArgSize
) const {
3758 // Currently, two use-cases possible:
3759 // Case #1. Non-var-args function, and we meet first byval parameter.
3760 // Setup first unallocated register as first byval register;
3761 // eat all remained registers
3762 // (these two actions are performed by HandleByVal method).
3763 // Then, here, we initialize stack frame with
3764 // "store-reg" instructions.
3765 // Case #2. Var-args function, that doesn't contain byval parameters.
3766 // The same: eat all remained unallocated registers,
3767 // initialize stack frame.
3769 MachineFunction
&MF
= DAG
.getMachineFunction();
3770 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3771 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3772 unsigned RBegin
, REnd
;
3773 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3774 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3776 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3777 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3782 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3784 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3785 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3786 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3788 SmallVector
<SDValue
, 4> MemOps
;
3789 const TargetRegisterClass
*RC
=
3790 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3792 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3793 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3794 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3795 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3796 MachinePointerInfo(OrigArg
, 4 * i
));
3797 MemOps
.push_back(Store
);
3798 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3801 if (!MemOps
.empty())
3802 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3806 // Setup stack frame, the va_list pointer will start from.
3807 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3808 const SDLoc
&dl
, SDValue
&Chain
,
3810 unsigned TotalArgRegsSaveSize
,
3811 bool ForceMutable
) const {
3812 MachineFunction
&MF
= DAG
.getMachineFunction();
3813 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3815 // Try to store any remaining integer argument regs
3816 // to their spots on the stack so that they may be loaded by dereferencing
3817 // the result of va_next.
3818 // If there is no regs to be stored, just point address after last
3819 // argument passed via stack.
3820 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3821 CCInfo
.getInRegsParamsCount(),
3822 CCInfo
.getNextStackOffset(),
3823 std::max(4U, TotalArgRegsSaveSize
));
3824 AFI
->setVarArgsFrameIndex(FrameIndex
);
3827 SDValue
ARMTargetLowering::LowerFormalArguments(
3828 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3829 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3830 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3831 MachineFunction
&MF
= DAG
.getMachineFunction();
3832 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3834 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3836 // Assign locations to all of the incoming arguments.
3837 SmallVector
<CCValAssign
, 16> ArgLocs
;
3838 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3840 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3842 SmallVector
<SDValue
, 16> ArgValues
;
3844 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3845 unsigned CurArgIdx
= 0;
3847 // Initially ArgRegsSaveSize is zero.
3848 // Then we increase this value each time we meet byval parameter.
3849 // We also increase this value in case of varargs function.
3850 AFI
->setArgRegsSaveSize(0);
3852 // Calculate the amount of stack space that we need to allocate to store
3853 // byval and variadic arguments that are passed in registers.
3854 // We need to know this before we allocate the first byval or variadic
3855 // argument, as they will be allocated a stack slot below the CFA (Canonical
3856 // Frame Address, the stack pointer at entry to the function).
3857 unsigned ArgRegBegin
= ARM::R4
;
3858 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3859 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3862 CCValAssign
&VA
= ArgLocs
[i
];
3863 unsigned Index
= VA
.getValNo();
3864 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3865 if (!Flags
.isByVal())
3868 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3869 unsigned RBegin
, REnd
;
3870 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3871 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3873 CCInfo
.nextInRegsParam();
3875 CCInfo
.rewindByValRegsInfo();
3877 int lastInsIndex
= -1;
3878 if (isVarArg
&& MFI
.hasVAStart()) {
3879 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3880 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3881 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3884 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3885 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3886 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3888 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3889 CCValAssign
&VA
= ArgLocs
[i
];
3890 if (Ins
[VA
.getValNo()].isOrigArg()) {
3891 std::advance(CurOrigArg
,
3892 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3893 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3895 // Arguments stored in registers.
3896 if (VA
.isRegLoc()) {
3897 EVT RegVT
= VA
.getLocVT();
3899 if (VA
.needsCustom()) {
3900 // f64 and vector types are split up into multiple registers or
3901 // combinations of registers and stack slots.
3902 if (VA
.getLocVT() == MVT::v2f64
) {
3903 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3905 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3907 if (VA
.isMemLoc()) {
3908 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3909 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3910 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3911 MachinePointerInfo::getFixedStack(
3912 DAG
.getMachineFunction(), FI
));
3914 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3917 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3918 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3919 ArgValue
, ArgValue1
,
3920 DAG
.getIntPtrConstant(0, dl
));
3921 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3922 ArgValue
, ArgValue2
,
3923 DAG
.getIntPtrConstant(1, dl
));
3925 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3927 const TargetRegisterClass
*RC
;
3930 if (RegVT
== MVT::f16
)
3931 RC
= &ARM::HPRRegClass
;
3932 else if (RegVT
== MVT::f32
)
3933 RC
= &ARM::SPRRegClass
;
3934 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3935 RC
= &ARM::DPRRegClass
;
3936 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3937 RC
= &ARM::QPRRegClass
;
3938 else if (RegVT
== MVT::i32
)
3939 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3940 : &ARM::GPRRegClass
;
3942 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3944 // Transform the arguments in physical registers into virtual ones.
3945 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3946 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3948 // If this value is passed in r0 and has the returned attribute (e.g.
3949 // C++ 'structors), record this fact for later use.
3950 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
3951 AFI
->setPreservesR0();
3955 // If this is an 8 or 16-bit value, it is really passed promoted
3956 // to 32 bits. Insert an assert[sz]ext to capture this, then
3957 // truncate to the right size.
3958 switch (VA
.getLocInfo()) {
3959 default: llvm_unreachable("Unknown loc info!");
3960 case CCValAssign::Full
: break;
3961 case CCValAssign::BCvt
:
3962 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
3964 case CCValAssign::SExt
:
3965 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
3966 DAG
.getValueType(VA
.getValVT()));
3967 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3969 case CCValAssign::ZExt
:
3970 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
3971 DAG
.getValueType(VA
.getValVT()));
3972 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3976 InVals
.push_back(ArgValue
);
3977 } else { // VA.isRegLoc()
3979 assert(VA
.isMemLoc());
3980 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
3982 int index
= VA
.getValNo();
3984 // Some Ins[] entries become multiple ArgLoc[] entries.
3985 // Process them only once.
3986 if (index
!= lastInsIndex
)
3988 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
3989 // FIXME: For now, all byval parameter objects are marked mutable.
3990 // This can be changed with more analysis.
3991 // In case of tail call optimization mark all arguments mutable.
3992 // Since they could be overwritten by lowering of arguments in case of
3994 if (Flags
.isByVal()) {
3995 assert(Ins
[index
].isOrigArg() &&
3996 "Byval arguments cannot be implicit");
3997 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
3999 int FrameIndex
= StoreByValRegs(
4000 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4001 VA
.getLocMemOffset(), Flags
.getByValSize());
4002 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4003 CCInfo
.nextInRegsParam();
4005 unsigned FIOffset
= VA
.getLocMemOffset();
4006 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4009 // Create load nodes to retrieve arguments from the stack.
4010 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4011 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4012 MachinePointerInfo::getFixedStack(
4013 DAG
.getMachineFunction(), FI
)));
4015 lastInsIndex
= index
;
4021 if (isVarArg
&& MFI
.hasVAStart())
4022 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4023 CCInfo
.getNextStackOffset(),
4024 TotalArgRegsSaveSize
);
4026 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4031 /// isFloatingPointZero - Return true if this is +0.0.
4032 static bool isFloatingPointZero(SDValue Op
) {
4033 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4034 return CFP
->getValueAPF().isPosZero();
4035 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4036 // Maybe this has already been legalized into the constant pool?
4037 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4038 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4039 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4040 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4041 return CFP
->getValueAPF().isPosZero();
4043 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4044 Op
->getValueType(0) == MVT::f64
) {
4045 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4046 // created by LowerConstantFP().
4047 SDValue BitcastOp
= Op
->getOperand(0);
4048 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4049 isNullConstant(BitcastOp
->getOperand(0)))
4055 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4056 /// the given operands.
4057 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4058 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4059 const SDLoc
&dl
) const {
4060 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4061 unsigned C
= RHSC
->getZExtValue();
4062 if (!isLegalICmpImmediate((int32_t)C
)) {
4063 // Constant does not fit, try adjusting it by one.
4068 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4069 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4070 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4075 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4076 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4077 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4082 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4083 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4084 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4089 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4090 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4091 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4096 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4097 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4098 // In ARM and Thumb-2, the compare instructions can shift their second
4100 CC
= ISD::getSetCCSwappedOperands(CC
);
4101 std::swap(LHS
, RHS
);
4104 // Thumb1 has very limited immediate modes, so turning an "and" into a
4105 // shift can save multiple instructions.
4107 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4108 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4109 // own. If it's the operand to an unsigned comparison with an immediate,
4110 // we can eliminate one of the shifts: we transform
4111 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4113 // We avoid transforming cases which aren't profitable due to encoding
4116 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4117 // would not; in that case, we're essentially trading one immediate load for
4119 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4120 // 3. C2 is zero; we have other code for this special case.
4122 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4123 // instruction, since the AND is always one instruction anyway, but we could
4124 // use narrow instructions in some cases.
4125 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4126 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4127 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4128 !isSignedIntSetCC(CC
)) {
4129 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4130 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4131 uint64_t RHSV
= RHSC
->getZExtValue();
4132 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4133 unsigned ShiftBits
= countLeadingZeros(Mask
);
4134 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4135 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4136 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4137 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4142 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4143 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4145 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4146 // some tweaks to the heuristics for the previous and->shift transform.
4147 // FIXME: Optimize cases where the LHS isn't a shift.
4148 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4149 isa
<ConstantSDNode
>(RHS
) &&
4150 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4151 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4152 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4154 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4155 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4156 DAG
.getVTList(MVT::i32
, MVT::i32
),
4158 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4159 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4160 Shift
.getValue(1), SDValue());
4161 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4162 return Chain
.getValue(1);
4165 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4167 // If the RHS is a constant zero then the V (overflow) flag will never be
4168 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4169 // simpler for other passes (like the peephole optimiser) to deal with.
4170 if (isNullConstant(RHS
)) {
4174 CondCode
= ARMCC::PL
;
4177 CondCode
= ARMCC::MI
;
4182 ARMISD::NodeType CompareType
;
4185 CompareType
= ARMISD::CMP
;
4190 CompareType
= ARMISD::CMPZ
;
4193 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4194 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4197 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4198 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4199 SelectionDAG
&DAG
, const SDLoc
&dl
,
4200 bool InvalidOnQNaN
) const {
4201 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4203 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4204 if (!isFloatingPointZero(RHS
))
4205 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4207 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4208 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4211 /// duplicateCmp - Glue values can have only one use, so this function
4212 /// duplicates a comparison node.
4214 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4215 unsigned Opc
= Cmp
.getOpcode();
4217 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4218 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4220 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4221 Cmp
= Cmp
.getOperand(0);
4222 Opc
= Cmp
.getOpcode();
4223 if (Opc
== ARMISD::CMPFP
)
4224 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4225 Cmp
.getOperand(1), Cmp
.getOperand(2));
4227 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4228 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4231 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4234 // This function returns three things: the arithmetic computation itself
4235 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4236 // comparison and the condition code define the case in which the arithmetic
4237 // computation *does not* overflow.
4238 std::pair
<SDValue
, SDValue
>
4239 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4240 SDValue
&ARMcc
) const {
4241 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4243 SDValue Value
, OverflowCmp
;
4244 SDValue LHS
= Op
.getOperand(0);
4245 SDValue RHS
= Op
.getOperand(1);
4248 // FIXME: We are currently always generating CMPs because we don't support
4249 // generating CMN through the backend. This is not as good as the natural
4250 // CMP case because it causes a register dependency and cannot be folded
4253 switch (Op
.getOpcode()) {
4255 llvm_unreachable("Unknown overflow instruction!");
4257 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4258 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4259 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4262 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4263 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4264 // We do not use it in the USUBO case as Value may not be used.
4265 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4266 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4268 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4271 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4272 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4273 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4276 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4277 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4278 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4281 // We generate a UMUL_LOHI and then check if the high word is 0.
4282 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4283 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4284 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4286 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4287 DAG
.getConstant(0, dl
, MVT::i32
));
4288 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4291 // We generate a SMUL_LOHI and then check if all the bits of the high word
4292 // are the same as the sign bit of the low word.
4293 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4294 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4295 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4297 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4298 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4300 DAG
.getConstant(31, dl
, MVT::i32
)));
4301 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4305 return std::make_pair(Value
, OverflowCmp
);
4309 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4310 // Let legalize expand this if it isn't a legal type yet.
4311 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4314 SDValue Value
, OverflowCmp
;
4316 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4317 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4319 // We use 0 and 1 as false and true values.
4320 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4321 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4322 EVT VT
= Op
.getValueType();
4324 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4325 ARMcc
, CCR
, OverflowCmp
);
4327 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4328 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4331 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4332 SelectionDAG
&DAG
) {
4333 SDLoc
DL(BoolCarry
);
4334 EVT CarryVT
= BoolCarry
.getValueType();
4336 // This converts the boolean value carry into the carry flag by doing
4337 // ARMISD::SUBC Carry, 1
4338 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4339 DAG
.getVTList(CarryVT
, MVT::i32
),
4340 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4341 return Carry
.getValue(1);
4344 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4345 SelectionDAG
&DAG
) {
4348 // Now convert the carry flag into a boolean carry. We do this
4349 // using ARMISD:ADDE 0, 0, Carry
4350 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4351 DAG
.getConstant(0, DL
, MVT::i32
),
4352 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4355 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4356 SelectionDAG
&DAG
) const {
4357 // Let legalize expand this if it isn't a legal type yet.
4358 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4361 SDValue LHS
= Op
.getOperand(0);
4362 SDValue RHS
= Op
.getOperand(1);
4365 EVT VT
= Op
.getValueType();
4366 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4369 switch (Op
.getOpcode()) {
4371 llvm_unreachable("Unknown overflow instruction!");
4373 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4374 // Convert the carry flag into a boolean value.
4375 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4378 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4379 // Convert the carry flag into a boolean value.
4380 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4381 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4382 // value. So compute 1 - C.
4383 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4384 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4389 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4392 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4393 SDValue Cond
= Op
.getOperand(0);
4394 SDValue SelectTrue
= Op
.getOperand(1);
4395 SDValue SelectFalse
= Op
.getOperand(2);
4397 unsigned Opc
= Cond
.getOpcode();
4399 if (Cond
.getResNo() == 1 &&
4400 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4401 Opc
== ISD::USUBO
)) {
4402 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4405 SDValue Value
, OverflowCmp
;
4407 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4408 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4409 EVT VT
= Op
.getValueType();
4411 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4417 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4418 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4420 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4421 const ConstantSDNode
*CMOVTrue
=
4422 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4423 const ConstantSDNode
*CMOVFalse
=
4424 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4426 if (CMOVTrue
&& CMOVFalse
) {
4427 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4428 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4432 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4434 False
= SelectFalse
;
4435 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4440 if (True
.getNode() && False
.getNode()) {
4441 EVT VT
= Op
.getValueType();
4442 SDValue ARMcc
= Cond
.getOperand(2);
4443 SDValue CCR
= Cond
.getOperand(3);
4444 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4445 assert(True
.getValueType() == VT
);
4446 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4451 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4452 // undefined bits before doing a full-word comparison with zero.
4453 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4454 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4456 return DAG
.getSelectCC(dl
, Cond
,
4457 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4458 SelectTrue
, SelectFalse
, ISD::SETNE
);
4461 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4462 bool &swpCmpOps
, bool &swpVselOps
) {
4463 // Start by selecting the GE condition code for opcodes that return true for
4465 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4466 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4467 CondCode
= ARMCC::GE
;
4469 // and GT for opcodes that return false for 'equality'.
4470 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4471 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4472 CondCode
= ARMCC::GT
;
4474 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4475 // to swap the compare operands.
4476 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4477 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4480 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4481 // If we have an unordered opcode, we need to swap the operands to the VSEL
4482 // instruction (effectively negating the condition).
4484 // This also has the effect of swapping which one of 'less' or 'greater'
4485 // returns true, so we also swap the compare operands. It also switches
4486 // whether we return true for 'equality', so we compensate by picking the
4487 // opposite condition code to our original choice.
4488 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4489 CC
== ISD::SETUGT
) {
4490 swpCmpOps
= !swpCmpOps
;
4491 swpVselOps
= !swpVselOps
;
4492 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4495 // 'ordered' is 'anything but unordered', so use the VS condition code and
4496 // swap the VSEL operands.
4497 if (CC
== ISD::SETO
) {
4498 CondCode
= ARMCC::VS
;
4502 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4503 // code and swap the VSEL operands. Also do this if we don't care about the
4505 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4506 CondCode
= ARMCC::EQ
;
4511 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4512 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4513 SDValue Cmp
, SelectionDAG
&DAG
) const {
4514 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4515 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4516 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4517 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4518 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4520 SDValue TrueLow
= TrueVal
.getValue(0);
4521 SDValue TrueHigh
= TrueVal
.getValue(1);
4522 SDValue FalseLow
= FalseVal
.getValue(0);
4523 SDValue FalseHigh
= FalseVal
.getValue(1);
4525 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4527 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4528 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4530 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4532 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4537 static bool isGTorGE(ISD::CondCode CC
) {
4538 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4541 static bool isLTorLE(ISD::CondCode CC
) {
4542 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4545 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4546 // All of these conditions (and their <= and >= counterparts) will do:
4551 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4552 const SDValue TrueVal
, const SDValue FalseVal
,
4553 const ISD::CondCode CC
, const SDValue K
) {
4554 return (isGTorGE(CC
) &&
4555 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4557 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4560 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4561 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4562 const SDValue TrueVal
, const SDValue FalseVal
,
4563 const ISD::CondCode CC
, const SDValue K
) {
4564 return (isGTorGE(CC
) &&
4565 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4567 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4570 // Check if two chained conditionals could be converted into SSAT or USAT.
4572 // SSAT can replace a set of two conditional selectors that bound a number to an
4573 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4575 // x < -k ? -k : (x > k ? k : x)
4576 // x < -k ? -k : (x < k ? x : k)
4577 // x > -k ? (x > k ? k : x) : -k
4578 // x < k ? (x < -k ? -k : x) : k
4581 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4584 // It returns true if the conversion can be done, false otherwise.
4585 // Additionally, the variable is returned in parameter V, the constant in K and
4586 // usat is set to true if the conditional represents an unsigned saturation
4587 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4588 uint64_t &K
, bool &usat
) {
4589 SDValue LHS1
= Op
.getOperand(0);
4590 SDValue RHS1
= Op
.getOperand(1);
4591 SDValue TrueVal1
= Op
.getOperand(2);
4592 SDValue FalseVal1
= Op
.getOperand(3);
4593 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4595 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4596 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4599 SDValue LHS2
= Op2
.getOperand(0);
4600 SDValue RHS2
= Op2
.getOperand(1);
4601 SDValue TrueVal2
= Op2
.getOperand(2);
4602 SDValue FalseVal2
= Op2
.getOperand(3);
4603 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4605 // Find out which are the constants and which are the variables
4606 // in each conditional
4607 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4610 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4613 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4614 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4615 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4616 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4618 // We must detect cases where the original operations worked with 16- or
4619 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4620 // must work with sign-extended values but the select operations return
4621 // the original non-extended value.
4622 SDValue V2TmpReg
= V2Tmp
;
4623 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4624 V2TmpReg
= V2Tmp
->getOperand(0);
4626 // Check that the registers and the constants have the correct values
4627 // in both conditionals
4628 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4632 // Figure out which conditional is saturating the lower/upper bound.
4633 const SDValue
*LowerCheckOp
=
4634 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4636 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4639 const SDValue
*UpperCheckOp
=
4640 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4642 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4646 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4649 // Check that the constant in the lower-bound check is
4650 // the opposite of the constant in the upper-bound check
4651 // in 1's complement.
4652 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4653 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4654 int64_t PosVal
= std::max(Val1
, Val2
);
4655 int64_t NegVal
= std::min(Val1
, Val2
);
4657 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4658 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4659 isPowerOf2_64(PosVal
+ 1)) {
4661 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4664 else if (NegVal
== 0)
4670 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4678 // Check if a condition of the type x < k ? k : x can be converted into a
4679 // bit operation instead of conditional moves.
4680 // Currently this is allowed given:
4681 // - The conditions and values match up
4682 // - k is 0 or -1 (all ones)
4683 // This function will not check the last condition, thats up to the caller
4684 // It returns true if the transformation can be made, and in such case
4685 // returns x in V, and k in SatK.
4686 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4689 SDValue LHS
= Op
.getOperand(0);
4690 SDValue RHS
= Op
.getOperand(1);
4691 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4692 SDValue TrueVal
= Op
.getOperand(2);
4693 SDValue FalseVal
= Op
.getOperand(3);
4695 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4699 // No constant operation in comparison, early out
4703 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4704 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4705 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4707 // If the constant on left and right side, or variable on left and right,
4708 // does not match, early out
4709 if (*K
!= KTmp
|| V
!= VTmp
)
4712 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4720 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4722 return !Subtarget
->hasVFP2Base();
4724 return !Subtarget
->hasFP64();
4726 return !Subtarget
->hasFullFP16();
4730 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4731 EVT VT
= Op
.getValueType();
4734 // Try to convert two saturating conditional selects into a single SSAT
4736 uint64_t SatConstant
;
4738 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4739 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4741 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4742 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4744 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4745 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4748 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4749 // into more efficient bit operations, which is possible when k is 0 or -1
4750 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4751 // single instructions. On Thumb the shift and the bit operation will be two
4753 // Only allow this transformation on full-width (32-bit) operations
4754 SDValue LowerSatConstant
;
4755 if (VT
== MVT::i32
&&
4756 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4757 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4758 DAG
.getConstant(31, dl
, VT
));
4759 if (isNullConstant(LowerSatConstant
)) {
4760 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4761 DAG
.getAllOnesConstant(dl
, VT
));
4762 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4763 } else if (isAllOnesConstant(LowerSatConstant
))
4764 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4767 SDValue LHS
= Op
.getOperand(0);
4768 SDValue RHS
= Op
.getOperand(1);
4769 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4770 SDValue TrueVal
= Op
.getOperand(2);
4771 SDValue FalseVal
= Op
.getOperand(3);
4773 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4774 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4775 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4777 // If softenSetCCOperands only returned one value, we should compare it to
4779 if (!RHS
.getNode()) {
4780 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4785 if (LHS
.getValueType() == MVT::i32
) {
4786 // Try to generate VSEL on ARMv8.
4787 // The VSEL instruction can't use all the usual ARM condition
4788 // codes: it only has two bits to select the condition code, so it's
4789 // constrained to use only GE, GT, VS and EQ.
4791 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4792 // swap the operands of the previous compare instruction (effectively
4793 // inverting the compare condition, swapping 'less' and 'greater') and
4794 // sometimes need to swap the operands to the VSEL (which inverts the
4795 // condition in the sense of firing whenever the previous condition didn't)
4796 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4797 TrueVal
.getValueType() == MVT::f32
||
4798 TrueVal
.getValueType() == MVT::f64
)) {
4799 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4800 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4801 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4802 CC
= ISD::getSetCCInverse(CC
, true);
4803 std::swap(TrueVal
, FalseVal
);
4808 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4809 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4810 // Choose GE over PL, which vsel does now support
4811 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4812 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4813 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4816 ARMCC::CondCodes CondCode
, CondCode2
;
4818 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4820 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4821 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4822 // must use VSEL (limited condition codes), due to not having conditional f16
4824 if (Subtarget
->hasFPARMv8Base() &&
4825 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4826 (TrueVal
.getValueType() == MVT::f16
||
4827 TrueVal
.getValueType() == MVT::f32
||
4828 TrueVal
.getValueType() == MVT::f64
)) {
4829 bool swpCmpOps
= false;
4830 bool swpVselOps
= false;
4831 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4833 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4834 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4836 std::swap(LHS
, RHS
);
4838 std::swap(TrueVal
, FalseVal
);
4842 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4843 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4844 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4845 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4846 if (CondCode2
!= ARMCC::AL
) {
4847 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4848 // FIXME: Needs another CMP because flag can have but one use.
4849 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4850 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4855 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4856 /// to morph to an integer compare sequence.
4857 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4858 const ARMSubtarget
*Subtarget
) {
4859 SDNode
*N
= Op
.getNode();
4860 if (!N
->hasOneUse())
4861 // Otherwise it requires moving the value from fp to integer registers.
4863 if (!N
->getNumValues())
4865 EVT VT
= Op
.getValueType();
4866 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4867 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4868 // vmrs are very slow, e.g. cortex-a8.
4871 if (isFloatingPointZero(Op
)) {
4875 return ISD::isNormalLoad(N
);
4878 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4879 if (isFloatingPointZero(Op
))
4880 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4882 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4883 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4884 Ld
->getPointerInfo(), Ld
->getAlignment(),
4885 Ld
->getMemOperand()->getFlags());
4887 llvm_unreachable("Unknown VFP cmp argument!");
4890 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4891 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4894 if (isFloatingPointZero(Op
)) {
4895 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4896 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4900 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4901 SDValue Ptr
= Ld
->getBasePtr();
4903 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4904 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4906 EVT PtrType
= Ptr
.getValueType();
4907 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4908 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4909 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4910 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4911 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4912 Ld
->getMemOperand()->getFlags());
4916 llvm_unreachable("Unknown VFP cmp argument!");
4919 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4920 /// f32 and even f64 comparisons to integer ones.
4922 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4923 SDValue Chain
= Op
.getOperand(0);
4924 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4925 SDValue LHS
= Op
.getOperand(2);
4926 SDValue RHS
= Op
.getOperand(3);
4927 SDValue Dest
= Op
.getOperand(4);
4930 bool LHSSeenZero
= false;
4931 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4932 bool RHSSeenZero
= false;
4933 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4934 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4935 // If unsafe fp math optimization is enabled and there are no other uses of
4936 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4937 // to an integer comparison.
4938 if (CC
== ISD::SETOEQ
)
4940 else if (CC
== ISD::SETUNE
)
4943 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4945 if (LHS
.getValueType() == MVT::f32
) {
4946 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4947 bitcastf32Toi32(LHS
, DAG
), Mask
);
4948 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4949 bitcastf32Toi32(RHS
, DAG
), Mask
);
4950 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4951 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4952 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4953 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4958 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
4959 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
4960 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
4961 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
4962 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4963 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4964 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4965 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
4966 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
4972 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
4973 SDValue Chain
= Op
.getOperand(0);
4974 SDValue Cond
= Op
.getOperand(1);
4975 SDValue Dest
= Op
.getOperand(2);
4978 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4980 unsigned Opc
= Cond
.getOpcode();
4981 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4982 !Subtarget
->isThumb1Only();
4983 if (Cond
.getResNo() == 1 &&
4984 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4985 Opc
== ISD::USUBO
|| OptimizeMul
)) {
4986 // Only lower legal XALUO ops.
4987 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4990 // The actual operation with overflow check.
4991 SDValue Value
, OverflowCmp
;
4993 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4995 // Reverse the condition code.
4996 ARMCC::CondCodes CondCode
=
4997 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4998 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4999 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5000 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5002 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5009 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5010 SDValue Chain
= Op
.getOperand(0);
5011 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5012 SDValue LHS
= Op
.getOperand(2);
5013 SDValue RHS
= Op
.getOperand(3);
5014 SDValue Dest
= Op
.getOperand(4);
5017 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5018 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5019 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
5021 // If softenSetCCOperands only returned one value, we should compare it to
5023 if (!RHS
.getNode()) {
5024 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5029 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5031 unsigned Opc
= LHS
.getOpcode();
5032 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5033 !Subtarget
->isThumb1Only();
5034 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5035 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5036 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5037 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5038 // Only lower legal XALUO ops.
5039 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5042 // The actual operation with overflow check.
5043 SDValue Value
, OverflowCmp
;
5045 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5047 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5048 // Reverse the condition code.
5049 ARMCC::CondCodes CondCode
=
5050 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5051 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5052 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5054 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5056 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5060 if (LHS
.getValueType() == MVT::i32
) {
5062 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5063 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5064 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5065 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5068 if (getTargetMachine().Options
.UnsafeFPMath
&&
5069 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5070 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5071 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5075 ARMCC::CondCodes CondCode
, CondCode2
;
5077 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5079 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5080 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5081 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5082 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5083 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5084 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5085 if (CondCode2
!= ARMCC::AL
) {
5086 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5087 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5088 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5093 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5094 SDValue Chain
= Op
.getOperand(0);
5095 SDValue Table
= Op
.getOperand(1);
5096 SDValue Index
= Op
.getOperand(2);
5099 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5100 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5101 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5102 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5103 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5104 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5105 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5106 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5107 // which does another jump to the destination. This also makes it easier
5108 // to translate it to TBB / TBH later (Thumb2 only).
5109 // FIXME: This might not work if the function is extremely large.
5110 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5111 Addr
, Op
.getOperand(2), JTI
);
5113 if (isPositionIndependent() || Subtarget
->isROPI()) {
5115 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5116 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5117 Chain
= Addr
.getValue(1);
5118 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5119 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5122 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5123 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5124 Chain
= Addr
.getValue(1);
5125 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5129 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5130 EVT VT
= Op
.getValueType();
5133 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5134 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5136 return DAG
.UnrollVectorOp(Op
.getNode());
5139 const bool HasFullFP16
=
5140 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5143 const EVT OpTy
= Op
.getOperand(0).getValueType();
5144 if (OpTy
== MVT::v4f32
)
5146 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5148 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5151 llvm_unreachable("Invalid type for custom lowering!");
5153 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5154 return DAG
.UnrollVectorOp(Op
.getNode());
5156 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5157 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5160 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5161 EVT VT
= Op
.getValueType();
5163 return LowerVectorFP_TO_INT(Op
, DAG
);
5164 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5166 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5167 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5170 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5172 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5173 /*isSigned*/ false, SDLoc(Op
)).first
;
5179 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5180 EVT VT
= Op
.getValueType();
5183 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5184 if (VT
.getVectorElementType() == MVT::f32
)
5186 return DAG
.UnrollVectorOp(Op
.getNode());
5189 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5190 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5191 "Invalid type for custom lowering!");
5193 const bool HasFullFP16
=
5194 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5197 if (VT
== MVT::v4f32
)
5198 DestVecType
= MVT::v4i32
;
5199 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5200 DestVecType
= MVT::v4i16
;
5201 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5202 DestVecType
= MVT::v8i16
;
5204 return DAG
.UnrollVectorOp(Op
.getNode());
5208 switch (Op
.getOpcode()) {
5209 default: llvm_unreachable("Invalid opcode!");
5210 case ISD::SINT_TO_FP
:
5211 CastOpc
= ISD::SIGN_EXTEND
;
5212 Opc
= ISD::SINT_TO_FP
;
5214 case ISD::UINT_TO_FP
:
5215 CastOpc
= ISD::ZERO_EXTEND
;
5216 Opc
= ISD::UINT_TO_FP
;
5220 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5221 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5224 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5225 EVT VT
= Op
.getValueType();
5227 return LowerVectorINT_TO_FP(Op
, DAG
);
5228 if (isUnsupportedFloatingType(VT
)) {
5230 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5231 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5234 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5236 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5237 /*isSigned*/ false, SDLoc(Op
)).first
;
5243 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5244 // Implement fcopysign with a fabs and a conditional fneg.
5245 SDValue Tmp0
= Op
.getOperand(0);
5246 SDValue Tmp1
= Op
.getOperand(1);
5248 EVT VT
= Op
.getValueType();
5249 EVT SrcVT
= Tmp1
.getValueType();
5250 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5251 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5252 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5255 // Use VBSL to copy the sign bit.
5256 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5257 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5258 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5259 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5261 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5262 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5263 DAG
.getConstant(32, dl
, MVT::i32
));
5264 else /*if (VT == MVT::f32)*/
5265 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5266 if (SrcVT
== MVT::f32
) {
5267 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5269 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5270 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5271 DAG
.getConstant(32, dl
, MVT::i32
));
5272 } else if (VT
== MVT::f32
)
5273 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5274 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5275 DAG
.getConstant(32, dl
, MVT::i32
));
5276 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5277 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5279 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5281 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5282 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5283 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5285 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5286 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5287 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5288 if (VT
== MVT::f32
) {
5289 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5290 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5291 DAG
.getConstant(0, dl
, MVT::i32
));
5293 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5299 // Bitcast operand 1 to i32.
5300 if (SrcVT
== MVT::f64
)
5301 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5303 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5305 // Or in the signbit with integer operations.
5306 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5307 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5308 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5309 if (VT
== MVT::f32
) {
5310 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5311 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5312 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5313 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5316 // f64: Or the high part with signbit and then combine two parts.
5317 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5319 SDValue Lo
= Tmp0
.getValue(0);
5320 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5321 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5322 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5325 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5326 MachineFunction
&MF
= DAG
.getMachineFunction();
5327 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5328 MFI
.setReturnAddressIsTaken(true);
5330 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5333 EVT VT
= Op
.getValueType();
5335 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5337 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5338 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5339 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5340 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5341 MachinePointerInfo());
5344 // Return LR, which contains the return address. Mark it an implicit live-in.
5345 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5346 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5349 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5350 const ARMBaseRegisterInfo
&ARI
=
5351 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5352 MachineFunction
&MF
= DAG
.getMachineFunction();
5353 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5354 MFI
.setFrameAddressIsTaken(true);
5356 EVT VT
= Op
.getValueType();
5357 SDLoc
dl(Op
); // FIXME probably not meaningful
5358 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5359 unsigned FrameReg
= ARI
.getFrameRegister(MF
);
5360 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5362 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5363 MachinePointerInfo());
5367 // FIXME? Maybe this could be a TableGen attribute on some registers and
5368 // this table could be generated automatically from RegInfo.
5369 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5370 SelectionDAG
&DAG
) const {
5371 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5372 .Case("sp", ARM::SP
)
5376 report_fatal_error(Twine("Invalid register name \""
5377 + StringRef(RegName
) + "\"."));
5380 // Result is 64 bit value so split into two 32 bit values and return as a
5382 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5383 SelectionDAG
&DAG
) {
5386 // This function is only supposed to be called for i64 type destination.
5387 assert(N
->getValueType(0) == MVT::i64
5388 && "ExpandREAD_REGISTER called for non-i64 type result.");
5390 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5391 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5395 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5397 Results
.push_back(Read
.getOperand(0));
5400 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5401 /// When \p DstVT, the destination type of \p BC, is on the vector
5402 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5403 /// it might be possible to combine them, such that everything stays on the
5404 /// vector register bank.
5405 /// \p return The node that would replace \p BT, if the combine
5407 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5408 SelectionDAG
&DAG
) {
5409 SDValue Op
= BC
->getOperand(0);
5410 EVT DstVT
= BC
->getValueType(0);
5412 // The only vector instruction that can produce a scalar (remember,
5413 // since the bitcast was about to be turned into VMOVDRR, the source
5414 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5415 // Moreover, we can do this combine only if there is one use.
5416 // Finally, if the destination type is not a vector, there is not
5417 // much point on forcing everything on the vector bank.
5418 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5422 // If the index is not constant, we will introduce an additional
5423 // multiply that will stick.
5424 // Give up in that case.
5425 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5428 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5430 // Compute the new index.
5431 const APInt
&APIntIndex
= Index
->getAPIntValue();
5432 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5433 NewIndex
*= APIntIndex
;
5434 // Check if the new constant index fits into i32.
5435 if (NewIndex
.getBitWidth() > 32)
5438 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5439 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5441 SDValue ExtractSrc
= Op
.getOperand(0);
5442 EVT VecVT
= EVT::getVectorVT(
5443 *DAG
.getContext(), DstVT
.getScalarType(),
5444 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5445 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5446 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5447 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5450 /// ExpandBITCAST - If the target supports VFP, this function is called to
5451 /// expand a bit convert where either the source or destination type is i64 to
5452 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5453 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5454 /// vectors), since the legalizer won't know what to do with that.
5455 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5456 const ARMSubtarget
*Subtarget
) {
5457 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5459 SDValue Op
= N
->getOperand(0);
5461 // This function is only supposed to be called for i64 types, either as the
5462 // source or destination of the bit convert.
