1 //===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the RISC-V instructions in TableGen format.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // RISC-V specific DAG Nodes.
15 //===----------------------------------------------------------------------===//
17 // Target-independent type requirements, but with target-specific formats.
18 def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
20 def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
23 // Target-dependent type requirements.
24 def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
25 def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
29 // Target-independent nodes, but with target-specific formats.
30 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
31 [SDNPHasChain, SDNPOutGlue]>;
32 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
33 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
35 // Target-dependent nodes.
36 def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
37 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
39 def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone,
40 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
41 def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone,
42 [SDNPHasChain, SDNPOptInGlue]>;
43 def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
44 [SDNPHasChain, SDNPOptInGlue]>;
45 def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
46 [SDNPHasChain, SDNPOptInGlue]>;
47 def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC,
49 def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
50 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
52 def riscv_sllw : SDNode<"RISCVISD::SLLW", SDTIntShiftOp>;
53 def riscv_sraw : SDNode<"RISCVISD::SRAW", SDTIntShiftOp>;
54 def riscv_srlw : SDNode<"RISCVISD::SRLW", SDTIntShiftOp>;
56 //===----------------------------------------------------------------------===//
57 // Operand and SDNode transformation definitions.
58 //===----------------------------------------------------------------------===//
60 class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
61 let Name = prefix # "ImmXLen" # suffix;
62 let RenderMethod = "addImmOperands";
63 let DiagnosticType = !strconcat("Invalid", Name);
66 class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
67 let Name = prefix # "Imm" # width # suffix;
68 let RenderMethod = "addImmOperands";
69 let DiagnosticType = !strconcat("Invalid", Name);
72 class SImmAsmOperand<int width, string suffix = "">
73 : ImmAsmOperand<"S", width, suffix> {
76 class UImmAsmOperand<int width, string suffix = "">
77 : ImmAsmOperand<"U", width, suffix> {
80 def FenceArg : AsmOperandClass {
81 let Name = "FenceArg";
82 let RenderMethod = "addFenceArgOperands";
83 let DiagnosticType = "InvalidFenceArg";
86 def fencearg : Operand<XLenVT> {
87 let ParserMatchClass = FenceArg;
88 let PrintMethod = "printFenceArg";
89 let DecoderMethod = "decodeUImmOperand<4>";
92 def UImmLog2XLenAsmOperand : AsmOperandClass {
93 let Name = "UImmLog2XLen";
94 let RenderMethod = "addImmOperands";
95 let DiagnosticType = "InvalidUImmLog2XLen";
98 def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
99 if (Subtarget->is64Bit())
100 return isUInt<6>(Imm);
101 return isUInt<5>(Imm);
103 let ParserMatchClass = UImmLog2XLenAsmOperand;
104 // TODO: should ensure invalid shamt is rejected when decoding.
105 let DecoderMethod = "decodeUImmOperand<6>";
106 let MCOperandPredicate = [{
108 if (!MCOp.evaluateAsConstantImm(Imm))
110 if (STI.getTargetTriple().isArch64Bit())
111 return isUInt<6>(Imm);
112 return isUInt<5>(Imm);
116 def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
117 let ParserMatchClass = UImmAsmOperand<5>;
118 let DecoderMethod = "decodeUImmOperand<5>";
121 def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
122 let ParserMatchClass = SImmAsmOperand<12>;
123 let EncoderMethod = "getImmOpValue";
124 let DecoderMethod = "decodeSImmOperand<12>";
125 let MCOperandPredicate = [{
127 if (MCOp.evaluateAsConstantImm(Imm))
128 return isInt<12>(Imm);
129 return MCOp.isBareSymbolRef();
133 // A 13-bit signed immediate where the least significant bit is zero.
134 def simm13_lsb0 : Operand<OtherVT> {
135 let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
136 let EncoderMethod = "getImmOpValueAsr1";
137 let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
138 let MCOperandPredicate = [{
140 if (MCOp.evaluateAsConstantImm(Imm))
141 return isShiftedInt<12, 1>(Imm);
142 return MCOp.isBareSymbolRef();
146 class UImm20Operand : Operand<XLenVT> {
147 let EncoderMethod = "getImmOpValue";
148 let DecoderMethod = "decodeUImmOperand<20>";
149 let MCOperandPredicate = [{
151 if (MCOp.evaluateAsConstantImm(Imm))
152 return isUInt<20>(Imm);
153 return MCOp.isBareSymbolRef();
157 def uimm20_lui : UImm20Operand {
158 let ParserMatchClass = UImmAsmOperand<20, "LUI">;
160 def uimm20_auipc : UImm20Operand {
161 let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
164 def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
165 let ParserMethod = "parseJALOffset";
168 // A 21-bit signed immediate where the least significant bit is zero.
