1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
46 //===----------------------------------------------------------------------===//
48 // In memory of Ken Kennedy, 1945 - 2007 //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/raw_ostream.h"
71 #define DEBUG_TYPE "da"
73 //===----------------------------------------------------------------------===//
76 STATISTIC(TotalArrayPairs
, "Array pairs tested");
77 STATISTIC(SeparableSubscriptPairs
, "Separable subscript pairs");
78 STATISTIC(CoupledSubscriptPairs
, "Coupled subscript pairs");
79 STATISTIC(NonlinearSubscriptPairs
, "Nonlinear subscript pairs");
80 STATISTIC(ZIVapplications
, "ZIV applications");
81 STATISTIC(ZIVindependence
, "ZIV independence");
82 STATISTIC(StrongSIVapplications
, "Strong SIV applications");
83 STATISTIC(StrongSIVsuccesses
, "Strong SIV successes");
84 STATISTIC(StrongSIVindependence
, "Strong SIV independence");
85 STATISTIC(WeakCrossingSIVapplications
, "Weak-Crossing SIV applications");
86 STATISTIC(WeakCrossingSIVsuccesses
, "Weak-Crossing SIV successes");
87 STATISTIC(WeakCrossingSIVindependence
, "Weak-Crossing SIV independence");
88 STATISTIC(ExactSIVapplications
, "Exact SIV applications");
89 STATISTIC(ExactSIVsuccesses
, "Exact SIV successes");
90 STATISTIC(ExactSIVindependence
, "Exact SIV independence");
91 STATISTIC(WeakZeroSIVapplications
, "Weak-Zero SIV applications");
92 STATISTIC(WeakZeroSIVsuccesses
, "Weak-Zero SIV successes");
93 STATISTIC(WeakZeroSIVindependence
, "Weak-Zero SIV independence");
94 STATISTIC(ExactRDIVapplications
, "Exact RDIV applications");
95 STATISTIC(ExactRDIVindependence
, "Exact RDIV independence");
96 STATISTIC(SymbolicRDIVapplications
, "Symbolic RDIV applications");
97 STATISTIC(SymbolicRDIVindependence
, "Symbolic RDIV independence");
98 STATISTIC(DeltaApplications
, "Delta applications");
99 STATISTIC(DeltaSuccesses
, "Delta successes");
100 STATISTIC(DeltaIndependence
, "Delta independence");
101 STATISTIC(DeltaPropagations
, "Delta propagations");
102 STATISTIC(GCDapplications
, "GCD applications");
103 STATISTIC(GCDsuccesses
, "GCD successes");
104 STATISTIC(GCDindependence
, "GCD independence");
105 STATISTIC(BanerjeeApplications
, "Banerjee applications");
106 STATISTIC(BanerjeeIndependence
, "Banerjee independence");
107 STATISTIC(BanerjeeSuccesses
, "Banerjee successes");
110 Delinearize("da-delinearize", cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
111 cl::desc("Try to delinearize array references."));
113 //===----------------------------------------------------------------------===//
116 DependenceAnalysis::Result
117 DependenceAnalysis::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
118 auto &AA
= FAM
.getResult
<AAManager
>(F
);
119 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
120 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
121 return DependenceInfo(&F
, &AA
, &SE
, &LI
);
124 AnalysisKey
DependenceAnalysis::Key
;
126 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass
, "da",
127 "Dependence Analysis", true, true)
128 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
129 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
130 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
131 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass
, "da", "Dependence Analysis",
134 char DependenceAnalysisWrapperPass::ID
= 0;
136 FunctionPass
*llvm::createDependenceAnalysisWrapperPass() {
137 return new DependenceAnalysisWrapperPass();
140 bool DependenceAnalysisWrapperPass::runOnFunction(Function
&F
) {
141 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
142 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
143 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
144 info
.reset(new DependenceInfo(&F
, &AA
, &SE
, &LI
));
148 DependenceInfo
&DependenceAnalysisWrapperPass::getDI() const { return *info
; }
150 void DependenceAnalysisWrapperPass::releaseMemory() { info
.reset(); }
152 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
153 AU
.setPreservesAll();
154 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
155 AU
.addRequiredTransitive
<ScalarEvolutionWrapperPass
>();
156 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
160 // Used to test the dependence analyzer.
161 // Looks through the function, noting loads and stores.
162 // Calls depends() on every possible pair and prints out the result.
163 // Ignores all other instructions.
164 static void dumpExampleDependence(raw_ostream
&OS
, DependenceInfo
*DA
) {
165 auto *F
= DA
->getFunction();
166 for (inst_iterator SrcI
= inst_begin(F
), SrcE
= inst_end(F
); SrcI
!= SrcE
;
168 if (isa
<StoreInst
>(*SrcI
) || isa
<LoadInst
>(*SrcI
)) {
169 for (inst_iterator DstI
= SrcI
, DstE
= inst_end(F
);
170 DstI
!= DstE
; ++DstI
) {
171 if (isa
<StoreInst
>(*DstI
) || isa
<LoadInst
>(*DstI
)) {
172 OS
<< "da analyze - ";
173 if (auto D
= DA
->depends(&*SrcI
, &*DstI
, true)) {
175 for (unsigned Level
= 1; Level
<= D
->getLevels(); Level
++) {
176 if (D
->isSplitable(Level
)) {
177 OS
<< "da analyze - split level = " << Level
;
178 OS
<< ", iteration = " << *DA
->getSplitIteration(*D
, Level
);
191 void DependenceAnalysisWrapperPass::print(raw_ostream
&OS
,
192 const Module
*) const {
193 dumpExampleDependence(OS
, info
.get());
197 DependenceAnalysisPrinterPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
198 OS
<< "'Dependence Analysis' for function '" << F
.getName() << "':\n";
199 dumpExampleDependence(OS
, &FAM
.getResult
<DependenceAnalysis
>(F
));
200 return PreservedAnalyses::all();
203 //===----------------------------------------------------------------------===//
204 // Dependence methods
206 // Returns true if this is an input dependence.
207 bool Dependence::isInput() const {
208 return Src
->mayReadFromMemory() && Dst
->mayReadFromMemory();
212 // Returns true if this is an output dependence.
213 bool Dependence::isOutput() const {
214 return Src
->mayWriteToMemory() && Dst
->mayWriteToMemory();
218 // Returns true if this is an flow (aka true) dependence.
219 bool Dependence::isFlow() const {
220 return Src
->mayWriteToMemory() && Dst
->mayReadFromMemory();
224 // Returns true if this is an anti dependence.
225 bool Dependence::isAnti() const {
226 return Src
->mayReadFromMemory() && Dst
->mayWriteToMemory();
230 // Returns true if a particular level is scalar; that is,
231 // if no subscript in the source or destination mention the induction
232 // variable associated with the loop at this level.
233 // Leave this out of line, so it will serve as a virtual method anchor
234 bool Dependence::isScalar(unsigned level
) const {
239 //===----------------------------------------------------------------------===//
240 // FullDependence methods
242 FullDependence::FullDependence(Instruction
*Source
, Instruction
*Destination
,
243 bool PossiblyLoopIndependent
,
244 unsigned CommonLevels
)
245 : Dependence(Source
, Destination
), Levels(CommonLevels
),
246 LoopIndependent(PossiblyLoopIndependent
) {
249 DV
= make_unique
<DVEntry
[]>(CommonLevels
);
252 // The rest are simple getters that hide the implementation.
254 // getDirection - Returns the direction associated with a particular level.
255 unsigned FullDependence::getDirection(unsigned Level
) const {
256 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
257 return DV
[Level
- 1].Direction
;
261 // Returns the distance (or NULL) associated with a particular level.
262 const SCEV
*FullDependence::getDistance(unsigned Level
) const {
263 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
264 return DV
[Level
- 1].Distance
;
268 // Returns true if a particular level is scalar; that is,
269 // if no subscript in the source or destination mention the induction
270 // variable associated with the loop at this level.
271 bool FullDependence::isScalar(unsigned Level
) const {
272 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
273 return DV
[Level
- 1].Scalar
;
277 // Returns true if peeling the first iteration from this loop
278 // will break this dependence.
279 bool FullDependence::isPeelFirst(unsigned Level
) const {
280 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
281 return DV
[Level
- 1].PeelFirst
;
285 // Returns true if peeling the last iteration from this loop
286 // will break this dependence.
287 bool FullDependence::isPeelLast(unsigned Level
) const {
288 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
289 return DV
[Level
- 1].PeelLast
;
293 // Returns true if splitting this loop will break the dependence.
294 bool FullDependence::isSplitable(unsigned Level
) const {
295 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
296 return DV
[Level
- 1].Splitable
;
300 //===----------------------------------------------------------------------===//
301 // DependenceInfo::Constraint methods
303 // If constraint is a point <X, Y>, returns X.
305 const SCEV
*DependenceInfo::Constraint::getX() const {
306 assert(Kind
== Point
&& "Kind should be Point");
311 // If constraint is a point <X, Y>, returns Y.
313 const SCEV
*DependenceInfo::Constraint::getY() const {
314 assert(Kind
== Point
&& "Kind should be Point");
319 // If constraint is a line AX + BY = C, returns A.
321 const SCEV
*DependenceInfo::Constraint::getA() const {
322 assert((Kind
== Line
|| Kind
== Distance
) &&
323 "Kind should be Line (or Distance)");
328 // If constraint is a line AX + BY = C, returns B.
330 const SCEV
*DependenceInfo::Constraint::getB() const {
331 assert((Kind
== Line
|| Kind
== Distance
) &&
332 "Kind should be Line (or Distance)");
337 // If constraint is a line AX + BY = C, returns C.
339 const SCEV
*DependenceInfo::Constraint::getC() const {
340 assert((Kind
== Line
|| Kind
== Distance
) &&
341 "Kind should be Line (or Distance)");
346 // If constraint is a distance, returns D.
348 const SCEV
*DependenceInfo::Constraint::getD() const {
349 assert(Kind
== Distance
&& "Kind should be Distance");
350 return SE
->getNegativeSCEV(C
);
354 // Returns the loop associated with this constraint.
355 const Loop
*DependenceInfo::Constraint::getAssociatedLoop() const {
356 assert((Kind
== Distance
|| Kind
== Line
|| Kind
== Point
) &&
357 "Kind should be Distance, Line, or Point");
358 return AssociatedLoop
;
361 void DependenceInfo::Constraint::setPoint(const SCEV
*X
, const SCEV
*Y
,
362 const Loop
*CurLoop
) {
366 AssociatedLoop
= CurLoop
;
369 void DependenceInfo::Constraint::setLine(const SCEV
*AA
, const SCEV
*BB
,
370 const SCEV
*CC
, const Loop
*CurLoop
) {
375 AssociatedLoop
= CurLoop
;
378 void DependenceInfo::Constraint::setDistance(const SCEV
*D
,
379 const Loop
*CurLoop
) {
381 A
= SE
->getOne(D
->getType());
382 B
= SE
->getNegativeSCEV(A
);
383 C
= SE
->getNegativeSCEV(D
);
384 AssociatedLoop
= CurLoop
;
387 void DependenceInfo::Constraint::setEmpty() { Kind
= Empty
; }
389 void DependenceInfo::Constraint::setAny(ScalarEvolution
*NewSE
) {
394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
395 // For debugging purposes. Dumps the constraint out to OS.
396 LLVM_DUMP_METHOD
void DependenceInfo::Constraint::dump(raw_ostream
&OS
) const {
402 OS
<< " Point is <" << *getX() << ", " << *getY() << ">\n";
403 else if (isDistance())
404 OS
<< " Distance is " << *getD() <<
405 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
407 OS
<< " Line is " << *getA() << "*X + " <<
408 *getB() << "*Y = " << *getC() << "\n";
410 llvm_unreachable("unknown constraint type in Constraint::dump");
415 // Updates X with the intersection
416 // of the Constraints X and Y. Returns true if X has changed.
417 // Corresponds to Figure 4 from the paper
419 // Practical Dependence Testing
420 // Goff, Kennedy, Tseng
422 bool DependenceInfo::intersectConstraints(Constraint
*X
, const Constraint
*Y
) {
424 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
425 LLVM_DEBUG(dbgs() << "\t X ="; X
->dump(dbgs()));
426 LLVM_DEBUG(dbgs() << "\t Y ="; Y
->dump(dbgs()));
427 assert(!Y
->isPoint() && "Y must not be a Point");
441 if (X
->isDistance() && Y
->isDistance()) {
442 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
443 if (isKnownPredicate(CmpInst::ICMP_EQ
, X
->getD(), Y
->getD()))
445 if (isKnownPredicate(CmpInst::ICMP_NE
, X
->getD(), Y
->getD())) {
450 // Hmmm, interesting situation.
451 // I guess if either is constant, keep it and ignore the other.
452 if (isa
<SCEVConstant
>(Y
->getD())) {
459 // At this point, the pseudo-code in Figure 4 of the paper
460 // checks if (X->isPoint() && Y->isPoint()).
461 // This case can't occur in our implementation,
462 // since a Point can only arise as the result of intersecting
463 // two Line constraints, and the right-hand value, Y, is never
464 // the result of an intersection.
465 assert(!(X
->isPoint() && Y
->isPoint()) &&
466 "We shouldn't ever see X->isPoint() && Y->isPoint()");
468 if (X
->isLine() && Y
->isLine()) {
469 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
470 const SCEV
*Prod1
= SE
->getMulExpr(X
->getA(), Y
->getB());
471 const SCEV
*Prod2
= SE
->getMulExpr(X
->getB(), Y
->getA());
472 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
)) {
473 // slopes are equal, so lines are parallel
474 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
475 Prod1
= SE
->getMulExpr(X
->getC(), Y
->getB());
476 Prod2
= SE
->getMulExpr(X
->getB(), Y
->getC());
477 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
))
479 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
486 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
487 // slopes differ, so lines intersect
488 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
489 const SCEV
*C1B2
= SE
->getMulExpr(X
->getC(), Y
->getB());
490 const SCEV
*C1A2
= SE
->getMulExpr(X
->getC(), Y
->getA());
491 const SCEV
*C2B1
= SE
->getMulExpr(Y
->getC(), X
->getB());
492 const SCEV
*C2A1
= SE
->getMulExpr(Y
->getC(), X
->getA());
493 const SCEV
*A1B2
= SE
->getMulExpr(X
->getA(), Y
->getB());
494 const SCEV
*A2B1
= SE
->getMulExpr(Y
->getA(), X
->getB());
495 const SCEVConstant
*C1A2_C2A1
=
496 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1A2
, C2A1
));
497 const SCEVConstant
*C1B2_C2B1
=
498 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1B2
, C2B1
));
499 const SCEVConstant
*A1B2_A2B1
=
500 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A1B2
, A2B1
));
501 const SCEVConstant
*A2B1_A1B2
=
502 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A2B1
, A1B2
));
503 if (!C1B2_C2B1
|| !C1A2_C2A1
||
504 !A1B2_A2B1
|| !A2B1_A1B2
)
506 APInt Xtop
= C1B2_C2B1
->getAPInt();
507 APInt Xbot
= A1B2_A2B1
->getAPInt();
508 APInt Ytop
= C1A2_C2A1
->getAPInt();
509 APInt Ybot
= A2B1_A1B2
->getAPInt();
510 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop
<< "\n");
511 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot
<< "\n");
512 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop
<< "\n");
513 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot
<< "\n");
514 APInt Xq
= Xtop
; // these need to be initialized, even
515 APInt Xr
= Xtop
; // though they're just going to be overwritten
516 APInt::sdivrem(Xtop
, Xbot
, Xq
, Xr
);
519 APInt::sdivrem(Ytop
, Ybot
, Yq
, Yr
);
520 if (Xr
!= 0 || Yr
!= 0) {
525 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq
<< ", Y = " << Yq
<< "\n");
526 if (Xq
.slt(0) || Yq
.slt(0)) {
531 if (const SCEVConstant
*CUB
=
532 collectConstantUpperBound(X
->getAssociatedLoop(), Prod1
->getType())) {
533 const APInt
&UpperBound
= CUB
->getAPInt();
534 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound
<< "\n");
535 if (Xq
.sgt(UpperBound
) || Yq
.sgt(UpperBound
)) {
541 X
->setPoint(SE
->getConstant(Xq
),
543 X
->getAssociatedLoop());
550 // if (X->isLine() && Y->isPoint()) This case can't occur.
