[Alignment][NFC] Use Align with TargetLowering::setPrefLoopAlignment
[llvm-complete.git] / include / llvm / IR / PatternMatch.h
blob4be032bcb983c2a96ff3b2b74d9f434115cf700e
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
26 //===----------------------------------------------------------------------===//
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
44 namespace llvm {
45 namespace PatternMatch {
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48 return const_cast<Pattern &>(P).match(V);
51 template <typename SubPattern_t> struct OneUse_match {
52 SubPattern_t SubPattern;
54 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
56 template <typename OpTy> bool match(OpTy *V) {
57 return V->hasOneUse() && SubPattern.match(V);
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62 return SubPattern;
65 template <typename Class> struct class_match {
66 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69 /// Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
72 /// Match an arbitrary binary operation and ignore it.
73 inline class_match<BinaryOperator> m_BinOp() {
74 return class_match<BinaryOperator>();
77 /// Matches any compare instruction and ignore it.
78 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
80 /// Match an arbitrary ConstantInt and ignore it.
81 inline class_match<ConstantInt> m_ConstantInt() {
82 return class_match<ConstantInt>();
85 /// Match an arbitrary undef constant.
86 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
88 /// Match an arbitrary Constant and ignore it.
89 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
91 /// Inverting matcher
92 template <typename Ty> struct match_unless {
93 Ty M;
95 match_unless(const Ty &Matcher) : M(Matcher) {}
97 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
100 /// Match if the inner matcher does *NOT* match.
101 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
102 return match_unless<Ty>(M);
105 /// Matching combinators
106 template <typename LTy, typename RTy> struct match_combine_or {
107 LTy L;
108 RTy R;
110 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112 template <typename ITy> bool match(ITy *V) {
113 if (L.match(V))
114 return true;
115 if (R.match(V))
116 return true;
117 return false;
121 template <typename LTy, typename RTy> struct match_combine_and {
122 LTy L;
123 RTy R;
125 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
127 template <typename ITy> bool match(ITy *V) {
128 if (L.match(V))
129 if (R.match(V))
130 return true;
131 return false;
135 /// Combine two pattern matchers matching L || R
136 template <typename LTy, typename RTy>
137 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
138 return match_combine_or<LTy, RTy>(L, R);
141 /// Combine two pattern matchers matching L && R
142 template <typename LTy, typename RTy>
143 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
144 return match_combine_and<LTy, RTy>(L, R);
147 struct apint_match {
148 const APInt *&Res;
150 apint_match(const APInt *&R) : Res(R) {}
152 template <typename ITy> bool match(ITy *V) {
153 if (auto *CI = dyn_cast<ConstantInt>(V)) {
154 Res = &CI->getValue();
155 return true;
157 if (V->getType()->isVectorTy())
158 if (const auto *C = dyn_cast<Constant>(V))
159 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
160 Res = &CI->getValue();
161 return true;
163 return false;
166 // Either constexpr if or renaming ConstantFP::getValueAPF to
167 // ConstantFP::getValue is needed to do it via single template
168 // function for both apint/apfloat.
169 struct apfloat_match {
170 const APFloat *&Res;
171 apfloat_match(const APFloat *&R) : Res(R) {}
172 template <typename ITy> bool match(ITy *V) {
173 if (auto *CI = dyn_cast<ConstantFP>(V)) {
174 Res = &CI->getValueAPF();
175 return true;
177 if (V->getType()->isVectorTy())
178 if (const auto *C = dyn_cast<Constant>(V))
179 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
180 Res = &CI->getValueAPF();
181 return true;
183 return false;
187 /// Match a ConstantInt or splatted ConstantVector, binding the
188 /// specified pointer to the contained APInt.
189 inline apint_match m_APInt(const APInt *&Res) { return Res; }
191 /// Match a ConstantFP or splatted ConstantVector, binding the
192 /// specified pointer to the contained APFloat.
193 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
195 template <int64_t Val> struct constantint_match {
196 template <typename ITy> bool match(ITy *V) {
197 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
198 const APInt &CIV = CI->getValue();
199 if (Val >= 0)
200 return CIV == static_cast<uint64_t>(Val);
201 // If Val is negative, and CI is shorter than it, truncate to the right
202 // number of bits. If it is larger, then we have to sign extend. Just
203 // compare their negated values.
204 return -CIV == -Val;
206 return false;
210 /// Match a ConstantInt with a specific value.
211 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
212 return constantint_match<Val>();
215 /// This helper class is used to match scalar and vector integer constants that
216 /// satisfy a specified predicate.
217 /// For vector constants, undefined elements are ignored.
218 template <typename Predicate> struct cst_pred_ty : public Predicate {
219 template <typename ITy> bool match(ITy *V) {
220 if (const auto *CI = dyn_cast<ConstantInt>(V))
221 return this->isValue(CI->getValue());
222 if (V->getType()->isVectorTy()) {
223 if (const auto *C = dyn_cast<Constant>(V)) {
224 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
225 return this->isValue(CI->getValue());
227 // Non-splat vector constant: check each element for a match.
228 unsigned NumElts = V->getType()->getVectorNumElements();
229 assert(NumElts != 0 && "Constant vector with no elements?");
230 bool HasNonUndefElements = false;
231 for (unsigned i = 0; i != NumElts; ++i) {
232 Constant *Elt = C->getAggregateElement(i);
233 if (!Elt)
234 return false;
235 if (isa<UndefValue>(Elt))
236 continue;
237 auto *CI = dyn_cast<ConstantInt>(Elt);
238 if (!CI || !this->isValue(CI->getValue()))
239 return false;
240 HasNonUndefElements = true;
242 return HasNonUndefElements;
245 return false;
249 /// This helper class is used to match scalar and vector constants that
250 /// satisfy a specified predicate, and bind them to an APInt.
