1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG. Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
40 template class llvm::LoopBase
<BasicBlock
, Loop
>;
41 template class llvm::LoopInfoBase
<BasicBlock
, Loop
>;
43 // Always verify loopinfo if expensive checking is enabled.
44 #ifdef EXPENSIVE_CHECKS
45 bool llvm::VerifyLoopInfo
= true;
47 bool llvm::VerifyLoopInfo
= false;
49 static cl::opt
<bool, true>
50 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo
),
51 cl::Hidden
, cl::desc("Verify loop info (time consuming)"));
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
57 bool Loop::isLoopInvariant(const Value
*V
) const {
58 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
60 return true; // All non-instructions are loop invariant
63 bool Loop::hasLoopInvariantOperands(const Instruction
*I
) const {
64 return all_of(I
->operands(), [this](Value
*V
) { return isLoopInvariant(V
); });
67 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
,
68 Instruction
*InsertPt
) const {
69 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
70 return makeLoopInvariant(I
, Changed
, InsertPt
);
71 return true; // All non-instructions are loop-invariant.
74 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
75 Instruction
*InsertPt
) const {
76 // Test if the value is already loop-invariant.
77 if (isLoopInvariant(I
))
79 if (!isSafeToSpeculativelyExecute(I
))
81 if (I
->mayReadFromMemory())
83 // EH block instructions are immobile.
86 // Determine the insertion point, unless one was given.
88 BasicBlock
*Preheader
= getLoopPreheader();
89 // Without a preheader, hoisting is not feasible.
92 InsertPt
= Preheader
->getTerminator();
94 // Don't hoist instructions with loop-variant operands.
95 for (Value
*Operand
: I
->operands())
96 if (!makeLoopInvariant(Operand
, Changed
, InsertPt
))
100 I
->moveBefore(InsertPt
);
102 // There is possibility of hoisting this instruction above some arbitrary
103 // condition. Any metadata defined on it can be control dependent on this
104 // condition. Conservatively strip it here so that we don't give any wrong
105 // information to the optimizer.
106 I
->dropUnknownNonDebugMetadata();
112 bool Loop::getIncomingAndBackEdge(BasicBlock
*&Incoming
,
113 BasicBlock
*&Backedge
) const {
114 BasicBlock
*H
= getHeader();
118 pred_iterator PI
= pred_begin(H
);
119 assert(PI
!= pred_end(H
) && "Loop must have at least one backedge!");
121 if (PI
== pred_end(H
))
122 return false; // dead loop
124 if (PI
!= pred_end(H
))
125 return false; // multiple backedges?
127 if (contains(Incoming
)) {
128 if (contains(Backedge
))
130 std::swap(Incoming
, Backedge
);
131 } else if (!contains(Backedge
))
134 assert(Incoming
&& Backedge
&& "expected non-null incoming and backedges");
138 PHINode
*Loop::getCanonicalInductionVariable() const {
139 BasicBlock
*H
= getHeader();
141 BasicBlock
*Incoming
= nullptr, *Backedge
= nullptr;
142 if (!getIncomingAndBackEdge(Incoming
, Backedge
))
145 // Loop over all of the PHI nodes, looking for a canonical indvar.
146 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
147 PHINode
*PN
= cast
<PHINode
>(I
);
148 if (ConstantInt
*CI
=
149 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
151 if (Instruction
*Inc
=
152 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
153 if (Inc
->getOpcode() == Instruction::Add
&& Inc
->getOperand(0) == PN
)
154 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
161 // Check that 'BB' doesn't have any uses outside of the 'L'
162 static bool isBlockInLCSSAForm(const Loop
&L
, const BasicBlock
&BB
,
164 for (const Instruction
&I
: BB
) {
165 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
166 // optimizations, so for the purposes of considered LCSSA form, we
168 if (I
.getType()->isTokenTy())
171 for (const Use
&U
: I
.uses()) {
172 const Instruction
*UI
= cast
<Instruction
>(U
.getUser());
173 const BasicBlock
*UserBB
= UI
->getParent();
174 if (const PHINode
*P
= dyn_cast
<PHINode
>(UI
))
175 UserBB
= P
->getIncomingBlock(U
);
177 // Check the current block, as a fast-path, before checking whether
178 // the use is anywhere in the loop. Most values are used in the same
179 // block they are defined in. Also, blocks not reachable from the
180 // entry are special; uses in them don't need to go through PHIs.