551 assert(!(X
->isLine() && Y
->isPoint()) && "This case should never occur");
553 if (X
->isPoint() && Y
->isLine()) {
554 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
555 const SCEV
*A1X1
= SE
->getMulExpr(Y
->getA(), X
->getX());
556 const SCEV
*B1Y1
= SE
->getMulExpr(Y
->getB(), X
->getY());
557 const SCEV
*Sum
= SE
->getAddExpr(A1X1
, B1Y1
);
558 if (isKnownPredicate(CmpInst::ICMP_EQ
, Sum
, Y
->getC()))
560 if (isKnownPredicate(CmpInst::ICMP_NE
, Sum
, Y
->getC())) {
568 llvm_unreachable("shouldn't reach the end of Constraint intersection");
573 //===----------------------------------------------------------------------===//
574 // DependenceInfo methods
576 // For debugging purposes. Dumps a dependence to OS.
577 void Dependence::dump(raw_ostream
&OS
) const {
578 bool Splitable
= false;
592 unsigned Levels
= getLevels();
594 for (unsigned II
= 1; II
<= Levels
; ++II
) {
599 const SCEV
*Distance
= getDistance(II
);
602 else if (isScalar(II
))
605 unsigned Direction
= getDirection(II
);
606 if (Direction
== DVEntry::ALL
)
609 if (Direction
& DVEntry::LT
)
611 if (Direction
& DVEntry::EQ
)
613 if (Direction
& DVEntry::GT
)
622 if (isLoopIndependent())
631 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
632 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
633 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
634 // Otherwise the underlying objects are checked to see if they point to
635 // different identifiable objects.
636 static AliasResult
underlyingObjectsAlias(AliasAnalysis
*AA
,
637 const DataLayout
&DL
,
638 const MemoryLocation
&LocA
,
639 const MemoryLocation
&LocB
) {
640 // Check the original locations (minus size) for noalias, which can happen for
641 // tbaa, incompatible underlying object locations, etc.
642 MemoryLocation
LocAS(LocA
.Ptr
, LocationSize::unknown(), LocA
.AATags
);
643 MemoryLocation
LocBS(LocB
.Ptr
, LocationSize::unknown(), LocB
.AATags
);
644 if (AA
->alias(LocAS
, LocBS
) == NoAlias
)
647 // Check the underlying objects are the same
648 const Value
*AObj
= GetUnderlyingObject(LocA
.Ptr
, DL
);
649 const Value
*BObj
= GetUnderlyingObject(LocB
.Ptr
, DL
);
651 // If the underlying objects are the same, they must alias
655 // We may have hit the recursion limit for underlying objects, or have
656 // underlying objects where we don't know they will alias.
657 if (!isIdentifiedObject(AObj
) || !isIdentifiedObject(BObj
))
660 // Otherwise we know the objects are different and both identified objects so
666 // Returns true if the load or store can be analyzed. Atomic and volatile
667 // operations have properties which this analysis does not understand.
669 bool isLoadOrStore(const Instruction
*I
) {
670 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
671 return LI
->isUnordered();
672 else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
673 return SI
->isUnordered();
678 // Examines the loop nesting of the Src and Dst
679 // instructions and establishes their shared loops. Sets the variables
680 // CommonLevels, SrcLevels, and MaxLevels.
681 // The source and destination instructions needn't be contained in the same
682 // loop. The routine establishNestingLevels finds the level of most deeply
683 // nested loop that contains them both, CommonLevels. An instruction that's
684 // not contained in a loop is at level = 0. MaxLevels is equal to the level
685 // of the source plus the level of the destination, minus CommonLevels.
686 // This lets us allocate vectors MaxLevels in length, with room for every
687 // distinct loop referenced in both the source and destination subscripts.
688 // The variable SrcLevels is the nesting depth of the source instruction.
689 // It's used to help calculate distinct loops referenced by the destination.
690 // Here's the map from loops to levels:
692 // 1 - outermost common loop
693 // ... - other common loops
694 // CommonLevels - innermost common loop
695 // ... - loops containing Src but not Dst
696 // SrcLevels - innermost loop containing Src but not Dst
697 // ... - loops containing Dst but not Src
698 // MaxLevels - innermost loops containing Dst but not Src
699 // Consider the follow code fragment:
716 // If we're looking at the possibility of a dependence between the store
717 // to A (the Src) and the load from A (the Dst), we'll note that they
718 // have 2 loops in common, so CommonLevels will equal 2 and the direction
719 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
720 // A map from loop names to loop numbers would look like
722 // b - 2 = CommonLevels
728 void DependenceInfo::establishNestingLevels(const Instruction
*Src
,
729 const Instruction
*Dst
) {
730 const BasicBlock
*SrcBlock
= Src
->getParent();
731 const BasicBlock
*DstBlock
= Dst
->getParent();
732 unsigned SrcLevel
= LI
->getLoopDepth(SrcBlock
);
733 unsigned DstLevel
= LI
->getLoopDepth(DstBlock
);
734 const Loop
*SrcLoop
= LI
->getLoopFor(SrcBlock
);
735 const Loop
*DstLoop
= LI
->getLoopFor(DstBlock
);
736 SrcLevels
= SrcLevel
;
737 MaxLevels
= SrcLevel
+ DstLevel
;
738 while (SrcLevel
> DstLevel
) {
739 SrcLoop
= SrcLoop
->getParentLoop();
742 while (DstLevel
> SrcLevel
) {
743 DstLoop
= DstLoop
->getParentLoop();
746 while (SrcLoop
!= DstLoop
) {
747 SrcLoop
= SrcLoop
->getParentLoop();
748 DstLoop
= DstLoop
->getParentLoop();
751 CommonLevels
= SrcLevel
;
752 MaxLevels
-= CommonLevels
;
756 // Given one of the loops containing the source, return
757 // its level index in our numbering scheme.
758 unsigned DependenceInfo::mapSrcLoop(const Loop
*SrcLoop
) const {
759 return SrcLoop
->getLoopDepth();
763 // Given one of the loops containing the destination,
764 // return its level index in our numbering scheme.
765 unsigned DependenceInfo::mapDstLoop(const Loop
*DstLoop
) const {
766 unsigned D
= DstLoop
->getLoopDepth();
767 if (D
> CommonLevels
)
768 return D
- CommonLevels
+ SrcLevels
;
774 // Returns true if Expression is loop invariant in LoopNest.
775 bool DependenceInfo::isLoopInvariant(const SCEV
*Expression
,
776 const Loop
*LoopNest
) const {
779 return SE
->isLoopInvariant(Expression
, LoopNest
) &&
780 isLoopInvariant(Expression
, LoopNest
->getParentLoop());
785 // Finds the set of loops from the LoopNest that
786 // have a level <= CommonLevels and are referred to by the SCEV Expression.
787 void DependenceInfo::collectCommonLoops(const SCEV
*Expression
,
788 const Loop
*LoopNest
,
789 SmallBitVector
&Loops
) const {
791 unsigned Level
= LoopNest
->getLoopDepth();
792 if (Level
<= CommonLevels
&& !SE
->isLoopInvariant(Expression
, LoopNest
))
794 LoopNest
= LoopNest
->getParentLoop();
798 void DependenceInfo::unifySubscriptType(ArrayRef
<Subscript
*> Pairs
) {
800 unsigned widestWidthSeen
= 0;
803 // Go through each pair and find the widest bit to which we need
804 // to extend all of them.
805 for (Subscript
*Pair
: Pairs
) {
806 const SCEV
*Src
= Pair
->Src
;
807 const SCEV
*Dst
= Pair
->Dst
;
808 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
809 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
810 if (SrcTy
== nullptr || DstTy
== nullptr) {
811 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
812 "expect Src and Dst share the same type "
816 if (SrcTy
->getBitWidth() > widestWidthSeen
) {
817 widestWidthSeen
= SrcTy
->getBitWidth();
820 if (DstTy
->getBitWidth() > widestWidthSeen
) {
821 widestWidthSeen
= DstTy
->getBitWidth();
827 assert(widestWidthSeen
> 0);
829 // Now extend each pair to the widest seen.
830 for (Subscript
*Pair
: Pairs
) {
831 const SCEV
*Src
= Pair
->Src
;
832 const SCEV
*Dst
= Pair
->Dst
;
833 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
834 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
835 if (SrcTy
== nullptr || DstTy
== nullptr) {
836 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
837 "expect Src and Dst share the same type "
841 if (SrcTy
->getBitWidth() < widestWidthSeen
)
842 // Sign-extend Src to widestType
843 Pair
->Src
= SE
->getSignExtendExpr(Src
, widestType
);
844 if (DstTy
->getBitWidth() < widestWidthSeen
) {
845 // Sign-extend Dst to widestType
846 Pair
->Dst
= SE
->getSignExtendExpr(Dst
, widestType
);
851 // removeMatchingExtensions - Examines a subscript pair.
852 // If the source and destination are identically sign (or zero)
853 // extended, it strips off the extension in an effect to simplify
854 // the actual analysis.
855 void DependenceInfo::removeMatchingExtensions(Subscript
*Pair
) {
856 const SCEV
*Src
= Pair
->Src
;
857 const SCEV
*Dst
= Pair
->Dst
;
858 if ((isa
<SCEVZeroExtendExpr
>(Src
) && isa
<SCEVZeroExtendExpr
>(Dst
)) ||
859 (isa
<SCEVSignExtendExpr
>(Src
) && isa
<SCEVSignExtendExpr
>(Dst
))) {
860 const SCEVCastExpr
*SrcCast
= cast
<SCEVCastExpr
>(Src
);
861 const SCEVCastExpr
*DstCast
= cast
<SCEVCastExpr
>(Dst
);
862 const SCEV
*SrcCastOp
= SrcCast
->getOperand();
863 const SCEV
*DstCastOp
= DstCast
->getOperand();
864 if (SrcCastOp
->getType() == DstCastOp
->getType()) {
865 Pair
->Src
= SrcCastOp
;
866 Pair
->Dst
= DstCastOp
;
872 // Examine the scev and return true iff it's linear.
873 // Collect any loops mentioned in the set of "Loops".
874 bool DependenceInfo::checkSrcSubscript(const SCEV
*Src
, const Loop
*LoopNest
,
875 SmallBitVector
&Loops
) {
876 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
878 return isLoopInvariant(Src
, LoopNest
);
879 const SCEV
*Start
= AddRec
->getStart();
880 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
881 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
882 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
883 if (SE
->getTypeSizeInBits(Start
->getType()) <
884 SE
->getTypeSizeInBits(UB
->getType())) {
885 if (!AddRec
->getNoWrapFlags())
889 if (!isLoopInvariant(Step
, LoopNest
))
891 Loops
.set(mapSrcLoop(AddRec
->getLoop()));
892 return checkSrcSubscript(Start
, LoopNest
, Loops
);
897 // Examine the scev and return true iff it's linear.
898 // Collect any loops mentioned in the set of "Loops".
899 bool DependenceInfo::checkDstSubscript(const SCEV
*Dst
, const Loop
*LoopNest
,
900 SmallBitVector
&Loops
) {
901 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
903 return isLoopInvariant(Dst
, LoopNest
);
904 const SCEV
*Start
= AddRec
->getStart();
905 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
906 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
907 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
908 if (SE
->getTypeSizeInBits(Start
->getType()) <
909 SE
->getTypeSizeInBits(UB
->getType())) {
910 if (!AddRec
->getNoWrapFlags())
914 if (!isLoopInvariant(Step
, LoopNest
))
916 Loops
.set(mapDstLoop(AddRec
->getLoop()));
917 return checkDstSubscript(Start
, LoopNest
, Loops
);
921 // Examines the subscript pair (the Src and Dst SCEVs)
922 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
923 // Collects the associated loops in a set.
924 DependenceInfo::Subscript::ClassificationKind
925 DependenceInfo::classifyPair(const SCEV
*Src
, const Loop
*SrcLoopNest
,
926 const SCEV
*Dst
, const Loop
*DstLoopNest
,
927 SmallBitVector
&Loops
) {
928 SmallBitVector
SrcLoops(MaxLevels
+ 1);
929 SmallBitVector
DstLoops(MaxLevels
+ 1);
930 if (!checkSrcSubscript(Src
, SrcLoopNest
, SrcLoops
))
931 return Subscript::NonLinear
;
932 if (!checkDstSubscript(Dst
, DstLoopNest
, DstLoops
))
933 return Subscript::NonLinear
;
936 unsigned N
= Loops
.count();
938 return Subscript::ZIV
;
940 return Subscript::SIV
;
941 if (N
== 2 && (SrcLoops
.count() == 0 ||
942 DstLoops
.count() == 0 ||
943 (SrcLoops
.count() == 1 && DstLoops
.count() == 1)))
944 return Subscript::RDIV
;
945 return Subscript::MIV
;
949 // A wrapper around SCEV::isKnownPredicate.
950 // Looks for cases where we're interested in comparing for equality.
951 // If both X and Y have been identically sign or zero extended,
952 // it strips off the (confusing) extensions before invoking
953 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
954 // will be similarly updated.
956 // If SCEV::isKnownPredicate can't prove the predicate,
957 // we try simple subtraction, which seems to help in some cases
958 // involving symbolics.
959 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred
, const SCEV
*X
,
960 const SCEV
*Y
) const {
961 if (Pred
== CmpInst::ICMP_EQ
||
962 Pred
== CmpInst::ICMP_NE
) {
963 if ((isa
<SCEVSignExtendExpr
>(X
) &&
964 isa
<SCEVSignExtendExpr
>(Y
)) ||
965 (isa
<SCEVZeroExtendExpr
>(X
) &&
966 isa
<SCEVZeroExtendExpr
>(Y
))) {
967 const SCEVCastExpr
*CX
= cast
<SCEVCastExpr
>(X
);
968 const SCEVCastExpr
*CY
= cast
<SCEVCastExpr
>(Y
);
969 const SCEV
*Xop
= CX
->getOperand();
970 const SCEV
*Yop
= CY
->getOperand();
971 if (Xop
->getType() == Yop
->getType()) {
977 if (SE
->isKnownPredicate(Pred
, X
, Y
))
979 // If SE->isKnownPredicate can't prove the condition,
980 // we try the brute-force approach of subtracting
981 // and testing the difference.
982 // By testing with SE->isKnownPredicate first, we avoid
983 // the possibility of overflow when the arguments are constants.
984 const SCEV
*Delta
= SE
->getMinusSCEV(X
, Y
);
986 case CmpInst::ICMP_EQ
:
987 return Delta
->isZero();
988 case CmpInst::ICMP_NE
:
989 return SE
->isKnownNonZero(Delta
);
990 case CmpInst::ICMP_SGE
:
991 return SE
->isKnownNonNegative(Delta
);
992 case CmpInst::ICMP_SLE
:
993 return SE
->isKnownNonPositive(Delta
);
994 case CmpInst::ICMP_SGT
:
995 return SE
->isKnownPositive(Delta
);
996 case CmpInst::ICMP_SLT
:
997 return SE
->isKnownNegative(Delta
);
999 llvm_unreachable("unexpected predicate in isKnownPredicate");
1003 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1004 /// with some extra checking if S is an AddRec and we can prove less-than using
1005 /// the loop bounds.
1006 bool DependenceInfo::isKnownLessThan(const SCEV
*S
, const SCEV
*Size
) const {
1007 // First unify to the same type
1008 auto *SType
= dyn_cast
<IntegerType
>(S
->getType());
1009 auto *SizeType
= dyn_cast
<IntegerType
>(Size
->getType());
1010 if (!SType
|| !SizeType
)
1013 (SType
->getBitWidth() >= SizeType
->getBitWidth()) ? SType
: SizeType
;
1014 S
= SE
->getTruncateOrZeroExtend(S
, MaxType
);
1015 Size
= SE
->getTruncateOrZeroExtend(Size
, MaxType
);
1017 // Special check for addrecs using BE taken count
1018 const SCEV
*Bound
= SE
->getMinusSCEV(S
, Size
);
1019 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Bound
)) {
1020 if (AddRec
->isAffine()) {
1021 const SCEV
*BECount
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
1022 if (!isa
<SCEVCouldNotCompute
>(BECount
)) {
1023 const SCEV
*Limit
= AddRec
->evaluateAtIteration(BECount
, *SE
);
1024 if (SE
->isKnownNegative(Limit
))
1030 // Check using normal isKnownNegative
1031 const SCEV
*LimitedBound
=
1032 SE
->getMinusSCEV(S
, SE
->getSMaxExpr(Size
, SE
->getOne(Size
->getType())));
1033 return SE
->isKnownNegative(LimitedBound
);
1036 bool DependenceInfo::isKnownNonNegative(const SCEV
*S
, const Value
*Ptr
) const {
1037 bool Inbounds
= false;
1038 if (auto *SrcGEP
= dyn_cast
<GetElementPtrInst
>(Ptr
))
1039 Inbounds
= SrcGEP
->isInBounds();
1041 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1042 if (AddRec
->isAffine()) {
1043 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1044 // If both parts are NonNegative, the end result will be NonNegative
1045 if (SE
->isKnownNonNegative(AddRec
->getStart()) &&
1046 SE
->isKnownNonNegative(AddRec
->getOperand(1)))
1052 return SE
->isKnownNonNegative(S
);
1055 // All subscripts are all the same type.