251 template <typename Predicate> struct api_pred_ty : public Predicate {
252 const APInt *&Res;
254 api_pred_ty(const APInt *&R) : Res(R) {}
256 template <typename ITy> bool match(ITy *V) {
257 if (const auto *CI = dyn_cast<ConstantInt>(V))
258 if (this->isValue(CI->getValue())) {
259 Res = &CI->getValue();
260 return true;
262 if (V->getType()->isVectorTy())
263 if (const auto *C = dyn_cast<Constant>(V))
264 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
265 if (this->isValue(CI->getValue())) {
266 Res = &CI->getValue();
267 return true;
270 return false;
274 /// This helper class is used to match scalar and vector floating-point
275 /// constants that satisfy a specified predicate.
276 /// For vector constants, undefined elements are ignored.
277 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
278 template <typename ITy> bool match(ITy *V) {
279 if (const auto *CF = dyn_cast<ConstantFP>(V))
280 return this->isValue(CF->getValueAPF());
281 if (V->getType()->isVectorTy()) {
282 if (const auto *C = dyn_cast<Constant>(V)) {
283 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
284 return this->isValue(CF->getValueAPF());
286 // Non-splat vector constant: check each element for a match.
287 unsigned NumElts = V->getType()->getVectorNumElements();
288 assert(NumElts != 0 && "Constant vector with no elements?");
289 bool HasNonUndefElements = false;
290 for (unsigned i = 0; i != NumElts; ++i) {
291 Constant *Elt = C->getAggregateElement(i);
292 if (!Elt)
293 return false;
294 if (isa<UndefValue>(Elt))
295 continue;
296 auto *CF = dyn_cast<ConstantFP>(Elt);
297 if (!CF || !this->isValue(CF->getValueAPF()))
298 return false;
299 HasNonUndefElements = true;
301 return HasNonUndefElements;
304 return false;
308 ///////////////////////////////////////////////////////////////////////////////
310 // Encapsulate constant value queries for use in templated predicate matchers.
311 // This allows checking if constants match using compound predicates and works
312 // with vector constants, possibly with relaxed constraints. For example, ignore
313 // undef values.
315 ///////////////////////////////////////////////////////////////////////////////
317 struct is_any_apint {
318 bool isValue(const APInt &C) { return true; }
320 /// Match an integer or vector with any integral constant.
321 /// For vectors, this includes constants with undefined elements.
322 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
323 return cst_pred_ty<is_any_apint>();
326 struct is_all_ones {
327 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
329 /// Match an integer or vector with all bits set.
330 /// For vectors, this includes constants with undefined elements.
331 inline cst_pred_ty<is_all_ones> m_AllOnes() {
332 return cst_pred_ty<is_all_ones>();
335 struct is_maxsignedvalue {
336 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
338 /// Match an integer or vector with values having all bits except for the high
339 /// bit set (0x7f...).
340 /// For vectors, this includes constants with undefined elements.
341 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
342 return cst_pred_ty<is_maxsignedvalue>();
344 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
345 return V;
348 struct is_negative {
349 bool isValue(const APInt &C) { return C.isNegative(); }
351 /// Match an integer or vector of negative values.
352 /// For vectors, this includes constants with undefined elements.
353 inline cst_pred_ty<is_negative> m_Negative() {
354 return cst_pred_ty<is_negative>();
356 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
357 return V;
360 struct is_nonnegative {
361 bool isValue(const APInt &C) { return C.isNonNegative(); }
363 /// Match an integer or vector of nonnegative values.
364 /// For vectors, this includes constants with undefined elements.
365 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
366 return cst_pred_ty<is_nonnegative>();
368 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
369 return V;
372 struct is_one {
373 bool isValue(const APInt &C) { return C.isOneValue(); }
375 /// Match an integer 1 or a vector with all elements equal to 1.
376 /// For vectors, this includes constants with undefined elements.
377 inline cst_pred_ty<is_one> m_One() {
378 return cst_pred_ty<is_one>();
381 struct is_zero_int {
382 bool isValue(const APInt &C) { return C.isNullValue(); }
384 /// Match an integer 0 or a vector with all elements equal to 0.
385 /// For vectors, this includes constants with undefined elements.
386 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
387 return cst_pred_ty<is_zero_int>();
390 struct is_zero {
391 template <typename ITy> bool match(ITy *V) {
392 auto *C = dyn_cast<Constant>(V);
393 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
396 /// Match any null constant or a vector with all elements equal to 0.
397 /// For vectors, this includes constants with undefined elements.
398 inline is_zero m_Zero() {
399 return is_zero();
402 struct is_power2 {
403 bool isValue(const APInt &C) { return C.isPowerOf2(); }
405 /// Match an integer or vector power-of-2.
406 /// For vectors, this includes constants with undefined elements.
407 inline cst_pred_ty<is_power2> m_Power2() {
408 return cst_pred_ty<is_power2>();
410 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
411 return V;
414 struct is_negated_power2 {
415 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
417 /// Match a integer or vector negated power-of-2.
418 /// For vectors, this includes constants with undefined elements.
419 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
420 return cst_pred_ty<is_negated_power2>();
422 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
423 return V;
426 struct is_power2_or_zero {
427 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
429 /// Match an integer or vector of 0 or power-of-2 values.
430 /// For vectors, this includes constants with undefined elements.
431 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
432 return cst_pred_ty<is_power2_or_zero>();
434 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
435 return V;
438 struct is_sign_mask {
439 bool isValue(const APInt &C) { return C.isSignMask(); }
441 /// Match an integer or vector with only the sign bit(s) set.
442 /// For vectors, this includes constants with undefined elements.
443 inline cst_pred_ty<is_sign_mask> m_SignMask() {
444 return cst_pred_ty<is_sign_mask>();
447 struct is_lowbit_mask {
448 bool isValue(const APInt &C) { return C.isMask(); }
450 /// Match an integer or vector with only the low bit(s) set.
451 /// For vectors, this includes constants with undefined elements.