181 if (UserBB
!= &BB
&& !L
.contains(UserBB
) &&
182 DT
.isReachableFromEntry(UserBB
))
189 bool Loop::isLCSSAForm(DominatorTree
&DT
) const {
190 // For each block we check that it doesn't have any uses outside of this loop.
191 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
192 return isBlockInLCSSAForm(*this, *BB
, DT
);
196 bool Loop::isRecursivelyLCSSAForm(DominatorTree
&DT
, const LoopInfo
&LI
) const {
197 // For each block we check that it doesn't have any uses outside of its
198 // innermost loop. This process will transitively guarantee that the current
199 // loop and all of the nested loops are in LCSSA form.
200 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
201 return isBlockInLCSSAForm(*LI
.getLoopFor(BB
), *BB
, DT
);
205 bool Loop::isLoopSimplifyForm() const {
206 // Normal-form loops have a preheader, a single backedge, and all of their
207 // exits have all their predecessors inside the loop.
208 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
211 // Routines that reform the loop CFG and split edges often fail on indirectbr.
212 bool Loop::isSafeToClone() const {
213 // Return false if any loop blocks contain indirectbrs, or there are any calls
214 // to noduplicate functions.
215 for (BasicBlock
*BB
: this->blocks()) {
216 if (isa
<IndirectBrInst
>(BB
->getTerminator()))
219 for (Instruction
&I
: *BB
)
220 if (auto CS
= CallSite(&I
))
221 if (CS
.cannotDuplicate())
227 MDNode
*Loop::getLoopID() const {
228 MDNode
*LoopID
= nullptr;
230 // Go through the latch blocks and check the terminator for the metadata.
231 SmallVector
<BasicBlock
*, 4> LatchesBlocks
;
232 getLoopLatches(LatchesBlocks
);
233 for (BasicBlock
*BB
: LatchesBlocks
) {
234 Instruction
*TI
= BB
->getTerminator();
235 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_loop
);
242 else if (MD
!= LoopID
)
245 if (!LoopID
|| LoopID
->getNumOperands() == 0 ||
246 LoopID
->getOperand(0) != LoopID
)
251 void Loop::setLoopID(MDNode
*LoopID
) const {
252 assert((!LoopID
|| LoopID
->getNumOperands() > 0) &&
253 "Loop ID needs at least one operand");
254 assert((!LoopID
|| LoopID
->getOperand(0) == LoopID
) &&
255 "Loop ID should refer to itself");
257 SmallVector
<BasicBlock
*, 4> LoopLatches
;
258 getLoopLatches(LoopLatches
);
259 for (BasicBlock
*BB
: LoopLatches
)
260 BB
->getTerminator()->setMetadata(LLVMContext::MD_loop
, LoopID
);
263 void Loop::setLoopAlreadyUnrolled() {
264 LLVMContext
&Context
= getHeader()->getContext();
266 MDNode
*DisableUnrollMD
=
267 MDNode::get(Context
, MDString::get(Context
, "llvm.loop.unroll.disable"));
268 MDNode
*LoopID
= getLoopID();
269 MDNode
*NewLoopID
= makePostTransformationMetadata(
270 Context
, LoopID
, {"llvm.loop.unroll."}, {DisableUnrollMD
});
271 setLoopID(NewLoopID
);
274 bool Loop::isAnnotatedParallel() const {
275 MDNode
*DesiredLoopIdMetadata
= getLoopID();
277 if (!DesiredLoopIdMetadata
)
280 MDNode
*ParallelAccesses
=
281 findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
282 SmallPtrSet
<MDNode
*, 4>
283 ParallelAccessGroups
; // For scalable 'contains' check.
284 if (ParallelAccesses
) {
285 for (const MDOperand
&MD
: drop_begin(ParallelAccesses
->operands(), 1)) {
286 MDNode
*AccGroup
= cast
<MDNode
>(MD
.get());
287 assert(isValidAsAccessGroup(AccGroup
) &&
288 "List item must be an access group");
289 ParallelAccessGroups
.insert(AccGroup
);
293 // The loop branch contains the parallel loop metadata. In order to ensure
294 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
295 // dependencies (thus converted the loop back to a sequential loop), check
296 // that all the memory instructions in the loop belong to an access group that
297 // is parallel to this loop.