1056 // Loop bound may be smaller (e.g., a char).
1057 // Should zero extend loop bound, since it's always >= 0.
1058 // This routine collects upper bound and extends or truncates if needed.
1059 // Truncating is safe when subscripts are known not to wrap. Cases without
1060 // nowrap flags should have been rejected earlier.
1061 // Return null if no bound available.
1062 const SCEV
*DependenceInfo::collectUpperBound(const Loop
*L
, Type
*T
) const {
1063 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
1064 const SCEV
*UB
= SE
->getBackedgeTakenCount(L
);
1065 return SE
->getTruncateOrZeroExtend(UB
, T
);
1071 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1072 // If the cast fails, returns NULL.
1073 const SCEVConstant
*DependenceInfo::collectConstantUpperBound(const Loop
*L
,
1075 if (const SCEV
*UB
= collectUpperBound(L
, T
))
1076 return dyn_cast
<SCEVConstant
>(UB
);
1082 // When we have a pair of subscripts of the form [c1] and [c2],
1083 // where c1 and c2 are both loop invariant, we attack it using
1084 // the ZIV test. Basically, we test by comparing the two values,
1085 // but there are actually three possible results:
1086 // 1) the values are equal, so there's a dependence
1087 // 2) the values are different, so there's no dependence
1088 // 3) the values might be equal, so we have to assume a dependence.
1090 // Return true if dependence disproved.
1091 bool DependenceInfo::testZIV(const SCEV
*Src
, const SCEV
*Dst
,
1092 FullDependence
&Result
) const {
1093 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
1094 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
1096 if (isKnownPredicate(CmpInst::ICMP_EQ
, Src
, Dst
)) {
1097 LLVM_DEBUG(dbgs() << " provably dependent\n");
1098 return false; // provably dependent
1100 if (isKnownPredicate(CmpInst::ICMP_NE
, Src
, Dst
)) {
1101 LLVM_DEBUG(dbgs() << " provably independent\n");
1103 return true; // provably independent
1105 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1106 Result
.Consistent
= false;
1107 return false; // possibly dependent
1112 // From the paper, Practical Dependence Testing, Section 4.2.1
1114 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1115 // where i is an induction variable, c1 and c2 are loop invariant,
1116 // and a is a constant, we can solve it exactly using the Strong SIV test.
1118 // Can prove independence. Failing that, can compute distance (and direction).
1119 // In the presence of symbolic terms, we can sometimes make progress.
1121 // If there's a dependence,
1123 // c1 + a*i = c2 + a*i'
1125 // The dependence distance is
1127 // d = i' - i = (c1 - c2)/a
1129 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1130 // loop's upper bound. If a dependence exists, the dependence direction is
1134 // direction = { = if d = 0
1137 // Return true if dependence disproved.
1138 bool DependenceInfo::strongSIVtest(const SCEV
*Coeff
, const SCEV
*SrcConst
,
1139 const SCEV
*DstConst
, const Loop
*CurLoop
,
1140 unsigned Level
, FullDependence
&Result
,
1141 Constraint
&NewConstraint
) const {
1142 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1143 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
);
1144 LLVM_DEBUG(dbgs() << ", " << *Coeff
->getType() << "\n");
1145 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
);
1146 LLVM_DEBUG(dbgs() << ", " << *SrcConst
->getType() << "\n");
1147 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
);
1148 LLVM_DEBUG(dbgs() << ", " << *DstConst
->getType() << "\n");
1149 ++StrongSIVapplications
;
1150 assert(0 < Level
&& Level
<= CommonLevels
&& "level out of range");
1153 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1154 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
);
1155 LLVM_DEBUG(dbgs() << ", " << *Delta
->getType() << "\n");
1157 // check that |Delta| < iteration count
1158 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1159 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
);
1160 LLVM_DEBUG(dbgs() << ", " << *UpperBound
->getType() << "\n");
1161 const SCEV
*AbsDelta
=
1162 SE
->isKnownNonNegative(Delta
) ? Delta
: SE
->getNegativeSCEV(Delta
);
1163 const SCEV
*AbsCoeff
=
1164 SE
->isKnownNonNegative(Coeff
) ? Coeff
: SE
->getNegativeSCEV(Coeff
);
1165 const SCEV
*Product
= SE
->getMulExpr(UpperBound
, AbsCoeff
);
1166 if (isKnownPredicate(CmpInst::ICMP_SGT
, AbsDelta
, Product
)) {
1167 // Distance greater than trip count - no dependence
1168 ++StrongSIVindependence
;
1169 ++StrongSIVsuccesses
;
1174 // Can we compute distance?
1175 if (isa
<SCEVConstant
>(Delta
) && isa
<SCEVConstant
>(Coeff
)) {
1176 APInt ConstDelta
= cast
<SCEVConstant
>(Delta
)->getAPInt();
1177 APInt ConstCoeff
= cast
<SCEVConstant
>(Coeff
)->getAPInt();
1178 APInt Distance
= ConstDelta
; // these need to be initialized
1179 APInt Remainder
= ConstDelta
;
1180 APInt::sdivrem(ConstDelta
, ConstCoeff
, Distance
, Remainder
);
1181 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1182 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1183 // Make sure Coeff divides Delta exactly
1184 if (Remainder
!= 0) {
1185 // Coeff doesn't divide Distance, no dependence
1186 ++StrongSIVindependence
;
1187 ++StrongSIVsuccesses
;
1190 Result
.DV
[Level
].Distance
= SE
->getConstant(Distance
);
1191 NewConstraint
.setDistance(SE
->getConstant(Distance
), CurLoop
);
1192 if (Distance
.sgt(0))
1193 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LT
;
1194 else if (Distance
.slt(0))
1195 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GT
;
1197 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1198 ++StrongSIVsuccesses
;
1200 else if (Delta
->isZero()) {
1202 Result
.DV
[Level
].Distance
= Delta
;
1203 NewConstraint
.setDistance(Delta
, CurLoop
);
1204 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1205 ++StrongSIVsuccesses
;
1208 if (Coeff
->isOne()) {
1209 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta
<< "\n");
1210 Result
.DV
[Level
].Distance
= Delta
; // since X/1 == X
1211 NewConstraint
.setDistance(Delta
, CurLoop
);
1214 Result
.Consistent
= false;
1215 NewConstraint
.setLine(Coeff
,
1216 SE
->getNegativeSCEV(Coeff
),
1217 SE
->getNegativeSCEV(Delta
), CurLoop
);
1220 // maybe we can get a useful direction
1221 bool DeltaMaybeZero
= !SE
->isKnownNonZero(Delta
);
1222 bool DeltaMaybePositive
= !SE
->isKnownNonPositive(Delta
);
1223 bool DeltaMaybeNegative
= !SE
->isKnownNonNegative(Delta
);
1224 bool CoeffMaybePositive
= !SE
->isKnownNonPositive(Coeff
);
1225 bool CoeffMaybeNegative
= !SE
->isKnownNonNegative(Coeff
);
1226 // The double negatives above are confusing.
1227 // It helps to read !SE->isKnownNonZero(Delta)
1228 // as "Delta might be Zero"
1229 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1230 if ((DeltaMaybePositive
&& CoeffMaybePositive
) ||
1231 (DeltaMaybeNegative
&& CoeffMaybeNegative
))
1232 NewDirection
= Dependence::DVEntry::LT
;
1234 NewDirection
|= Dependence::DVEntry::EQ
;
1235 if ((DeltaMaybeNegative
&& CoeffMaybePositive
) ||
1236 (DeltaMaybePositive
&& CoeffMaybeNegative
))
1237 NewDirection
|= Dependence::DVEntry::GT
;
1238 if (NewDirection
< Result
.DV
[Level
].Direction
)
1239 ++StrongSIVsuccesses
;
1240 Result
.DV
[Level
].Direction
&= NewDirection
;
1246 // weakCrossingSIVtest -
1247 // From the paper, Practical Dependence Testing, Section 4.2.2
1249 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1250 // where i is an induction variable, c1 and c2 are loop invariant,
1251 // and a is a constant, we can solve it exactly using the
1252 // Weak-Crossing SIV test.
1254 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1255 // the two lines, where i = i', yielding
1257 // c1 + a*i = c2 - a*i
1261 // If i < 0, there is no dependence.
1262 // If i > upperbound, there is no dependence.
1263 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1264 // If i = upperbound, there's a dependence with distance = 0.
1265 // If i is integral, there's a dependence (all directions).
1266 // If the non-integer part = 1/2, there's a dependence (<> directions).
1267 // Otherwise, there's no dependence.
1269 // Can prove independence. Failing that,
1270 // can sometimes refine the directions.
1271 // Can determine iteration for splitting.
1273 // Return true if dependence disproved.
1274 bool DependenceInfo::weakCrossingSIVtest(
1275 const SCEV
*Coeff
, const SCEV
*SrcConst
, const SCEV
*DstConst
,
1276 const Loop
*CurLoop
, unsigned Level
, FullDependence
&Result
,
1277 Constraint
&NewConstraint
, const SCEV
*&SplitIter
) const {
1278 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1279 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
<< "\n");
1280 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1281 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1282 ++WeakCrossingSIVapplications
;
1283 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1285 Result
.Consistent
= false;
1286 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1287 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1288 NewConstraint
.setLine(Coeff
, Coeff
, Delta
, CurLoop
);
1289 if (Delta
->isZero()) {
1290 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1291 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1292 ++WeakCrossingSIVsuccesses
;
1293 if (!Result
.DV
[Level
].Direction
) {
1294 ++WeakCrossingSIVindependence
;
1297 Result
.DV
[Level
].Distance
= Delta
; // = 0
1300 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(Coeff
);
1304 Result
.DV
[Level
].Splitable
= true;
1305 if (SE
->isKnownNegative(ConstCoeff
)) {
1306 ConstCoeff
= dyn_cast
<SCEVConstant
>(SE
->getNegativeSCEV(ConstCoeff
));
1307 assert(ConstCoeff
&&
1308 "dynamic cast of negative of ConstCoeff should yield constant");
1309 Delta
= SE
->getNegativeSCEV(Delta
);
1311 assert(SE
->isKnownPositive(ConstCoeff
) && "ConstCoeff should be positive");
1313 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1314 SplitIter
= SE
->getUDivExpr(
1315 SE
->getSMaxExpr(SE
->getZero(Delta
->getType()), Delta
),
1316 SE
->getMulExpr(SE
->getConstant(Delta
->getType(), 2), ConstCoeff
));
1317 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter
<< "\n");
1319 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1323 // We're certain that ConstCoeff > 0; therefore,
1324 // if Delta < 0, then no dependence.
1325 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1326 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff
<< "\n");
1327 if (SE
->isKnownNegative(Delta
)) {
1328 // No dependence, Delta < 0
1329 ++WeakCrossingSIVindependence
;
1330 ++WeakCrossingSIVsuccesses
;
1334 // We're certain that Delta > 0 and ConstCoeff > 0.
1335 // Check Delta/(2*ConstCoeff) against upper loop bound
1336 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1337 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1338 const SCEV
*ConstantTwo
= SE
->getConstant(UpperBound
->getType(), 2);
1339 const SCEV
*ML
= SE
->getMulExpr(SE
->getMulExpr(ConstCoeff
, UpperBound
),
1341 LLVM_DEBUG(dbgs() << "\t ML = " << *ML
<< "\n");
1342 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, ML
)) {
1343 // Delta too big, no dependence
1344 ++WeakCrossingSIVindependence
;
1345 ++WeakCrossingSIVsuccesses
;
1348 if (isKnownPredicate(CmpInst::ICMP_EQ
, Delta
, ML
)) {
1350 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1351 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1352 ++WeakCrossingSIVsuccesses
;
1353 if (!Result
.DV
[Level
].Direction
) {
1354 ++WeakCrossingSIVindependence
;
1357 Result
.DV
[Level
].Splitable
= false;
1358 Result
.DV
[Level
].Distance
= SE
->getZero(Delta
->getType());
1363 // check that Coeff divides Delta
1364 APInt APDelta
= ConstDelta
->getAPInt();
1365 APInt APCoeff
= ConstCoeff
->getAPInt();
1366 APInt Distance
= APDelta
; // these need to be initialzed
1367 APInt Remainder
= APDelta
;
1368 APInt::sdivrem(APDelta
, APCoeff
, Distance
, Remainder
);
1369 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1370 if (Remainder
!= 0) {
1371 // Coeff doesn't divide Delta, no dependence
1372 ++WeakCrossingSIVindependence
;
1373 ++WeakCrossingSIVsuccesses
;
1376 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1378 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1379 APInt Two
= APInt(Distance
.getBitWidth(), 2, true);
1380 Remainder
= Distance
.srem(Two
);
1381 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1382 if (Remainder
!= 0) {
1383 // Equal direction isn't possible
1384 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
1385 ++WeakCrossingSIVsuccesses
;
1391 // Kirch's algorithm, from
1393 // Optimizing Supercompilers for Supercomputers
1397 // Program 2.1, page 29.
1398 // Computes the GCD of AM and BM.
1399 // Also finds a solution to the equation ax - by = gcd(a, b).
1400 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1401 static bool findGCD(unsigned Bits
, const APInt
&AM
, const APInt
&BM
,
1402 const APInt
&Delta
, APInt
&G
, APInt
&X
, APInt
&Y
) {
1403 APInt
A0(Bits
, 1, true), A1(Bits
, 0, true);
1404 APInt
B0(Bits
, 0, true), B1(Bits
, 1, true);
1405 APInt G0
= AM
.abs();
1406 APInt G1
= BM
.abs();
1407 APInt Q
= G0
; // these need to be initialized
1409 APInt::sdivrem(G0
, G1
, Q
, R
);
1411 APInt A2
= A0
- Q
*A1
; A0
= A1
; A1
= A2
;
1412 APInt B2
= B0
- Q
*B1
; B0
= B1
; B1
= B2
;
1414 APInt::sdivrem(G0
, G1
, Q
, R
);
1417 LLVM_DEBUG(dbgs() << "\t GCD = " << G
<< "\n");
1418 X
= AM
.slt(0) ? -A1
: A1
;
1419 Y
= BM
.slt(0) ? B1
: -B1
;
1421 // make sure gcd divides Delta
1424 return true; // gcd doesn't divide Delta, no dependence
1431 static APInt
floorOfQuotient(const APInt
&A
, const APInt
&B
) {
1432 APInt Q
= A
; // these need to be initialized
1434 APInt::sdivrem(A
, B
, Q
, R
);
1437 if ((A
.sgt(0) && B
.sgt(0)) ||
1438 (A
.slt(0) && B
.slt(0)))
1444 static APInt
ceilingOfQuotient(const APInt
&A
, const APInt
&B
) {
1445 APInt Q
= A
; // these need to be initialized
1447 APInt::sdivrem(A
, B
, Q
, R
);
1450 if ((A
.sgt(0) && B
.sgt(0)) ||
1451 (A
.slt(0) && B
.slt(0)))
1459 APInt
maxAPInt(APInt A
, APInt B
) {
1460 return A
.sgt(B
) ? A
: B
;
1465 APInt
minAPInt(APInt A
, APInt B
) {
1466 return A
.slt(B
) ? A
: B
;
1471 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1472 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1473 // and a2 are constant, we can solve it exactly using an algorithm developed
1474 // by Banerjee and Wolfe. See Section 2.5.3 in
1476 // Optimizing Supercompilers for Supercomputers
1480 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1481 // so use them if possible. They're also a bit better with symbolics and,
1482 // in the case of the strong SIV test, can compute Distances.