452 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
453 return cst_pred_ty<is_lowbit_mask>();
456 struct icmp_pred_with_threshold {
457 ICmpInst::Predicate Pred;
458 const APInt *Thr;
459 bool isValue(const APInt &C) {
460 switch (Pred) {
461 case ICmpInst::Predicate::ICMP_EQ:
462 return C.eq(*Thr);
463 case ICmpInst::Predicate::ICMP_NE:
464 return C.ne(*Thr);
465 case ICmpInst::Predicate::ICMP_UGT:
466 return C.ugt(*Thr);
467 case ICmpInst::Predicate::ICMP_UGE:
468 return C.uge(*Thr);
469 case ICmpInst::Predicate::ICMP_ULT:
470 return C.ult(*Thr);
471 case ICmpInst::Predicate::ICMP_ULE:
472 return C.ule(*Thr);
473 case ICmpInst::Predicate::ICMP_SGT:
474 return C.sgt(*Thr);
475 case ICmpInst::Predicate::ICMP_SGE:
476 return C.sge(*Thr);
477 case ICmpInst::Predicate::ICMP_SLT:
478 return C.slt(*Thr);
479 case ICmpInst::Predicate::ICMP_SLE:
480 return C.sle(*Thr);
481 default:
482 llvm_unreachable("Unhandled ICmp predicate");
486 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
487 /// to Threshold. For vectors, this includes constants with undefined elements.
488 inline cst_pred_ty<icmp_pred_with_threshold>
489 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
490 cst_pred_ty<icmp_pred_with_threshold> P;
491 P.Pred = Predicate;
492 P.Thr = &Threshold;
493 return P;
496 struct is_nan {
497 bool isValue(const APFloat &C) { return C.isNaN(); }
499 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
500 /// For vectors, this includes constants with undefined elements.
501 inline cstfp_pred_ty<is_nan> m_NaN() {
502 return cstfp_pred_ty<is_nan>();
505 struct is_any_zero_fp {
506 bool isValue(const APFloat &C) { return C.isZero(); }
508 /// Match a floating-point negative zero or positive zero.
509 /// For vectors, this includes constants with undefined elements.
510 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
511 return cstfp_pred_ty<is_any_zero_fp>();
514 struct is_pos_zero_fp {
515 bool isValue(const APFloat &C) { return C.isPosZero(); }
517 /// Match a floating-point positive zero.
518 /// For vectors, this includes constants with undefined elements.
519 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
520 return cstfp_pred_ty<is_pos_zero_fp>();
523 struct is_neg_zero_fp {
524 bool isValue(const APFloat &C) { return C.isNegZero(); }
526 /// Match a floating-point negative zero.
527 /// For vectors, this includes constants with undefined elements.
528 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
529 return cstfp_pred_ty<is_neg_zero_fp>();
532 ///////////////////////////////////////////////////////////////////////////////
534 template <typename Class> struct bind_ty {
535 Class *&VR;
537 bind_ty(Class *&V) : VR(V) {}
539 template <typename ITy> bool match(ITy *V) {
540 if (auto *CV = dyn_cast<Class>(V)) {
541 VR = CV;
542 return true;
544 return false;
548 /// Match a value, capturing it if we match.
549 inline bind_ty<Value> m_Value(Value *&V) { return V; }
550 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
552 /// Match an instruction, capturing it if we match.
553 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
554 /// Match a binary operator, capturing it if we match.
555 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
557 /// Match a ConstantInt, capturing the value if we match.
558 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
560 /// Match a Constant, capturing the value if we match.
561 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
563 /// Match a ConstantFP, capturing the value if we match.
564 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
566 /// Match a specified Value*.
567 struct specificval_ty {
568 const Value *Val;
570 specificval_ty(const Value *V) : Val(V) {}
572 template <typename ITy> bool match(ITy *V) { return V == Val; }
575 /// Match if we have a specific specified value.
576 inline specificval_ty m_Specific(const Value *V) { return V; }
578 /// Stores a reference to the Value *, not the Value * itself,
579 /// thus can be used in commutative matchers.
580 template <typename Class> struct deferredval_ty {
581 Class *const &Val;
583 deferredval_ty(Class *const &V) : Val(V) {}
585 template <typename ITy> bool match(ITy *const V) { return V == Val; }
588 /// A commutative-friendly version of m_Specific().
589 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
590 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
591 return V;
594 /// Match a specified floating point value or vector of all elements of
595 /// that value.
596 struct specific_fpval {
597 double Val;
599 specific_fpval(double V) : Val(V) {}
601 template <typename ITy> bool match(ITy *V) {
602 if (const auto *CFP = dyn_cast<ConstantFP>(V))
603 return CFP->isExactlyValue(Val);
604 if (V->getType()->isVectorTy())
605 if (const auto *C = dyn_cast<Constant>(V))
606 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
607 return CFP->isExactlyValue(Val);
608 return false;
612 /// Match a specific floating point value or vector with all elements
613 /// equal to the value.
614 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
616 /// Match a float 1.0 or vector with all elements equal to 1.0.
617 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
619 struct bind_const_intval_ty {
620 uint64_t &VR;
622 bind_const_intval_ty(uint64_t &V) : VR(V) {}
624 template <typename ITy> bool match(ITy *V) {
625 if (const auto *CV = dyn_cast<ConstantInt>(V))
626 if (CV->getValue().ule(UINT64_MAX)) {
627 VR = CV->getZExtValue();
628 return true;
630 return false;
634 /// Match a specified integer value or vector of all elements of that
635 // value.
636 struct specific_intval {
637 uint64_t Val;
639 specific_intval(uint64_t V) : Val(V) {}
641 template <typename ITy> bool match(ITy *V) {
642 const auto *CI = dyn_cast<ConstantInt>(V);
643 if (!CI && V->getType()->isVectorTy())
644 if (const auto *C = dyn_cast<Constant>(V))
645 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
647 return CI && CI->getValue() == Val;
651 /// Match a specific integer value or vector with all elements equal to
652 /// the value.