5463 EVT SrcVT
= Op
.getValueType();
5464 EVT DstVT
= N
->getValueType(0);
5465 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5467 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5468 // FullFP16: half values are passed in S-registers, and we don't
5469 // need any of the bitcast and moves:
5471 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5472 // t5: i32 = bitcast t2
5473 // t18: f16 = ARMISD::VMOVhr t5
5474 if (Op
.getOpcode() != ISD::CopyFromReg
||
5475 Op
.getValueType() != MVT::f32
)
5478 auto Move
= N
->use_begin();
5479 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5482 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5483 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5484 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5488 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5491 // SoftFP: read half-precision arguments:
5494 // t7: i16 = truncate t2 <~~~~ Op
5495 // t8: f16 = bitcast t7 <~~~~ N
5497 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5498 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5499 MVT::f16
, Op
.getOperand(0));
5504 // Half-precision return values
5505 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5509 // t11: f16 = fadd t8, t10
5510 // t12: i16 = bitcast t11 <~~~ SDNode N
5511 // t13: i32 = zero_extend t12
5512 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5513 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5515 // transform this into:
5517 // t20: i32 = ARMISD::VMOVrh t11
5518 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5520 auto ZeroExtend
= N
->use_begin();
5521 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5522 ZeroExtend
->getValueType(0) != MVT::i32
)
5525 auto Copy
= ZeroExtend
->use_begin();
5526 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5527 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5528 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5529 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5535 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5538 // Turn i64->f64 into VMOVDRR.
5539 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5540 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5541 // if we can combine the bitcast with its source.
5542 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5545 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5546 DAG
.getConstant(0, dl
, MVT::i32
));
5547 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5548 DAG
.getConstant(1, dl
, MVT::i32
));
5549 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5550 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5553 // Turn f64->i64 into VMOVRRD.
5554 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5556 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5557 SrcVT
.getVectorNumElements() > 1)
5558 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5559 DAG
.getVTList(MVT::i32
, MVT::i32
),
5560 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5562 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5563 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5564 // Merge the pieces into a single i64 value.
5565 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5571 /// getZeroVector - Returns a vector of specified type with all zero elements.
5572 /// Zero vectors are used to represent vector negation and in those cases
5573 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5574 /// not support i64 elements, so sometimes the zero vectors will need to be
5575 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5577 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5578 assert(VT
.isVector() && "Expected a vector type");
5579 // The canonical modified immediate encoding of a zero vector is....0!
5580 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5581 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5582 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5583 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5586 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5587 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5588 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5589 SelectionDAG
&DAG
) const {
5590 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5591 EVT VT
= Op
.getValueType();
5592 unsigned VTBits
= VT
.getSizeInBits();
5594 SDValue ShOpLo
= Op
.getOperand(0);
5595 SDValue ShOpHi
= Op
.getOperand(1);
5596 SDValue ShAmt
= Op
.getOperand(2);
5598 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5599 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5601 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5603 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5604 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5605 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5606 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5607 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5608 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5609 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5610 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5611 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5612 ISD::SETGE
, ARMcc
, DAG
, dl
);
5613 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5616 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5617 SDValue HiBigShift
= Opc
== ISD::SRA
5618 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5619 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5620 : DAG
.getConstant(0, dl
, VT
);
5621 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5622 ISD::SETGE
, ARMcc
, DAG
, dl
);
5623 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5626 SDValue Ops
[2] = { Lo
, Hi
};
5627 return DAG
.getMergeValues(Ops
, dl
);
5630 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5631 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5632 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5633 SelectionDAG
&DAG
) const {
5634 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5635 EVT VT
= Op
.getValueType();
5636 unsigned VTBits
= VT
.getSizeInBits();
5638 SDValue ShOpLo
= Op
.getOperand(0);
5639 SDValue ShOpHi
= Op
.getOperand(1);
5640 SDValue ShAmt
= Op
.getOperand(2);
5642 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5644 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5645 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5646 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5647 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5648 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5649 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5651 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5652 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5653 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5654 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5655 ISD::SETGE
, ARMcc
, DAG
, dl
);
5656 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5659 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5660 ISD::SETGE
, ARMcc
, DAG
, dl
);
5661 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5662 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5663 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5665 SDValue Ops
[2] = { Lo
, Hi
};
5666 return DAG
.getMergeValues(Ops
, dl
);
5669 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5670 SelectionDAG
&DAG
) const {
5671 // The rounding mode is in bits 23:22 of the FPSCR.
5672 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5673 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5674 // so that the shift + and get folded into a bitfield extract.
5676 SDValue Ops
[] = { DAG
.getEntryNode(),
5677 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5679 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5680 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5681 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5682 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5683 DAG
.getConstant(22, dl
, MVT::i32
));
5684 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5685 DAG
.getConstant(3, dl
, MVT::i32
));
5688 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5689 const ARMSubtarget
*ST
) {
5691 EVT VT
= N
->getValueType(0);
5692 if (VT
.isVector()) {
5693 assert(ST
->hasNEON());
5695 // Compute the least significant set bit: LSB = X & -X
5696 SDValue X
= N
->getOperand(0);
5697 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5698 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5700 EVT ElemTy
= VT
.getVectorElementType();
5702 if (ElemTy
== MVT::i8
) {
5703 // Compute with: cttz(x) = ctpop(lsb - 1)
5704 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5705 DAG
.getTargetConstant(1, dl
, ElemTy
));
5706 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5707 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5710 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5711 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5712 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5713 unsigned NumBits
= ElemTy
.getSizeInBits();
5714 SDValue WidthMinus1
=
5715 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5716 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5717 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5718 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5721 // Compute with: cttz(x) = ctpop(lsb - 1)
5725 if (ElemTy
== MVT::i64
) {
5726 // Load constant 0xffff'ffff'ffff'ffff to register.
5727 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5728 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5729 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5731 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5732 DAG
.getTargetConstant(1, dl
, ElemTy
));
5733 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5735 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5738 if (!ST
->hasV6T2Ops())
5741 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5742 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5745 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5746 const ARMSubtarget
*ST
) {
5747 EVT VT
= N
->getValueType(0);
5750 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5751 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5752 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5753 "Unexpected type for custom ctpop lowering");
5755 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5756 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5757 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5758 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5760 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5761 unsigned EltSize
= 8;
5762 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5763 while (EltSize
!= VT
.getScalarSizeInBits()) {
5764 SmallVector
<SDValue
, 8> Ops
;
5765 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5766 TLI
.getPointerTy(DAG
.getDataLayout())));
5771 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5772 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5778 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5779 /// operand of a vector shift operation, where all the elements of the
5780 /// build_vector must have the same constant integer value.
5781 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5782 // Ignore bit_converts.
5783 while (Op
.getOpcode() == ISD::BITCAST
)
5784 Op
= Op
.getOperand(0);
5785 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5786 APInt SplatBits
, SplatUndef
;
5787 unsigned SplatBitSize
;
5790 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5792 SplatBitSize
> ElementBits
)
5794 Cnt
= SplatBits
.getSExtValue();
5798 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5799 /// operand of a vector shift left operation. That value must be in the range:
5800 /// 0 <= Value < ElementBits for a left shift; or
5801 /// 0 <= Value <= ElementBits for a long left shift.
5802 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5803 assert(VT
.isVector() && "vector shift count is not a vector type");
5804 int64_t ElementBits
= VT
.getScalarSizeInBits();
5805 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5807 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5810 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5811 /// operand of a vector shift right operation. For a shift opcode, the value
5812 /// is positive, but for an intrinsic the value count must be negative. The
5813 /// absolute value must be in the range:
5814 /// 1 <= |Value| <= ElementBits for a right shift; or
5815 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5816 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5818 assert(VT
.isVector() && "vector shift count is not a vector type");
5819 int64_t ElementBits
= VT
.getScalarSizeInBits();
5820 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5823 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5824 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5831 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5832 const ARMSubtarget
*ST
) {
5833 EVT VT
= N
->getValueType(0);
5840 // We essentially have two forms here. Shift by an immediate and shift by a
5841 // vector register (there are also shift by a gpr, but that is just handled
5842 // with a tablegen pattern). We cannot easily match shift by an immediate in
5843 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5844 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5845 // signed or unsigned, and a negative shift indicates a shift right).
5846 if (N
->getOpcode() == ISD::SHL
) {
5847 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5848 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5849 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5850 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5854 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5855 "unexpected vector shift opcode");
5857 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5858 unsigned VShiftOpc
=
5859 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5860 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5861 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5864 // Other right shifts we don't have operations for (we use a shift left by a
5865 // negative number).
5866 EVT ShiftVT
= N
->getOperand(1).getValueType();
5867 SDValue NegatedCount
= DAG
.getNode(
5868 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5869 unsigned VShiftOpc
=
5870 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5871 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5874 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5875 const ARMSubtarget
*ST
) {
5876 EVT VT
= N
->getValueType(0);
5879 // We can get here for a node like i32 = ISD::SHL i32, i64
5883 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5884 N
->getOpcode() == ISD::SHL
) &&
5885 "Unknown shift to lower!");
5887 unsigned ShOpc
= N
->getOpcode();
5888 if (ST
->hasMVEIntegerOps()) {
5889 SDValue ShAmt
= N
->getOperand(1);
5890 unsigned ShPartsOpc
= ARMISD::LSLL
;
5891 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5893 // If the shift amount is greater than 32 then do the default optimisation
5894 if (Con
&& Con
->getZExtValue() > 32)
5897 // Extract the lower 32 bits of the shift amount if it's an i64
5898 if (ShAmt
->getValueType(0) == MVT::i64
)
5899 ShAmt
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ShAmt
,
5900 DAG
.getConstant(0, dl
, MVT::i32
));
5902 if (ShOpc
== ISD::SRL
) {
5904 // There is no t2LSRLr instruction so negate and perform an lsll if the
5905 // shift amount is in a register, emulating a right shift.
5906 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5907 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5909 // Else generate an lsrl on the immediate shift amount
5910 ShPartsOpc
= ARMISD::LSRL
;
5911 } else if (ShOpc
== ISD::SRA
)
5912 ShPartsOpc
= ARMISD::ASRL
;
5914 // Lower 32 bits of the destination/source
5915 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5916 DAG
.getConstant(0, dl
, MVT::i32
));
5917 // Upper 32 bits of the destination/source
5918 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5919 DAG
.getConstant(1, dl
, MVT::i32
));
5921 // Generate the shift operation as computed above
5922 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5924 // The upper 32 bits come from the second return value of lsll
5925 Hi
= SDValue(Lo
.getNode(), 1);
5926 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5929 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5930 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5933 // If we are in thumb mode, we don't have RRX.
5934 if (ST
->isThumb1Only())
5937 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5938 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5939 DAG
.getConstant(0, dl
, MVT::i32
));
5940 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5941 DAG
.getConstant(1, dl
, MVT::i32
));
5943 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5944 // captures the result into a carry flag.
5945 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5946 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5948 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5949 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
5951 // Merge the pieces into a single i64 value.
5952 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5955 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
5956 const ARMSubtarget
*ST
) {
5957 bool Invert
= false;
5959 unsigned Opc
= ARMCC::AL
;
5961 SDValue Op0
= Op
.getOperand(0);
5962 SDValue Op1
= Op
.getOperand(1);
5963 SDValue CC
= Op
.getOperand(2);
5964 EVT VT
= Op
.getValueType();
5965 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5970 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
5972 assert(ST
->hasMVEIntegerOps() &&
5973 "No hardware support for integer vector comparison!");
5975 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
5978 // Make sure we expand floating point setcc to scalar if we do not have
5979 // mve.fp, so that we can handle them from there.
5980 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
5986 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
5987 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
5988 // Special-case integer 64-bit equality comparisons. They aren't legal,
5989 // but they can be lowered with a few vector instructions.
5990 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
5991 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
5992 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
5993 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
5994 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
5995 DAG
.getCondCode(ISD::SETEQ
));
5996 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
5997 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
5998 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
5999 if (SetCCOpcode
== ISD::SETNE
)
6000 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6001 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6005 if (CmpVT
.getVectorElementType() == MVT::i64
)
6006 // 64-bit comparisons are not legal in general.
6009 if (Op1
.getValueType().isFloatingPoint()) {
6010 switch (SetCCOpcode
) {
6011 default: llvm_unreachable("Illegal FP comparison");
6014 if (ST
->hasMVEFloatOps()) {
6015 Opc
= ARMCC::NE
; break;
6017 Invert
= true; LLVM_FALLTHROUGH
;
6020 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6022 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6024 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6026 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6028 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6029 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6030 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6031 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6032 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6033 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6035 // Expand this to (OLT | OGT).
6036 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6037 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6038 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6039 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6040 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6042 Result
= DAG
.getNOT(dl
, Result
, VT
);
6045 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6047 // Expand this to (OLT | OGE).
6048 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6049 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6050 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6051 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6052 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6054 Result
= DAG
.getNOT(dl
, Result
, VT
);
6059 // Integer comparisons.
6060 switch (SetCCOpcode
) {
6061 default: llvm_unreachable("Illegal integer comparison");
6063 if (ST
->hasMVEIntegerOps()) {
6064 Opc
= ARMCC::NE
; break;
6066 Invert
= true; LLVM_FALLTHROUGH
;
6068 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6069 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6070 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6071 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6072 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6073 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6074 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6075 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6076 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6079 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6080 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6082 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6084 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6087 // Ignore bitconvert.
6088 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6089 AndOp
= AndOp
.getOperand(0);
6091 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6092 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6093 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6094 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6096 Result
= DAG
.getNOT(dl
, Result
, VT
);
6103 std::swap(Op0
, Op1
);
6105 // If one of the operands is a constant vector zero, attempt to fold the
6106 // comparison to a specialized compare-against-zero form.
6108 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6110 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6111 if (Opc
== ARMCC::GE
)
6113 else if (Opc
== ARMCC::GT
)
6119 if (SingleOp
.getNode()) {
6120 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6121 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6123 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6124 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6127 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6130 Result
= DAG
.getNOT(dl
, Result
, VT
);
6135 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6136 SDValue LHS
= Op
.getOperand(0);
6137 SDValue RHS
= Op
.getOperand(1);
6138 SDValue Carry
= Op
.getOperand(2);
6139 SDValue Cond
= Op
.getOperand(3);
6142 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6144 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6145 // have to invert the carry first.
6146 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6147 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6148 // This converts the boolean value carry into the carry flag.
6149 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6151 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6152 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6154 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6155 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6156 SDValue ARMcc
= DAG
.getConstant(
6157 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6158 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6159 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6160 Cmp
.getValue(1), SDValue());
6161 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6162 CCR
, Chain
.getValue(1));
6165 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6166 /// valid vector constant for a NEON or MVE instruction with a "modified
6167 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6168 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6169 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6170 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6171 VMOVModImmType type
) {
6172 unsigned OpCmode
, Imm
;
6174 // SplatBitSize is set to the smallest size that splats the vector, so a
6175 // zero vector will always have SplatBitSize == 8. However, NEON modified
6176 // immediate instructions others than VMOV do not support the 8-bit encoding
6177 // of a zero vector, and the default encoding of zero is supposed to be the
6182 switch (SplatBitSize
) {
6184 if (type
!= VMOVModImm
)
6186 // Any 1-byte value is OK. Op=0, Cmode=1110.
6187 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6190 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6194 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6195 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6196 if ((SplatBits
& ~0xff) == 0) {
6197 // Value = 0x00nn: Op=x, Cmode=100x.
6202 if ((SplatBits
& ~0xff00) == 0) {
6203 // Value = 0xnn00: Op=x, Cmode=101x.
6205 Imm
= SplatBits
>> 8;
6211 // NEON's 32-bit VMOV supports splat values where:
6212 // * only one byte is nonzero, or
6213 // * the least significant byte is 0xff and the second byte is nonzero, or
6214 // * the least significant 2 bytes are 0xff and the third is nonzero.
6215 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6216 if ((SplatBits
& ~0xff) == 0) {
6217 // Value = 0x000000nn: Op=x, Cmode=000x.
6222 if ((SplatBits
& ~0xff00) == 0) {
6223 // Value = 0x0000nn00: Op=x, Cmode=001x.
6225 Imm
= SplatBits
>> 8;
6228 if ((SplatBits
& ~0xff0000) == 0) {
6229 // Value = 0x00nn0000: Op=x, Cmode=010x.
6231 Imm
= SplatBits
>> 16;
6234 if ((SplatBits
& ~0xff000000) == 0) {
6235 // Value = 0xnn000000: Op=x, Cmode=011x.
6237 Imm
= SplatBits
>> 24;
6241 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6242 if (type
== OtherModImm
) return SDValue();
6244 if ((SplatBits
& ~0xffff) == 0 &&
6245 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6246 // Value = 0x0000nnff: Op=x, Cmode=1100.
6248 Imm
= SplatBits
>> 8;
6252 // cmode == 0b1101 is not supported for MVE VMVN
6253 if (type
== MVEVMVNModImm
)
6256 if ((SplatBits
& ~0xffffff) == 0 &&
6257 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6258 // Value = 0x00nnffff: Op=x, Cmode=1101.
6260 Imm
= SplatBits
>> 16;
6264 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6265 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6266 // VMOV.I32. A (very) minor optimization would be to replicate the value
6267 // and fall through here to test for a valid 64-bit splat. But, then the
6268 // caller would also need to check and handle the change in size.
6272 if (type
!= VMOVModImm
)
6274 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6275 uint64_t BitMask
= 0xff;
6277 unsigned ImmMask
= 1;
6279 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6280 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6283 } else if ((SplatBits
& BitMask
) != 0) {
6290 if (DAG
.getDataLayout().isBigEndian())
6291 // swap higher and lower 32 bit word
6292 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6294 // Op=1, Cmode=1110.
6296 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6301 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6304 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6305 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6308 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6309 const ARMSubtarget
*ST
) const {
6310 EVT VT
= Op
.getValueType();
6311 bool IsDouble
= (VT
== MVT::f64
);
6312 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6313 const APFloat
&FPVal
= CFP
->getValueAPF();
6315 // Prevent floating-point constants from using literal loads
6316 // when execute-only is enabled.
6317 if (ST
->genExecuteOnly()) {
6318 // If we can represent the constant as an immediate, don't lower it
6319 if (isFPImmLegal(FPVal
, VT
))
6321 // Otherwise, construct as integer, and move to float register
6322 APInt INTVal
= FPVal
.bitcastToAPInt();
6324 switch (VT
.getSimpleVT().SimpleTy
) {
6326 llvm_unreachable("Unknown floating point type!");
6329 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6330 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6331 if (!ST
->isLittle())
6333 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6336 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6337 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6341 if (!ST
->hasVFP3Base())
6344 // Use the default (constant pool) lowering for double constants when we have
6346 if (IsDouble
&& !Subtarget
->hasFP64())
6349 // Try splatting with a VMOV.f32...
6350 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6353 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6354 // We have code in place to select a valid ConstantFP already, no need to
6359 // It's a float and we are trying to use NEON operations where
6360 // possible. Lower it to a splat followed by an extract.
6362 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6363 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6365 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6366 DAG
.getConstant(0, DL
, MVT::i32
));
6369 // The rest of our options are NEON only, make sure that's allowed before
6371 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6375 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6377 // It wouldn't really be worth bothering for doubles except for one very
6378 // important value, which does happen to match: 0.0. So make sure we don't do
6380 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6383 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6384 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6385 VMovVT
, false, VMOVModImm
);
6386 if (NewVal
!= SDValue()) {
6388 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6391 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6393 // It's a float: cast and extract a vector element.
6394 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6396 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6397 DAG
.getConstant(0, DL
, MVT::i32
));
6400 // Finally, try a VMVN.i32
6401 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6403 if (NewVal
!= SDValue()) {
6405 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6408 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6410 // It's a float: cast and extract a vector element.
6411 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6413 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6414 DAG
.getConstant(0, DL
, MVT::i32
));
6420 // check if an VEXT instruction can handle the shuffle mask when the
6421 // vector sources of the shuffle are the same.
6422 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6423 unsigned NumElts
= VT
.getVectorNumElements();
6425 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6431 // If this is a VEXT shuffle, the immediate value is the index of the first
6432 // element. The other shuffle indices must be the successive elements after
6434 unsigned ExpectedElt
= Imm
;
6435 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6436 // Increment the expected index. If it wraps around, just follow it
6437 // back to index zero and keep going.
6439 if (ExpectedElt
== NumElts
)
6442 if (M
[i
] < 0) continue; // ignore UNDEF indices
6443 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6450 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6451 bool &ReverseVEXT
, unsigned &Imm
) {
6452 unsigned NumElts
= VT
.getVectorNumElements();
6453 ReverseVEXT
= false;
6455 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6461 // If this is a VEXT shuffle, the immediate value is the index of the first
6462 // element. The other shuffle indices must be the successive elements after
6464 unsigned ExpectedElt
= Imm
;
6465 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6466 // Increment the expected index. If it wraps around, it may still be
6467 // a VEXT but the source vectors must be swapped.
6469 if (ExpectedElt
== NumElts
* 2) {
6474 if (M
[i
] < 0) continue; // ignore UNDEF indices
6475 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6479 // Adjust the index value if the source operands will be swapped.
6486 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6487 /// instruction with the specified blocksize. (The order of the elements
6488 /// within each block of the vector is reversed.)
6489 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6490 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6491 "Only possible block sizes for VREV are: 16, 32, 64");
6493 unsigned EltSz
= VT
.getScalarSizeInBits();
6497 unsigned NumElts
= VT
.getVectorNumElements();
6498 unsigned BlockElts
= M
[0] + 1;
6499 // If the first shuffle index is UNDEF, be optimistic.
6501 BlockElts
= BlockSize
/ EltSz
;
6503 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6506 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6507 if (M
[i
] < 0) continue; // ignore UNDEF indices
6508 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6515 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6516 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6517 // range, then 0 is placed into the resulting vector. So pretty much any mask
6518 // of 8 elements can work here.
6519 return VT
== MVT::v8i8
&& M
.size() == 8;
6522 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6524 if (Mask
.size() == Elements
* 2)
6525 return Index
/ Elements
;
6526 return Mask
[Index
] == 0 ? 0 : 1;
6529 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6530 // checking that pairs of elements in the shuffle mask represent the same index
6531 // in each vector, incrementing the expected index by 2 at each step.
6532 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6533 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6535 // WhichResult gives the offset for each element in the mask based on which
6536 // of the two results it belongs to.
6538 // The transpose can be represented either as:
6539 // result1 = shufflevector v1, v2, result1_shuffle_mask
6540 // result2 = shufflevector v1, v2, result2_shuffle_mask
6541 // where v1/v2 and the shuffle masks have the same number of elements
6542 // (here WhichResult (see below) indicates which result is being checked)
6545 // results = shufflevector v1, v2, shuffle_mask
6546 // where both results are returned in one vector and the shuffle mask has twice
6547 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6548 // want to check the low half and high half of the shuffle mask as if it were
6550 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6551 unsigned EltSz
= VT
.getScalarSizeInBits();
6555 unsigned NumElts
= VT
.getVectorNumElements();
6556 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6559 // If the mask is twice as long as the input vector then we need to check the
6560 // upper and lower parts of the mask with a matching value for WhichResult
6561 // FIXME: A mask with only even values will be rejected in case the first
6562 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6563 // M[0] is used to determine WhichResult
6564 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6565 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6566 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6567 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6568 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6573 if (M
.size() == NumElts
*2)
6579 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6580 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6581 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6582 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6583 unsigned EltSz
= VT
.getScalarSizeInBits();
6587 unsigned NumElts
= VT
.getVectorNumElements();
6588 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6591 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6592 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6593 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6594 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6595 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6600 if (M
.size() == NumElts
*2)
6606 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6607 // that the mask elements are either all even and in steps of size 2 or all odd
6608 // and in steps of size 2.
6609 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6610 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6612 // Requires similar checks to that of isVTRNMask with
6613 // respect the how results are returned.
6614 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6615 unsigned EltSz
= VT
.getScalarSizeInBits();
6619 unsigned NumElts
= VT
.getVectorNumElements();
6620 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6623 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6624 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6625 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6626 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6631 if (M
.size() == NumElts
*2)
6634 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6635 if (VT
.is64BitVector() && EltSz
== 32)
6641 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6642 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6643 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6644 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6645 unsigned EltSz
= VT
.getScalarSizeInBits();
6649 unsigned NumElts
= VT
.getVectorNumElements();
6650 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6653 unsigned Half
= NumElts
/ 2;
6654 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6655 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6656 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6657 unsigned Idx
= WhichResult
;
6658 for (unsigned k
= 0; k
< Half
; ++k
) {
6659 int MIdx
= M
[i
+ j
+ k
];
6660 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6667 if (M
.size() == NumElts
*2)
6670 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6671 if (VT
.is64BitVector() && EltSz
== 32)
6677 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6678 // that pairs of elements of the shufflemask represent the same index in each
6679 // vector incrementing sequentially through the vectors.
6680 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6681 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6683 // Requires similar checks to that of isVTRNMask with respect the how results
6685 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6686 unsigned EltSz
= VT
.getScalarSizeInBits();
6690 unsigned NumElts
= VT
.getVectorNumElements();
6691 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6694 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6695 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6696 unsigned Idx
= WhichResult
* NumElts
/ 2;
6697 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6698 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6699 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6705 if (M
.size() == NumElts
*2)
6708 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6709 if (VT
.is64BitVector() && EltSz
== 32)
6715 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6716 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6717 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6718 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6719 unsigned EltSz
= VT
.getScalarSizeInBits();
6723 unsigned NumElts
= VT
.getVectorNumElements();
6724 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6727 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6728 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6729 unsigned Idx
= WhichResult
* NumElts
/ 2;
6730 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6731 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6732 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6738 if (M
.size() == NumElts
*2)
6741 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6742 if (VT
.is64BitVector() && EltSz
== 32)
6748 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6749 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6750 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6751 unsigned &WhichResult
,
6754 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6755 return ARMISD::VTRN
;
6756 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6757 return ARMISD::VUZP
;
6758 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6759 return ARMISD::VZIP
;
6762 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6763 return ARMISD::VTRN
;
6764 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6765 return ARMISD::VUZP
;
6766 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6767 return ARMISD::VZIP
;
6772 /// \return true if this is a reverse operation on an vector.
6773 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6774 unsigned NumElts
= VT
.getVectorNumElements();
6775 // Make sure the mask has the right size.
6776 if (NumElts
!= M
.size())
6779 // Look for <15, ..., 3, -1, 1, 0>.
6780 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6781 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6787 // If N is an integer constant that can be moved into a register in one
6788 // instruction, return an SDValue of such a constant (will become a MOV
6789 // instruction). Otherwise return null.
6790 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6791 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6793 if (!isa
<ConstantSDNode
>(N
))
6795 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6797 if (ST
->isThumb1Only()) {
6798 if (Val
<= 255 || ~Val
<= 255)
6799 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6801 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6802 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6807 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6808 const ARMSubtarget
*ST
) {
6810 EVT VT
= Op
.getValueType();
6812 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6814 unsigned NumElts
= VT
.getVectorNumElements();
6816 unsigned BitsPerBool
;
6820 } else if (NumElts
== 8) {
6823 } else if (NumElts
== 16) {
6829 // First create base with bits set where known
6830 unsigned Bits32
= 0;
6831 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6832 SDValue V
= Op
.getOperand(i
);
6833 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6835 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6837 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6840 // Add in unknown nodes
6841 // FIXME: Handle splats of the same value better.
6842 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6843 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6844 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6845 SDValue V
= Op
.getOperand(i
);
6846 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6848 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6849 DAG
.getConstant(i
, dl
, MVT::i32
));
6855 // If this is a case we can't handle, return null and let the default
6856 // expansion code take care of it.
6857 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6858 const ARMSubtarget
*ST
) const {
6859 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6861 EVT VT
= Op
.getValueType();
6863 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6864 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6866 APInt SplatBits
, SplatUndef
;
6867 unsigned SplatBitSize
;
6869 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6870 if (SplatUndef
.isAllOnesValue())
6871 return DAG
.getUNDEF(VT
);
6873 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6874 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6875 // Check if an immediate VMOV works.
6877 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6878 SplatUndef
.getZExtValue(), SplatBitSize
,
6879 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6882 if (Val
.getNode()) {
6883 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6884 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6887 // Try an immediate VMVN.
6888 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6889 Val
= isVMOVModifiedImm(
6890 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6891 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6892 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6893 if (Val
.getNode()) {
6894 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6895 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6898 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6899 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6900 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6902 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6903 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6909 // Scan through the operands to see if only one value is used.
6911 // As an optimisation, even if more than one value is used it may be more
6912 // profitable to splat with one value then change some lanes.
6914 // Heuristically we decide to do this if the vector has a "dominant" value,
6915 // defined as splatted to more than half of the lanes.
6916 unsigned NumElts
= VT
.getVectorNumElements();
6917 bool isOnlyLowElement
= true;
6918 bool usesOnlyOneValue
= true;
6919 bool hasDominantValue
= false;
6920 bool isConstant
= true;
6922 // Map of the number of times a particular SDValue appears in the
6924 DenseMap
<SDValue
, unsigned> ValueCounts
;
6926 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6927 SDValue V
= Op
.getOperand(i
);
6931 isOnlyLowElement
= false;
6932 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6935 ValueCounts
.insert(std::make_pair(V
, 0));
6936 unsigned &Count
= ValueCounts
[V
];
6938 // Is this value dominant? (takes up more than half of the lanes)
6939 if (++Count
> (NumElts
/ 2)) {
6940 hasDominantValue
= true;
6944 if (ValueCounts
.size() != 1)
6945 usesOnlyOneValue
= false;
6946 if (!Value
.getNode() && !ValueCounts
.empty())
6947 Value
= ValueCounts
.begin()->first
;
6949 if (ValueCounts
.empty())
6950 return DAG
.getUNDEF(VT
);
6952 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6953 // Keep going if we are hitting this case.
6954 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
6955 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
6957 unsigned EltSize
= VT
.getScalarSizeInBits();
6959 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6960 // i32 and try again.
6961 if (hasDominantValue
&& EltSize
<= 32) {
6965 // If we are VDUPing a value that comes directly from a vector, that will
6966 // cause an unnecessary move to and from a GPR, where instead we could
6967 // just use VDUPLANE. We can only do this if the lane being extracted
6968 // is at a constant index, as the VDUP from lane instructions only have
6969 // constant-index forms.
6970 ConstantSDNode
*constIndex
;
6971 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
6972 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
6973 // We need to create a new undef vector to use for the VDUPLANE if the
6974 // size of the vector from which we get the value is different than the
6975 // size of the vector that we need to create. We will insert the element
6976 // such that the register coalescer will remove unnecessary copies.
6977 if (VT
!= Value
->getOperand(0).getValueType()) {
6978 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
6979 VT
.getVectorNumElements();
6980 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6981 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
6982 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
6983 DAG
.getConstant(index
, dl
, MVT::i32
));
6985 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6986 Value
->getOperand(0), Value
->getOperand(1));
6988 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
6990 if (!usesOnlyOneValue
) {
6991 // The dominant value was splatted as 'N', but we now have to insert
6992 // all differing elements.
6993 for (unsigned I
= 0; I
< NumElts
; ++I
) {
6994 if (Op
.getOperand(I
) == Value
)
6996 SmallVector
<SDValue
, 3> Ops
;
6998 Ops
.push_back(Op
.getOperand(I
));
6999 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7000 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7005 if (VT
.getVectorElementType().isFloatingPoint()) {
7006 SmallVector
<SDValue
, 8> Ops
;
7007 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7008 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7009 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7010 for (unsigned i
= 0; i
< NumElts
; ++i
)
7011 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7013 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7014 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7015 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7017 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7019 if (usesOnlyOneValue
) {
7020 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7021 if (isConstant
&& Val
.getNode())
7022 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7026 // If all elements are constants and the case above didn't get hit, fall back
7027 // to the default expansion, which will generate a load from the constant
7032 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7034 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7035 if (shuffle
!= SDValue())
7039 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7040 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7041 // into two 64-bit vectors; we might discover a better way to lower it.
7042 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7043 EVT ExtVT
= VT
.getVectorElementType();
7044 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7046 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7047 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7048 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7049 SDValue Upper
= DAG
.getBuildVector(
7050 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7051 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7052 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7054 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7057 // Vectors with 32- or 64-bit elements can be built by directly assigning
7058 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7059 // will be legalized.
7060 if (EltSize
>= 32) {
7061 // Do the expansion with floating-point types, since that is what the VFP
7062 // registers are defined to use, and since i64 is not legal.
7063 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7064 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7065 SmallVector
<SDValue
, 8> Ops
;
7066 for (unsigned i
= 0; i
< NumElts
; ++i
)
7067 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7068 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7069 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7072 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7073 // know the default expansion would otherwise fall back on something even
7074 // worse. For a vector with one or two non-undef values, that's
7075 // scalar_to_vector for the elements followed by a shuffle (provided the
7076 // shuffle is valid for the target) and materialization element by element
7077 // on the stack followed by a load for everything else.
7078 if (!isConstant
&& !usesOnlyOneValue
) {
7079 SDValue Vec
= DAG
.getUNDEF(VT
);
7080 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7081 SDValue V
= Op
.getOperand(i
);
7084 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7085 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7093 // Gather data to see if the operation can be modelled as a
7094 // shuffle in combination with VEXTs.
7095 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7096 SelectionDAG
&DAG
) const {
7097 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7099 EVT VT
= Op
.getValueType();
7100 unsigned NumElts
= VT
.getVectorNumElements();
7102 struct ShuffleSourceInfo
{
7104 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7105 unsigned MaxElt
= 0;
7107 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7108 // be compatible with the shuffle we intend to construct. As a result
7109 // ShuffleVec will be some sliding window into the original Vec.
7112 // Code should guarantee that element i in Vec starts at element "WindowBase
7113 // + i * WindowScale in ShuffleVec".
7115 int WindowScale
= 1;
7117 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7119 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7122 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7124 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7125 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7126 SDValue V
= Op
.getOperand(i
);
7129 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7130 // A shuffle can only come from building a vector from various
7131 // elements of other vectors.
7133 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7134 // Furthermore, shuffles require a constant mask, whereas extractelts
7135 // accept variable indices.
7139 // Add this element source to the list if it's not already there.
7140 SDValue SourceVec
= V
.getOperand(0);
7141 auto Source
= llvm::find(Sources
, SourceVec
);
7142 if (Source
== Sources
.end())
7143 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7145 // Update the minimum and maximum lane number seen.
7146 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7147 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7148 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7151 // Currently only do something sane when at most two source vectors
7153 if (Sources
.size() > 2)
7156 // Find out the smallest element size among result and two sources, and use
7157 // it as element size to build the shuffle_vector.
7158 EVT SmallestEltTy
= VT
.getVectorElementType();
7159 for (auto &Source
: Sources
) {
7160 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7161 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7162 SmallestEltTy
= SrcEltTy
;
7164 unsigned ResMultiplier
=
7165 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7166 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7167 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7169 // If the source vector is too wide or too narrow, we may nevertheless be able
7170 // to construct a compatible shuffle either by concatenating it with UNDEF or
7171 // extracting a suitable range of elements.
7172 for (auto &Src
: Sources
) {
7173 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7175 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7178 // This stage of the search produces a source with the same element type as
7179 // the original, but with a total width matching the BUILD_VECTOR output.
7180 EVT EltVT
= SrcVT
.getVectorElementType();
7181 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7182 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7184 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7185 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7187 // We can pad out the smaller vector for free, so if it's part of a
7190 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7191 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7195 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7198 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7199 // Span too large for a VEXT to cope
7203 if (Src
.MinElt
>= NumSrcElts
) {
7204 // The extraction can just take the second half
7206 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7207 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7208 Src
.WindowBase
= -NumSrcElts
;
7209 } else if (Src
.MaxElt
< NumSrcElts
) {
7210 // The extraction can just take the first half
7212 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7213 DAG
.getConstant(0, dl
, MVT::i32
));
7215 // An actual VEXT is needed
7217 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7218 DAG
.getConstant(0, dl
, MVT::i32
));
7220 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7221 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7223 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7225 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7226 Src
.WindowBase
= -Src
.MinElt
;
7230 // Another possible incompatibility occurs from the vector element types. We
7231 // can fix this by bitcasting the source vectors to the same type we intend
7233 for (auto &Src
: Sources
) {
7234 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7235 if (SrcEltTy
== SmallestEltTy
)
7237 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7238 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7239 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7240 Src
.WindowBase
*= Src
.WindowScale
;
7243 // Final sanity check before we try to actually produce a shuffle.
7244 LLVM_DEBUG(for (auto Src
7246 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7248 // The stars all align, our next step is to produce the mask for the shuffle.
7249 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7250 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7251 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7252 SDValue Entry
= Op
.getOperand(i
);
7253 if (Entry
.isUndef())
7256 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7257 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7259 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7260 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7262 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7263 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7264 VT
.getScalarSizeInBits());
7265 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7267 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7268 // starting at the appropriate offset.
7269 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7271 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7272 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7273 for (int j
= 0; j
< LanesDefined
; ++j
)
7274 LaneMask
[j
] = ExtractBase
+ j
;
7277 // Final check before we try to produce nonsense...