1484 // Return true if dependence disproved.
1485 bool DependenceInfo::exactSIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1486 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1487 const Loop
*CurLoop
, unsigned Level
,
1488 FullDependence
&Result
,
1489 Constraint
&NewConstraint
) const {
1490 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1491 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1492 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1493 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1494 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1495 ++ExactSIVapplications
;
1496 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1498 Result
.Consistent
= false;
1499 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1500 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1501 NewConstraint
.setLine(SrcCoeff
, SE
->getNegativeSCEV(DstCoeff
),
1503 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1504 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1505 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1506 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1511 APInt AM
= ConstSrcCoeff
->getAPInt();
1512 APInt BM
= ConstDstCoeff
->getAPInt();
1513 unsigned Bits
= AM
.getBitWidth();
1514 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1515 // gcd doesn't divide Delta, no dependence
1516 ++ExactSIVindependence
;
1517 ++ExactSIVsuccesses
;
1521 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1523 // since SCEV construction normalizes, LM = 0
1524 APInt
UM(Bits
, 1, true);
1525 bool UMvalid
= false;
1526 // UM is perhaps unavailable, let's check
1527 if (const SCEVConstant
*CUB
=
1528 collectConstantUpperBound(CurLoop
, Delta
->getType())) {
1529 UM
= CUB
->getAPInt();
1530 LLVM_DEBUG(dbgs() << "\t UM = " << UM
<< "\n");
1534 APInt
TU(APInt::getSignedMaxValue(Bits
));
1535 APInt
TL(APInt::getSignedMinValue(Bits
));
1537 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1538 APInt TMUL
= BM
.sdiv(G
);
1540 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1541 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1543 TU
= minAPInt(TU
, floorOfQuotient(UM
- X
, TMUL
));
1544 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1548 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1549 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1551 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- X
, TMUL
));
1552 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1556 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1559 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1560 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1562 TU
= minAPInt(TU
, floorOfQuotient(UM
- Y
, TMUL
));
1563 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1567 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1568 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1570 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- Y
, TMUL
));
1571 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1575 ++ExactSIVindependence
;
1576 ++ExactSIVsuccesses
;
1580 // explore directions
1581 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1584 APInt
SaveTU(TU
); // save these
1586 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1589 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
+ 1, TMUL
));
1590 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1593 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
+ 1, TMUL
));
1594 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1597 NewDirection
|= Dependence::DVEntry::LT
;
1598 ++ExactSIVsuccesses
;
1602 TU
= SaveTU
; // restore
1604 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1606 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
, TMUL
));
1607 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1610 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
, TMUL
));
1611 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1615 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
, TMUL
));
1616 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1619 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
, TMUL
));
1620 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1623 NewDirection
|= Dependence::DVEntry::EQ
;
1624 ++ExactSIVsuccesses
;
1628 TU
= SaveTU
; // restore
1630 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1632 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
+ 1, TMUL
));
1633 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1636 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
+ 1, TMUL
));
1637 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1640 NewDirection
|= Dependence::DVEntry::GT
;
1641 ++ExactSIVsuccesses
;
1645 Result
.DV
[Level
].Direction
&= NewDirection
;
1646 if (Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
)
1647 ++ExactSIVindependence
;
1648 return Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
;
1653 // Return true if the divisor evenly divides the dividend.
1655 bool isRemainderZero(const SCEVConstant
*Dividend
,
1656 const SCEVConstant
*Divisor
) {
1657 const APInt
&ConstDividend
= Dividend
->getAPInt();
1658 const APInt
&ConstDivisor
= Divisor
->getAPInt();
1659 return ConstDividend
.srem(ConstDivisor
) == 0;
1663 // weakZeroSrcSIVtest -
1664 // From the paper, Practical Dependence Testing, Section 4.2.2
1666 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1667 // where i is an induction variable, c1 and c2 are loop invariant,
1668 // and a is a constant, we can solve it exactly using the
1669 // Weak-Zero SIV test.
1679 // If i is not an integer, there's no dependence.
1680 // If i < 0 or > UB, there's no dependence.
1681 // If i = 0, the direction is >= and peeling the
1682 // 1st iteration will break the dependence.
1683 // If i = UB, the direction is <= and peeling the
1684 // last iteration will break the dependence.
1685 // Otherwise, the direction is *.
1687 // Can prove independence. Failing that, we can sometimes refine
1688 // the directions. Can sometimes show that first or last
1689 // iteration carries all the dependences (so worth peeling).
1691 // (see also weakZeroDstSIVtest)
1693 // Return true if dependence disproved.
1694 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV
*DstCoeff
,
1695 const SCEV
*SrcConst
,
1696 const SCEV
*DstConst
,
1697 const Loop
*CurLoop
, unsigned Level
,
1698 FullDependence
&Result
,
1699 Constraint
&NewConstraint
) const {
1700 // For the WeakSIV test, it's possible the loop isn't common to
1701 // the Src and Dst loops. If it isn't, then there's no need to
1702 // record a direction.
1703 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1704 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< "\n");
1705 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1706 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1707 ++WeakZeroSIVapplications
;
1708 assert(0 < Level
&& Level
<= MaxLevels
&& "Level out of range");
1710 Result
.Consistent
= false;
1711 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1712 NewConstraint
.setLine(SE
->getZero(Delta
->getType()), DstCoeff
, Delta
,
1714 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1715 if (isKnownPredicate(CmpInst::ICMP_EQ
, SrcConst
, DstConst
)) {
1716 if (Level
< CommonLevels
) {
1717 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1718 Result
.DV
[Level
].PeelFirst
= true;
1719 ++WeakZeroSIVsuccesses
;
1721 return false; // dependences caused by first iteration
1723 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1726 const SCEV
*AbsCoeff
=
1727 SE
->isKnownNegative(ConstCoeff
) ?
1728 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1729 const SCEV
*NewDelta
=
1730 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1732 // check that Delta/SrcCoeff < iteration count
1733 // really check NewDelta < count*AbsCoeff
1734 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1735 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1736 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1737 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1738 ++WeakZeroSIVindependence
;
1739 ++WeakZeroSIVsuccesses
;
1742 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1743 // dependences caused by last iteration
1744 if (Level
< CommonLevels
) {
1745 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1746 Result
.DV
[Level
].PeelLast
= true;
1747 ++WeakZeroSIVsuccesses
;
1753 // check that Delta/SrcCoeff >= 0
1754 // really check that NewDelta >= 0
1755 if (SE
->isKnownNegative(NewDelta
)) {
1756 // No dependence, newDelta < 0
1757 ++WeakZeroSIVindependence
;
1758 ++WeakZeroSIVsuccesses
;
1762 // if SrcCoeff doesn't divide Delta, then no dependence
1763 if (isa
<SCEVConstant
>(Delta
) &&
1764 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1765 ++WeakZeroSIVindependence
;
1766 ++WeakZeroSIVsuccesses
;
1773 // weakZeroDstSIVtest -
1774 // From the paper, Practical Dependence Testing, Section 4.2.2
1776 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1777 // where i is an induction variable, c1 and c2 are loop invariant,
1778 // and a is a constant, we can solve it exactly using the
1779 // Weak-Zero SIV test.
1789 // If i is not an integer, there's no dependence.
1790 // If i < 0 or > UB, there's no dependence.
1791 // If i = 0, the direction is <= and peeling the
1792 // 1st iteration will break the dependence.
1793 // If i = UB, the direction is >= and peeling the
1794 // last iteration will break the dependence.
1795 // Otherwise, the direction is *.
1797 // Can prove independence. Failing that, we can sometimes refine
1798 // the directions. Can sometimes show that first or last
1799 // iteration carries all the dependences (so worth peeling).
1801 // (see also weakZeroSrcSIVtest)
1803 // Return true if dependence disproved.
1804 bool DependenceInfo::weakZeroDstSIVtest(const SCEV
*SrcCoeff
,
1805 const SCEV
*SrcConst
,
1806 const SCEV
*DstConst
,
1807 const Loop
*CurLoop
, unsigned Level
,
1808 FullDependence
&Result
,
1809 Constraint
&NewConstraint
) const {
1810 // For the WeakSIV test, it's possible the loop isn't common to the
1811 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1812 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1813 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< "\n");
1814 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1815 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1816 ++WeakZeroSIVapplications
;
1817 assert(0 < Level
&& Level
<= SrcLevels
&& "Level out of range");
1819 Result
.Consistent
= false;
1820 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1821 NewConstraint
.setLine(SrcCoeff
, SE
->getZero(Delta
->getType()), Delta
,
1823 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1824 if (isKnownPredicate(CmpInst::ICMP_EQ
, DstConst
, SrcConst
)) {
1825 if (Level
< CommonLevels
) {
1826 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1827 Result
.DV
[Level
].PeelFirst
= true;
1828 ++WeakZeroSIVsuccesses
;
1830 return false; // dependences caused by first iteration
1832 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1835 const SCEV
*AbsCoeff
=
1836 SE
->isKnownNegative(ConstCoeff
) ?
1837 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1838 const SCEV
*NewDelta
=
1839 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1841 // check that Delta/SrcCoeff < iteration count
1842 // really check NewDelta < count*AbsCoeff
1843 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1844 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1845 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1846 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1847 ++WeakZeroSIVindependence
;
1848 ++WeakZeroSIVsuccesses
;
1851 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1852 // dependences caused by last iteration
1853 if (Level
< CommonLevels
) {
1854 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1855 Result
.DV
[Level
].PeelLast
= true;
1856 ++WeakZeroSIVsuccesses
;
1862 // check that Delta/SrcCoeff >= 0
1863 // really check that NewDelta >= 0
1864 if (SE
->isKnownNegative(NewDelta
)) {
1865 // No dependence, newDelta < 0
1866 ++WeakZeroSIVindependence
;
1867 ++WeakZeroSIVsuccesses
;
1871 // if SrcCoeff doesn't divide Delta, then no dependence
1872 if (isa
<SCEVConstant
>(Delta
) &&
1873 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1874 ++WeakZeroSIVindependence
;
1875 ++WeakZeroSIVsuccesses
;
1882 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1883 // Things of the form [c1 + a*i] and [c2 + b*j],
1884 // where i and j are induction variable, c1 and c2 are loop invariant,
1885 // and a and b are constants.
1886 // Returns true if any possible dependence is disproved.
1887 // Marks the result as inconsistent.
1888 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1889 bool DependenceInfo::exactRDIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1890 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1891 const Loop
*SrcLoop
, const Loop
*DstLoop
,
1892 FullDependence
&Result
) const {
1893 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1894 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1895 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1896 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1897 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1898 ++ExactRDIVapplications
;
1899 Result
.Consistent
= false;
1900 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1901 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1902 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1903 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1904 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1905 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1910 APInt AM
= ConstSrcCoeff
->getAPInt();
1911 APInt BM
= ConstDstCoeff
->getAPInt();
1912 unsigned Bits
= AM
.getBitWidth();
1913 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1914 // gcd doesn't divide Delta, no dependence
1915 ++ExactRDIVindependence
;
1919 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1921 // since SCEV construction seems to normalize, LM = 0
1922 APInt
SrcUM(Bits
, 1, true);
1923 bool SrcUMvalid
= false;
1924 // SrcUM is perhaps unavailable, let's check
1925 if (const SCEVConstant
*UpperBound
=
1926 collectConstantUpperBound(SrcLoop
, Delta
->getType())) {
1927 SrcUM
= UpperBound
->getAPInt();
1928 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM
<< "\n");
1932 APInt
DstUM(Bits
, 1, true);
1933 bool DstUMvalid
= false;
1934 // UM is perhaps unavailable, let's check
1935 if (const SCEVConstant
*UpperBound
=
1936 collectConstantUpperBound(DstLoop
, Delta
->getType())) {
1937 DstUM
= UpperBound
->getAPInt();
1938 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM
<< "\n");
1942 APInt
TU(APInt::getSignedMaxValue(Bits
));
1943 APInt
TL(APInt::getSignedMinValue(Bits
));
1945 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1946 APInt TMUL
= BM
.sdiv(G
);
1948 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1949 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1951 TU
= minAPInt(TU
, floorOfQuotient(SrcUM
- X
, TMUL
));
1952 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1956 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1957 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1959 TL
= maxAPInt(TL
, ceilingOfQuotient(SrcUM
- X
, TMUL
));
1960 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1964 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1967 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1968 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1970 TU
= minAPInt(TU
, floorOfQuotient(DstUM
- Y
, TMUL
));
1971 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1975 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1976 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1978 TL
= maxAPInt(TL
, ceilingOfQuotient(DstUM
- Y
, TMUL
));
1979 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1983 ++ExactRDIVindependence
;
1988 // symbolicRDIVtest -
1989 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1990 // introduce a special case of Banerjee's Inequalities (also called the
1991 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1992 // particularly cases with symbolics. Since it's only able to disprove
1993 // dependence (not compute distances or directions), we'll use it as a
1994 // fall back for the other tests.
1996 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1997 // where i and j are induction variables and c1 and c2 are loop invariants,
1998 // we can use the symbolic tests to disprove some dependences, serving as a
1999 // backup for the RDIV test. Note that i and j can be the same variable,
2000 // letting this test serve as a backup for the various SIV tests.
2002 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2003 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2004 // loop bounds for the i and j loops, respectively. So, ...
2006 // c1 + a1*i = c2 + a2*j
2007 // a1*i - a2*j = c2 - c1
2009 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2010 // range of the maximum and minimum possible values of a1*i - a2*j.
2011 // Considering the signs of a1 and a2, we have 4 possible cases:
2013 // 1) If a1 >= 0 and a2 >= 0, then
2014 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2015 // -a2*N2 <= c2 - c1 <= a1*N1
2017 // 2) If a1 >= 0 and a2 <= 0, then
2018 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2019 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2021 // 3) If a1 <= 0 and a2 >= 0, then
2022 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2023 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2025 // 4) If a1 <= 0 and a2 <= 0, then
2026 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2027 // a1*N1 <= c2 - c1 <= -a2*N2
2029 // return true if dependence disproved
2030 bool DependenceInfo::symbolicRDIVtest(const SCEV
*A1
, const SCEV
*A2
,
2031 const SCEV
*C1
, const SCEV
*C2
,
2033 const Loop
*Loop2
) const {
2034 ++SymbolicRDIVapplications
;
2035 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2036 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1
);
2037 LLVM_DEBUG(dbgs() << ", type = " << *A1
->getType() << "\n");
2038 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2
<< "\n");
2039 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1
<< "\n");
2040 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2
<< "\n");
2041 const SCEV
*N1
= collectUpperBound(Loop1
, A1
->getType());
2042 const SCEV
*N2
= collectUpperBound(Loop2
, A1
->getType());
2043 LLVM_DEBUG(if (N1
) dbgs() << "\t N1 = " << *N1
<< "\n");
2044 LLVM_DEBUG(if (N2
) dbgs() << "\t N2 = " << *N2
<< "\n");
2045 const SCEV
*C2_C1
= SE
->getMinusSCEV(C2
, C1
);
2046 const SCEV
*C1_C2
= SE
->getMinusSCEV(C1
, C2
);
2047 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1
<< "\n");
2048 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2
<< "\n");
2049 if (SE
->isKnownNonNegative(A1
)) {
2050 if (SE
->isKnownNonNegative(A2
)) {
2051 // A1 >= 0 && A2 >= 0
2053 // make sure that c2 - c1 <= a1*N1
2054 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2055 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2056 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1
)) {
2057 ++SymbolicRDIVindependence
;
2062 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2063 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2064 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2065 if (isKnownPredicate(CmpInst::ICMP_SLT
, A2N2
, C1_C2
)) {
2066 ++SymbolicRDIVindependence
;
2071 else if (SE
->isKnownNonPositive(A2
)) {
2072 // a1 >= 0 && a2 <= 0
2074 // make sure that c2 - c1 <= a1*N1 - a2*N2
2075 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2076 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2077 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2078 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2079 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1_A2N2
)) {
2080 ++SymbolicRDIVindependence
;
2084 // make sure that 0 <= c2 - c1
2085 if (SE
->isKnownNegative(C2_C1
)) {
2086 ++SymbolicRDIVindependence
;
2091 else if (SE
->isKnownNonPositive(A1
)) {
2092 if (SE
->isKnownNonNegative(A2
)) {
2093 // a1 <= 0 && a2 >= 0
2095 // make sure that a1*N1 - a2*N2 <= c2 - c1
2096 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2097 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2098 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2099 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2100 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1_A2N2
, C2_C1
)) {
2101 ++SymbolicRDIVindependence
;
2105 // make sure that c2 - c1 <= 0
2106 if (SE
->isKnownPositive(C2_C1
)) {
2107 ++SymbolicRDIVindependence
;
2111 else if (SE
->isKnownNonPositive(A2
)) {
2112 // a1 <= 0 && a2 <= 0
2114 // make sure that a1*N1 <= c2 - c1
2115 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2116 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2117 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1
, C2_C1
)) {
2118 ++SymbolicRDIVindependence
;
2123 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2124 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2125 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2126 if (isKnownPredicate(CmpInst::ICMP_SLT
, C1_C2
, A2N2
)) {
2127 ++SymbolicRDIVindependence
;
2138 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2139 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2140 // a2 are constant, we attack it with an SIV test. While they can all be
2141 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2142 // they apply; they're cheaper and sometimes more precise.