653 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
655 /// Match a ConstantInt and bind to its value. This does not match
656 /// ConstantInts wider than 64-bits.
657 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
659 //===----------------------------------------------------------------------===//
660 // Matcher for any binary operator.
662 template <typename LHS_t, typename RHS_t, bool Commutable = false>
663 struct AnyBinaryOp_match {
664 LHS_t L;
665 RHS_t R;
667 // The evaluation order is always stable, regardless of Commutability.
668 // The LHS is always matched first.
669 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
671 template <typename OpTy> bool match(OpTy *V) {
672 if (auto *I = dyn_cast<BinaryOperator>(V))
673 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
674 (Commutable && L.match(I->getOperand(1)) &&
675 R.match(I->getOperand(0)));
676 return false;
680 template <typename LHS, typename RHS>
681 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
682 return AnyBinaryOp_match<LHS, RHS>(L, R);
685 //===----------------------------------------------------------------------===//
686 // Matchers for specific binary operators.
689 template <typename LHS_t, typename RHS_t, unsigned Opcode,
690 bool Commutable = false>
691 struct BinaryOp_match {
692 LHS_t L;
693 RHS_t R;
695 // The evaluation order is always stable, regardless of Commutability.
696 // The LHS is always matched first.
697 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
699 template <typename OpTy> bool match(OpTy *V) {
700 if (V->getValueID() == Value::InstructionVal + Opcode) {
701 auto *I = cast<BinaryOperator>(V);
702 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
703 (Commutable && L.match(I->getOperand(1)) &&
704 R.match(I->getOperand(0)));
706 if (auto *CE = dyn_cast<ConstantExpr>(V))
707 return CE->getOpcode() == Opcode &&
708 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
709 (Commutable && L.match(CE->getOperand(1)) &&
710 R.match(CE->getOperand(0))));
711 return false;
715 template <typename LHS, typename RHS>
716 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
717 const RHS &R) {
718 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
721 template <typename LHS, typename RHS>
722 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
723 const RHS &R) {
724 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
727 template <typename LHS, typename RHS>
728 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
729 const RHS &R) {
730 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
733 template <typename LHS, typename RHS>
734 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
735 const RHS &R) {
736 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
739 template <typename Op_t> struct FNeg_match {
740 Op_t X;
742 FNeg_match(const Op_t &Op) : X(Op) {}
743 template <typename OpTy> bool match(OpTy *V) {
744 auto *FPMO = dyn_cast<FPMathOperator>(V);
745 if (!FPMO) return false;
747 if (FPMO->getOpcode() == Instruction::FNeg)
748 return X.match(FPMO->getOperand(0));
750 if (FPMO->getOpcode() == Instruction::FSub) {
751 if (FPMO->hasNoSignedZeros()) {
752 // With 'nsz', any zero goes.
753 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
754 return false;
755 } else {
756 // Without 'nsz', we need fsub -0.0, X exactly.
757 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
758 return false;
761 return X.match(FPMO->getOperand(1));
764 return false;
768 /// Match 'fneg X' as 'fsub -0.0, X'.
769 template <typename OpTy>
770 inline FNeg_match<OpTy>
771 m_FNeg(const OpTy &X) {
772 return FNeg_match<OpTy>(X);
775 /// Match 'fneg X' as 'fsub +-0.0, X'.
776 template <typename RHS>
777 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
778 m_FNegNSZ(const RHS &X) {
779 return m_FSub(m_AnyZeroFP(), X);
782 template <typename LHS, typename RHS>
783 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
784 const RHS &R) {
785 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
788 template <typename LHS, typename RHS>
789 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
790 const RHS &R) {
791 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
794 template <typename LHS, typename RHS>
795 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
796 const RHS &R) {
797 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
800 template <typename LHS, typename RHS>
801 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
802 const RHS &R) {
803 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
806 template <typename LHS, typename RHS>
807 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
808 const RHS &R) {
809 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
812 template <typename LHS, typename RHS>
813 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
814 const RHS &R) {
815 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
818 template <typename LHS, typename RHS>
819 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
820 const RHS &R) {
821 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
824 template <typename LHS, typename RHS>
825 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
826 const RHS &R) {
827 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
830 template <typename LHS, typename RHS>
831 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
832 const RHS &R) {
833 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
836 template <typename LHS, typename RHS>
837 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
838 const RHS &R) {
839 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
842 template <typename LHS, typename RHS>
843 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
844 const RHS &R) {
845 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
848 template <typename LHS, typename RHS>
849 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
850 const RHS &R) {
851 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
854 template <typename LHS, typename RHS>
855 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
856 const RHS &R) {
857 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
860 template <typename LHS, typename RHS>
861 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
862 const RHS &R) {
863 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
866 template <typename LHS_t, typename RHS_t, unsigned Opcode,
867 unsigned WrapFlags = 0>
868 struct OverflowingBinaryOp_match {
869 LHS_t L;
870 RHS_t R;
872 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
873 : L(LHS), R(RHS) {}
875 template <typename OpTy> bool match(OpTy *V) {
876 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
877 if (Op->getOpcode() != Opcode)
878 return false;
879 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
880 !Op->hasNoUnsignedWrap())
881 return false;
882 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
883 !Op->hasNoSignedWrap())
884 return false;
885 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
887 return false;
891 template <typename LHS, typename RHS>
892 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
893 OverflowingBinaryOperator::NoSignedWrap>
894 m_NSWAdd(const LHS &L, const RHS &R) {
895 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
896 OverflowingBinaryOperator::NoSignedWrap>(
897 L, R);
899 template <typename LHS, typename RHS>
900 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
901 OverflowingBinaryOperator::NoSignedWrap>
902 m_NSWSub(const LHS &L, const RHS &R) {
903 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
904 OverflowingBinaryOperator::NoSignedWrap>(
905 L, R);
907 template <typename LHS, typename RHS>
908 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
909 OverflowingBinaryOperator::NoSignedWrap>
910 m_NSWMul(const LHS &L, const RHS &R) {
911 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
912 OverflowingBinaryOperator::NoSignedWrap>(
913 L, R);
915 template <typename LHS, typename RHS>
916 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
917 OverflowingBinaryOperator::NoSignedWrap>
918 m_NSWShl(const LHS &L, const RHS &R) {
919 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
920 OverflowingBinaryOperator::NoSignedWrap>(
921 L, R);
924 template <typename LHS, typename RHS>
925 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
926 OverflowingBinaryOperator::NoUnsignedWrap>
927 m_NUWAdd(const LHS &L, const RHS &R) {
928 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
929 OverflowingBinaryOperator::NoUnsignedWrap>(
930 L, R);
932 template <typename LHS, typename RHS>
933 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
934 OverflowingBinaryOperator::NoUnsignedWrap>
935 m_NUWSub(const LHS &L, const RHS &R) {
936 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
937 OverflowingBinaryOperator::NoUnsignedWrap>(
938 L, R);
940 template <typename LHS, typename RHS>
941 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
942 OverflowingBinaryOperator::NoUnsignedWrap>
943 m_NUWMul(const LHS &L, const RHS &R) {
944 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
945 OverflowingBinaryOperator::NoUnsignedWrap>(
946 L, R);
948 template <typename LHS, typename RHS>
949 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
950 OverflowingBinaryOperator::NoUnsignedWrap>
951 m_NUWShl(const LHS &L, const RHS &R) {
952 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
953 OverflowingBinaryOperator::NoUnsignedWrap>(
954 L, R);
957 //===----------------------------------------------------------------------===//
958 // Class that matches a group of binary opcodes.