7278 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7281 // We can't handle more than two sources. This should have already
7282 // been checked before this point.
7283 assert(Sources
.size() <= 2 && "Too many sources!");
7285 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7286 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7287 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7289 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7290 ShuffleOps
[1], Mask
);
7291 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7294 enum ShuffleOpCodes
{
7295 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7304 OP_VUZPL
, // VUZP, left result
7305 OP_VUZPR
, // VUZP, right result
7306 OP_VZIPL
, // VZIP, left result
7307 OP_VZIPR
, // VZIP, right result
7308 OP_VTRNL
, // VTRN, left result
7309 OP_VTRNR
// VTRN, right result
7312 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7313 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7326 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7327 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7328 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7329 /// are assumed to be legal.
7330 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7331 if (VT
.getVectorNumElements() == 4 &&
7332 (VT
.is128BitVector() || VT
.is64BitVector())) {
7333 unsigned PFIndexes
[4];
7334 for (unsigned i
= 0; i
!= 4; ++i
) {
7338 PFIndexes
[i
] = M
[i
];
7341 // Compute the index in the perfect shuffle table.
7342 unsigned PFTableIndex
=
7343 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7344 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7345 unsigned Cost
= (PFEntry
>> 30);
7347 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7351 bool ReverseVEXT
, isV_UNDEF
;
7352 unsigned Imm
, WhichResult
;
7354 unsigned EltSize
= VT
.getScalarSizeInBits();
7355 if (EltSize
>= 32 ||
7356 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7357 isVREVMask(M
, VT
, 64) ||
7358 isVREVMask(M
, VT
, 32) ||
7359 isVREVMask(M
, VT
, 16))
7361 else if (Subtarget
->hasNEON() &&
7362 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7363 isVTBLMask(M
, VT
) ||
7364 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7366 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7367 isReverseMask(M
, VT
))
7373 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7374 /// the specified operations to build the shuffle.
7375 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7376 SDValue RHS
, SelectionDAG
&DAG
,
7378 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7379 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7380 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7382 if (OpNum
== OP_COPY
) {
7383 if (LHSID
== (1*9+2)*9+3) return LHS
;
7384 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7388 SDValue OpLHS
, OpRHS
;
7389 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7390 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7391 EVT VT
= OpLHS
.getValueType();
7394 default: llvm_unreachable("Unknown shuffle opcode!");
7396 // VREV divides the vector in half and swaps within the half.
7397 if (VT
.getVectorElementType() == MVT::i32
||
7398 VT
.getVectorElementType() == MVT::f32
)
7399 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7400 // vrev <4 x i16> -> VREV32
7401 if (VT
.getVectorElementType() == MVT::i16
)
7402 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7403 // vrev <4 x i8> -> VREV16
7404 assert(VT
.getVectorElementType() == MVT::i8
);
7405 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7410 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7411 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7415 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7417 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7420 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7421 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7424 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7425 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7428 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7429 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7433 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7434 ArrayRef
<int> ShuffleMask
,
7435 SelectionDAG
&DAG
) {
7436 // Check to see if we can use the VTBL instruction.
7437 SDValue V1
= Op
.getOperand(0);
7438 SDValue V2
= Op
.getOperand(1);
7441 SmallVector
<SDValue
, 8> VTBLMask
;
7442 for (ArrayRef
<int>::iterator
7443 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7444 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7446 if (V2
.getNode()->isUndef())
7447 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7448 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7450 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7451 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7454 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7455 SelectionDAG
&DAG
) {
7457 SDValue OpLHS
= Op
.getOperand(0);
7458 EVT VT
= OpLHS
.getValueType();
7460 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7461 "Expect an v8i16/v16i8 type");
7462 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7463 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7464 // extract the first 8 bytes into the top double word and the last 8 bytes
7465 // into the bottom double word. The v8i16 case is similar.
7466 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7467 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7468 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7471 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7472 switch (VT
.getSimpleVT().SimpleTy
) {
7480 llvm_unreachable("Unexpected vector predicate type");
7484 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7485 SelectionDAG
&DAG
) {
7486 // Converting from boolean predicates to integers involves creating a vector
7487 // of all ones or all zeroes and selecting the lanes based upon the real
7490 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7491 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7494 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7495 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7497 // Get full vector type from predicate type
7498 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7501 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7502 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7503 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7504 // since we know in hardware the sizes are really the same.
7505 if (VT
!= MVT::v16i1
)
7506 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7510 // Select either all ones or zeroes depending upon the real predicate bits.
7511 SDValue PredAsVector
=
7512 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7514 // Recast our new predicate-as-integer v16i8 vector into something
7515 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7516 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7519 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7520 const ARMSubtarget
*ST
) {
7521 EVT VT
= Op
.getValueType();
7522 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7523 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7525 assert(ST
->hasMVEIntegerOps() &&
7526 "No support for vector shuffle of boolean predicates");
7528 SDValue V1
= Op
.getOperand(0);
7530 if (isReverseMask(ShuffleMask
, VT
)) {
7531 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7532 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7533 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7534 DAG
.getConstant(16, dl
, MVT::i32
));
7535 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7538 // Until we can come up with optimised cases for every single vector
7539 // shuffle in existence we have chosen the least painful strategy. This is
7540 // to essentially promote the boolean predicate to a 8-bit integer, where
7541 // each predicate represents a byte. Then we fall back on a normal integer
7542 // vector shuffle and convert the result back into a predicate vector. In
7543 // many cases the generated code might be even better than scalar code
7544 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7545 // fields in a register into 8 other arbitrary 2-bit fields!
7546 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7547 EVT NewVT
= PredAsVector
.getValueType();
7550 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7551 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7553 // Now return the result of comparing the shuffled vector with zero,
7554 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7555 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7556 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7559 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7560 const ARMSubtarget
*ST
) {
7561 SDValue V1
= Op
.getOperand(0);
7562 SDValue V2
= Op
.getOperand(1);
7564 EVT VT
= Op
.getValueType();
7565 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7566 unsigned EltSize
= VT
.getScalarSizeInBits();
7568 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7569 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7571 // Convert shuffles that are directly supported on NEON to target-specific
7572 // DAG nodes, instead of keeping them as shuffles and matching them again
7573 // during code selection. This is more efficient and avoids the possibility
7574 // of inconsistencies between legalization and selection.
7575 // FIXME: floating-point vectors should be canonicalized to integer vectors
7576 // of the same time so that they get CSEd properly.
7577 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7579 if (EltSize
<= 32) {
7580 if (SVN
->isSplat()) {
7581 int Lane
= SVN
->getSplatIndex();
7582 // If this is undef splat, generate it via "just" vdup, if possible.
7583 if (Lane
== -1) Lane
= 0;
7585 // Test if V1 is a SCALAR_TO_VECTOR.
7586 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7587 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7589 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7590 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7592 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7593 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7594 bool IsScalarToVector
= true;
7595 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7596 if (!V1
.getOperand(i
).isUndef()) {
7597 IsScalarToVector
= false;
7600 if (IsScalarToVector
)
7601 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7603 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7604 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7607 bool ReverseVEXT
= false;
7609 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7612 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7613 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7616 if (isVREVMask(ShuffleMask
, VT
, 64))
7617 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7618 if (isVREVMask(ShuffleMask
, VT
, 32))
7619 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7620 if (isVREVMask(ShuffleMask
, VT
, 16))
7621 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7623 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7624 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7625 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7628 // Check for Neon shuffles that modify both input vectors in place.
7629 // If both results are used, i.e., if there are two shuffles with the same
7630 // source operands and with masks corresponding to both results of one of
7631 // these operations, DAG memoization will ensure that a single node is
7632 // used for both shuffles.
7633 unsigned WhichResult
= 0;
7634 bool isV_UNDEF
= false;
7635 if (ST
->hasNEON()) {
7636 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7637 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7640 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7641 .getValue(WhichResult
);
7645 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7646 // shuffles that produce a result larger than their operands with:
7647 // shuffle(concat(v1, undef), concat(v2, undef))
7649 // shuffle(concat(v1, v2), undef)
7650 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7652 // This is useful in the general case, but there are special cases where
7653 // native shuffles produce larger results: the two-result ops.
7655 // Look through the concat when lowering them:
7656 // shuffle(concat(v1, v2), undef)
7658 // concat(VZIP(v1, v2):0, :1)
7660 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7661 SDValue SubV1
= V1
->getOperand(0);
7662 SDValue SubV2
= V1
->getOperand(1);
7663 EVT SubVT
= SubV1
.getValueType();
7665 // We expect these to have been canonicalized to -1.
7666 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7667 return i
< (int)VT
.getVectorNumElements();
7668 }) && "Unexpected shuffle index into UNDEF operand!");
7670 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7671 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7674 assert((WhichResult
== 0) &&
7675 "In-place shuffle of concat can only have one result!");
7676 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7678 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7684 // If the shuffle is not directly supported and it has 4 elements, use
7685 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7686 unsigned NumElts
= VT
.getVectorNumElements();
7688 unsigned PFIndexes
[4];
7689 for (unsigned i
= 0; i
!= 4; ++i
) {
7690 if (ShuffleMask
[i
] < 0)
7693 PFIndexes
[i
] = ShuffleMask
[i
];
7696 // Compute the index in the perfect shuffle table.
7697 unsigned PFTableIndex
=
7698 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7699 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7700 unsigned Cost
= (PFEntry
>> 30);
7704 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7705 else if (isLegalMVEShuffleOp(PFEntry
)) {
7706 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7707 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7708 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7709 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7710 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7711 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7716 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7717 if (EltSize
>= 32) {
7718 // Do the expansion with floating-point types, since that is what the VFP
7719 // registers are defined to use, and since i64 is not legal.
7720 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7721 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7722 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7723 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7724 SmallVector
<SDValue
, 8> Ops
;
7725 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7726 if (ShuffleMask
[i
] < 0)
7727 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7729 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7730 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7731 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7734 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7735 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7738 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7739 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7741 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7742 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7748 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7749 const ARMSubtarget
*ST
) {
7750 EVT VecVT
= Op
.getOperand(0).getValueType();
7753 assert(ST
->hasMVEIntegerOps() &&
7754 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7757 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7758 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7759 unsigned LaneWidth
=
7760 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7761 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7762 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7763 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7764 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7765 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7766 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7769 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7770 SelectionDAG
&DAG
) const {
7771 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7772 SDValue Lane
= Op
.getOperand(2);
7773 if (!isa
<ConstantSDNode
>(Lane
))
7776 SDValue Elt
= Op
.getOperand(1);
7777 EVT EltVT
= Elt
.getValueType();
7779 if (Subtarget
->hasMVEIntegerOps() &&
7780 Op
.getValueType().getScalarSizeInBits() == 1)
7781 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7783 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7784 TargetLowering::TypePromoteFloat
) {
7785 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7786 // but the type system will try to do that if we don't intervene.
7787 // Reinterpret any such vector-element insertion as one with the
7788 // corresponding integer types.
7792 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7793 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7794 TargetLowering::TypePromoteFloat
);
7796 SDValue VecIn
= Op
.getOperand(0);
7797 EVT VecVT
= VecIn
.getValueType();
7798 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7799 VecVT
.getVectorNumElements());
7801 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7802 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7803 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7804 IVecIn
, IElt
, Lane
);
7805 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7811 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7812 const ARMSubtarget
*ST
) {
7813 EVT VecVT
= Op
.getOperand(0).getValueType();
7816 assert(ST
->hasMVEIntegerOps() &&
7817 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7820 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7821 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7822 unsigned LaneWidth
=
7823 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7824 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7825 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7829 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7830 const ARMSubtarget
*ST
) {
7831 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7832 SDValue Lane
= Op
.getOperand(1);
7833 if (!isa
<ConstantSDNode
>(Lane
))
7836 SDValue Vec
= Op
.getOperand(0);
7837 EVT VT
= Vec
.getValueType();
7839 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7840 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7842 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7844 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7850 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7851 const ARMSubtarget
*ST
) {
7852 SDValue V1
= Op
.getOperand(0);
7853 SDValue V2
= Op
.getOperand(1);
7855 EVT VT
= Op
.getValueType();
7856 EVT Op1VT
= V1
.getValueType();
7857 EVT Op2VT
= V2
.getValueType();
7858 unsigned NumElts
= VT
.getVectorNumElements();
7860 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7861 assert(VT
.getScalarSizeInBits() == 1 &&
7862 "Unexpected custom CONCAT_VECTORS lowering");
7863 assert(ST
->hasMVEIntegerOps() &&
7864 "CONCAT_VECTORS lowering only supported for MVE");
7866 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7867 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7869 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7870 // promoted to v8i16, etc.
7872 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7874 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7875 // to be the right size for the destination. For example, if Op1 is v4i1 then
7876 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7877 // which when promoted is v8i16. That means each i32 element from Op1 needs
7878 // truncating to i16 and inserting in the result.
7879 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7880 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7881 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7882 EVT NewVT
= NewV
.getValueType();
7883 EVT ConcatVT
= ConVec
.getValueType();
7884 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7885 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7886 DAG
.getIntPtrConstant(i
, dl
));
7887 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7888 DAG
.getConstant(j
, dl
, MVT::i32
));
7893 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7894 ConVec
= ExractInto(NewV2
, ConVec
, j
);
7896 // Now return the result of comparing the subvector with zero,
7897 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7898 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
7899 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7902 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
7903 const ARMSubtarget
*ST
) {
7904 EVT VT
= Op
->getValueType(0);
7905 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7906 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
7908 // The only time a CONCAT_VECTORS operation can have legal types is when
7909 // two 64-bit vectors are concatenated to a 128-bit vector.
7910 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7911 "unexpected CONCAT_VECTORS");
7913 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7914 SDValue Op0
= Op
.getOperand(0);
7915 SDValue Op1
= Op
.getOperand(1);
7917 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7918 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7919 DAG
.getIntPtrConstant(0, dl
));
7921 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7922 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7923 DAG
.getIntPtrConstant(1, dl
));
7924 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7927 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
7928 const ARMSubtarget
*ST
) {
7929 SDValue V1
= Op
.getOperand(0);
7930 SDValue V2
= Op
.getOperand(1);
7932 EVT VT
= Op
.getValueType();
7933 EVT Op1VT
= V1
.getValueType();
7934 unsigned NumElts
= VT
.getVectorNumElements();
7935 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
7937 assert(VT
.getScalarSizeInBits() == 1 &&
7938 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7939 assert(ST
->hasMVEIntegerOps() &&
7940 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7942 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7944 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7945 // promoted to v8i16, etc.
7947 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7949 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
7950 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
7951 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
7952 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
7953 DAG
.getIntPtrConstant(i
, dl
));
7954 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
7955 DAG
.getConstant(j
, dl
, MVT::i32
));
7958 // Now return the result of comparing the subvector with zero,
7959 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7960 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
7961 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7964 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7965 /// element has been zero/sign-extended, depending on the isSigned parameter,
7966 /// from an integer type half its size.
7967 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
7969 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7970 EVT VT
= N
->getValueType(0);
7971 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
7972 SDNode
*BVN
= N
->getOperand(0).getNode();
7973 if (BVN
->getValueType(0) != MVT::v4i32
||
7974 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
7976 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7977 unsigned HiElt
= 1 - LoElt
;
7978 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
7979 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
7980 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
7981 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
7982 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
7985 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
7986 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
7989 if (Hi0
->isNullValue() && Hi1
->isNullValue())
7995 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
7998 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
7999 SDNode
*Elt
= N
->getOperand(i
).getNode();
8000 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8001 unsigned EltSize
= VT
.getScalarSizeInBits();
8002 unsigned HalfSize
= EltSize
/ 2;
8004 if (!isIntN(HalfSize
, C
->getSExtValue()))
8007 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8018 /// isSignExtended - Check if a node is a vector value that is sign-extended
8019 /// or a constant BUILD_VECTOR with sign-extended elements.
8020 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8021 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8023 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8028 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8029 /// or a constant BUILD_VECTOR with zero-extended elements.
8030 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8031 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8033 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8038 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8039 if (OrigVT
.getSizeInBits() >= 64)
8042 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8044 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8045 switch (OrigSimpleTy
) {
8046 default: llvm_unreachable("Unexpected Vector Type");
8055 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8056 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8057 /// We insert the required extension here to get the vector to fill a D register.
8058 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8061 unsigned ExtOpcode
) {
8062 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8063 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8064 // 64-bits we need to insert a new extension so that it will be 64-bits.
8065 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8066 if (OrigTy
.getSizeInBits() >= 64)
8069 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8070 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8072 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8075 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8076 /// does not do any sign/zero extension. If the original vector is less
8077 /// than 64 bits, an appropriate extension will be added after the load to
8078 /// reach a total size of 64 bits. We have to add the extension separately
8079 /// because ARM does not have a sign/zero extending load for vectors.
8080 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8081 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8083 // The load already has the right type.
8084 if (ExtendedTy
== LD
->getMemoryVT())
8085 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8086 LD
->getBasePtr(), LD
->getPointerInfo(),
8087 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8089 // We need to create a zextload/sextload. We cannot just create a load
8090 // followed by a zext/zext node because LowerMUL is also run during normal
8091 // operation legalization where we can't create illegal types.
8092 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8093 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8094 LD
->getMemoryVT(), LD
->getAlignment(),
8095 LD
->getMemOperand()->getFlags());
8098 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8099 /// extending load, or BUILD_VECTOR with extended elements, return the
8100 /// unextended value. The unextended vector should be 64 bits so that it can
8101 /// be used as an operand to a VMULL instruction. If the original vector size
8102 /// before extension is less than 64 bits we add a an extension to resize
8103 /// the vector to 64 bits.
8104 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8105 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8106 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8107 N
->getOperand(0)->getValueType(0),
8111 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8112 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8113 "Expected extending load");
8115 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8116 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8117 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8119 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8120 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8125 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8126 // have been legalized as a BITCAST from v4i32.
8127 if (N
->getOpcode() == ISD::BITCAST
) {
8128 SDNode
*BVN
= N
->getOperand(0).getNode();
8129 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8130 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8131 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8132 return DAG
.getBuildVector(
8133 MVT::v2i32
, SDLoc(N
),
8134 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8136 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8137 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8138 EVT VT
= N
->getValueType(0);
8139 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8140 unsigned NumElts
= VT
.getVectorNumElements();
8141 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8142 SmallVector
<SDValue
, 8> Ops
;
8144 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8145 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8146 const APInt
&CInt
= C
->getAPIntValue();
8147 // Element types smaller than 32 bits are not legal, so use i32 elements.
8148 // The values are implicitly truncated so sext vs. zext doesn't matter.
8149 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8151 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8154 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8155 unsigned Opcode
= N
->getOpcode();
8156 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8157 SDNode
*N0
= N
->getOperand(0).getNode();
8158 SDNode
*N1
= N
->getOperand(1).getNode();
8159 return N0
->hasOneUse() && N1
->hasOneUse() &&
8160 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8165 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8166 unsigned Opcode
= N
->getOpcode();
8167 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8168 SDNode
*N0
= N
->getOperand(0).getNode();
8169 SDNode
*N1
= N
->getOperand(1).getNode();
8170 return N0
->hasOneUse() && N1
->hasOneUse() &&
8171 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8176 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8177 // Multiplications are only custom-lowered for 128-bit vectors so that
8178 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8179 EVT VT
= Op
.getValueType();
8180 assert(VT
.is128BitVector() && VT
.isInteger() &&
8181 "unexpected type for custom-lowering ISD::MUL");
8182 SDNode
*N0
= Op
.getOperand(0).getNode();
8183 SDNode
*N1
= Op
.getOperand(1).getNode();
8184 unsigned NewOpc
= 0;
8186 bool isN0SExt
= isSignExtended(N0
, DAG
);
8187 bool isN1SExt
= isSignExtended(N1
, DAG
);
8188 if (isN0SExt
&& isN1SExt
)
8189 NewOpc
= ARMISD::VMULLs
;
8191 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8192 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8193 if (isN0ZExt
&& isN1ZExt
)
8194 NewOpc
= ARMISD::VMULLu
;
8195 else if (isN1SExt
|| isN1ZExt
) {
8196 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8197 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8198 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8199 NewOpc
= ARMISD::VMULLs
;
8201 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8202 NewOpc
= ARMISD::VMULLu
;
8204 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8206 NewOpc
= ARMISD::VMULLu
;
8212 if (VT
== MVT::v2i64
)
8213 // Fall through to expand this. It is not legal.
8216 // Other vector multiplications are legal.
8221 // Legalize to a VMULL instruction.
8224 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8226 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8227 assert(Op0
.getValueType().is64BitVector() &&
8228 Op1
.getValueType().is64BitVector() &&
8229 "unexpected types for extended operands to VMULL");
8230 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8233 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8234 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8241 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8242 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8243 EVT Op1VT
= Op1
.getValueType();
8244 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8245 DAG
.getNode(NewOpc
, DL
, VT
,
8246 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8247 DAG
.getNode(NewOpc
, DL
, VT
,
8248 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8251 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8252 SelectionDAG
&DAG
) {
8253 // TODO: Should this propagate fast-math-flags?
8256 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8257 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8258 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8259 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8260 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8261 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8262 // Get reciprocal estimate.
8263 // float4 recip = vrecpeq_f32(yf);
8264 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8265 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8267 // Because char has a smaller range than uchar, we can actually get away
8268 // without any newton steps. This requires that we use a weird bias
8269 // of 0xb000, however (again, this has been exhaustively tested).
8270 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8271 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8272 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8273 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8274 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8275 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8276 // Convert back to short.
8277 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8278 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8282 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8283 SelectionDAG
&DAG
) {
8284 // TODO: Should this propagate fast-math-flags?
8287 // Convert to float.
8288 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8289 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8290 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8291 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8292 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8293 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8295 // Use reciprocal estimate and one refinement step.
8296 // float4 recip = vrecpeq_f32(yf);
8297 // recip *= vrecpsq_f32(yf, recip);
8298 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8299 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8301 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8302 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8304 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8305 // Because short has a smaller range than ushort, we can actually get away
8306 // with only a single newton step. This requires that we use a weird bias
8307 // of 89, however (again, this has been exhaustively tested).
8308 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8309 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8310 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8311 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8312 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8313 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8314 // Convert back to integer and return.
8315 // return vmovn_s32(vcvt_s32_f32(result));
8316 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8317 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8321 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8322 const ARMSubtarget
*ST
) {
8323 EVT VT
= Op
.getValueType();
8324 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8325 "unexpected type for custom-lowering ISD::SDIV");
8328 SDValue N0
= Op
.getOperand(0);
8329 SDValue N1
= Op
.getOperand(1);
8332 if (VT
== MVT::v8i8
) {
8333 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8334 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8336 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8337 DAG
.getIntPtrConstant(4, dl
));
8338 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8339 DAG
.getIntPtrConstant(4, dl
));
8340 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8341 DAG
.getIntPtrConstant(0, dl
));
8342 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8343 DAG
.getIntPtrConstant(0, dl
));
8345 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8346 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8348 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8349 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8351 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8354 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8357 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8358 const ARMSubtarget
*ST
) {
8359 // TODO: Should this propagate fast-math-flags?
8360 EVT VT
= Op
.getValueType();
8361 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8362 "unexpected type for custom-lowering ISD::UDIV");
8365 SDValue N0
= Op
.getOperand(0);
8366 SDValue N1
= Op
.getOperand(1);
8369 if (VT
== MVT::v8i8
) {
8370 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8371 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8373 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8374 DAG
.getIntPtrConstant(4, dl
));
8375 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8376 DAG
.getIntPtrConstant(4, dl
));
8377 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8378 DAG
.getIntPtrConstant(0, dl
));
8379 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8380 DAG
.getIntPtrConstant(0, dl
));
8382 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8383 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8385 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8386 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8388 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8389 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8395 // v4i16 sdiv ... Convert to float.
8396 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8397 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8398 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8399 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8400 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8401 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8403 // Use reciprocal estimate and two refinement steps.
8404 // float4 recip = vrecpeq_f32(yf);
8405 // recip *= vrecpsq_f32(yf, recip);
8406 // recip *= vrecpsq_f32(yf, recip);
8407 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8408 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8410 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8411 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8413 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8414 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8415 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8417 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8418 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8419 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8420 // and that it will never cause us to return an answer too large).
8421 // float4 result = as_float4(as_int4(xf*recip) + 2);
8422 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8423 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8424 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8425 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8426 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8427 // Convert back to integer and return.
8428 // return vmovn_u32(vcvt_s32_f32(result));
8429 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8430 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8434 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8435 SDNode
*N
= Op
.getNode();
8436 EVT VT
= N
->getValueType(0);
8437 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8439 SDValue Carry
= Op
.getOperand(2);
8444 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8445 // This converts the boolean value carry into the carry flag.
8446 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8448 // Do the addition proper using the carry flag we wanted.
8449 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8450 Op
.getOperand(1), Carry
);
8452 // Now convert the carry flag into a boolean value.
8453 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8455 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8456 // have to invert the carry first.
8457 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8458 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8459 // This converts the boolean value carry into the carry flag.
8460 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8462 // Do the subtraction proper using the carry flag we wanted.
8463 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8464 Op
.getOperand(1), Carry
);
8466 // Now convert the carry flag into a boolean value.
8467 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8468 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8469 // by ISD::SUBCARRY, so compute 1 - C.
8470 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8471 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8474 // Return both values.
8475 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8478 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8479 assert(Subtarget
->isTargetDarwin());
8481 // For iOS, we want to call an alternative entry point: __sincos_stret,
8482 // return values are passed via sret.
8484 SDValue Arg
= Op
.getOperand(0);
8485 EVT ArgVT
= Arg
.getValueType();
8486 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8487 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8489 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8490 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8492 // Pair of floats / doubles used to pass the result.
8493 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8494 auto &DL
= DAG
.getDataLayout();
8497 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8499 if (ShouldUseSRet
) {
8500 // Create stack object for sret.
8501 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8502 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8503 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8504 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8508 Entry
.Ty
= RetTy
->getPointerTo();
8509 Entry
.IsSExt
= false;
8510 Entry
.IsZExt
= false;
8511 Entry
.IsSRet
= true;
8512 Args
.push_back(Entry
);
8513 RetTy
= Type::getVoidTy(*DAG
.getContext());
8519 Entry
.IsSExt
= false;
8520 Entry
.IsZExt
= false;
8521 Args
.push_back(Entry
);
8524 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8525 const char *LibcallName
= getLibcallName(LC
);
8526 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8527 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8529 TargetLowering::CallLoweringInfo
CLI(DAG
);
8531 .setChain(DAG
.getEntryNode())
8532 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8533 .setDiscardResult(ShouldUseSRet
);
8534 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8537 return CallResult
.first
;
8540 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8542 // Address of cos field.
8543 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8544 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8546 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8548 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8549 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8550 LoadSin
.getValue(0), LoadCos
.getValue(0));
8553 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8555 SDValue
&Chain
) const {
8556 EVT VT
= Op
.getValueType();
8557 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8558 "unexpected type for custom lowering DIV");
8561 const auto &DL
= DAG
.getDataLayout();
8562 const auto &TLI
= DAG
.getTargetLoweringInfo();
8564 const char *Name
= nullptr;
8566 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8568 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8570 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8572 ARMTargetLowering::ArgListTy Args
;
8574 for (auto AI
: {1, 0}) {
8576 Arg
.Node
= Op
.getOperand(AI
);
8577 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8578 Args
.push_back(Arg
);
8581 CallLoweringInfo
CLI(DAG
);
8584 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8585 ES
, std::move(Args
));
8587 return LowerCallTo(CLI
).first
;
8590 // This is a code size optimisation: return the original SDIV node to
8591 // DAGCombiner when we don't want to expand SDIV into a sequence of
8592 // instructions, and an empty node otherwise which will cause the
8593 // SDIV to be expanded in DAGCombine.
8595 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8597 SmallVectorImpl
<SDNode
*> &Created
) const {
8598 // TODO: Support SREM
8599 if (N
->getOpcode() != ISD::SDIV
)
8602 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8603 const bool MinSize
= ST
.hasMinSize();
8604 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8605 : ST
.hasDivideInARMMode();
8607 // Don't touch vector types; rewriting this may lead to scalarizing
8609 if (N
->getOperand(0).getValueType().isVector())
8612 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8613 // hwdiv support for this to be really profitable.
8614 if (!(MinSize
&& HasDivide
))
8617 // ARM mode is a bit simpler than Thumb: we can handle large power
8618 // of 2 immediates with 1 mov instruction; no further checks required,
8619 // just return the sdiv node.
8621 return SDValue(N
, 0);
8623 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8624 // and thus lose the code size benefits of a MOVS that requires only 2.
8625 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8626 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8627 if (Divisor
.sgt(128))
8630 return SDValue(N
, 0);
8633 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8634 bool Signed
) const {
8635 assert(Op
.getValueType() == MVT::i32
&&
8636 "unexpected type for custom lowering DIV");
8639 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8640 DAG
.getEntryNode(), Op
.getOperand(1));
8642 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8645 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8647 SDValue Op
= N
->getOperand(1);
8648 if (N
->getValueType(0) == MVT::i32
)
8649 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8650 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8651 DAG
.getConstant(0, DL
, MVT::i32
));
8652 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8653 DAG
.getConstant(1, DL
, MVT::i32
));
8654 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8655 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8658 void ARMTargetLowering::ExpandDIV_Windows(
8659 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8660 SmallVectorImpl
<SDValue
> &Results
) const {
8661 const auto &DL
= DAG
.getDataLayout();
8662 const auto &TLI
= DAG
.getTargetLoweringInfo();
8664 assert(Op
.getValueType() == MVT::i64
&&
8665 "unexpected type for custom lowering DIV");
8668 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8670 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8672 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8673 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8674 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8675 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8677 Results
.push_back(Lower
);
8678 Results
.push_back(Upper
);
8681 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8682 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8683 // Acquire/Release load/store is not legal for targets without a dmb or
8684 // equivalent available.
8687 // Monotonic load/store is legal for all targets.
8691 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8692 SmallVectorImpl
<SDValue
> &Results
,
8694 const ARMSubtarget
*Subtarget
) {
8696 // Under Power Management extensions, the cycle-count is:
8697 // mrc p15, #0, <Rt>, c9, c13, #0
8698 SDValue Ops
[] = { N
->getOperand(0), // Chain
8699 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8700 DAG
.getConstant(15, DL
, MVT::i32
),
8701 DAG
.getConstant(0, DL
, MVT::i32
),
8702 DAG
.getConstant(9, DL
, MVT::i32
),
8703 DAG
.getConstant(13, DL
, MVT::i32
),
8704 DAG
.getConstant(0, DL
, MVT::i32
)
8707 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8708 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8709 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8710 DAG
.getConstant(0, DL
, MVT::i32
)));
8711 Results
.push_back(Cycles32
.getValue(1));
8714 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8715 SDLoc
dl(V
.getNode());
8716 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8717 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8718 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8720 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8722 std::swap (VLo
, VHi
);
8724 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8725 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8726 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8727 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8729 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8732 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8733 SmallVectorImpl
<SDValue
> & Results
,
8734 SelectionDAG
&DAG
) {
8735 assert(N
->getValueType(0) == MVT::i64
&&
8736 "AtomicCmpSwap on types less than 64 should be legal");
8737 SDValue Ops
[] = {N
->getOperand(1),
8738 createGPRPairNode(DAG
, N
->getOperand(2)),
8739 createGPRPairNode(DAG
, N
->getOperand(3)),
8741 SDNode
*CmpSwap
= DAG
.getMachineNode(
8742 ARM::CMP_SWAP_64
, SDLoc(N
),
8743 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8745 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8746 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8748 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8751 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8752 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8754 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8755 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8756 Results
.push_back(SDValue(CmpSwap
, 2));
8759 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8760 SelectionDAG
&DAG
) {
8761 const auto &TLI
= DAG
.getTargetLoweringInfo();
8763 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8764 "Custom lowering is MSVCRT specific!");
8767 SDValue Val
= Op
.getOperand(0);
8768 MVT Ty
= Val
->getSimpleValueType(0);
8769 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8770 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8771 TLI
.getPointerTy(DAG
.getDataLayout()));
8773 TargetLowering::ArgListTy Args
;
8774 TargetLowering::ArgListEntry Entry
;
8777 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8778 Entry
.IsZExt
= true;
8779 Args
.push_back(Entry
);
8781 Entry
.Node
= Exponent
;
8782 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8783 Entry
.IsZExt
= true;
8784 Args
.push_back(Entry
);
8786 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8788 // In the in-chain to the call is the entry node If we are emitting a
8789 // tailcall, the chain will be mutated if the node has a non-entry input
8791 SDValue InChain
= DAG
.getEntryNode();
8792 SDValue TCChain
= InChain
;
8794 const Function
&F
= DAG
.getMachineFunction().getFunction();
8795 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8796 F
.getReturnType() == LCRTy
;
8800 TargetLowering::CallLoweringInfo
CLI(DAG
);
8803 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8805 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8807 // Return the chain (the DAG root) if it is a tail call
8808 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8811 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8812 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8813 switch (Op
.getOpcode()) {
8814 default: llvm_unreachable("Don't know how to custom lower this!");
8815 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8816 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8817 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8818 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8819 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8820 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8821 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8822 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8823 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8824 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8825 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8826 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8827 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8828 case ISD::SINT_TO_FP
:
8829 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8830 case ISD::FP_TO_SINT
:
8831 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8832 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8833 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8834 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8835 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8836 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8837 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8838 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8840 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8843 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8844 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8845 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8846 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8847 case ISD::SRL_PARTS
:
8848 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8850 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8851 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8852 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8853 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8854 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8855 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8856 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8857 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8858 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8859 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8860 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8861 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8862 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8864 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8865 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8866 return LowerSDIV(Op
, DAG
, Subtarget
);
8868 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8869 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8870 return LowerUDIV(Op
, DAG
, Subtarget
);
8872 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8875 return LowerSignedALUO(Op
, DAG
);
8878 return LowerUnsignedALUO(Op
, DAG
);
8879 case ISD::ATOMIC_LOAD
:
8880 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8881 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8883 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8884 case ISD::DYNAMIC_STACKALLOC
:
8885 if (Subtarget
->isTargetWindows())
8886 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8887 llvm_unreachable("Don't know how to custom lower this!");
8888 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8889 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8890 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8891 case ARMISD::WIN__DBZCHK
: return SDValue();
8895 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8896 SelectionDAG
&DAG
) {
8897 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8899 if (IntNo
== Intrinsic::arm_smlald
)
8900 Opc
= ARMISD::SMLALD
;
8901 else if (IntNo
== Intrinsic::arm_smlaldx
)
8902 Opc
= ARMISD::SMLALDX
;
8903 else if (IntNo
== Intrinsic::arm_smlsld
)
8904 Opc
= ARMISD::SMLSLD
;
8905 else if (IntNo
== Intrinsic::arm_smlsldx
)
8906 Opc
= ARMISD::SMLSLDX
;
8911 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8913 DAG
.getConstant(0, dl
, MVT::i32
));
8914 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8916 DAG
.getConstant(1, dl
, MVT::i32
));
8918 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8919 DAG
.getVTList(MVT::i32
, MVT::i32
),
8920 N
->getOperand(1), N
->getOperand(2),
8922 Results
.push_back(LongMul
.getValue(0));
8923 Results
.push_back(LongMul
.getValue(1));
8926 /// ReplaceNodeResults - Replace the results of node with an illegal result
8927 /// type with new values built out of custom code.
8928 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8929 SmallVectorImpl
<SDValue
> &Results
,
8930 SelectionDAG
&DAG
) const {
8932 switch (N
->getOpcode()) {
8934 llvm_unreachable("Don't know how to custom expand this!");
8935 case ISD::READ_REGISTER
:
8936 ExpandREAD_REGISTER(N
, Results
, DAG
);
8939 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8944 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8948 Res
= LowerREM(N
, DAG
);
8952 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
8953 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
8954 Results
.push_back(Res
.getValue(0));
8955 Results
.push_back(Res
.getValue(1));
8957 case ISD::READCYCLECOUNTER
:
8958 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
8962 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
8963 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
8965 case ISD::ATOMIC_CMP_SWAP
:
8966 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
8968 case ISD::INTRINSIC_WO_CHAIN
:
8969 return ReplaceLongIntrinsic(N
, Results
, DAG
);
8971 lowerABS(N
, Results
, DAG
);
8976 Results
.push_back(Res
);
8979 //===----------------------------------------------------------------------===//
8980 // ARM Scheduler Hooks
8981 //===----------------------------------------------------------------------===//
8983 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8984 /// registers the function context.
