gn build: Extract git() and git_out() functions in sync script
[llvm-complete.git] / lib / Target / X86 / X86FrameLowering.cpp
blob9d8cb89dbefb5479b6818ac810adee50305a41bd
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
35 using namespace llvm;
37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38 unsigned StackAlignOverride)
39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
40 STI.is64Bit() ? -8 : -4),
41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42 // Cache a bunch of frame-related predicates for this subtarget.
43 SlotSize = TRI->getSlotSize();
44 Is64Bit = STI.is64Bit();
45 IsLP64 = STI.isTarget64BitLP64();
46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48 StackPtr = TRI->getStackRegister();
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52 return !MF.getFrameInfo().hasVarSizedObjects() &&
53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified. Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62 return hasReservedCallFrame(MF) ||
63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64 TRI->hasBasePointer(MF);
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76 return MF.getFrameInfo().hasStackObjects() ||
77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register. This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84 const MachineFrameInfo &MFI = MF.getFrameInfo();
85 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86 TRI->needsStackRealignment(MF) ||
87 MFI.hasVarSizedObjects() ||
88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91 MFI.hasStackMap() || MFI.hasPatchPoint() ||
92 MFI.hasCopyImplyingStackAdjustment());
95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
96 if (IsLP64) {
97 if (isInt<8>(Imm))
98 return X86::SUB64ri8;
99 return X86::SUB64ri32;
100 } else {
101 if (isInt<8>(Imm))
102 return X86::SUB32ri8;
103 return X86::SUB32ri;
107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::ADD64ri8;
111 return X86::ADD64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::ADD32ri8;
115 return X86::ADD32ri;
119 static unsigned getSUBrrOpcode(unsigned isLP64) {
120 return isLP64 ? X86::SUB64rr : X86::SUB32rr;
123 static unsigned getADDrrOpcode(unsigned isLP64) {
124 return isLP64 ? X86::ADD64rr : X86::ADD32rr;
127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128 if (IsLP64) {
129 if (isInt<8>(Imm))
130 return X86::AND64ri8;
131 return X86::AND64ri32;
133 if (isInt<8>(Imm))
134 return X86::AND32ri8;
135 return X86::AND32ri;
138 static unsigned getLEArOpcode(unsigned IsLP64) {
139 return IsLP64 ? X86::LEA64r : X86::LEA32r;
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146 MachineBasicBlock::iterator &MBBI,
147 const X86RegisterInfo *TRI,
148 bool Is64Bit) {
149 const MachineFunction *MF = MBB.getParent();
150 if (MF->callsEHReturn())
151 return 0;
153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
155 if (MBBI == MBB.end())
156 return 0;
158 switch (MBBI->getOpcode()) {
159 default: return 0;
160 case TargetOpcode::PATCHABLE_RET:
161 case X86::RET:
162 case X86::RETL:
163 case X86::RETQ:
164 case X86::RETIL:
165 case X86::RETIQ:
166 case X86::TCRETURNdi:
167 case X86::TCRETURNri:
168 case X86::TCRETURNmi:
169 case X86::TCRETURNdi64:
170 case X86::TCRETURNri64:
171 case X86::TCRETURNmi64:
172 case X86::EH_RETURN:
173 case X86::EH_RETURN64: {
174 SmallSet<uint16_t, 8> Uses;
175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176 MachineOperand &MO = MBBI->getOperand(i);
177 if (!MO.isReg() || MO.isDef())
178 continue;
179 unsigned Reg = MO.getReg();
180 if (!Reg)
181 continue;
182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183 Uses.insert(*AI);
186 for (auto CS : AvailableRegs)
187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188 CS != X86::ESP)
189 return CS;
193 return 0;
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198 unsigned Reg = RegMask.PhysReg;
200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201 Reg == X86::AH || Reg == X86::AL)
202 return true;
205 return false;
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214 for (const MachineInstr &MI : MBB.terminators()) {
215 bool BreakNext = false;
216 for (const MachineOperand &MO : MI.operands()) {
217 if (!MO.isReg())
218 continue;
219 unsigned Reg = MO.getReg();
220 if (Reg != X86::EFLAGS)
221 continue;
223 // This terminator needs an eflags that is not defined
224 // by a previous another terminator:
225 // EFLAGS is live-in of the region composed by the terminators.
226 if (!MO.isDef())
227 return true;
228 // This terminator defines the eflags, i.e., we don't need to preserve it.
229 // However, we still need to check this specific terminator does not
230 // read a live-in value.
231 BreakNext = true;
233 // We found a definition of the eflags, no need to preserve them.
234 if (BreakNext)
235 return false;
238 // None of the terminators use or define the eflags.
239 // Check if they are live-out, that would imply we need to preserve them.
240 for (const MachineBasicBlock *Succ : MBB.successors())
241 if (Succ->isLiveIn(X86::EFLAGS))
242 return true;
244 return false;
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250 MachineBasicBlock::iterator &MBBI,
251 const DebugLoc &DL,
252 int64_t NumBytes, bool InEpilogue) const {
253 bool isSub = NumBytes < 0;
254 uint64_t Offset = isSub ? -NumBytes : NumBytes;
255 MachineInstr::MIFlag Flag =
256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
258 uint64_t Chunk = (1LL << 31) - 1;
260 if (Offset > Chunk) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
263 unsigned Reg = 0;
264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
266 if (isSub && !isEAXLiveIn(MBB))
267 Reg = Rax;
268 else
269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272 unsigned AddSubRROpc =
273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274 if (Reg) {
275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276 .addImm(Offset)
277 .setMIFlag(Flag);
278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279 .addReg(StackPtr)
280 .addReg(Reg);
281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282 return;
283 } else if (Offset > 8 * Chunk) {
284 // If we would need more than 8 add or sub instructions (a >16GB stack
285 // frame), it's worth spilling RAX to materialize this immediate.
286 // pushq %rax
287 // movabsq +-$Offset+-SlotSize, %rax
288 // addq %rsp, %rax
289 // xchg %rax, (%rsp)
290 // movq (%rsp), %rsp
291 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293 .addReg(Rax, RegState::Kill)
294 .setMIFlag(Flag);
295 // Subtract is not commutative, so negate the offset and always use add.
296 // Subtract 8 less and add 8 more to account for the PUSH we just did.
297 if (isSub)
298 Offset = -(Offset - SlotSize);
299 else
300 Offset = Offset + SlotSize;
301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302 .addImm(Offset)
303 .setMIFlag(Flag);
304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305 .addReg(Rax)
306 .addReg(StackPtr);
307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308 // Exchange the new SP in RAX with the top of the stack.
309 addRegOffset(
310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311 StackPtr, false, 0);
312 // Load new SP from the top of the stack into RSP.
313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314 StackPtr, false, 0);
315 return;
319 while (Offset) {
320 uint64_t ThisVal = std::min(Offset, Chunk);
321 if (ThisVal == SlotSize) {
322 // Use push / pop for slot sized adjustments as a size optimization. We
323 // need to find a dead register when using pop.
324 unsigned Reg = isSub
325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327 if (Reg) {
328 unsigned Opc = isSub
329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330 : (Is64Bit ? X86::POP64r : X86::POP32r);
331 BuildMI(MBB, MBBI, DL, TII.get(Opc))
332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333 .setMIFlag(Flag);
334 Offset -= ThisVal;
335 continue;
339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340 .setMIFlag(Flag);
342 Offset -= ThisVal;
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349 assert(Offset != 0 && "zero offset stack adjustment requested");
351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352 // is tricky.
353 bool UseLEA;
354 if (!InEpilogue) {
355 // Check if inserting the prologue at the beginning
356 // of MBB would require to use LEA operations.
357 // We need to use LEA operations if EFLAGS is live in, because
358 // it means an instruction will read it before it gets defined.
359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360 } else {
361 // If we can use LEA for SP but we shouldn't, check that none
362 // of the terminators uses the eflags. Otherwise we will insert
363 // a ADD that will redefine the eflags and break the condition.
364 // Alternatively, we could move the ADD, but this may not be possible
365 // and is an optimization anyway.
366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367 if (UseLEA && !STI.useLeaForSP())
368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369 // If that assert breaks, that means we do not do the right thing
370 // in canUseAsEpilogue.
371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372 "We shouldn't have allowed this insertion point");
375 MachineInstrBuilder MI;
376 if (UseLEA) {
377 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378 TII.get(getLEArOpcode(Uses64BitFramePtr)),
379 StackPtr),
380 StackPtr, false, Offset);
381 } else {
382 bool IsSub = Offset < 0;
383 uint64_t AbsOffset = IsSub ? -Offset : Offset;
384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387 .addReg(StackPtr)
388 .addImm(AbsOffset);
389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
391 return MI;
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395 MachineBasicBlock::iterator &MBBI,
396 bool doMergeWithPrevious) const {
397 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398 (!doMergeWithPrevious && MBBI == MBB.end()))
399 return 0;
401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
403 PI = skipDebugInstructionsBackward(PI, MBB.begin());
404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405 // instruction, and that there are no DBG_VALUE or other instructions between
406 // ADD/SUB/LEA and its corresponding CFI instruction.
407 /* TODO: Add support for the case where there are multiple CFI instructions
408 below the ADD/SUB/LEA, e.g.:
411 cfi_def_cfa_offset
412 cfi_offset
415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416 PI = std::prev(PI);
418 unsigned Opc = PI->getOpcode();
419 int Offset = 0;
421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423 PI->getOperand(0).getReg() == StackPtr){
424 assert(PI->getOperand(1).getReg() == StackPtr);
425 Offset = PI->getOperand(2).getImm();
426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427 PI->getOperand(0).getReg() == StackPtr &&
428 PI->getOperand(1).getReg() == StackPtr &&
429 PI->getOperand(2).getImm() == 1 &&
430 PI->getOperand(3).getReg() == X86::NoRegister &&
431 PI->getOperand(5).getReg() == X86::NoRegister) {
432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433 Offset = PI->getOperand(4).getImm();
434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436 PI->getOperand(0).getReg() == StackPtr) {
437 assert(PI->getOperand(1).getReg() == StackPtr);
438 Offset = -PI->getOperand(2).getImm();
439 } else
440 return 0;
442 PI = MBB.erase(PI);
443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444 if (!doMergeWithPrevious)
445 MBBI = skipDebugInstructionsForward(PI, MBB.end());
447 return Offset;
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451 MachineBasicBlock::iterator MBBI,
452 const DebugLoc &DL,
453 const MCCFIInstruction &CFIInst) const {
454 MachineFunction &MF = *MBB.getParent();
455 unsigned CFIIndex = MF.addFrameInst(CFIInst);
456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457 .addCFIIndex(CFIIndex);
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462 const DebugLoc &DL) const {
463 MachineFunction &MF = *MBB.getParent();
464 MachineFrameInfo &MFI = MF.getFrameInfo();
465 MachineModuleInfo &MMI = MF.getMMI();
466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
468 // Add callee saved registers to move list.
469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470 if (CSI.empty()) return;
472 // Calculate offsets.
473 for (std::vector<CalleeSavedInfo>::const_iterator
474 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476 unsigned Reg = I->getReg();
478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479 BuildCFI(MBB, MBBI, DL,
480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485 MachineBasicBlock &MBB,
486 MachineBasicBlock::iterator MBBI,
487 const DebugLoc &DL, bool InProlog) const {
488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489 if (STI.isTargetWindowsCoreCLR()) {
490 if (InProlog) {
491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492 } else {
493 emitStackProbeInline(MF, MBB, MBBI, DL, false);
495 } else {
496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501 MachineBasicBlock &PrologMBB) const {
502 const StringRef ChkStkStubSymbol = "__chkstk_stub";
503 MachineInstr *ChkStkStub = nullptr;
505 for (MachineInstr &MI : PrologMBB) {
506 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508 ChkStkStub = &MI;
509 break;
513 if (ChkStkStub != nullptr) {
514 assert(!ChkStkStub->isBundled() &&
515 "Not expecting bundled instructions here");
516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517 assert(std::prev(MBBI) == ChkStkStub &&
518 "MBBI expected after __chkstk_stub.");
519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521 ChkStkStub->eraseFromParent();
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526 MachineBasicBlock &MBB,
527 MachineBasicBlock::iterator MBBI,
528 const DebugLoc &DL,
529 bool InProlog) const {
530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531 assert(STI.is64Bit() && "different expansion needed for 32 bit");
532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533 const TargetInstrInfo &TII = *STI.getInstrInfo();
534 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
536 // RAX contains the number of bytes of desired stack adjustment.