960 template <typename LHS_t, typename RHS_t, typename Predicate>
961 struct BinOpPred_match : Predicate {
962 LHS_t L;
963 RHS_t R;
965 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
967 template <typename OpTy> bool match(OpTy *V) {
968 if (auto *I = dyn_cast<Instruction>(V))
969 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
970 R.match(I->getOperand(1));
971 if (auto *CE = dyn_cast<ConstantExpr>(V))
972 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
973 R.match(CE->getOperand(1));
974 return false;
978 struct is_shift_op {
979 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
982 struct is_right_shift_op {
983 bool isOpType(unsigned Opcode) {
984 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
988 struct is_logical_shift_op {
989 bool isOpType(unsigned Opcode) {
990 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
994 struct is_bitwiselogic_op {
995 bool isOpType(unsigned Opcode) {
996 return Instruction::isBitwiseLogicOp(Opcode);
1000 struct is_idiv_op {
1001 bool isOpType(unsigned Opcode) {
1002 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1006 struct is_irem_op {
1007 bool isOpType(unsigned Opcode) {
1008 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1012 /// Matches shift operations.
1013 template <typename LHS, typename RHS>
1014 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1015 const RHS &R) {
1016 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1019 /// Matches logical shift operations.
1020 template <typename LHS, typename RHS>
1021 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1022 const RHS &R) {
1023 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1026 /// Matches logical shift operations.
1027 template <typename LHS, typename RHS>
1028 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1029 m_LogicalShift(const LHS &L, const RHS &R) {
1030 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1033 /// Matches bitwise logic operations.
1034 template <typename LHS, typename RHS>
1035 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1036 m_BitwiseLogic(const LHS &L, const RHS &R) {
1037 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1040 /// Matches integer division operations.
1041 template <typename LHS, typename RHS>
1042 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1043 const RHS &R) {
1044 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1047 /// Matches integer remainder operations.
1048 template <typename LHS, typename RHS>
1049 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1050 const RHS &R) {
1051 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1054 //===----------------------------------------------------------------------===//
1055 // Class that matches exact binary ops.
1057 template <typename SubPattern_t> struct Exact_match {
1058 SubPattern_t SubPattern;
1060 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1062 template <typename OpTy> bool match(OpTy *V) {
1063 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1064 return PEO->isExact() && SubPattern.match(V);
1065 return false;
1069 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1070 return SubPattern;
1073 //===----------------------------------------------------------------------===//
1074 // Matchers for CmpInst classes
1077 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1078 bool Commutable = false>
1079 struct CmpClass_match {
1080 PredicateTy &Predicate;
1081 LHS_t L;
1082 RHS_t R;
1084 // The evaluation order is always stable, regardless of Commutability.
1085 // The LHS is always matched first.
1086 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1087 : Predicate(Pred), L(LHS), R(RHS) {}
1089 template <typename OpTy> bool match(OpTy *V) {
1090 if (auto *I = dyn_cast<Class>(V))
1091 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1092 (Commutable && L.match(I->getOperand(1)) &&
1093 R.match(I->getOperand(0)))) {
1094 Predicate = I->getPredicate();
1095 return true;
1097 return false;
1101 template <typename LHS, typename RHS>
1102 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1103 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1104 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1107 template <typename LHS, typename RHS>
1108 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1109 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1110 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1113 template <typename LHS, typename RHS>
1114 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1115 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1116 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1119 //===----------------------------------------------------------------------===//
1120 // Matchers for instructions with a given opcode and number of operands.
1123 /// Matches instructions with Opcode and three operands.
1124 template <typename T0, unsigned Opcode> struct OneOps_match {
1125 T0 Op1;
1127 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1129 template <typename OpTy> bool match(OpTy *V) {
1130 if (V->getValueID() == Value::InstructionVal + Opcode) {
1131 auto *I = cast<Instruction>(V);
1132 return Op1.match(I->getOperand(0));
1134 return false;
1138 /// Matches instructions with Opcode and three operands.
1139 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1140 T0 Op1;
1141 T1 Op2;
1143 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1145 template <typename OpTy> bool match(OpTy *V) {
1146 if (V->getValueID() == Value::InstructionVal + Opcode) {
1147 auto *I = cast<Instruction>(V);
1148 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1150 return false;
1154 /// Matches instructions with Opcode and three operands.