169 def simm21_lsb0_jal : Operand<OtherVT> {
170 let ParserMatchClass = Simm21Lsb0JALAsmOperand;
171 let EncoderMethod = "getImmOpValueAsr1";
172 let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
173 let MCOperandPredicate = [{
175 if (MCOp.evaluateAsConstantImm(Imm))
176 return isShiftedInt<20, 1>(Imm);
177 return MCOp.isBareSymbolRef();
181 def BareSymbol : AsmOperandClass {
182 let Name = "BareSymbol";
183 let RenderMethod = "addImmOperands";
184 let DiagnosticType = "InvalidBareSymbol";
185 let ParserMethod = "parseBareSymbol";
189 def bare_symbol : Operand<XLenVT> {
190 let ParserMatchClass = BareSymbol;
193 def CallSymbol : AsmOperandClass {
194 let Name = "CallSymbol";
195 let RenderMethod = "addImmOperands";
196 let DiagnosticType = "InvalidCallSymbol";
197 let ParserMethod = "parseCallSymbol";
200 // A bare symbol used in call/tail only.
201 def call_symbol : Operand<XLenVT> {
202 let ParserMatchClass = CallSymbol;
205 def TPRelAddSymbol : AsmOperandClass {
206 let Name = "TPRelAddSymbol";
207 let RenderMethod = "addImmOperands";
208 let DiagnosticType = "InvalidTPRelAddSymbol";
209 let ParserMethod = "parseOperandWithModifier";
212 // A bare symbol with the %tprel_add variant.
213 def tprel_add_symbol : Operand<XLenVT> {
214 let ParserMatchClass = TPRelAddSymbol;
217 def CSRSystemRegister : AsmOperandClass {
218 let Name = "CSRSystemRegister";
219 let ParserMethod = "parseCSRSystemRegister";
220 let DiagnosticType = "InvalidCSRSystemRegister";
223 def csr_sysreg : Operand<XLenVT> {
224 let ParserMatchClass = CSRSystemRegister;
225 let PrintMethod = "printCSRSystemRegister";
226 let DecoderMethod = "decodeUImmOperand<12>";
229 // A parameterized register class alternative to i32imm/i64imm from Target.td.
230 def ixlenimm : Operand<XLenVT>;
232 def ixlenimm_li : Operand<XLenVT> {
233 let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
236 // Standalone (codegen-only) immleaf patterns.
237 def simm32 : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>;
238 def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>;
239 // A mask value that won't affect significant shift bits.
240 def immbottomxlenset : ImmLeaf<XLenVT, [{
241 if (Subtarget->is64Bit())
242 return countTrailingOnes<uint64_t>(Imm) >= 6;
243 return countTrailingOnes<uint64_t>(Imm) >= 5;
247 // Necessary because a frameindex can't be matched directly in a pattern.
248 def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;
250 // Extract least significant 12 bits from an immediate value and sign extend
252 def LO12Sext : SDNodeXForm<imm, [{
253 return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()),
254 SDLoc(N), N->getValueType(0));
257 // Extract the most significant 20 bits from an immediate value. Add 1 if bit
258 // 11 is 1, to compensate for the low 12 bits in the matching immediate addi
259 // or ld/st being negative.