537 // The handling here assumes this value has already been updated so as to
538 // maintain stack alignment.
540 // We need to exit with RSP modified by this amount and execute suitable
541 // page touches to notify the OS that we're growing the stack responsibly.
542 // All stack probing must be done without modifying RSP.
544 // MBB:
545 // SizeReg = RAX;
546 // ZeroReg = 0
547 // CopyReg = RSP
548 // Flags, TestReg = CopyReg - SizeReg
549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550 // LimitReg = gs magic thread env access
551 // if FinalReg >= LimitReg goto ContinueMBB
552 // RoundBB:
553 // RoundReg = page address of FinalReg
554 // LoopMBB:
555 // LoopReg = PHI(LimitReg,ProbeReg)
556 // ProbeReg = LoopReg - PageSize
557 // [ProbeReg] = 0
558 // if (ProbeReg > RoundReg) goto LoopMBB
559 // ContinueMBB:
560 // RSP = RSP - RAX
561 // [rest of original MBB]
563 // Set up the new basic blocks
564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569 MF.insert(MBBIter, RoundMBB);
570 MF.insert(MBBIter, LoopMBB);
571 MF.insert(MBBIter, ContinueMBB);
573 // Split MBB and move the tail portion down to ContinueMBB.
574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
578 // Some useful constants
579 const int64_t ThreadEnvironmentStackLimit = 0x10;
580 const int64_t PageSize = 0x1000;
581 const int64_t PageMask = ~(PageSize - 1);
583 // Registers we need. For the normal case we use virtual
584 // registers. For the prolog expansion we use RAX, RCX and RDX.
585 MachineRegisterInfo &MRI = MF.getRegInfo();
586 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587 const Register SizeReg = InProlog ? X86::RAX
588 : MRI.createVirtualRegister(RegClass),
589 ZeroReg = InProlog ? X86::RCX
590 : MRI.createVirtualRegister(RegClass),
591 CopyReg = InProlog ? X86::RDX
592 : MRI.createVirtualRegister(RegClass),
593 TestReg = InProlog ? X86::RDX
594 : MRI.createVirtualRegister(RegClass),
595 FinalReg = InProlog ? X86::RDX
596 : MRI.createVirtualRegister(RegClass),
597 RoundedReg = InProlog ? X86::RDX
598 : MRI.createVirtualRegister(RegClass),
599 LimitReg = InProlog ? X86::RCX
600 : MRI.createVirtualRegister(RegClass),
601 JoinReg = InProlog ? X86::RCX
602 : MRI.createVirtualRegister(RegClass),
603 ProbeReg = InProlog ? X86::RCX
604 : MRI.createVirtualRegister(RegClass);
606 // SP-relative offsets where we can save RCX and RDX.
607 int64_t RCXShadowSlot = 0;
608 int64_t RDXShadowSlot = 0;
610 // If inlining in the prolog, save RCX and RDX.
611 if (InProlog) {
612 // Compute the offsets. We need to account for things already
613 // pushed onto the stack at this point: return address, frame
614 // pointer (if used), and callee saves.
615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617 const bool HasFP = hasFP(MF);
619 // Check if we need to spill RCX and/or RDX.
620 // Here we assume that no earlier prologue instruction changes RCX and/or
621 // RDX, so checking the block live-ins is enough.
622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625 // Assign the initial slot to both registers, then change RDX's slot if both
626 // need to be spilled.
627 if (IsRCXLiveIn)
628 RCXShadowSlot = InitSlot;
629 if (IsRDXLiveIn)
630 RDXShadowSlot = InitSlot;
631 if (IsRDXLiveIn && IsRCXLiveIn)
632 RDXShadowSlot += 8;
633 // Emit the saves if needed.
634 if (IsRCXLiveIn)
635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636 RCXShadowSlot)
637 .addReg(X86::RCX);
638 if (IsRDXLiveIn)
639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640 RDXShadowSlot)
641 .addReg(X86::RDX);
642 } else {
643 // Not in the prolog. Copy RAX to a virtual reg.
644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
647 // Add code to MBB to check for overflow and set the new target stack pointer
648 // to zero if so.
649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650 .addReg(ZeroReg, RegState::Undef)
651 .addReg(ZeroReg, RegState::Undef);
652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654 .addReg(CopyReg)
655 .addReg(SizeReg);
656 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657 .addReg(TestReg)
658 .addReg(ZeroReg)
659 .addImm(X86::COND_B);
661 // FinalReg now holds final stack pointer value, or zero if
662 // allocation would overflow. Compare against the current stack
663 // limit from the thread environment block. Note this limit is the
664 // lowest touched page on the stack, not the point at which the OS
665 // will cause an overflow exception, so this is just an optimization
666 // to avoid unnecessarily touching pages that are below the current
667 // SP but already committed to the stack by the OS.
668 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669 .addReg(0)
670 .addImm(1)
671 .addReg(0)
672 .addImm(ThreadEnvironmentStackLimit)
673 .addReg(X86::GS);
674 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675 // Jump if the desired stack pointer is at or above the stack limit.
676 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
678 // Add code to roundMBB to round the final stack pointer to a page boundary.
679 RoundMBB->addLiveIn(FinalReg);
680 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681 .addReg(FinalReg)
682 .addImm(PageMask);
683 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
685 // LimitReg now holds the current stack limit, RoundedReg page-rounded
686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687 // and probe until we reach RoundedReg.
688 if (!InProlog) {
689 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690 .addReg(LimitReg)
691 .addMBB(RoundMBB)
692 .addReg(ProbeReg)
693 .addMBB(LoopMBB);
696 LoopMBB->addLiveIn(JoinReg);
697 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698 false, -PageSize);
700 // Probe by storing a byte onto the stack.
701 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702 .addReg(ProbeReg)
703 .addImm(1)
704 .addReg(0)
705 .addImm(0)
706 .addReg(0)
707 .addImm(0);
709 LoopMBB->addLiveIn(RoundedReg);
710 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711 .addReg(RoundedReg)
712 .addReg(ProbeReg);
713 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
715 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
717 // If in prolog, restore RDX and RCX.
718 if (InProlog) {
719 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721 TII.get(X86::MOV64rm), X86::RCX),
722 X86::RSP, false, RCXShadowSlot);
723 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725 TII.get(X86::MOV64rm), X86::RDX),
726 X86::RSP, false, RDXShadowSlot);
729 // Now that the probing is done, add code to continueMBB to update
730 // the stack pointer for real.
731 ContinueMBB->addLiveIn(SizeReg);
732 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733 .addReg(X86::RSP)
734 .addReg(SizeReg);
736 // Add the control flow edges we need.
737 MBB.addSuccessor(ContinueMBB);
738 MBB.addSuccessor(RoundMBB);
739 RoundMBB->addSuccessor(LoopMBB);
740 LoopMBB->addSuccessor(ContinueMBB);
741 LoopMBB->addSuccessor(LoopMBB);
743 // Mark all the instructions added to the prolog as frame setup.
744 if (InProlog) {
745 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
748 for (MachineInstr &MI : *RoundMBB) {
749 MI.setFlag(MachineInstr::FrameSetup);
751 for (MachineInstr &MI : *LoopMBB) {
752 MI.setFlag(MachineInstr::FrameSetup);
754 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755 CMBBI != ContinueMBBI; ++CMBBI) {
756 CMBBI->setFlag(MachineInstr::FrameSetup);
761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762 MachineBasicBlock &MBB,
763 MachineBasicBlock::iterator MBBI,
764 const DebugLoc &DL,
765 bool InProlog) const {
766 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
768 // FIXME: Add retpoline support and remove this.
769 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771 "code model and retpoline not yet implemented.");
773 unsigned CallOp;
774 if (Is64Bit)
775 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776 else
777 CallOp = X86::CALLpcrel32;
779 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
781 MachineInstrBuilder CI;
782 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
784 // All current stack probes take AX and SP as input, clobber flags, and
785 // preserve all registers. x86_64 probes leave RSP unmodified.
786 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787 // For the large code model, we have to call through a register. Use R11,
788 // as it is scratch in all supported calling conventions.
789 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792 } else {
793 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
797 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799 CI.addReg(AX, RegState::Implicit)
800 .addReg(SP, RegState::Implicit)
801 .addReg(AX, RegState::Define | RegState::Implicit)
802 .addReg(SP, RegState::Define | RegState::Implicit)
803 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
805 if (STI.isTargetWin64() || !STI.isOSWindows()) {
806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808 // themselves. They also does not clobber %rax so we can reuse it when
809 // adjusting %rsp.
810 // All other platforms do not specify a particular ABI for the stack probe
811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813 .addReg(SP)
814 .addReg(AX);
817 if (InProlog) {
818 // Apply the frame setup flag to all inserted instrs.
819 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
824 void X86FrameLowering::emitStackProbeInlineStub(
825 MachineFunction &MF, MachineBasicBlock &MBB,
826 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
828 assert(InProlog && "ChkStkStub called outside prolog!");
830 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831 .addExternalSymbol("__chkstk_stub");
834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836 // and might require smaller successive adjustments.
837 const uint64_t Win64MaxSEHOffset = 128;
838 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840 return SEHFrameOffset & -16;
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out. Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848 const MachineFrameInfo &MFI = MF.getFrameInfo();
849 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850 unsigned StackAlign = getStackAlignment();
851 if (MF.getFunction().hasFnAttribute("stackrealign")) {
852 if (MFI.hasCalls())
853 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854 else if (MaxAlign < SlotSize)
855 MaxAlign = SlotSize;
857 return MaxAlign;
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861 MachineBasicBlock::iterator MBBI,
862 const DebugLoc &DL, unsigned Reg,
863 uint64_t MaxAlign) const {
864 uint64_t Val = -MaxAlign;
865 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867 .addReg(Reg)
868 .addImm(Val)
869 .setMIFlag(MachineInstr::FrameSetup);
871 // The EFLAGS implicit def is dead.
872 MI->getOperand(3).setIsDead();
875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877 // clobbered by any interrupt handler.
878 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879 "MF used frame lowering for wrong subtarget");
880 const Function &Fn = MF.getFunction();
881 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
892 Here's a gist of what gets emitted:
894 ; Establish frame pointer, if needed
895 [if needs FP]
896 push %rbp
897 .cfi_def_cfa_offset 16
898 .cfi_offset %rbp, -16
899 .seh_pushreg %rpb
900 mov %rsp, %rbp
901 .cfi_def_cfa_register %rbp
903 ; Spill general-purpose registers
904 [for all callee-saved GPRs]
905 pushq %<reg>
906 [if not needs FP]
907 .cfi_def_cfa_offset (offset from RETADDR)
908 .seh_pushreg %<reg>
910 ; If the required stack alignment > default stack alignment
911 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
912 ; of unknown size in the stack frame.
913 [if stack needs re-alignment]
914 and $MASK, %rsp
916 ; Allocate space for locals
917 [if target is Windows and allocated space > 4096 bytes]
918 ; Windows needs special care for allocations larger
919 ; than one page.
920 mov $NNN, %rax
921 call ___chkstk_ms/___chkstk
922 sub %rax, %rsp
923 [else]
924 sub $NNN, %rsp
926 [if needs FP]
927 .seh_stackalloc (size of XMM spill slots)
928 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929 [else]
930 .seh_stackalloc NNN
932 ; Spill XMMs
933 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934 ; they may get spilled on any platform, if the current function
935 ; calls @llvm.eh.unwind.init
936 [if needs FP]
937 [for all callee-saved XMM registers]
938 [if funclet]
939 movaps %<xmm reg>, -MMM(%rsp)
940 [else]
941 movaps %<xmm reg>, -MMM(%rbp)
942 [for all callee-saved XMM registers]
943 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
944 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
945 [else]
946 [for all callee-saved XMM registers]
947 movaps %<xmm reg>, KKK(%rsp)
948 [for all callee-saved XMM registers]
949 .seh_savexmm %<xmm reg>, KKK
951 .seh_endprologue
953 [if needs base pointer]
954 mov %rsp, %rbx
955 [if needs to restore base pointer]
956 mov %rsp, -MMM(%rbp)
958 ; Emit CFI info
959 [if needs FP]
960 [for all callee-saved registers]
961 [if funclet]
962 movaps -MMM(%rsp), %<xmm reg>
963 [else]
964 .cfi_offset %<reg>, (offset from %rbp)
965 [else]
966 .cfi_def_cfa_offset (offset from RETADDR)
967 [for all callee-saved registers]
968 .cfi_offset %<reg>, (offset from %rsp)
970 Notes:
971 - .seh directives are emitted only for Windows 64 ABI
972 - .cv_fpo directives are emitted on win32 when emitting CodeView
973 - .cfi directives are emitted for all other ABIs
974 - for 32-bit code, substitute %e?? registers for %r??