2144 // Return true if dependence disproved.
2145 bool DependenceInfo::testSIV(const SCEV
*Src
, const SCEV
*Dst
, unsigned &Level
,
2146 FullDependence
&Result
, Constraint
&NewConstraint
,
2147 const SCEV
*&SplitIter
) const {
2148 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2149 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2150 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2151 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2152 if (SrcAddRec
&& DstAddRec
) {
2153 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2154 const SCEV
*DstConst
= DstAddRec
->getStart();
2155 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2156 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2157 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2158 assert(CurLoop
== DstAddRec
->getLoop() &&
2159 "both loops in SIV should be same");
2160 Level
= mapSrcLoop(CurLoop
);
2162 if (SrcCoeff
== DstCoeff
)
2163 disproven
= strongSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2164 Level
, Result
, NewConstraint
);
2165 else if (SrcCoeff
== SE
->getNegativeSCEV(DstCoeff
))
2166 disproven
= weakCrossingSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2167 Level
, Result
, NewConstraint
, SplitIter
);
2169 disproven
= exactSIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
,
2170 Level
, Result
, NewConstraint
);
2172 gcdMIVtest(Src
, Dst
, Result
) ||
2173 symbolicRDIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
, CurLoop
);
2176 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2177 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2178 const SCEV
*DstConst
= Dst
;
2179 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2180 Level
= mapSrcLoop(CurLoop
);
2181 return weakZeroDstSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2182 Level
, Result
, NewConstraint
) ||
2183 gcdMIVtest(Src
, Dst
, Result
);
2186 const SCEV
*DstConst
= DstAddRec
->getStart();
2187 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2188 const SCEV
*SrcConst
= Src
;
2189 const Loop
*CurLoop
= DstAddRec
->getLoop();
2190 Level
= mapDstLoop(CurLoop
);
2191 return weakZeroSrcSIVtest(DstCoeff
, SrcConst
, DstConst
,
2192 CurLoop
, Level
, Result
, NewConstraint
) ||
2193 gcdMIVtest(Src
, Dst
, Result
);
2195 llvm_unreachable("SIV test expected at least one AddRec");
2201 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2202 // where i and j are induction variables, c1 and c2 are loop invariant,
2203 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2204 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2205 // It doesn't make sense to talk about distance or direction in this case,
2206 // so there's no point in making special versions of the Strong SIV test or
2207 // the Weak-crossing SIV test.
2209 // With minor algebra, this test can also be used for things like
2210 // [c1 + a1*i + a2*j][c2].
2212 // Return true if dependence disproved.
2213 bool DependenceInfo::testRDIV(const SCEV
*Src
, const SCEV
*Dst
,
2214 FullDependence
&Result
) const {
2215 // we have 3 possible situations here:
2216 // 1) [a*i + b] and [c*j + d]
2217 // 2) [a*i + c*j + b] and [d]
2218 // 3) [b] and [a*i + c*j + d]
2219 // We need to find what we've got and get organized
2221 const SCEV
*SrcConst
, *DstConst
;
2222 const SCEV
*SrcCoeff
, *DstCoeff
;
2223 const Loop
*SrcLoop
, *DstLoop
;
2225 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2226 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2227 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2228 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2229 if (SrcAddRec
&& DstAddRec
) {
2230 SrcConst
= SrcAddRec
->getStart();
2231 SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2232 SrcLoop
= SrcAddRec
->getLoop();
2233 DstConst
= DstAddRec
->getStart();
2234 DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2235 DstLoop
= DstAddRec
->getLoop();
2237 else if (SrcAddRec
) {
2238 if (const SCEVAddRecExpr
*tmpAddRec
=
2239 dyn_cast
<SCEVAddRecExpr
>(SrcAddRec
->getStart())) {
2240 SrcConst
= tmpAddRec
->getStart();
2241 SrcCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2242 SrcLoop
= tmpAddRec
->getLoop();
2244 DstCoeff
= SE
->getNegativeSCEV(SrcAddRec
->getStepRecurrence(*SE
));
2245 DstLoop
= SrcAddRec
->getLoop();
2248 llvm_unreachable("RDIV reached by surprising SCEVs");
2250 else if (DstAddRec
) {
2251 if (const SCEVAddRecExpr
*tmpAddRec
=
2252 dyn_cast
<SCEVAddRecExpr
>(DstAddRec
->getStart())) {
2253 DstConst
= tmpAddRec
->getStart();
2254 DstCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2255 DstLoop
= tmpAddRec
->getLoop();
2257 SrcCoeff
= SE
->getNegativeSCEV(DstAddRec
->getStepRecurrence(*SE
));
2258 SrcLoop
= DstAddRec
->getLoop();
2261 llvm_unreachable("RDIV reached by surprising SCEVs");
2264 llvm_unreachable("RDIV expected at least one AddRec");
2265 return exactRDIVtest(SrcCoeff
, DstCoeff
,
2269 gcdMIVtest(Src
, Dst
, Result
) ||
2270 symbolicRDIVtest(SrcCoeff
, DstCoeff
,
2276 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2277 // Return true if dependence disproved.
2278 // Can sometimes refine direction vectors.
2279 bool DependenceInfo::testMIV(const SCEV
*Src
, const SCEV
*Dst
,
2280 const SmallBitVector
&Loops
,
2281 FullDependence
&Result
) const {
2282 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2283 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2284 Result
.Consistent
= false;
2285 return gcdMIVtest(Src
, Dst
, Result
) ||
2286 banerjeeMIVtest(Src
, Dst
, Loops
, Result
);
2290 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2291 // in this case 10. If there is no constant part, returns NULL.
2293 const SCEVConstant
*getConstantPart(const SCEV
*Expr
) {
2294 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Expr
))
2296 else if (const auto *Product
= dyn_cast
<SCEVMulExpr
>(Expr
))
2297 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Product
->getOperand(0)))
2303 //===----------------------------------------------------------------------===//
2305 // Tests an MIV subscript pair for dependence.
2306 // Returns true if any possible dependence is disproved.
2307 // Marks the result as inconsistent.
2308 // Can sometimes disprove the equal direction for 1 or more loops,
2309 // as discussed in Michael Wolfe's book,
2310 // High Performance Compilers for Parallel Computing, page 235.
2312 // We spend some effort (code!) to handle cases like
2313 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2314 // but M and N are just loop-invariant variables.
2315 // This should help us handle linearized subscripts;
2316 // also makes this test a useful backup to the various SIV tests.
2318 // It occurs to me that the presence of loop-invariant variables
2319 // changes the nature of the test from "greatest common divisor"
2320 // to "a common divisor".
2321 bool DependenceInfo::gcdMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2322 FullDependence
&Result
) const {
2323 LLVM_DEBUG(dbgs() << "starting gcd\n");
2325 unsigned BitWidth
= SE
->getTypeSizeInBits(Src
->getType());
2326 APInt RunningGCD
= APInt::getNullValue(BitWidth
);
2328 // Examine Src coefficients.
2329 // Compute running GCD and record source constant.
2330 // Because we're looking for the constant at the end of the chain,
2331 // we can't quit the loop just because the GCD == 1.
2332 const SCEV
*Coefficients
= Src
;
2333 while (const SCEVAddRecExpr
*AddRec
=
2334 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2335 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2336 // If the coefficient is the product of a constant and other stuff,
2337 // we can use the constant in the GCD computation.
2338 const auto *Constant
= getConstantPart(Coeff
);
2341 APInt ConstCoeff
= Constant
->getAPInt();
2342 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2343 Coefficients
= AddRec
->getStart();
2345 const SCEV
*SrcConst
= Coefficients
;
2347 // Examine Dst coefficients.
2348 // Compute running GCD and record destination constant.
2349 // Because we're looking for the constant at the end of the chain,
2350 // we can't quit the loop just because the GCD == 1.
2352 while (const SCEVAddRecExpr
*AddRec
=
2353 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2354 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2355 // If the coefficient is the product of a constant and other stuff,
2356 // we can use the constant in the GCD computation.
2357 const auto *Constant
= getConstantPart(Coeff
);
2360 APInt ConstCoeff
= Constant
->getAPInt();
2361 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2362 Coefficients
= AddRec
->getStart();
2364 const SCEV
*DstConst
= Coefficients
;
2366 APInt ExtraGCD
= APInt::getNullValue(BitWidth
);
2367 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
2368 LLVM_DEBUG(dbgs() << " Delta = " << *Delta
<< "\n");
2369 const SCEVConstant
*Constant
= dyn_cast
<SCEVConstant
>(Delta
);
2370 if (const SCEVAddExpr
*Sum
= dyn_cast
<SCEVAddExpr
>(Delta
)) {
2371 // If Delta is a sum of products, we may be able to make further progress.
2372 for (unsigned Op
= 0, Ops
= Sum
->getNumOperands(); Op
< Ops
; Op
++) {
2373 const SCEV
*Operand
= Sum
->getOperand(Op
);
2374 if (isa
<SCEVConstant
>(Operand
)) {
2375 assert(!Constant
&& "Surprised to find multiple constants");
2376 Constant
= cast
<SCEVConstant
>(Operand
);
2378 else if (const SCEVMulExpr
*Product
= dyn_cast
<SCEVMulExpr
>(Operand
)) {
2379 // Search for constant operand to participate in GCD;
2380 // If none found; return false.
2381 const SCEVConstant
*ConstOp
= getConstantPart(Product
);
2384 APInt ConstOpValue
= ConstOp
->getAPInt();
2385 ExtraGCD
= APIntOps::GreatestCommonDivisor(ExtraGCD
,
2386 ConstOpValue
.abs());
2394 APInt ConstDelta
= cast
<SCEVConstant
>(Constant
)->getAPInt();
2395 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta
<< "\n");
2396 if (ConstDelta
== 0)
2398 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ExtraGCD
);
2399 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD
<< "\n");
2400 APInt Remainder
= ConstDelta
.srem(RunningGCD
);
2401 if (Remainder
!= 0) {
2406 // Try to disprove equal directions.
2407 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2408 // the code above can't disprove the dependence because the GCD = 1.
2409 // So we consider what happen if i = i' and what happens if j = j'.
2410 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2411 // which is infeasible, so we can disallow the = direction for the i level.
2412 // Setting j = j' doesn't help matters, so we end up with a direction vector
2415 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2416 // we need to remember that the constant part is 5 and the RunningGCD should
2417 // be initialized to ExtraGCD = 30.
2418 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD
<< '\n');
2420 bool Improved
= false;
2422 while (const SCEVAddRecExpr
*AddRec
=
2423 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2424 Coefficients
= AddRec
->getStart();
2425 const Loop
*CurLoop
= AddRec
->getLoop();
2426 RunningGCD
= ExtraGCD
;
2427 const SCEV
*SrcCoeff
= AddRec
->getStepRecurrence(*SE
);
2428 const SCEV
*DstCoeff
= SE
->getMinusSCEV(SrcCoeff
, SrcCoeff
);
2429 const SCEV
*Inner
= Src
;
2430 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2431 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2432 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2433 if (CurLoop
== AddRec
->getLoop())
2434 ; // SrcCoeff == Coeff
2436 // If the coefficient is the product of a constant and other stuff,
2437 // we can use the constant in the GCD computation.
2438 Constant
= getConstantPart(Coeff
);
2441 APInt ConstCoeff
= Constant
->getAPInt();
2442 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2444 Inner
= AddRec
->getStart();
2447 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2448 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2449 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2450 if (CurLoop
== AddRec
->getLoop())
2453 // If the coefficient is the product of a constant and other stuff,
2454 // we can use the constant in the GCD computation.
2455 Constant
= getConstantPart(Coeff
);
2458 APInt ConstCoeff
= Constant
->getAPInt();
2459 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2461 Inner
= AddRec
->getStart();
2463 Delta
= SE
->getMinusSCEV(SrcCoeff
, DstCoeff
);
2464 // If the coefficient is the product of a constant and other stuff,
2465 // we can use the constant in the GCD computation.
2466 Constant
= getConstantPart(Delta
);
2468 // The difference of the two coefficients might not be a product
2469 // or constant, in which case we give up on this direction.
2471 APInt ConstCoeff
= Constant
->getAPInt();
2472 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2473 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD
<< "\n");
2474 if (RunningGCD
!= 0) {
2475 Remainder
= ConstDelta
.srem(RunningGCD
);
2476 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder
<< "\n");
2477 if (Remainder
!= 0) {
2478 unsigned Level
= mapSrcLoop(CurLoop
);
2479 Result
.DV
[Level
- 1].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
2486 LLVM_DEBUG(dbgs() << "all done\n");
2491 //===----------------------------------------------------------------------===//
2492 // banerjeeMIVtest -
2493 // Use Banerjee's Inequalities to test an MIV subscript pair.
2494 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2495 // Generally follows the discussion in Section 2.5.2 of
2497 // Optimizing Supercompilers for Supercomputers
2500 // The inequalities given on page 25 are simplified in that loops are
2501 // normalized so that the lower bound is always 0 and the stride is always 1.
2502 // For example, Wolfe gives
2504 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2506 // where A_k is the coefficient of the kth index in the source subscript,
2507 // B_k is the coefficient of the kth index in the destination subscript,
2508 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2509 // index, and N_k is the stride of the kth index. Since all loops are normalized
2510 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2513 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2514 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2516 // Similar simplifications are possible for the other equations.
2518 // When we can't determine the number of iterations for a loop,
2519 // we use NULL as an indicator for the worst case, infinity.
2520 // When computing the upper bound, NULL denotes +inf;
2521 // for the lower bound, NULL denotes -inf.
2523 // Return true if dependence disproved.
2524 bool DependenceInfo::banerjeeMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2525 const SmallBitVector
&Loops
,
2526 FullDependence
&Result
) const {
2527 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2528 ++BanerjeeApplications
;
2529 LLVM_DEBUG(dbgs() << " Src = " << *Src
<< '\n');
2531 CoefficientInfo
*A
= collectCoeffInfo(Src
, true, A0
);
2532 LLVM_DEBUG(dbgs() << " Dst = " << *Dst
<< '\n');
2534 CoefficientInfo
*B
= collectCoeffInfo(Dst
, false, B0
);
2535 BoundInfo
*Bound
= new BoundInfo
[MaxLevels
+ 1];
2536 const SCEV
*Delta
= SE
->getMinusSCEV(B0
, A0
);
2537 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta
<< '\n');
2539 // Compute bounds for all the * directions.
2540 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2541 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2542 Bound
[K
].Iterations
= A
[K
].Iterations
? A
[K
].Iterations
: B
[K
].Iterations
;
2543 Bound
[K
].Direction
= Dependence::DVEntry::ALL
;
2544 Bound
[K
].DirSet
= Dependence::DVEntry::NONE
;
2545 findBoundsALL(A
, B
, Bound
, K
);
2547 LLVM_DEBUG(dbgs() << "\t " << K
<< '\t');
2548 if (Bound
[K
].Lower
[Dependence::DVEntry::ALL
])
2549 LLVM_DEBUG(dbgs() << *Bound
[K
].Lower
[Dependence::DVEntry::ALL
] << '\t');
2551 LLVM_DEBUG(dbgs() << "-inf\t");
2552 if (Bound
[K
].Upper
[Dependence::DVEntry::ALL
])
2553 LLVM_DEBUG(dbgs() << *Bound
[K
].Upper
[Dependence::DVEntry::ALL
] << '\n');
2555 LLVM_DEBUG(dbgs() << "+inf\n");
2559 // Test the *, *, *, ... case.