260 def HI20 : SDNodeXForm<imm, [{
261 return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff,
262 SDLoc(N), N->getValueType(0));
265 //===----------------------------------------------------------------------===//
266 // Instruction Formats
267 //===----------------------------------------------------------------------===//
269 include "RISCVInstrFormats.td"
271 //===----------------------------------------------------------------------===//
272 // Instruction Class Templates
273 //===----------------------------------------------------------------------===//
275 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
276 class BranchCC_rri<bits<3> funct3, string opcodestr>
277 : RVInstB<funct3, OPC_BRANCH, (outs),
278 (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
279 opcodestr, "$rs1, $rs2, $imm12"> {
281 let isTerminator = 1;
284 let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
285 class Load_ri<bits<3> funct3, string opcodestr>
286 : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
287 opcodestr, "$rd, ${imm12}(${rs1})">;
289 // Operands for stores are in the order srcreg, base, offset rather than
290 // reflecting the order these fields are specified in the instruction
292 let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
293 class Store_rri<bits<3> funct3, string opcodestr>
294 : RVInstS<funct3, OPC_STORE, (outs),
295 (ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
296 opcodestr, "$rs2, ${imm12}(${rs1})">;
298 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
299 class ALU_ri<bits<3> funct3, string opcodestr>
300 : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
301 opcodestr, "$rd, $rs1, $imm12">;
303 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
304 class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr>
305 : RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd),
306 (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
307 "$rd, $rs1, $shamt">;
309 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
310 class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
311 : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
312 opcodestr, "$rd, $rs1, $rs2">;
314 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
315 class CSR_ir<bits<3> funct3, string opcodestr>
316 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
317 opcodestr, "$rd, $imm12, $rs1">;
319 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
320 class CSR_ii<bits<3> funct3, string opcodestr>
321 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
322 (ins csr_sysreg:$imm12, uimm5:$rs1),
323 opcodestr, "$rd, $imm12, $rs1">;
325 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
326 class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr>
327 : RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
328 (ins GPR:$rs1, uimm5:$shamt), opcodestr,
329 "$rd, $rs1, $shamt">;
331 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
332 class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
333 : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
334 (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;
336 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
337 class Priv<string opcodestr, bits<7> funct7>
338 : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
341 //===----------------------------------------------------------------------===//
343 //===----------------------------------------------------------------------===//
345 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
346 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
347 def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
348 "lui", "$rd, $imm20">;
350 def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
351 "auipc", "$rd, $imm20">;
354 def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
355 "jal", "$rd, $imm20">;
358 def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
359 (ins GPR:$rs1, simm12:$imm12),
360 "jalr", "$rd, ${imm12}(${rs1})">;
361 } // hasSideEffects = 0, mayLoad = 0, mayStore = 0
363 def BEQ : BranchCC_rri<0b000, "beq">;
364 def BNE : BranchCC_rri<0b001, "bne">;
365 def BLT : BranchCC_rri<0b100, "blt">;
366 def BGE : BranchCC_rri<0b101, "bge">;
367 def BLTU : BranchCC_rri<0b110, "bltu">;
368 def BGEU : BranchCC_rri<0b111, "bgeu">;
370 def LB : Load_ri<0b000, "lb">;
371 def LH : Load_ri<0b001, "lh">;
372 def LW : Load_ri<0b010, "lw">;
373 def LBU : Load_ri<0b100, "lbu">;
374 def LHU : Load_ri<0b101, "lhu">;
376 def SB : Store_rri<0b000, "sb">;
377 def SH : Store_rri<0b001, "sh">;
378 def SW : Store_rri<0b010, "sw">;
380 // ADDI isn't always rematerializable, but isReMaterializable will be used as
381 // a hint which is verified in isReallyTriviallyReMaterializable.
382 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
383 def ADDI : ALU_ri<0b000, "addi">;
385 def SLTI : ALU_ri<0b010, "slti">;
386 def SLTIU : ALU_ri<0b011, "sltiu">;
388 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
389 def XORI : ALU_ri<0b100, "xori">;
390 def ORI : ALU_ri<0b110, "ori">;
393 def ANDI : ALU_ri<0b111, "andi">;
395 def SLLI : Shift_ri<0, 0b001, "slli">;
396 def SRLI : Shift_ri<0, 0b101, "srli">;
397 def SRAI : Shift_ri<1, 0b101, "srai">;
399 def ADD : ALU_rr<0b0000000, 0b000, "add">;
400 def SUB : ALU_rr<0b0100000, 0b000, "sub">;
401 def SLL : ALU_rr<0b0000000, 0b001, "sll">;
402 def SLT : ALU_rr<0b0000000, 0b010, "slt">;
403 def SLTU : ALU_rr<0b0000000, 0b011, "sltu">;
404 def XOR : ALU_rr<0b0000000, 0b100, "xor">;
405 def SRL : ALU_rr<0b0000000, 0b101, "srl">;
406 def SRA : ALU_rr<0b0100000, 0b101, "sra">;
407 def OR : ALU_rr<0b0000000, 0b110, "or">;
408 def AND : ALU_rr<0b0000000, 0b111, "and">;
410 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
411 def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
412 (ins fencearg:$pred, fencearg:$succ),
413 "fence", "$pred, $succ"> {
419 let imm12 = {0b0000,pred,succ};
422 def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", ""> {
425 let imm12 = {0b1000,0b0011,0b0011};
428 def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", ""> {
434 def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", ""> {
440 def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", ""> {
446 // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
447 // instruction (i.e., it should always trap, if your implementation has invalid
448 // instruction traps).