8985 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
8986 MachineBasicBlock
*MBB
,
8987 MachineBasicBlock
*DispatchBB
,
8989 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
8990 "ROPI/RWPI not currently supported with SjLj");
8991 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8992 DebugLoc dl
= MI
.getDebugLoc();
8993 MachineFunction
*MF
= MBB
->getParent();
8994 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8995 MachineConstantPool
*MCP
= MF
->getConstantPool();
8996 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
8997 const Function
&F
= MF
->getFunction();
8999 bool isThumb
= Subtarget
->isThumb();
9000 bool isThumb2
= Subtarget
->isThumb2();
9002 unsigned PCLabelId
= AFI
->createPICLabelUId();
9003 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9004 ARMConstantPoolValue
*CPV
=
9005 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9006 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9008 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9009 : &ARM::GPRRegClass
;
9011 // Grab constant pool and fixed stack memory operands.
9012 MachineMemOperand
*CPMMO
=
9013 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9014 MachineMemOperand::MOLoad
, 4, 4);
9016 MachineMemOperand
*FIMMOSt
=
9017 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9018 MachineMemOperand::MOStore
, 4, 4);
9020 // Load the address of the dispatch MBB into the jump buffer.
9022 // Incoming value: jbuf
9023 // ldr.n r5, LCPI1_1
9026 // str r5, [$jbuf, #+4] ; &jbuf[1]
9027 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9028 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9029 .addConstantPoolIndex(CPI
)
9030 .addMemOperand(CPMMO
)
9031 .add(predOps(ARMCC::AL
));
9032 // Set the low bit because of thumb mode.
9033 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9034 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9035 .addReg(NewVReg1
, RegState::Kill
)
9037 .add(predOps(ARMCC::AL
))
9039 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9040 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9041 .addReg(NewVReg2
, RegState::Kill
)
9043 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9044 .addReg(NewVReg3
, RegState::Kill
)
9046 .addImm(36) // &jbuf[1] :: pc
9047 .addMemOperand(FIMMOSt
)
9048 .add(predOps(ARMCC::AL
));
9049 } else if (isThumb
) {
9050 // Incoming value: jbuf
9051 // ldr.n r1, LCPI1_4
9055 // add r2, $jbuf, #+4 ; &jbuf[1]
9057 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9058 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9059 .addConstantPoolIndex(CPI
)
9060 .addMemOperand(CPMMO
)
9061 .add(predOps(ARMCC::AL
));
9062 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9063 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9064 .addReg(NewVReg1
, RegState::Kill
)
9066 // Set the low bit because of thumb mode.
9067 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9068 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9069 .addReg(ARM::CPSR
, RegState::Define
)
9071 .add(predOps(ARMCC::AL
));
9072 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9073 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9074 .addReg(ARM::CPSR
, RegState::Define
)
9075 .addReg(NewVReg2
, RegState::Kill
)
9076 .addReg(NewVReg3
, RegState::Kill
)
9077 .add(predOps(ARMCC::AL
));
9078 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9079 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9081 .addImm(36); // &jbuf[1] :: pc
9082 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9083 .addReg(NewVReg4
, RegState::Kill
)
9084 .addReg(NewVReg5
, RegState::Kill
)
9086 .addMemOperand(FIMMOSt
)
9087 .add(predOps(ARMCC::AL
));
9089 // Incoming value: jbuf
9092 // str r1, [$jbuf, #+4] ; &jbuf[1]
9093 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9094 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9095 .addConstantPoolIndex(CPI
)
9097 .addMemOperand(CPMMO
)
9098 .add(predOps(ARMCC::AL
));
9099 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9100 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9101 .addReg(NewVReg1
, RegState::Kill
)
9103 .add(predOps(ARMCC::AL
));
9104 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9105 .addReg(NewVReg2
, RegState::Kill
)
9107 .addImm(36) // &jbuf[1] :: pc
9108 .addMemOperand(FIMMOSt
)
9109 .add(predOps(ARMCC::AL
));
9113 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9114 MachineBasicBlock
*MBB
) const {
9115 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9116 DebugLoc dl
= MI
.getDebugLoc();
9117 MachineFunction
*MF
= MBB
->getParent();
9118 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9119 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9120 int FI
= MFI
.getFunctionContextIndex();
9122 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9123 : &ARM::GPRnopcRegClass
;
9125 // Get a mapping of the call site numbers to all of the landing pads they're
9127 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9128 unsigned MaxCSNum
= 0;
9129 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9131 if (!BB
->isEHPad()) continue;
9133 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9135 for (MachineBasicBlock::iterator
9136 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9137 if (!II
->isEHLabel()) continue;
9139 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9140 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9142 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9143 for (SmallVectorImpl
<unsigned>::iterator
9144 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9145 CSI
!= CSE
; ++CSI
) {
9146 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9147 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9153 // Get an ordered list of the machine basic blocks for the jump table.
9154 std::vector
<MachineBasicBlock
*> LPadList
;
9155 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9156 LPadList
.reserve(CallSiteNumToLPad
.size());
9157 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9158 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9159 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9160 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9161 LPadList
.push_back(*II
);
9162 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9166 assert(!LPadList
.empty() &&
9167 "No landing pad destinations for the dispatch jump table!");
9169 // Create the jump table and associated information.
9170 MachineJumpTableInfo
*JTI
=
9171 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9172 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9174 // Create the MBBs for the dispatch code.
9176 // Shove the dispatch's address into the return slot in the function context.
9177 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9178 DispatchBB
->setIsEHPad();
9180 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9181 unsigned trap_opcode
;
9182 if (Subtarget
->isThumb())
9183 trap_opcode
= ARM::tTRAP
;
9185 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9187 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9188 DispatchBB
->addSuccessor(TrapBB
);
9190 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9191 DispatchBB
->addSuccessor(DispContBB
);
9194 MF
->insert(MF
->end(), DispatchBB
);
9195 MF
->insert(MF
->end(), DispContBB
);
9196 MF
->insert(MF
->end(), TrapBB
);
9198 // Insert code into the entry block that creates and registers the function
9200 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9202 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9203 MachinePointerInfo::getFixedStack(*MF
, FI
),
9204 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9206 MachineInstrBuilder MIB
;
9207 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9209 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9210 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9212 // Add a register mask with no preserved registers. This results in all
9213 // registers being marked as clobbered. This can't work if the dispatch block
9214 // is in a Thumb1 function and is linked with ARM code which uses the FP
9215 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9216 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9218 bool IsPositionIndependent
= isPositionIndependent();
9219 unsigned NumLPads
= LPadList
.size();
9220 if (Subtarget
->isThumb2()) {
9221 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9222 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9225 .addMemOperand(FIMMOLd
)
9226 .add(predOps(ARMCC::AL
));
9228 if (NumLPads
< 256) {
9229 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9231 .addImm(LPadList
.size())
9232 .add(predOps(ARMCC::AL
));
9234 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9235 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9236 .addImm(NumLPads
& 0xFFFF)
9237 .add(predOps(ARMCC::AL
));
9239 unsigned VReg2
= VReg1
;
9240 if ((NumLPads
& 0xFFFF0000) != 0) {
9241 VReg2
= MRI
->createVirtualRegister(TRC
);
9242 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9244 .addImm(NumLPads
>> 16)
9245 .add(predOps(ARMCC::AL
));
9248 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9251 .add(predOps(ARMCC::AL
));
9254 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9259 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9260 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9261 .addJumpTableIndex(MJTI
)
9262 .add(predOps(ARMCC::AL
));
9264 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9265 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9266 .addReg(NewVReg3
, RegState::Kill
)
9268 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9269 .add(predOps(ARMCC::AL
))
9272 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9273 .addReg(NewVReg4
, RegState::Kill
)
9275 .addJumpTableIndex(MJTI
);
9276 } else if (Subtarget
->isThumb()) {
9277 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9278 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9281 .addMemOperand(FIMMOLd
)
9282 .add(predOps(ARMCC::AL
));
9284 if (NumLPads
< 256) {
9285 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9288 .add(predOps(ARMCC::AL
));
9290 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9291 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9292 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9294 // MachineConstantPool wants an explicit alignment.
9295 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9297 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9298 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9300 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9301 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9302 .addReg(VReg1
, RegState::Define
)
9303 .addConstantPoolIndex(Idx
)
9304 .add(predOps(ARMCC::AL
));
9305 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9308 .add(predOps(ARMCC::AL
));
9311 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9316 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9317 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9318 .addReg(ARM::CPSR
, RegState::Define
)
9321 .add(predOps(ARMCC::AL
));
9323 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9324 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9325 .addJumpTableIndex(MJTI
)
9326 .add(predOps(ARMCC::AL
));
9328 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9329 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9330 .addReg(ARM::CPSR
, RegState::Define
)
9331 .addReg(NewVReg2
, RegState::Kill
)
9333 .add(predOps(ARMCC::AL
));
9335 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9336 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9338 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9339 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9340 .addReg(NewVReg4
, RegState::Kill
)
9342 .addMemOperand(JTMMOLd
)
9343 .add(predOps(ARMCC::AL
));
9345 unsigned NewVReg6
= NewVReg5
;
9346 if (IsPositionIndependent
) {
9347 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9348 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9349 .addReg(ARM::CPSR
, RegState::Define
)
9350 .addReg(NewVReg5
, RegState::Kill
)
9352 .add(predOps(ARMCC::AL
));
9355 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9356 .addReg(NewVReg6
, RegState::Kill
)
9357 .addJumpTableIndex(MJTI
);
9359 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9360 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9363 .addMemOperand(FIMMOLd
)
9364 .add(predOps(ARMCC::AL
));
9366 if (NumLPads
< 256) {
9367 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9370 .add(predOps(ARMCC::AL
));
9371 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9372 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9373 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9374 .addImm(NumLPads
& 0xFFFF)
9375 .add(predOps(ARMCC::AL
));
9377 unsigned VReg2
= VReg1
;
9378 if ((NumLPads
& 0xFFFF0000) != 0) {
9379 VReg2
= MRI
->createVirtualRegister(TRC
);
9380 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9382 .addImm(NumLPads
>> 16)
9383 .add(predOps(ARMCC::AL
));
9386 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9389 .add(predOps(ARMCC::AL
));
9391 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9392 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9393 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9395 // MachineConstantPool wants an explicit alignment.
9396 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9398 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9399 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9401 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9402 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9403 .addReg(VReg1
, RegState::Define
)
9404 .addConstantPoolIndex(Idx
)
9406 .add(predOps(ARMCC::AL
));
9407 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9409 .addReg(VReg1
, RegState::Kill
)
9410 .add(predOps(ARMCC::AL
));
9413 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9418 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9419 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9421 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9422 .add(predOps(ARMCC::AL
))
9424 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9425 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9426 .addJumpTableIndex(MJTI
)
9427 .add(predOps(ARMCC::AL
));
9429 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9430 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9431 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9432 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9433 .addReg(NewVReg3
, RegState::Kill
)
9436 .addMemOperand(JTMMOLd
)
9437 .add(predOps(ARMCC::AL
));
9439 if (IsPositionIndependent
) {
9440 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9441 .addReg(NewVReg5
, RegState::Kill
)
9443 .addJumpTableIndex(MJTI
);
9445 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9446 .addReg(NewVReg5
, RegState::Kill
)
9447 .addJumpTableIndex(MJTI
);
9451 // Add the jump table entries as successors to the MBB.
9452 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9453 for (std::vector
<MachineBasicBlock
*>::iterator
9454 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9455 MachineBasicBlock
*CurMBB
= *I
;
9456 if (SeenMBBs
.insert(CurMBB
).second
)
9457 DispContBB
->addSuccessor(CurMBB
);
9460 // N.B. the order the invoke BBs are processed in doesn't matter here.
9461 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9462 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9463 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9465 // Remove the landing pad successor from the invoke block and replace it
9466 // with the new dispatch block.
9467 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9469 while (!Successors
.empty()) {
9470 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9471 if (SMBB
->isEHPad()) {
9472 BB
->removeSuccessor(SMBB
);
9473 MBBLPads
.push_back(SMBB
);
9477 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9478 BB
->normalizeSuccProbs();
9480 // Find the invoke call and mark all of the callee-saved registers as
9481 // 'implicit defined' so that they're spilled. This prevents code from
9482 // moving instructions to before the EH block, where they will never be
9484 for (MachineBasicBlock::reverse_iterator
9485 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9486 if (!II
->isCall()) continue;
9488 DenseMap
<unsigned, bool> DefRegs
;
9489 for (MachineInstr::mop_iterator
9490 OI
= II
->operands_begin(), OE
= II
->operands_end();
9492 if (!OI
->isReg()) continue;
9493 DefRegs
[OI
->getReg()] = true;
9496 MachineInstrBuilder
MIB(*MF
, &*II
);
9498 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9499 unsigned Reg
= SavedRegs
[i
];
9500 if (Subtarget
->isThumb2() &&
9501 !ARM::tGPRRegClass
.contains(Reg
) &&
9502 !ARM::hGPRRegClass
.contains(Reg
))
9504 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9506 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9509 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9516 // Mark all former landing pads as non-landing pads. The dispatch is the only
9518 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9519 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9520 (*I
)->setIsEHPad(false);
9522 // The instruction is gone now.
9523 MI
.eraseFromParent();
9527 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9528 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9529 E
= MBB
->succ_end(); I
!= E
; ++I
)
9532 llvm_unreachable("Expecting a BB with two successors!");
9535 /// Return the load opcode for a given load size. If load size >= 8,
9536 /// neon opcode will be returned.
9537 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9539 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9540 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9542 return LdSize
== 4 ? ARM::tLDRi
9543 : LdSize
== 2 ? ARM::tLDRHi
9544 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9546 return LdSize
== 4 ? ARM::t2LDR_POST
9547 : LdSize
== 2 ? ARM::t2LDRH_POST
9548 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9549 return LdSize
== 4 ? ARM::LDR_POST_IMM
9550 : LdSize
== 2 ? ARM::LDRH_POST
9551 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9554 /// Return the store opcode for a given store size. If store size >= 8,
9555 /// neon opcode will be returned.
9556 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9558 return StSize
== 16 ? ARM::VST1q32wb_fixed
9559 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9561 return StSize
== 4 ? ARM::tSTRi
9562 : StSize
== 2 ? ARM::tSTRHi
9563 : StSize
== 1 ? ARM::tSTRBi
: 0;
9565 return StSize
== 4 ? ARM::t2STR_POST
9566 : StSize
== 2 ? ARM::t2STRH_POST
9567 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9568 return StSize
== 4 ? ARM::STR_POST_IMM
9569 : StSize
== 2 ? ARM::STRH_POST
9570 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9573 /// Emit a post-increment load operation with given size. The instructions
9574 /// will be added to BB at Pos.
9575 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9576 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9577 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9578 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9579 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9580 assert(LdOpc
!= 0 && "Should have a load opcode");
9582 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9583 .addReg(AddrOut
, RegState::Define
)
9586 .add(predOps(ARMCC::AL
));
9587 } else if (IsThumb1
) {
9588 // load + update AddrIn
9589 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9592 .add(predOps(ARMCC::AL
));
9593 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9594 .add(t1CondCodeOp())
9597 .add(predOps(ARMCC::AL
));
9598 } else if (IsThumb2
) {
9599 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9600 .addReg(AddrOut
, RegState::Define
)
9603 .add(predOps(ARMCC::AL
));
9605 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9606 .addReg(AddrOut
, RegState::Define
)
9610 .add(predOps(ARMCC::AL
));
9614 /// Emit a post-increment store operation with given size. The instructions
9615 /// will be added to BB at Pos.
9616 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9617 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9618 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9619 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9620 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9621 assert(StOpc
!= 0 && "Should have a store opcode");
9623 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9627 .add(predOps(ARMCC::AL
));
9628 } else if (IsThumb1
) {
9629 // store + update AddrIn
9630 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9634 .add(predOps(ARMCC::AL
));
9635 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9636 .add(t1CondCodeOp())
9639 .add(predOps(ARMCC::AL
));
9640 } else if (IsThumb2
) {
9641 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9645 .add(predOps(ARMCC::AL
));
9647 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9652 .add(predOps(ARMCC::AL
));
9657 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9658 MachineBasicBlock
*BB
) const {
9659 // This pseudo instruction has 3 operands: dst, src, size
9660 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9661 // Otherwise, we will generate unrolled scalar copies.
9662 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9663 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9664 MachineFunction::iterator It
= ++BB
->getIterator();
9666 unsigned dest
= MI
.getOperand(0).getReg();
9667 unsigned src
= MI
.getOperand(1).getReg();
9668 unsigned SizeVal
= MI
.getOperand(2).getImm();
9669 unsigned Align
= MI
.getOperand(3).getImm();
9670 DebugLoc dl
= MI
.getDebugLoc();
9672 MachineFunction
*MF
= BB
->getParent();
9673 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9674 unsigned UnitSize
= 0;
9675 const TargetRegisterClass
*TRC
= nullptr;
9676 const TargetRegisterClass
*VecTRC
= nullptr;
9678 bool IsThumb1
= Subtarget
->isThumb1Only();
9679 bool IsThumb2
= Subtarget
->isThumb2();
9680 bool IsThumb
= Subtarget
->isThumb();
9684 } else if (Align
& 2) {
9687 // Check whether we can use NEON instructions.
9688 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9689 Subtarget
->hasNEON()) {
9690 if ((Align
% 16 == 0) && SizeVal
>= 16)
9692 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9695 // Can't use NEON instructions.
9700 // Select the correct opcode and register class for unit size load/store
9701 bool IsNeon
= UnitSize
>= 8;
9702 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9704 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9705 : UnitSize
== 8 ? &ARM::DPRRegClass
9708 unsigned BytesLeft
= SizeVal
% UnitSize
;
9709 unsigned LoopSize
= SizeVal
- BytesLeft
;
9711 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9712 // Use LDR and STR to copy.
9713 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9714 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9715 unsigned srcIn
= src
;
9716 unsigned destIn
= dest
;
9717 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9718 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9719 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9720 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9721 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9722 IsThumb1
, IsThumb2
);
9723 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9724 IsThumb1
, IsThumb2
);
9729 // Handle the leftover bytes with LDRB and STRB.
9730 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9731 // [destOut] = STRB_POST(scratch, destIn, 1)
9732 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9733 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9734 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9735 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9736 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9737 IsThumb1
, IsThumb2
);
9738 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9739 IsThumb1
, IsThumb2
);
9743 MI
.eraseFromParent(); // The instruction is gone now.
9747 // Expand the pseudo op to a loop.
9750 // movw varEnd, # --> with thumb2
9752 // ldrcp varEnd, idx --> without thumb2
9753 // fallthrough --> loopMBB
9755 // PHI varPhi, varEnd, varLoop
9756 // PHI srcPhi, src, srcLoop
9757 // PHI destPhi, dst, destLoop
9758 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9759 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9760 // subs varLoop, varPhi, #UnitSize
9762 // fallthrough --> exitMBB
9764 // epilogue to handle left-over bytes
9765 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9766 // [destOut] = STRB_POST(scratch, destLoop, 1)
9767 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9768 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9769 MF
->insert(It
, loopMBB
);
9770 MF
->insert(It
, exitMBB
);
9772 // Transfer the remainder of BB and its successor edges to exitMBB.
9773 exitMBB
->splice(exitMBB
->begin(), BB
,
9774 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9775 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9777 // Load an immediate to varEnd.
9778 unsigned varEnd
= MRI
.createVirtualRegister(TRC
);
9779 if (Subtarget
->useMovt()) {
9780 unsigned Vtmp
= varEnd
;
9781 if ((LoopSize
& 0xFFFF0000) != 0)
9782 Vtmp
= MRI
.createVirtualRegister(TRC
);
9783 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9784 .addImm(LoopSize
& 0xFFFF)
9785 .add(predOps(ARMCC::AL
));
9787 if ((LoopSize
& 0xFFFF0000) != 0)
9788 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9790 .addImm(LoopSize
>> 16)
9791 .add(predOps(ARMCC::AL
));
9793 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9794 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9795 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9797 // MachineConstantPool wants an explicit alignment.
9798 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9800 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9801 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9802 MachineMemOperand
*CPMMO
=
9803 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9804 MachineMemOperand::MOLoad
, 4, 4);
9807 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9808 .addReg(varEnd
, RegState::Define
)
9809 .addConstantPoolIndex(Idx
)
9810 .add(predOps(ARMCC::AL
))
9811 .addMemOperand(CPMMO
);
9813 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9814 .addReg(varEnd
, RegState::Define
)
9815 .addConstantPoolIndex(Idx
)
9817 .add(predOps(ARMCC::AL
))
9818 .addMemOperand(CPMMO
);
9820 BB
->addSuccessor(loopMBB
);
9822 // Generate the loop body:
9823 // varPhi = PHI(varLoop, varEnd)
9824 // srcPhi = PHI(srcLoop, src)
9825 // destPhi = PHI(destLoop, dst)
9826 MachineBasicBlock
*entryBB
= BB
;
9828 unsigned varLoop
= MRI
.createVirtualRegister(TRC
);
9829 unsigned varPhi
= MRI
.createVirtualRegister(TRC
);
9830 unsigned srcLoop
= MRI
.createVirtualRegister(TRC
);
9831 unsigned srcPhi
= MRI
.createVirtualRegister(TRC
);
9832 unsigned destLoop
= MRI
.createVirtualRegister(TRC
);
9833 unsigned destPhi
= MRI
.createVirtualRegister(TRC
);
9835 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9836 .addReg(varLoop
).addMBB(loopMBB
)
9837 .addReg(varEnd
).addMBB(entryBB
);
9838 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9839 .addReg(srcLoop
).addMBB(loopMBB
)
9840 .addReg(src
).addMBB(entryBB
);
9841 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9842 .addReg(destLoop
).addMBB(loopMBB
)
9843 .addReg(dest
).addMBB(entryBB
);
9845 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9846 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9847 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9848 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9849 IsThumb1
, IsThumb2
);
9850 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9851 IsThumb1
, IsThumb2
);
9853 // Decrement loop variable by UnitSize.
9855 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9856 .add(t1CondCodeOp())
9859 .add(predOps(ARMCC::AL
));
9861 MachineInstrBuilder MIB
=
9862 BuildMI(*BB
, BB
->end(), dl
,
9863 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9866 .add(predOps(ARMCC::AL
))
9868 MIB
->getOperand(5).setReg(ARM::CPSR
);
9869 MIB
->getOperand(5).setIsDef(true);
9871 BuildMI(*BB
, BB
->end(), dl
,
9872 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9873 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9875 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9876 BB
->addSuccessor(loopMBB
);
9877 BB
->addSuccessor(exitMBB
);
9879 // Add epilogue to handle BytesLeft.
9881 auto StartOfExit
= exitMBB
->begin();
9883 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9884 // [destOut] = STRB_POST(scratch, destLoop, 1)
9885 unsigned srcIn
= srcLoop
;
9886 unsigned destIn
= destLoop
;
9887 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9888 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9889 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9890 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9891 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9892 IsThumb1
, IsThumb2
);
9893 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9894 IsThumb1
, IsThumb2
);
9899 MI
.eraseFromParent(); // The instruction is gone now.
9904 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9905 MachineBasicBlock
*MBB
) const {
9906 const TargetMachine
&TM
= getTargetMachine();
9907 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9908 DebugLoc DL
= MI
.getDebugLoc();
9910 assert(Subtarget
->isTargetWindows() &&
9911 "__chkstk is only supported on Windows");
9912 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9914 // __chkstk takes the number of words to allocate on the stack in R4, and
9915 // returns the stack adjustment in number of bytes in R4. This will not
9916 // clober any other registers (other than the obvious lr).
9918 // Although, technically, IP should be considered a register which may be
9919 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9920 // thumb-2 environment, so there is no interworking required. As a result, we
9921 // do not expect a veneer to be emitted by the linker, clobbering IP.
9923 // Each module receives its own copy of __chkstk, so no import thunk is
9924 // required, again, ensuring that IP is not clobbered.
9926 // Finally, although some linkers may theoretically provide a trampoline for
9927 // out of range calls (which is quite common due to a 32M range limitation of
9928 // branches for Thumb), we can generate the long-call version via
9929 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9932 switch (TM
.getCodeModel()) {
9933 case CodeModel::Tiny
:
9934 llvm_unreachable("Tiny code model not available on ARM.");
9935 case CodeModel::Small
:
9936 case CodeModel::Medium
:
9937 case CodeModel::Kernel
:
9938 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9939 .add(predOps(ARMCC::AL
))
9940 .addExternalSymbol("__chkstk")
9941 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9942 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9944 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9946 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9948 case CodeModel::Large
: {
9949 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9950 unsigned Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
9952 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
9953 .addExternalSymbol("__chkstk");
9954 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
9955 .add(predOps(ARMCC::AL
))
9956 .addReg(Reg
, RegState::Kill
)
9957 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9958 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9960 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9962 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9967 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
9968 .addReg(ARM::SP
, RegState::Kill
)
9969 .addReg(ARM::R4
, RegState::Kill
)
9970 .setMIFlags(MachineInstr::FrameSetup
)
9971 .add(predOps(ARMCC::AL
))
9974 MI
.eraseFromParent();
9979 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
9980 MachineBasicBlock
*MBB
) const {
9981 DebugLoc DL
= MI
.getDebugLoc();
9982 MachineFunction
*MF
= MBB
->getParent();
9983 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9985 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
9986 MF
->insert(++MBB
->getIterator(), ContBB
);
9987 ContBB
->splice(ContBB
->begin(), MBB
,
9988 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
9989 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9990 MBB
->addSuccessor(ContBB
);
9992 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9993 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
9994 MF
->push_back(TrapBB
);
9995 MBB
->addSuccessor(TrapBB
);
9997 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
9998 .addReg(MI
.getOperand(0).getReg())
10000 .add(predOps(ARMCC::AL
));
10001 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10004 .addReg(ARM::CPSR
);
10006 MI
.eraseFromParent();
10010 // The CPSR operand of SelectItr might be missing a kill marker
10011 // because there were multiple uses of CPSR, and ISel didn't know
10012 // which to mark. Figure out whether SelectItr should have had a
10013 // kill marker, and set it if it should. Returns the correct kill
10015 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10016 MachineBasicBlock
* BB
,
10017 const TargetRegisterInfo
* TRI
) {
10018 // Scan forward through BB for a use/def of CPSR.
10019 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10020 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10021 const MachineInstr
& mi
= *miI
;
10022 if (mi
.readsRegister(ARM::CPSR
))
10024 if (mi
.definesRegister(ARM::CPSR
))
10025 break; // Should have kill-flag - update below.
10028 // If we hit the end of the block, check whether CPSR is live into a
10030 if (miI
== BB
->end()) {
10031 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10032 sEnd
= BB
->succ_end();
10033 sItr
!= sEnd
; ++sItr
) {
10034 MachineBasicBlock
* succ
= *sItr
;
10035 if (succ
->isLiveIn(ARM::CPSR
))
10040 // We found a def, or hit the end of the basic block and CPSR wasn't live
10041 // out. SelectMI should have a kill flag on CPSR.
10042 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10046 MachineBasicBlock
*
10047 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10048 MachineBasicBlock
*BB
) const {
10049 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10050 DebugLoc dl
= MI
.getDebugLoc();
10051 bool isThumb2
= Subtarget
->isThumb2();
10052 switch (MI
.getOpcode()) {
10055 llvm_unreachable("Unexpected instr type to insert");
10058 // Thumb1 post-indexed loads are really just single-register LDMs.
10059 case ARM::tLDR_postidx
: {
10060 MachineOperand
Def(MI
.getOperand(1));
10061 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10063 .add(MI
.getOperand(2)) // Rn
10064 .add(MI
.getOperand(3)) // PredImm
10065 .add(MI
.getOperand(4)) // PredReg
10066 .add(MI
.getOperand(0)) // Rt
10068 MI
.eraseFromParent();
10072 // The Thumb2 pre-indexed stores have the same MI operands, they just
10073 // define them differently in the .td files from the isel patterns, so
10074 // they need pseudos.
10075 case ARM::t2STR_preidx
:
10076 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10078 case ARM::t2STRB_preidx
:
10079 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10081 case ARM::t2STRH_preidx
:
10082 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10085 case ARM::STRi_preidx
:
10086 case ARM::STRBi_preidx
: {
10087 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10088 : ARM::STRB_PRE_IMM
;
10089 // Decode the offset.
10090 unsigned Offset
= MI
.getOperand(4).getImm();
10091 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10092 Offset
= ARM_AM::getAM2Offset(Offset
);
10096 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10097 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10098 .add(MI
.getOperand(0)) // Rn_wb
10099 .add(MI
.getOperand(1)) // Rt
10100 .add(MI
.getOperand(2)) // Rn
10101 .addImm(Offset
) // offset (skip GPR==zero_reg)
10102 .add(MI
.getOperand(5)) // pred
10103 .add(MI
.getOperand(6))
10104 .addMemOperand(MMO
);
10105 MI
.eraseFromParent();
10108 case ARM::STRr_preidx
:
10109 case ARM::STRBr_preidx
:
10110 case ARM::STRH_preidx
: {
10112 switch (MI
.getOpcode()) {
10113 default: llvm_unreachable("unexpected opcode!");
10114 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10115 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10116 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10118 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10119 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10120 MIB
.add(MI
.getOperand(i
));
10121 MI
.eraseFromParent();
10125 case ARM::tMOVCCr_pseudo
: {
10126 // To "insert" a SELECT_CC instruction, we actually have to insert the
10127 // diamond control-flow pattern. The incoming instruction knows the
10128 // destination vreg to set, the condition code register to branch on, the
10129 // true/false values to select between, and a branch opcode to use.
10130 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10131 MachineFunction::iterator It
= ++BB
->getIterator();
10136 // cmpTY ccX, r1, r2
10138 // fallthrough --> copy0MBB
10139 MachineBasicBlock
*thisMBB
= BB
;
10140 MachineFunction
*F
= BB
->getParent();
10141 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10142 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10143 F
->insert(It
, copy0MBB
);
10144 F
->insert(It
, sinkMBB
);
10146 // Check whether CPSR is live past the tMOVCCr_pseudo.
10147 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10148 if (!MI
.killsRegister(ARM::CPSR
) &&
10149 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10150 copy0MBB
->addLiveIn(ARM::CPSR
);
10151 sinkMBB
->addLiveIn(ARM::CPSR
);
10154 // Transfer the remainder of BB and its successor edges to sinkMBB.
10155 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10156 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10157 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10159 BB
->addSuccessor(copy0MBB
);
10160 BB
->addSuccessor(sinkMBB
);
10162 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10164 .addImm(MI
.getOperand(3).getImm())
10165 .addReg(MI
.getOperand(4).getReg());
10168 // %FalseValue = ...
10169 // # fallthrough to sinkMBB
10172 // Update machine-CFG edges
10173 BB
->addSuccessor(sinkMBB
);
10176 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10179 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10180 .addReg(MI
.getOperand(1).getReg())
10182 .addReg(MI
.getOperand(2).getReg())
10185 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10190 case ARM::BCCZi64
: {
10191 // If there is an unconditional branch to the other successor, remove it.
10192 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10194 // Compare both parts that make up the double comparison separately for
10196 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10198 unsigned LHS1
= MI
.getOperand(1).getReg();
10199 unsigned LHS2
= MI
.getOperand(2).getReg();
10201 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10204 .add(predOps(ARMCC::AL
));
10205 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10206 .addReg(LHS2
).addImm(0)
10207 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10209 unsigned RHS1
= MI
.getOperand(3).getReg();
10210 unsigned RHS2
= MI
.getOperand(4).getReg();
10211 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10214 .add(predOps(ARMCC::AL
));
10215 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10216 .addReg(LHS2
).addReg(RHS2
)
10217 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10220 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10221 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10222 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10223 std::swap(destMBB
, exitMBB
);
10225 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10226 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10228 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10230 .add(predOps(ARMCC::AL
));
10232 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10234 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10238 case ARM::Int_eh_sjlj_setjmp
:
10239 case ARM::Int_eh_sjlj_setjmp_nofp
:
10240 case ARM::tInt_eh_sjlj_setjmp
:
10241 case ARM::t2Int_eh_sjlj_setjmp
:
10242 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10245 case ARM::Int_eh_sjlj_setup_dispatch
:
10246 EmitSjLjDispatchBlock(MI
, BB
);
10251 // To insert an ABS instruction, we have to insert the
10252 // diamond control-flow pattern. The incoming instruction knows the
10253 // source vreg to test against 0, the destination vreg to set,
10254 // the condition code register to branch on, the
10255 // true/false values to select between, and a branch opcode to use.
10260 // BCC (branch to SinkBB if V0 >= 0)
10261 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10262 // SinkBB: V1 = PHI(V2, V3)
10263 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10264 MachineFunction::iterator BBI
= ++BB
->getIterator();
10265 MachineFunction
*Fn
= BB
->getParent();
10266 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10267 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10268 Fn
->insert(BBI
, RSBBB
);
10269 Fn
->insert(BBI
, SinkBB
);
10271 unsigned int ABSSrcReg
= MI
.getOperand(1).getReg();
10272 unsigned int ABSDstReg
= MI
.getOperand(0).getReg();
10273 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10274 bool isThumb2
= Subtarget
->isThumb2();
10275 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10276 // In Thumb mode S must not be specified if source register is the SP or
10277 // PC and if destination register is the SP, so restrict register class
10278 unsigned NewRsbDstReg
=
10279 MRI
.createVirtualRegister(isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10281 // Transfer the remainder of BB and its successor edges to sinkMBB.
10282 SinkBB
->splice(SinkBB
->begin(), BB
,
10283 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10284 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10286 BB
->addSuccessor(RSBBB
);
10287 BB
->addSuccessor(SinkBB
);
10289 // fall through to SinkMBB
10290 RSBBB
->addSuccessor(SinkBB
);
10292 // insert a cmp at the end of BB
10293 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10296 .add(predOps(ARMCC::AL
));
10298 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10300 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10301 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10303 // insert rsbri in RSBBB
10304 // Note: BCC and rsbri will be converted into predicated rsbmi
10305 // by if-conversion pass
10306 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10307 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10308 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10310 .add(predOps(ARMCC::AL
))
10311 .add(condCodeOp());
10313 // insert PHI in SinkBB,
10314 // reuse ABSDstReg to not change uses of ABS instruction
10315 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10316 TII
->get(ARM::PHI
), ABSDstReg
)
10317 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10318 .addReg(ABSSrcReg
).addMBB(BB
);
10320 // remove ABS instruction
10321 MI
.eraseFromParent();
10323 // return last added BB
10326 case ARM::COPY_STRUCT_BYVAL_I32
:
10328 return EmitStructByval(MI
, BB
);
10329 case ARM::WIN__CHKSTK
:
10330 return EmitLowered__chkstk(MI
, BB
);
10331 case ARM::WIN__DBZCHK
:
10332 return EmitLowered__dbzchk(MI
, BB
);
10336 /// Attaches vregs to MEMCPY that it will use as scratch registers
10337 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10338 /// instead of as a custom inserter because we need the use list from the SDNode.
10339 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10340 MachineInstr
&MI
, const SDNode
*Node
) {
10341 bool isThumb1
= Subtarget
->isThumb1Only();
10343 DebugLoc DL
= MI
.getDebugLoc();
10344 MachineFunction
*MF
= MI
.getParent()->getParent();
10345 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10346 MachineInstrBuilder
MIB(*MF
, MI
);
10348 // If the new dst/src is unused mark it as dead.
10349 if (!Node
->hasAnyUseOfValue(0)) {
10350 MI
.getOperand(0).setIsDead(true);
10352 if (!Node
->hasAnyUseOfValue(1)) {
10353 MI
.getOperand(1).setIsDead(true);
10356 // The MEMCPY both defines and kills the scratch registers.
10357 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10358 unsigned TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10359 : &ARM::GPRRegClass
);
10360 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10364 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10365 SDNode
*Node
) const {
10366 if (MI
.getOpcode() == ARM::MEMCPY
) {
10367 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10371 const MCInstrDesc
*MCID
= &MI
.getDesc();
10372 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10373 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10374 // operand is still set to noreg. If needed, set the optional operand's
10375 // register to CPSR, and remove the redundant implicit def.
10377 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10379 // Rename pseudo opcodes.
10380 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10383 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10384 MCID
= &TII
->get(NewOpc
);
10386 assert(MCID
->getNumOperands() ==
10387 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10388 && "converted opcode should be the same except for cc_out"
10389 " (and, on Thumb1, pred)");
10393 // Add the optional cc_out operand
10394 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10396 // On Thumb1, move all input operands to the end, then add the predicate
10397 if (Subtarget
->isThumb1Only()) {
10398 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10399 MI
.addOperand(MI
.getOperand(1));
10400 MI
.RemoveOperand(1);
10403 // Restore the ties
10404 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10405 const MachineOperand
& op
= MI
.getOperand(i
);
10406 if (op
.isReg() && op
.isUse()) {
10407 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10409 MI
.tieOperands(DefIdx
, i
);
10413 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10414 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10417 ccOutIdx
= MCID
->getNumOperands() - 1;
10419 ccOutIdx
= MCID
->getNumOperands() - 1;
10421 // Any ARM instruction that sets the 's' bit should specify an optional
10422 // "cc_out" operand in the last operand position.