2560 bool Disproved
= false;
2561 if (testBounds(Dependence::DVEntry::ALL
, 0, Bound
, Delta
)) {
2562 // Explore the direction vector hierarchy.
2563 unsigned DepthExpanded
= 0;
2564 unsigned NewDeps
= exploreDirections(1, A
, B
, Bound
,
2565 Loops
, DepthExpanded
, Delta
);
2567 bool Improved
= false;
2568 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2570 unsigned Old
= Result
.DV
[K
- 1].Direction
;
2571 Result
.DV
[K
- 1].Direction
= Old
& Bound
[K
].DirSet
;
2572 Improved
|= Old
!= Result
.DV
[K
- 1].Direction
;
2573 if (!Result
.DV
[K
- 1].Direction
) {
2581 ++BanerjeeSuccesses
;
2584 ++BanerjeeIndependence
;
2589 ++BanerjeeIndependence
;
2599 // Hierarchically expands the direction vector
2600 // search space, combining the directions of discovered dependences
2601 // in the DirSet field of Bound. Returns the number of distinct
2602 // dependences discovered. If the dependence is disproved,
2603 // it will return 0.
2604 unsigned DependenceInfo::exploreDirections(unsigned Level
, CoefficientInfo
*A
,
2605 CoefficientInfo
*B
, BoundInfo
*Bound
,
2606 const SmallBitVector
&Loops
,
2607 unsigned &DepthExpanded
,
2608 const SCEV
*Delta
) const {
2609 if (Level
> CommonLevels
) {
2611 LLVM_DEBUG(dbgs() << "\t[");
2612 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2614 Bound
[K
].DirSet
|= Bound
[K
].Direction
;
2616 switch (Bound
[K
].Direction
) {
2617 case Dependence::DVEntry::LT
:
2618 LLVM_DEBUG(dbgs() << " <");
2620 case Dependence::DVEntry::EQ
:
2621 LLVM_DEBUG(dbgs() << " =");
2623 case Dependence::DVEntry::GT
:
2624 LLVM_DEBUG(dbgs() << " >");
2626 case Dependence::DVEntry::ALL
:
2627 LLVM_DEBUG(dbgs() << " *");
2630 llvm_unreachable("unexpected Bound[K].Direction");
2635 LLVM_DEBUG(dbgs() << " ]\n");
2639 if (Level
> DepthExpanded
) {
2640 DepthExpanded
= Level
;
2641 // compute bounds for <, =, > at current level
2642 findBoundsLT(A
, B
, Bound
, Level
);
2643 findBoundsGT(A
, B
, Bound
, Level
);
2644 findBoundsEQ(A
, B
, Bound
, Level
);
2646 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level
<< '\n');
2647 LLVM_DEBUG(dbgs() << "\t <\t");
2648 if (Bound
[Level
].Lower
[Dependence::DVEntry::LT
])
2649 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::LT
]
2652 LLVM_DEBUG(dbgs() << "-inf\t");
2653 if (Bound
[Level
].Upper
[Dependence::DVEntry::LT
])
2654 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::LT
]
2657 LLVM_DEBUG(dbgs() << "+inf\n");
2658 LLVM_DEBUG(dbgs() << "\t =\t");
2659 if (Bound
[Level
].Lower
[Dependence::DVEntry::EQ
])
2660 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::EQ
]
2663 LLVM_DEBUG(dbgs() << "-inf\t");
2664 if (Bound
[Level
].Upper
[Dependence::DVEntry::EQ
])
2665 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::EQ
]
2668 LLVM_DEBUG(dbgs() << "+inf\n");
2669 LLVM_DEBUG(dbgs() << "\t >\t");
2670 if (Bound
[Level
].Lower
[Dependence::DVEntry::GT
])
2671 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::GT
]
2674 LLVM_DEBUG(dbgs() << "-inf\t");
2675 if (Bound
[Level
].Upper
[Dependence::DVEntry::GT
])
2676 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::GT
]
2679 LLVM_DEBUG(dbgs() << "+inf\n");
2683 unsigned NewDeps
= 0;
2685 // test bounds for <, *, *, ...
2686 if (testBounds(Dependence::DVEntry::LT
, Level
, Bound
, Delta
))
2687 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2688 Loops
, DepthExpanded
, Delta
);
2690 // Test bounds for =, *, *, ...
2691 if (testBounds(Dependence::DVEntry::EQ
, Level
, Bound
, Delta
))
2692 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2693 Loops
, DepthExpanded
, Delta
);
2695 // test bounds for >, *, *, ...
2696 if (testBounds(Dependence::DVEntry::GT
, Level
, Bound
, Delta
))
2697 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2698 Loops
, DepthExpanded
, Delta
);
2700 Bound
[Level
].Direction
= Dependence::DVEntry::ALL
;
2704 return exploreDirections(Level
+ 1, A
, B
, Bound
, Loops
, DepthExpanded
, Delta
);
2708 // Returns true iff the current bounds are plausible.
2709 bool DependenceInfo::testBounds(unsigned char DirKind
, unsigned Level
,
2710 BoundInfo
*Bound
, const SCEV
*Delta
) const {
2711 Bound
[Level
].Direction
= DirKind
;
2712 if (const SCEV
*LowerBound
= getLowerBound(Bound
))
2713 if (isKnownPredicate(CmpInst::ICMP_SGT
, LowerBound
, Delta
))
2715 if (const SCEV
*UpperBound
= getUpperBound(Bound
))
2716 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, UpperBound
))
2722 // Computes the upper and lower bounds for level K
2723 // using the * direction. Records them in Bound.
2724 // Wolfe gives the equations
2726 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2727 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2729 // Since we normalize loops, we can simplify these equations to
2731 // LB^*_k = (A^-_k - B^+_k)U_k
2732 // UB^*_k = (A^+_k - B^-_k)U_k
2734 // We must be careful to handle the case where the upper bound is unknown.
2735 // Note that the lower bound is always <= 0
2736 // and the upper bound is always >= 0.
2737 void DependenceInfo::findBoundsALL(CoefficientInfo
*A
, CoefficientInfo
*B
,
2738 BoundInfo
*Bound
, unsigned K
) const {
2739 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] = nullptr; // Default value = -infinity.
2740 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] = nullptr; // Default value = +infinity.
2741 if (Bound
[K
].Iterations
) {
2742 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2743 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].PosPart
),
2744 Bound
[K
].Iterations
);
2745 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2746 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].NegPart
),
2747 Bound
[K
].Iterations
);
2750 // If the difference is 0, we won't need to know the number of iterations.
2751 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].NegPart
, B
[K
].PosPart
))
2752 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2753 SE
->getZero(A
[K
].Coeff
->getType());
2754 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].PosPart
, B
[K
].NegPart
))
2755 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2756 SE
->getZero(A
[K
].Coeff
->getType());
2761 // Computes the upper and lower bounds for level K
2762 // using the = direction. Records them in Bound.
2763 // Wolfe gives the equations
2765 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2766 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2768 // Since we normalize loops, we can simplify these equations to
2770 // LB^=_k = (A_k - B_k)^- U_k
2771 // UB^=_k = (A_k - B_k)^+ U_k
2773 // We must be careful to handle the case where the upper bound is unknown.
2774 // Note that the lower bound is always <= 0
2775 // and the upper bound is always >= 0.
2776 void DependenceInfo::findBoundsEQ(CoefficientInfo
*A
, CoefficientInfo
*B
,
2777 BoundInfo
*Bound
, unsigned K
) const {
2778 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = nullptr; // Default value = -infinity.
2779 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = nullptr; // Default value = +infinity.
2780 if (Bound
[K
].Iterations
) {
2781 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2782 const SCEV
*NegativePart
= getNegativePart(Delta
);
2783 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] =
2784 SE
->getMulExpr(NegativePart
, Bound
[K
].Iterations
);
2785 const SCEV
*PositivePart
= getPositivePart(Delta
);
2786 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] =
2787 SE
->getMulExpr(PositivePart
, Bound
[K
].Iterations
);
2790 // If the positive/negative part of the difference is 0,
2791 // we won't need to know the number of iterations.
2792 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2793 const SCEV
*NegativePart
= getNegativePart(Delta
);
2794 if (NegativePart
->isZero())
2795 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = NegativePart
; // Zero
2796 const SCEV
*PositivePart
= getPositivePart(Delta
);
2797 if (PositivePart
->isZero())
2798 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = PositivePart
; // Zero
2803 // Computes the upper and lower bounds for level K
2804 // using the < direction. Records them in Bound.
2805 // Wolfe gives the equations
2807 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2808 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2810 // Since we normalize loops, we can simplify these equations to
2812 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2813 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2815 // We must be careful to handle the case where the upper bound is unknown.
2816 void DependenceInfo::findBoundsLT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2817 BoundInfo
*Bound
, unsigned K
) const {
2818 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = nullptr; // Default value = -infinity.
2819 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = nullptr; // Default value = +infinity.
2820 if (Bound
[K
].Iterations
) {
2821 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2822 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2823 const SCEV
*NegPart
=
2824 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2825 Bound
[K
].Lower
[Dependence::DVEntry::LT
] =
2826 SE
->getMinusSCEV(SE
->getMulExpr(NegPart
, Iter_1
), B
[K
].Coeff
);
2827 const SCEV
*PosPart
=
2828 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2829 Bound
[K
].Upper
[Dependence::DVEntry::LT
] =
2830 SE
->getMinusSCEV(SE
->getMulExpr(PosPart
, Iter_1
), B
[K
].Coeff
);
2833 // If the positive/negative part of the difference is 0,
2834 // we won't need to know the number of iterations.
2835 const SCEV
*NegPart
=
2836 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2837 if (NegPart
->isZero())
2838 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2839 const SCEV
*PosPart
=
2840 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2841 if (PosPart
->isZero())
2842 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2847 // Computes the upper and lower bounds for level K
2848 // using the > direction. Records them in Bound.
2849 // Wolfe gives the equations
2851 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2852 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2854 // Since we normalize loops, we can simplify these equations to
2856 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2857 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2859 // We must be careful to handle the case where the upper bound is unknown.
2860 void DependenceInfo::findBoundsGT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2861 BoundInfo
*Bound
, unsigned K
) const {
2862 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = nullptr; // Default value = -infinity.
2863 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = nullptr; // Default value = +infinity.
2864 if (Bound
[K
].Iterations
) {
2865 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2866 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2867 const SCEV
*NegPart
=
2868 getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2869 Bound
[K
].Lower
[Dependence::DVEntry::GT
] =
2870 SE
->getAddExpr(SE
->getMulExpr(NegPart
, Iter_1
), A
[K
].Coeff
);
2871 const SCEV
*PosPart
=
2872 getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2873 Bound
[K
].Upper
[Dependence::DVEntry::GT
] =
2874 SE
->getAddExpr(SE
->getMulExpr(PosPart
, Iter_1
), A
[K
].Coeff
);
2877 // If the positive/negative part of the difference is 0,
2878 // we won't need to know the number of iterations.
2879 const SCEV
*NegPart
= getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2880 if (NegPart
->isZero())
2881 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2882 const SCEV
*PosPart
= getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2883 if (PosPart
->isZero())
2884 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2890 const SCEV
*DependenceInfo::getPositivePart(const SCEV
*X
) const {
2891 return SE
->getSMaxExpr(X
, SE
->getZero(X
->getType()));
2896 const SCEV
*DependenceInfo::getNegativePart(const SCEV
*X
) const {
2897 return SE
->getSMinExpr(X
, SE
->getZero(X
->getType()));
2901 // Walks through the subscript,
2902 // collecting each coefficient, the associated loop bounds,
2903 // and recording its positive and negative parts for later use.
2904 DependenceInfo::CoefficientInfo
*
2905 DependenceInfo::collectCoeffInfo(const SCEV
*Subscript
, bool SrcFlag
,
2906 const SCEV
*&Constant
) const {
2907 const SCEV
*Zero
= SE
->getZero(Subscript
->getType());
2908 CoefficientInfo
*CI
= new CoefficientInfo
[MaxLevels
+ 1];
2909 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2911 CI
[K
].PosPart
= Zero
;
2912 CI
[K
].NegPart
= Zero
;
2913 CI
[K
].Iterations
= nullptr;
2915 while (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Subscript
)) {
2916 const Loop
*L
= AddRec
->getLoop();
2917 unsigned K
= SrcFlag
? mapSrcLoop(L
) : mapDstLoop(L
);
2918 CI
[K
].Coeff
= AddRec
->getStepRecurrence(*SE
);
2919 CI
[K
].PosPart
= getPositivePart(CI
[K
].Coeff
);
2920 CI
[K
].NegPart
= getNegativePart(CI
[K
].Coeff
);
2921 CI
[K
].Iterations
= collectUpperBound(L
, Subscript
->getType());
2922 Subscript
= AddRec
->getStart();
2924 Constant
= Subscript
;
2926 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2927 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2928 LLVM_DEBUG(dbgs() << "\t " << K
<< "\t" << *CI
[K
].Coeff
);
2929 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2930 LLVM_DEBUG(dbgs() << *CI
[K
].PosPart
);
2931 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2932 LLVM_DEBUG(dbgs() << *CI
[K
].NegPart
);
2933 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2934 if (CI
[K
].Iterations
)
2935 LLVM_DEBUG(dbgs() << *CI
[K
].Iterations
);
2937 LLVM_DEBUG(dbgs() << "+inf");
2938 LLVM_DEBUG(dbgs() << '\n');
2940 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript
<< '\n');
2946 // Looks through all the bounds info and
2947 // computes the lower bound given the current direction settings
2948 // at each level. If the lower bound for any level is -inf,
2949 // the result is -inf.
2950 const SCEV
*DependenceInfo::getLowerBound(BoundInfo
*Bound
) const {
2951 const SCEV
*Sum
= Bound
[1].Lower
[Bound
[1].Direction
];
2952 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2953 if (Bound
[K
].Lower
[Bound
[K
].Direction
])
2954 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Lower
[Bound
[K
].Direction
]);
2962 // Looks through all the bounds info and
2963 // computes the upper bound given the current direction settings
2964 // at each level. If the upper bound at any level is +inf,
2965 // the result is +inf.
2966 const SCEV
*DependenceInfo::getUpperBound(BoundInfo
*Bound
) const {
2967 const SCEV
*Sum
= Bound
[1].Upper
[Bound
[1].Direction
];
2968 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2969 if (Bound
[K
].Upper
[Bound
[K
].Direction
])
2970 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Upper
[Bound
[K
].Direction
]);
2978 //===----------------------------------------------------------------------===//
2979 // Constraint manipulation for Delta test.
2981 // Given a linear SCEV,
2982 // return the coefficient (the step)
2983 // corresponding to the specified loop.
2984 // If there isn't one, return 0.
2985 // For example, given a*i + b*j + c*k, finding the coefficient
2986 // corresponding to the j loop would yield b.
2987 const SCEV
*DependenceInfo::findCoefficient(const SCEV
*Expr
,
2988 const Loop
*TargetLoop
) const {
2989 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
2991 return SE
->getZero(Expr
->getType());
2992 if (AddRec
->getLoop() == TargetLoop
)
2993 return AddRec
->getStepRecurrence(*SE
);
2994 return findCoefficient(AddRec
->getStart(), TargetLoop
);
2998 // Given a linear SCEV,
2999 // return the SCEV given by zeroing out the coefficient
3000 // corresponding to the specified loop.
3001 // For example, given a*i + b*j + c*k, zeroing the coefficient
3002 // corresponding to the j loop would yield a*i + c*k.
3003 const SCEV
*DependenceInfo::zeroCoefficient(const SCEV
*Expr
,
3004 const Loop
*TargetLoop
) const {
3005 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3007 return Expr
; // ignore
3008 if (AddRec
->getLoop() == TargetLoop
)
3009 return AddRec
->getStart();
3010 return SE
->getAddRecExpr(zeroCoefficient(AddRec
->getStart(), TargetLoop
),
3011 AddRec
->getStepRecurrence(*SE
),
3013 AddRec
->getNoWrapFlags());
3017 // Given a linear SCEV Expr,
3018 // return the SCEV given by adding some Value to the
3019 // coefficient corresponding to the specified TargetLoop.