449 def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", ""> {
452 let imm12 = 0b110000000000;
454 } // hasSideEffects = 1, mayLoad = 0, mayStore = 0
456 def CSRRW : CSR_ir<0b001, "csrrw">;
457 def CSRRS : CSR_ir<0b010, "csrrs">;
458 def CSRRC : CSR_ir<0b011, "csrrc">;
460 def CSRRWI : CSR_ii<0b101, "csrrwi">;
461 def CSRRSI : CSR_ii<0b110, "csrrsi">;
462 def CSRRCI : CSR_ii<0b111, "csrrci">;
464 /// RV64I instructions
466 let Predicates = [IsRV64] in {
467 def LWU : Load_ri<0b110, "lwu">;
468 def LD : Load_ri<0b011, "ld">;
469 def SD : Store_rri<0b011, "sd">;
471 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
472 def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
473 (ins GPR:$rs1, simm12:$imm12),
474 "addiw", "$rd, $rs1, $imm12">;
476 def SLLIW : ShiftW_ri<0, 0b001, "slliw">;
477 def SRLIW : ShiftW_ri<0, 0b101, "srliw">;
478 def SRAIW : ShiftW_ri<1, 0b101, "sraiw">;
480 def ADDW : ALUW_rr<0b0000000, 0b000, "addw">;
481 def SUBW : ALUW_rr<0b0100000, 0b000, "subw">;
482 def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">;
483 def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">;
484 def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">;
485 } // Predicates = [IsRV64]
487 //===----------------------------------------------------------------------===//
488 // Privileged instructions
489 //===----------------------------------------------------------------------===//
491 let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
492 def URET : Priv<"uret", 0b0000000> {
498 def SRET : Priv<"sret", 0b0001000> {
504 def MRET : Priv<"mret", 0b0011000> {
509 } // isBarrier = 1, isReturn = 1, isTerminator = 1
511 def WFI : Priv<"wfi", 0b0001000> {
517 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
518 def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
519 (ins GPR:$rs1, GPR:$rs2),
520 "sfence.vma", "$rs1, $rs2"> {
524 //===----------------------------------------------------------------------===//
525 // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
526 //===----------------------------------------------------------------------===//
528 def : InstAlias<"nop", (ADDI X0, X0, 0)>;
530 // Note that the size is 32 because up to 8 32-bit instructions are needed to
531 // generate an arbitrary 64-bit immediate. However, the size does not really
532 // matter since PseudoLI is currently only used in the AsmParser where it gets
533 // expanded to real instructions immediately.
534 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
535 isCodeGenOnly = 0, isAsmParserOnly = 1 in
536 def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
539 def PseudoLB : PseudoLoad<"lb">;
540 def PseudoLBU : PseudoLoad<"lbu">;
541 def PseudoLH : PseudoLoad<"lh">;
542 def PseudoLHU : PseudoLoad<"lhu">;
543 def PseudoLW : PseudoLoad<"lw">;
545 def PseudoSB : PseudoStore<"sb">;
546 def PseudoSH : PseudoStore<"sh">;
547 def PseudoSW : PseudoStore<"sw">;
549 let Predicates = [IsRV64] in {
550 def PseudoLWU : PseudoLoad<"lwu">;
551 def PseudoLD : PseudoLoad<"ld">;
552 def PseudoSD : PseudoStore<"sd">;
553 } // Predicates = [IsRV64]
555 def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>;
556 def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>;
557 def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>;
559 let Predicates = [IsRV64] in {
560 def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>;
561 def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>;
562 } // Predicates = [IsRV64]
564 def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>;
565 def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>;
566 def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>;
567 def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>;
569 // sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
570 // form will always be printed. Therefore, set a zero weight.