10423 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10424 assert(!NewOpc
&& "Optional cc_out operand required");
10427 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10428 // since we already have an optional CPSR def.
10429 bool definesCPSR
= false;
10430 bool deadCPSR
= false;
10431 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10433 const MachineOperand
&MO
= MI
.getOperand(i
);
10434 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10435 definesCPSR
= true;
10438 MI
.RemoveOperand(i
);
10442 if (!definesCPSR
) {
10443 assert(!NewOpc
&& "Optional cc_out operand required");
10446 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10448 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10449 "expect uninitialized optional cc_out operand");
10450 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10451 if (!Subtarget
->isThumb1Only())
10455 // If this instruction was defined with an optional CPSR def and its dag node
10456 // had a live implicit CPSR def, then activate the optional CPSR def.
10457 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10458 MO
.setReg(ARM::CPSR
);
10462 //===----------------------------------------------------------------------===//
10463 // ARM Optimization Hooks
10464 //===----------------------------------------------------------------------===//
10466 // Helper function that checks if N is a null or all ones constant.
10467 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10468 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10471 // Return true if N is conditionally 0 or all ones.
10472 // Detects these expressions where cc is an i1 value:
10474 // (select cc 0, y) [AllOnes=0]
10475 // (select cc y, 0) [AllOnes=0]
10476 // (zext cc) [AllOnes=0]
10477 // (sext cc) [AllOnes=0/1]
10478 // (select cc -1, y) [AllOnes=1]
10479 // (select cc y, -1) [AllOnes=1]
10481 // Invert is set when N is the null/all ones constant when CC is false.
10482 // OtherOp is set to the alternative value of N.
10483 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10484 SDValue
&CC
, bool &Invert
,
10486 SelectionDAG
&DAG
) {
10487 switch (N
->getOpcode()) {
10488 default: return false;
10489 case ISD::SELECT
: {
10490 CC
= N
->getOperand(0);
10491 SDValue N1
= N
->getOperand(1);
10492 SDValue N2
= N
->getOperand(2);
10493 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10498 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10505 case ISD::ZERO_EXTEND
:
10506 // (zext cc) can never be the all ones value.
10510 case ISD::SIGN_EXTEND
: {
10512 EVT VT
= N
->getValueType(0);
10513 CC
= N
->getOperand(0);
10514 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10518 // When looking for an AllOnes constant, N is an sext, and the 'other'
10520 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10521 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10522 // When looking for a 0 constant, N can be zext or sext.
10523 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10525 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10532 // Combine a constant select operand into its use:
10534 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10535 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10536 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10537 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10538 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10540 // The transform is rejected if the select doesn't have a constant operand that
10541 // is null, or all ones when AllOnes is set.
10543 // Also recognize sext/zext from i1:
10545 // (add (zext cc), x) -> (select cc (add x, 1), x)
10546 // (add (sext cc), x) -> (select cc (add x, -1), x)
10548 // These transformations eventually create predicated instructions.
10550 // @param N The node to transform.
10551 // @param Slct The N operand that is a select.
10552 // @param OtherOp The other N operand (x above).
10553 // @param DCI Context.
10554 // @param AllOnes Require the select constant to be all ones instead of null.
10555 // @returns The new node, or SDValue() on failure.
10557 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10558 TargetLowering::DAGCombinerInfo
&DCI
,
10559 bool AllOnes
= false) {
10560 SelectionDAG
&DAG
= DCI
.DAG
;
10561 EVT VT
= N
->getValueType(0);
10562 SDValue NonConstantVal
;
10564 bool SwapSelectOps
;
10565 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10566 NonConstantVal
, DAG
))
10569 // Slct is now know to be the desired identity constant when CC is true.
10570 SDValue TrueVal
= OtherOp
;
10571 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10572 OtherOp
, NonConstantVal
);
10573 // Unless SwapSelectOps says CC should be false.
10575 std::swap(TrueVal
, FalseVal
);
10577 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10578 CCOp
, TrueVal
, FalseVal
);
10581 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10583 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10584 TargetLowering::DAGCombinerInfo
&DCI
) {
10585 SDValue N0
= N
->getOperand(0);
10586 SDValue N1
= N
->getOperand(1);
10587 if (N0
.getNode()->hasOneUse())
10588 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10590 if (N1
.getNode()->hasOneUse())
10591 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10596 static bool IsVUZPShuffleNode(SDNode
*N
) {
10597 // VUZP shuffle node.
10598 if (N
->getOpcode() == ARMISD::VUZP
)
10601 // "VUZP" on i32 is an alias for VTRN.
10602 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10608 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10609 TargetLowering::DAGCombinerInfo
&DCI
,
10610 const ARMSubtarget
*Subtarget
) {
10611 // Look for ADD(VUZP.0, VUZP.1).
10612 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10616 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10617 if (!N
->getValueType(0).is64BitVector())
10621 SelectionDAG
&DAG
= DCI
.DAG
;
10622 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10624 SDNode
*Unzip
= N0
.getNode();
10625 EVT VT
= N
->getValueType(0);
10627 SmallVector
<SDValue
, 8> Ops
;
10628 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10629 TLI
.getPointerTy(DAG
.getDataLayout())));
10630 Ops
.push_back(Unzip
->getOperand(0));
10631 Ops
.push_back(Unzip
->getOperand(1));
10633 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10636 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10637 TargetLowering::DAGCombinerInfo
&DCI
,
10638 const ARMSubtarget
*Subtarget
) {
10639 // Check for two extended operands.
10640 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10641 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10642 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10643 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10646 SDValue N00
= N0
.getOperand(0);
10647 SDValue N10
= N1
.getOperand(0);
10649 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10650 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10654 // We only recognize Q register paddl here; this can't be reached until
10655 // after type legalization.
10656 if (!N00
.getValueType().is64BitVector() ||
10657 !N0
.getValueType().is128BitVector())
10660 // Generate vpaddl.
10661 SelectionDAG
&DAG
= DCI
.DAG
;
10662 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10664 EVT VT
= N
->getValueType(0);
10666 SmallVector
<SDValue
, 8> Ops
;
10667 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10669 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10670 Opcode
= Intrinsic::arm_neon_vpaddls
;
10672 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10673 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10674 TLI
.getPointerTy(DAG
.getDataLayout())));
10675 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10676 unsigned NumElts
= VT
.getVectorNumElements();
10677 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10678 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10679 N00
.getOperand(0), N00
.getOperand(1));
10680 Ops
.push_back(Concat
);
10682 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10685 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10686 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10687 // much easier to match.
10689 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10690 TargetLowering::DAGCombinerInfo
&DCI
,
10691 const ARMSubtarget
*Subtarget
) {
10692 // Only perform optimization if after legalize, and if NEON is available. We
10693 // also expected both operands to be BUILD_VECTORs.
10694 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10695 || N0
.getOpcode() != ISD::BUILD_VECTOR
10696 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10699 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10700 EVT VT
= N
->getValueType(0);
10701 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10704 // Check that the vector operands are of the right form.
10705 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10706 // operands, where N is the size of the formed vector.
10707 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10708 // index such that we have a pair wise add pattern.
10710 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10711 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10713 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10714 SDNode
*V
= Vec
.getNode();
10715 unsigned nextIndex
= 0;
10717 // For each operands to the ADD which are BUILD_VECTORs,
10718 // check to see if each of their operands are an EXTRACT_VECTOR with
10719 // the same vector and appropriate index.
10720 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10721 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10722 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10724 SDValue ExtVec0
= N0
->getOperand(i
);
10725 SDValue ExtVec1
= N1
->getOperand(i
);
10727 // First operand is the vector, verify its the same.
10728 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10729 V
!= ExtVec1
->getOperand(0).getNode())
10732 // Second is the constant, verify its correct.
10733 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10734 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10736 // For the constant, we want to see all the even or all the odd.
10737 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10738 || C1
->getZExtValue() != nextIndex
+1)
10741 // Increment index.
10747 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10748 // we're using the entire input vector, otherwise there's a size/legality
10749 // mismatch somewhere.
10750 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10751 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10754 // Create VPADDL node.
10755 SelectionDAG
&DAG
= DCI
.DAG
;
10756 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10760 // Build operand list.
10761 SmallVector
<SDValue
, 8> Ops
;
10762 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10763 TLI
.getPointerTy(DAG
.getDataLayout())));
10765 // Input is the vector.
10766 Ops
.push_back(Vec
);
10768 // Get widened type and narrowed type.
10770 unsigned numElem
= VT
.getVectorNumElements();
10772 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10773 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10774 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10775 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10776 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10778 llvm_unreachable("Invalid vector element type for padd optimization.");
10781 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10782 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10783 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10786 static SDValue
findMUL_LOHI(SDValue V
) {
10787 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10788 V
->getOpcode() == ISD::SMUL_LOHI
)
10793 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10794 TargetLowering::DAGCombinerInfo
&DCI
,
10795 const ARMSubtarget
*Subtarget
) {
10796 if (Subtarget
->isThumb()) {
10797 if (!Subtarget
->hasDSP())
10799 } else if (!Subtarget
->hasV5TEOps())
10802 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10803 // accumulates the product into a 64-bit value. The 16-bit values will
10804 // be sign extended somehow or SRA'd into 32-bit values
10805 // (addc (adde (mul 16bit, 16bit), lo), hi)
10806 SDValue Mul
= AddcNode
->getOperand(0);
10807 SDValue Lo
= AddcNode
->getOperand(1);
10808 if (Mul
.getOpcode() != ISD::MUL
) {
10809 Lo
= AddcNode
->getOperand(0);
10810 Mul
= AddcNode
->getOperand(1);
10811 if (Mul
.getOpcode() != ISD::MUL
)
10815 SDValue SRA
= AddeNode
->getOperand(0);
10816 SDValue Hi
= AddeNode
->getOperand(1);
10817 if (SRA
.getOpcode() != ISD::SRA
) {
10818 SRA
= AddeNode
->getOperand(1);
10819 Hi
= AddeNode
->getOperand(0);
10820 if (SRA
.getOpcode() != ISD::SRA
)
10823 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10824 if (Const
->getZExtValue() != 31)
10829 if (SRA
.getOperand(0) != Mul
)
10832 SelectionDAG
&DAG
= DCI
.DAG
;
10833 SDLoc
dl(AddcNode
);
10834 unsigned Opcode
= 0;
10838 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10839 Opcode
= ARMISD::SMLALBB
;
10840 Op0
= Mul
.getOperand(0);
10841 Op1
= Mul
.getOperand(1);
10842 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10843 Opcode
= ARMISD::SMLALBT
;
10844 Op0
= Mul
.getOperand(0);
10845 Op1
= Mul
.getOperand(1).getOperand(0);
10846 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10847 Opcode
= ARMISD::SMLALTB
;
10848 Op0
= Mul
.getOperand(0).getOperand(0);
10849 Op1
= Mul
.getOperand(1);
10850 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10851 Opcode
= ARMISD::SMLALTT
;
10852 Op0
= Mul
->getOperand(0).getOperand(0);
10853 Op1
= Mul
->getOperand(1).getOperand(0);
10859 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10861 // Replace the ADDs' nodes uses by the MLA node's values.
10862 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10863 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10865 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10866 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10868 // Return original node to notify the driver to stop replacing.
10869 SDValue
resNode(AddcNode
, 0);
10873 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10874 TargetLowering::DAGCombinerInfo
&DCI
,
10875 const ARMSubtarget
*Subtarget
) {
10876 // Look for multiply add opportunities.
10877 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10878 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10879 // a glue link from the first add to the second add.
10880 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10881 // a S/UMLAL instruction.
10884 // V \ [no multiline comment]
10890 // In the special case where only the higher part of a signed result is used
10891 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10892 // a constant with the exact value of 0x80000000, we recognize we are dealing
10893 // with a "rounded multiply and add" (or subtract) and transform it into
10894 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10896 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10897 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10898 "Expect an ADDE or SUBE");
10900 assert(AddeSubeNode
->getNumOperands() == 3 &&
10901 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10902 "ADDE node has the wrong inputs");
10904 // Check that we are chained to the right ADDC or SUBC node.
10905 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10906 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10907 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10908 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10909 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10912 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10913 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10915 // Check if the two operands are from the same mul_lohi node.
10916 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10919 assert(AddcSubcNode
->getNumValues() == 2 &&
10920 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10921 "Expect ADDC with two result values. First: i32");
10923 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10924 // maybe a SMLAL which multiplies two 16-bit values.
10925 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10926 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10927 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10928 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10929 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10930 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10932 // Check for the triangle shape.
10933 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10934 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10936 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10937 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10940 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10941 bool IsLeftOperandMUL
= false;
10942 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10943 if (MULOp
== SDValue())
10944 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10946 IsLeftOperandMUL
= true;
10947 if (MULOp
== SDValue())
10950 // Figure out the right opcode.
10951 unsigned Opc
= MULOp
->getOpcode();
10952 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
10954 // Figure out the high and low input values to the MLAL node.
10955 SDValue
*HiAddSub
= nullptr;
10956 SDValue
*LoMul
= nullptr;
10957 SDValue
*LowAddSub
= nullptr;
10959 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10960 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
10963 if (IsLeftOperandMUL
)
10964 HiAddSub
= &AddeSubeOp1
;
10966 HiAddSub
= &AddeSubeOp0
;
10968 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10969 // whose low result is fed to the ADDC/SUBC we are checking.
10971 if (AddcSubcOp0
== MULOp
.getValue(0)) {
10972 LoMul
= &AddcSubcOp0
;
10973 LowAddSub
= &AddcSubcOp1
;
10975 if (AddcSubcOp1
== MULOp
.getValue(0)) {
10976 LoMul
= &AddcSubcOp1
;
10977 LowAddSub
= &AddcSubcOp0
;
10983 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10984 // the replacement below will create a cycle.
10985 if (AddcSubcNode
== HiAddSub
->getNode() ||
10986 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
10989 // Create the merged node.
10990 SelectionDAG
&DAG
= DCI
.DAG
;
10992 // Start building operand list.
10993 SmallVector
<SDValue
, 8> Ops
;
10994 Ops
.push_back(LoMul
->getOperand(0));
10995 Ops
.push_back(LoMul
->getOperand(1));
10997 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10998 // the case, we must be doing signed multiplication and only use the higher
10999 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11000 // addition or subtraction with the value of 0x800000.
11001 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11002 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11003 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11004 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11006 Ops
.push_back(*HiAddSub
);
11007 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11008 FinalOpc
= ARMISD::SMMLSR
;
11010 FinalOpc
= ARMISD::SMMLAR
;
11012 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11013 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11015 return SDValue(AddeSubeNode
, 0);
11016 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11017 // SMMLS is generated during instruction selection and the rest of this
11018 // function can not handle the case where AddcSubcNode is a SUBC.
11021 // Finish building the operand list for {U/S}MLAL
11022 Ops
.push_back(*LowAddSub
);
11023 Ops
.push_back(*HiAddSub
);
11025 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11026 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11028 // Replace the ADDs' nodes uses by the MLA node's values.
11029 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11030 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11032 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11033 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11035 // Return original node to notify the driver to stop replacing.
11036 return SDValue(AddeSubeNode
, 0);
11039 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11040 TargetLowering::DAGCombinerInfo
&DCI
,
11041 const ARMSubtarget
*Subtarget
) {
11042 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11043 // While trying to combine for the other MLAL nodes, first search for the
11044 // chance to use UMAAL. Check if Addc uses a node which has already
11045 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11046 // as the addend, and it's handled in PerformUMLALCombine.
11048 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11049 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11051 // Check that we have a glued ADDC node.
11052 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11053 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11056 // Find the converted UMAAL or quit if it doesn't exist.
11057 SDNode
*UmlalNode
= nullptr;
11059 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11060 UmlalNode
= AddcNode
->getOperand(0).getNode();
11061 AddHi
= AddcNode
->getOperand(1);
11062 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11063 UmlalNode
= AddcNode
->getOperand(1).getNode();
11064 AddHi
= AddcNode
->getOperand(0);
11066 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11069 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11070 // the ADDC as well as Zero.
11071 if (!isNullConstant(UmlalNode
->getOperand(3)))
11074 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11075 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11076 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11077 isNullConstant(AddeNode
->getOperand(1)))) {
11078 SelectionDAG
&DAG
= DCI
.DAG
;
11079 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11080 UmlalNode
->getOperand(2), AddHi
};
11081 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11082 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11084 // Replace the ADDs' nodes uses by the UMAAL node's values.
11085 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11086 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11088 // Return original node to notify the driver to stop replacing.
11089 return SDValue(AddeNode
, 0);
11094 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11095 const ARMSubtarget
*Subtarget
) {
11096 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11099 // Check that we have a pair of ADDC and ADDE as operands.
11100 // Both addends of the ADDE must be zero.
11101 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11102 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11103 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11104 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11105 isNullConstant(AddeNode
->getOperand(0)) &&
11106 isNullConstant(AddeNode
->getOperand(1)) &&
11107 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11108 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11109 DAG
.getVTList(MVT::i32
, MVT::i32
),
11110 {N
->getOperand(0), N
->getOperand(1),
11111 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11116 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11117 TargetLowering::DAGCombinerInfo
&DCI
,
11118 const ARMSubtarget
*Subtarget
) {
11119 SelectionDAG
&DAG(DCI
.DAG
);
11121 if (N
->getOpcode() == ARMISD::SUBC
) {
11122 // (SUBC (ADDE 0, 0, C), 1) -> C
11123 SDValue LHS
= N
->getOperand(0);
11124 SDValue RHS
= N
->getOperand(1);
11125 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11126 isNullConstant(LHS
->getOperand(0)) &&
11127 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11128 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11132 if (Subtarget
->isThumb1Only()) {
11133 SDValue RHS
= N
->getOperand(1);
11134 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11135 int32_t imm
= C
->getSExtValue();
11136 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11138 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11139 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11141 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11149 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11150 TargetLowering::DAGCombinerInfo
&DCI
,
11151 const ARMSubtarget
*Subtarget
) {
11152 if (Subtarget
->isThumb1Only()) {
11153 SelectionDAG
&DAG
= DCI
.DAG
;
11154 SDValue RHS
= N
->getOperand(1);
11155 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11156 int64_t imm
= C
->getSExtValue();
11160 // The with-carry-in form matches bitwise not instead of the negation.
11161 // Effectively, the inverse interpretation of the carry flag already
11162 // accounts for part of the negation.
11163 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11165 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11167 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11168 N
->getOperand(0), RHS
, N
->getOperand(2));
11171 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11172 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11177 static SDValue
PerformABSCombine(SDNode
*N
,
11178 TargetLowering::DAGCombinerInfo
&DCI
,
11179 const ARMSubtarget
*Subtarget
) {
11181 SelectionDAG
&DAG
= DCI
.DAG
;
11182 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11184 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11187 if (!TLI
.expandABS(N
, res
, DAG
))
11193 /// PerformADDECombine - Target-specific dag combine transform from
11194 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11195 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11196 static SDValue
PerformADDECombine(SDNode
*N
,
11197 TargetLowering::DAGCombinerInfo
&DCI
,
11198 const ARMSubtarget
*Subtarget
) {
11199 // Only ARM and Thumb2 support UMLAL/SMLAL.
11200 if (Subtarget
->isThumb1Only())
11201 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11203 // Only perform the checks after legalize when the pattern is available.
11204 if (DCI
.isBeforeLegalize()) return SDValue();
11206 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11209 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11210 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11211 /// called with the default operands, and if that fails, with commuted
11213 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11214 TargetLowering::DAGCombinerInfo
&DCI
,
11215 const ARMSubtarget
*Subtarget
){
11216 // Attempt to create vpadd for this add.
11217 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11220 // Attempt to create vpaddl for this add.
11221 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11223 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11227 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11228 if (N0
.getNode()->hasOneUse())
11229 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11235 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11236 CombineLevel Level
) const {
11237 if (Level
== BeforeLegalizeTypes
)
11240 if (N
->getOpcode() != ISD::SHL
)
11243 if (Subtarget
->isThumb1Only()) {
11244 // Avoid making expensive immediates by commuting shifts. (This logic
11245 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11247 if (N
->getOpcode() != ISD::SHL
)
11249 SDValue N1
= N
->getOperand(0);
11250 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11251 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11253 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11254 if (Const
->getAPIntValue().ult(256))
11256 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11257 Const
->getAPIntValue().sgt(-256))
11263 // Turn off commute-with-shift transform after legalization, so it doesn't
11264 // conflict with PerformSHLSimplify. (We could try to detect when
11265 // PerformSHLSimplify would trigger more precisely, but it isn't
11266 // really necessary.)
11270 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11271 const SDNode
*N
, CombineLevel Level
) const {
11272 if (!Subtarget
->isThumb1Only())
11275 if (Level
== BeforeLegalizeTypes
)
11281 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11282 if (!Subtarget
->hasNEON()) {
11283 if (Subtarget
->isThumb1Only())
11284 return VT
.getScalarSizeInBits() <= 32;
11287 return VT
.isScalarInteger();
11290 static SDValue
PerformSHLSimplify(SDNode
*N
,
11291 TargetLowering::DAGCombinerInfo
&DCI
,
11292 const ARMSubtarget
*ST
) {
11293 // Allow the generic combiner to identify potential bswaps.
11294 if (DCI
.isBeforeLegalize())
11297 // DAG combiner will fold:
11298 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11299 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11300 // Other code patterns that can be also be modified have the following form:
11301 // b + ((a << 1) | 510)
11302 // b + ((a << 1) & 510)
11303 // b + ((a << 1) ^ 510)
11304 // b + ((a << 1) + 510)
11306 // Many instructions can perform the shift for free, but it requires both
11307 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11308 // instruction will needed. So, unfold back to the original pattern if:
11309 // - if c1 and c2 are small enough that they don't require mov imms.
11310 // - the user(s) of the node can perform an shl
11312 // No shifted operands for 16-bit instructions.
11313 if (ST
->isThumb() && ST
->isThumb1Only())
11316 // Check that all the users could perform the shl themselves.
11317 for (auto U
: N
->uses()) {
11318 switch(U
->getOpcode()) {
11328 // Check that the user isn't already using a constant because there
11329 // aren't any instructions that support an immediate operand and a
11330 // shifted operand.
11331 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11332 isa
<ConstantSDNode
>(U
->getOperand(1)))
11335 // Check that it's not already using a shift.
11336 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11337 U
->getOperand(1).getOpcode() == ISD::SHL
)
11343 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11344 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11347 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11350 SDValue SHL
= N
->getOperand(0);
11352 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11353 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11354 if (!C1ShlC2
|| !C2
)
11357 APInt C2Int
= C2
->getAPIntValue();
11358 APInt C1Int
= C1ShlC2
->getAPIntValue();
11360 // Check that performing a lshr will not lose any information.
11361 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11362 C2Int
.getBitWidth() - C2
->getZExtValue());
11363 if ((C1Int
& Mask
) != C1Int
)
11366 // Shift the first constant.
11367 C1Int
.lshrInPlace(C2Int
);
11369 // The immediates are encoded as an 8-bit value that can be rotated.
11370 auto LargeImm
= [](const APInt
&Imm
) {
11371 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11372 return Imm
.getBitWidth() - Zeros
> 8;
11375 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11378 SelectionDAG
&DAG
= DCI
.DAG
;
11380 SDValue X
= SHL
.getOperand(0);
11381 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11382 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11383 // Shift left to compensate for the lshr of C1Int.
11384 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11386 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11387 SHL
.dump(); N
->dump());
11388 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11393 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11395 static SDValue
PerformADDCombine(SDNode
*N
,
11396 TargetLowering::DAGCombinerInfo
&DCI
,
11397 const ARMSubtarget
*Subtarget
) {
11398 SDValue N0
= N
->getOperand(0);
11399 SDValue N1
= N
->getOperand(1);
11401 // Only works one way, because it needs an immediate operand.
11402 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11405 // First try with the default operand order.
11406 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11409 // If that didn't work, try again with the operands commuted.
11410 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11413 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11415 static SDValue
PerformSUBCombine(SDNode
*N
,
11416 TargetLowering::DAGCombinerInfo
&DCI
) {
11417 SDValue N0
= N
->getOperand(0);
11418 SDValue N1
= N
->getOperand(1);
11420 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11421 if (N1
.getNode()->hasOneUse())
11422 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11428 /// PerformVMULCombine
11429 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11430 /// special multiplier accumulator forwarding.
11431 /// vmul d3, d0, d2
11432 /// vmla d3, d1, d2
11434 /// vadd d3, d0, d1
11435 /// vmul d3, d3, d2
11436 // However, for (A + B) * (A + B),
11443 static SDValue
PerformVMULCombine(SDNode
*N
,
11444 TargetLowering::DAGCombinerInfo
&DCI
,
11445 const ARMSubtarget
*Subtarget
) {
11446 if (!Subtarget
->hasVMLxForwarding())
11449 SelectionDAG
&DAG
= DCI
.DAG
;
11450 SDValue N0
= N
->getOperand(0);
11451 SDValue N1
= N
->getOperand(1);
11452 unsigned Opcode
= N0
.getOpcode();
11453 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11454 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11455 Opcode
= N1
.getOpcode();
11456 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11457 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11465 EVT VT
= N
->getValueType(0);
11467 SDValue N00
= N0
->getOperand(0);
11468 SDValue N01
= N0
->getOperand(1);
11469 return DAG
.getNode(Opcode
, DL
, VT
,
11470 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11471 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11474 static SDValue
PerformMULCombine(SDNode
*N
,
11475 TargetLowering::DAGCombinerInfo
&DCI
,
11476 const ARMSubtarget
*Subtarget
) {
11477 SelectionDAG
&DAG
= DCI
.DAG
;
11479 if (Subtarget
->isThumb1Only())
11482 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11485 EVT VT
= N
->getValueType(0);
11486 if (VT
.is64BitVector() || VT
.is128BitVector())
11487 return PerformVMULCombine(N
, DCI
, Subtarget
);
11488 if (VT
!= MVT::i32
)
11491 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11495 int64_t MulAmt
= C
->getSExtValue();
11496 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11498 ShiftAmt
= ShiftAmt
& (32 - 1);
11499 SDValue V
= N
->getOperand(0);
11503 MulAmt
>>= ShiftAmt
;
11506 if (isPowerOf2_32(MulAmt
- 1)) {
11507 // (mul x, 2^N + 1) => (add (shl x, N), x)
11508 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11510 DAG
.getNode(ISD::SHL
, DL
, VT
,
11512 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11514 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11515 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11516 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11517 DAG
.getNode(ISD::SHL
, DL
, VT
,
11519 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11525 uint64_t MulAmtAbs
= -MulAmt
;
11526 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11527 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11528 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11530 DAG
.getNode(ISD::SHL
, DL
, VT
,
11532 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11534 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11535 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11536 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11538 DAG
.getNode(ISD::SHL
, DL
, VT
,
11540 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11542 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11543 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11549 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11550 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11552 // Do not add new nodes to DAG combiner worklist.
11553 DCI
.CombineTo(N
, Res
, false);
11557 static SDValue
CombineANDShift(SDNode
*N
,
11558 TargetLowering::DAGCombinerInfo
&DCI
,
11559 const ARMSubtarget
*Subtarget
) {
11560 // Allow DAGCombine to pattern-match before we touch the canonical form.
11561 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11564 if (N
->getValueType(0) != MVT::i32
)
11567 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11571 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11572 // Don't transform uxtb/uxth.
11573 if (C1
== 255 || C1
== 65535)
11576 SDNode
*N0
= N
->getOperand(0).getNode();
11577 if (!N0
->hasOneUse())
11580 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11583 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11585 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11589 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11590 if (!C2
|| C2
>= 32)
11593 // Clear irrelevant bits in the mask.
11599 SelectionDAG
&DAG
= DCI
.DAG
;
11602 // We have a pattern of the form "(and (shl x, c2) c1)" or
11603 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11604 // transform to a pair of shifts, to save materializing c1.
11606 // First pattern: right shift, then mask off leading bits.
11607 // FIXME: Use demanded bits?
11608 if (!LeftShift
&& isMask_32(C1
)) {
11609 uint32_t C3
= countLeadingZeros(C1
);
11611 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11612 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11613 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11614 DAG
.getConstant(C3
, DL
, MVT::i32
));
11618 // First pattern, reversed: left shift, then mask off trailing bits.
11619 if (LeftShift
&& isMask_32(~C1
)) {
11620 uint32_t C3
= countTrailingZeros(C1
);
11622 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11623 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11624 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11625 DAG
.getConstant(C3
, DL
, MVT::i32
));
11629 // Second pattern: left shift, then mask off leading bits.
11630 // FIXME: Use demanded bits?
11631 if (LeftShift
&& isShiftedMask_32(C1
)) {
11632 uint32_t Trailing
= countTrailingZeros(C1
);
11633 uint32_t C3
= countLeadingZeros(C1
);
11634 if (Trailing
== C2
&& C2
+ C3
< 32) {
11635 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11636 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11637 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11638 DAG
.getConstant(C3
, DL
, MVT::i32
));
11642 // Second pattern, reversed: right shift, then mask off trailing bits.
11643 // FIXME: Handle other patterns of known/demanded bits.
11644 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11645 uint32_t Leading
= countLeadingZeros(C1
);
11646 uint32_t C3
= countTrailingZeros(C1
);
11647 if (Leading
== C2
&& C2
+ C3
< 32) {
11648 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11649 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11650 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11651 DAG
.getConstant(C3
, DL
, MVT::i32
));
11655 // FIXME: Transform "(and (shl x, c2) c1)" ->
11656 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11661 static SDValue
PerformANDCombine(SDNode
*N
,
11662 TargetLowering::DAGCombinerInfo
&DCI
,
11663 const ARMSubtarget
*Subtarget
) {
11664 // Attempt to use immediate-form VBIC
11665 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11667 EVT VT
= N
->getValueType(0);
11668 SelectionDAG
&DAG
= DCI
.DAG
;
11670 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11673 APInt SplatBits
, SplatUndef
;
11674 unsigned SplatBitSize
;
11676 if (BVN
&& Subtarget
->hasNEON() &&
11677 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11678 if (SplatBitSize
<= 64) {
11680 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11681 SplatUndef
.getZExtValue(), SplatBitSize
,
11682 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11684 if (Val
.getNode()) {
11686 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11687 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11688 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11693 if (!Subtarget
->isThumb1Only()) {
11694 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11695 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11698 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11702 if (Subtarget
->isThumb1Only())
11703 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11709 // Try combining OR nodes to SMULWB, SMULWT.
11710 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11711 TargetLowering::DAGCombinerInfo
&DCI
,
11712 const ARMSubtarget
*Subtarget
) {
11713 if (!Subtarget
->hasV6Ops() ||
11714 (Subtarget
->isThumb() &&
11715 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11718 SDValue SRL
= OR
->getOperand(0);
11719 SDValue SHL
= OR
->getOperand(1);
11721 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11722 SRL
= OR
->getOperand(1);
11723 SHL
= OR
->getOperand(0);
11725 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11728 // The first operands to the shifts need to be the two results from the
11729 // same smul_lohi node.
11730 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11731 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11734 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11735 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11736 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11740 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11741 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11742 // For SMUWB the 16-bit value will signed extended somehow.
11743 // For SMULWT only the SRA is required.
11744 // Check both sides of SMUL_LOHI
11745 SDValue OpS16
= SMULLOHI
->getOperand(0);
11746 SDValue OpS32
= SMULLOHI
->getOperand(1);
11748 SelectionDAG
&DAG
= DCI
.DAG
;
11749 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11751 OpS32
= SMULLOHI
->getOperand(0);
11755 unsigned Opcode
= 0;
11756 if (isS16(OpS16
, DAG
))
11757 Opcode
= ARMISD::SMULWB
;
11758 else if (isSRA16(OpS16
)) {
11759 Opcode
= ARMISD::SMULWT
;
11760 OpS16
= OpS16
->getOperand(0);
11765 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11766 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11767 return SDValue(OR
, 0);
11770 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11771 TargetLowering::DAGCombinerInfo
&DCI
,
11772 const ARMSubtarget
*Subtarget
) {
11773 // BFI is only available on V6T2+
11774 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11777 EVT VT
= N
->getValueType(0);
11778 SDValue N0
= N
->getOperand(0);
11779 SDValue N1
= N
->getOperand(1);
11780 SelectionDAG
&DAG
= DCI
.DAG
;
11782 // 1) or (and A, mask), val => ARMbfi A, val, mask
11783 // iff (val & mask) == val
11785 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11786 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11787 // && mask == ~mask2
11788 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11789 // && ~mask == mask2
11790 // (i.e., copy a bitfield value into another bitfield of the same width)
11792 if (VT
!= MVT::i32
)
11795 SDValue N00
= N0
.getOperand(0);
11797 // The value and the mask need to be constants so we can verify this is
11798 // actually a bitfield set. If the mask is 0xffff, we can do better
11799 // via a movt instruction, so don't use BFI in that case.
11800 SDValue MaskOp
= N0
.getOperand(1);
11801 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11804 unsigned Mask
= MaskC
->getZExtValue();
11805 if (Mask
== 0xffff)
11808 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11809 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11811 unsigned Val
= N1C
->getZExtValue();
11812 if ((Val
& ~Mask
) != Val
)
11815 if (ARM::isBitFieldInvertedMask(Mask
)) {
11816 Val
>>= countTrailingZeros(~Mask
);
11818 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11819 DAG
.getConstant(Val
, DL
, MVT::i32
),
11820 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11822 DCI
.CombineTo(N
, Res
, false);
11823 // Return value from the original node to inform the combiner than N is
11825 return SDValue(N
, 0);
11827 } else if (N1
.getOpcode() == ISD::AND
) {
11828 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11829 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11832 unsigned Mask2
= N11C
->getZExtValue();
11834 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11836 if (ARM::isBitFieldInvertedMask(Mask
) &&
11837 (Mask
== ~Mask2
)) {
11838 // The pack halfword instruction works better for masks that fit it,
11839 // so use that when it's available.
11840 if (Subtarget
->hasDSP() &&
11841 (Mask
== 0xffff || Mask
== 0xffff0000))
11844 unsigned amt
= countTrailingZeros(Mask2
);
11845 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11846 DAG
.getConstant(amt
, DL
, MVT::i32
));
11847 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11848 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11849 DCI
.CombineTo(N
, Res
, false);
11850 // Return value from the original node to inform the combiner than N is
11852 return SDValue(N
, 0);
11853 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11854 (~Mask
== Mask2
)) {
11855 // The pack halfword instruction works better for masks that fit it,
11856 // so use that when it's available.
11857 if (Subtarget
->hasDSP() &&
11858 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11861 unsigned lsb
= countTrailingZeros(Mask
);
11862 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11863 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11864 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11865 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11866 DCI
.CombineTo(N
, Res
, false);
11867 // Return value from the original node to inform the combiner than N is
11869 return SDValue(N
, 0);
11873 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11874 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11875 ARM::isBitFieldInvertedMask(~Mask
)) {
11876 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11877 // where lsb(mask) == #shamt and masked bits of B are known zero.