3020 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3021 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3022 const SCEV
*DependenceInfo::addToCoefficient(const SCEV
*Expr
,
3023 const Loop
*TargetLoop
,
3024 const SCEV
*Value
) const {
3025 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3026 if (!AddRec
) // create a new addRec
3027 return SE
->getAddRecExpr(Expr
,
3030 SCEV::FlagAnyWrap
); // Worst case, with no info.
3031 if (AddRec
->getLoop() == TargetLoop
) {
3032 const SCEV
*Sum
= SE
->getAddExpr(AddRec
->getStepRecurrence(*SE
), Value
);
3034 return AddRec
->getStart();
3035 return SE
->getAddRecExpr(AddRec
->getStart(),
3038 AddRec
->getNoWrapFlags());
3040 if (SE
->isLoopInvariant(AddRec
, TargetLoop
))
3041 return SE
->getAddRecExpr(AddRec
, Value
, TargetLoop
, SCEV::FlagAnyWrap
);
3042 return SE
->getAddRecExpr(
3043 addToCoefficient(AddRec
->getStart(), TargetLoop
, Value
),
3044 AddRec
->getStepRecurrence(*SE
), AddRec
->getLoop(),
3045 AddRec
->getNoWrapFlags());
3049 // Review the constraints, looking for opportunities
3050 // to simplify a subscript pair (Src and Dst).
3051 // Return true if some simplification occurs.
3052 // If the simplification isn't exact (that is, if it is conservative
3053 // in terms of dependence), set consistent to false.
3054 // Corresponds to Figure 5 from the paper
3056 // Practical Dependence Testing
3057 // Goff, Kennedy, Tseng
3059 bool DependenceInfo::propagate(const SCEV
*&Src
, const SCEV
*&Dst
,
3060 SmallBitVector
&Loops
,
3061 SmallVectorImpl
<Constraint
> &Constraints
,
3063 bool Result
= false;
3064 for (unsigned LI
: Loops
.set_bits()) {
3065 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI
<< "] is");
3066 LLVM_DEBUG(Constraints
[LI
].dump(dbgs()));
3067 if (Constraints
[LI
].isDistance())
3068 Result
|= propagateDistance(Src
, Dst
, Constraints
[LI
], Consistent
);
3069 else if (Constraints
[LI
].isLine())
3070 Result
|= propagateLine(Src
, Dst
, Constraints
[LI
], Consistent
);
3071 else if (Constraints
[LI
].isPoint())
3072 Result
|= propagatePoint(Src
, Dst
, Constraints
[LI
]);
3078 // Attempt to propagate a distance
3079 // constraint into a subscript pair (Src and Dst).
3080 // Return true if some simplification occurs.
3081 // If the simplification isn't exact (that is, if it is conservative
3082 // in terms of dependence), set consistent to false.
3083 bool DependenceInfo::propagateDistance(const SCEV
*&Src
, const SCEV
*&Dst
,
3084 Constraint
&CurConstraint
,
3086 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3087 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3088 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3091 const SCEV
*DA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getD());
3092 Src
= SE
->getMinusSCEV(Src
, DA_K
);
3093 Src
= zeroCoefficient(Src
, CurLoop
);
3094 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3095 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3096 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getNegativeSCEV(A_K
));
3097 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3098 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3104 // Attempt to propagate a line
3105 // constraint into a subscript pair (Src and Dst).
3106 // Return true if some simplification occurs.
3107 // If the simplification isn't exact (that is, if it is conservative
3108 // in terms of dependence), set consistent to false.
3109 bool DependenceInfo::propagateLine(const SCEV
*&Src
, const SCEV
*&Dst
,
3110 Constraint
&CurConstraint
,
3112 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3113 const SCEV
*A
= CurConstraint
.getA();
3114 const SCEV
*B
= CurConstraint
.getB();
3115 const SCEV
*C
= CurConstraint
.getC();
3116 LLVM_DEBUG(dbgs() << "\t\tA = " << *A
<< ", B = " << *B
<< ", C = " << *C
3118 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src
<< "\n");
3119 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst
<< "\n");
3121 const SCEVConstant
*Bconst
= dyn_cast
<SCEVConstant
>(B
);
3122 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3123 if (!Bconst
|| !Cconst
) return false;
3124 APInt Beta
= Bconst
->getAPInt();
3125 APInt Charlie
= Cconst
->getAPInt();
3126 APInt CdivB
= Charlie
.sdiv(Beta
);
3127 assert(Charlie
.srem(Beta
) == 0 && "C should be evenly divisible by B");
3128 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3129 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3130 Src
= SE
->getMinusSCEV(Src
, SE
->getMulExpr(AP_K
, SE
->getConstant(CdivB
)));
3131 Dst
= zeroCoefficient(Dst
, CurLoop
);
3132 if (!findCoefficient(Src
, CurLoop
)->isZero())
3135 else if (B
->isZero()) {
3136 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3137 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3138 if (!Aconst
|| !Cconst
) return false;
3139 APInt Alpha
= Aconst
->getAPInt();
3140 APInt Charlie
= Cconst
->getAPInt();
3141 APInt CdivA
= Charlie
.sdiv(Alpha
);
3142 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3143 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3144 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3145 Src
= zeroCoefficient(Src
, CurLoop
);
3146 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3149 else if (isKnownPredicate(CmpInst::ICMP_EQ
, A
, B
)) {
3150 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3151 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3152 if (!Aconst
|| !Cconst
) return false;
3153 APInt Alpha
= Aconst
->getAPInt();
3154 APInt Charlie
= Cconst
->getAPInt();
3155 APInt CdivA
= Charlie
.sdiv(Alpha
);
3156 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3157 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3158 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3159 Src
= zeroCoefficient(Src
, CurLoop
);
3160 Dst
= addToCoefficient(Dst
, CurLoop
, A_K
);
3161 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3165 // paper is incorrect here, or perhaps just misleading
3166 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3167 Src
= SE
->getMulExpr(Src
, A
);
3168 Dst
= SE
->getMulExpr(Dst
, A
);
3169 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, C
));
3170 Src
= zeroCoefficient(Src
, CurLoop
);
3171 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getMulExpr(A_K
, B
));
3172 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3175 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src
<< "\n");
3176 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst
<< "\n");
3181 // Attempt to propagate a point
3182 // constraint into a subscript pair (Src and Dst).
3183 // Return true if some simplification occurs.
3184 bool DependenceInfo::propagatePoint(const SCEV
*&Src
, const SCEV
*&Dst
,
3185 Constraint
&CurConstraint
) {
3186 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3187 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3188 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3189 const SCEV
*XA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getX());
3190 const SCEV
*YAP_K
= SE
->getMulExpr(AP_K
, CurConstraint
.getY());
3191 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3192 Src
= SE
->getAddExpr(Src
, SE
->getMinusSCEV(XA_K
, YAP_K
));
3193 Src
= zeroCoefficient(Src
, CurLoop
);
3194 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3195 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3196 Dst
= zeroCoefficient(Dst
, CurLoop
);
3197 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3202 // Update direction vector entry based on the current constraint.
3203 void DependenceInfo::updateDirection(Dependence::DVEntry
&Level
,
3204 const Constraint
&CurConstraint
) const {
3205 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3206 LLVM_DEBUG(CurConstraint
.dump(dbgs()));
3207 if (CurConstraint
.isAny())
3209 else if (CurConstraint
.isDistance()) {
3210 // this one is consistent, the others aren't
3211 Level
.Scalar
= false;
3212 Level
.Distance
= CurConstraint
.getD();
3213 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3214 if (!SE
->isKnownNonZero(Level
.Distance
)) // if may be zero
3215 NewDirection
= Dependence::DVEntry::EQ
;
3216 if (!SE
->isKnownNonPositive(Level
.Distance
)) // if may be positive
3217 NewDirection
|= Dependence::DVEntry::LT
;
3218 if (!SE
->isKnownNonNegative(Level
.Distance
)) // if may be negative
3219 NewDirection
|= Dependence::DVEntry::GT
;
3220 Level
.Direction
&= NewDirection
;
3222 else if (CurConstraint
.isLine()) {
3223 Level
.Scalar
= false;
3224 Level
.Distance
= nullptr;
3225 // direction should be accurate
3227 else if (CurConstraint
.isPoint()) {
3228 Level
.Scalar
= false;
3229 Level
.Distance
= nullptr;
3230 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3231 if (!isKnownPredicate(CmpInst::ICMP_NE
,
3232 CurConstraint
.getY(),
3233 CurConstraint
.getX()))
3235 NewDirection
|= Dependence::DVEntry::EQ
;
3236 if (!isKnownPredicate(CmpInst::ICMP_SLE
,
3237 CurConstraint
.getY(),
3238 CurConstraint
.getX()))
3240 NewDirection
|= Dependence::DVEntry::LT
;
3241 if (!isKnownPredicate(CmpInst::ICMP_SGE
,
3242 CurConstraint
.getY(),
3243 CurConstraint
.getX()))
3245 NewDirection
|= Dependence::DVEntry::GT
;
3246 Level
.Direction
&= NewDirection
;
3249 llvm_unreachable("constraint has unexpected kind");
3252 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3253 /// source and destination array references are recurrences on a nested loop,
3254 /// this function flattens the nested recurrences into separate recurrences
3255 /// for each loop level.
3256 bool DependenceInfo::tryDelinearize(Instruction
*Src
, Instruction
*Dst
,
3257 SmallVectorImpl
<Subscript
> &Pair
) {
3258 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3259 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3260 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3261 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3263 Loop
*SrcLoop
= LI
->getLoopFor(Src
->getParent());
3264 Loop
*DstLoop
= LI
->getLoopFor(Dst
->getParent());
3266 // Below code mimics the code in Delinearization.cpp
3267 const SCEV
*SrcAccessFn
=
3268 SE
->getSCEVAtScope(SrcPtr
, SrcLoop
);
3269 const SCEV
*DstAccessFn
=
3270 SE
->getSCEVAtScope(DstPtr
, DstLoop
);
3272 const SCEVUnknown
*SrcBase
=
3273 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(SrcAccessFn
));
3274 const SCEVUnknown
*DstBase
=
3275 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(DstAccessFn
));
3277 if (!SrcBase
|| !DstBase
|| SrcBase
!= DstBase
)
3280 const SCEV
*ElementSize
= SE
->getElementSize(Src
);
3281 if (ElementSize
!= SE
->getElementSize(Dst
))
3284 const SCEV
*SrcSCEV
= SE
->getMinusSCEV(SrcAccessFn
, SrcBase
);
3285 const SCEV
*DstSCEV
= SE
->getMinusSCEV(DstAccessFn
, DstBase
);
3287 const SCEVAddRecExpr
*SrcAR
= dyn_cast
<SCEVAddRecExpr
>(SrcSCEV
);
3288 const SCEVAddRecExpr
*DstAR
= dyn_cast
<SCEVAddRecExpr
>(DstSCEV
);
3289 if (!SrcAR
|| !DstAR
|| !SrcAR
->isAffine() || !DstAR
->isAffine())
3292 // First step: collect parametric terms in both array references.
3293 SmallVector
<const SCEV
*, 4> Terms
;
3294 SE
->collectParametricTerms(SrcAR
, Terms
);
3295 SE
->collectParametricTerms(DstAR
, Terms
);
3297 // Second step: find subscript sizes.
3298 SmallVector
<const SCEV
*, 4> Sizes
;
3299 SE
->findArrayDimensions(Terms
, Sizes
, ElementSize
);
3301 // Third step: compute the access functions for each subscript.
3302 SmallVector
<const SCEV
*, 4> SrcSubscripts
, DstSubscripts
;
3303 SE
->computeAccessFunctions(SrcAR
, SrcSubscripts
, Sizes
);
3304 SE
->computeAccessFunctions(DstAR
, DstSubscripts
, Sizes
);
3306 // Fail when there is only a subscript: that's a linearized access function.
3307 if (SrcSubscripts
.size() < 2 || DstSubscripts
.size() < 2 ||
3308 SrcSubscripts
.size() != DstSubscripts
.size())
3311 int size
= SrcSubscripts
.size();
3313 // Statically check that the array bounds are in-range. The first subscript we
3314 // don't have a size for and it cannot overflow into another subscript, so is
3315 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3317 // FIXME: It may be better to record these sizes and add them as constraints
3318 // to the dependency checks.
3319 for (int i
= 1; i
< size
; ++i
) {
3320 if (!isKnownNonNegative(SrcSubscripts
[i
], SrcPtr
))
3323 if (!isKnownLessThan(SrcSubscripts
[i
], Sizes
[i
- 1]))
3326 if (!isKnownNonNegative(DstSubscripts
[i
], DstPtr
))
3329 if (!isKnownLessThan(DstSubscripts
[i
], Sizes
[i
- 1]))
3334 dbgs() << "\nSrcSubscripts: ";
3335 for (int i
= 0; i
< size
; i
++)
3336 dbgs() << *SrcSubscripts
[i
];
3337 dbgs() << "\nDstSubscripts: ";
3338 for (int i
= 0; i
< size
; i
++)
3339 dbgs() << *DstSubscripts
[i
];
3342 // The delinearization transforms a single-subscript MIV dependence test into
3343 // a multi-subscript SIV dependence test that is easier to compute. So we
3344 // resize Pair to contain as many pairs of subscripts as the delinearization
3345 // has found, and then initialize the pairs following the delinearization.
3347 for (int i
= 0; i
< size
; ++i
) {
3348 Pair
[i
].Src
= SrcSubscripts
[i
];
3349 Pair
[i
].Dst
= DstSubscripts
[i
];
3350 unifySubscriptType(&Pair
[i
]);
3356 //===----------------------------------------------------------------------===//
3359 // For debugging purposes, dump a small bit vector to dbgs().
3360 static void dumpSmallBitVector(SmallBitVector
&BV
) {
3362 for (unsigned VI
: BV
.set_bits()) {
3364 if (BV
.find_next(VI
) >= 0)
3371 bool DependenceInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
3372 FunctionAnalysisManager::Invalidator
&Inv
) {
3373 // Check if the analysis itself has been invalidated.
3374 auto PAC
= PA
.getChecker
<DependenceAnalysis
>();
3375 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
3378 // Check transitive dependencies.
3379 return Inv
.invalidate
<AAManager
>(F
, PA
) ||
3380 Inv
.invalidate
<ScalarEvolutionAnalysis
>(F
, PA
) ||
3381 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
3385 // Returns NULL if there is no dependence.
3386 // Otherwise, return a Dependence with as many details as possible.
3387 // Corresponds to Section 3.1 in the paper
3389 // Practical Dependence Testing
3390 // Goff, Kennedy, Tseng
3393 // Care is required to keep the routine below, getSplitIteration(),
3394 // up to date with respect to this routine.
3395 std::unique_ptr
<Dependence
>
3396 DependenceInfo::depends(Instruction
*Src
, Instruction
*Dst
,
3397 bool PossiblyLoopIndependent
) {
3399 PossiblyLoopIndependent
= false;
3401 if ((!Src
->mayReadFromMemory() && !Src
->mayWriteToMemory()) ||
3402 (!Dst
->mayReadFromMemory() && !Dst
->mayWriteToMemory()))
3403 // if both instructions don't reference memory, there's no dependence
3406 if (!isLoadOrStore(Src
) || !isLoadOrStore(Dst
)) {
3407 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3408 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3409 return make_unique
<Dependence
>(Src
, Dst
);
3412 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3413 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3414 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3415 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3417 switch (underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3418 MemoryLocation::get(Dst
),
3419 MemoryLocation::get(Src
))) {
3422 // cannot analyse objects if we don't understand their aliasing.
3423 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3424 return make_unique
<Dependence
>(Src
, Dst
);
3426 // If the objects noalias, they are distinct, accesses are independent.
3427 LLVM_DEBUG(dbgs() << "no alias\n");
3430 break; // The underlying objects alias; test accesses for dependence.