977 void X86FrameLowering::emitPrologue(MachineFunction &MF,
978 MachineBasicBlock &MBB) const {
979 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
980 "MF used frame lowering for wrong subtarget");
981 MachineBasicBlock::iterator MBBI = MBB.begin();
982 MachineFrameInfo &MFI = MF.getFrameInfo();
983 const Function &Fn = MF.getFunction();
984 MachineModuleInfo &MMI = MF.getMMI();
985 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
986 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
987 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
988 bool IsFunclet = MBB.isEHFuncletEntry();
989 EHPersonality Personality = EHPersonality::Unknown;
990 if (Fn.hasPersonalityFn())
991 Personality = classifyEHPersonality(Fn.getPersonalityFn());
992 bool FnHasClrFunclet =
993 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
994 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
995 bool HasFP = hasFP(MF);
996 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
997 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
998 // FIXME: Emit FPO data for EH funclets.
999 bool NeedsWinFPO =
1000 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1001 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1002 bool NeedsDwarfCFI =
1003 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
1004 unsigned FramePtr = TRI->getFrameRegister(MF);
1005 const unsigned MachineFramePtr =
1006 STI.isTarget64BitILP32()
1007 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1008 unsigned BasePtr = TRI->getBaseRegister();
1009 bool HasWinCFI = false;
1011 // Debug location must be unknown since the first debug location is used
1012 // to determine the end of the prologue.
1013 DebugLoc DL;
1015 // Add RETADDR move area to callee saved frame size.
1016 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1017 if (TailCallReturnAddrDelta && IsWin64Prologue)
1018 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1020 if (TailCallReturnAddrDelta < 0)
1021 X86FI->setCalleeSavedFrameSize(
1022 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1024 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1025 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1027 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1028 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1029 // stack alignment.
1030 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1031 Fn.arg_size() == 2) {
1032 StackSize += 8;
1033 MFI.setStackSize(StackSize);
1034 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1037 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1038 // function, and use up to 128 bytes of stack space, don't have a frame
1039 // pointer, calls, or dynamic alloca then we do not need to adjust the
1040 // stack pointer (we fit in the Red Zone). We also check that we don't
1041 // push and pop from the stack.
1042 if (has128ByteRedZone(MF) &&
1043 !TRI->needsStackRealignment(MF) &&
1044 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1045 !MFI.adjustsStack() && // No calls.
1046 !UseStackProbe && // No stack probes.
1047 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1048 !MF.shouldSplitStack()) { // Regular stack
1049 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1050 if (HasFP) MinSize += SlotSize;
1051 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1052 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1053 MFI.setStackSize(StackSize);
1056 // Insert stack pointer adjustment for later moving of return addr. Only
1057 // applies to tail call optimized functions where the callee argument stack
1058 // size is bigger than the callers.
1059 if (TailCallReturnAddrDelta < 0) {
1060 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1061 /*InEpilogue=*/false)
1062 .setMIFlag(MachineInstr::FrameSetup);
1065 // Mapping for machine moves:
1067 // DST: VirtualFP AND
1068 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1069 // ELSE => DW_CFA_def_cfa
1071 // SRC: VirtualFP AND
1072 // DST: Register => DW_CFA_def_cfa_register
1074 // ELSE
1075 // OFFSET < 0 => DW_CFA_offset_extended_sf
1076 // REG < 64 => DW_CFA_offset + Reg
1077 // ELSE => DW_CFA_offset_extended
1079 uint64_t NumBytes = 0;
1080 int stackGrowth = -SlotSize;
1082 // Find the funclet establisher parameter
1083 unsigned Establisher = X86::NoRegister;
1084 if (IsClrFunclet)
1085 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1086 else if (IsFunclet)
1087 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1089 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1090 // Immediately spill establisher into the home slot.
1091 // The runtime cares about this.
1092 // MOV64mr %rdx, 16(%rsp)
1093 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1094 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1095 .addReg(Establisher)
1096 .setMIFlag(MachineInstr::FrameSetup);
1097 MBB.addLiveIn(Establisher);
1100 if (HasFP) {
1101 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1103 // Calculate required stack adjustment.
1104 uint64_t FrameSize = StackSize - SlotSize;
1105 // If required, include space for extra hidden slot for stashing base pointer.
1106 if (X86FI->getRestoreBasePointer())
1107 FrameSize += SlotSize;
1109 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1111 // Callee-saved registers are pushed on stack before the stack is realigned.
1112 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1113 NumBytes = alignTo(NumBytes, MaxAlign);
1115 // Save EBP/RBP into the appropriate stack slot.
1116 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1117 .addReg(MachineFramePtr, RegState::Kill)
1118 .setMIFlag(MachineInstr::FrameSetup);
1120 if (NeedsDwarfCFI) {
1121 // Mark the place where EBP/RBP was saved.
1122 // Define the current CFA rule to use the provided offset.
1123 assert(StackSize);
1124 BuildCFI(MBB, MBBI, DL,
1125 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1127 // Change the rule for the FramePtr to be an "offset" rule.
1128 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1129 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1130 nullptr, DwarfFramePtr, 2 * stackGrowth));
1133 if (NeedsWinCFI) {
1134 HasWinCFI = true;
1135 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1136 .addImm(FramePtr)
1137 .setMIFlag(MachineInstr::FrameSetup);
1140 if (!IsWin64Prologue && !IsFunclet) {
1141 // Update EBP with the new base value.
1142 BuildMI(MBB, MBBI, DL,
1143 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1144 FramePtr)
1145 .addReg(StackPtr)
1146 .setMIFlag(MachineInstr::FrameSetup);
1148 if (NeedsDwarfCFI) {
1149 // Mark effective beginning of when frame pointer becomes valid.
1150 // Define the current CFA to use the EBP/RBP register.
1151 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1152 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1153 nullptr, DwarfFramePtr));
1156 if (NeedsWinFPO) {
1157 // .cv_fpo_setframe $FramePtr
1158 HasWinCFI = true;
1159 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1160 .addImm(FramePtr)
1161 .addImm(0)
1162 .setMIFlag(MachineInstr::FrameSetup);
1165 } else {
1166 assert(!IsFunclet && "funclets without FPs not yet implemented");
1167 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1170 // Update the offset adjustment, which is mainly used by codeview to translate
1171 // from ESP to VFRAME relative local variable offsets.
1172 if (!IsFunclet) {
1173 if (HasFP && TRI->needsStackRealignment(MF))
1174 MFI.setOffsetAdjustment(-NumBytes);
1175 else
1176 MFI.setOffsetAdjustment(-StackSize);
1179 // For EH funclets, only allocate enough space for outgoing calls and callee
1180 // saved XMM registers on Windows 64 bits. Save the NumBytes value that we
1181 // would've used for the parent frame.
1182 int XMMFrameSlotOrigin;
1183 unsigned ParentFrameNumBytes = NumBytes;
1184 if (IsFunclet) {
1185 NumBytes = getWinEHFuncletFrameSize(MF);
1186 if (IsWin64Prologue)
1187 NumBytes += X86FI->getCalleeSavedXMMFrameInfo(XMMFrameSlotOrigin);
1190 // Skip the callee-saved push instructions.
1191 bool PushedRegs = false;
1192 int StackOffset = 2 * stackGrowth;
1194 while (MBBI != MBB.end() &&
1195 MBBI->getFlag(MachineInstr::FrameSetup) &&
1196 (MBBI->getOpcode() == X86::PUSH32r ||
1197 MBBI->getOpcode() == X86::PUSH64r)) {
1198 PushedRegs = true;
1199 unsigned Reg = MBBI->getOperand(0).getReg();
1200 ++MBBI;
1202 if (!HasFP && NeedsDwarfCFI) {
1203 // Mark callee-saved push instruction.
1204 // Define the current CFA rule to use the provided offset.
1205 assert(StackSize);
1206 BuildCFI(MBB, MBBI, DL,
1207 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1208 StackOffset += stackGrowth;
1211 if (NeedsWinCFI) {
1212 HasWinCFI = true;
1213 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1214 .addImm(Reg)
1215 .setMIFlag(MachineInstr::FrameSetup);
1219 // Realign stack after we pushed callee-saved registers (so that we'll be
1220 // able to calculate their offsets from the frame pointer).
1221 // Don't do this for Win64, it needs to realign the stack after the prologue.
1222 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1223 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1224 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1226 if (NeedsWinCFI) {
1227 HasWinCFI = true;
1228 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1229 .addImm(MaxAlign)
1230 .setMIFlag(MachineInstr::FrameSetup);
1234 // If there is an SUB32ri of ESP immediately before this instruction, merge
1235 // the two. This can be the case when tail call elimination is enabled and
1236 // the callee has more arguments then the caller.
1237 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1239 // Adjust stack pointer: ESP -= numbytes.
1241 // Windows and cygwin/mingw require a prologue helper routine when allocating
1242 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1243 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1244 // stack and adjust the stack pointer in one go. The 64-bit version of
1245 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1246 // responsible for adjusting the stack pointer. Touching the stack at 4K
1247 // increments is necessary to ensure that the guard pages used by the OS
1248 // virtual memory manager are allocated in correct sequence.
1249 uint64_t AlignedNumBytes = NumBytes;
1250 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1251 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1252 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1253 assert(!X86FI->getUsesRedZone() &&
1254 "The Red Zone is not accounted for in stack probes");
1256 // Check whether EAX is livein for this block.
1257 bool isEAXAlive = isEAXLiveIn(MBB);
1259 if (isEAXAlive) {
1260 if (Is64Bit) {
1261 // Save RAX
1262 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1263 .addReg(X86::RAX, RegState::Kill)
1264 .setMIFlag(MachineInstr::FrameSetup);
1265 } else {
1266 // Save EAX
1267 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1268 .addReg(X86::EAX, RegState::Kill)
1269 .setMIFlag(MachineInstr::FrameSetup);
1273 if (Is64Bit) {
1274 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1275 // Function prologue is responsible for adjusting the stack pointer.
1276 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1277 if (isUInt<32>(Alloc)) {
1278 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1279 .addImm(Alloc)
1280 .setMIFlag(MachineInstr::FrameSetup);
1281 } else if (isInt<32>(Alloc)) {
1282 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1283 .addImm(Alloc)
1284 .setMIFlag(MachineInstr::FrameSetup);
1285 } else {
1286 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1287 .addImm(Alloc)
1288 .setMIFlag(MachineInstr::FrameSetup);
1290 } else {
1291 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1292 // We'll also use 4 already allocated bytes for EAX.
1293 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1294 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1295 .setMIFlag(MachineInstr::FrameSetup);
1298 // Call __chkstk, __chkstk_ms, or __alloca.
1299 emitStackProbe(MF, MBB, MBBI, DL, true);
1301 if (isEAXAlive) {
1302 // Restore RAX/EAX
1303 MachineInstr *MI;
1304 if (Is64Bit)
1305 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1306 StackPtr, false, NumBytes - 8);
1307 else
1308 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1309 StackPtr, false, NumBytes - 4);
1310 MI->setFlag(MachineInstr::FrameSetup);
1311 MBB.insert(MBBI, MI);
1313 } else if (NumBytes) {
1314 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1317 if (NeedsWinCFI && NumBytes) {
1318 HasWinCFI = true;
1319 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1320 .addImm(NumBytes)
1321 .setMIFlag(MachineInstr::FrameSetup);
1324 int SEHFrameOffset = 0;
1325 unsigned SPOrEstablisher;
1326 if (IsFunclet) {
1327 if (IsClrFunclet) {
1328 // The establisher parameter passed to a CLR funclet is actually a pointer
1329 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1330 // to find the root function establisher frame by loading the PSPSym from
1331 // the intermediate frame.