1155 template <typename T0, typename T1, typename T2, unsigned Opcode>
1156 struct ThreeOps_match {
1157 T0 Op1;
1158 T1 Op2;
1159 T2 Op3;
1161 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1162 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1164 template <typename OpTy> bool match(OpTy *V) {
1165 if (V->getValueID() == Value::InstructionVal + Opcode) {
1166 auto *I = cast<Instruction>(V);
1167 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1168 Op3.match(I->getOperand(2));
1170 return false;
1174 /// Matches SelectInst.
1175 template <typename Cond, typename LHS, typename RHS>
1176 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1177 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1178 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1181 /// This matches a select of two constants, e.g.:
1182 /// m_SelectCst<-1, 0>(m_Value(V))
1183 template <int64_t L, int64_t R, typename Cond>
1184 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1185 Instruction::Select>
1186 m_SelectCst(const Cond &C) {
1187 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1190 /// Matches InsertElementInst.
1191 template <typename Val_t, typename Elt_t, typename Idx_t>
1192 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1193 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1194 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1195 Val, Elt, Idx);
1198 /// Matches ExtractElementInst.
1199 template <typename Val_t, typename Idx_t>
1200 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1201 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1202 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1205 /// Matches ShuffleVectorInst.
1206 template <typename V1_t, typename V2_t, typename Mask_t>
1207 inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1208 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1209 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1213 /// Matches LoadInst.
1214 template <typename OpTy>
1215 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1216 return OneOps_match<OpTy, Instruction::Load>(Op);
1219 /// Matches StoreInst.
1220 template <typename ValueOpTy, typename PointerOpTy>
1221 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1222 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1223 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1224 PointerOp);
1227 //===----------------------------------------------------------------------===//
1228 // Matchers for CastInst classes
1231 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1232 Op_t Op;
1234 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1236 template <typename OpTy> bool match(OpTy *V) {
1237 if (auto *O = dyn_cast<Operator>(V))
1238 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1239 return false;
1243 /// Matches BitCast.
1244 template <typename OpTy>
1245 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1246 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1249 /// Matches PtrToInt.
1250 template <typename OpTy>
1251 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1252 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1255 /// Matches Trunc.
1256 template <typename OpTy>
1257 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1258 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1261 template <typename OpTy>
1262 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1263 m_TruncOrSelf(const OpTy &Op) {
1264 return m_CombineOr(m_Trunc(Op), Op);
1267 /// Matches SExt.
1268 template <typename OpTy>
1269 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1270 return CastClass_match<OpTy, Instruction::SExt>(Op);
1273 /// Matches ZExt.
1274 template <typename OpTy>
1275 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1276 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1279 template <typename OpTy>
1280 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1281 m_ZExtOrSelf(const OpTy &Op) {
1282 return m_CombineOr(m_ZExt(Op), Op);
1285 template <typename OpTy>
1286 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1287 CastClass_match<OpTy, Instruction::SExt>>
1288 m_ZExtOrSExt(const OpTy &Op) {
1289 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1292 /// Matches UIToFP.
1293 template <typename OpTy>
1294 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1295 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1298 /// Matches SIToFP.
1299 template <typename OpTy>
1300 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1301 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1304 /// Matches FPTrunc
1305 template <typename OpTy>
1306 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1307 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1310 /// Matches FPExt
1311 template <typename OpTy>
1312 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1313 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1316 //===----------------------------------------------------------------------===//
1317 // Matchers for control flow.
1320 struct br_match {
1321 BasicBlock *&Succ;
1323 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1325 template <typename OpTy> bool match(OpTy *V) {
1326 if (auto *BI = dyn_cast<BranchInst>(V))
1327 if (BI->isUnconditional()) {
1328 Succ = BI->getSuccessor(0);
1329 return true;
1331 return false;
1335 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1337 template <typename Cond_t> struct brc_match {
1338 Cond_t Cond;
1339 BasicBlock *&T, *&F;
1341 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1342 : Cond(C), T(t), F(f) {}
1344 template <typename OpTy> bool match(OpTy *V) {
1345 if (auto *BI = dyn_cast<BranchInst>(V))
1346 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1347 T = BI->getSuccessor(0);
1348 F = BI->getSuccessor(1);
1349 return true;
1351 return false;
1355 template <typename Cond_t>
1356 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1357 return brc_match<Cond_t>(C, T, F);
1360 //===----------------------------------------------------------------------===//
1361 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1364 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1365 bool Commutable = false>
1366 struct MaxMin_match {
1367 LHS_t L;
1368 RHS_t R;
1370 // The evaluation order is always stable, regardless of Commutability.
1371 // The LHS is always matched first.
1372 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1374 template <typename OpTy> bool match(OpTy *V) {
1375 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1376 auto *SI = dyn_cast<SelectInst>(V);
1377 if (!SI)
1378 return false;
1379 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1380 if (!Cmp)
1381 return false;
1382 // At this point we have a select conditioned on a comparison. Check that
1383 // it is the values returned by the select that are being compared.
1384 Value *TrueVal = SI->getTrueValue();
1385 Value *FalseVal = SI->getFalseValue();
1386 Value *LHS = Cmp->getOperand(0);
1387 Value *RHS = Cmp->getOperand(1);
1388 if ((TrueVal != LHS || FalseVal != RHS) &&
1389 (TrueVal != RHS || FalseVal != LHS))
1390 return false;
1391 typename CmpInst_t::Predicate Pred =
1392 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1393 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1394 if (!Pred_t::match(Pred))
1395 return false;
1396 // It does! Bind the operands.
1397 return (L.match(LHS) && R.match(RHS)) ||
1398 (Commutable && L.match(RHS) && R.match(LHS));
1402 /// Helper class for identifying signed max predicates.
1403 struct smax_pred_ty {
1404 static bool match(ICmpInst::Predicate Pred) {
1405 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1409 /// Helper class for identifying signed min predicates.