571 def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
572 def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
574 def : InstAlias<"beqz $rs, $offset",
575 (BEQ GPR:$rs, X0, simm13_lsb0:$offset)>;
576 def : InstAlias<"bnez $rs, $offset",
577 (BNE GPR:$rs, X0, simm13_lsb0:$offset)>;
578 def : InstAlias<"blez $rs, $offset",
579 (BGE X0, GPR:$rs, simm13_lsb0:$offset)>;
580 def : InstAlias<"bgez $rs, $offset",
581 (BGE GPR:$rs, X0, simm13_lsb0:$offset)>;
582 def : InstAlias<"bltz $rs, $offset",
583 (BLT GPR:$rs, X0, simm13_lsb0:$offset)>;
584 def : InstAlias<"bgtz $rs, $offset",
585 (BLT X0, GPR:$rs, simm13_lsb0:$offset)>;
587 // Always output the canonical mnemonic for the pseudo branch instructions.
588 // The GNU tools emit the canonical mnemonic for the branch pseudo instructions
589 // as well (e.g. "bgt" will be recognised by the assembler but never printed by
590 // objdump). Match this behaviour by setting a zero weight.
591 def : InstAlias<"bgt $rs, $rt, $offset",
592 (BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
593 def : InstAlias<"ble $rs, $rt, $offset",
594 (BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
595 def : InstAlias<"bgtu $rs, $rt, $offset",
596 (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
597 def : InstAlias<"bleu $rs, $rt, $offset",
598 (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
600 def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>;
601 def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
603 // Non-zero offset aliases of "jalr" are the lowest weight, followed by the
604 // two-register form, then the one-register forms and finally "ret".
605 def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>;
606 def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>;
607 def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>;
608 def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>;
609 def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>;
610 def : InstAlias<"ret", (JALR X0, X1, 0), 4>;
612 // Non-canonical forms for jump targets also accepted by the assembler.
613 def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>;
614 def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>;
615 def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;
620 def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
622 def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
623 def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
624 def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>;
626 let Predicates = [IsRV32] in {
627 def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
628 def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
629 def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
630 } // Predicates = [IsRV32]
632 def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>;
633 def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>;
634 def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>;
635 def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>;
637 def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
638 def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
639 def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
641 let EmitPriority = 0 in {
642 def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
643 def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
644 def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
646 def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
647 def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
648 def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
651 def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>;
652 def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
654 let EmitPriority = 0 in {
655 def : InstAlias<"lb $rd, (${rs1})",
656 (LB GPR:$rd, GPR:$rs1, 0)>;
657 def : InstAlias<"lh $rd, (${rs1})",
658 (LH GPR:$rd, GPR:$rs1, 0)>;
659 def : InstAlias<"lw $rd, (${rs1})",
660 (LW GPR:$rd, GPR:$rs1, 0)>;
661 def : InstAlias<"lbu $rd, (${rs1})",
662 (LBU GPR:$rd, GPR:$rs1, 0)>;
663 def : InstAlias<"lhu $rd, (${rs1})",
664 (LHU GPR:$rd, GPR:$rs1, 0)>;
666 def : InstAlias<"sb $rs2, (${rs1})",
667 (SB GPR:$rs2, GPR:$rs1, 0)>;
668 def : InstAlias<"sh $rs2, (${rs1})",
669 (SH GPR:$rs2, GPR:$rs1, 0)>;
670 def : InstAlias<"sw $rs2, (${rs1})",
671 (SW GPR:$rs2, GPR:$rs1, 0)>;
673 def : InstAlias<"add $rd, $rs1, $imm12",
674 (ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
675 def : InstAlias<"and $rd, $rs1, $imm12",
676 (ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
677 def : InstAlias<"xor $rd, $rs1, $imm12",
678 (XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
679 def : InstAlias<"or $rd, $rs1, $imm12",
680 (ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
681 def : InstAlias<"sll $rd, $rs1, $shamt",
682 (SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
683 def : InstAlias<"srl $rd, $rs1, $shamt",
684 (SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
685 def : InstAlias<"sra $rd, $rs1, $shamt",
686 (SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
687 let Predicates = [IsRV64] in {
688 def : InstAlias<"lwu $rd, (${rs1})",
689 (LWU GPR:$rd, GPR:$rs1, 0)>;
690 def : InstAlias<"ld $rd, (${rs1})",
691 (LD GPR:$rd, GPR:$rs1, 0)>;
692 def : InstAlias<"sd $rs2, (${rs1})",
693 (SD GPR:$rs2, GPR:$rs1, 0)>;
695 def : InstAlias<"addw $rd, $rs1, $imm12",
696 (ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>;
697 def : InstAlias<"sllw $rd, $rs1, $shamt",
698 (SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
699 def : InstAlias<"srlw $rd, $rs1, $shamt",
700 (SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
701 def : InstAlias<"sraw $rd, $rs1, $shamt",
702 (SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
703 } // Predicates = [IsRV64]
704 def : InstAlias<"slt $rd, $rs1, $imm12",
705 (SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
706 def : InstAlias<"sltu $rd, $rs1, $imm12",
707 (SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>;
710 def : MnemonicAlias<"move", "mv">;
712 // The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
713 // version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
714 // the old name for backwards compatibility.