11878 SDValue ShAmt
= N00
.getOperand(1);
11879 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11880 unsigned LSB
= countTrailingZeros(Mask
);
11884 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11885 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11887 DCI
.CombineTo(N
, Res
, false);
11888 // Return value from the original node to inform the combiner than N is
11890 return SDValue(N
, 0);
11896 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
11913 static SDValue
PerformORCombine_i1(SDNode
*N
,
11914 TargetLowering::DAGCombinerInfo
&DCI
,
11915 const ARMSubtarget
*Subtarget
) {
11916 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11917 // together with predicates
11918 EVT VT
= N
->getValueType(0);
11919 SDValue N0
= N
->getOperand(0);
11920 SDValue N1
= N
->getOperand(1);
11922 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
11923 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
11924 if (N0
->getOpcode() == ARMISD::VCMP
)
11925 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
11927 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
11928 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
11930 if (N1
->getOpcode() == ARMISD::VCMP
)
11931 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
11933 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
11934 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
11937 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
11940 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
11941 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
11943 if (!isValidMVECond(Opposite0
,
11944 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11945 !isValidMVECond(Opposite1
,
11946 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
11949 SmallVector
<SDValue
, 4> Ops0
;
11950 Ops0
.push_back(N0
->getOperand(0));
11951 if (N0
->getOpcode() == ARMISD::VCMP
)
11952 Ops0
.push_back(N0
->getOperand(1));
11953 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
11954 SmallVector
<SDValue
, 4> Ops1
;
11955 Ops1
.push_back(N1
->getOperand(0));
11956 if (N1
->getOpcode() == ARMISD::VCMP
)
11957 Ops1
.push_back(N1
->getOperand(1));
11958 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
11960 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
11961 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
11962 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
11963 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
11964 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
11967 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11968 static SDValue
PerformORCombine(SDNode
*N
,
11969 TargetLowering::DAGCombinerInfo
&DCI
,
11970 const ARMSubtarget
*Subtarget
) {
11971 // Attempt to use immediate-form VORR
11972 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11974 EVT VT
= N
->getValueType(0);
11975 SelectionDAG
&DAG
= DCI
.DAG
;
11977 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11980 APInt SplatBits
, SplatUndef
;
11981 unsigned SplatBitSize
;
11983 if (BVN
&& Subtarget
->hasNEON() &&
11984 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11985 if (SplatBitSize
<= 64) {
11987 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
11988 SplatUndef
.getZExtValue(), SplatBitSize
,
11989 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
11991 if (Val
.getNode()) {
11993 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
11994 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
11995 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12000 if (!Subtarget
->isThumb1Only()) {
12001 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12002 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12004 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12008 SDValue N0
= N
->getOperand(0);
12009 SDValue N1
= N
->getOperand(1);
12011 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12012 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12013 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12015 // The code below optimizes (or (and X, Y), Z).
12016 // The AND operand needs to have a single user to make these optimizations
12018 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12022 unsigned SplatBitSize
;
12025 APInt SplatBits0
, SplatBits1
;
12026 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12027 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12028 // Ensure that the second operand of both ands are constants
12029 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12030 HasAnyUndefs
) && !HasAnyUndefs
) {
12031 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12032 HasAnyUndefs
) && !HasAnyUndefs
) {
12033 // Ensure that the bit width of the constants are the same and that
12034 // the splat arguments are logical inverses as per the pattern we
12035 // are trying to simplify.
12036 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12037 SplatBits0
== ~SplatBits1
) {
12038 // Canonicalize the vector type to make instruction selection
12040 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12041 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12044 N1
->getOperand(0));
12045 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12051 if (Subtarget
->hasMVEIntegerOps() &&
12052 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12053 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12055 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12057 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12058 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12062 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12068 static SDValue
PerformXORCombine(SDNode
*N
,
12069 TargetLowering::DAGCombinerInfo
&DCI
,
12070 const ARMSubtarget
*Subtarget
) {
12071 EVT VT
= N
->getValueType(0);
12072 SelectionDAG
&DAG
= DCI
.DAG
;
12074 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12077 if (!Subtarget
->isThumb1Only()) {
12078 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12079 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12082 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12089 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12090 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12091 // their position in "to" (Rd).
12092 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12093 assert(N
->getOpcode() == ARMISD::BFI
);
12095 SDValue From
= N
->getOperand(1);
12096 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12097 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12099 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12100 // #C in the base of the SHR.
12101 if (From
->getOpcode() == ISD::SRL
&&
12102 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12103 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12104 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12105 FromMask
<<= Shift
.getLimitedValue(31);
12106 From
= From
->getOperand(0);
12112 // If A and B contain one contiguous set of bits, does A | B == A . B?
12114 // Neither A nor B must be zero.
12115 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12116 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12117 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12118 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12121 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12122 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12124 APInt ToMask
, FromMask
;
12125 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12126 SDValue To
= N
->getOperand(0);
12128 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12129 // aren't compatible, but not if they set the same bit in their destination as
12130 // we do (or that of any BFI we're going to combine with).
12132 APInt CombinedToMask
= ToMask
;
12133 while (V
.getOpcode() == ARMISD::BFI
) {
12134 APInt NewToMask
, NewFromMask
;
12135 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12136 if (NewFrom
!= From
) {
12137 // This BFI has a different base. Keep going.
12138 CombinedToMask
|= NewToMask
;
12139 V
= V
.getOperand(0);
12143 // Do the written bits conflict with any we've seen so far?
12144 if ((NewToMask
& CombinedToMask
).getBoolValue())
12145 // Conflicting bits - bail out because going further is unsafe.
12148 // Are the new bits contiguous when combined with the old bits?
12149 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12150 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12152 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12153 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12156 // We've seen a write to some bits, so track it.
12157 CombinedToMask
|= NewToMask
;
12159 V
= V
.getOperand(0);
12165 static SDValue
PerformBFICombine(SDNode
*N
,
12166 TargetLowering::DAGCombinerInfo
&DCI
) {
12167 SDValue N1
= N
->getOperand(1);
12168 if (N1
.getOpcode() == ISD::AND
) {
12169 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12170 // the bits being cleared by the AND are not demanded by the BFI.
12171 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12174 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12175 unsigned LSB
= countTrailingZeros(~InvMask
);
12176 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12178 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12179 "undefined behavior");
12180 unsigned Mask
= (1u << Width
) - 1;
12181 unsigned Mask2
= N11C
->getZExtValue();
12182 if ((Mask
& (~Mask2
)) == 0)
12183 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12184 N
->getOperand(0), N1
.getOperand(0),
12186 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12187 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12188 // Keep track of any consecutive bits set that all come from the same base
12189 // value. We can combine these together into a single BFI.
12190 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12191 if (CombineBFI
== SDValue())
12194 // We've found a BFI.
12195 APInt ToMask1
, FromMask1
;
12196 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12198 APInt ToMask2
, FromMask2
;
12199 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12200 assert(From1
== From2
);
12203 // First, unlink CombineBFI.
12204 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12205 // Then create a new BFI, combining the two together.
12206 APInt NewFromMask
= FromMask1
| FromMask2
;
12207 APInt NewToMask
= ToMask1
| ToMask2
;
12209 EVT VT
= N
->getValueType(0);
12212 if (NewFromMask
[0] == 0)
12213 From1
= DCI
.DAG
.getNode(
12214 ISD::SRL
, dl
, VT
, From1
,
12215 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12216 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12217 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12222 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12223 /// ARMISD::VMOVRRD.
12224 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12225 TargetLowering::DAGCombinerInfo
&DCI
,
12226 const ARMSubtarget
*Subtarget
) {
12227 // vmovrrd(vmovdrr x, y) -> x,y
12228 SDValue InDouble
= N
->getOperand(0);
12229 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12230 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12232 // vmovrrd(load f64) -> (load i32), (load i32)
12233 SDNode
*InNode
= InDouble
.getNode();
12234 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12235 InNode
->getValueType(0) == MVT::f64
&&
12236 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12237 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12238 // TODO: Should this be done for non-FrameIndex operands?
12239 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12241 SelectionDAG
&DAG
= DCI
.DAG
;
12243 SDValue BasePtr
= LD
->getBasePtr();
12245 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12246 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12248 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12249 DAG
.getConstant(4, DL
, MVT::i32
));
12251 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12252 LD
->getPointerInfo().getWithOffset(4),
12253 std::min(4U, LD
->getAlignment()),
12254 LD
->getMemOperand()->getFlags());
12256 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12257 if (DCI
.DAG
.getDataLayout().isBigEndian())
12258 std::swap (NewLD1
, NewLD2
);
12259 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12266 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12267 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12268 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12269 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12270 SDValue Op0
= N
->getOperand(0);
12271 SDValue Op1
= N
->getOperand(1);
12272 if (Op0
.getOpcode() == ISD::BITCAST
)
12273 Op0
= Op0
.getOperand(0);
12274 if (Op1
.getOpcode() == ISD::BITCAST
)
12275 Op1
= Op1
.getOperand(0);
12276 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12277 Op0
.getNode() == Op1
.getNode() &&
12278 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12279 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12280 N
->getValueType(0), Op0
.getOperand(0));
12284 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12285 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12286 /// i64 vector to have f64 elements, since the value can then be loaded
12287 /// directly into a VFP register.
12288 static bool hasNormalLoadOperand(SDNode
*N
) {
12289 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12290 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12291 SDNode
*Elt
= N
->getOperand(i
).getNode();
12292 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12298 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12299 /// ISD::BUILD_VECTOR.
12300 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12301 TargetLowering::DAGCombinerInfo
&DCI
,
12302 const ARMSubtarget
*Subtarget
) {
12303 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12304 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12305 // into a pair of GPRs, which is fine when the value is used as a scalar,
12306 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12307 SelectionDAG
&DAG
= DCI
.DAG
;
12308 if (N
->getNumOperands() == 2)
12309 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12312 // Load i64 elements as f64 values so that type legalization does not split
12313 // them up into i32 values.
12314 EVT VT
= N
->getValueType(0);
12315 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12318 SmallVector
<SDValue
, 8> Ops
;
12319 unsigned NumElts
= VT
.getVectorNumElements();
12320 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12321 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12323 // Make the DAGCombiner fold the bitcast.
12324 DCI
.AddToWorklist(V
.getNode());
12326 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12327 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12328 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12331 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12333 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12334 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12335 // At that time, we may have inserted bitcasts from integer to float.
12336 // If these bitcasts have survived DAGCombine, change the lowering of this
12337 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12338 // force to use floating point types.
12340 // Make sure we can change the type of the vector.
12341 // This is possible iff:
12342 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12343 // 1.1. Vector is used only once.
12344 // 1.2. Use is a bit convert to an integer type.
12345 // 2. The size of its operands are 32-bits (64-bits are not legal).
12346 EVT VT
= N
->getValueType(0);
12347 EVT EltVT
= VT
.getVectorElementType();
12349 // Check 1.1. and 2.
12350 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12353 // By construction, the input type must be float.
12354 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12357 SDNode
*Use
= *N
->use_begin();
12358 if (Use
->getOpcode() != ISD::BITCAST
||
12359 Use
->getValueType(0).isFloatingPoint())
12362 // Check profitability.
12363 // Model is, if more than half of the relevant operands are bitcast from
12364 // i32, turn the build_vector into a sequence of insert_vector_elt.
12365 // Relevant operands are everything that is not statically
12366 // (i.e., at compile time) bitcasted.
12367 unsigned NumOfBitCastedElts
= 0;
12368 unsigned NumElts
= VT
.getVectorNumElements();
12369 unsigned NumOfRelevantElts
= NumElts
;
12370 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12371 SDValue Elt
= N
->getOperand(Idx
);
12372 if (Elt
->getOpcode() == ISD::BITCAST
) {
12373 // Assume only bit cast to i32 will go away.
12374 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12375 ++NumOfBitCastedElts
;
12376 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12377 // Constants are statically casted, thus do not count them as
12378 // relevant operands.
12379 --NumOfRelevantElts
;
12382 // Check if more than half of the elements require a non-free bitcast.
12383 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12386 SelectionDAG
&DAG
= DCI
.DAG
;
12387 // Create the new vector type.
12388 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12389 // Check if the type is legal.
12390 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12391 if (!TLI
.isTypeLegal(VecVT
))
12395 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12396 // => BITCAST INSERT_VECTOR_ELT
12397 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12398 // (BITCAST EN), N.
12399 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12401 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12402 SDValue V
= N
->getOperand(Idx
);
12405 if (V
.getOpcode() == ISD::BITCAST
&&
12406 V
->getOperand(0).getValueType() == MVT::i32
)
12407 // Fold obvious case.
12408 V
= V
.getOperand(0);
12410 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12411 // Make the DAGCombiner fold the bitcasts.
12412 DCI
.AddToWorklist(V
.getNode());
12414 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12415 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12417 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12418 // Make the DAGCombiner fold the bitcasts.
12419 DCI
.AddToWorklist(Vec
.getNode());
12423 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12424 /// ISD::INSERT_VECTOR_ELT.
12425 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12426 TargetLowering::DAGCombinerInfo
&DCI
) {
12427 // Bitcast an i64 load inserted into a vector to f64.
12428 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12429 EVT VT
= N
->getValueType(0);
12430 SDNode
*Elt
= N
->getOperand(1).getNode();
12431 if (VT
.getVectorElementType() != MVT::i64
||
12432 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12435 SelectionDAG
&DAG
= DCI
.DAG
;
12437 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12438 VT
.getVectorNumElements());
12439 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12440 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12441 // Make the DAGCombiner fold the bitcasts.
12442 DCI
.AddToWorklist(Vec
.getNode());
12443 DCI
.AddToWorklist(V
.getNode());
12444 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12445 Vec
, V
, N
->getOperand(2));
12446 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12449 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12450 /// ISD::VECTOR_SHUFFLE.
12451 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12452 // The LLVM shufflevector instruction does not require the shuffle mask
12453 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12454 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12455 // operands do not match the mask length, they are extended by concatenating
12456 // them with undef vectors. That is probably the right thing for other
12457 // targets, but for NEON it is better to concatenate two double-register
12458 // size vector operands into a single quad-register size vector. Do that
12459 // transformation here:
12460 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12461 // shuffle(concat(v1, v2), undef)
12462 SDValue Op0
= N
->getOperand(0);
12463 SDValue Op1
= N
->getOperand(1);
12464 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12465 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12466 Op0
.getNumOperands() != 2 ||
12467 Op1
.getNumOperands() != 2)
12469 SDValue Concat0Op1
= Op0
.getOperand(1);
12470 SDValue Concat1Op1
= Op1
.getOperand(1);
12471 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12473 // Skip the transformation if any of the types are illegal.
12474 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12475 EVT VT
= N
->getValueType(0);
12476 if (!TLI
.isTypeLegal(VT
) ||
12477 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12478 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12481 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12482 Op0
.getOperand(0), Op1
.getOperand(0));
12483 // Translate the shuffle mask.
12484 SmallVector
<int, 16> NewMask
;
12485 unsigned NumElts
= VT
.getVectorNumElements();
12486 unsigned HalfElts
= NumElts
/2;
12487 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12488 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12489 int MaskElt
= SVN
->getMaskElt(n
);
12491 if (MaskElt
< (int)HalfElts
)
12493 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12494 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12495 NewMask
.push_back(NewElt
);
12497 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12498 DAG
.getUNDEF(VT
), NewMask
);
12501 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12502 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12503 /// base address updates.
12504 /// For generic load/stores, the memory type is assumed to be a vector.
12505 /// The caller is assumed to have checked legality.
12506 static SDValue
CombineBaseUpdate(SDNode
*N
,
12507 TargetLowering::DAGCombinerInfo
&DCI
) {
12508 SelectionDAG
&DAG
= DCI
.DAG
;
12509 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12510 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12511 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12512 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12513 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12514 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12517 // Search for a use of the address operand that is an increment.
12518 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12519 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12520 SDNode
*User
= *UI
;
12521 if (User
->getOpcode() != ISD::ADD
||
12522 UI
.getUse().getResNo() != Addr
.getResNo())
12525 // Check that the add is independent of the load/store. Otherwise, folding
12526 // it would create a cycle. We can avoid searching through Addr as it's a
12527 // predecessor to both.
12528 SmallPtrSet
<const SDNode
*, 32> Visited
;
12529 SmallVector
<const SDNode
*, 16> Worklist
;
12530 Visited
.insert(Addr
.getNode());
12531 Worklist
.push_back(N
);
12532 Worklist
.push_back(User
);
12533 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12534 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12537 // Find the new opcode for the updating load/store.
12538 bool isLoadOp
= true;
12539 bool isLaneOp
= false;
12540 unsigned NewOpc
= 0;
12541 unsigned NumVecs
= 0;
12543 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12545 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12546 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12547 NumVecs
= 1; break;
12548 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12549 NumVecs
= 2; break;
12550 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12551 NumVecs
= 3; break;
12552 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12553 NumVecs
= 4; break;
12554 case Intrinsic::arm_neon_vld2dup
:
12555 case Intrinsic::arm_neon_vld3dup
:
12556 case Intrinsic::arm_neon_vld4dup
:
12557 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12558 // combining base updates for such intrinsics.
12560 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12561 NumVecs
= 2; isLaneOp
= true; break;
12562 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12563 NumVecs
= 3; isLaneOp
= true; break;
12564 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12565 NumVecs
= 4; isLaneOp
= true; break;
12566 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12567 NumVecs
= 1; isLoadOp
= false; break;
12568 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12569 NumVecs
= 2; isLoadOp
= false; break;
12570 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12571 NumVecs
= 3; isLoadOp
= false; break;
12572 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12573 NumVecs
= 4; isLoadOp
= false; break;
12574 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12575 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12576 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12577 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12578 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12579 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12583 switch (N
->getOpcode()) {
12584 default: llvm_unreachable("unexpected opcode for Neon base update");
12585 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12586 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12587 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12588 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12589 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12590 NumVecs
= 1; isLaneOp
= false; break;
12591 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12592 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12596 // Find the size of memory referenced by the load/store.
12599 VecTy
= N
->getValueType(0);
12600 } else if (isIntrinsic
) {
12601 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12603 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12604 VecTy
= N
->getOperand(1).getValueType();
12607 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12609 NumBytes
/= VecTy
.getVectorNumElements();
12611 // If the increment is a constant, it must match the memory ref size.
12612 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12613 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12614 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12615 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12616 // separate instructions that make it harder to use a non-constant update.
12620 // OK, we found an ADD we can fold into the base update.
12621 // Now, create a _UPD node, taking care of not breaking alignment.
12623 EVT AlignedVecTy
= VecTy
;
12624 unsigned Alignment
= MemN
->getAlignment();
12626 // If this is a less-than-standard-aligned load/store, change the type to
12627 // match the standard alignment.
12628 // The alignment is overlooked when selecting _UPD variants; and it's
12629 // easier to introduce bitcasts here than fix that.
12630 // There are 3 ways to get to this base-update combine:
12631 // - intrinsics: they are assumed to be properly aligned (to the standard
12632 // alignment of the memory type), so we don't need to do anything.
12633 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12634 // intrinsics, so, likewise, there's nothing to do.
12635 // - generic load/store instructions: the alignment is specified as an
12636 // explicit operand, rather than implicitly as the standard alignment
12637 // of the memory type (like the intrisics). We need to change the
12638 // memory type to match the explicit alignment. That way, we don't
12639 // generate non-standard-aligned ARMISD::VLDx nodes.
12640 if (isa
<LSBaseSDNode
>(N
)) {
12641 if (Alignment
== 0)
12643 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12644 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12645 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12646 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12647 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12648 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12650 // Don't set an explicit alignment on regular load/stores that we want
12651 // to transform to VLD/VST 1_UPD nodes.
12652 // This matches the behavior of regular load/stores, which only get an
12653 // explicit alignment if the MMO alignment is larger than the standard
12654 // alignment of the memory type.
12655 // Intrinsics, however, always get an explicit alignment, set to the
12656 // alignment of the MMO.
12660 // Create the new updating load/store node.
12661 // First, create an SDVTList for the new updating node's results.
12663 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12665 for (n
= 0; n
< NumResultVecs
; ++n
)
12666 Tys
[n
] = AlignedVecTy
;
12667 Tys
[n
++] = MVT::i32
;
12668 Tys
[n
] = MVT::Other
;
12669 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12671 // Then, gather the new node's operands.
12672 SmallVector
<SDValue
, 8> Ops
;
12673 Ops
.push_back(N
->getOperand(0)); // incoming chain
12674 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12675 Ops
.push_back(Inc
);
12677 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12678 // Try to match the intrinsic's signature
12679 Ops
.push_back(StN
->getValue());
12681 // Loads (and of course intrinsics) match the intrinsics' signature,
12682 // so just add all but the alignment operand.
12683 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12684 Ops
.push_back(N
->getOperand(i
));
12687 // For all node types, the alignment operand is always the last one.
12688 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12690 // If this is a non-standard-aligned STORE, the penultimate operand is the
12691 // stored value. Bitcast it to the aligned type.
12692 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12693 SDValue
&StVal
= Ops
[Ops
.size()-2];
12694 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12697 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12698 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12699 MemN
->getMemOperand());
12701 // Update the uses.
12702 SmallVector
<SDValue
, 5> NewResults
;
12703 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12704 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12706 // If this is an non-standard-aligned LOAD, the first result is the loaded
12707 // value. Bitcast it to the expected result type.
12708 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12709 SDValue
&LdVal
= NewResults
[0];
12710 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12713 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12714 DCI
.CombineTo(N
, NewResults
);
12715 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12722 static SDValue
PerformVLDCombine(SDNode
*N
,
12723 TargetLowering::DAGCombinerInfo
&DCI
) {
12724 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12727 return CombineBaseUpdate(N
, DCI
);
12730 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12731 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12732 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12734 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12735 SelectionDAG
&DAG
= DCI
.DAG
;
12736 EVT VT
= N
->getValueType(0);
12737 // vldN-dup instructions only support 64-bit vectors for N > 1.
12738 if (!VT
.is64BitVector())
12741 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12742 SDNode
*VLD
= N
->getOperand(0).getNode();
12743 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12745 unsigned NumVecs
= 0;
12746 unsigned NewOpc
= 0;
12747 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12748 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12750 NewOpc
= ARMISD::VLD2DUP
;
12751 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12753 NewOpc
= ARMISD::VLD3DUP
;
12754 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12756 NewOpc
= ARMISD::VLD4DUP
;
12761 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12762 // numbers match the load.
12763 unsigned VLDLaneNo
=
12764 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12765 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12767 // Ignore uses of the chain result.
12768 if (UI
.getUse().getResNo() == NumVecs
)
12770 SDNode
*User
= *UI
;
12771 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12772 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12776 // Create the vldN-dup node.
12779 for (n
= 0; n
< NumVecs
; ++n
)
12781 Tys
[n
] = MVT::Other
;
12782 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12783 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12784 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12785 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12786 Ops
, VLDMemInt
->getMemoryVT(),
12787 VLDMemInt
->getMemOperand());
12789 // Update the uses.
12790 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12792 unsigned ResNo
= UI
.getUse().getResNo();
12793 // Ignore uses of the chain result.
12794 if (ResNo
== NumVecs
)
12796 SDNode
*User
= *UI
;
12797 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12800 // Now the vldN-lane intrinsic is dead except for its chain result.
12801 // Update uses of the chain.
12802 std::vector
<SDValue
> VLDDupResults
;
12803 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12804 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12805 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12806 DCI
.CombineTo(VLD
, VLDDupResults
);
12811 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12812 /// ARMISD::VDUPLANE.
12813 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12814 TargetLowering::DAGCombinerInfo
&DCI
) {
12815 SDValue Op
= N
->getOperand(0);
12817 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12818 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12819 if (CombineVLDDUP(N
, DCI
))
12820 return SDValue(N
, 0);
12822 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12823 // redundant. Ignore bit_converts for now; element sizes are checked below.
12824 while (Op
.getOpcode() == ISD::BITCAST
)
12825 Op
= Op
.getOperand(0);
12826 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12829 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12830 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12831 // The canonical VMOV for a zero vector uses a 32-bit element size.
12832 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12834 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12836 EVT VT
= N
->getValueType(0);
12837 if (EltSize
> VT
.getScalarSizeInBits())
12840 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12843 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12844 static SDValue
PerformVDUPCombine(SDNode
*N
,
12845 TargetLowering::DAGCombinerInfo
&DCI
,
12846 const ARMSubtarget
*Subtarget
) {
12847 SelectionDAG
&DAG
= DCI
.DAG
;
12848 SDValue Op
= N
->getOperand(0);
12850 if (!Subtarget
->hasNEON())
12853 // Match VDUP(LOAD) -> VLD1DUP.
12854 // We match this pattern here rather than waiting for isel because the
12855 // transform is only legal for unindexed loads.
12856 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12857 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12858 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12859 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12860 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12861 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12862 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12863 Ops
, LD
->getMemoryVT(),
12864 LD
->getMemOperand());
12865 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12872 static SDValue
PerformLOADCombine(SDNode
*N
,
12873 TargetLowering::DAGCombinerInfo
&DCI
) {
12874 EVT VT
= N
->getValueType(0);
12876 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12877 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12878 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12879 return CombineBaseUpdate(N
, DCI
);
12884 /// PerformSTORECombine - Target-specific dag combine xforms for
12886 static SDValue
PerformSTORECombine(SDNode
*N
,
12887 TargetLowering::DAGCombinerInfo
&DCI
) {
12888 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12889 if (St
->isVolatile())
12892 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12893 // pack all of the elements in one place. Next, store to memory in fewer
12895 SDValue StVal
= St
->getValue();
12896 EVT VT
= StVal
.getValueType();
12897 if (St
->isTruncatingStore() && VT
.isVector()) {
12898 SelectionDAG
&DAG
= DCI
.DAG
;
12899 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12900 EVT StVT
= St
->getMemoryVT();
12901 unsigned NumElems
= VT
.getVectorNumElements();
12902 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12903 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12904 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12906 // From, To sizes and ElemCount must be pow of two
12907 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12909 // We are going to use the original vector elt for storing.
12910 // Accumulated smaller vector elements must be a multiple of the store size.
12911 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12913 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12914 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12916 // Create a type on which we perform the shuffle.
12917 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12918 NumElems
*SizeRatio
);
12919 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12922 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12923 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12924 for (unsigned i
= 0; i
< NumElems
; ++i
)
12925 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12926 ? (i
+ 1) * SizeRatio
- 1
12929 // Can't shuffle using an illegal type.
12930 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12932 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12933 DAG
.getUNDEF(WideVec
.getValueType()),
12935 // At this point all of the data is stored at the bottom of the
12936 // register. We now need to save it to mem.
12938 // Find the largest store unit
12939 MVT StoreType
= MVT::i8
;
12940 for (MVT Tp
: MVT::integer_valuetypes()) {
12941 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12944 // Didn't find a legal store type.
12945 if (!TLI
.isTypeLegal(StoreType
))
12948 // Bitcast the original vector into a vector of store-size units
12949 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
12950 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
12951 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
12952 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
12953 SmallVector
<SDValue
, 8> Chains
;
12954 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
12955 TLI
.getPointerTy(DAG
.getDataLayout()));
12956 SDValue BasePtr
= St
->getBasePtr();
12958 // Perform one or more big stores into memory.
12959 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
12960 for (unsigned I
= 0; I
< E
; I
++) {
12961 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
12962 StoreType
, ShuffWide
,
12963 DAG
.getIntPtrConstant(I
, DL
));
12964 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
12965 St
->getPointerInfo(), St
->getAlignment(),
12966 St
->getMemOperand()->getFlags());
12967 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
12969 Chains
.push_back(Ch
);
12971 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
12974 if (!ISD::isNormalStore(St
))
12977 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12978 // ARM stores of arguments in the same cache line.
12979 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
12980 StVal
.getNode()->hasOneUse()) {
12981 SelectionDAG
&DAG
= DCI
.DAG
;
12982 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
12984 SDValue BasePtr
= St
->getBasePtr();
12985 SDValue NewST1
= DAG
.getStore(
12986 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
12987 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
12988 St
->getMemOperand()->getFlags());
12990 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12991 DAG
.getConstant(4, DL
, MVT::i32
));
12992 return DAG
.getStore(NewST1
.getValue(0), DL
,
12993 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
12994 OffsetPtr
, St
->getPointerInfo(),
12995 std::min(4U, St
->getAlignment() / 2),
12996 St
->getMemOperand()->getFlags());
12999 if (StVal
.getValueType() == MVT::i64
&&
13000 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13002 // Bitcast an i64 store extracted from a vector to f64.
13003 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13004 SelectionDAG
&DAG
= DCI
.DAG
;
13006 SDValue IntVec
= StVal
.getOperand(0);
13007 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13008 IntVec
.getValueType().getVectorNumElements());
13009 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13010 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13011 Vec
, StVal
.getOperand(1));
13013 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13014 // Make the DAGCombiner fold the bitcasts.
13015 DCI
.AddToWorklist(Vec
.getNode());
13016 DCI
.AddToWorklist(ExtElt
.getNode());
13017 DCI
.AddToWorklist(V
.getNode());
13018 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13019 St
->getPointerInfo(), St
->getAlignment(),
13020 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13023 // If this is a legal vector store, try to combine it into a VST1_UPD.
13024 if (ISD::isNormalStore(N
) && VT
.isVector() &&
13025 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13026 return CombineBaseUpdate(N
, DCI
);
13031 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13032 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13033 /// when the VMUL has a constant operand that is a power of 2.
13035 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13036 /// vmul.f32 d16, d17, d16
13037 /// vcvt.s32.f32 d16, d16
13039 /// vcvt.s32.f32 d16, d16, #3
13040 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13041 const ARMSubtarget
*Subtarget
) {
13042 if (!Subtarget
->hasNEON())
13045 SDValue Op
= N
->getOperand(0);
13046 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13047 Op
.getOpcode() != ISD::FMUL
)
13050 SDValue ConstVec
= Op
->getOperand(1);
13051 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13054 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13055 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13056 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13057 uint32_t IntBits
= IntTy
.getSizeInBits();
13058 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13059 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13060 // These instructions only exist converting from f32 to i32. We can handle
13061 // smaller integers by generating an extra truncate, but larger ones would
13062 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13063 // these intructions only support v2i32/v4i32 types.
13067 BitVector UndefElements
;
13068 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13069 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13070 if (C
== -1 || C
== 0 || C
> 32)
13074 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13075 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13076 Intrinsic::arm_neon_vcvtfp2fxu
;
13077 SDValue FixConv
= DAG
.getNode(
13078 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13079 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13080 DAG
.getConstant(C
, dl
, MVT::i32
));
13082 if (IntBits
< FloatBits
)
13083 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13088 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13089 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13090 /// when the VDIV has a constant operand that is a power of 2.
13092 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13093 /// vcvt.f32.s32 d16, d16
13094 /// vdiv.f32 d16, d17, d16
13096 /// vcvt.f32.s32 d16, d16, #3
13097 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13098 const ARMSubtarget
*Subtarget
) {
13099 if (!Subtarget
->hasNEON())
13102 SDValue Op
= N
->getOperand(0);
13103 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13104 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13105 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13108 SDValue ConstVec
= N
->getOperand(1);
13109 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13112 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13113 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13114 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13115 uint32_t IntBits
= IntTy
.getSizeInBits();
13116 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13117 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13118 // These instructions only exist converting from i32 to f32. We can handle
13119 // smaller integers by generating an extra extend, but larger ones would
13120 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13121 // these intructions only support v2i32/v4i32 types.
13125 BitVector UndefElements
;
13126 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13127 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13128 if (C
== -1 || C
== 0 || C
> 32)
13132 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13133 SDValue ConvInput
= Op
.getOperand(0);
13134 if (IntBits
< FloatBits
)
13135 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13136 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13139 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13140 Intrinsic::arm_neon_vcvtfxu2fp
;
13141 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13143 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13144 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13147 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13148 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13149 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13152 // Don't do anything for most intrinsics.
13155 // Vector shifts: check for immediate versions and lower them.
13156 // Note: This is done during DAG combining instead of DAG legalizing because
13157 // the build_vectors for 64-bit vector element shift counts are generally
13158 // not legal, and it is hard to see their values after they get legalized to
13159 // loads from a constant pool.
13160 case Intrinsic::arm_neon_vshifts
:
13161 case Intrinsic::arm_neon_vshiftu
:
13162 case Intrinsic::arm_neon_vrshifts
:
13163 case Intrinsic::arm_neon_vrshiftu
:
13164 case Intrinsic::arm_neon_vrshiftn
:
13165 case Intrinsic::arm_neon_vqshifts
:
13166 case Intrinsic::arm_neon_vqshiftu
:
13167 case Intrinsic::arm_neon_vqshiftsu
:
13168 case Intrinsic::arm_neon_vqshiftns
:
13169 case Intrinsic::arm_neon_vqshiftnu
:
13170 case Intrinsic::arm_neon_vqshiftnsu
:
13171 case Intrinsic::arm_neon_vqrshiftns
:
13172 case Intrinsic::arm_neon_vqrshiftnu
:
13173 case Intrinsic::arm_neon_vqrshiftnsu
: {
13174 EVT VT
= N
->getOperand(1).getValueType();
13176 unsigned VShiftOpc
= 0;
13179 case Intrinsic::arm_neon_vshifts
:
13180 case Intrinsic::arm_neon_vshiftu
:
13181 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13182 VShiftOpc
= ARMISD::VSHLIMM
;
13185 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13186 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13187 : ARMISD::VSHRuIMM
);
13192 case Intrinsic::arm_neon_vrshifts
:
13193 case Intrinsic::arm_neon_vrshiftu
:
13194 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13198 case Intrinsic::arm_neon_vqshifts
:
13199 case Intrinsic::arm_neon_vqshiftu
:
13200 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13204 case Intrinsic::arm_neon_vqshiftsu
:
13205 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13207 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13209 case Intrinsic::arm_neon_vrshiftn
:
13210 case Intrinsic::arm_neon_vqshiftns
:
13211 case Intrinsic::arm_neon_vqshiftnu
:
13212 case Intrinsic::arm_neon_vqshiftnsu
:
13213 case Intrinsic::arm_neon_vqrshiftns
:
13214 case Intrinsic::arm_neon_vqrshiftnu
:
13215 case Intrinsic::arm_neon_vqrshiftnsu
:
13216 // Narrowing shifts require an immediate right shift.
13217 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13219 llvm_unreachable("invalid shift count for narrowing vector shift "
13223 llvm_unreachable("unhandled vector shift");
13227 case Intrinsic::arm_neon_vshifts
:
13228 case Intrinsic::arm_neon_vshiftu
:
13229 // Opcode already set above.
13231 case Intrinsic::arm_neon_vrshifts
:
13232 VShiftOpc
= ARMISD::VRSHRsIMM
;
13234 case Intrinsic::arm_neon_vrshiftu
:
13235 VShiftOpc
= ARMISD::VRSHRuIMM
;
13237 case Intrinsic::arm_neon_vrshiftn
:
13238 VShiftOpc
= ARMISD::VRSHRNIMM
;
13240 case Intrinsic::arm_neon_vqshifts
:
13241 VShiftOpc
= ARMISD::VQSHLsIMM
;
13243 case Intrinsic::arm_neon_vqshiftu
:
13244 VShiftOpc
= ARMISD::VQSHLuIMM
;
13246 case Intrinsic::arm_neon_vqshiftsu
:
13247 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13249 case Intrinsic::arm_neon_vqshiftns
:
13250 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13252 case Intrinsic::arm_neon_vqshiftnu
:
13253 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13255 case Intrinsic::arm_neon_vqshiftnsu
:
13256 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13258 case Intrinsic::arm_neon_vqrshiftns
:
13259 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13261 case Intrinsic::arm_neon_vqrshiftnu
:
13262 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13264 case Intrinsic::arm_neon_vqrshiftnsu
:
13265 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13270 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13271 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13274 case Intrinsic::arm_neon_vshiftins
: {
13275 EVT VT
= N
->getOperand(1).getValueType();
13277 unsigned VShiftOpc
= 0;
13279 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13280 VShiftOpc
= ARMISD::VSLIIMM
;
13281 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13282 VShiftOpc
= ARMISD::VSRIIMM
;
13284 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13288 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13289 N
->getOperand(1), N
->getOperand(2),
13290 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13293 case Intrinsic::arm_neon_vqrshifts
:
13294 case Intrinsic::arm_neon_vqrshiftu
:
13295 // No immediate versions of these to check for.
13302 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13303 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13304 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13305 /// vector element shift counts are generally not legal, and it is hard to see
13306 /// their values after they get legalized to loads from a constant pool.
13307 static SDValue
PerformShiftCombine(SDNode
*N
,
13308 TargetLowering::DAGCombinerInfo
&DCI
,
13309 const ARMSubtarget
*ST
) {
13310 SelectionDAG
&DAG
= DCI
.DAG
;
13311 EVT VT
= N
->getValueType(0);
13312 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13313 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13314 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13315 SDValue N1
= N
->getOperand(1);
13316 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13317 SDValue N0
= N
->getOperand(0);
13318 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13319 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13320 APInt::getHighBitsSet(32, 16)))
13321 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13325 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13326 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13327 N
->getOperand(0)->hasOneUse()) {
13328 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13330 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13331 // usually show up because instcombine prefers to canonicalize it to
13332 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13333 // out of GEP lowering in some cases.
13334 SDValue N0
= N
->getOperand(0);
13335 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13338 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13339 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13342 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13343 // Don't transform uxtb/uxth.
13344 if (AndMask
== 255 || AndMask
== 65535)
13346 if (isMask_32(AndMask
)) {
13347 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13348 if (MaskedBits
> ShiftAmt
) {
13350 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13351 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13352 return DAG
.getNode(
13353 ISD::SRL
, DL
, MVT::i32
, SHL
,
13354 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13359 // Nothing to be done for scalar shifts.