1410 struct smin_pred_ty {
1411 static bool match(ICmpInst::Predicate Pred) {
1412 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1416 /// Helper class for identifying unsigned max predicates.
1417 struct umax_pred_ty {
1418 static bool match(ICmpInst::Predicate Pred) {
1419 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1423 /// Helper class for identifying unsigned min predicates.
1424 struct umin_pred_ty {
1425 static bool match(ICmpInst::Predicate Pred) {
1426 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1430 /// Helper class for identifying ordered max predicates.
1431 struct ofmax_pred_ty {
1432 static bool match(FCmpInst::Predicate Pred) {
1433 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1437 /// Helper class for identifying ordered min predicates.
1438 struct ofmin_pred_ty {
1439 static bool match(FCmpInst::Predicate Pred) {
1440 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1444 /// Helper class for identifying unordered max predicates.
1445 struct ufmax_pred_ty {
1446 static bool match(FCmpInst::Predicate Pred) {
1447 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1451 /// Helper class for identifying unordered min predicates.
1452 struct ufmin_pred_ty {
1453 static bool match(FCmpInst::Predicate Pred) {
1454 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1458 template <typename LHS, typename RHS>
1459 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1460 const RHS &R) {
1461 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1464 template <typename LHS, typename RHS>
1465 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1466 const RHS &R) {
1467 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1470 template <typename LHS, typename RHS>
1471 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1472 const RHS &R) {
1473 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1476 template <typename LHS, typename RHS>
1477 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1478 const RHS &R) {
1479 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1482 /// Match an 'ordered' floating point maximum function.
1483 /// Floating point has one special value 'NaN'. Therefore, there is no total
1484 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1485 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1486 /// semantics. In the presence of 'NaN' we have to preserve the original
1487 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1489 /// max(L, R) iff L and R are not NaN
1490 /// m_OrdFMax(L, R) = R iff L or R are NaN
1491 template <typename LHS, typename RHS>
1492 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1493 const RHS &R) {
1494 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1497 /// Match an 'ordered' floating point minimum function.
1498 /// Floating point has one special value 'NaN'. Therefore, there is no total
1499 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1500 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1501 /// semantics. In the presence of 'NaN' we have to preserve the original
1502 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1504 /// min(L, R) iff L and R are not NaN
1505 /// m_OrdFMin(L, R) = R iff L or R are NaN
1506 template <typename LHS, typename RHS>
1507 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1508 const RHS &R) {
1509 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1512 /// Match an 'unordered' floating point maximum function.
1513 /// Floating point has one special value 'NaN'. Therefore, there is no total
1514 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1515 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1516 /// semantics. In the presence of 'NaN' we have to preserve the original
1517 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1519 /// max(L, R) iff L and R are not NaN
1520 /// m_UnordFMax(L, R) = L iff L or R are NaN
1521 template <typename LHS, typename RHS>
1522 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1523 m_UnordFMax(const LHS &L, const RHS &R) {
1524 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1527 /// Match an 'unordered' floating point minimum function.
1528 /// Floating point has one special value 'NaN'. Therefore, there is no total
1529 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1530 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1531 /// semantics. In the presence of 'NaN' we have to preserve the original
1532 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1534 /// min(L, R) iff L and R are not NaN
1535 /// m_UnordFMin(L, R) = L iff L or R are NaN
1536 template <typename LHS, typename RHS>
1537 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1538 m_UnordFMin(const LHS &L, const RHS &R) {
1539 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1542 //===----------------------------------------------------------------------===//
1543 // Matchers for overflow check patterns: e.g. (a + b) u< a
1546 template <typename LHS_t, typename RHS_t, typename Sum_t>
1547 struct UAddWithOverflow_match {
1548 LHS_t L;
1549 RHS_t R;
1550 Sum_t S;
1552 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1553 : L(L), R(R), S(S) {}
1555 template <typename OpTy> bool match(OpTy *V) {
1556 Value *ICmpLHS, *ICmpRHS;
1557 ICmpInst::Predicate Pred;
1558 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1559 return false;
1561 Value *AddLHS, *AddRHS;
1562 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1564 // (a + b) u< a, (a + b) u< b
1565 if (Pred == ICmpInst::ICMP_ULT)
1566 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1567 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1569 // a >u (a + b), b >u (a + b)
1570 if (Pred == ICmpInst::ICMP_UGT)
1571 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1572 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1574 // Match special-case for increment-by-1.
1575 if (Pred == ICmpInst::ICMP_EQ) {
1576 // (a + 1) == 0
1577 // (1 + a) == 0
1578 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1579 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1580 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1581 // 0 == (a + 1)
1582 // 0 == (1 + a)
1583 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1584 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1585 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1588 return false;
1592 /// Match an icmp instruction checking for unsigned overflow on addition.
1594 /// S is matched to the addition whose result is being checked for overflow, and
1595 /// L and R are matched to the LHS and RHS of S.
1596 template <typename LHS_t, typename RHS_t, typename Sum_t>
1597 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1598 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1599 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1602 template <typename Opnd_t> struct Argument_match {
1603 unsigned OpI;
1604 Opnd_t Val;
1606 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1608 template <typename OpTy> bool match(OpTy *V) {
1609 // FIXME: Should likely be switched to use `CallBase`.
1610 if (const auto *CI = dyn_cast<CallInst>(V))
1611 return Val.match(CI->getArgOperand(OpI));
1612 return false;
1616 /// Match an argument.
1617 template <unsigned OpI, typename Opnd_t>
1618 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1619 return Argument_match<Opnd_t>(OpI, Op);
1622 /// Intrinsic matchers.