715 def : MnemonicAlias<"scall", "ecall">;
716 def : MnemonicAlias<"sbreak", "ebreak">;
718 //===----------------------------------------------------------------------===//
719 // Pseudo-instructions and codegen patterns
721 // Naming convention: For 'generic' pattern classes, we use the naming
722 // convention PatTy1Ty2. For pattern classes which offer a more complex
723 // expension, prefix the class name, e.g. BccPat.
724 //===----------------------------------------------------------------------===//
726 /// Generic pattern classes
728 class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
729 : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
730 class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
731 : Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>;
732 class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
733 : Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt),
734 (Inst GPR:$rs1, uimmlog2xlen:$shamt)>;
738 def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
739 return isOrEquivalentToAdd(N);
741 def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
742 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
744 def sexti32 : PatFrags<(ops node:$src),
745 [(sext_inreg node:$src, i32),
746 (assertsexti32 node:$src)]>;
747 def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
748 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
750 def zexti32 : PatFrags<(ops node:$src),
751 [(and node:$src, 0xffffffff),
752 (assertzexti32 node:$src)]>;
756 def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>;
757 def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>;
758 def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>,
761 /// Simple arithmetic operations
763 def : PatGprGpr<add, ADD>;
764 def : PatGprSimm12<add, ADDI>;
765 def : PatGprGpr<sub, SUB>;
766 def : PatGprGpr<or, OR>;
767 def : PatGprSimm12<or, ORI>;
768 def : PatGprGpr<and, AND>;
769 def : PatGprSimm12<and, ANDI>;
770 def : PatGprGpr<xor, XOR>;
771 def : PatGprSimm12<xor, XORI>;
772 def : PatGprUimmLog2XLen<shl, SLLI>;
773 def : PatGprUimmLog2XLen<srl, SRLI>;
774 def : PatGprUimmLog2XLen<sra, SRAI>;
776 // Match both a plain shift and one where the shift amount is masked (this is
777 // typically introduced when the legalizer promotes the shift amount and
778 // zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
779 // ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
780 class shiftop<SDPatternOperator operator>
781 : PatFrags<(ops node:$val, node:$count),
782 [(operator node:$val, node:$count),
783 (operator node:$val, (and node:$count, immbottomxlenset))]>;
785 def : PatGprGpr<shiftop<shl>, SLL>;
786 def : PatGprGpr<shiftop<srl>, SRL>;
787 def : PatGprGpr<shiftop<sra>, SRA>;
789 // This is a special case of the ADD instruction used to facilitate the use of a
790 // fourth operand to emit a relocation on a symbol relating to this instruction.
791 // The relocation does not affect any bits of the instruction itself but is used
792 // as a hint to the linker.
793 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
794 def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
795 (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
796 "add", "$rd, $rs1, $rs2, $src">;
798 /// FrameIndex calculations
800 def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12),
801 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
802 def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12),
803 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
807 def : PatGprGpr<setlt, SLT>;
808 def : PatGprSimm12<setlt, SLTI>;
809 def : PatGprGpr<setult, SLTU>;
810 def : PatGprSimm12<setult, SLTIU>;
812 // Define pattern expansions for setcc operations that aren't directly
813 // handled by a RISC-V instruction.