1332 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1333 MachinePointerInfo NoInfo;
1334 MBB.addLiveIn(Establisher);
1335 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1336 Establisher, false, PSPSlotOffset)
1337 .addMemOperand(MF.getMachineMemOperand(
1338 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1340 // Save the root establisher back into the current funclet's (mostly
1341 // empty) frame, in case a sub-funclet or the GC needs it.
1342 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1343 false, PSPSlotOffset)
1344 .addReg(Establisher)
1345 .addMemOperand(
1346 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1347 MachineMemOperand::MOVolatile,
1348 SlotSize, SlotSize));
1350 SPOrEstablisher = Establisher;
1351 } else {
1352 SPOrEstablisher = StackPtr;
1355 if (IsWin64Prologue && HasFP) {
1356 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1357 // this calculation on the incoming establisher, which holds the value of
1358 // RSP from the parent frame at the end of the prologue.
1359 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1360 if (SEHFrameOffset)
1361 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1362 SPOrEstablisher, false, SEHFrameOffset);
1363 else
1364 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1365 .addReg(SPOrEstablisher);
1367 // If this is not a funclet, emit the CFI describing our frame pointer.
1368 if (NeedsWinCFI && !IsFunclet) {
1369 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1370 HasWinCFI = true;
1371 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1372 .addImm(FramePtr)
1373 .addImm(SEHFrameOffset)
1374 .setMIFlag(MachineInstr::FrameSetup);
1375 if (isAsynchronousEHPersonality(Personality))
1376 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1378 } else if (IsFunclet && STI.is32Bit()) {
1379 // Reset EBP / ESI to something good for funclets.
1380 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1381 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1382 // into the registration node so that the runtime will restore it for us.
1383 if (!MBB.isCleanupFuncletEntry()) {
1384 assert(Personality == EHPersonality::MSVC_CXX);
1385 unsigned FrameReg;
1386 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1387 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1388 // ESP is the first field, so no extra displacement is needed.
1389 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1390 false, EHRegOffset)
1391 .addReg(X86::ESP);
1395 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1396 auto FrameInstr = MBBI;
1397 ++MBBI;
1399 if (NeedsWinCFI) {
1400 int FI;
1401 if (unsigned Reg = TII.isStoreToStackSlot(*FrameInstr, FI)) {
1402 if (X86::FR64RegClass.contains(Reg)) {
1403 int Offset = 0;
1404 HasWinCFI = true;
1405 if (IsFunclet) {
1406 assert(IsWin64Prologue && "Only valid on Windows 64bit");
1407 unsigned Size = TRI->getSpillSize(X86::VR128RegClass);
1408 unsigned Align = TRI->getSpillAlignment(X86::VR128RegClass);
1409 Offset = (FI - XMMFrameSlotOrigin - 1) * Size +
1410 alignDown(NumBytes, Align);
1411 addRegOffset(BuildMI(MBB, MBBI, DL,
1412 TII.get(getXMMAlignedLoadStoreOp(false))),
1413 StackPtr, true, Offset)
1414 .addReg(Reg)
1415 .setMIFlag(MachineInstr::FrameSetup);
1416 MBB.erase(FrameInstr);
1417 } else {
1418 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1419 unsigned IgnoredFrameReg;
1420 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1421 SEHFrameOffset;
1423 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1424 .addImm(Reg)
1425 .addImm(Offset)
1426 .setMIFlag(MachineInstr::FrameSetup);
1432 if (NeedsWinCFI && HasWinCFI)
1433 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1434 .setMIFlag(MachineInstr::FrameSetup);
1436 if (FnHasClrFunclet && !IsFunclet) {
1437 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1438 // immediately after the prolog) into the PSPSlot so that funclets
1439 // and the GC can recover it.
1440 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1441 auto PSPInfo = MachinePointerInfo::getFixedStack(
1442 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1443 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1444 PSPSlotOffset)
1445 .addReg(StackPtr)
1446 .addMemOperand(MF.getMachineMemOperand(
1447 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1448 SlotSize, SlotSize));
1451 // Realign stack after we spilled callee-saved registers (so that we'll be
1452 // able to calculate their offsets from the frame pointer).
1453 // Win64 requires aligning the stack after the prologue.
1454 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1455 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1456 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1459 // We already dealt with stack realignment and funclets above.
1460 if (IsFunclet && STI.is32Bit())
1461 return;
1463 // If we need a base pointer, set it up here. It's whatever the value
1464 // of the stack pointer is at this point. Any variable size objects
1465 // will be allocated after this, so we can still use the base pointer
1466 // to reference locals.
1467 if (TRI->hasBasePointer(MF)) {
1468 // Update the base pointer with the current stack pointer.
1469 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1470 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1471 .addReg(SPOrEstablisher)
1472 .setMIFlag(MachineInstr::FrameSetup);
1473 if (X86FI->getRestoreBasePointer()) {
1474 // Stash value of base pointer. Saving RSP instead of EBP shortens
1475 // dependence chain. Used by SjLj EH.
1476 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1477 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1478 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1479 .addReg(SPOrEstablisher)
1480 .setMIFlag(MachineInstr::FrameSetup);
1483 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1484 // Stash the value of the frame pointer relative to the base pointer for
1485 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1486 // it recovers the frame pointer from the base pointer rather than the
1487 // other way around.
1488 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1489 unsigned UsedReg;
1490 int Offset =
1491 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1492 assert(UsedReg == BasePtr);
1493 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1494 .addReg(FramePtr)
1495 .setMIFlag(MachineInstr::FrameSetup);
1499 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1500 // Mark end of stack pointer adjustment.
1501 if (!HasFP && NumBytes) {
1502 // Define the current CFA rule to use the provided offset.
1503 assert(StackSize);
1504 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1505 nullptr, -StackSize + stackGrowth));
1508 // Emit DWARF info specifying the offsets of the callee-saved registers.
1509 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1512 // X86 Interrupt handling function cannot assume anything about the direction
1513 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1514 // in each prologue of interrupt handler function.
1516 // FIXME: Create "cld" instruction only in these cases:
1517 // 1. The interrupt handling function uses any of the "rep" instructions.
1518 // 2. Interrupt handling function calls another function.
1520 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1521 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1522 .setMIFlag(MachineInstr::FrameSetup);
1524 // At this point we know if the function has WinCFI or not.
1525 MF.setHasWinCFI(HasWinCFI);
1528 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1529 const MachineFunction &MF) const {
1530 // We can't use LEA instructions for adjusting the stack pointer if we don't
1531 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1532 // to deallocate the stack.
1533 // This means that we can use LEA for SP in two situations:
1534 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1535 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1536 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1539 static bool isFuncletReturnInstr(MachineInstr &MI) {
1540 switch (MI.getOpcode()) {
1541 case X86::CATCHRET:
1542 case X86::CLEANUPRET:
1543 return true;
1544 default:
1545 return false;
1547 llvm_unreachable("impossible");
1550 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1551 // stack. It holds a pointer to the bottom of the root function frame. The
1552 // establisher frame pointer passed to a nested funclet may point to the
1553 // (mostly empty) frame of its parent funclet, but it will need to find
1554 // the frame of the root function to access locals. To facilitate this,
1555 // every funclet copies the pointer to the bottom of the root function
1556 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1557 // same offset for the PSPSym in the root function frame that's used in the
1558 // funclets' frames allows each funclet to dynamically accept any ancestor
1559 // frame as its establisher argument (the runtime doesn't guarantee the
1560 // immediate parent for some reason lost to history), and also allows the GC,
1561 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1562 // frame with only a single offset reported for the entire method.
1563 unsigned
1564 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1565 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1566 unsigned SPReg;
1567 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1568 /*IgnoreSPUpdates*/ true);
1569 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1570 return static_cast<unsigned>(Offset);
1573 unsigned
1574 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1575 // This is the size of the pushed CSRs.
1576 unsigned CSSize =
1577 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1578 // This is the amount of stack a funclet needs to allocate.
1579 unsigned UsedSize;
1580 EHPersonality Personality =
1581 classifyEHPersonality(MF.getFunction().getPersonalityFn());
1582 if (Personality == EHPersonality::CoreCLR) {
1583 // CLR funclets need to hold enough space to include the PSPSym, at the
1584 // same offset from the stack pointer (immediately after the prolog) as it
1585 // resides at in the main function.
1586 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1587 } else {
1588 // Other funclets just need enough stack for outgoing call arguments.
1589 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1591 // RBP is not included in the callee saved register block. After pushing RBP,
1592 // everything is 16 byte aligned. Everything we allocate before an outgoing
1593 // call must also be 16 byte aligned.
1594 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1595 // Subtract out the size of the callee saved registers. This is how much stack
1596 // each funclet will allocate.
1597 return FrameSizeMinusRBP - CSSize;
1600 static bool isTailCallOpcode(unsigned Opc) {
1601 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1602 Opc == X86::TCRETURNmi ||
1603 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1604 Opc == X86::TCRETURNmi64;
1607 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1608 MachineBasicBlock &MBB) const {
1609 const MachineFrameInfo &MFI = MF.getFrameInfo();
1610 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1611 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1612 MachineBasicBlock::iterator MBBI = Terminator;
1613 DebugLoc DL;
1614 if (MBBI != MBB.end())
1615 DL = MBBI->getDebugLoc();
1616 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1617 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1618 unsigned FramePtr = TRI->getFrameRegister(MF);
1619 unsigned MachineFramePtr =
1620 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1622 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1623 bool NeedsWin64CFI =
1624 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1625 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1627 // Get the number of bytes to allocate from the FrameInfo.
1628 uint64_t StackSize = MFI.getStackSize();
1629 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1630 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1631 bool HasFP = hasFP(MF);
1632 uint64_t NumBytes = 0;
1634 bool NeedsDwarfCFI =
1635 (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1636 !MF.getTarget().getTargetTriple().isOSWindows()) &&
1637 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1639 if (IsFunclet) {
1640 assert(HasFP && "EH funclets without FP not yet implemented");
1641 NumBytes = getWinEHFuncletFrameSize(MF);
1642 int Ignore;
1643 if (IsWin64Prologue)
1644 NumBytes += X86FI->getCalleeSavedXMMFrameInfo(Ignore);
1645 } else if (HasFP) {
1646 // Calculate required stack adjustment.
1647 uint64_t FrameSize = StackSize - SlotSize;
1648 NumBytes = FrameSize - CSSize;
1650 // Callee-saved registers were pushed on stack before the stack was
1651 // realigned.
1652 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1653 NumBytes = alignTo(FrameSize, MaxAlign);
1654 } else {
1655 NumBytes = StackSize - CSSize;
1657 uint64_t SEHStackAllocAmt = NumBytes;
1659 if (HasFP) {
1660 // Pop EBP.
1661 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1662 MachineFramePtr)
1663 .setMIFlag(MachineInstr::FrameDestroy);
1664 if (NeedsDwarfCFI) {
1665 unsigned DwarfStackPtr =
1666 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1667 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1668 nullptr, DwarfStackPtr, -SlotSize));
1669 --MBBI;
1673 MachineBasicBlock::iterator FirstCSPop = MBBI;
1674 // Skip the callee-saved pop instructions.
1675 while (MBBI != MBB.begin()) {
1676 MachineBasicBlock::iterator PI = std::prev(MBBI);
1677 unsigned Opc = PI->getOpcode();
1679 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1680 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1681 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1682 break;
1683 FirstCSPop = PI;
1686 --MBBI;
1688 MBBI = FirstCSPop;
1690 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1691 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1693 if (MBBI != MBB.end())
1694 DL = MBBI->getDebugLoc();
1696 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1697 // instruction, merge the two instructions.
1698 if (NumBytes || MFI.hasVarSizedObjects())
1699 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1701 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1702 // slot before popping them off! Same applies for the case, when stack was
1703 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1704 // will not do realignment or dynamic stack allocation.
1705 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1706 !IsFunclet) {
1707 if (TRI->needsStackRealignment(MF))
1708 MBBI = FirstCSPop;
1709 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1710 uint64_t LEAAmount =
1711 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1713 // There are only two legal forms of epilogue:
1714 // - add SEHAllocationSize, %rsp
1715 // - lea SEHAllocationSize(%FramePtr), %rsp
1717 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1718 // However, we may use this sequence if we have a frame pointer because the
1719 // effects of the prologue can safely be undone.