298 for (BasicBlock
*BB
: this->blocks()) {
299 for (Instruction
&I
: *BB
) {
300 if (!I
.mayReadOrWriteMemory())
303 if (MDNode
*AccessGroup
= I
.getMetadata(LLVMContext::MD_access_group
)) {
304 auto ContainsAccessGroup
= [&ParallelAccessGroups
](MDNode
*AG
) -> bool {
305 if (AG
->getNumOperands() == 0) {
306 assert(isValidAsAccessGroup(AG
) && "Item must be an access group");
307 return ParallelAccessGroups
.count(AG
);
310 for (const MDOperand
&AccessListItem
: AG
->operands()) {
311 MDNode
*AccGroup
= cast
<MDNode
>(AccessListItem
.get());
312 assert(isValidAsAccessGroup(AccGroup
) &&
313 "List item must be an access group");
314 if (ParallelAccessGroups
.count(AccGroup
))
320 if (ContainsAccessGroup(AccessGroup
))
324 // The memory instruction can refer to the loop identifier metadata
325 // directly or indirectly through another list metadata (in case of
326 // nested parallel loops). The loop identifier metadata refers to
327 // itself so we can check both cases with the same routine.
329 I
.getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
334 bool LoopIdMDFound
= false;
335 for (const MDOperand
&MDOp
: LoopIdMD
->operands()) {
336 if (MDOp
== DesiredLoopIdMetadata
) {
337 LoopIdMDFound
= true;
349 DebugLoc
Loop::getStartLoc() const { return getLocRange().getStart(); }
351 Loop::LocRange
Loop::getLocRange() const {
352 // If we have a debug location in the loop ID, then use it.
353 if (MDNode
*LoopID
= getLoopID()) {
355 // We use the first DebugLoc in the header as the start location of the loop
356 // and if there is a second DebugLoc in the header we use it as end location
358 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
359 if (DILocation
*L
= dyn_cast
<DILocation
>(LoopID
->getOperand(i
))) {
363 return LocRange(Start
, DebugLoc(L
));
368 return LocRange(Start
);
371 // Try the pre-header first.
372 if (BasicBlock
*PHeadBB
= getLoopPreheader())
373 if (DebugLoc DL
= PHeadBB
->getTerminator()->getDebugLoc())
376 // If we have no pre-header or there are no instructions with debug
377 // info in it, try the header.
378 if (BasicBlock
*HeadBB
= getHeader())
379 return LocRange(HeadBB
->getTerminator()->getDebugLoc());
384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
385 LLVM_DUMP_METHOD
void Loop::dump() const { print(dbgs()); }
387 LLVM_DUMP_METHOD
void Loop::dumpVerbose() const {
388 print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
392 //===----------------------------------------------------------------------===//
393 // UnloopUpdater implementation
397 /// Find the new parent loop for all blocks within the "unloop" whose last
398 /// backedges has just been removed.
399 class UnloopUpdater
{
405 // Map unloop's immediate subloops to their nearest reachable parents. Nested
406 // loops within these subloops will not change parents. However, an immediate
407 // subloop's new parent will be the nearest loop reachable from either its own
408 // exits *or* any of its nested loop's exits.
409 DenseMap
<Loop
*, Loop
*> SubloopParents
;
411 // Flag the presence of an irreducible backedge whose destination is a block
412 // directly contained by the original unloop.
416 UnloopUpdater(Loop
*UL
, LoopInfo
*LInfo
)
417 : Unloop(*UL
), LI(LInfo
), DFS(UL
), FoundIB(false) {}
419 void updateBlockParents();
421 void removeBlocksFromAncestors();
423 void updateSubloopParents();
426 Loop
*getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
);
428 } // end anonymous namespace
430 /// Update the parent loop for all blocks that are directly contained within the
431 /// original "unloop".
432 void UnloopUpdater::updateBlockParents() {
433 if (Unloop
.getNumBlocks()) {
434 // Perform a post order CFG traversal of all blocks within this loop,
435 // propagating the nearest loop from successors to predecessors.
436 LoopBlocksTraversal
Traversal(DFS
, LI
);
437 for (BasicBlock
*POI
: Traversal
) {
439 Loop
*L
= LI
->getLoopFor(POI
);
440 Loop
*NL
= getNearestLoop(POI
, L
);
443 // For reducible loops, NL is now an ancestor of Unloop.
444 assert((NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
))) &&
445 "uninitialized successor");
446 LI
->changeLoopFor(POI
, NL
);
448 // Or the current block is part of a subloop, in which case its parent
450 assert((FoundIB
|| Unloop
.contains(L
)) && "uninitialized successor");
454 // Each irreducible loop within the unloop induces a round of iteration using
455 // the DFS result cached by Traversal.