13360 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13361 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13363 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13368 switch (N
->getOpcode()) {
13369 default: llvm_unreachable("unexpected shift opcode");
13372 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13374 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13375 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13381 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13382 unsigned VShiftOpc
=
13383 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13385 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13386 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13392 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13393 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13394 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13395 const ARMSubtarget
*ST
) {
13396 SDValue N0
= N
->getOperand(0);
13398 // Check for sign- and zero-extensions of vector extract operations of 8-
13399 // and 16-bit vector elements. NEON supports these directly. They are
13400 // handled during DAG combining because type legalization will promote them
13401 // to 32-bit types and it is messy to recognize the operations after that.
13402 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13403 SDValue Vec
= N0
.getOperand(0);
13404 SDValue Lane
= N0
.getOperand(1);
13405 EVT VT
= N
->getValueType(0);
13406 EVT EltVT
= N0
.getValueType();
13407 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13409 if (VT
== MVT::i32
&&
13410 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13411 TLI
.isTypeLegal(Vec
.getValueType()) &&
13412 isa
<ConstantSDNode
>(Lane
)) {
13415 switch (N
->getOpcode()) {
13416 default: llvm_unreachable("unexpected opcode");
13417 case ISD::SIGN_EXTEND
:
13418 Opc
= ARMISD::VGETLANEs
;
13420 case ISD::ZERO_EXTEND
:
13421 case ISD::ANY_EXTEND
:
13422 Opc
= ARMISD::VGETLANEu
;
13425 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13432 static const APInt
*isPowerOf2Constant(SDValue V
) {
13433 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13436 const APInt
*CV
= &C
->getAPIntValue();
13437 return CV
->isPowerOf2() ? CV
: nullptr;
13440 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13441 // If we have a CMOV, OR and AND combination such as:
13446 // * CN is a single bit;
13447 // * All bits covered by CM are known zero in y
13449 // Then we can convert this into a sequence of BFI instructions. This will
13450 // always be a win if CM is a single bit, will always be no worse than the
13451 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13452 // three bits (due to the extra IT instruction).
13454 SDValue Op0
= CMOV
->getOperand(0);
13455 SDValue Op1
= CMOV
->getOperand(1);
13456 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13457 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13458 SDValue CmpZ
= CMOV
->getOperand(4);
13460 // The compare must be against zero.
13461 if (!isNullConstant(CmpZ
->getOperand(1)))
13464 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13465 SDValue And
= CmpZ
->getOperand(0);
13466 if (And
->getOpcode() != ISD::AND
)
13468 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13471 SDValue X
= And
->getOperand(0);
13473 if (CC
== ARMCC::EQ
) {
13474 // We're performing an "equal to zero" compare. Swap the operands so we
13475 // canonicalize on a "not equal to zero" compare.
13476 std::swap(Op0
, Op1
);
13478 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13481 if (Op1
->getOpcode() != ISD::OR
)
13484 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13487 SDValue Y
= Op1
->getOperand(0);
13492 // Now, is it profitable to continue?
13493 APInt OrCI
= OrC
->getAPIntValue();
13494 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13495 if (OrCI
.countPopulation() > Heuristic
)
13498 // Lastly, can we determine that the bits defined by OrCI
13500 KnownBits Known
= DAG
.computeKnownBits(Y
);
13501 if ((OrCI
& Known
.Zero
) != OrCI
)
13504 // OK, we can do the combine.
13507 EVT VT
= X
.getValueType();
13508 unsigned BitInX
= AndC
->logBase2();
13511 // We must shift X first.
13512 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13513 DAG
.getConstant(BitInX
, dl
, VT
));
13516 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13517 BitInY
< NumActiveBits
; ++BitInY
) {
13518 if (OrCI
[BitInY
] == 0)
13520 APInt
Mask(VT
.getSizeInBits(), 0);
13521 Mask
.setBit(BitInY
);
13522 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13523 // Confusingly, the operand is an *inverted* mask.
13524 DAG
.getConstant(~Mask
, dl
, VT
));
13530 // Given N, the value controlling the conditional branch, search for the loop
13531 // intrinsic, returning it, along with how the value is used. We need to handle
13532 // patterns such as the following:
13533 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13534 // (brcond (setcc (loop.decrement), 0, eq), exit)
13535 // (brcond (setcc (loop.decrement), 0, ne), header)
13536 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13538 switch (N
->getOpcode()) {
13542 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13544 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13547 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13550 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13553 if (Const
->isNullValue())
13555 else if (Const
->isOne())
13559 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13560 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13562 case ISD::INTRINSIC_W_CHAIN
: {
13563 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13564 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13565 IntOp
!= Intrinsic::loop_decrement_reg
)
13573 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13574 TargetLowering::DAGCombinerInfo
&DCI
,
13575 const ARMSubtarget
*ST
) {
13577 // The hwloop intrinsics that we're interested are used for control-flow,
13578 // either for entering or exiting the loop:
13579 // - test.set.loop.iterations will test whether its operand is zero. If it
13580 // is zero, the proceeding branch should not enter the loop.
13581 // - loop.decrement.reg also tests whether its operand is zero. If it is
13582 // zero, the proceeding branch should not branch back to the beginning of
13584 // So here, we need to check that how the brcond is using the result of each
13585 // of the intrinsics to ensure that we're branching to the right place at the
13591 bool Negate
= false;
13592 SDValue Chain
= N
->getOperand(0);
13595 if (N
->getOpcode() == ISD::BRCOND
) {
13597 Cond
= N
->getOperand(1);
13598 Dest
= N
->getOperand(2);
13600 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13601 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13602 Cond
= N
->getOperand(2);
13603 Dest
= N
->getOperand(4);
13604 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13605 if (!Const
->isOne() && !Const
->isNullValue())
13607 Imm
= Const
->getZExtValue();
13612 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13617 CC
= ISD::getSetCCInverse(CC
, true);
13619 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13620 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13621 (CC
== ISD::SETNE
&& Imm
== 1) ||
13622 (CC
== ISD::SETLT
&& Imm
== 1) ||
13623 (CC
== ISD::SETULT
&& Imm
== 1);
13626 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13627 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13628 (CC
== ISD::SETNE
&& Imm
== 0) ||
13629 (CC
== ISD::SETGT
&& Imm
== 0) ||
13630 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13631 (CC
== ISD::SETGE
&& Imm
== 1) ||
13632 (CC
== ISD::SETUGE
&& Imm
== 1);
13635 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13636 "unsupported condition");
13639 SelectionDAG
&DAG
= DCI
.DAG
;
13640 SDValue Elements
= Int
.getOperand(2);
13641 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13642 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13643 && "expected single br user");
13644 SDNode
*Br
= *N
->use_begin();
13645 SDValue OtherTarget
= Br
->getOperand(1);
13647 // Update the unconditional branch to branch to the given Dest.
13648 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13649 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13650 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13651 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13654 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13656 // We expect this 'instruction' to branch when the counter is zero.
13657 if (IsTrueIfZero(CC
, Imm
)) {
13658 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13659 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13661 // The logic is the reverse of what we need for WLS, so find the other
13662 // basic block target: the target of the proceeding br.
13663 UpdateUncondBr(Br
, Dest
, DAG
);
13665 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13666 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13668 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13671 SDValue Size
= DAG
.getTargetConstant(
13672 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13673 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13674 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13675 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13676 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13678 // We expect this instruction to branch when the count is not zero.
13679 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13681 // Update the unconditional branch to target the loop preheader if we've
13682 // found the condition has been reversed.
13683 if (Target
== OtherTarget
)
13684 UpdateUncondBr(Br
, Dest
, DAG
);
13686 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13687 SDValue(LoopDec
.getNode(), 1), Chain
);
13689 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13690 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13695 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13697 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13698 SDValue Cmp
= N
->getOperand(4);
13699 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13700 // Only looking at NE cases.
13703 EVT VT
= N
->getValueType(0);
13705 SDValue LHS
= Cmp
.getOperand(0);
13706 SDValue RHS
= Cmp
.getOperand(1);
13707 SDValue Chain
= N
->getOperand(0);
13708 SDValue BB
= N
->getOperand(1);
13709 SDValue ARMcc
= N
->getOperand(2);
13710 ARMCC::CondCodes CC
=
13711 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13713 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13714 // -> (brcond Chain BB CC CPSR Cmp)
13715 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13716 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13717 LHS
->getOperand(0)->hasOneUse()) {
13718 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13719 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13720 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13721 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13722 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13723 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13724 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13725 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13726 return DAG
.getNode(
13727 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13728 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13735 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13737 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13738 SDValue Cmp
= N
->getOperand(4);
13739 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13740 // Only looking at EQ and NE cases.
13743 EVT VT
= N
->getValueType(0);
13745 SDValue LHS
= Cmp
.getOperand(0);
13746 SDValue RHS
= Cmp
.getOperand(1);
13747 SDValue FalseVal
= N
->getOperand(0);
13748 SDValue TrueVal
= N
->getOperand(1);
13749 SDValue ARMcc
= N
->getOperand(2);
13750 ARMCC::CondCodes CC
=
13751 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13753 // BFI is only available on V6T2+.
13754 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13755 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13776 /// FIXME: Turn this into a target neutral optimization?
13778 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13779 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13780 N
->getOperand(3), Cmp
);
13781 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13783 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13784 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13785 N
->getOperand(3), NewCmp
);
13788 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13789 // -> (cmov F T CC CPSR Cmp)
13790 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13791 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13792 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13793 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13794 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13795 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13796 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13797 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13798 LHS
->getOperand(2), LHS
->getOperand(3),
13799 LHS
->getOperand(4));
13803 if (!VT
.isInteger())
13806 // Materialize a boolean comparison for integers so we can avoid branching.
13807 if (isNullConstant(FalseVal
)) {
13808 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13809 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13810 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13811 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13812 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13813 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13814 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13815 DAG
.getConstant(5, dl
, MVT::i32
));
13817 // CMOV 0, 1, ==, (CMPZ x, y) ->
13818 // (ADDCARRY (SUB x, y), t:0, t:1)
13819 // where t = (SUBCARRY 0, (SUB x, y), 0)
13821 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13822 // x != y. In other words, a carry C == 1 when x == y, C == 0
13824 // The final ADDCARRY computes
13825 // x - y + (0 - (x - y)) + C == C
13826 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13827 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13828 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13829 // ISD::SUBCARRY returns a borrow but we want the carry here
13832 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13833 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13834 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13836 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13837 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13838 // This seems pointless but will allow us to combine it further below.
13839 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13841 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13842 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13843 Sub
.getValue(1), SDValue());
13844 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13845 N
->getOperand(3), CPSRGlue
.getValue(1));
13848 } else if (isNullConstant(TrueVal
)) {
13849 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13850 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13851 // This seems pointless but will allow us to combine it further below
13852 // Note that we change == for != as this is the dual for the case above.
13853 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13855 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13856 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13857 Sub
.getValue(1), SDValue());
13858 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13859 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13860 N
->getOperand(3), CPSRGlue
.getValue(1));
13865 // On Thumb1, the DAG above may be further combined if z is a power of 2
13867 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13868 // t1 = (USUBO (SUB x, y), 1)
13869 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13870 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13872 // This also handles the special case of comparing against zero; it's
13873 // essentially, the same pattern, except there's no SUBS:
13874 // CMOV x, z, !=, (CMPZ x, 0) ->
13875 // t1 = (USUBO x, 1)
13876 // t2 = (SUBCARRY x, t1:0, t1:1)
13877 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13878 const APInt
*TrueConst
;
13879 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13880 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13881 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13882 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13883 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13884 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13885 unsigned ShiftAmount
= TrueConst
->logBase2();
13887 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13888 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13889 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13892 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13893 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13896 if (Res
.getNode()) {
13897 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13898 // Capture demanded bits information that would be otherwise lost.
13899 if (Known
.Zero
== 0xfffffffe)
13900 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13901 DAG
.getValueType(MVT::i1
));
13902 else if (Known
.Zero
== 0xffffff00)
13903 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13904 DAG
.getValueType(MVT::i8
));
13905 else if (Known
.Zero
== 0xffff0000)
13906 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13907 DAG
.getValueType(MVT::i16
));
13913 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13914 DAGCombinerInfo
&DCI
) const {
13915 switch (N
->getOpcode()) {
13917 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13918 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13919 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13920 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13921 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13922 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13923 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13924 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13925 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13927 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13929 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13930 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13931 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13932 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13933 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13934 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13935 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13936 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13937 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13938 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13939 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13940 case ISD::FP_TO_SINT
:
13941 case ISD::FP_TO_UINT
:
13942 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13944 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13945 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13949 return PerformShiftCombine(N
, DCI
, Subtarget
);
13950 case ISD::SIGN_EXTEND
:
13951 case ISD::ZERO_EXTEND
:
13952 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
13953 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
13954 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
13955 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
13956 case ARMISD::VLD1DUP
:
13957 case ARMISD::VLD2DUP
:
13958 case ARMISD::VLD3DUP
:
13959 case ARMISD::VLD4DUP
:
13960 return PerformVLDCombine(N
, DCI
);
13961 case ARMISD::BUILD_VECTOR
:
13962 return PerformARMBUILD_VECTORCombine(N
, DCI
);
13963 case ARMISD::SMULWB
: {
13964 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13965 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13966 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13970 case ARMISD::SMULWT
: {
13971 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13972 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13973 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13977 case ARMISD::SMLALBB
: {
13978 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13979 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13980 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13981 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13985 case ARMISD::SMLALBT
: {
13986 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13987 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13988 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13989 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13990 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
13991 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
13995 case ARMISD::SMLALTB
: {
13996 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13997 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13998 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13999 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14000 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14001 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14005 case ARMISD::SMLALTT
: {
14006 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14007 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14008 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14009 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14013 case ISD::INTRINSIC_VOID
:
14014 case ISD::INTRINSIC_W_CHAIN
:
14015 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14016 case Intrinsic::arm_neon_vld1
:
14017 case Intrinsic::arm_neon_vld1x2
:
14018 case Intrinsic::arm_neon_vld1x3
:
14019 case Intrinsic::arm_neon_vld1x4
:
14020 case Intrinsic::arm_neon_vld2
:
14021 case Intrinsic::arm_neon_vld3
:
14022 case Intrinsic::arm_neon_vld4
:
14023 case Intrinsic::arm_neon_vld2lane
:
14024 case Intrinsic::arm_neon_vld3lane
:
14025 case Intrinsic::arm_neon_vld4lane
:
14026 case Intrinsic::arm_neon_vld2dup
:
14027 case Intrinsic::arm_neon_vld3dup
:
14028 case Intrinsic::arm_neon_vld4dup
:
14029 case Intrinsic::arm_neon_vst1
:
14030 case Intrinsic::arm_neon_vst1x2
:
14031 case Intrinsic::arm_neon_vst1x3
:
14032 case Intrinsic::arm_neon_vst1x4
:
14033 case Intrinsic::arm_neon_vst2
:
14034 case Intrinsic::arm_neon_vst3
:
14035 case Intrinsic::arm_neon_vst4
:
14036 case Intrinsic::arm_neon_vst2lane
:
14037 case Intrinsic::arm_neon_vst3lane
:
14038 case Intrinsic::arm_neon_vst4lane
:
14039 return PerformVLDCombine(N
, DCI
);
14047 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14049 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14052 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14053 unsigned Alignment
,
14054 MachineMemOperand::Flags
,
14055 bool *Fast
) const {
14056 // Depends what it gets converted into if the type is weird.
14057 if (!VT
.isSimple())
14060 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14061 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14062 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14064 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14065 // Unaligned access can use (for example) LRDB, LRDH, LDR
14066 if (AllowsUnaligned
) {
14068 *Fast
= Subtarget
->hasV7Ops();
14073 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14074 // For any little-endian targets with neon, we can support unaligned ld/st
14075 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14076 // A big-endian target may also explicitly support unaligned accesses
14077 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14084 if (!Subtarget
->hasMVEIntegerOps())
14087 // These are for predicates
14088 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14094 // These are for truncated stores/narrowing loads. They are fine so long as
14095 // the alignment is at least the size of the item being loaded
14096 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14097 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14103 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14104 // VSTRW.U32 all store the vector register in exactly the same format, and
14105 // differ only in the range of their immediate offset field and the required
14106 // alignment. So there is always a store that can be used, regardless of
14109 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14110 // VREV64.8) pair and get the same effect. This will likely be better than
14111 // aligning the vector through the stack.
14112 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14113 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14114 Ty
== MVT::v2f64
) {
14123 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14124 unsigned AlignCheck
) {
14125 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14126 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14129 EVT
ARMTargetLowering::getOptimalMemOpType(
14130 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14131 bool ZeroMemset
, bool MemcpyStrSrc
,
14132 const AttributeList
&FuncAttributes
) const {
14133 // See if we can use NEON instructions for this...
14134 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14135 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14138 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14139 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14140 MachineMemOperand::MONone
, &Fast
) &&
14143 } else if (Size
>= 8 &&
14144 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14145 (allowsMisalignedMemoryAccesses(
14146 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14152 // Let the target-independent logic figure it out.
14156 // 64-bit integers are split into their high and low parts and held in two
14157 // different registers, so the trunc is free since the low register can just
14159 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14160 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14162 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14163 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14164 return (SrcBits
== 64 && DestBits
== 32);
14167 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14168 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14169 !DstVT
.isInteger())
14171 unsigned SrcBits
= SrcVT
.getSizeInBits();
14172 unsigned DestBits
= DstVT
.getSizeInBits();
14173 return (SrcBits
== 64 && DestBits
== 32);
14176 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14177 if (Val
.getOpcode() != ISD::LOAD
)
14180 EVT VT1
= Val
.getValueType();
14181 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14182 !VT2
.isSimple() || !VT2
.isInteger())
14185 switch (VT1
.getSimpleVT().SimpleTy
) {
14190 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14197 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14198 if (!VT
.isSimple())
14201 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14202 // negate values directly (fneg is free). So, we don't want to let the DAG
14203 // combiner rewrite fneg into xors and some other instructions. For f16 and
14204 // FullFP16 argument passing, some bitcast nodes may be introduced,
14205 // triggering this DAG combine rewrite, so we are avoiding that with this.
14206 switch (VT
.getSimpleVT().SimpleTy
) {
14209 return Subtarget
->hasFullFP16();
14215 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14216 /// of the vector elements.
14217 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14218 auto areExtDoubled
= [](Instruction
*Ext
) {
14219 return Ext
->getType()->getScalarSizeInBits() ==
14220 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14223 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14224 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14225 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14226 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14232 /// Check if sinking \p I's operands to I's basic block is profitable, because
14233 /// the operands can be folded into a target instruction, e.g.
14234 /// sext/zext can be folded into vsubl.
14235 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14236 SmallVectorImpl
<Use
*> &Ops
) const {
14237 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14240 switch (I
->getOpcode()) {
14241 case Instruction::Sub
:
14242 case Instruction::Add
: {
14243 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14245 Ops
.push_back(&I
->getOperandUse(0));
14246 Ops
.push_back(&I
->getOperandUse(1));
14255 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14256 EVT VT
= ExtVal
.getValueType();
14258 if (!isTypeLegal(VT
))
14261 // Don't create a loadext if we can fold the extension into a wide/long
14263 // If there's more than one user instruction, the loadext is desirable no
14264 // matter what. There can be two uses by the same instruction.
14265 if (ExtVal
->use_empty() ||
14266 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14269 SDNode
*U
= *ExtVal
->use_begin();
14270 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14271 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14277 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14278 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14281 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14284 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14286 // Assuming the caller doesn't have a zeroext or signext return parameter,
14287 // truncation all the way down to i1 is valid.
14291 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14292 const AddrMode
&AM
, Type
*Ty
,
14293 unsigned AS
) const {
14294 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14295 if (Subtarget
->hasFPAO())
14296 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14302 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14306 unsigned Scale
= 1;
14307 switch (VT
.getSimpleVT().SimpleTy
) {
14317 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14323 if ((V
& (Scale
- 1)) != 0)
14325 return isUInt
<5>(V
/ Scale
);
14328 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14329 const ARMSubtarget
*Subtarget
) {
14330 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14332 if (VT
.isVector() && Subtarget
->hasNEON())
14334 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14335 !Subtarget
->hasMVEFloatOps())
14338 bool IsNeg
= false;
14344 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14346 // MVE: size * imm7
14347 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14348 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14351 return isShiftedUInt
<7,2>(V
);
14354 return isShiftedUInt
<7,1>(V
);
14356 return isUInt
<7>(V
);
14362 // half VLDR: 2 * imm8
14363 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14364 return isShiftedUInt
<8, 1>(V
);
14365 // VLDR and LDRD: 4 * imm8
14366 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14367 return isShiftedUInt
<8, 2>(V
);
14369 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14370 // + imm12 or - imm8
14372 return isUInt
<8>(V
);
14373 return isUInt
<12>(V
);
14379 /// isLegalAddressImmediate - Return true if the integer value can be used
14380 /// as the offset of the target addressing mode for load / store of the
14382 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14383 const ARMSubtarget
*Subtarget
) {
14387 if (!VT
.isSimple())
14390 if (Subtarget
->isThumb1Only())
14391 return isLegalT1AddressImmediate(V
, VT
);
14392 else if (Subtarget
->isThumb2())
14393 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14398 switch (VT
.getSimpleVT().SimpleTy
) {
14399 default: return false;
14404 return isUInt
<12>(V
);
14407 return isUInt
<8>(V
);
14410 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14412 return isShiftedUInt
<8, 2>(V
);
14416 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14418 int Scale
= AM
.Scale
;
14422 switch (VT
.getSimpleVT().SimpleTy
) {
14423 default: return false;
14431 Scale
= Scale
& ~1;
14432 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14434 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14435 // version in Thumb mode.
14439 // r * 2 (this can be lowered to r + r).
14440 if (!AM
.HasBaseReg
&& Scale
== 2)
14444 // Note, we allow "void" uses (basically, uses that aren't loads or
14445 // stores), because arm allows folding a scale into many arithmetic
14446 // operations. This should be made more precise and revisited later.
14448 // Allow r << imm, but the imm has to be a multiple of two.
14449 if (Scale
& 1) return false;
14450 return isPowerOf2_32(Scale
);
14454 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14456 const int Scale
= AM
.Scale
;
14458 // Negative scales are not supported in Thumb1.
14462 // Thumb1 addressing modes do not support register scaling excepting the
14463 // following cases:
14464 // 1. Scale == 1 means no scaling.
14465 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14466 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14469 /// isLegalAddressingMode - Return true if the addressing mode represented
14470 /// by AM is legal for this target, for a load/store of the specified type.
14471 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14472 const AddrMode
&AM
, Type
*Ty
,
14473 unsigned AS
, Instruction
*I
) const {
14474 EVT VT
= getValueType(DL
, Ty
, true);
14475 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14478 // Can never fold addr of global into load/store.
14482 switch (AM
.Scale
) {
14483 case 0: // no scale reg, must be "r+i" or "r", or "i".
14486 // ARM doesn't support any R+R*scale+imm addr modes.
14490 if (!VT
.isSimple())
14493 if (Subtarget
->isThumb1Only())
14494 return isLegalT1ScaledAddressingMode(AM
, VT
);
14496 if (Subtarget
->isThumb2())
14497 return isLegalT2ScaledAddressingMode(AM
, VT
);
14499 int Scale
= AM
.Scale
;
14500 switch (VT
.getSimpleVT().SimpleTy
) {
14501 default: return false;
14505 if (Scale
< 0) Scale
= -Scale
;
14509 return isPowerOf2_32(Scale
& ~1);
14513 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14515 // r * 2 (this can be lowered to r + r).
14516 if (!AM
.HasBaseReg
&& Scale
== 2)
14521 // Note, we allow "void" uses (basically, uses that aren't loads or
14522 // stores), because arm allows folding a scale into many arithmetic
14523 // operations. This should be made more precise and revisited later.
14525 // Allow r << imm, but the imm has to be a multiple of two.
14526 if (Scale
& 1) return false;
14527 return isPowerOf2_32(Scale
);
14533 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14534 /// icmp immediate, that is the target has icmp instructions which can compare
14535 /// a register against the immediate without having to materialize the
14536 /// immediate into a register.
14537 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14538 // Thumb2 and ARM modes can use cmn for negative immediates.
14539 if (!Subtarget
->isThumb())
14540 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14541 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14542 if (Subtarget
->isThumb2())
14543 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14544 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14545 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14546 return Imm
>= 0 && Imm
<= 255;
14549 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14550 /// *or sub* immediate, that is the target has add or sub instructions which can
14551 /// add a register with the immediate without having to materialize the
14552 /// immediate into a register.
14553 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14554 // Same encoding for add/sub, just flip the sign.
14555 int64_t AbsImm
= std::abs(Imm
);
14556 if (!Subtarget
->isThumb())
14557 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14558 if (Subtarget
->isThumb2())
14559 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14560 // Thumb1 only has 8-bit unsigned immediate.
14561 return AbsImm
>= 0 && AbsImm
<= 255;
14564 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14565 bool isSEXTLoad
, SDValue
&Base
,
14566 SDValue
&Offset
, bool &isInc
,
14567 SelectionDAG
&DAG
) {
14568 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14571 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14572 // AddressingMode 3
14573 Base
= Ptr
->getOperand(0);
14574 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14575 int RHSC
= (int)RHS
->getZExtValue();
14576 if (RHSC
< 0 && RHSC
> -256) {
14577 assert(Ptr
->getOpcode() == ISD::ADD
);
14579 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14583 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14584 Offset
= Ptr
->getOperand(1);
14586 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14587 // AddressingMode 2
14588 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14589 int RHSC
= (int)RHS
->getZExtValue();
14590 if (RHSC
< 0 && RHSC
> -0x1000) {
14591 assert(Ptr
->getOpcode() == ISD::ADD
);
14593 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14594 Base
= Ptr
->getOperand(0);
14599 if (Ptr
->getOpcode() == ISD::ADD
) {
14601 ARM_AM::ShiftOpc ShOpcVal
=
14602 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14603 if (ShOpcVal
!= ARM_AM::no_shift
) {
14604 Base
= Ptr
->getOperand(1);
14605 Offset
= Ptr
->getOperand(0);
14607 Base
= Ptr
->getOperand(0);
14608 Offset
= Ptr
->getOperand(1);
14613 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14614 Base
= Ptr
->getOperand(0);
14615 Offset
= Ptr
->getOperand(1);
14619 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14623 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14624 bool isSEXTLoad
, SDValue
&Base
,
14625 SDValue
&Offset
, bool &isInc
,
14626 SelectionDAG
&DAG
) {
14627 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14630 Base
= Ptr
->getOperand(0);
14631 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14632 int RHSC
= (int)RHS
->getZExtValue();
14633 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14634 assert(Ptr
->getOpcode() == ISD::ADD
);
14636 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14638 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14639 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14640 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14648 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
14649 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
14650 SDValue
&Offset
, bool &isInc
,
14651 SelectionDAG
&DAG
) {
14652 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14654 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
14657 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
14658 int RHSC
= (int)RHS
->getZExtValue();
14660 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
14661 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
14662 assert(Ptr
->getOpcode() == ISD::ADD
);
14664 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14666 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
14667 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14668 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14674 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14676 Base
= Ptr
->getOperand(0);
14677 if (VT
== MVT::v4i16
) {
14678 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
14680 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
14681 if (IsInRange(RHSC
, 0x80, 1))
14683 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
14684 IsInRange(RHSC
, 0x80, 4))
14686 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
14687 IsInRange(RHSC
, 0x80, 2))
14689 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
14694 /// getPreIndexedAddressParts - returns true by value, base pointer and
14695 /// offset pointer and addressing mode by reference if the node's address
14696 /// can be legally represented as pre-indexed load / store address.
14698 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14700 ISD::MemIndexedMode
&AM
,
14701 SelectionDAG
&DAG
) const {
14702 if (Subtarget
->isThumb1Only())
14708 bool isSEXTLoad
= false;
14709 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14710 Ptr
= LD
->getBasePtr();
14711 VT
= LD
->getMemoryVT();
14712 Align
= LD
->getAlignment();
14713 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14714 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14715 Ptr
= ST
->getBasePtr();
14716 VT
= ST
->getMemoryVT();
14717 Align
= ST
->getAlignment();
14722 bool isLegal
= false;
14724 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14725 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
14726 Subtarget
->isLittle(), Base
, Offset
,
14729 if (Subtarget
->isThumb2())
14730 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14731 Offset
, isInc
, DAG
);
14733 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14734 Offset
, isInc
, DAG
);
14739 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14743 /// getPostIndexedAddressParts - returns true by value, base pointer and
14744 /// offset pointer and addressing mode by reference if this node can be
14745 /// combined with a load / store to form a post-indexed load / store.
14746 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14749 ISD::MemIndexedMode
&AM
,
14750 SelectionDAG
&DAG
) const {
14754 bool isSEXTLoad
= false, isNonExt
;
14755 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14756 VT
= LD
->getMemoryVT();
14757 Ptr
= LD
->getBasePtr();
14758 Align
= LD
->getAlignment();
14759 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14760 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14761 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14762 VT
= ST
->getMemoryVT();
14763 Ptr
= ST
->getBasePtr();
14764 Align
= ST
->getAlignment();
14765 isNonExt
= !ST
->isTruncatingStore();
14769 if (Subtarget
->isThumb1Only()) {
14770 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14771 // must be non-extending/truncating, i32, with an offset of 4.
14772 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14773 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14775 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14776 if (!RHS
|| RHS
->getZExtValue() != 4)
14779 Offset
= Op
->getOperand(1);
14780 Base
= Op
->getOperand(0);
14781 AM
= ISD::POST_INC
;
14786 bool isLegal
= false;
14788 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14789 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
14790 Subtarget
->isLittle(), Base
, Offset
,
14793 if (Subtarget
->isThumb2())
14794 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14797 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14804 // Swap base ptr and offset to catch more post-index load / store when
14805 // it's legal. In Thumb2 mode, offset must be an immediate.
14806 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14807 !Subtarget
->isThumb2())
14808 std::swap(Base
, Offset
);
14810 // Post-indexed load / store update the base pointer.
14815 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14819 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14821 const APInt
&DemandedElts
,
14822 const SelectionDAG
&DAG
,
14823 unsigned Depth
) const {
14824 unsigned BitWidth
= Known
.getBitWidth();
14826 switch (Op
.getOpcode()) {
14832 // Special cases when we convert a carry to a boolean.
14833 if (Op
.getResNo() == 0) {
14834 SDValue LHS
= Op
.getOperand(0);
14835 SDValue RHS
= Op
.getOperand(1);
14836 // (ADDE 0, 0, C) will give us a single bit.
14837 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14838 isNullConstant(RHS
)) {
14839 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14844 case ARMISD::CMOV
: {
14845 // Bits are known zero/one if known on the LHS and RHS.
14846 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14847 if (Known
.isUnknown())
14850 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14851 Known
.Zero
&= KnownRHS
.Zero
;
14852 Known
.One
&= KnownRHS
.One
;
14855 case ISD::INTRINSIC_W_CHAIN
: {
14856 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14857 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14860 case Intrinsic::arm_ldaex
:
14861 case Intrinsic::arm_ldrex
: {
14862 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14863 unsigned MemBits
= VT
.getScalarSizeInBits();
14864 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14869 case ARMISD::BFI
: {
14870 // Conservatively, we can recurse down the first operand
14871 // and just mask out all affected bits.
14872 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14874 // The operand to BFI is already a mask suitable for removing the bits it
14876 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14877 const APInt
&Mask
= CI
->getAPIntValue();
14878 Known
.Zero
&= Mask
;
14882 case ARMISD::VGETLANEs
:
14883 case ARMISD::VGETLANEu
: {
14884 const SDValue
&SrcSV
= Op
.getOperand(0);
14885 EVT VecVT
= SrcSV
.getValueType();
14886 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14887 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14888 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14889 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14890 "VGETLANE index out of bounds");
14891 unsigned Idx
= Pos
->getZExtValue();
14892 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14893 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14895 EVT VT
= Op
.getValueType();
14896 const unsigned DstSz
= VT
.getScalarSizeInBits();
14897 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14899 assert(SrcSz
== Known
.getBitWidth());
14900 assert(DstSz
> SrcSz
);
14901 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14902 Known
= Known
.sext(DstSz
);
14904 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14906 assert(DstSz
== Known
.getBitWidth());
14913 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14914 const APInt
&DemandedAPInt
,
14915 TargetLoweringOpt
&TLO
) const {
14916 // Delay optimization, so we don't have to deal with illegal types, or block
14921 // Only optimize AND for now.
14922 if (Op
.getOpcode() != ISD::AND
)
14925 EVT VT
= Op
.getValueType();
14931 assert(VT
== MVT::i32
&& "Unexpected integer type");
14933 // Make sure the RHS really is a constant.
14934 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14938 unsigned Mask
= C
->getZExtValue();
14940 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14941 unsigned ShrunkMask
= Mask
& Demanded
;
14942 unsigned ExpandedMask
= Mask
| ~Demanded
;
14944 // If the mask is all zeros, let the target-independent code replace the
14945 // result with zero.
14946 if (ShrunkMask
== 0)
14949 // If the mask is all ones, erase the AND. (Currently, the target-independent
14950 // code won't do this, so we have to do it explicitly to avoid an infinite
14951 // loop in obscure cases.)
14952 if (ExpandedMask
== ~0U)
14953 return TLO
.CombineTo(Op
, Op
.getOperand(0));
14955 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
14956 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
14958 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
14959 if (NewMask
== Mask
)
14962 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
14963 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
14964 return TLO
.CombineTo(Op
, NewOp
);
14967 // Prefer uxtb mask.
14968 if (IsLegalMask(0xFF))
14969 return UseMask(0xFF);
14971 // Prefer uxth mask.
14972 if (IsLegalMask(0xFFFF))
14973 return UseMask(0xFFFF);
14975 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14976 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14977 if (ShrunkMask
< 256)
14978 return UseMask(ShrunkMask
);
14980 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14981 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14982 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
14983 return UseMask(ExpandedMask
);
14985 // Potential improvements:
14987 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14988 // We could try to prefer Thumb1 immediates which can be lowered to a
14989 // two-instruction sequence.
14990 // We could try to recognize more legal ARM/Thumb2 immediates here.
14996 //===----------------------------------------------------------------------===//
14997 // ARM Inline Assembly Support
14998 //===----------------------------------------------------------------------===//
15000 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15001 // Looking for "rev" which is V6+.
15002 if (!Subtarget
->hasV6Ops())
15005 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15006 std::string AsmStr
= IA
->getAsmString();
15007 SmallVector
<StringRef
, 4> AsmPieces
;
15008 SplitString(AsmStr
, AsmPieces
, ";\n");
15010 switch (AsmPieces
.size()) {
15011 default: return false;
15013 AsmStr
= AsmPieces
[0];
15015 SplitString(AsmStr
, AsmPieces
, " \t,");
15018 if (AsmPieces
.size() == 3 &&
15019 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15020 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15021 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15022 if (Ty
&& Ty
->getBitWidth() == 32)
15023 return IntrinsicLowering::LowerToByteSwap(CI
);
15031 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15032 // At this point, we have to lower this constraint to something else, so we
15033 // lower it to an "r" or "w". However, by doing this we will force the result
15034 // to be in register, while the X constraint is much more permissive.
15036 // Although we are correct (we are free to emit anything, without
15037 // constraints), we might break use cases that would expect us to be more
15038 // efficient and emit something else.
15039 if (!Subtarget
->hasVFP2Base())
15041 if (ConstraintVT
.isFloatingPoint())
15043 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15044 (ConstraintVT
.getSizeInBits() == 64 ||
15045 ConstraintVT
.getSizeInBits() == 128))
15051 /// getConstraintType - Given a constraint letter, return the type of
15052 /// constraint it is for this target.
15053 ARMTargetLowering::ConstraintType
15054 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15055 unsigned S
= Constraint
.size();
15057 switch (Constraint
[0]) {
15059 case 'l': return C_RegisterClass
;
15060 case 'w': return C_RegisterClass
;
15061 case 'h': return C_RegisterClass
;
15062 case 'x': return C_RegisterClass
;
15063 case 't': return C_RegisterClass
;
15064 case 'j': return C_Immediate
; // Constant for movw.
15065 // An address with a single base register. Due to the way we
15066 // currently handle addresses it is the same as an 'r' memory constraint.
15067 case 'Q': return C_Memory
;
15069 } else if (S
== 2) {
15070 switch (Constraint
[0]) {
15072 case 'T': return C_RegisterClass
;
15073 // All 'U+' constraints are addresses.
15074 case 'U': return C_Memory
;
15077 return TargetLowering::getConstraintType(Constraint
);
15080 /// Examine constraint type and operand type and determine a weight value.
15081 /// This object must already have been set up with the operand type
15082 /// and the current alternative constraint selected.