3433 // establish loop nesting levels
3434 establishNestingLevels(Src
, Dst
);
3435 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels
<< "\n");
3436 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels
<< "\n");
3438 FullDependence
Result(Src
, Dst
, PossiblyLoopIndependent
, CommonLevels
);
3442 SmallVector
<Subscript
, 2> Pair(Pairs
);
3443 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3444 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3445 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV
<< "\n");
3446 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV
<< "\n");
3447 Pair
[0].Src
= SrcSCEV
;
3448 Pair
[0].Dst
= DstSCEV
;
3451 if (tryDelinearize(Src
, Dst
, Pair
)) {
3452 LLVM_DEBUG(dbgs() << " delinearized\n");
3453 Pairs
= Pair
.size();
3457 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3458 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3459 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3460 Pair
[P
].Group
.resize(Pairs
);
3461 removeMatchingExtensions(&Pair
[P
]);
3462 Pair
[P
].Classification
=
3463 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3464 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3466 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3467 Pair
[P
].Group
.set(P
);
3468 LLVM_DEBUG(dbgs() << " subscript " << P
<< "\n");
3469 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair
[P
].Src
<< "\n");
3470 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair
[P
].Dst
<< "\n");
3471 LLVM_DEBUG(dbgs() << "\tclass = " << Pair
[P
].Classification
<< "\n");
3472 LLVM_DEBUG(dbgs() << "\tloops = ");
3473 LLVM_DEBUG(dumpSmallBitVector(Pair
[P
].Loops
));
3476 SmallBitVector
Separable(Pairs
);
3477 SmallBitVector
Coupled(Pairs
);
3479 // Partition subscripts into separable and minimally-coupled groups
3480 // Algorithm in paper is algorithmically better;
3481 // this may be faster in practice. Check someday.
3483 // Here's an example of how it works. Consider this code:
3490 // A[i][j][k][m] = ...;
3491 // ... = A[0][j][l][i + j];
3498 // There are 4 subscripts here:
3502 // 3 [m] and [i + j]
3504 // We've already classified each subscript pair as ZIV, SIV, etc.,
3505 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3506 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3507 // and set Pair[P].Group = {P}.
3509 // Src Dst Classification Loops GroupLoops Group
3510 // 0 [i] [0] SIV {1} {1} {0}
3511 // 1 [j] [j] SIV {2} {2} {1}
3512 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3513 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3515 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3516 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3518 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3519 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3520 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3521 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3522 // to either Separable or Coupled).
3524 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3525 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3526 // so Pair[3].Group = {0, 1, 3} and Done = false.
3528 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3529 // Since Done remains true, we add 2 to the set of Separable pairs.
3531 // Finally, we consider 3. There's nothing to compare it with,
3532 // so Done remains true and we add it to the Coupled set.
3533 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3535 // In the end, we've got 1 separable subscript and 1 coupled group.
3536 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3537 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3538 // ignore these, but collect loops for later
3539 ++NonlinearSubscriptPairs
;
3540 collectCommonLoops(Pair
[SI
].Src
,
3541 LI
->getLoopFor(Src
->getParent()),
3543 collectCommonLoops(Pair
[SI
].Dst
,
3544 LI
->getLoopFor(Dst
->getParent()),
3546 Result
.Consistent
= false;
3547 } else if (Pair
[SI
].Classification
== Subscript::ZIV
) {
3552 // SIV, RDIV, or MIV, so check for coupled group
3554 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3555 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3556 Intersection
&= Pair
[SJ
].GroupLoops
;
3557 if (Intersection
.any()) {
3558 // accumulate set of all the loops in group
3559 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3560 // accumulate set of all subscripts in group
3561 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3566 if (Pair
[SI
].Group
.count() == 1) {
3568 ++SeparableSubscriptPairs
;
3572 ++CoupledSubscriptPairs
;
3578 LLVM_DEBUG(dbgs() << " Separable = ");
3579 LLVM_DEBUG(dumpSmallBitVector(Separable
));
3580 LLVM_DEBUG(dbgs() << " Coupled = ");
3581 LLVM_DEBUG(dumpSmallBitVector(Coupled
));
3583 Constraint NewConstraint
;
3584 NewConstraint
.setAny(SE
);
3586 // test separable subscripts
3587 for (unsigned SI
: Separable
.set_bits()) {
3588 LLVM_DEBUG(dbgs() << "testing subscript " << SI
);
3589 switch (Pair
[SI
].Classification
) {
3590 case Subscript::ZIV
:
3591 LLVM_DEBUG(dbgs() << ", ZIV\n");
3592 if (testZIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3595 case Subscript::SIV
: {
3596 LLVM_DEBUG(dbgs() << ", SIV\n");
3598 const SCEV
*SplitIter
= nullptr;
3599 if (testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
, Result
, NewConstraint
,
3604 case Subscript::RDIV
:
3605 LLVM_DEBUG(dbgs() << ", RDIV\n");
3606 if (testRDIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3609 case Subscript::MIV
:
3610 LLVM_DEBUG(dbgs() << ", MIV\n");
3611 if (testMIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Pair
[SI
].Loops
, Result
))
3615 llvm_unreachable("subscript has unexpected classification");
3619 if (Coupled
.count()) {
3620 // test coupled subscript groups
3621 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3622 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels
+ 1 << "\n");
3623 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3624 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3625 Constraints
[II
].setAny(SE
);
3626 for (unsigned SI
: Coupled
.set_bits()) {
3627 LLVM_DEBUG(dbgs() << "testing subscript group " << SI
<< " { ");
3628 SmallBitVector
Group(Pair
[SI
].Group
);
3629 SmallBitVector
Sivs(Pairs
);
3630 SmallBitVector
Mivs(Pairs
);
3631 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3632 SmallVector
<Subscript
*, 4> PairsInGroup
;
3633 for (unsigned SJ
: Group
.set_bits()) {
3634 LLVM_DEBUG(dbgs() << SJ
<< " ");
3635 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3639 PairsInGroup
.push_back(&Pair
[SJ
]);
3641 unifySubscriptType(PairsInGroup
);
3642 LLVM_DEBUG(dbgs() << "}\n");
3643 while (Sivs
.any()) {
3644 bool Changed
= false;
3645 for (unsigned SJ
: Sivs
.set_bits()) {
3646 LLVM_DEBUG(dbgs() << "testing subscript " << SJ
<< ", SIV\n");
3647 // SJ is an SIV subscript that's part of the current coupled group
3649 const SCEV
*SplitIter
= nullptr;
3650 LLVM_DEBUG(dbgs() << "SIV\n");
3651 if (testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
, Result
, NewConstraint
,
3654 ConstrainedLevels
.set(Level
);
3655 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
)) {
3656 if (Constraints
[Level
].isEmpty()) {
3657 ++DeltaIndependence
;
3665 // propagate, possibly creating new SIVs and ZIVs
3666 LLVM_DEBUG(dbgs() << " propagating\n");
3667 LLVM_DEBUG(dbgs() << "\tMivs = ");
3668 LLVM_DEBUG(dumpSmallBitVector(Mivs
));
3669 for (unsigned SJ
: Mivs
.set_bits()) {
3670 // SJ is an MIV subscript that's part of the current coupled group
3671 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ
<< "\n");
3672 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
,
3673 Constraints
, Result
.Consistent
)) {
3674 LLVM_DEBUG(dbgs() << "\t Changed\n");
3675 ++DeltaPropagations
;
3676 Pair
[SJ
].Classification
=
3677 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3678 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3680 switch (Pair
[SJ
].Classification
) {
3681 case Subscript::ZIV
:
3682 LLVM_DEBUG(dbgs() << "ZIV\n");
3683 if (testZIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3687 case Subscript::SIV
:
3691 case Subscript::RDIV
:
3692 case Subscript::MIV
:
3695 llvm_unreachable("bad subscript classification");
3702 // test & propagate remaining RDIVs
3703 for (unsigned SJ
: Mivs
.set_bits()) {
3704 if (Pair
[SJ
].Classification
== Subscript::RDIV
) {
3705 LLVM_DEBUG(dbgs() << "RDIV test\n");
3706 if (testRDIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3708 // I don't yet understand how to propagate RDIV results
3713 // test remaining MIVs
3714 // This code is temporary.
3715 // Better to somehow test all remaining subscripts simultaneously.
3716 for (unsigned SJ
: Mivs
.set_bits()) {
3717 if (Pair
[SJ
].Classification
== Subscript::MIV
) {
3718 LLVM_DEBUG(dbgs() << "MIV test\n");
3719 if (testMIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
, Result
))
3723 llvm_unreachable("expected only MIV subscripts at this point");
3726 // update Result.DV from constraint vector
3727 LLVM_DEBUG(dbgs() << " updating\n");
3728 for (unsigned SJ
: ConstrainedLevels
.set_bits()) {
3729 if (SJ
> CommonLevels
)
3731 updateDirection(Result
.DV
[SJ
- 1], Constraints
[SJ
]);
3732 if (Result
.DV
[SJ
- 1].Direction
== Dependence::DVEntry::NONE
)
3738 // Make sure the Scalar flags are set correctly.
3739 SmallBitVector
CompleteLoops(MaxLevels
+ 1);
3740 for (unsigned SI
= 0; SI
< Pairs
; ++SI
)
3741 CompleteLoops
|= Pair
[SI
].Loops
;
3742 for (unsigned II
= 1; II
<= CommonLevels
; ++II
)
3743 if (CompleteLoops
[II
])
3744 Result
.DV
[II
- 1].Scalar
= false;
3746 if (PossiblyLoopIndependent
) {
3747 // Make sure the LoopIndependent flag is set correctly.
3748 // All directions must include equal, otherwise no
3749 // loop-independent dependence is possible.
3750 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3751 if (!(Result
.getDirection(II
) & Dependence::DVEntry::EQ
)) {
3752 Result
.LoopIndependent
= false;
3758 // On the other hand, if all directions are equal and there's no
3759 // loop-independent dependence possible, then no dependence exists.
3760 bool AllEqual
= true;
3761 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3762 if (Result
.getDirection(II
) != Dependence::DVEntry::EQ
) {
3771 return make_unique
<FullDependence
>(std::move(Result
));
3776 //===----------------------------------------------------------------------===//
3777 // getSplitIteration -
3778 // Rather than spend rarely-used space recording the splitting iteration
3779 // during the Weak-Crossing SIV test, we re-compute it on demand.
3780 // The re-computation is basically a repeat of the entire dependence test,
3781 // though simplified since we know that the dependence exists.
3782 // It's tedious, since we must go through all propagations, etc.
3784 // Care is required to keep this code up to date with respect to the routine
3785 // above, depends().
3787 // Generally, the dependence analyzer will be used to build
3788 // a dependence graph for a function (basically a map from instructions
3789 // to dependences). Looking for cycles in the graph shows us loops
3790 // that cannot be trivially vectorized/parallelized.
3792 // We can try to improve the situation by examining all the dependences
3793 // that make up the cycle, looking for ones we can break.
3794 // Sometimes, peeling the first or last iteration of a loop will break
3795 // dependences, and we've got flags for those possibilities.
3796 // Sometimes, splitting a loop at some other iteration will do the trick,
3797 // and we've got a flag for that case. Rather than waste the space to
3798 // record the exact iteration (since we rarely know), we provide
3799 // a method that calculates the iteration. It's a drag that it must work
3800 // from scratch, but wonderful in that it's possible.
3802 // Here's an example:
3804 // for (i = 0; i < 10; i++)
3808 // There's a loop-carried flow dependence from the store to the load,
3809 // found by the weak-crossing SIV test. The dependence will have a flag,
3810 // indicating that the dependence can be broken by splitting the loop.
3811 // Calling getSplitIteration will return 5.
3812 // Splitting the loop breaks the dependence, like so:
3814 // for (i = 0; i <= 5; i++)
3817 // for (i = 6; i < 10; i++)
3821 // breaks the dependence and allows us to vectorize/parallelize
3823 const SCEV
*DependenceInfo::getSplitIteration(const Dependence
&Dep
,
3824 unsigned SplitLevel
) {
3825 assert(Dep
.isSplitable(SplitLevel
) &&
3826 "Dep should be splitable at SplitLevel");
3827 Instruction
*Src
= Dep
.getSrc();
3828 Instruction
*Dst
= Dep
.getDst();
3829 assert(Src
->mayReadFromMemory() || Src
->mayWriteToMemory());
3830 assert(Dst
->mayReadFromMemory() || Dst
->mayWriteToMemory());
3831 assert(isLoadOrStore(Src
));
3832 assert(isLoadOrStore(Dst
));
3833 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3834 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3835 assert(underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3836 MemoryLocation::get(Dst
),
3837 MemoryLocation::get(Src
)) == MustAlias
);
3839 // establish loop nesting levels
3840 establishNestingLevels(Src
, Dst
);
3842 FullDependence
Result(Src
, Dst
, false, CommonLevels
);
3845 SmallVector
<Subscript
, 2> Pair(Pairs
);
3846 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3847 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3848 Pair
[0].Src
= SrcSCEV
;
3849 Pair
[0].Dst
= DstSCEV
;
3852 if (tryDelinearize(Src
, Dst
, Pair
)) {
3853 LLVM_DEBUG(dbgs() << " delinearized\n");
3854 Pairs
= Pair
.size();
3858 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3859 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3860 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3861 Pair
[P
].Group
.resize(Pairs
);
3862 removeMatchingExtensions(&Pair
[P
]);
3863 Pair
[P
].Classification
=
3864 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3865 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3867 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3868 Pair
[P
].Group
.set(P
);
3871 SmallBitVector
Separable(Pairs
);
3872 SmallBitVector
Coupled(Pairs
);
3874 // partition subscripts into separable and minimally-coupled groups
3875 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3876 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3877 // ignore these, but collect loops for later
3878 collectCommonLoops(Pair
[SI
].Src
,
3879 LI
->getLoopFor(Src
->getParent()),
3881 collectCommonLoops(Pair
[SI
].Dst
,
3882 LI
->getLoopFor(Dst
->getParent()),
3884 Result
.Consistent
= false;
3886 else if (Pair
[SI
].Classification
== Subscript::ZIV
)
3889 // SIV, RDIV, or MIV, so check for coupled group
3891 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3892 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3893 Intersection
&= Pair
[SJ
].GroupLoops
;
3894 if (Intersection
.any()) {
3895 // accumulate set of all the loops in group
3896 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3897 // accumulate set of all subscripts in group
3898 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3903 if (Pair
[SI
].Group
.count() == 1)
3911 Constraint NewConstraint
;
3912 NewConstraint
.setAny(SE
);
3914 // test separable subscripts
3915 for (unsigned SI
: Separable
.set_bits()) {
3916 switch (Pair
[SI
].Classification
) {
3917 case Subscript::SIV
: {
3919 const SCEV
*SplitIter
= nullptr;
3920 (void) testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
,
3921 Result
, NewConstraint
, SplitIter
);
3922 if (Level
== SplitLevel
) {
3923 assert(SplitIter
!= nullptr);
3928 case Subscript::ZIV
:
3929 case Subscript::RDIV
:
3930 case Subscript::MIV
:
3933 llvm_unreachable("subscript has unexpected classification");
3937 if (Coupled
.count()) {
3938 // test coupled subscript groups
3939 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3940 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3941 Constraints
[II
].setAny(SE
);
3942 for (unsigned SI
: Coupled
.set_bits()) {
3943 SmallBitVector
Group(Pair
[SI
].Group
);
3944 SmallBitVector
Sivs(Pairs
);
3945 SmallBitVector
Mivs(Pairs
);
3946 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3947 for (unsigned SJ
: Group
.set_bits()) {
3948 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3953 while (Sivs
.any()) {
3954 bool Changed
= false;
3955 for (unsigned SJ
: Sivs
.set_bits()) {
3956 // SJ is an SIV subscript that's part of the current coupled group
3958 const SCEV
*SplitIter
= nullptr;
3959 (void) testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
,
3960 Result
, NewConstraint
, SplitIter
);
3961 if (Level
== SplitLevel
&& SplitIter
)
3963 ConstrainedLevels
.set(Level
);
3964 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
))
3969 // propagate, possibly creating new SIVs and ZIVs
3970 for (unsigned SJ
: Mivs
.set_bits()) {
3971 // SJ is an MIV subscript that's part of the current coupled group
3972 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
,
3973 Pair
[SJ
].Loops
, Constraints
, Result
.Consistent
)) {
3974 Pair
[SJ
].Classification
=
3975 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3976 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3978 switch (Pair
[SJ
].Classification
) {
3979 case Subscript::ZIV
:
3982 case Subscript::SIV
:
3986 case Subscript::RDIV
:
3987 case Subscript::MIV
:
3990 llvm_unreachable("bad subscript classification");
3998 llvm_unreachable("somehow reached end of routine");