456 bool Changed
= FoundIB
;
457 for (unsigned NIters
= 0; Changed
; ++NIters
) {
458 assert(NIters
< Unloop
.getNumBlocks() && "runaway iterative algorithm");
460 // Iterate over the postorder list of blocks, propagating the nearest loop
461 // from successors to predecessors as before.
463 for (LoopBlocksDFS::POIterator POI
= DFS
.beginPostorder(),
464 POE
= DFS
.endPostorder();
467 Loop
*L
= LI
->getLoopFor(*POI
);
468 Loop
*NL
= getNearestLoop(*POI
, L
);
470 assert(NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
)) &&
471 "uninitialized successor");
472 LI
->changeLoopFor(*POI
, NL
);
479 /// Remove unloop's blocks from all ancestors below their new parents.
480 void UnloopUpdater::removeBlocksFromAncestors() {
481 // Remove all unloop's blocks (including those in nested subloops) from
482 // ancestors below the new parent loop.
483 for (Loop::block_iterator BI
= Unloop
.block_begin(), BE
= Unloop
.block_end();
485 Loop
*OuterParent
= LI
->getLoopFor(*BI
);
486 if (Unloop
.contains(OuterParent
)) {
487 while (OuterParent
->getParentLoop() != &Unloop
)
488 OuterParent
= OuterParent
->getParentLoop();
489 OuterParent
= SubloopParents
[OuterParent
];
491 // Remove blocks from former Ancestors except Unloop itself which will be
493 for (Loop
*OldParent
= Unloop
.getParentLoop(); OldParent
!= OuterParent
;
494 OldParent
= OldParent
->getParentLoop()) {
495 assert(OldParent
&& "new loop is not an ancestor of the original");
496 OldParent
->removeBlockFromLoop(*BI
);
501 /// Update the parent loop for all subloops directly nested within unloop.
502 void UnloopUpdater::updateSubloopParents() {
503 while (!Unloop
.empty()) {
504 Loop
*Subloop
= *std::prev(Unloop
.end());
505 Unloop
.removeChildLoop(std::prev(Unloop
.end()));
507 assert(SubloopParents
.count(Subloop
) && "DFS failed to visit subloop");
508 if (Loop
*Parent
= SubloopParents
[Subloop
])
509 Parent
->addChildLoop(Subloop
);
511 LI
->addTopLevelLoop(Subloop
);
515 /// Return the nearest parent loop among this block's successors. If a successor
516 /// is a subloop header, consider its parent to be the nearest parent of the
519 /// For subloop blocks, simply update SubloopParents and return NULL.
520 Loop
*UnloopUpdater::getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
) {
522 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
523 // is considered uninitialized.
524 Loop
*NearLoop
= BBLoop
;
526 Loop
*Subloop
= nullptr;
527 if (NearLoop
!= &Unloop
&& Unloop
.contains(NearLoop
)) {
529 // Find the subloop ancestor that is directly contained within Unloop.
530 while (Subloop
->getParentLoop() != &Unloop
) {
531 Subloop
= Subloop
->getParentLoop();
532 assert(Subloop
&& "subloop is not an ancestor of the original loop");
534 // Get the current nearest parent of the Subloop exits, initially Unloop.
535 NearLoop
= SubloopParents
.insert({Subloop
, &Unloop
}).first
->second
;
538 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
540 assert(!Subloop
&& "subloop blocks must have a successor");
541 NearLoop
= nullptr; // unloop blocks may now exit the function.
543 for (; I
!= E
; ++I
) {
545 continue; // self loops are uninteresting
547 Loop
*L
= LI
->getLoopFor(*I
);
549 // This successor has not been processed. This path must lead to an
550 // irreducible backedge.
551 assert((FoundIB
|| !DFS
.hasPostorder(*I
)) && "should have seen IB");
554 if (L
!= &Unloop
&& Unloop
.contains(L
)) {
555 // Successor is in a subloop.
557 continue; // Branching within subloops. Ignore it.
559 // BB branches from the original into a subloop header.
560 assert(L
->getParentLoop() == &Unloop
&& "cannot skip into nested loops");
562 // Get the current nearest parent of the Subloop's exits.
563 L
= SubloopParents
[L
];
564 // L could be Unloop if the only exit was an irreducible backedge.