1720 if (LEAAmount != 0) {
1721 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1722 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1723 FramePtr, false, LEAAmount);
1724 --MBBI;
1725 } else {
1726 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1727 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1728 .addReg(FramePtr);
1729 --MBBI;
1731 } else if (NumBytes) {
1732 // Adjust stack pointer back: ESP += numbytes.
1733 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1734 if (!hasFP(MF) && NeedsDwarfCFI) {
1735 // Define the current CFA rule to use the provided offset.
1736 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1737 nullptr, -CSSize - SlotSize));
1739 --MBBI;
1742 // Windows unwinder will not invoke function's exception handler if IP is
1743 // either in prologue or in epilogue. This behavior causes a problem when a
1744 // call immediately precedes an epilogue, because the return address points
1745 // into the epilogue. To cope with that, we insert an epilogue marker here,
1746 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1747 // final emitted code.
1748 if (NeedsWin64CFI && MF.hasWinCFI())
1749 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1751 if (!hasFP(MF) && NeedsDwarfCFI) {
1752 MBBI = FirstCSPop;
1753 int64_t Offset = -CSSize - SlotSize;
1754 // Mark callee-saved pop instruction.
1755 // Define the current CFA rule to use the provided offset.
1756 while (MBBI != MBB.end()) {
1757 MachineBasicBlock::iterator PI = MBBI;
1758 unsigned Opc = PI->getOpcode();
1759 ++MBBI;
1760 if (Opc == X86::POP32r || Opc == X86::POP64r) {
1761 Offset += SlotSize;
1762 BuildCFI(MBB, MBBI, DL,
1763 MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1768 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1769 // Add the return addr area delta back since we are not tail calling.
1770 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1771 assert(Offset >= 0 && "TCDelta should never be positive");
1772 if (Offset) {
1773 // Check for possible merge with preceding ADD instruction.
1774 Offset += mergeSPUpdates(MBB, Terminator, true);
1775 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1780 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1781 unsigned &FrameReg) const {
1782 const MachineFrameInfo &MFI = MF.getFrameInfo();
1784 bool IsFixed = MFI.isFixedObjectIndex(FI);
1785 // We can't calculate offset from frame pointer if the stack is realigned,
1786 // so enforce usage of stack/base pointer. The base pointer is used when we
1787 // have dynamic allocas in addition to dynamic realignment.
1788 if (TRI->hasBasePointer(MF))
1789 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1790 else if (TRI->needsStackRealignment(MF))
1791 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1792 else
1793 FrameReg = TRI->getFrameRegister(MF);
1795 // Offset will hold the offset from the stack pointer at function entry to the
1796 // object.
1797 // We need to factor in additional offsets applied during the prologue to the
1798 // frame, base, and stack pointer depending on which is used.
1799 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1800 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1801 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1802 uint64_t StackSize = MFI.getStackSize();
1803 bool HasFP = hasFP(MF);
1804 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1805 int64_t FPDelta = 0;
1807 // In an x86 interrupt, remove the offset we added to account for the return
1808 // address from any stack object allocated in the caller's frame. Interrupts
1809 // do not have a standard return address. Fixed objects in the current frame,
1810 // such as SSE register spills, should not get this treatment.
1811 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1812 Offset >= 0) {
1813 Offset += getOffsetOfLocalArea();
1816 if (IsWin64Prologue) {
1817 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1819 // Calculate required stack adjustment.
1820 uint64_t FrameSize = StackSize - SlotSize;
1821 // If required, include space for extra hidden slot for stashing base pointer.
1822 if (X86FI->getRestoreBasePointer())
1823 FrameSize += SlotSize;
1824 uint64_t NumBytes = FrameSize - CSSize;
1826 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1827 if (FI && FI == X86FI->getFAIndex())
1828 return -SEHFrameOffset;
1830 // FPDelta is the offset from the "traditional" FP location of the old base
1831 // pointer followed by return address and the location required by the
1832 // restricted Win64 prologue.
1833 // Add FPDelta to all offsets below that go through the frame pointer.
1834 FPDelta = FrameSize - SEHFrameOffset;
1835 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1836 "FPDelta isn't aligned per the Win64 ABI!");
1840 if (TRI->hasBasePointer(MF)) {
1841 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1842 if (FI < 0) {
1843 // Skip the saved EBP.
1844 return Offset + SlotSize + FPDelta;
1845 } else {
1846 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1847 return Offset + StackSize;
1849 } else if (TRI->needsStackRealignment(MF)) {
1850 if (FI < 0) {
1851 // Skip the saved EBP.
1852 return Offset + SlotSize + FPDelta;
1853 } else {
1854 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1855 return Offset + StackSize;
1857 // FIXME: Support tail calls
1858 } else {
1859 if (!HasFP)
1860 return Offset + StackSize;
1862 // Skip the saved EBP.
1863 Offset += SlotSize;
1865 // Skip the RETADDR move area
1866 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1867 if (TailCallReturnAddrDelta < 0)
1868 Offset -= TailCallReturnAddrDelta;
1871 return Offset + FPDelta;
1874 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1875 int FI, unsigned &FrameReg,
1876 int Adjustment) const {
1877 const MachineFrameInfo &MFI = MF.getFrameInfo();
1878 FrameReg = TRI->getStackRegister();
1879 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1883 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1884 int FI, unsigned &FrameReg,
1885 bool IgnoreSPUpdates) const {
1887 const MachineFrameInfo &MFI = MF.getFrameInfo();
1888 // Does not include any dynamic realign.
1889 const uint64_t StackSize = MFI.getStackSize();
1890 // LLVM arranges the stack as follows:
1891 // ...
1892 // ARG2
1893 // ARG1
1894 // RETADDR
1895 // PUSH RBP <-- RBP points here
1896 // PUSH CSRs
1897 // ~~~~~~~ <-- possible stack realignment (non-win64)
1898 // ...
1899 // STACK OBJECTS
1900 // ... <-- RSP after prologue points here
1901 // ~~~~~~~ <-- possible stack realignment (win64)
1903 // if (hasVarSizedObjects()):
1904 // ... <-- "base pointer" (ESI/RBX) points here
1905 // DYNAMIC ALLOCAS
1906 // ... <-- RSP points here
1908 // Case 1: In the simple case of no stack realignment and no dynamic
1909 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1910 // with fixed offsets from RSP.
1912 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1913 // stack objects are addressed with RBP and regular stack objects with RSP.
1915 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1916 // to address stack arguments for outgoing calls and nothing else. The "base
1917 // pointer" points to local variables, and RBP points to fixed objects.
1919 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1920 // answer we give is relative to the SP after the prologue, and not the
1921 // SP in the middle of the function.
1923 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1924 !STI.isTargetWin64())
1925 return getFrameIndexReference(MF, FI, FrameReg);
1927 // If !hasReservedCallFrame the function might have SP adjustement in the
1928 // body. So, even though the offset is statically known, it depends on where
1929 // we are in the function.
1930 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1931 return getFrameIndexReference(MF, FI, FrameReg);
1933 // We don't handle tail calls, and shouldn't be seeing them either.
1934 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1935 "we don't handle this case!");
1937 // This is how the math works out:
1939 // %rsp grows (i.e. gets lower) left to right. Each box below is
1940 // one word (eight bytes). Obj0 is the stack slot we're trying to
1941 // get to.
1943 // ----------------------------------
1944 // | BP | Obj0 | Obj1 | ... | ObjN |
1945 // ----------------------------------
1946 // ^ ^ ^ ^
1947 // A B C E
1949 // A is the incoming stack pointer.
1950 // (B - A) is the local area offset (-8 for x86-64) [1]
1951 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1953 // |(E - B)| is the StackSize (absolute value, positive). For a
1954 // stack that grown down, this works out to be (B - E). [3]
1956 // E is also the value of %rsp after stack has been set up, and we
1957 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1958 // (C - E) == (C - A) - (B - A) + (B - E)
1959 // { Using [1], [2] and [3] above }
1960 // == getObjectOffset - LocalAreaOffset + StackSize
1962 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1965 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1966 MachineFunction &MF, const TargetRegisterInfo *TRI,
1967 std::vector<CalleeSavedInfo> &CSI) const {
1968 MachineFrameInfo &MFI = MF.getFrameInfo();
1969 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1971 unsigned CalleeSavedFrameSize = 0;
1972 unsigned CalleeSavedXMMFrameSize = 0;
1973 int CalleeSavedXMMSlotOrigin = 0;
1974 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1976 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1978 if (TailCallReturnAddrDelta < 0) {
1979 // create RETURNADDR area
1980 // arg
1981 // arg
1982 // RETADDR
1983 // { ...
1984 // RETADDR area
1985 // ...
1986 // }
1987 // [EBP]
1988 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1989 TailCallReturnAddrDelta - SlotSize, true);
1992 // Spill the BasePtr if it's used.
1993 if (this->TRI->hasBasePointer(MF)) {
1994 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1995 if (MF.hasEHFunclets()) {
1996 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1997 X86FI->setHasSEHFramePtrSave(true);
1998 X86FI->setSEHFramePtrSaveIndex(FI);
2002 if (hasFP(MF)) {
2003 // emitPrologue always spills frame register the first thing.
2004 SpillSlotOffset -= SlotSize;
2005 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2007 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2008 // the frame register, we can delete it from CSI list and not have to worry
2009 // about avoiding it later.
2010 unsigned FPReg = TRI->getFrameRegister(MF);
2011 for (unsigned i = 0; i < CSI.size(); ++i) {
2012 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2013 CSI.erase(CSI.begin() + i);
2014 break;
2019 // Assign slots for GPRs. It increases frame size.
2020 for (unsigned i = CSI.size(); i != 0; --i) {
2021 unsigned Reg = CSI[i - 1].getReg();
2023 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2024 continue;
2026 SpillSlotOffset -= SlotSize;
2027 CalleeSavedFrameSize += SlotSize;
2029 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2030 CSI[i - 1].setFrameIdx(SlotIndex);
2033 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2034 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2036 // Assign slots for XMMs.
2037 for (unsigned i = CSI.size(), Size = 0; i != 0; --i) {
2038 unsigned Reg = CSI[i - 1].getReg();
2039 // According to Microsoft "x64 software conventions", only XMM registers
2040 // are nonvolatile except the GPR.
2041 if (!X86::VR128RegClass.contains(Reg))
2042 continue;
2043 // Since all registers have the same size, we just initialize once.
2044 if (Size == 0) {
2045 unsigned Align = TRI->getSpillAlignment(X86::VR128RegClass);
2046 // ensure alignment
2047 int Remainder = SpillSlotOffset % Align;
2048 if (Remainder < 0)
2049 SpillSlotOffset -= Align + Remainder;
2050 else
2051 SpillSlotOffset -= Remainder;
2052 MFI.ensureMaxAlignment(Align);
2053 Size = TRI->getSpillSize(X86::VR128RegClass);
2055 // spill into slot
2056 SpillSlotOffset -= Size;
2057 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2058 CSI[i - 1].setFrameIdx(SlotIndex);
2059 // Since we allocate XMM slot consecutively in stack, we just need to
2060 // record the first one for the funclet use.
2061 if (CalleeSavedXMMFrameSize == 0) {
2062 CalleeSavedXMMSlotOrigin = SlotIndex;
2064 CalleeSavedXMMFrameSize += Size;
2067 X86FI->setCalleeSavedXMMFrameInfo(CalleeSavedXMMFrameSize,
2068 CalleeSavedXMMSlotOrigin);
2070 // Assign slots for others.
2071 for (unsigned i = CSI.size(); i != 0; --i) {
2072 unsigned Reg = CSI[i - 1].getReg();
2073 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg) ||
2074 X86::VR128RegClass.contains(Reg))
2075 continue;
2077 // If this is k-register make sure we lookup via the largest legal type.