814 def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
815 def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
816 def : Pat<(seteq GPR:$rs1, simm12:$imm12),
817 (SLTIU (XORI GPR:$rs1, simm12:$imm12), 1)>;
818 def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
819 def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
820 def : Pat<(setne GPR:$rs1, simm12:$imm12),
821 (SLTU X0, (XORI GPR:$rs1, simm12:$imm12))>;
822 def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
823 def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
824 def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
825 def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
826 def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
827 def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;
829 let usesCustomInserter = 1 in
830 class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
831 : Pseudo<(outs valty:$dst),
832 (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
833 valty:$truev, valty:$falsev),
834 [(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs,
835 (XLenVT imm:$imm), valty:$truev, valty:$falsev))]>;
837 def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;
839 /// Branches and jumps
841 // Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch
843 class BccPat<PatFrag CondOp, RVInstB Inst>
844 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
845 (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
847 def : BccPat<seteq, BEQ>;
848 def : BccPat<setne, BNE>;
849 def : BccPat<setlt, BLT>;
850 def : BccPat<setge, BGE>;
851 def : BccPat<setult, BLTU>;
852 def : BccPat<setuge, BGEU>;
854 class BccSwapPat<PatFrag CondOp, RVInst InstBcc>
855 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
856 (InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>;
858 // Condition codes that don't have matching RISC-V branch instructions, but
859 // are trivially supported by swapping the two input operands
860 def : BccSwapPat<setgt, BLT>;
861 def : BccSwapPat<setle, BGE>;
862 def : BccSwapPat<setugt, BLTU>;
863 def : BccSwapPat<setule, BGEU>;
865 // An extra pattern is needed for a brcond without a setcc (i.e. where the
866 // condition was calculated elsewhere).
867 def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>;
869 let isBarrier = 1, isBranch = 1, isTerminator = 1 in
870 def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
871 PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
873 let isCall = 1, Defs=[X1] in
874 let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
875 def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
876 PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
878 def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
879 def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
880 (PseudoBRIND GPR:$rs1, simm12:$imm12)>;
882 // PsuedoCALLReg is a generic pseudo instruction for calls which will eventually
883 // expand to auipc and jalr while encoding, with any given register used as the
885 // Define AsmString to print "call" when compile with -S flag.
886 // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
887 let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0,
888 mayStore = 0, mayLoad = 0 in
889 def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> {
890 let AsmString = "call\t$rd, $func";
893 // PseudoCALL is a pseudo instruction which will eventually expand to auipc
894 // and jalr while encoding. This is desirable, as an auipc+jalr pair with
895 // R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
896 // if the offset fits in a signed 21-bit immediate.
897 // Define AsmString to print "call" when compile with -S flag.
898 // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
899 let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
900 def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> {
901 let AsmString = "call\t$func";
904 def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
905 def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
907 def : Pat<(riscv_uret_flag), (URET X0, X0)>;
908 def : Pat<(riscv_sret_flag), (SRET X0, X0)>;
909 def : Pat<(riscv_mret_flag), (MRET X0, X0)>;
911 let isCall = 1, Defs = [X1] in
912 def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1),
913 [(riscv_call GPR:$rs1)]>,
914 PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
916 let isBarrier = 1, isReturn = 1, isTerminator = 1 in
917 def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>,
918 PseudoInstExpansion<(JALR X0, X1, 0)>;
920 // PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
921 // expand to auipc and jalr while encoding.
922 // Define AsmString to print "tail" when compile with -S flag.
923 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
925 def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> {
926 let AsmString = "tail\t$dst";
929 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
930 def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
931 [(riscv_tail GPRTC:$rs1)]>,
932 PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
934 def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
935 (PseudoTAIL texternalsym:$dst)>;
936 def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
937 (PseudoTAIL texternalsym:$dst)>;
939 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
940 isAsmParserOnly = 1 in
941 def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
942 "lla", "$dst, $src">;
944 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
945 isAsmParserOnly = 1 in
946 def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
949 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
950 isAsmParserOnly = 1 in
951 def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
952 "la.tls.ie", "$dst, $src">;
954 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
955 isAsmParserOnly = 1 in
956 def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
957 "la.tls.gd", "$dst, $src">;
961 multiclass LdPat<PatFrag LoadOp, RVInst Inst> {
962 def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>;
963 def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>;
964 def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)),
965 (Inst GPR:$rs1, simm12:$imm12)>;
966 def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)),
967 (Inst AddrFI:$rs1, simm12:$imm12)>;
968 def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
969 (Inst AddrFI:$rs1, simm12:$imm12)>;
972 defm : LdPat<sextloadi8, LB>;
973 defm : LdPat<extloadi8, LB>;
974 defm : LdPat<sextloadi16, LH>;
975 defm : LdPat<extloadi16, LH>;
976 defm : LdPat<load, LW>, Requires<[IsRV32]>;
977 defm : LdPat<zextloadi8, LBU>;
978 defm : LdPat<zextloadi16, LHU>;
982 multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> {
983 def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>;
984 def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>;
985 def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)),
986 (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
987 def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)),
988 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
989 def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
990 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
993 defm : StPat<truncstorei8, SB, GPR>;
994 defm : StPat<truncstorei16, SH, GPR>;
995 defm : StPat<store, SW, GPR>, Requires<[IsRV32]>;
999 // Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
1000 // Manual: Volume I.