569 // Handle critical edges from Unloop into a sibling loop.
570 if (L
&& !L
->contains(&Unloop
)) {
571 L
= L
->getParentLoop();
573 // Remember the nearest parent loop among successors or subloop exits.
574 if (NearLoop
== &Unloop
|| !NearLoop
|| NearLoop
->contains(L
))
578 SubloopParents
[Subloop
] = NearLoop
;
584 LoopInfo::LoopInfo(const DomTreeBase
<BasicBlock
> &DomTree
) { analyze(DomTree
); }
586 bool LoopInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
587 FunctionAnalysisManager::Invalidator
&) {
588 // Check whether the analysis, all analyses on functions, or the function's
589 // CFG have been preserved.
590 auto PAC
= PA
.getChecker
<LoopAnalysis
>();
591 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
592 PAC
.preservedSet
<CFGAnalyses
>());
595 void LoopInfo::erase(Loop
*Unloop
) {
596 assert(!Unloop
->isInvalid() && "Loop has already been erased!");
598 auto InvalidateOnExit
= make_scope_exit([&]() { destroy(Unloop
); });
600 // First handle the special case of no parent loop to simplify the algorithm.
601 if (!Unloop
->getParentLoop()) {
602 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
603 for (Loop::block_iterator I
= Unloop
->block_begin(),
604 E
= Unloop
->block_end();
607 // Don't reparent blocks in subloops.
608 if (getLoopFor(*I
) != Unloop
)
611 // Blocks no longer have a parent but are still referenced by Unloop until
612 // the Unloop object is deleted.
613 changeLoopFor(*I
, nullptr);
616 // Remove the loop from the top-level LoopInfo object.
617 for (iterator I
= begin();; ++I
) {
618 assert(I
!= end() && "Couldn't find loop");
625 // Move all of the subloops to the top-level.
626 while (!Unloop
->empty())
627 addTopLevelLoop(Unloop
->removeChildLoop(std::prev(Unloop
->end())));
632 // Update the parent loop for all blocks within the loop. Blocks within
633 // subloops will not change parents.
634 UnloopUpdater
Updater(Unloop
, this);
635 Updater
.updateBlockParents();
637 // Remove blocks from former ancestor loops.
638 Updater
.removeBlocksFromAncestors();
640 // Add direct subloops as children in their new parent loop.
641 Updater
.updateSubloopParents();
643 // Remove unloop from its parent loop.
644 Loop
*ParentLoop
= Unloop
->getParentLoop();
645 for (Loop::iterator I
= ParentLoop
->begin();; ++I
) {
646 assert(I
!= ParentLoop
->end() && "Couldn't find loop");
648 ParentLoop
->removeChildLoop(I
);
654 AnalysisKey
LoopAnalysis::Key
;
656 LoopInfo
LoopAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
657 // FIXME: Currently we create a LoopInfo from scratch for every function.
658 // This may prove to be too wasteful due to deallocating and re-allocating
659 // memory each time for the underlying map and vector datastructures. At some
660 // point it may prove worthwhile to use a freelist and recycle LoopInfo
661 // objects. I don't want to add that kind of complexity until the scope of
662 // the problem is better understood.
664 LI
.analyze(AM
.getResult
<DominatorTreeAnalysis
>(F
));
668 PreservedAnalyses
LoopPrinterPass::run(Function
&F
,
669 FunctionAnalysisManager
&AM
) {
670 AM
.getResult
<LoopAnalysis
>(F
).print(OS
);
671 return PreservedAnalyses::all();
674 void llvm::printLoop(Loop
&L
, raw_ostream
&OS
, const std::string
&Banner
) {
676 if (forcePrintModuleIR()) {
677 // handling -print-module-scope
678 OS
<< Banner
<< " (loop: ";
679 L
.getHeader()->printAsOperand(OS
, false);
682 // printing whole module
683 OS
<< *L
.getHeader()->getModule();
689 auto *PreHeader
= L
.getLoopPreheader();
691 OS
<< "\n; Preheader:";
692 PreHeader
->print(OS
);
696 for (auto *Block
: L
.blocks())
700 OS
<< "Printing <null> block";
702 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
703 L
.getExitBlocks(ExitBlocks
);
704 if (!ExitBlocks
.empty()) {
705 OS
<< "\n; Exit blocks";
706 for (auto *Block
: ExitBlocks
)
710 OS
<< "Printing <null> block";
714 MDNode
*llvm::findOptionMDForLoopID(MDNode
*LoopID
, StringRef Name
) {
715 // No loop metadata node, no loop properties.