2078 MVT VT = MVT::Other;
2079 if (X86::VK16RegClass.contains(Reg))
2080 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2082 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2083 unsigned Size = TRI->getSpillSize(*RC);
2084 unsigned Align = TRI->getSpillAlignment(*RC);
2085 // ensure alignment
2086 int Remainder = SpillSlotOffset % Align;
2087 if (Remainder < 0)
2088 SpillSlotOffset -= Align + Remainder;
2089 else
2090 SpillSlotOffset -= Remainder;
2091 // spill into slot
2092 SpillSlotOffset -= Size;
2093 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2094 CSI[i - 1].setFrameIdx(SlotIndex);
2095 MFI.ensureMaxAlignment(Align);
2098 return true;
2101 bool X86FrameLowering::spillCalleeSavedRegisters(
2102 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2103 const std::vector<CalleeSavedInfo> &CSI,
2104 const TargetRegisterInfo *TRI) const {
2105 DebugLoc DL = MBB.findDebugLoc(MI);
2107 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2108 // for us, and there are no XMM CSRs on Win32.
2109 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2110 return true;
2112 // Push GPRs. It increases frame size.
2113 const MachineFunction &MF = *MBB.getParent();
2114 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2115 for (unsigned i = CSI.size(); i != 0; --i) {
2116 unsigned Reg = CSI[i - 1].getReg();
2118 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2119 continue;
2121 const MachineRegisterInfo &MRI = MF.getRegInfo();
2122 bool isLiveIn = MRI.isLiveIn(Reg);
2123 if (!isLiveIn)
2124 MBB.addLiveIn(Reg);
2126 // Decide whether we can add a kill flag to the use.
2127 bool CanKill = !isLiveIn;
2128 // Check if any subregister is live-in
2129 if (CanKill) {
2130 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2131 if (MRI.isLiveIn(*AReg)) {
2132 CanKill = false;
2133 break;
2138 // Do not set a kill flag on values that are also marked as live-in. This
2139 // happens with the @llvm-returnaddress intrinsic and with arguments
2140 // passed in callee saved registers.
2141 // Omitting the kill flags is conservatively correct even if the live-in
2142 // is not used after all.
2143 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2144 .setMIFlag(MachineInstr::FrameSetup);
2147 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2148 // It can be done by spilling XMMs to stack frame.
2149 for (unsigned i = CSI.size(); i != 0; --i) {
2150 unsigned Reg = CSI[i-1].getReg();
2151 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2152 continue;
2154 // If this is k-register make sure we lookup via the largest legal type.
2155 MVT VT = MVT::Other;
2156 if (X86::VK16RegClass.contains(Reg))
2157 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2159 // Add the callee-saved register as live-in. It's killed at the spill.
2160 MBB.addLiveIn(Reg);
2161 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2163 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2164 TRI);
2165 --MI;
2166 MI->setFlag(MachineInstr::FrameSetup);
2167 ++MI;
2170 return true;
2173 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2174 MachineBasicBlock::iterator MBBI,
2175 MachineInstr *CatchRet) const {
2176 // SEH shouldn't use catchret.
2177 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2178 MBB.getParent()->getFunction().getPersonalityFn())) &&
2179 "SEH should not use CATCHRET");
2180 DebugLoc DL = CatchRet->getDebugLoc();
2181 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2183 // Fill EAX/RAX with the address of the target block.
2184 if (STI.is64Bit()) {
2185 // LEA64r CatchRetTarget(%rip), %rax
2186 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2187 .addReg(X86::RIP)
2188 .addImm(0)
2189 .addReg(0)
2190 .addMBB(CatchRetTarget)
2191 .addReg(0);
2192 } else {
2193 // MOV32ri $CatchRetTarget, %eax
2194 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2195 .addMBB(CatchRetTarget);
2198 // Record that we've taken the address of CatchRetTarget and no longer just
2199 // reference it in a terminator.
2200 CatchRetTarget->setHasAddressTaken();
2203 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2204 MachineBasicBlock::iterator MI,
2205 std::vector<CalleeSavedInfo> &CSI,
2206 const TargetRegisterInfo *TRI) const {
2207 if (CSI.empty())
2208 return false;
2210 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2211 // Don't restore CSRs in 32-bit EH funclets. Matches
2212 // spillCalleeSavedRegisters.
2213 if (STI.is32Bit())
2214 return true;
2215 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2216 // funclets. emitEpilogue transforms these to normal jumps.
2217 if (MI->getOpcode() == X86::CATCHRET) {
2218 const Function &F = MBB.getParent()->getFunction();
2219 bool IsSEH = isAsynchronousEHPersonality(
2220 classifyEHPersonality(F.getPersonalityFn()));
2221 if (IsSEH)
2222 return true;
2226 DebugLoc DL = MBB.findDebugLoc(MI);
2228 // Reload XMMs from stack frame.
2229 MachineFunction &MF = *MBB.getParent();
2230 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2231 int XMMFrameSlotOrigin;
2232 int SEHFrameOffset = X86FI->getCalleeSavedXMMFrameInfo(XMMFrameSlotOrigin) +
2233 MF.getFrameInfo().getMaxCallFrameSize();
2234 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2235 unsigned Reg = CSI[i].getReg();
2236 if (MBB.isEHFuncletEntry() && STI.is64Bit()) {
2237 if (X86::VR128RegClass.contains(Reg)) {
2238 int Offset = (CSI[i].getFrameIdx() - XMMFrameSlotOrigin - 1) * 16;
2239 addRegOffset(BuildMI(MBB, MI, DL,
2240 TII.get(getXMMAlignedLoadStoreOp(true)), Reg),
2241 X86::RSP, true, SEHFrameOffset + Offset);
2243 } else {
2244 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2245 continue;
2247 // If this is k-register make sure we lookup via the largest legal type.
2248 MVT VT = MVT::Other;
2249 if (X86::VK16RegClass.contains(Reg))
2250 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2252 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2253 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2257 // POP GPRs.
2258 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2259 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2260 unsigned Reg = CSI[i].getReg();
2261 if (!X86::GR64RegClass.contains(Reg) &&
2262 !X86::GR32RegClass.contains(Reg))
2263 continue;
2265 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2266 .setMIFlag(MachineInstr::FrameDestroy);
2268 return true;
2271 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2272 BitVector &SavedRegs,
2273 RegScavenger *RS) const {
2274 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2276 // Spill the BasePtr if it's used.
2277 if (TRI->hasBasePointer(MF)){
2278 unsigned BasePtr = TRI->getBaseRegister();
2279 if (STI.isTarget64BitILP32())
2280 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2281 SavedRegs.set(BasePtr);
2285 static bool
2286 HasNestArgument(const MachineFunction *MF) {
2287 const Function &F = MF->getFunction();
2288 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2289 I != E; I++) {
2290 if (I->hasNestAttr() && !I->use_empty())
2291 return true;
2293 return false;
2296 /// GetScratchRegister - Get a temp register for performing work in the
2297 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2298 /// and the properties of the function either one or two registers will be
2299 /// needed. Set primary to true for the first register, false for the second.
2300 static unsigned
2301 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2302 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2304 // Erlang stuff.
2305 if (CallingConvention == CallingConv::HiPE) {
2306 if (Is64Bit)
2307 return Primary ? X86::R14 : X86::R13;
2308 else
2309 return Primary ? X86::EBX : X86::EDI;
2312 if (Is64Bit) {
2313 if (IsLP64)
2314 return Primary ? X86::R11 : X86::R12;
2315 else
2316 return Primary ? X86::R11D : X86::R12D;
2319 bool IsNested = HasNestArgument(&MF);
2321 if (CallingConvention == CallingConv::X86_FastCall ||
2322 CallingConvention == CallingConv::Fast) {
2323 if (IsNested)
2324 report_fatal_error("Segmented stacks does not support fastcall with "
2325 "nested function.");
2326 return Primary ? X86::EAX : X86::ECX;
2328 if (IsNested)
2329 return Primary ? X86::EDX : X86::EAX;
2330 return Primary ? X86::ECX : X86::EAX;
2333 // The stack limit in the TCB is set to this many bytes above the actual stack
2334 // limit.
2335 static const uint64_t kSplitStackAvailable = 256;
2337 void X86FrameLowering::adjustForSegmentedStacks(
2338 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2339 MachineFrameInfo &MFI = MF.getFrameInfo();
2340 uint64_t StackSize;
2341 unsigned TlsReg, TlsOffset;
2342 DebugLoc DL;
2344 // To support shrink-wrapping we would need to insert the new blocks
2345 // at the right place and update the branches to PrologueMBB.
2346 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2348 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2349 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2350 "Scratch register is live-in");
2352 if (MF.getFunction().isVarArg())
2353 report_fatal_error("Segmented stacks do not support vararg functions.");
2354 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2355 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2356 !STI.isTargetDragonFly())
2357 report_fatal_error("Segmented stacks not supported on this platform.");
2359 // Eventually StackSize will be calculated by a link-time pass; which will
2360 // also decide whether checking code needs to be injected into this particular
2361 // prologue.
2362 StackSize = MFI.getStackSize();
2364 // Do not generate a prologue for leaf functions with a stack of size zero.
2365 // For non-leaf functions we have to allow for the possibility that the
2366 // callis to a non-split function, as in PR37807. This function could also
2367 // take the address of a non-split function. When the linker tries to adjust
2368 // its non-existent prologue, it would fail with an error. Mark the object
2369 // file so that such failures are not errors. See this Go language bug-report
2370 // https://go-review.googlesource.com/c/go/+/148819/
2371 if (StackSize == 0 && !MFI.hasTailCall()) {
2372 MF.getMMI().setHasNosplitStack(true);
2373 return;
2376 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2377 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2378 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2379 bool IsNested = false;
2381 // We need to know if the function has a nest argument only in 64 bit mode.
2382 if (Is64Bit)
2383 IsNested = HasNestArgument(&MF);
2385 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2386 // allocMBB needs to be last (terminating) instruction.
2388 for (const auto &LI : PrologueMBB.liveins()) {
2389 allocMBB->addLiveIn(LI);
2390 checkMBB->addLiveIn(LI);
2393 if (IsNested)
2394 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2396 MF.push_front(allocMBB);
2397 MF.push_front(checkMBB);
2399 // When the frame size is less than 256 we just compare the stack
2400 // boundary directly to the value of the stack pointer, per gcc.
2401 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2403 // Read the limit off the current stacklet off the stack_guard location.
2404 if (Is64Bit) {
2405 if (STI.isTargetLinux()) {
2406 TlsReg = X86::FS;
2407 TlsOffset = IsLP64 ? 0x70 : 0x40;
2408 } else if (STI.isTargetDarwin()) {
2409 TlsReg = X86::GS;
2410 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2411 } else if (STI.isTargetWin64()) {
2412 TlsReg = X86::GS;
2413 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2414 } else if (STI.isTargetFreeBSD()) {
2415 TlsReg = X86::FS;
2416 TlsOffset = 0x18;
2417 } else if (STI.isTargetDragonFly()) {
2418 TlsReg = X86::FS;
2419 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2420 } else {
2421 report_fatal_error("Segmented stacks not supported on this platform.");
2424 if (CompareStackPointer)
2425 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2426 else
2427 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2428 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2430 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2431 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2432 } else {
2433 if (STI.isTargetLinux()) {
2434 TlsReg = X86::GS;
2435 TlsOffset = 0x30;
2436 } else if (STI.isTargetDarwin()) {
2437 TlsReg = X86::GS;
2438 TlsOffset = 0x48 + 90*4;
2439 } else if (STI.isTargetWin32()) {
2440 TlsReg = X86::FS;
2441 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2442 } else if (STI.isTargetDragonFly()) {
2443 TlsReg = X86::FS;
2444 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2445 } else if (STI.isTargetFreeBSD()) {
2446 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2447 } else {
2448 report_fatal_error("Segmented stacks not supported on this platform.");
2451 if (CompareStackPointer)
2452 ScratchReg = X86::ESP;
2453 else
2454 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2455 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2457 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2458 STI.isTargetDragonFly()) {
2459 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2460 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2461 } else if (STI.isTargetDarwin()) {
2463 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2464 unsigned ScratchReg2;
2465 bool SaveScratch2;
2466 if (CompareStackPointer) {
2467 // The primary scratch register is available for holding the TLS offset.
2468 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2469 SaveScratch2 = false;
2470 } else {
2471 // Need to use a second register to hold the TLS offset
2472 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2474 // Unfortunately, with fastcc the second scratch register may hold an
2475 // argument.
2476 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2479 // If Scratch2 is live-in then it needs to be saved.