1623 struct IntrinsicID_match {
1624 unsigned ID;
1626 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1628 template <typename OpTy> bool match(OpTy *V) {
1629 if (const auto *CI = dyn_cast<CallInst>(V))
1630 if (const auto *F = CI->getCalledFunction())
1631 return F->getIntrinsicID() == ID;
1632 return false;
1636 /// Intrinsic matches are combinations of ID matchers, and argument
1637 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1638 /// them with lower arity matchers. Here's some convenient typedefs for up to
1639 /// several arguments, and more can be added as needed
1640 template <typename T0 = void, typename T1 = void, typename T2 = void,
1641 typename T3 = void, typename T4 = void, typename T5 = void,
1642 typename T6 = void, typename T7 = void, typename T8 = void,
1643 typename T9 = void, typename T10 = void>
1644 struct m_Intrinsic_Ty;
1645 template <typename T0> struct m_Intrinsic_Ty<T0> {
1646 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1648 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1649 using Ty =
1650 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1652 template <typename T0, typename T1, typename T2>
1653 struct m_Intrinsic_Ty<T0, T1, T2> {
1654 using Ty =
1655 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1656 Argument_match<T2>>;
1658 template <typename T0, typename T1, typename T2, typename T3>
1659 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1660 using Ty =
1661 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1662 Argument_match<T3>>;
1665 /// Match intrinsic calls like this:
1666 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1667 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1668 return IntrinsicID_match(IntrID);
1671 template <Intrinsic::ID IntrID, typename T0>
1672 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1673 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1676 template <Intrinsic::ID IntrID, typename T0, typename T1>
1677 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1678 const T1 &Op1) {
1679 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1682 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1683 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1684 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1685 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1688 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1689 typename T3>
1690 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1691 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1692 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1695 // Helper intrinsic matching specializations.
1696 template <typename Opnd0>
1697 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1698 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1701 template <typename Opnd0>
1702 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1703 return m_Intrinsic<Intrinsic::bswap>(Op0);
1706 template <typename Opnd0>
1707 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1708 return m_Intrinsic<Intrinsic::fabs>(Op0);
1711 template <typename Opnd0>
1712 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1713 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1716 template <typename Opnd0, typename Opnd1>
1717 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1718 const Opnd1 &Op1) {
1719 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1722 template <typename Opnd0, typename Opnd1>
1723 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1724 const Opnd1 &Op1) {
1725 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1728 //===----------------------------------------------------------------------===//
1729 // Matchers for two-operands operators with the operators in either order
1732 /// Matches a BinaryOperator with LHS and RHS in either order.
1733 template <typename LHS, typename RHS>
1734 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1735 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1738 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1739 /// Does not swap the predicate.
1740 template <typename LHS, typename RHS>
1741 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1742 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1743 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1747 /// Matches a Add with LHS and RHS in either order.
1748 template <typename LHS, typename RHS>
1749 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1750 const RHS &R) {
1751 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1754 /// Matches a Mul with LHS and RHS in either order.
1755 template <typename LHS, typename RHS>
1756 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1757 const RHS &R) {
1758 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1761 /// Matches an And with LHS and RHS in either order.
1762 template <typename LHS, typename RHS>
1763 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1764 const RHS &R) {
1765 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1768 /// Matches an Or with LHS and RHS in either order.
1769 template <typename LHS, typename RHS>
1770 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1771 const RHS &R) {
1772 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1775 /// Matches an Xor with LHS and RHS in either order.
1776 template <typename LHS, typename RHS>
1777 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1778 const RHS &R) {
1779 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1782 /// Matches a 'Neg' as 'sub 0, V'.
1783 template <typename ValTy>
1784 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1785 m_Neg(const ValTy &V) {
1786 return m_Sub(m_ZeroInt(), V);
1789 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1790 template <typename ValTy>
1791 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1792 m_Not(const ValTy &V) {
1793 return m_c_Xor(V, m_AllOnes());
1796 /// Matches an SMin with LHS and RHS in either order.
1797 template <typename LHS, typename RHS>
1798 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1799 m_c_SMin(const LHS &L, const RHS &R) {
1800 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1802 /// Matches an SMax with LHS and RHS in either order.
1803 template <typename LHS, typename RHS>
1804 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1805 m_c_SMax(const LHS &L, const RHS &R) {
1806 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1808 /// Matches a UMin with LHS and RHS in either order.
1809 template <typename LHS, typename RHS>
1810 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1811 m_c_UMin(const LHS &L, const RHS &R) {
1812 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1814 /// Matches a UMax with LHS and RHS in either order.
1815 template <typename LHS, typename RHS>
1816 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1817 m_c_UMax(const LHS &L, const RHS &R) {
1818 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1821 /// Matches FAdd with LHS and RHS in either order.
1822 template <typename LHS, typename RHS>
1823 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1824 m_c_FAdd(const LHS &L, const RHS &R) {
1825 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1828 /// Matches FMul with LHS and RHS in either order.
1829 template <typename LHS, typename RHS>
1830 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1831 m_c_FMul(const LHS &L, const RHS &R) {
1832 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1835 template <typename Opnd_t> struct Signum_match {
1836 Opnd_t Val;
1837 Signum_match(const Opnd_t &V) : Val(V) {}
1839 template <typename OpTy> bool match(OpTy *V) {
1840 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1841 if (TypeSize == 0)
1842 return false;
1844 unsigned ShiftWidth = TypeSize - 1;
1845 Value *OpL = nullptr, *OpR = nullptr;
1847 // This is the representation of signum we match:
1849 // signum(x) == (x >> 63) | (-x >>u 63)
1851 // An i1 value is its own signum, so it's correct to match
1853 // signum(x) == (x >> 0) | (-x >>u 0)
1855 // for i1 values.
1857 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1858 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1859 auto Signum = m_Or(LHS, RHS);
1861 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1865 /// Matches a signum pattern.
1867 /// signum(x) =
1868 /// x > 0 -> 1
1869 /// x == 0 -> 0
1870 /// x < 0 -> -1
1871 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1872 return Signum_match<Val_t>(V);
1875 } // end namespace PatternMatch
1876 } // end namespace llvm
1878 #endif // LLVM_IR_PATTERNMATCH_H