719 // First operand should refer to the metadata node itself, for legacy reasons.
720 assert(LoopID
->getNumOperands() > 0 && "requires at least one operand");
721 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop id");
723 // Iterate over the metdata node operands and look for MDString metadata.
724 for (unsigned i
= 1, e
= LoopID
->getNumOperands(); i
< e
; ++i
) {
725 MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
));
726 if (!MD
|| MD
->getNumOperands() < 1)
728 MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
731 // Return the operand node if MDString holds expected metadata.
732 if (Name
.equals(S
->getString()))
736 // Loop property not found.
740 MDNode
*llvm::findOptionMDForLoop(const Loop
*TheLoop
, StringRef Name
) {
741 return findOptionMDForLoopID(TheLoop
->getLoopID(), Name
);
744 bool llvm::isValidAsAccessGroup(MDNode
*Node
) {
745 return Node
->getNumOperands() == 0 && Node
->isDistinct();
748 MDNode
*llvm::makePostTransformationMetadata(LLVMContext
&Context
,
750 ArrayRef
<StringRef
> RemovePrefixes
,
751 ArrayRef
<MDNode
*> AddAttrs
) {
752 // First remove any existing loop metadata related to this transformation.
753 SmallVector
<Metadata
*, 4> MDs
;
755 // Reserve first location for self reference to the LoopID metadata node.
756 TempMDTuple TempNode
= MDNode::getTemporary(Context
, None
);
757 MDs
.push_back(TempNode
.get());
759 // Remove metadata for the transformation that has been applied or that became
762 for (unsigned i
= 1, ie
= OrigLoopID
->getNumOperands(); i
< ie
; ++i
) {
763 bool IsVectorMetadata
= false;
764 Metadata
*Op
= OrigLoopID
->getOperand(i
);
765 if (MDNode
*MD
= dyn_cast
<MDNode
>(Op
)) {
766 const MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
769 llvm::any_of(RemovePrefixes
, [S
](StringRef Prefix
) -> bool {
770 return S
->getString().startswith(Prefix
);
773 if (!IsVectorMetadata
)
778 // Add metadata to avoid reapplying a transformation, such as
779 // llvm.loop.unroll.disable and llvm.loop.isvectorized.
780 MDs
.append(AddAttrs
.begin(), AddAttrs
.end());
782 MDNode
*NewLoopID
= MDNode::getDistinct(Context
, MDs
);
783 // Replace the temporary node with a self-reference.
784 NewLoopID
->replaceOperandWith(0, NewLoopID
);
788 //===----------------------------------------------------------------------===//
789 // LoopInfo implementation
792 char LoopInfoWrapperPass::ID
= 0;
793 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
795 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
796 INITIALIZE_PASS_END(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
799 bool LoopInfoWrapperPass::runOnFunction(Function
&) {
801 LI
.analyze(getAnalysis
<DominatorTreeWrapperPass
>().getDomTree());
805 void LoopInfoWrapperPass::verifyAnalysis() const {
806 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
807 // function each time verifyAnalysis is called is very expensive. The
808 // -verify-loop-info option can enable this. In order to perform some
809 // checking by default, LoopPass has been taught to call verifyLoop manually
810 // during loop pass sequences.
811 if (VerifyLoopInfo
) {
812 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
817 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
818 AU
.setPreservesAll();
819 AU
.addRequired
<DominatorTreeWrapperPass
>();
822 void LoopInfoWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
826 PreservedAnalyses
LoopVerifierPass::run(Function
&F
,
827 FunctionAnalysisManager
&AM
) {
828 LoopInfo
&LI
= AM
.getResult
<LoopAnalysis
>(F
);
829 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
831 return PreservedAnalyses::all();
834 //===----------------------------------------------------------------------===//
835 // LoopBlocksDFS implementation
838 /// Traverse the loop blocks and store the DFS result.
839 /// Useful for clients that just want the final DFS result and don't need to
840 /// visit blocks during the initial traversal.
841 void LoopBlocksDFS::perform(LoopInfo
*LI
) {
842 LoopBlocksTraversal
Traversal(*this, LI
);
843 for (LoopBlocksTraversal::POTIterator POI
= Traversal
.begin(),
844 POE
= Traversal
.end();