2480 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2481 "Scratch register is live-in and not saved");
2483 if (SaveScratch2)
2484 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2485 .addReg(ScratchReg2, RegState::Kill);
2487 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2488 .addImm(TlsOffset);
2489 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2490 .addReg(ScratchReg)
2491 .addReg(ScratchReg2).addImm(1).addReg(0)
2492 .addImm(0)
2493 .addReg(TlsReg);
2495 if (SaveScratch2)
2496 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2500 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2501 // It jumps to normal execution of the function body.
2502 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2504 // On 32 bit we first push the arguments size and then the frame size. On 64
2505 // bit, we pass the stack frame size in r10 and the argument size in r11.
2506 if (Is64Bit) {
2507 // Functions with nested arguments use R10, so it needs to be saved across
2508 // the call to _morestack
2510 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2511 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2512 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2513 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2514 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2516 if (IsNested)
2517 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2519 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2520 .addImm(StackSize);
2521 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2522 .addImm(X86FI->getArgumentStackSize());
2523 } else {
2524 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2525 .addImm(X86FI->getArgumentStackSize());
2526 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2527 .addImm(StackSize);
2530 // __morestack is in libgcc
2531 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2532 // Under the large code model, we cannot assume that __morestack lives
2533 // within 2^31 bytes of the call site, so we cannot use pc-relative
2534 // addressing. We cannot perform the call via a temporary register,
2535 // as the rax register may be used to store the static chain, and all
2536 // other suitable registers may be either callee-save or used for
2537 // parameter passing. We cannot use the stack at this point either
2538 // because __morestack manipulates the stack directly.
2540 // To avoid these issues, perform an indirect call via a read-only memory
2541 // location containing the address.
2543 // This solution is not perfect, as it assumes that the .rodata section
2544 // is laid out within 2^31 bytes of each function body, but this seems
2545 // to be sufficient for JIT.
2546 // FIXME: Add retpoline support and remove the error here..
2547 if (STI.useRetpolineIndirectCalls())
2548 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2549 "code model and retpoline not yet implemented.");
2550 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2551 .addReg(X86::RIP)
2552 .addImm(0)
2553 .addReg(0)
2554 .addExternalSymbol("__morestack_addr")
2555 .addReg(0);
2556 MF.getMMI().setUsesMorestackAddr(true);
2557 } else {
2558 if (Is64Bit)
2559 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2560 .addExternalSymbol("__morestack");
2561 else
2562 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2563 .addExternalSymbol("__morestack");
2566 if (IsNested)
2567 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2568 else
2569 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2571 allocMBB->addSuccessor(&PrologueMBB);
2573 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2574 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2576 #ifdef EXPENSIVE_CHECKS
2577 MF.verify();
2578 #endif
2581 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2582 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2583 /// to fields it needs, through a named metadata node "hipe.literals" containing
2584 /// name-value pairs.
2585 static unsigned getHiPELiteral(
2586 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2587 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2588 MDNode *Node = HiPELiteralsMD->getOperand(i);
2589 if (Node->getNumOperands() != 2) continue;
2590 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2591 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2592 if (!NodeName || !NodeVal) continue;
2593 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2594 if (ValConst && NodeName->getString() == LiteralName) {
2595 return ValConst->getZExtValue();
2599 report_fatal_error("HiPE literal " + LiteralName
2600 + " required but not provided");
2603 /// Erlang programs may need a special prologue to handle the stack size they
2604 /// might need at runtime. That is because Erlang/OTP does not implement a C
2605 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2606 /// (for more information see Eric Stenman's Ph.D. thesis:
2607 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2609 /// CheckStack:
2610 /// temp0 = sp - MaxStack
2611 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2612 /// OldStart:
2613 /// ...
2614 /// IncStack:
2615 /// call inc_stack # doubles the stack space
2616 /// temp0 = sp - MaxStack
2617 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2618 void X86FrameLowering::adjustForHiPEPrologue(
2619 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2620 MachineFrameInfo &MFI = MF.getFrameInfo();
2621 DebugLoc DL;
2623 // To support shrink-wrapping we would need to insert the new blocks
2624 // at the right place and update the branches to PrologueMBB.
2625 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2627 // HiPE-specific values
2628 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2629 ->getNamedMetadata("hipe.literals");
2630 if (!HiPELiteralsMD)
2631 report_fatal_error(
2632 "Can't generate HiPE prologue without runtime parameters");
2633 const unsigned HipeLeafWords
2634 = getHiPELiteral(HiPELiteralsMD,
2635 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2636 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2637 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2638 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2639 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2640 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2642 assert(STI.isTargetLinux() &&
2643 "HiPE prologue is only supported on Linux operating systems.");
2645 // Compute the largest caller's frame that is needed to fit the callees'
2646 // frames. This 'MaxStack' is computed from:
2648 // a) the fixed frame size, which is the space needed for all spilled temps,
2649 // b) outgoing on-stack parameter areas, and
2650 // c) the minimum stack space this function needs to make available for the
2651 // functions it calls (a tunable ABI property).
2652 if (MFI.hasCalls()) {
2653 unsigned MoreStackForCalls = 0;
2655 for (auto &MBB : MF) {
2656 for (auto &MI : MBB) {
2657 if (!MI.isCall())
2658 continue;
2660 // Get callee operand.
2661 const MachineOperand &MO = MI.getOperand(0);
2663 // Only take account of global function calls (no closures etc.).
2664 if (!MO.isGlobal())
2665 continue;
2667 const Function *F = dyn_cast<Function>(MO.getGlobal());
2668 if (!F)
2669 continue;
2671 // Do not update 'MaxStack' for primitive and built-in functions
2672 // (encoded with names either starting with "erlang."/"bif_" or not
2673 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2674 // "_", such as the BIF "suspend_0") as they are executed on another
2675 // stack.
2676 if (F->getName().find("erlang.") != StringRef::npos ||
2677 F->getName().find("bif_") != StringRef::npos ||
2678 F->getName().find_first_of("._") == StringRef::npos)
2679 continue;
2681 unsigned CalleeStkArity =
2682 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2683 if (HipeLeafWords - 1 > CalleeStkArity)
2684 MoreStackForCalls = std::max(MoreStackForCalls,
2685 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2688 MaxStack += MoreStackForCalls;
2691 // If the stack frame needed is larger than the guaranteed then runtime checks
2692 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2693 if (MaxStack > Guaranteed) {
2694 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2695 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2697 for (const auto &LI : PrologueMBB.liveins()) {
2698 stackCheckMBB->addLiveIn(LI);
2699 incStackMBB->addLiveIn(LI);
2702 MF.push_front(incStackMBB);
2703 MF.push_front(stackCheckMBB);
2705 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2706 unsigned LEAop, CMPop, CALLop;
2707 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2708 if (Is64Bit) {
2709 SPReg = X86::RSP;
2710 PReg = X86::RBP;
2711 LEAop = X86::LEA64r;
2712 CMPop = X86::CMP64rm;
2713 CALLop = X86::CALL64pcrel32;
2714 } else {
2715 SPReg = X86::ESP;
2716 PReg = X86::EBP;
2717 LEAop = X86::LEA32r;
2718 CMPop = X86::CMP32rm;
2719 CALLop = X86::CALLpcrel32;
2722 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2723 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2724 "HiPE prologue scratch register is live-in");
2726 // Create new MBB for StackCheck:
2727 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2728 SPReg, false, -MaxStack);
2729 // SPLimitOffset is in a fixed heap location (pointed by BP).
2730 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2731 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2732 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2734 // Create new MBB for IncStack:
2735 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2736 addExternalSymbol("inc_stack_0");
2737 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2738 SPReg, false, -MaxStack);
2739 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2740 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2741 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2743 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2744 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2745 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2746 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2748 #ifdef EXPENSIVE_CHECKS
2749 MF.verify();
2750 #endif
2753 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2754 MachineBasicBlock::iterator MBBI,
2755 const DebugLoc &DL,
2756 int Offset) const {
2758 if (Offset <= 0)
2759 return false;
2761 if (Offset % SlotSize)
2762 return false;
2764 int NumPops = Offset / SlotSize;
2765 // This is only worth it if we have at most 2 pops.
2766 if (NumPops != 1 && NumPops != 2)
2767 return false;
2769 // Handle only the trivial case where the adjustment directly follows
2770 // a call. This is the most common one, anyway.
2771 if (MBBI == MBB.begin())
2772 return false;
2773 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2774 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2775 return false;
2777 unsigned Regs[2];
2778 unsigned FoundRegs = 0;
2780 auto &MRI = MBB.getParent()->getRegInfo();
2781 auto RegMask = Prev->getOperand(1);
2783 auto &RegClass =
2784 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2785 // Try to find up to NumPops free registers.
2786 for (auto Candidate : RegClass) {
2788 // Poor man's liveness:
2789 // Since we're immediately after a call, any register that is clobbered
2790 // by the call and not defined by it can be considered dead.
2791 if (!RegMask.clobbersPhysReg(Candidate))
2792 continue;
2794 // Don't clobber reserved registers
2795 if (MRI.isReserved(Candidate))
2796 continue;
2798 bool IsDef = false;
2799 for (const MachineOperand &MO : Prev->implicit_operands()) {
2800 if (MO.isReg() && MO.isDef() &&
2801 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2802 IsDef = true;
2803 break;
2807 if (IsDef)
2808 continue;
2810 Regs[FoundRegs++] = Candidate;
2811 if (FoundRegs == (unsigned)NumPops)
2812 break;
2815 if (FoundRegs == 0)
2816 return false;
2818 // If we found only one free register, but need two, reuse the same one twice.
2819 while (FoundRegs < (unsigned)NumPops)
2820 Regs[FoundRegs++] = Regs[0];
2822 for (int i = 0; i < NumPops; ++i)
2823 BuildMI(MBB, MBBI, DL,
2824 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2826 return true;
2829 MachineBasicBlock::iterator X86FrameLowering::
2830 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2831 MachineBasicBlock::iterator I) const {
2832 bool reserveCallFrame = hasReservedCallFrame(MF);
2833 unsigned Opcode = I->getOpcode();
2834 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2835 DebugLoc DL = I->getDebugLoc();
2836 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2837 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2838 I = MBB.erase(I);
2839 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2841 if (!reserveCallFrame) {
2842 // If the stack pointer can be changed after prologue, turn the
2843 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2844 // adjcallstackdown instruction into 'add ESP, <amt>'
2846 // We need to keep the stack aligned properly. To do this, we round the
2847 // amount of space needed for the outgoing arguments up to the next
2848 // alignment boundary.
2849 unsigned StackAlign = getStackAlignment();
2850 Amount = alignTo(Amount, StackAlign);
2852 MachineModuleInfo &MMI = MF.getMMI();
2853 const Function &F = MF.getFunction();
2854 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2855 bool DwarfCFI = !WindowsCFI &&
2856 (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2858 // If we have any exception handlers in this function, and we adjust
2859 // the SP before calls, we may need to indicate this to the unwinder
2860 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2861 // Amount == 0, because the preceding function may have set a non-0
2862 // GNU_ARGS_SIZE.
2863 // TODO: We don't need to reset this between subsequent functions,
2864 // if it didn't change.
2865 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2867 if (HasDwarfEHHandlers && !isDestroy &&
2868 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2869 BuildCFI(MBB, InsertPos, DL,
2870 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2872 if (Amount == 0)
2873 return I;
2875 // Factor out the amount that gets handled inside the sequence
2876 // (Pushes of argument for frame setup, callee pops for frame destroy)
2877 Amount -= InternalAmt;
2879 // TODO: This is needed only if we require precise CFA.
2880 // If this is a callee-pop calling convention, emit a CFA adjust for
2881 // the amount the callee popped.
2882 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2883 BuildCFI(MBB, InsertPos, DL,
2884 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2886 // Add Amount to SP to destroy a frame, or subtract to setup.
2887 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2889 if (StackAdjustment) {
2890 // Merge with any previous or following adjustment instruction. Note: the
2891 // instructions merged with here do not have CFI, so their stack
2892 // adjustments do not feed into CfaAdjustment.