15083 TargetLowering::ConstraintWeight
15084 ARMTargetLowering::getSingleConstraintMatchWeight(
15085 AsmOperandInfo
&info
, const char *constraint
) const {
15086 ConstraintWeight weight
= CW_Invalid
;
15087 Value
*CallOperandVal
= info
.CallOperandVal
;
15088 // If we don't have a value, we can't do a match,
15089 // but allow it at the lowest weight.
15090 if (!CallOperandVal
)
15092 Type
*type
= CallOperandVal
->getType();
15093 // Look at the constraint type.
15094 switch (*constraint
) {
15096 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15099 if (type
->isIntegerTy()) {
15100 if (Subtarget
->isThumb())
15101 weight
= CW_SpecificReg
;
15103 weight
= CW_Register
;
15107 if (type
->isFloatingPointTy())
15108 weight
= CW_Register
;
15114 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15116 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15117 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15118 switch (Constraint
.size()) {
15120 // GCC ARM Constraint Letters
15121 switch (Constraint
[0]) {
15122 case 'l': // Low regs or general regs.
15123 if (Subtarget
->isThumb())
15124 return RCPair(0U, &ARM::tGPRRegClass
);
15125 return RCPair(0U, &ARM::GPRRegClass
);
15126 case 'h': // High regs or no regs.
15127 if (Subtarget
->isThumb())
15128 return RCPair(0U, &ARM::hGPRRegClass
);
15131 if (Subtarget
->isThumb1Only())
15132 return RCPair(0U, &ARM::tGPRRegClass
);
15133 return RCPair(0U, &ARM::GPRRegClass
);
15135 if (VT
== MVT::Other
)
15137 if (VT
== MVT::f32
)
15138 return RCPair(0U, &ARM::SPRRegClass
);
15139 if (VT
.getSizeInBits() == 64)
15140 return RCPair(0U, &ARM::DPRRegClass
);
15141 if (VT
.getSizeInBits() == 128)
15142 return RCPair(0U, &ARM::QPRRegClass
);
15145 if (VT
== MVT::Other
)
15147 if (VT
== MVT::f32
)
15148 return RCPair(0U, &ARM::SPR_8RegClass
);
15149 if (VT
.getSizeInBits() == 64)
15150 return RCPair(0U, &ARM::DPR_8RegClass
);
15151 if (VT
.getSizeInBits() == 128)
15152 return RCPair(0U, &ARM::QPR_8RegClass
);
15155 if (VT
== MVT::Other
)
15157 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15158 return RCPair(0U, &ARM::SPRRegClass
);
15159 if (VT
.getSizeInBits() == 64)
15160 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15161 if (VT
.getSizeInBits() == 128)
15162 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15168 if (Constraint
[0] == 'T') {
15169 switch (Constraint
[1]) {
15173 return RCPair(0U, &ARM::tGPREvenRegClass
);
15175 return RCPair(0U, &ARM::tGPROddRegClass
);
15184 if (StringRef("{cc}").equals_lower(Constraint
))
15185 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15187 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15190 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15191 /// vector. If it is invalid, don't add anything to Ops.
15192 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15193 std::string
&Constraint
,
15194 std::vector
<SDValue
>&Ops
,
15195 SelectionDAG
&DAG
) const {
15198 // Currently only support length 1 constraints.
15199 if (Constraint
.length() != 1) return;
15201 char ConstraintLetter
= Constraint
[0];
15202 switch (ConstraintLetter
) {
15205 case 'I': case 'J': case 'K': case 'L':
15206 case 'M': case 'N': case 'O':
15207 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15211 int64_t CVal64
= C
->getSExtValue();
15212 int CVal
= (int) CVal64
;
15213 // None of these constraints allow values larger than 32 bits. Check
15214 // that the value fits in an int.
15215 if (CVal
!= CVal64
)
15218 switch (ConstraintLetter
) {
15220 // Constant suitable for movw, must be between 0 and
15222 if (Subtarget
->hasV6T2Ops())
15223 if (CVal
>= 0 && CVal
<= 65535)
15227 if (Subtarget
->isThumb1Only()) {
15228 // This must be a constant between 0 and 255, for ADD
15230 if (CVal
>= 0 && CVal
<= 255)
15232 } else if (Subtarget
->isThumb2()) {
15233 // A constant that can be used as an immediate value in a
15234 // data-processing instruction.
15235 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15238 // A constant that can be used as an immediate value in a
15239 // data-processing instruction.
15240 if (ARM_AM::getSOImmVal(CVal
) != -1)
15246 if (Subtarget
->isThumb1Only()) {
15247 // This must be a constant between -255 and -1, for negated ADD
15248 // immediates. This can be used in GCC with an "n" modifier that
15249 // prints the negated value, for use with SUB instructions. It is
15250 // not useful otherwise but is implemented for compatibility.
15251 if (CVal
>= -255 && CVal
<= -1)
15254 // This must be a constant between -4095 and 4095. It is not clear
15255 // what this constraint is intended for. Implemented for
15256 // compatibility with GCC.
15257 if (CVal
>= -4095 && CVal
<= 4095)
15263 if (Subtarget
->isThumb1Only()) {
15264 // A 32-bit value where only one byte has a nonzero value. Exclude
15265 // zero to match GCC. This constraint is used by GCC internally for
15266 // constants that can be loaded with a move/shift combination.
15267 // It is not useful otherwise but is implemented for compatibility.
15268 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15270 } else if (Subtarget
->isThumb2()) {
15271 // A constant whose bitwise inverse can be used as an immediate
15272 // value in a data-processing instruction. This can be used in GCC
15273 // with a "B" modifier that prints the inverted value, for use with
15274 // BIC and MVN instructions. It is not useful otherwise but is
15275 // implemented for compatibility.
15276 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15279 // A constant whose bitwise inverse can be used as an immediate
15280 // value in a data-processing instruction. This can be used in GCC
15281 // with a "B" modifier that prints the inverted value, for use with
15282 // BIC and MVN instructions. It is not useful otherwise but is
15283 // implemented for compatibility.
15284 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15290 if (Subtarget
->isThumb1Only()) {
15291 // This must be a constant between -7 and 7,
15292 // for 3-operand ADD/SUB immediate instructions.
15293 if (CVal
>= -7 && CVal
< 7)
15295 } else if (Subtarget
->isThumb2()) {
15296 // A constant whose negation can be used as an immediate value in a
15297 // data-processing instruction. This can be used in GCC with an "n"
15298 // modifier that prints the negated value, for use with SUB
15299 // instructions. It is not useful otherwise but is implemented for
15301 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15304 // A constant whose negation can be used as an immediate value in a
15305 // data-processing instruction. This can be used in GCC with an "n"
15306 // modifier that prints the negated value, for use with SUB
15307 // instructions. It is not useful otherwise but is implemented for
15309 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15315 if (Subtarget
->isThumb1Only()) {
15316 // This must be a multiple of 4 between 0 and 1020, for
15317 // ADD sp + immediate.
15318 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15321 // A power of two or a constant between 0 and 32. This is used in
15322 // GCC for the shift amount on shifted register operands, but it is
15323 // useful in general for any shift amounts.
15324 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15330 if (Subtarget
->isThumb()) { // FIXME thumb2
15331 // This must be a constant between 0 and 31, for shift amounts.
15332 if (CVal
>= 0 && CVal
<= 31)
15338 if (Subtarget
->isThumb()) { // FIXME thumb2
15339 // This must be a multiple of 4 between -508 and 508, for
15340 // ADD/SUB sp = sp + immediate.
15341 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15346 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15350 if (Result
.getNode()) {
15351 Ops
.push_back(Result
);
15354 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15357 static RTLIB::Libcall
getDivRemLibcall(
15358 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15359 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15360 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15361 "Unhandled Opcode in getDivRemLibcall");
15362 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15363 N
->getOpcode() == ISD::SREM
;
15366 default: llvm_unreachable("Unexpected request for libcall!");
15367 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15368 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15369 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15370 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15375 static TargetLowering::ArgListTy
getDivRemArgList(
15376 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15377 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15378 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15379 "Unhandled Opcode in getDivRemArgList");
15380 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15381 N
->getOpcode() == ISD::SREM
;
15382 TargetLowering::ArgListTy Args
;
15383 TargetLowering::ArgListEntry Entry
;
15384 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15385 EVT ArgVT
= N
->getOperand(i
).getValueType();
15386 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15387 Entry
.Node
= N
->getOperand(i
);
15389 Entry
.IsSExt
= isSigned
;
15390 Entry
.IsZExt
= !isSigned
;
15391 Args
.push_back(Entry
);
15393 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15394 std::swap(Args
[0], Args
[1]);
15398 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15399 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15400 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15401 Subtarget
->isTargetWindows()) &&
15402 "Register-based DivRem lowering only");
15403 unsigned Opcode
= Op
->getOpcode();
15404 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15405 "Invalid opcode for Div/Rem lowering");
15406 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15407 EVT VT
= Op
->getValueType(0);
15408 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15411 // If the target has hardware divide, use divide + multiply + subtract:
15413 // rem = a - b * div
15414 // return {div, rem}
15415 // This should be lowered into UDIV/SDIV + MLS later on.
15416 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15417 : Subtarget
->hasDivideInARMMode();
15418 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15419 Op
->getSimpleValueType(0) == MVT::i32
) {
15420 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15421 const SDValue Dividend
= Op
->getOperand(0);
15422 const SDValue Divisor
= Op
->getOperand(1);
15423 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15424 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15425 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15427 SDValue Values
[2] = {Div
, Rem
};
15428 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15431 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15432 VT
.getSimpleVT().SimpleTy
);
15433 SDValue InChain
= DAG
.getEntryNode();
15435 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15439 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15440 getPointerTy(DAG
.getDataLayout()));
15442 Type
*RetTy
= StructType::get(Ty
, Ty
);
15444 if (Subtarget
->isTargetWindows())
15445 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15447 TargetLowering::CallLoweringInfo
CLI(DAG
);
15448 CLI
.setDebugLoc(dl
).setChain(InChain
)
15449 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15450 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15452 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15453 return CallInfo
.first
;
15456 // Lowers REM using divmod helpers
15457 // see RTABI section 4.2/4.3
15458 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15459 // Build return types (div and rem)
15460 std::vector
<Type
*> RetTyParams
;
15461 Type
*RetTyElement
;
15463 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15464 default: llvm_unreachable("Unexpected request for libcall!");
15465 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15466 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15467 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15468 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15471 RetTyParams
.push_back(RetTyElement
);
15472 RetTyParams
.push_back(RetTyElement
);
15473 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15474 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15476 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15478 SDValue InChain
= DAG
.getEntryNode();
15479 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15481 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15482 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15483 getPointerTy(DAG
.getDataLayout()));
15485 if (Subtarget
->isTargetWindows())
15486 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15489 CallLoweringInfo
CLI(DAG
);
15490 CLI
.setChain(InChain
)
15491 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15492 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15493 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15495 // Return second (rem) result operand (first contains div)
15496 SDNode
*ResNode
= CallResult
.first
.getNode();
15497 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15498 return ResNode
->getOperand(1);
15502 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15503 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15507 SDValue Chain
= Op
.getOperand(0);
15508 SDValue Size
= Op
.getOperand(1);
15510 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15511 "no-stack-arg-probe")) {
15512 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15513 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15514 Chain
= SP
.getValue(1);
15515 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15517 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15518 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15519 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15520 SDValue Ops
[2] = { SP
, Chain
};
15521 return DAG
.getMergeValues(Ops
, DL
);
15524 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15525 DAG
.getConstant(2, DL
, MVT::i32
));
15528 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15529 Flag
= Chain
.getValue(1);
15531 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15532 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15534 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15535 Chain
= NewSP
.getValue(1);
15537 SDValue Ops
[2] = { NewSP
, Chain
};
15538 return DAG
.getMergeValues(Ops
, DL
);
15541 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15542 SDValue SrcVal
= Op
.getOperand(0);
15543 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15544 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15545 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15546 "Unexpected type for custom-lowering FP_EXTEND");
15548 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15549 "With both FP DP and 16, any FP conversion is legal!");
15551 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15552 "With FP16, 16 to 32 conversion is legal!");
15554 // Either we are converting from 16 -> 64, without FP16 and/or
15555 // FP.double-precision or without Armv8-fp. So we must do it in two
15557 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15558 // without FP16. So we must do a function call.
15562 // Instruction from 16 -> 32
15563 if (Subtarget
->hasFP16())
15564 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15565 // Lib call from 16 -> 32
15567 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15568 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15569 "Unexpected type for custom-lowering FP_EXTEND");
15571 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15577 // For sure now SrcVal is 32 bits
15578 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15579 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15581 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15582 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15583 "Unexpected type for custom-lowering FP_EXTEND");
15584 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15587 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15588 SDValue SrcVal
= Op
.getOperand(0);
15589 EVT SrcVT
= SrcVal
.getValueType();
15590 EVT DstVT
= Op
.getValueType();
15591 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15592 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15594 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15595 "Unexpected type for custom-lowering FP_ROUND");
15597 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15598 "With both FP DP and 16, any FP conversion is legal!");
15602 // Instruction from 32 -> 16 if hasFP16 is valid
15603 if (SrcSz
== 32 && Subtarget
->hasFP16())
15606 // Lib call from 32 -> 16 / 64 -> [32, 16]
15607 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15608 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15609 "Unexpected type for custom-lowering FP_ROUND");
15610 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15613 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15614 SelectionDAG
&DAG
) const {
15615 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15616 MVT HalfT
= MVT::i32
;
15618 SDValue Hi
, Lo
, Tmp
;
15620 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15621 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15624 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15625 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15627 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15628 DAG
.getConstant(0, dl
, HalfT
));
15629 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15630 DAG
.getConstant(1, dl
, HalfT
));
15632 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15633 DAG
.getConstant(OpTypeBits
- 1, dl
,
15634 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15635 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15636 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15637 SDValue(Lo
.getNode(), 1));
15638 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15639 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15641 Results
.push_back(Lo
);
15642 Results
.push_back(Hi
);
15646 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15647 // The ARM target isn't yet aware of offsets.
15651 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15652 if (v
== 0xffffffff)
15655 // there can be 1's on either or both "outsides", all the "inside"
15656 // bits must be 0's
15657 return isShiftedMask_32(~v
);
15660 /// isFPImmLegal - Returns true if the target can instruction select the
15661 /// specified FP immediate natively. If false, the legalizer will
15662 /// materialize the FP immediate as a load from a constant pool.
15663 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15664 bool ForCodeSize
) const {
15665 if (!Subtarget
->hasVFP3Base())
15667 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15668 return ARM_AM::getFP16Imm(Imm
) != -1;
15669 if (VT
== MVT::f32
)
15670 return ARM_AM::getFP32Imm(Imm
) != -1;
15671 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15672 return ARM_AM::getFP64Imm(Imm
) != -1;
15676 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15677 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15678 /// specified in the intrinsic calls.
15679 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15681 MachineFunction
&MF
,
15682 unsigned Intrinsic
) const {
15683 switch (Intrinsic
) {
15684 case Intrinsic::arm_neon_vld1
:
15685 case Intrinsic::arm_neon_vld2
:
15686 case Intrinsic::arm_neon_vld3
:
15687 case Intrinsic::arm_neon_vld4
:
15688 case Intrinsic::arm_neon_vld2lane
:
15689 case Intrinsic::arm_neon_vld3lane
:
15690 case Intrinsic::arm_neon_vld4lane
:
15691 case Intrinsic::arm_neon_vld2dup
:
15692 case Intrinsic::arm_neon_vld3dup
:
15693 case Intrinsic::arm_neon_vld4dup
: {
15694 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15695 // Conservatively set memVT to the entire set of vectors loaded.
15696 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15697 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15698 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15699 Info
.ptrVal
= I
.getArgOperand(0);
15701 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15702 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15703 // volatile loads with NEON intrinsics not supported
15704 Info
.flags
= MachineMemOperand::MOLoad
;
15707 case Intrinsic::arm_neon_vld1x2
:
15708 case Intrinsic::arm_neon_vld1x3
:
15709 case Intrinsic::arm_neon_vld1x4
: {
15710 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15711 // Conservatively set memVT to the entire set of vectors loaded.
15712 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15713 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15714 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15715 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15717 Info
.align
.reset();
15718 // volatile loads with NEON intrinsics not supported
15719 Info
.flags
= MachineMemOperand::MOLoad
;
15722 case Intrinsic::arm_neon_vst1
:
15723 case Intrinsic::arm_neon_vst2
:
15724 case Intrinsic::arm_neon_vst3
:
15725 case Intrinsic::arm_neon_vst4
:
15726 case Intrinsic::arm_neon_vst2lane
:
15727 case Intrinsic::arm_neon_vst3lane
:
15728 case Intrinsic::arm_neon_vst4lane
: {
15729 Info
.opc
= ISD::INTRINSIC_VOID
;
15730 // Conservatively set memVT to the entire set of vectors stored.
15731 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15732 unsigned NumElts
= 0;
15733 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15734 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15735 if (!ArgTy
->isVectorTy())
15737 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15739 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15740 Info
.ptrVal
= I
.getArgOperand(0);
15742 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15743 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15744 // volatile stores with NEON intrinsics not supported
15745 Info
.flags
= MachineMemOperand::MOStore
;
15748 case Intrinsic::arm_neon_vst1x2
:
15749 case Intrinsic::arm_neon_vst1x3
:
15750 case Intrinsic::arm_neon_vst1x4
: {
15751 Info
.opc
= ISD::INTRINSIC_VOID
;
15752 // Conservatively set memVT to the entire set of vectors stored.
15753 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15754 unsigned NumElts
= 0;
15755 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15756 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15757 if (!ArgTy
->isVectorTy())
15759 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15761 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15762 Info
.ptrVal
= I
.getArgOperand(0);
15764 Info
.align
.reset();
15765 // volatile stores with NEON intrinsics not supported
15766 Info
.flags
= MachineMemOperand::MOStore
;
15769 case Intrinsic::arm_ldaex
:
15770 case Intrinsic::arm_ldrex
: {
15771 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15772 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15773 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15774 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15775 Info
.ptrVal
= I
.getArgOperand(0);
15777 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15778 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15781 case Intrinsic::arm_stlex
:
15782 case Intrinsic::arm_strex
: {
15783 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15784 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15785 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15786 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15787 Info
.ptrVal
= I
.getArgOperand(1);
15789 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15790 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15793 case Intrinsic::arm_stlexd
:
15794 case Intrinsic::arm_strexd
:
15795 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15796 Info
.memVT
= MVT::i64
;
15797 Info
.ptrVal
= I
.getArgOperand(2);
15799 Info
.align
= Align(8);
15800 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15803 case Intrinsic::arm_ldaexd
:
15804 case Intrinsic::arm_ldrexd
:
15805 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15806 Info
.memVT
= MVT::i64
;
15807 Info
.ptrVal
= I
.getArgOperand(0);
15809 Info
.align
= Align(8);
15810 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15820 /// Returns true if it is beneficial to convert a load of a constant
15821 /// to just the constant itself.
15822 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15824 assert(Ty
->isIntegerTy());
15826 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15827 if (Bits
== 0 || Bits
> 32)
15832 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15833 unsigned Index
) const {
15834 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15837 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15840 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15841 ARM_MB::MemBOpt Domain
) const {
15842 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15844 // First, if the target has no DMB, see what fallback we can use.
15845 if (!Subtarget
->hasDataBarrier()) {
15846 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15847 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15849 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15850 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15851 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15852 Builder
.getInt32(0), Builder
.getInt32(7),
15853 Builder
.getInt32(10), Builder
.getInt32(5)};
15854 return Builder
.CreateCall(MCR
, args
);
15856 // Instead of using barriers, atomic accesses on these subtargets use
15858 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15861 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15862 // Only a full system barrier exists in the M-class architectures.
15863 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15864 Constant
*CDomain
= Builder
.getInt32(Domain
);
15865 return Builder
.CreateCall(DMB
, CDomain
);
15869 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15870 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15872 AtomicOrdering Ord
) const {
15874 case AtomicOrdering::NotAtomic
:
15875 case AtomicOrdering::Unordered
:
15876 llvm_unreachable("Invalid fence: unordered/non-atomic");
15877 case AtomicOrdering::Monotonic
:
15878 case AtomicOrdering::Acquire
:
15879 return nullptr; // Nothing to do
15880 case AtomicOrdering::SequentiallyConsistent
:
15881 if (!Inst
->hasAtomicStore())
15882 return nullptr; // Nothing to do
15884 case AtomicOrdering::Release
:
15885 case AtomicOrdering::AcquireRelease
:
15886 if (Subtarget
->preferISHSTBarriers())
15887 return makeDMB(Builder
, ARM_MB::ISHST
);
15888 // FIXME: add a comment with a link to documentation justifying this.
15890 return makeDMB(Builder
, ARM_MB::ISH
);
15892 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15895 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15897 AtomicOrdering Ord
) const {
15899 case AtomicOrdering::NotAtomic
:
15900 case AtomicOrdering::Unordered
:
15901 llvm_unreachable("Invalid fence: unordered/not-atomic");
15902 case AtomicOrdering::Monotonic
:
15903 case AtomicOrdering::Release
:
15904 return nullptr; // Nothing to do
15905 case AtomicOrdering::Acquire
:
15906 case AtomicOrdering::AcquireRelease
:
15907 case AtomicOrdering::SequentiallyConsistent
:
15908 return makeDMB(Builder
, ARM_MB::ISH
);
15910 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15913 // Loads and stores less than 64-bits are already atomic; ones above that
15914 // are doomed anyway, so defer to the default libcall and blame the OS when
15915 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15916 // anything for those.
15917 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15918 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15919 return (Size
== 64) && !Subtarget
->isMClass();
15922 // Loads and stores less than 64-bits are already atomic; ones above that
15923 // are doomed anyway, so defer to the default libcall and blame the OS when
15924 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15925 // anything for those.
15926 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15927 // guarantee, see DDI0406C ARM architecture reference manual,
15928 // sections A8.8.72-74 LDRD)
15929 TargetLowering::AtomicExpansionKind
15930 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15931 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15932 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15933 : AtomicExpansionKind::None
;
15936 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15937 // and up to 64 bits on the non-M profiles
15938 TargetLowering::AtomicExpansionKind
15939 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15940 if (AI
->isFloatingPointOperation())
15941 return AtomicExpansionKind::CmpXChg
;
15943 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15944 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15945 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15946 ? AtomicExpansionKind::LLSC
15947 : AtomicExpansionKind::None
;
15950 TargetLowering::AtomicExpansionKind
15951 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
15952 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15953 // implement cmpxchg without spilling. If the address being exchanged is also
15954 // on the stack and close enough to the spill slot, this can lead to a
15955 // situation where the monitor always gets cleared and the atomic operation
15956 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15957 bool HasAtomicCmpXchg
=
15958 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15959 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
15960 return AtomicExpansionKind::LLSC
;
15961 return AtomicExpansionKind::None
;
15964 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15965 const Instruction
*I
) const {
15966 return InsertFencesForAtomic
;
15969 // This has so far only been implemented for MachO.
15970 bool ARMTargetLowering::useLoadStackGuardNode() const {
15971 return Subtarget
->isTargetMachO();
15974 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
15975 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15976 return TargetLowering::insertSSPDeclarations(M
);
15978 // MSVC CRT has a global variable holding security cookie.
15979 M
.getOrInsertGlobal("__security_cookie",
15980 Type::getInt8PtrTy(M
.getContext()));
15982 // MSVC CRT has a function to validate security cookie.
15983 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
15984 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
15985 Type::getInt8PtrTy(M
.getContext()));
15986 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
15987 F
->addAttribute(1, Attribute::AttrKind::InReg
);
15990 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
15991 // MSVC CRT has a global variable holding security cookie.
15992 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15993 return M
.getGlobalVariable("__security_cookie");
15994 return TargetLowering::getSDagStackGuard(M
);
15997 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
15998 // MSVC CRT has a function to validate security cookie.
15999 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16000 return M
.getFunction("__security_check_cookie");
16001 return TargetLowering::getSSPStackGuardCheck(M
);
16004 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16005 unsigned &Cost
) const {
16006 // If we do not have NEON, vector types are not natively supported.
16007 if (!Subtarget
->hasNEON())
16010 // Floating point values and vector values map to the same register file.
16011 // Therefore, although we could do a store extract of a vector type, this is
16012 // better to leave at float as we have more freedom in the addressing mode for
16014 if (VectorTy
->isFPOrFPVectorTy())
16017 // If the index is unknown at compile time, this is very expensive to lower
16018 // and it is not possible to combine the store with the extract.
16019 if (!isa
<ConstantInt
>(Idx
))
16022 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16023 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16024 // We can do a store + vector extract on any vector that fits perfectly in a D
16026 if (BitWidth
== 64 || BitWidth
== 128) {
16033 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16034 return Subtarget
->hasV6T2Ops();
16037 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16038 return Subtarget
->hasV6T2Ops();
16041 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16042 return !Subtarget
->hasMinSize();
16045 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16046 AtomicOrdering Ord
) const {
16047 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16048 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16049 bool IsAcquire
= isAcquireOrStronger(Ord
);
16051 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16052 // intrinsic must return {i32, i32} and we have to recombine them into a
16053 // single i64 here.
16054 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16055 Intrinsic::ID Int
=
16056 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16057 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16059 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16060 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16062 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16063 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16064 if (!Subtarget
->isLittle())
16065 std::swap (Lo
, Hi
);
16066 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16067 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16068 return Builder
.CreateOr(
16069 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16072 Type
*Tys
[] = { Addr
->getType() };
16073 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16074 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16076 return Builder
.CreateTruncOrBitCast(
16077 Builder
.CreateCall(Ldrex
, Addr
),
16078 cast
<PointerType
>(Addr
->getType())->getElementType());
16081 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16082 IRBuilder
<> &Builder
) const {
16083 if (!Subtarget
->hasV7Ops())
16085 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16086 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16089 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16091 AtomicOrdering Ord
) const {
16092 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16093 bool IsRelease
= isReleaseOrStronger(Ord
);
16095 // Since the intrinsics must have legal type, the i64 intrinsics take two
16096 // parameters: "i32, i32". We must marshal Val into the appropriate form
16097 // before the call.
16098 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16099 Intrinsic::ID Int
=
16100 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16101 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16102 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16104 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16105 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16106 if (!Subtarget
->isLittle())
16108 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16109 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16112 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16113 Type
*Tys
[] = { Addr
->getType() };
16114 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16116 return Builder
.CreateCall(
16117 Strex
, {Builder
.CreateZExtOrBitCast(
16118 Val
, Strex
->getFunctionType()->getParamType(0)),
16123 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16124 return Subtarget
->isMClass();
16127 /// A helper function for determining the number of interleaved accesses we
16128 /// will generate when lowering accesses of the given type.
16130 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16131 const DataLayout
&DL
) const {
16132 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16135 bool ARMTargetLowering::isLegalInterleavedAccessType(
16136 VectorType
*VecTy
, const DataLayout
&DL
) const {
16138 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16139 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16141 // Ensure the vector doesn't have f16 elements. Even though we could do an
16142 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16144 if (VecTy
->getElementType()->isHalfTy())
16147 // Ensure the number of vector elements is greater than 1.
16148 if (VecTy
->getNumElements() < 2)
16151 // Ensure the element type is legal.
16152 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16155 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16156 // 128 will be split into multiple interleaved accesses.
16157 return VecSize
== 64 || VecSize
% 128 == 0;
16160 /// Lower an interleaved load into a vldN intrinsic.
16162 /// E.g. Lower an interleaved load (Factor = 2):
16163 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16164 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16165 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16168 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16169 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16170 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16171 bool ARMTargetLowering::lowerInterleavedLoad(
16172 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16173 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16174 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16175 "Invalid interleave factor");
16176 assert(!Shuffles
.empty() && "Empty shufflevector input");
16177 assert(Shuffles
.size() == Indices
.size() &&
16178 "Unmatched number of shufflevectors and indices");
16180 VectorType
*VecTy
= Shuffles
[0]->getType();
16181 Type
*EltTy
= VecTy
->getVectorElementType();
16183 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16185 // Skip if we do not have NEON and skip illegal vector types. We can
16186 // "legalize" wide vector types into multiple interleaved accesses as long as
16187 // the vector types are divisible by 128.
16188 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16191 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16193 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16194 // load integer vectors first and then convert to pointer vectors.
16195 if (EltTy
->isPointerTy())
16197 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16199 IRBuilder
<> Builder(LI
);
16201 // The base address of the load.
16202 Value
*BaseAddr
= LI
->getPointerOperand();
16204 if (NumLoads
> 1) {
16205 // If we're going to generate more than one load, reset the sub-vector type
16206 // to something legal.
16207 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16208 VecTy
->getVectorNumElements() / NumLoads
);
16210 // We will compute the pointer operand of each load from the original base
16211 // address using GEPs. Cast the base address to a pointer to the scalar
16213 BaseAddr
= Builder
.CreateBitCast(
16214 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16215 LI
->getPointerAddressSpace()));
16218 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16220 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16221 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16222 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16223 Intrinsic::arm_neon_vld3
,
16224 Intrinsic::arm_neon_vld4
};
16225 Function
*VldnFunc
=
16226 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16228 // Holds sub-vectors extracted from the load intrinsic return values. The
16229 // sub-vectors are associated with the shufflevector instructions they will
16231 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16233 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16234 // If we're generating more than one load, compute the base address of
16235 // subsequent loads as an offset from the previous.
16238 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16239 VecTy
->getVectorNumElements() * Factor
);
16241 SmallVector
<Value
*, 2> Ops
;
16242 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16243 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16245 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16247 // Replace uses of each shufflevector with the corresponding vector loaded
16249 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16250 ShuffleVectorInst
*SV
= Shuffles
[i
];
16251 unsigned Index
= Indices
[i
];
16253 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16255 // Convert the integer vector to pointer vector if the element is pointer.
16256 if (EltTy
->isPointerTy())
16257 SubVec
= Builder
.CreateIntToPtr(
16258 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16259 VecTy
->getVectorNumElements()));
16261 SubVecs
[SV
].push_back(SubVec
);
16265 // Replace uses of the shufflevector instructions with the sub-vectors
16266 // returned by the load intrinsic. If a shufflevector instruction is
16267 // associated with more than one sub-vector, those sub-vectors will be
16268 // concatenated into a single wide vector.
16269 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16270 auto &SubVec
= SubVecs
[SVI
];
16272 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16273 SVI
->replaceAllUsesWith(WideVec
);
16279 /// Lower an interleaved store into a vstN intrinsic.
16281 /// E.g. Lower an interleaved store (Factor = 3):
16282 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16283 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16284 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16287 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16288 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16289 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16290 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16292 /// Note that the new shufflevectors will be removed and we'll only generate one
16293 /// vst3 instruction in CodeGen.
16295 /// Example for a more general valid mask (Factor 3). Lower:
16296 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16297 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16298 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16301 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16302 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16303 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16304 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16305 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16306 ShuffleVectorInst
*SVI
,
16307 unsigned Factor
) const {
16308 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16309 "Invalid interleave factor");
16311 VectorType
*VecTy
= SVI
->getType();
16312 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16313 "Invalid interleaved store");
16315 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16316 Type
*EltTy
= VecTy
->getVectorElementType();
16317 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16319 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16321 // Skip if we do not have NEON and skip illegal vector types. We can
16322 // "legalize" wide vector types into multiple interleaved accesses as long as
16323 // the vector types are divisible by 128.
16324 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16327 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16329 Value
*Op0
= SVI
->getOperand(0);
16330 Value
*Op1
= SVI
->getOperand(1);
16331 IRBuilder
<> Builder(SI
);
16333 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16334 // vectors to integer vectors.
16335 if (EltTy
->isPointerTy()) {
16336 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16338 // Convert to the corresponding integer vector.
16340 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16341 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16342 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16344 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16347 // The base address of the store.
16348 Value
*BaseAddr
= SI
->getPointerOperand();
16350 if (NumStores
> 1) {
16351 // If we're going to generate more than one store, reset the lane length
16352 // and sub-vector type to something legal.
16353 LaneLen
/= NumStores
;
16354 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16356 // We will compute the pointer operand of each store from the original base
16357 // address using GEPs. Cast the base address to a pointer to the scalar
16359 BaseAddr
= Builder
.CreateBitCast(
16360 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16361 SI
->getPointerAddressSpace()));
16364 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16366 auto Mask
= SVI
->getShuffleMask();
16368 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16369 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16370 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16371 Intrinsic::arm_neon_vst3
,
16372 Intrinsic::arm_neon_vst4
};
16374 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16375 // If we generating more than one store, we compute the base address of
16376 // subsequent stores as an offset from the previous.
16377 if (StoreCount
> 0)
16378 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16379 BaseAddr
, LaneLen
* Factor
);
16381 SmallVector
<Value
*, 6> Ops
;
16382 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16384 Function
*VstNFunc
=
16385 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16387 // Split the shufflevector operands into sub vectors for the new vstN call.
16388 for (unsigned i
= 0; i
< Factor
; i
++) {
16389 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16390 if (Mask
[IdxI
] >= 0) {
16391 Ops
.push_back(Builder
.CreateShuffleVector(
16392 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16394 unsigned StartMask
= 0;
16395 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16396 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16397 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16398 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16402 // Note: If all elements in a chunk are undefs, StartMask=0!
16403 // Note: Filling undef gaps with random elements is ok, since
16404 // those elements were being written anyway (with undefs).
16405 // In the case of all undefs we're defaulting to using elems from 0
16406 // Note: StartMask cannot be negative, it's checked in
16407 // isReInterleaveMask
16408 Ops
.push_back(Builder
.CreateShuffleVector(
16409 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16413 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16414 Builder
.CreateCall(VstNFunc
, Ops
);
16427 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16428 uint64_t &Members
) {
16429 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16430 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16431 uint64_t SubMembers
= 0;
16432 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16434 Members
+= SubMembers
;
16436 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16437 uint64_t SubMembers
= 0;
16438 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16440 Members
+= SubMembers
* AT
->getNumElements();
16441 } else if (Ty
->isFloatTy()) {
16442 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16446 } else if (Ty
->isDoubleTy()) {
16447 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16451 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16458 return VT
->getBitWidth() == 64;
16460 return VT
->getBitWidth() == 128;
16462 switch (VT
->getBitWidth()) {
16475 return (Members
> 0 && Members
<= 4);
16478 /// Return the correct alignment for the current calling convention.
16480 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16481 DataLayout DL
) const {
16482 if (!ArgTy
->isVectorTy())
16483 return DL
.getABITypeAlignment(ArgTy
);
16485 // Avoid over-aligning vector parameters. It would require realigning the
16486 // stack and waste space for no real benefit.
16487 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16490 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16491 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16492 /// passing according to AAPCS rules.
16493 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16494 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16495 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16496 CallingConv::ARM_AAPCS_VFP
)
16499 HABaseType Base
= HA_UNKNOWN
;
16500 uint64_t Members
= 0;
16501 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16502 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16504 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16505 return IsHA
|| IsIntArray
;
16508 unsigned ARMTargetLowering::getExceptionPointerRegister(
16509 const Constant
*PersonalityFn
) const {
16510 // Platforms which do not use SjLj EH may return values in these registers
16511 // via the personality function.
16512 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16515 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16516 const Constant
*PersonalityFn
) const {
16517 // Platforms which do not use SjLj EH may return values in these registers
16518 // via the personality function.
16519 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16522 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16523 // Update IsSplitCSR in ARMFunctionInfo.
16524 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16525 AFI
->setIsSplitCSR(true);
16528 void ARMTargetLowering::insertCopiesSplitCSR(
16529 MachineBasicBlock
*Entry
,
16530 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16531 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16532 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16536 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16537 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16538 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16539 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16540 const TargetRegisterClass
*RC
= nullptr;
16541 if (ARM::GPRRegClass
.contains(*I
))
16542 RC
= &ARM::GPRRegClass
;
16543 else if (ARM::DPRRegClass
.contains(*I
))
16544 RC
= &ARM::DPRRegClass
;
16546 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16548 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
16549 // Create copy from CSR to a virtual register.
16550 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16551 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16552 // nounwind. If we want to generalize this later, we may need to emit
16553 // CFI pseudo-instructions.
16554 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16555 Attribute::NoUnwind
) &&
16556 "Function should be nounwind in insertCopiesSplitCSR!");
16557 Entry
->addLiveIn(*I
);
16558 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16561 // Insert the copy-back instructions right before the terminator.
16562 for (auto *Exit
: Exits
)
16563 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16564 TII
->get(TargetOpcode::COPY
), *I
)
16569 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16570 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16571 TargetLoweringBase::finalizeLowering(MF
);