1002 // fence acquire -> fence r, rw
1003 def : Pat<(atomic_fence (XLenVT 4), (imm)), (FENCE 0b10, 0b11)>;
1004 // fence release -> fence rw, w
1005 def : Pat<(atomic_fence (XLenVT 5), (imm)), (FENCE 0b11, 0b1)>;
1006 // fence acq_rel -> fence.tso
1007 def : Pat<(atomic_fence (XLenVT 6), (imm)), (FENCE_TSO)>;
1008 // fence seq_cst -> fence rw, rw
1009 def : Pat<(atomic_fence (XLenVT 7), (imm)), (FENCE 0b11, 0b11)>;
1011 // Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
1012 // Although these are lowered to fence+load/store instructions defined in the
1013 // base RV32I/RV64I ISA, this lowering is only used when the A extension is
1014 // present. This is necessary as it isn't valid to mix __atomic_* libcalls
1015 // with inline atomic operations for the same object.
1017 /// Other pseudo-instructions
1019 // Pessimistically assume the stack pointer will be clobbered
1020 let Defs = [X2], Uses = [X2] in {
1021 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1022 [(callseq_start timm:$amt1, timm:$amt2)]>;
1023 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1024 [(callseq_end timm:$amt1, timm:$amt2)]>;
1025 } // Defs = [X2], Uses = [X2]
1029 let Predicates = [IsRV64] in {
1033 def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
1034 def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>;
1038 def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
1039 (ADDW GPR:$rs1, GPR:$rs2)>;
1040 def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
1041 (ADDIW GPR:$rs1, simm12:$imm12)>;
1042 def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
1043 (SUBW GPR:$rs1, GPR:$rs2)>;
1044 def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
1045 (SLLIW GPR:$rs1, uimm5:$shamt)>;
1046 // (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the
1047 // need to undo manipulation of the mask value performed by DAGCombine.
1048 def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
1049 (SRAIW GPR:$rs1, uimm5:$shamt)>;
1051 def : PatGprGpr<riscv_sllw, SLLW>;
1052 def : PatGprGpr<riscv_srlw, SRLW>;
1053 def : PatGprGpr<riscv_sraw, SRAW>;
1057 defm : LdPat<sextloadi32, LW>;
1058 defm : LdPat<extloadi32, LW>;
1059 defm : LdPat<zextloadi32, LWU>;
1060 defm : LdPat<load, LD>;
1064 defm : StPat<truncstorei32, SW, GPR>;
1065 defm : StPat<store, SD, GPR>;
1066 } // Predicates = [IsRV64]
1068 /// readcyclecounter
1069 // On RV64, we can directly read the 64-bit "cycle" CSR.
1070 let Predicates = [IsRV64] in
1071 def : Pat<(readcyclecounter), (CSRRS CYCLE.Encoding, X0)>;
1072 // On RV32, ReadCycleWide will be expanded to the suggested loop reading both
1073 // halves of the 64-bit "cycle" CSR.
1074 let Predicates = [IsRV32], usesCustomInserter = 1, hasSideEffects = 0,
1075 mayLoad = 0, mayStore = 0, hasNoSchedulingInfo = 1 in
1076 def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), [], "", "">;
1078 //===----------------------------------------------------------------------===//
1079 // Standard extensions
1080 //===----------------------------------------------------------------------===//
1082 include "RISCVInstrInfoM.td"
1083 include "RISCVInstrInfoA.td"
1084 include "RISCVInstrInfoF.td"
1085 include "RISCVInstrInfoD.td"
1086 include "RISCVInstrInfoC.td"