2893 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2894 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2896 if (StackAdjustment) {
2897 if (!(F.hasMinSize() &&
2898 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2899 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2900 /*InEpilogue=*/false);
2904 if (DwarfCFI && !hasFP(MF)) {
2905 // If we don't have FP, but need to generate unwind information,
2906 // we need to set the correct CFA offset after the stack adjustment.
2907 // How much we adjust the CFA offset depends on whether we're emitting
2908 // CFI only for EH purposes or for debugging. EH only requires the CFA
2909 // offset to be correct at each call site, while for debugging we want
2910 // it to be more precise.
2912 int64_t CfaAdjustment = -StackAdjustment;
2913 // TODO: When not using precise CFA, we also need to adjust for the
2914 // InternalAmt here.
2915 if (CfaAdjustment) {
2916 BuildCFI(MBB, InsertPos, DL,
2917 MCCFIInstruction::createAdjustCfaOffset(nullptr,
2918 CfaAdjustment));
2922 return I;
2925 if (isDestroy && InternalAmt) {
2926 // If we are performing frame pointer elimination and if the callee pops
2927 // something off the stack pointer, add it back. We do this until we have
2928 // more advanced stack pointer tracking ability.
2929 // We are not tracking the stack pointer adjustment by the callee, so make
2930 // sure we restore the stack pointer immediately after the call, there may
2931 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2932 MachineBasicBlock::iterator CI = I;
2933 MachineBasicBlock::iterator B = MBB.begin();
2934 while (CI != B && !std::prev(CI)->isCall())
2935 --CI;
2936 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2939 return I;
2942 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2943 assert(MBB.getParent() && "Block is not attached to a function!");
2944 const MachineFunction &MF = *MBB.getParent();
2945 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2948 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2949 assert(MBB.getParent() && "Block is not attached to a function!");
2951 // Win64 has strict requirements in terms of epilogue and we are
2952 // not taking a chance at messing with them.
2953 // I.e., unless this block is already an exit block, we can't use
2954 // it as an epilogue.
2955 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2956 return false;
2958 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2959 return true;
2961 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2962 // clobbers the EFLAGS. Check that we do not need to preserve it,
2963 // otherwise, conservatively assume this is not
2964 // safe to insert the epilogue here.
2965 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2968 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2969 // If we may need to emit frameless compact unwind information, give
2970 // up as this is currently broken: PR25614.
2971 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2972 // The lowering of segmented stack and HiPE only support entry blocks
2973 // as prologue blocks: PR26107.
2974 // This limitation may be lifted if we fix:
2975 // - adjustForSegmentedStacks
2976 // - adjustForHiPEPrologue
2977 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2978 !MF.shouldSplitStack();
2981 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2982 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2983 const DebugLoc &DL, bool RestoreSP) const {
2984 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2985 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2986 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2987 "restoring EBP/ESI on non-32-bit target");
2989 MachineFunction &MF = *MBB.getParent();
2990 unsigned FramePtr = TRI->getFrameRegister(MF);
2991 unsigned BasePtr = TRI->getBaseRegister();
2992 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2993 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2994 MachineFrameInfo &MFI = MF.getFrameInfo();
2996 // FIXME: Don't set FrameSetup flag in catchret case.
2998 int FI = FuncInfo.EHRegNodeFrameIndex;
2999 int EHRegSize = MFI.getObjectSize(FI);
3001 if (RestoreSP) {
3002 // MOV32rm -EHRegSize(%ebp), %esp
3003 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3004 X86::EBP, true, -EHRegSize)
3005 .setMIFlag(MachineInstr::FrameSetup);
3008 unsigned UsedReg;
3009 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
3010 int EndOffset = -EHRegOffset - EHRegSize;
3011 FuncInfo.EHRegNodeEndOffset = EndOffset;
3013 if (UsedReg == FramePtr) {
3014 // ADD $offset, %ebp
3015 unsigned ADDri = getADDriOpcode(false, EndOffset);
3016 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3017 .addReg(FramePtr)
3018 .addImm(EndOffset)
3019 .setMIFlag(MachineInstr::FrameSetup)
3020 ->getOperand(3)
3021 .setIsDead();
3022 assert(EndOffset >= 0 &&
3023 "end of registration object above normal EBP position!");
3024 } else if (UsedReg == BasePtr) {
3025 // LEA offset(%ebp), %esi
3026 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3027 FramePtr, false, EndOffset)
3028 .setMIFlag(MachineInstr::FrameSetup);
3029 // MOV32rm SavedEBPOffset(%esi), %ebp
3030 assert(X86FI->getHasSEHFramePtrSave());
3031 int Offset =
3032 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
3033 assert(UsedReg == BasePtr);
3034 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3035 UsedReg, true, Offset)
3036 .setMIFlag(MachineInstr::FrameSetup);
3037 } else {
3038 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3040 return MBBI;
3043 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3044 return TRI->getSlotSize();
3047 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
3048 const {
3049 return TRI->getDwarfRegNum(StackPtr, true);
3052 namespace {
3053 // Struct used by orderFrameObjects to help sort the stack objects.
3054 struct X86FrameSortingObject {
3055 bool IsValid = false; // true if we care about this Object.
3056 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3057 unsigned ObjectSize = 0; // Size of Object in bytes.
3058 unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
3059 unsigned ObjectNumUses = 0; // Object static number of uses.
3062 // The comparison function we use for std::sort to order our local
3063 // stack symbols. The current algorithm is to use an estimated
3064 // "density". This takes into consideration the size and number of
3065 // uses each object has in order to roughly minimize code size.
3066 // So, for example, an object of size 16B that is referenced 5 times
3067 // will get higher priority than 4 4B objects referenced 1 time each.
3068 // It's not perfect and we may be able to squeeze a few more bytes out of
3069 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3070 // fringe end can have special consideration, given their size is less
3071 // important, etc.), but the algorithmic complexity grows too much to be
3072 // worth the extra gains we get. This gets us pretty close.
3073 // The final order leaves us with objects with highest priority going
3074 // at the end of our list.
3075 struct X86FrameSortingComparator {
3076 inline bool operator()(const X86FrameSortingObject &A,
3077 const X86FrameSortingObject &B) {
3078 uint64_t DensityAScaled, DensityBScaled;
3080 // For consistency in our comparison, all invalid objects are placed
3081 // at the end. This also allows us to stop walking when we hit the
3082 // first invalid item after it's all sorted.
3083 if (!A.IsValid)
3084 return false;
3085 if (!B.IsValid)
3086 return true;
3088 // The density is calculated by doing :
3089 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3090 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3091 // Since this approach may cause inconsistencies in
3092 // the floating point <, >, == comparisons, depending on the floating
3093 // point model with which the compiler was built, we're going
3094 // to scale both sides by multiplying with
3095 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3096 // the division and, with it, the need for any floating point
3097 // arithmetic.
3098 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3099 static_cast<uint64_t>(B.ObjectSize);
3100 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3101 static_cast<uint64_t>(A.ObjectSize);
3103 // If the two densities are equal, prioritize highest alignment
3104 // objects. This allows for similar alignment objects
3105 // to be packed together (given the same density).
3106 // There's room for improvement here, also, since we can pack
3107 // similar alignment (different density) objects next to each
3108 // other to save padding. This will also require further
3109 // complexity/iterations, and the overall gain isn't worth it,
3110 // in general. Something to keep in mind, though.
3111 if (DensityAScaled == DensityBScaled)
3112 return A.ObjectAlignment < B.ObjectAlignment;
3114 return DensityAScaled < DensityBScaled;
3117 } // namespace
3119 // Order the symbols in the local stack.
3120 // We want to place the local stack objects in some sort of sensible order.
3121 // The heuristic we use is to try and pack them according to static number
3122 // of uses and size of object in order to minimize code size.
3123 void X86FrameLowering::orderFrameObjects(
3124 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3125 const MachineFrameInfo &MFI = MF.getFrameInfo();
3127 // Don't waste time if there's nothing to do.
3128 if (ObjectsToAllocate.empty())
3129 return;
3131 // Create an array of all MFI objects. We won't need all of these
3132 // objects, but we're going to create a full array of them to make
3133 // it easier to index into when we're counting "uses" down below.
3134 // We want to be able to easily/cheaply access an object by simply
3135 // indexing into it, instead of having to search for it every time.
3136 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3138 // Walk the objects we care about and mark them as such in our working
3139 // struct.
3140 for (auto &Obj : ObjectsToAllocate) {
3141 SortingObjects[Obj].IsValid = true;
3142 SortingObjects[Obj].ObjectIndex = Obj;
3143 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3144 // Set the size.
3145 int ObjectSize = MFI.getObjectSize(Obj);
3146 if (ObjectSize == 0)
3147 // Variable size. Just use 4.
3148 SortingObjects[Obj].ObjectSize = 4;
3149 else
3150 SortingObjects[Obj].ObjectSize = ObjectSize;
3153 // Count the number of uses for each object.
3154 for (auto &MBB : MF) {
3155 for (auto &MI : MBB) {
3156 if (MI.isDebugInstr())
3157 continue;
3158 for (const MachineOperand &MO : MI.operands()) {
3159 // Check to see if it's a local stack symbol.
3160 if (!MO.isFI())
3161 continue;
3162 int Index = MO.getIndex();
3163 // Check to see if it falls within our range, and is tagged
3164 // to require ordering.
3165 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3166 SortingObjects[Index].IsValid)
3167 SortingObjects[Index].ObjectNumUses++;
3172 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3173 // info).
3174 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3176 // Now modify the original list to represent the final order that
3177 // we want. The order will depend on whether we're going to access them
3178 // from the stack pointer or the frame pointer. For SP, the list should
3179 // end up with the END containing objects that we want with smaller offsets.
3180 // For FP, it should be flipped.
3181 int i = 0;
3182 for (auto &Obj : SortingObjects) {
3183 // All invalid items are sorted at the end, so it's safe to stop.
3184 if (!Obj.IsValid)
3185 break;
3186 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3189 // Flip it if we're accessing off of the FP.
3190 if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3191 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3194 unsigned
3195 X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3196 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3197 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3198 unsigned Offset = 16;
3199 // RBP is immediately pushed.
3200 Offset += SlotSize;
3201 // All callee-saved registers are then pushed.
3202 Offset += X86FI->getCalleeSavedFrameSize();
3203 // Funclets allocate space for however XMM registers are required.
3204 int Ignore;
3205 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3206 Offset += X86FI->getCalleeSavedXMMFrameInfo(Ignore);
3207 // Every funclet allocates enough stack space for the largest outgoing call.
3208 Offset += getWinEHFuncletFrameSize(MF);
3209 return Offset;
3212 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3213 MachineFunction &MF, RegScavenger *RS) const {
3214 // Mark the function as not having WinCFI. We will set it back to true in
3215 // emitPrologue if it gets called and emits CFI.
3216 MF.setHasWinCFI(false);
3218 // If this function isn't doing Win64-style C++ EH, we don't need to do
3219 // anything.
3220 const Function &F = MF.getFunction();
3221 if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3222 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3223 return;
3225 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3226 // relative to RSP after the prologue. Find the offset of the last fixed
3227 // object, so that we can allocate a slot immediately following it. If there
3228 // were no fixed objects, use offset -SlotSize, which is immediately after the
3229 // return address. Fixed objects have negative frame indices.
3230 MachineFrameInfo &MFI = MF.getFrameInfo();
3231 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3232 int64_t MinFixedObjOffset = -SlotSize;
3233 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3234 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3236 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3237 for (WinEHHandlerType &H : TBME.HandlerArray) {
3238 int FrameIndex = H.CatchObj.FrameIndex;
3239 if (FrameIndex != INT_MAX) {
3240 // Ensure alignment.
3241 unsigned Align = MFI.getObjectAlignment(FrameIndex);
3242 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3243 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3244 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3249 // Ensure alignment.
3250 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3251 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3252 int UnwindHelpFI =
3253 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3254 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3256 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3257 // other frame setup instructions.
3258 MachineBasicBlock &MBB = MF.front();
3259 auto MBBI = MBB.begin();
3260 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3261 ++MBBI;
3263 DebugLoc DL = MBB.findDebugLoc(MBBI);
3264 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3265 UnwindHelpFI)
3266 .addImm(-2);
3269 unsigned X86FrameLowering::getXMMAlignedLoadStoreOp(const bool IsLoad) const {
3270 return IsLoad ? (STI.hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm)
3271 : (STI.hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr);