[Alignment][NFC] Use Align with TargetLowering::setPrefLoopAlignment
[llvm-complete.git] / lib / Target / AArch64 / AArch64ISelLowering.cpp
bloba78f37f42784d58f7fbcb268e26bc6044379591d
1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64ExpandImm.h"
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/CallingConvLower.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetCallingConv.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/OperandTraits.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MachineValueType.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <algorithm>
80 #include <bitset>
81 #include <cassert>
82 #include <cctype>
83 #include <cstdint>
84 #include <cstdlib>
85 #include <iterator>
86 #include <limits>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
91 using namespace llvm;
92 using namespace llvm::PatternMatch;
94 #define DEBUG_TYPE "aarch64-lower"
96 STATISTIC(NumTailCalls, "Number of tail calls");
97 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
98 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
100 static cl::opt<bool>
101 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
102 cl::desc("Allow AArch64 SLI/SRI formation"),
103 cl::init(false));
105 // FIXME: The necessary dtprel relocations don't seem to be supported
106 // well in the GNU bfd and gold linkers at the moment. Therefore, by
107 // default, for now, fall back to GeneralDynamic code generation.
108 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
109 "aarch64-elf-ldtls-generation", cl::Hidden,
110 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
111 cl::init(false));
113 static cl::opt<bool>
114 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
115 cl::desc("Enable AArch64 logical imm instruction "
116 "optimization"),
117 cl::init(true));
119 /// Value type used for condition codes.
120 static const MVT MVT_CC = MVT::i32;
122 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
123 const AArch64Subtarget &STI)
124 : TargetLowering(TM), Subtarget(&STI) {
125 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
126 // we have to make something up. Arbitrarily, choose ZeroOrOne.
127 setBooleanContents(ZeroOrOneBooleanContent);
128 // When comparing vectors the result sets the different elements in the
129 // vector to all-one or all-zero.
130 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
132 // Set up the register classes.
133 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
134 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
136 if (Subtarget->hasFPARMv8()) {
137 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
138 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
139 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
140 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
143 if (Subtarget->hasNEON()) {
144 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
145 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
146 // Someone set us up the NEON.
147 addDRTypeForNEON(MVT::v2f32);
148 addDRTypeForNEON(MVT::v8i8);
149 addDRTypeForNEON(MVT::v4i16);
150 addDRTypeForNEON(MVT::v2i32);
151 addDRTypeForNEON(MVT::v1i64);
152 addDRTypeForNEON(MVT::v1f64);
153 addDRTypeForNEON(MVT::v4f16);
155 addQRTypeForNEON(MVT::v4f32);
156 addQRTypeForNEON(MVT::v2f64);
157 addQRTypeForNEON(MVT::v16i8);
158 addQRTypeForNEON(MVT::v8i16);
159 addQRTypeForNEON(MVT::v4i32);
160 addQRTypeForNEON(MVT::v2i64);
161 addQRTypeForNEON(MVT::v8f16);
164 if (Subtarget->hasSVE()) {
165 // Add legal sve predicate types
166 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
167 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
168 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
169 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
171 // Add legal sve data types
172 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
173 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
174 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
175 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
177 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
178 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
179 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
180 addRegisterClass(MVT::nxv1f32, &AArch64::ZPRRegClass);
181 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
182 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
183 addRegisterClass(MVT::nxv1f64, &AArch64::ZPRRegClass);
184 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
187 // Compute derived properties from the register classes
188 computeRegisterProperties(Subtarget->getRegisterInfo());
190 // Provide all sorts of operation actions
191 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
192 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
193 setOperationAction(ISD::SETCC, MVT::i32, Custom);
194 setOperationAction(ISD::SETCC, MVT::i64, Custom);
195 setOperationAction(ISD::SETCC, MVT::f16, Custom);
196 setOperationAction(ISD::SETCC, MVT::f32, Custom);
197 setOperationAction(ISD::SETCC, MVT::f64, Custom);
198 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
199 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
200 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
201 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
202 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
203 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
204 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
205 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
206 setOperationAction(ISD::SELECT, MVT::i32, Custom);
207 setOperationAction(ISD::SELECT, MVT::i64, Custom);
208 setOperationAction(ISD::SELECT, MVT::f16, Custom);
209 setOperationAction(ISD::SELECT, MVT::f32, Custom);
210 setOperationAction(ISD::SELECT, MVT::f64, Custom);
211 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
212 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
213 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
214 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
215 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
216 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
217 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
219 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
220 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
221 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
223 setOperationAction(ISD::FREM, MVT::f32, Expand);
224 setOperationAction(ISD::FREM, MVT::f64, Expand);
225 setOperationAction(ISD::FREM, MVT::f80, Expand);
227 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
229 // Custom lowering hooks are needed for XOR
230 // to fold it into CSINC/CSINV.
231 setOperationAction(ISD::XOR, MVT::i32, Custom);
232 setOperationAction(ISD::XOR, MVT::i64, Custom);
234 // Virtually no operation on f128 is legal, but LLVM can't expand them when
235 // there's a valid register class, so we need custom operations in most cases.
236 setOperationAction(ISD::FABS, MVT::f128, Expand);
237 setOperationAction(ISD::FADD, MVT::f128, Custom);
238 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
239 setOperationAction(ISD::FCOS, MVT::f128, Expand);
240 setOperationAction(ISD::FDIV, MVT::f128, Custom);
241 setOperationAction(ISD::FMA, MVT::f128, Expand);
242 setOperationAction(ISD::FMUL, MVT::f128, Custom);
243 setOperationAction(ISD::FNEG, MVT::f128, Expand);
244 setOperationAction(ISD::FPOW, MVT::f128, Expand);
245 setOperationAction(ISD::FREM, MVT::f128, Expand);
246 setOperationAction(ISD::FRINT, MVT::f128, Expand);
247 setOperationAction(ISD::FSIN, MVT::f128, Expand);
248 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
249 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
250 setOperationAction(ISD::FSUB, MVT::f128, Custom);
251 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
252 setOperationAction(ISD::SETCC, MVT::f128, Custom);
253 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
254 setOperationAction(ISD::SELECT, MVT::f128, Custom);
255 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
256 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
258 // Lowering for many of the conversions is actually specified by the non-f128
259 // type. The LowerXXX function will be trivial when f128 isn't involved.
260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
261 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
262 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
263 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
264 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
265 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
266 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
267 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
268 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
269 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
270 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
271 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
272 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
273 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
275 // Variable arguments.
276 setOperationAction(ISD::VASTART, MVT::Other, Custom);
277 setOperationAction(ISD::VAARG, MVT::Other, Custom);
278 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
279 setOperationAction(ISD::VAEND, MVT::Other, Expand);
281 // Variable-sized objects.
282 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
283 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
285 if (Subtarget->isTargetWindows())
286 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
287 else
288 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
290 // Constant pool entries
291 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
293 // BlockAddress
294 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
296 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
297 setOperationAction(ISD::ADDC, MVT::i32, Custom);
298 setOperationAction(ISD::ADDE, MVT::i32, Custom);
299 setOperationAction(ISD::SUBC, MVT::i32, Custom);
300 setOperationAction(ISD::SUBE, MVT::i32, Custom);
301 setOperationAction(ISD::ADDC, MVT::i64, Custom);
302 setOperationAction(ISD::ADDE, MVT::i64, Custom);
303 setOperationAction(ISD::SUBC, MVT::i64, Custom);
304 setOperationAction(ISD::SUBE, MVT::i64, Custom);
306 // AArch64 lacks both left-rotate and popcount instructions.
307 setOperationAction(ISD::ROTL, MVT::i32, Expand);
308 setOperationAction(ISD::ROTL, MVT::i64, Expand);
309 for (MVT VT : MVT::vector_valuetypes()) {
310 setOperationAction(ISD::ROTL, VT, Expand);
311 setOperationAction(ISD::ROTR, VT, Expand);
314 // AArch64 doesn't have {U|S}MUL_LOHI.
315 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
316 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
318 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
319 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
321 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
322 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
323 for (MVT VT : MVT::vector_valuetypes()) {
324 setOperationAction(ISD::SDIVREM, VT, Expand);
325 setOperationAction(ISD::UDIVREM, VT, Expand);
327 setOperationAction(ISD::SREM, MVT::i32, Expand);
328 setOperationAction(ISD::SREM, MVT::i64, Expand);
329 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
330 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
331 setOperationAction(ISD::UREM, MVT::i32, Expand);
332 setOperationAction(ISD::UREM, MVT::i64, Expand);
334 // Custom lower Add/Sub/Mul with overflow.
335 setOperationAction(ISD::SADDO, MVT::i32, Custom);
336 setOperationAction(ISD::SADDO, MVT::i64, Custom);
337 setOperationAction(ISD::UADDO, MVT::i32, Custom);
338 setOperationAction(ISD::UADDO, MVT::i64, Custom);
339 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
340 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
341 setOperationAction(ISD::USUBO, MVT::i32, Custom);
342 setOperationAction(ISD::USUBO, MVT::i64, Custom);
343 setOperationAction(ISD::SMULO, MVT::i32, Custom);
344 setOperationAction(ISD::SMULO, MVT::i64, Custom);
345 setOperationAction(ISD::UMULO, MVT::i32, Custom);
346 setOperationAction(ISD::UMULO, MVT::i64, Custom);
348 setOperationAction(ISD::FSIN, MVT::f32, Expand);
349 setOperationAction(ISD::FSIN, MVT::f64, Expand);
350 setOperationAction(ISD::FCOS, MVT::f32, Expand);
351 setOperationAction(ISD::FCOS, MVT::f64, Expand);
352 setOperationAction(ISD::FPOW, MVT::f32, Expand);
353 setOperationAction(ISD::FPOW, MVT::f64, Expand);
354 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
355 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
356 if (Subtarget->hasFullFP16())
357 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
358 else
359 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
361 setOperationAction(ISD::FREM, MVT::f16, Promote);
362 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
363 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
364 setOperationAction(ISD::FPOW, MVT::f16, Promote);
365 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
366 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
367 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
368 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
369 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
370 setOperationAction(ISD::FCOS, MVT::f16, Promote);
371 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
372 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
373 setOperationAction(ISD::FSIN, MVT::f16, Promote);
374 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
375 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
376 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
377 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
378 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
379 setOperationAction(ISD::FEXP, MVT::f16, Promote);
380 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
381 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
382 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
383 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
384 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
385 setOperationAction(ISD::FLOG, MVT::f16, Promote);
386 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
387 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
388 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
389 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
390 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
391 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
392 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
393 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
395 if (!Subtarget->hasFullFP16()) {
396 setOperationAction(ISD::SELECT, MVT::f16, Promote);
397 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
398 setOperationAction(ISD::SETCC, MVT::f16, Promote);
399 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
400 setOperationAction(ISD::FADD, MVT::f16, Promote);
401 setOperationAction(ISD::FSUB, MVT::f16, Promote);
402 setOperationAction(ISD::FMUL, MVT::f16, Promote);
403 setOperationAction(ISD::FDIV, MVT::f16, Promote);
404 setOperationAction(ISD::FMA, MVT::f16, Promote);
405 setOperationAction(ISD::FNEG, MVT::f16, Promote);
406 setOperationAction(ISD::FABS, MVT::f16, Promote);
407 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
408 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
409 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
410 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
411 setOperationAction(ISD::FRINT, MVT::f16, Promote);
412 setOperationAction(ISD::FROUND, MVT::f16, Promote);
413 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
414 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
415 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
416 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
417 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
419 // promote v4f16 to v4f32 when that is known to be safe.
420 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
421 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
422 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
423 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
424 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
425 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
426 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
427 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
428 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
429 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
430 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
431 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
433 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
434 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
435 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
436 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
437 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
438 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
439 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
440 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
441 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
442 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
443 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
444 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
445 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
446 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
447 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
449 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
450 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
451 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
452 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
453 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
454 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
455 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
456 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
457 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
458 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
459 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
460 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
461 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
462 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
463 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
464 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
465 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
466 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
467 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
468 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
471 // AArch64 has implementations of a lot of rounding-like FP operations.
472 for (MVT Ty : {MVT::f32, MVT::f64}) {
473 setOperationAction(ISD::FFLOOR, Ty, Legal);
474 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
475 setOperationAction(ISD::FCEIL, Ty, Legal);
476 setOperationAction(ISD::FRINT, Ty, Legal);
477 setOperationAction(ISD::FTRUNC, Ty, Legal);
478 setOperationAction(ISD::FROUND, Ty, Legal);
479 setOperationAction(ISD::FMINNUM, Ty, Legal);
480 setOperationAction(ISD::FMAXNUM, Ty, Legal);
481 setOperationAction(ISD::FMINIMUM, Ty, Legal);
482 setOperationAction(ISD::FMAXIMUM, Ty, Legal);
483 setOperationAction(ISD::LROUND, Ty, Legal);
484 setOperationAction(ISD::LLROUND, Ty, Legal);
485 setOperationAction(ISD::LRINT, Ty, Legal);
486 setOperationAction(ISD::LLRINT, Ty, Legal);
489 if (Subtarget->hasFullFP16()) {
490 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
491 setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
492 setOperationAction(ISD::FCEIL, MVT::f16, Legal);
493 setOperationAction(ISD::FRINT, MVT::f16, Legal);
494 setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
495 setOperationAction(ISD::FROUND, MVT::f16, Legal);
496 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
497 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
498 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
499 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
502 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
504 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
506 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
507 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
508 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
509 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
510 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
512 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
513 // This requires the Performance Monitors extension.
514 if (Subtarget->hasPerfMon())
515 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
517 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
518 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
519 // Issue __sincos_stret if available.
520 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
521 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
522 } else {
523 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
524 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
527 // Make floating-point constants legal for the large code model, so they don't
528 // become loads from the constant pool.
529 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
530 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
531 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
534 // AArch64 does not have floating-point extending loads, i1 sign-extending
535 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
536 for (MVT VT : MVT::fp_valuetypes()) {
537 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
538 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
539 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
540 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
542 for (MVT VT : MVT::integer_valuetypes())
543 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
545 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
546 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
547 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
548 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
549 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
550 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
551 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
553 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
554 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
556 // Indexed loads and stores are supported.
557 for (unsigned im = (unsigned)ISD::PRE_INC;
558 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
559 setIndexedLoadAction(im, MVT::i8, Legal);
560 setIndexedLoadAction(im, MVT::i16, Legal);
561 setIndexedLoadAction(im, MVT::i32, Legal);
562 setIndexedLoadAction(im, MVT::i64, Legal);
563 setIndexedLoadAction(im, MVT::f64, Legal);
564 setIndexedLoadAction(im, MVT::f32, Legal);
565 setIndexedLoadAction(im, MVT::f16, Legal);
566 setIndexedStoreAction(im, MVT::i8, Legal);
567 setIndexedStoreAction(im, MVT::i16, Legal);
568 setIndexedStoreAction(im, MVT::i32, Legal);
569 setIndexedStoreAction(im, MVT::i64, Legal);
570 setIndexedStoreAction(im, MVT::f64, Legal);
571 setIndexedStoreAction(im, MVT::f32, Legal);
572 setIndexedStoreAction(im, MVT::f16, Legal);
575 // Trap.
576 setOperationAction(ISD::TRAP, MVT::Other, Legal);
577 if (Subtarget->isTargetWindows())
578 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
580 // We combine OR nodes for bitfield operations.
581 setTargetDAGCombine(ISD::OR);
582 // Try to create BICs for vector ANDs.
583 setTargetDAGCombine(ISD::AND);
585 // Vector add and sub nodes may conceal a high-half opportunity.
586 // Also, try to fold ADD into CSINC/CSINV..
587 setTargetDAGCombine(ISD::ADD);
588 setTargetDAGCombine(ISD::SUB);
589 setTargetDAGCombine(ISD::SRL);
590 setTargetDAGCombine(ISD::XOR);
591 setTargetDAGCombine(ISD::SINT_TO_FP);
592 setTargetDAGCombine(ISD::UINT_TO_FP);
594 setTargetDAGCombine(ISD::FP_TO_SINT);
595 setTargetDAGCombine(ISD::FP_TO_UINT);
596 setTargetDAGCombine(ISD::FDIV);
598 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
600 setTargetDAGCombine(ISD::ANY_EXTEND);
601 setTargetDAGCombine(ISD::ZERO_EXTEND);
602 setTargetDAGCombine(ISD::SIGN_EXTEND);
603 setTargetDAGCombine(ISD::BITCAST);
604 setTargetDAGCombine(ISD::CONCAT_VECTORS);
605 setTargetDAGCombine(ISD::STORE);
606 if (Subtarget->supportsAddressTopByteIgnored())
607 setTargetDAGCombine(ISD::LOAD);
609 setTargetDAGCombine(ISD::MUL);
611 setTargetDAGCombine(ISD::SELECT);
612 setTargetDAGCombine(ISD::VSELECT);
614 setTargetDAGCombine(ISD::INTRINSIC_VOID);
615 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
616 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
618 setTargetDAGCombine(ISD::GlobalAddress);
620 // In case of strict alignment, avoid an excessive number of byte wide stores.
621 MaxStoresPerMemsetOptSize = 8;
622 MaxStoresPerMemset = Subtarget->requiresStrictAlign()
623 ? MaxStoresPerMemsetOptSize : 32;
625 MaxGluedStoresPerMemcpy = 4;
626 MaxStoresPerMemcpyOptSize = 4;
627 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
628 ? MaxStoresPerMemcpyOptSize : 16;
630 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
632 MaxLoadsPerMemcmpOptSize = 4;
633 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
634 ? MaxLoadsPerMemcmpOptSize : 8;
636 setStackPointerRegisterToSaveRestore(AArch64::SP);
638 setSchedulingPreference(Sched::Hybrid);
640 EnableExtLdPromotion = true;
642 // Set required alignment.
643 setMinFunctionAlignment(llvm::Align(4));
644 // Set preferred alignments.
645 setPrefFunctionLogAlignment(STI.getPrefFunctionLogAlignment());
646 setPrefLoopAlignment(llvm::Align(1ULL << STI.getPrefLoopLogAlignment()));
648 // Only change the limit for entries in a jump table if specified by
649 // the sub target, but not at the command line.
650 unsigned MaxJT = STI.getMaximumJumpTableSize();
651 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
652 setMaximumJumpTableSize(MaxJT);
654 setHasExtractBitsInsn(true);
656 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
658 if (Subtarget->hasNEON()) {
659 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
660 // silliness like this:
661 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
662 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
663 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
664 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
665 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
666 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
667 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
668 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
669 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
670 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
671 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
672 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
673 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
674 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
675 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
676 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
677 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
678 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
679 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
680 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
681 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
682 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
683 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
684 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
685 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
687 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
688 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
689 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
690 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
691 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
693 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
695 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
696 // elements smaller than i32, so promote the input to i32 first.
697 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
698 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
699 // i8 vector elements also need promotion to i32 for v8i8
700 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
701 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
702 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
703 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
704 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
705 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
706 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
707 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
708 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
709 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
710 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
712 if (Subtarget->hasFullFP16()) {
713 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
714 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
715 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
716 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
717 } else {
718 // when AArch64 doesn't have fullfp16 support, promote the input
719 // to i32 first.
720 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
721 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
722 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
723 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
726 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
727 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
729 // AArch64 doesn't have MUL.2d:
730 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
731 // Custom handling for some quad-vector types to detect MULL.
732 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
733 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
734 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
736 // Vector reductions
737 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
738 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
739 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
740 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
741 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
742 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
743 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
745 for (MVT VT : { MVT::v4f16, MVT::v2f32,
746 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
747 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
748 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
751 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
752 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
753 // Likewise, narrowing and extending vector loads/stores aren't handled
754 // directly.
755 for (MVT VT : MVT::vector_valuetypes()) {
756 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
758 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
759 setOperationAction(ISD::MULHS, VT, Legal);
760 setOperationAction(ISD::MULHU, VT, Legal);
761 } else {
762 setOperationAction(ISD::MULHS, VT, Expand);
763 setOperationAction(ISD::MULHU, VT, Expand);
765 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
766 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
768 setOperationAction(ISD::BSWAP, VT, Expand);
769 setOperationAction(ISD::CTTZ, VT, Expand);
771 for (MVT InnerVT : MVT::vector_valuetypes()) {
772 setTruncStoreAction(VT, InnerVT, Expand);
773 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
774 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
775 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
779 // AArch64 has implementations of a lot of rounding-like FP operations.
780 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
781 setOperationAction(ISD::FFLOOR, Ty, Legal);
782 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
783 setOperationAction(ISD::FCEIL, Ty, Legal);
784 setOperationAction(ISD::FRINT, Ty, Legal);
785 setOperationAction(ISD::FTRUNC, Ty, Legal);
786 setOperationAction(ISD::FROUND, Ty, Legal);
789 if (Subtarget->hasFullFP16()) {
790 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
791 setOperationAction(ISD::FFLOOR, Ty, Legal);
792 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
793 setOperationAction(ISD::FCEIL, Ty, Legal);
794 setOperationAction(ISD::FRINT, Ty, Legal);
795 setOperationAction(ISD::FTRUNC, Ty, Legal);
796 setOperationAction(ISD::FROUND, Ty, Legal);
800 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
803 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
806 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
807 assert(VT.isVector() && "VT should be a vector type");
809 if (VT.isFloatingPoint()) {
810 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
811 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
812 setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
815 // Mark vector float intrinsics as expand.
816 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
817 setOperationAction(ISD::FSIN, VT, Expand);
818 setOperationAction(ISD::FCOS, VT, Expand);
819 setOperationAction(ISD::FPOW, VT, Expand);
820 setOperationAction(ISD::FLOG, VT, Expand);
821 setOperationAction(ISD::FLOG2, VT, Expand);
822 setOperationAction(ISD::FLOG10, VT, Expand);
823 setOperationAction(ISD::FEXP, VT, Expand);
824 setOperationAction(ISD::FEXP2, VT, Expand);
826 // But we do support custom-lowering for FCOPYSIGN.
827 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
830 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
831 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
832 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
833 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
834 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
835 setOperationAction(ISD::SRA, VT, Custom);
836 setOperationAction(ISD::SRL, VT, Custom);
837 setOperationAction(ISD::SHL, VT, Custom);
838 setOperationAction(ISD::OR, VT, Custom);
839 setOperationAction(ISD::SETCC, VT, Custom);
840 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
842 setOperationAction(ISD::SELECT, VT, Expand);
843 setOperationAction(ISD::SELECT_CC, VT, Expand);
844 setOperationAction(ISD::VSELECT, VT, Expand);
845 for (MVT InnerVT : MVT::all_valuetypes())
846 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
848 // CNT supports only B element sizes, then use UADDLP to widen.
849 if (VT != MVT::v8i8 && VT != MVT::v16i8)
850 setOperationAction(ISD::CTPOP, VT, Custom);
852 setOperationAction(ISD::UDIV, VT, Expand);
853 setOperationAction(ISD::SDIV, VT, Expand);
854 setOperationAction(ISD::UREM, VT, Expand);
855 setOperationAction(ISD::SREM, VT, Expand);
856 setOperationAction(ISD::FREM, VT, Expand);
858 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
859 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
861 if (!VT.isFloatingPoint())
862 setOperationAction(ISD::ABS, VT, Legal);
864 // [SU][MIN|MAX] are available for all NEON types apart from i64.
865 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
866 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
867 setOperationAction(Opcode, VT, Legal);
869 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
870 if (VT.isFloatingPoint() &&
871 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
872 for (unsigned Opcode :
873 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
874 setOperationAction(Opcode, VT, Legal);
876 if (Subtarget->isLittleEndian()) {
877 for (unsigned im = (unsigned)ISD::PRE_INC;
878 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
879 setIndexedLoadAction(im, VT, Legal);
880 setIndexedStoreAction(im, VT, Legal);
885 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
886 addRegisterClass(VT, &AArch64::FPR64RegClass);
887 addTypeForNEON(VT, MVT::v2i32);
890 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
891 addRegisterClass(VT, &AArch64::FPR128RegClass);
892 addTypeForNEON(VT, MVT::v4i32);
895 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
896 EVT VT) const {
897 if (!VT.isVector())
898 return MVT::i32;
899 return VT.changeVectorElementTypeToInteger();
902 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
903 const APInt &Demanded,
904 TargetLowering::TargetLoweringOpt &TLO,
905 unsigned NewOpc) {
906 uint64_t OldImm = Imm, NewImm, Enc;
907 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
909 // Return if the immediate is already all zeros, all ones, a bimm32 or a
910 // bimm64.
911 if (Imm == 0 || Imm == Mask ||
912 AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
913 return false;
915 unsigned EltSize = Size;
916 uint64_t DemandedBits = Demanded.getZExtValue();
918 // Clear bits that are not demanded.
919 Imm &= DemandedBits;
921 while (true) {
922 // The goal here is to set the non-demanded bits in a way that minimizes
923 // the number of switching between 0 and 1. In order to achieve this goal,
924 // we set the non-demanded bits to the value of the preceding demanded bits.
925 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
926 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
927 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
928 // The final result is 0b11000011.
929 uint64_t NonDemandedBits = ~DemandedBits;
930 uint64_t InvertedImm = ~Imm & DemandedBits;
931 uint64_t RotatedImm =
932 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
933 NonDemandedBits;
934 uint64_t Sum = RotatedImm + NonDemandedBits;
935 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
936 uint64_t Ones = (Sum + Carry) & NonDemandedBits;
937 NewImm = (Imm | Ones) & Mask;
939 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
940 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
941 // we halve the element size and continue the search.
942 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
943 break;
945 // We cannot shrink the element size any further if it is 2-bits.
946 if (EltSize == 2)
947 return false;
949 EltSize /= 2;
950 Mask >>= EltSize;
951 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
953 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
954 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
955 return false;
957 // Merge the upper and lower halves of Imm and DemandedBits.
958 Imm |= Hi;
959 DemandedBits |= DemandedBitsHi;
962 ++NumOptimizedImms;
964 // Replicate the element across the register width.
965 while (EltSize < Size) {
966 NewImm |= NewImm << EltSize;
967 EltSize *= 2;
970 (void)OldImm;
971 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
972 "demanded bits should never be altered");
973 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
975 // Create the new constant immediate node.
976 EVT VT = Op.getValueType();
977 SDLoc DL(Op);
978 SDValue New;
980 // If the new constant immediate is all-zeros or all-ones, let the target
981 // independent DAG combine optimize this node.
982 if (NewImm == 0 || NewImm == OrigMask) {
983 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
984 TLO.DAG.getConstant(NewImm, DL, VT));
985 // Otherwise, create a machine node so that target independent DAG combine
986 // doesn't undo this optimization.
987 } else {
988 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
989 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
990 New = SDValue(
991 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
994 return TLO.CombineTo(Op, New);
997 bool AArch64TargetLowering::targetShrinkDemandedConstant(
998 SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
999 // Delay this optimization to as late as possible.
1000 if (!TLO.LegalOps)
1001 return false;
1003 if (!EnableOptimizeLogicalImm)
1004 return false;
1006 EVT VT = Op.getValueType();
1007 if (VT.isVector())
1008 return false;
1010 unsigned Size = VT.getSizeInBits();
1011 assert((Size == 32 || Size == 64) &&
1012 "i32 or i64 is expected after legalization.");
1014 // Exit early if we demand all bits.
1015 if (Demanded.countPopulation() == Size)
1016 return false;
1018 unsigned NewOpc;
1019 switch (Op.getOpcode()) {
1020 default:
1021 return false;
1022 case ISD::AND:
1023 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
1024 break;
1025 case ISD::OR:
1026 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
1027 break;
1028 case ISD::XOR:
1029 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
1030 break;
1032 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1033 if (!C)
1034 return false;
1035 uint64_t Imm = C->getZExtValue();
1036 return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
1039 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1040 /// Mask are known to be either zero or one and return them Known.
1041 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1042 const SDValue Op, KnownBits &Known,
1043 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
1044 switch (Op.getOpcode()) {
1045 default:
1046 break;
1047 case AArch64ISD::CSEL: {
1048 KnownBits Known2;
1049 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1050 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1051 Known.Zero &= Known2.Zero;
1052 Known.One &= Known2.One;
1053 break;
1055 case ISD::INTRINSIC_W_CHAIN: {
1056 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1057 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1058 switch (IntID) {
1059 default: return;
1060 case Intrinsic::aarch64_ldaxr:
1061 case Intrinsic::aarch64_ldxr: {
1062 unsigned BitWidth = Known.getBitWidth();
1063 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1064 unsigned MemBits = VT.getScalarSizeInBits();
1065 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1066 return;
1069 break;
1071 case ISD::INTRINSIC_WO_CHAIN:
1072 case ISD::INTRINSIC_VOID: {
1073 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1074 switch (IntNo) {
1075 default:
1076 break;
1077 case Intrinsic::aarch64_neon_umaxv:
1078 case Intrinsic::aarch64_neon_uminv: {
1079 // Figure out the datatype of the vector operand. The UMINV instruction
1080 // will zero extend the result, so we can mark as known zero all the
1081 // bits larger than the element datatype. 32-bit or larget doesn't need
1082 // this as those are legal types and will be handled by isel directly.
1083 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1084 unsigned BitWidth = Known.getBitWidth();
1085 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1086 assert(BitWidth >= 8 && "Unexpected width!");
1087 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1088 Known.Zero |= Mask;
1089 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1090 assert(BitWidth >= 16 && "Unexpected width!");
1091 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1092 Known.Zero |= Mask;
1094 break;
1095 } break;
1101 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1102 EVT) const {
1103 return MVT::i64;
1106 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1107 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1108 bool *Fast) const {
1109 if (Subtarget->requiresStrictAlign())
1110 return false;
1112 if (Fast) {
1113 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1114 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1115 // See comments in performSTORECombine() for more details about
1116 // these conditions.
1118 // Code that uses clang vector extensions can mark that it
1119 // wants unaligned accesses to be treated as fast by
1120 // underspecifying alignment to be 1 or 2.
1121 Align <= 2 ||
1123 // Disregard v2i64. Memcpy lowering produces those and splitting
1124 // them regresses performance on micro-benchmarks and olden/bh.
1125 VT == MVT::v2i64;
1127 return true;
1130 // Same as above but handling LLTs instead.
1131 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1132 LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1133 bool *Fast) const {
1134 if (Subtarget->requiresStrictAlign())
1135 return false;
1137 if (Fast) {
1138 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1139 *Fast = !Subtarget->isMisaligned128StoreSlow() ||
1140 Ty.getSizeInBytes() != 16 ||
1141 // See comments in performSTORECombine() for more details about
1142 // these conditions.
1144 // Code that uses clang vector extensions can mark that it
1145 // wants unaligned accesses to be treated as fast by
1146 // underspecifying alignment to be 1 or 2.
1147 Align <= 2 ||
1149 // Disregard v2i64. Memcpy lowering produces those and splitting
1150 // them regresses performance on micro-benchmarks and olden/bh.
1151 Ty == LLT::vector(2, 64);
1153 return true;
1156 FastISel *
1157 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1158 const TargetLibraryInfo *libInfo) const {
1159 return AArch64::createFastISel(funcInfo, libInfo);
1162 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1163 switch ((AArch64ISD::NodeType)Opcode) {
1164 case AArch64ISD::FIRST_NUMBER: break;
1165 case AArch64ISD::CALL: return "AArch64ISD::CALL";
1166 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
1167 case AArch64ISD::ADR: return "AArch64ISD::ADR";
1168 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
1169 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
1170 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
1171 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
1172 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
1173 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
1174 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
1175 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
1176 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
1177 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
1178 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
1179 case AArch64ISD::ADC: return "AArch64ISD::ADC";
1180 case AArch64ISD::SBC: return "AArch64ISD::SBC";
1181 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
1182 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
1183 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
1184 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
1185 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
1186 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
1187 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
1188 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
1189 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
1190 case AArch64ISD::DUP: return "AArch64ISD::DUP";
1191 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
1192 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
1193 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
1194 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
1195 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
1196 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
1197 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
1198 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
1199 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
1200 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
1201 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
1202 case AArch64ISD::BICi: return "AArch64ISD::BICi";
1203 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
1204 case AArch64ISD::BSL: return "AArch64ISD::BSL";
1205 case AArch64ISD::NEG: return "AArch64ISD::NEG";
1206 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
1207 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
1208 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
1209 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
1210 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
1211 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
1212 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
1213 case AArch64ISD::REV16: return "AArch64ISD::REV16";
1214 case AArch64ISD::REV32: return "AArch64ISD::REV32";
1215 case AArch64ISD::REV64: return "AArch64ISD::REV64";
1216 case AArch64ISD::EXT: return "AArch64ISD::EXT";
1217 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
1218 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
1219 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
1220 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
1221 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
1222 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
1223 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
1224 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
1225 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
1226 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
1227 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
1228 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
1229 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
1230 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
1231 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
1232 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
1233 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
1234 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
1235 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
1236 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
1237 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
1238 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
1239 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
1240 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
1241 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
1242 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
1243 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
1244 case AArch64ISD::NOT: return "AArch64ISD::NOT";
1245 case AArch64ISD::BIT: return "AArch64ISD::BIT";
1246 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
1247 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
1248 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
1249 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
1250 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
1251 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
1252 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
1253 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
1254 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
1255 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
1256 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
1257 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
1258 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
1259 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
1260 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
1261 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
1262 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
1263 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
1264 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
1265 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
1266 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
1267 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
1268 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
1269 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
1270 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
1271 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
1272 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
1273 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
1274 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
1275 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
1276 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
1277 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
1278 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
1279 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
1280 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
1281 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
1282 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
1283 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
1284 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
1285 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
1286 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
1287 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
1288 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
1289 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
1290 case AArch64ISD::STG: return "AArch64ISD::STG";
1291 case AArch64ISD::STZG: return "AArch64ISD::STZG";
1292 case AArch64ISD::ST2G: return "AArch64ISD::ST2G";
1293 case AArch64ISD::STZ2G: return "AArch64ISD::STZ2G";
1295 return nullptr;
1298 MachineBasicBlock *
1299 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1300 MachineBasicBlock *MBB) const {
1301 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1302 // phi node:
1304 // OrigBB:
1305 // [... previous instrs leading to comparison ...]
1306 // b.ne TrueBB
1307 // b EndBB
1308 // TrueBB:
1309 // ; Fallthrough
1310 // EndBB:
1311 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1313 MachineFunction *MF = MBB->getParent();
1314 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1315 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1316 DebugLoc DL = MI.getDebugLoc();
1317 MachineFunction::iterator It = ++MBB->getIterator();
1319 Register DestReg = MI.getOperand(0).getReg();
1320 Register IfTrueReg = MI.getOperand(1).getReg();
1321 Register IfFalseReg = MI.getOperand(2).getReg();
1322 unsigned CondCode = MI.getOperand(3).getImm();
1323 bool NZCVKilled = MI.getOperand(4).isKill();
1325 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1326 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1327 MF->insert(It, TrueBB);
1328 MF->insert(It, EndBB);
1330 // Transfer rest of current basic-block to EndBB
1331 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1332 MBB->end());
1333 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1335 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1336 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1337 MBB->addSuccessor(TrueBB);
1338 MBB->addSuccessor(EndBB);
1340 // TrueBB falls through to the end.
1341 TrueBB->addSuccessor(EndBB);
1343 if (!NZCVKilled) {
1344 TrueBB->addLiveIn(AArch64::NZCV);
1345 EndBB->addLiveIn(AArch64::NZCV);
1348 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1349 .addReg(IfTrueReg)
1350 .addMBB(TrueBB)
1351 .addReg(IfFalseReg)
1352 .addMBB(MBB);
1354 MI.eraseFromParent();
1355 return EndBB;
1358 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
1359 MachineInstr &MI, MachineBasicBlock *BB) const {
1360 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1361 BB->getParent()->getFunction().getPersonalityFn())) &&
1362 "SEH does not use catchret!");
1363 return BB;
1366 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
1367 MachineInstr &MI, MachineBasicBlock *BB) const {
1368 MI.eraseFromParent();
1369 return BB;
1372 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1373 MachineInstr &MI, MachineBasicBlock *BB) const {
1374 switch (MI.getOpcode()) {
1375 default:
1376 #ifndef NDEBUG
1377 MI.dump();
1378 #endif
1379 llvm_unreachable("Unexpected instruction for custom inserter!");
1381 case AArch64::F128CSEL:
1382 return EmitF128CSEL(MI, BB);
1384 case TargetOpcode::STACKMAP:
1385 case TargetOpcode::PATCHPOINT:
1386 return emitPatchPoint(MI, BB);
1388 case AArch64::CATCHRET:
1389 return EmitLoweredCatchRet(MI, BB);
1390 case AArch64::CATCHPAD:
1391 return EmitLoweredCatchPad(MI, BB);
1395 //===----------------------------------------------------------------------===//
1396 // AArch64 Lowering private implementation.
1397 //===----------------------------------------------------------------------===//
1399 //===----------------------------------------------------------------------===//
1400 // Lowering Code
1401 //===----------------------------------------------------------------------===//
1403 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1404 /// CC
1405 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1406 switch (CC) {
1407 default:
1408 llvm_unreachable("Unknown condition code!");
1409 case ISD::SETNE:
1410 return AArch64CC::NE;
1411 case ISD::SETEQ:
1412 return AArch64CC::EQ;
1413 case ISD::SETGT:
1414 return AArch64CC::GT;
1415 case ISD::SETGE:
1416 return AArch64CC::GE;
1417 case ISD::SETLT:
1418 return AArch64CC::LT;
1419 case ISD::SETLE:
1420 return AArch64CC::LE;
1421 case ISD::SETUGT:
1422 return AArch64CC::HI;
1423 case ISD::SETUGE:
1424 return AArch64CC::HS;
1425 case ISD::SETULT:
1426 return AArch64CC::LO;
1427 case ISD::SETULE:
1428 return AArch64CC::LS;
1432 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1433 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1434 AArch64CC::CondCode &CondCode,
1435 AArch64CC::CondCode &CondCode2) {
1436 CondCode2 = AArch64CC::AL;
1437 switch (CC) {
1438 default:
1439 llvm_unreachable("Unknown FP condition!");
1440 case ISD::SETEQ:
1441 case ISD::SETOEQ:
1442 CondCode = AArch64CC::EQ;
1443 break;
1444 case ISD::SETGT:
1445 case ISD::SETOGT:
1446 CondCode = AArch64CC::GT;
1447 break;
1448 case ISD::SETGE:
1449 case ISD::SETOGE:
1450 CondCode = AArch64CC::GE;
1451 break;
1452 case ISD::SETOLT:
1453 CondCode = AArch64CC::MI;
1454 break;
1455 case ISD::SETOLE:
1456 CondCode = AArch64CC::LS;
1457 break;
1458 case ISD::SETONE:
1459 CondCode = AArch64CC::MI;
1460 CondCode2 = AArch64CC::GT;
1461 break;
1462 case ISD::SETO:
1463 CondCode = AArch64CC::VC;
1464 break;
1465 case ISD::SETUO:
1466 CondCode = AArch64CC::VS;
1467 break;
1468 case ISD::SETUEQ:
1469 CondCode = AArch64CC::EQ;
1470 CondCode2 = AArch64CC::VS;
1471 break;
1472 case ISD::SETUGT:
1473 CondCode = AArch64CC::HI;
1474 break;
1475 case ISD::SETUGE:
1476 CondCode = AArch64CC::PL;
1477 break;
1478 case ISD::SETLT:
1479 case ISD::SETULT:
1480 CondCode = AArch64CC::LT;
1481 break;
1482 case ISD::SETLE:
1483 case ISD::SETULE:
1484 CondCode = AArch64CC::LE;
1485 break;
1486 case ISD::SETNE:
1487 case ISD::SETUNE:
1488 CondCode = AArch64CC::NE;
1489 break;
1493 /// Convert a DAG fp condition code to an AArch64 CC.
1494 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1495 /// should be AND'ed instead of OR'ed.
1496 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1497 AArch64CC::CondCode &CondCode,
1498 AArch64CC::CondCode &CondCode2) {
1499 CondCode2 = AArch64CC::AL;
1500 switch (CC) {
1501 default:
1502 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1503 assert(CondCode2 == AArch64CC::AL);
1504 break;
1505 case ISD::SETONE:
1506 // (a one b)
1507 // == ((a olt b) || (a ogt b))
1508 // == ((a ord b) && (a une b))
1509 CondCode = AArch64CC::VC;
1510 CondCode2 = AArch64CC::NE;
1511 break;
1512 case ISD::SETUEQ:
1513 // (a ueq b)
1514 // == ((a uno b) || (a oeq b))
1515 // == ((a ule b) && (a uge b))
1516 CondCode = AArch64CC::PL;
1517 CondCode2 = AArch64CC::LE;
1518 break;
1522 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1523 /// CC usable with the vector instructions. Fewer operations are available
1524 /// without a real NZCV register, so we have to use less efficient combinations
1525 /// to get the same effect.
1526 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1527 AArch64CC::CondCode &CondCode,
1528 AArch64CC::CondCode &CondCode2,
1529 bool &Invert) {
1530 Invert = false;
1531 switch (CC) {
1532 default:
1533 // Mostly the scalar mappings work fine.
1534 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1535 break;
1536 case ISD::SETUO:
1537 Invert = true;
1538 LLVM_FALLTHROUGH;
1539 case ISD::SETO:
1540 CondCode = AArch64CC::MI;
1541 CondCode2 = AArch64CC::GE;
1542 break;
1543 case ISD::SETUEQ:
1544 case ISD::SETULT:
1545 case ISD::SETULE:
1546 case ISD::SETUGT:
1547 case ISD::SETUGE:
1548 // All of the compare-mask comparisons are ordered, but we can switch
1549 // between the two by a double inversion. E.g. ULE == !OGT.
1550 Invert = true;
1551 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1552 break;
1556 static bool isLegalArithImmed(uint64_t C) {
1557 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1558 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1559 LLVM_DEBUG(dbgs() << "Is imm " << C
1560 << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1561 return IsLegal;
1564 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1565 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1566 // can be set differently by this operation. It comes down to whether
1567 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1568 // everything is fine. If not then the optimization is wrong. Thus general
1569 // comparisons are only valid if op2 != 0.
1571 // So, finally, the only LLVM-native comparisons that don't mention C and V
1572 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1573 // the absence of information about op2.
1574 static bool isCMN(SDValue Op, ISD::CondCode CC) {
1575 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
1576 (CC == ISD::SETEQ || CC == ISD::SETNE);
1579 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1580 const SDLoc &dl, SelectionDAG &DAG) {
1581 EVT VT = LHS.getValueType();
1582 const bool FullFP16 =
1583 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1585 if (VT.isFloatingPoint()) {
1586 assert(VT != MVT::f128);
1587 if (VT == MVT::f16 && !FullFP16) {
1588 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1589 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1590 VT = MVT::f32;
1592 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1595 // The CMP instruction is just an alias for SUBS, and representing it as
1596 // SUBS means that it's possible to get CSE with subtract operations.
1597 // A later phase can perform the optimization of setting the destination
1598 // register to WZR/XZR if it ends up being unused.
1599 unsigned Opcode = AArch64ISD::SUBS;
1601 if (isCMN(RHS, CC)) {
1602 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1603 Opcode = AArch64ISD::ADDS;
1604 RHS = RHS.getOperand(1);
1605 } else if (isCMN(LHS, CC)) {
1606 // As we are looking for EQ/NE compares, the operands can be commuted ; can
1607 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1608 Opcode = AArch64ISD::ADDS;
1609 LHS = LHS.getOperand(1);
1610 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1611 !isUnsignedIntSetCC(CC)) {
1612 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1613 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1614 // of the signed comparisons.
1615 Opcode = AArch64ISD::ANDS;
1616 RHS = LHS.getOperand(1);
1617 LHS = LHS.getOperand(0);
1620 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1621 .getValue(1);
1624 /// \defgroup AArch64CCMP CMP;CCMP matching
1626 /// These functions deal with the formation of CMP;CCMP;... sequences.
1627 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1628 /// a comparison. They set the NZCV flags to a predefined value if their
1629 /// predicate is false. This allows to express arbitrary conjunctions, for
1630 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1631 /// expressed as:
1632 /// cmp A
1633 /// ccmp B, inv(CB), CA
1634 /// check for CB flags
1636 /// This naturally lets us implement chains of AND operations with SETCC
1637 /// operands. And we can even implement some other situations by transforming
1638 /// them:
1639 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1640 /// negating the flags used in a CCMP/FCCMP operations.
1641 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1642 /// by negating the flags we test for afterwards. i.e.
1643 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1644 /// - Note that we can only ever negate all previously processed results.
1645 /// What we can not implement by flipping the flags to test is a negation
1646 /// of two sub-trees (because the negation affects all sub-trees emitted so
1647 /// far, so the 2nd sub-tree we emit would also affect the first).
1648 /// With those tools we can implement some OR operations:
1649 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1650 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1651 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1652 /// elimination rules from earlier to implement the whole thing as a
1653 /// CCMP/FCCMP chain.
1655 /// As complete example:
1656 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1657 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1658 /// can be reassociated to:
1659 /// or (and (setCC (cmp C)) setCD (cmp D))
1660 // (or (setCA (cmp A)) (setCB (cmp B)))
1661 /// can be transformed to:
1662 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1663 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1664 /// which can be implemented as:
1665 /// cmp C
1666 /// ccmp D, inv(CD), CC
1667 /// ccmp A, CA, inv(CD)
1668 /// ccmp B, CB, inv(CA)
1669 /// check for CB flags
1671 /// A counterexample is "or (and A B) (and C D)" which translates to
1672 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1673 /// can only implement 1 of the inner (not) operations, but not both!
1674 /// @{
1676 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1677 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1678 ISD::CondCode CC, SDValue CCOp,
1679 AArch64CC::CondCode Predicate,
1680 AArch64CC::CondCode OutCC,
1681 const SDLoc &DL, SelectionDAG &DAG) {
1682 unsigned Opcode = 0;
1683 const bool FullFP16 =
1684 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1686 if (LHS.getValueType().isFloatingPoint()) {
1687 assert(LHS.getValueType() != MVT::f128);
1688 if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1689 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1690 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1692 Opcode = AArch64ISD::FCCMP;
1693 } else if (RHS.getOpcode() == ISD::SUB) {
1694 SDValue SubOp0 = RHS.getOperand(0);
1695 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1696 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1697 Opcode = AArch64ISD::CCMN;
1698 RHS = RHS.getOperand(1);
1701 if (Opcode == 0)
1702 Opcode = AArch64ISD::CCMP;
1704 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1705 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1706 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1707 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1708 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1711 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1712 /// expressed as a conjunction. See \ref AArch64CCMP.
1713 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1714 /// changing the conditions on the SETCC tests.
1715 /// (this means we can call emitConjunctionRec() with
1716 /// Negate==true on this sub-tree)
1717 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1718 /// cannot do the negation naturally. We are required to
1719 /// emit the subtree first in this case.
1720 /// \param WillNegate Is true if are called when the result of this
1721 /// subexpression must be negated. This happens when the
1722 /// outer expression is an OR. We can use this fact to know
1723 /// that we have a double negation (or (or ...) ...) that
1724 /// can be implemented for free.
1725 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1726 bool &MustBeFirst, bool WillNegate,
1727 unsigned Depth = 0) {
1728 if (!Val.hasOneUse())
1729 return false;
1730 unsigned Opcode = Val->getOpcode();
1731 if (Opcode == ISD::SETCC) {
1732 if (Val->getOperand(0).getValueType() == MVT::f128)
1733 return false;
1734 CanNegate = true;
1735 MustBeFirst = false;
1736 return true;
1738 // Protect against exponential runtime and stack overflow.
1739 if (Depth > 6)
1740 return false;
1741 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1742 bool IsOR = Opcode == ISD::OR;
1743 SDValue O0 = Val->getOperand(0);
1744 SDValue O1 = Val->getOperand(1);
1745 bool CanNegateL;
1746 bool MustBeFirstL;
1747 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1748 return false;
1749 bool CanNegateR;
1750 bool MustBeFirstR;
1751 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1752 return false;
1754 if (MustBeFirstL && MustBeFirstR)
1755 return false;
1757 if (IsOR) {
1758 // For an OR expression we need to be able to naturally negate at least
1759 // one side or we cannot do the transformation at all.
1760 if (!CanNegateL && !CanNegateR)
1761 return false;
1762 // If we the result of the OR will be negated and we can naturally negate
1763 // the leafs, then this sub-tree as a whole negates naturally.
1764 CanNegate = WillNegate && CanNegateL && CanNegateR;
1765 // If we cannot naturally negate the whole sub-tree, then this must be
1766 // emitted first.
1767 MustBeFirst = !CanNegate;
1768 } else {
1769 assert(Opcode == ISD::AND && "Must be OR or AND");
1770 // We cannot naturally negate an AND operation.
1771 CanNegate = false;
1772 MustBeFirst = MustBeFirstL || MustBeFirstR;
1774 return true;
1776 return false;
1779 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1780 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1781 /// Tries to transform the given i1 producing node @p Val to a series compare
1782 /// and conditional compare operations. @returns an NZCV flags producing node
1783 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1784 /// transformation was not possible.
1785 /// \p Negate is true if we want this sub-tree being negated just by changing
1786 /// SETCC conditions.
1787 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1788 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1789 AArch64CC::CondCode Predicate) {
1790 // We're at a tree leaf, produce a conditional comparison operation.
1791 unsigned Opcode = Val->getOpcode();
1792 if (Opcode == ISD::SETCC) {
1793 SDValue LHS = Val->getOperand(0);
1794 SDValue RHS = Val->getOperand(1);
1795 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1796 bool isInteger = LHS.getValueType().isInteger();
1797 if (Negate)
1798 CC = getSetCCInverse(CC, isInteger);
1799 SDLoc DL(Val);
1800 // Determine OutCC and handle FP special case.
1801 if (isInteger) {
1802 OutCC = changeIntCCToAArch64CC(CC);
1803 } else {
1804 assert(LHS.getValueType().isFloatingPoint());
1805 AArch64CC::CondCode ExtraCC;
1806 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1807 // Some floating point conditions can't be tested with a single condition
1808 // code. Construct an additional comparison in this case.
1809 if (ExtraCC != AArch64CC::AL) {
1810 SDValue ExtraCmp;
1811 if (!CCOp.getNode())
1812 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1813 else
1814 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1815 ExtraCC, DL, DAG);
1816 CCOp = ExtraCmp;
1817 Predicate = ExtraCC;
1821 // Produce a normal comparison if we are first in the chain
1822 if (!CCOp)
1823 return emitComparison(LHS, RHS, CC, DL, DAG);
1824 // Otherwise produce a ccmp.
1825 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1826 DAG);
1828 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1830 bool IsOR = Opcode == ISD::OR;
1832 SDValue LHS = Val->getOperand(0);
1833 bool CanNegateL;
1834 bool MustBeFirstL;
1835 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1836 assert(ValidL && "Valid conjunction/disjunction tree");
1837 (void)ValidL;
1839 SDValue RHS = Val->getOperand(1);
1840 bool CanNegateR;
1841 bool MustBeFirstR;
1842 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1843 assert(ValidR && "Valid conjunction/disjunction tree");
1844 (void)ValidR;
1846 // Swap sub-tree that must come first to the right side.
1847 if (MustBeFirstL) {
1848 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1849 std::swap(LHS, RHS);
1850 std::swap(CanNegateL, CanNegateR);
1851 std::swap(MustBeFirstL, MustBeFirstR);
1854 bool NegateR;
1855 bool NegateAfterR;
1856 bool NegateL;
1857 bool NegateAfterAll;
1858 if (Opcode == ISD::OR) {
1859 // Swap the sub-tree that we can negate naturally to the left.
1860 if (!CanNegateL) {
1861 assert(CanNegateR && "at least one side must be negatable");
1862 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1863 assert(!Negate);
1864 std::swap(LHS, RHS);
1865 NegateR = false;
1866 NegateAfterR = true;
1867 } else {
1868 // Negate the left sub-tree if possible, otherwise negate the result.
1869 NegateR = CanNegateR;
1870 NegateAfterR = !CanNegateR;
1872 NegateL = true;
1873 NegateAfterAll = !Negate;
1874 } else {
1875 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1876 assert(!Negate && "Valid conjunction/disjunction tree");
1878 NegateL = false;
1879 NegateR = false;
1880 NegateAfterR = false;
1881 NegateAfterAll = false;
1884 // Emit sub-trees.
1885 AArch64CC::CondCode RHSCC;
1886 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1887 if (NegateAfterR)
1888 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1889 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1890 if (NegateAfterAll)
1891 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1892 return CmpL;
1895 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1896 /// In some cases this is even possible with OR operations in the expression.
1897 /// See \ref AArch64CCMP.
1898 /// \see emitConjunctionRec().
1899 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1900 AArch64CC::CondCode &OutCC) {
1901 bool DummyCanNegate;
1902 bool DummyMustBeFirst;
1903 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1904 return SDValue();
1906 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1909 /// @}
1911 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1912 /// extension operations.
1913 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
1914 auto isSupportedExtend = [&](SDValue V) {
1915 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
1916 return true;
1918 if (V.getOpcode() == ISD::AND)
1919 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
1920 uint64_t Mask = MaskCst->getZExtValue();
1921 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
1924 return false;
1927 if (!Op.hasOneUse())
1928 return 0;
1930 if (isSupportedExtend(Op))
1931 return 1;
1933 unsigned Opc = Op.getOpcode();
1934 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
1935 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936 uint64_t Shift = ShiftCst->getZExtValue();
1937 if (isSupportedExtend(Op.getOperand(0)))
1938 return (Shift <= 4) ? 2 : 1;
1939 EVT VT = Op.getValueType();
1940 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
1941 return 1;
1944 return 0;
1947 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1948 SDValue &AArch64cc, SelectionDAG &DAG,
1949 const SDLoc &dl) {
1950 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1951 EVT VT = RHS.getValueType();
1952 uint64_t C = RHSC->getZExtValue();
1953 if (!isLegalArithImmed(C)) {
1954 // Constant does not fit, try adjusting it by one?
1955 switch (CC) {
1956 default:
1957 break;
1958 case ISD::SETLT:
1959 case ISD::SETGE:
1960 if ((VT == MVT::i32 && C != 0x80000000 &&
1961 isLegalArithImmed((uint32_t)(C - 1))) ||
1962 (VT == MVT::i64 && C != 0x80000000ULL &&
1963 isLegalArithImmed(C - 1ULL))) {
1964 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1965 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1966 RHS = DAG.getConstant(C, dl, VT);
1968 break;
1969 case ISD::SETULT:
1970 case ISD::SETUGE:
1971 if ((VT == MVT::i32 && C != 0 &&
1972 isLegalArithImmed((uint32_t)(C - 1))) ||
1973 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1974 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1975 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1976 RHS = DAG.getConstant(C, dl, VT);
1978 break;
1979 case ISD::SETLE:
1980 case ISD::SETGT:
1981 if ((VT == MVT::i32 && C != INT32_MAX &&
1982 isLegalArithImmed((uint32_t)(C + 1))) ||
1983 (VT == MVT::i64 && C != INT64_MAX &&
1984 isLegalArithImmed(C + 1ULL))) {
1985 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1986 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1987 RHS = DAG.getConstant(C, dl, VT);
1989 break;
1990 case ISD::SETULE:
1991 case ISD::SETUGT:
1992 if ((VT == MVT::i32 && C != UINT32_MAX &&
1993 isLegalArithImmed((uint32_t)(C + 1))) ||
1994 (VT == MVT::i64 && C != UINT64_MAX &&
1995 isLegalArithImmed(C + 1ULL))) {
1996 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1997 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1998 RHS = DAG.getConstant(C, dl, VT);
2000 break;
2005 // Comparisons are canonicalized so that the RHS operand is simpler than the
2006 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2007 // can fold some shift+extend operations on the RHS operand, so swap the
2008 // operands if that can be done.
2010 // For example:
2011 // lsl w13, w11, #1
2012 // cmp w13, w12
2013 // can be turned into:
2014 // cmp w12, w11, lsl #1
2015 if (!isa<ConstantSDNode>(RHS) ||
2016 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
2017 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
2019 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
2020 std::swap(LHS, RHS);
2021 CC = ISD::getSetCCSwappedOperands(CC);
2025 SDValue Cmp;
2026 AArch64CC::CondCode AArch64CC;
2027 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
2028 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
2030 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2031 // For the i8 operand, the largest immediate is 255, so this can be easily
2032 // encoded in the compare instruction. For the i16 operand, however, the
2033 // largest immediate cannot be encoded in the compare.
2034 // Therefore, use a sign extending load and cmn to avoid materializing the
2035 // -1 constant. For example,
2036 // movz w1, #65535
2037 // ldrh w0, [x0, #0]
2038 // cmp w0, w1
2039 // >
2040 // ldrsh w0, [x0, #0]
2041 // cmn w0, #1
2042 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2043 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2044 // ensure both the LHS and RHS are truly zero extended and to make sure the
2045 // transformation is profitable.
2046 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
2047 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
2048 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
2049 LHS.getNode()->hasNUsesOfValue(1, 0)) {
2050 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
2051 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
2052 SDValue SExt =
2053 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
2054 DAG.getValueType(MVT::i16));
2055 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
2056 RHS.getValueType()),
2057 CC, dl, DAG);
2058 AArch64CC = changeIntCCToAArch64CC(CC);
2062 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
2063 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
2064 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
2065 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
2070 if (!Cmp) {
2071 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2072 AArch64CC = changeIntCCToAArch64CC(CC);
2074 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
2075 return Cmp;
2078 static std::pair<SDValue, SDValue>
2079 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2080 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2081 "Unsupported value type");
2082 SDValue Value, Overflow;
2083 SDLoc DL(Op);
2084 SDValue LHS = Op.getOperand(0);
2085 SDValue RHS = Op.getOperand(1);
2086 unsigned Opc = 0;
2087 switch (Op.getOpcode()) {
2088 default:
2089 llvm_unreachable("Unknown overflow instruction!");
2090 case ISD::SADDO:
2091 Opc = AArch64ISD::ADDS;
2092 CC = AArch64CC::VS;
2093 break;
2094 case ISD::UADDO:
2095 Opc = AArch64ISD::ADDS;
2096 CC = AArch64CC::HS;
2097 break;
2098 case ISD::SSUBO:
2099 Opc = AArch64ISD::SUBS;
2100 CC = AArch64CC::VS;
2101 break;
2102 case ISD::USUBO:
2103 Opc = AArch64ISD::SUBS;
2104 CC = AArch64CC::LO;
2105 break;
2106 // Multiply needs a little bit extra work.
2107 case ISD::SMULO:
2108 case ISD::UMULO: {
2109 CC = AArch64CC::NE;
2110 bool IsSigned = Op.getOpcode() == ISD::SMULO;
2111 if (Op.getValueType() == MVT::i32) {
2112 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2113 // For a 32 bit multiply with overflow check we want the instruction
2114 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2115 // need to generate the following pattern:
2116 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2117 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2118 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2119 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2120 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2121 DAG.getConstant(0, DL, MVT::i64));
2122 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2123 // operation. We need to clear out the upper 32 bits, because we used a
2124 // widening multiply that wrote all 64 bits. In the end this should be a
2125 // noop.
2126 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2127 if (IsSigned) {
2128 // The signed overflow check requires more than just a simple check for
2129 // any bit set in the upper 32 bits of the result. These bits could be
2130 // just the sign bits of a negative number. To perform the overflow
2131 // check we have to arithmetic shift right the 32nd bit of the result by
2132 // 31 bits. Then we compare the result to the upper 32 bits.
2133 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2134 DAG.getConstant(32, DL, MVT::i64));
2135 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2136 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2137 DAG.getConstant(31, DL, MVT::i64));
2138 // It is important that LowerBits is last, otherwise the arithmetic
2139 // shift will not be folded into the compare (SUBS).
2140 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2141 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2142 .getValue(1);
2143 } else {
2144 // The overflow check for unsigned multiply is easy. We only need to
2145 // check if any of the upper 32 bits are set. This can be done with a
2146 // CMP (shifted register). For that we need to generate the following
2147 // pattern:
2148 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2149 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2150 DAG.getConstant(32, DL, MVT::i64));
2151 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2152 Overflow =
2153 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2154 DAG.getConstant(0, DL, MVT::i64),
2155 UpperBits).getValue(1);
2157 break;
2159 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2160 // For the 64 bit multiply
2161 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2162 if (IsSigned) {
2163 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
2164 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
2165 DAG.getConstant(63, DL, MVT::i64));
2166 // It is important that LowerBits is last, otherwise the arithmetic
2167 // shift will not be folded into the compare (SUBS).
2168 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2169 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2170 .getValue(1);
2171 } else {
2172 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2173 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2174 Overflow =
2175 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2176 DAG.getConstant(0, DL, MVT::i64),
2177 UpperBits).getValue(1);
2179 break;
2181 } // switch (...)
2183 if (Opc) {
2184 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2186 // Emit the AArch64 operation with overflow check.
2187 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2188 Overflow = Value.getValue(1);
2190 return std::make_pair(Value, Overflow);
2193 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2194 RTLIB::Libcall Call) const {
2195 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2196 MakeLibCallOptions CallOptions;
2197 return makeLibCall(DAG, Call, MVT::f128, Ops, CallOptions, SDLoc(Op)).first;
2200 // Returns true if the given Op is the overflow flag result of an overflow
2201 // intrinsic operation.
2202 static bool isOverflowIntrOpRes(SDValue Op) {
2203 unsigned Opc = Op.getOpcode();
2204 return (Op.getResNo() == 1 &&
2205 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2206 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2209 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2210 SDValue Sel = Op.getOperand(0);
2211 SDValue Other = Op.getOperand(1);
2212 SDLoc dl(Sel);
2214 // If the operand is an overflow checking operation, invert the condition
2215 // code and kill the Not operation. I.e., transform:
2216 // (xor (overflow_op_bool, 1))
2217 // -->
2218 // (csel 1, 0, invert(cc), overflow_op_bool)
2219 // ... which later gets transformed to just a cset instruction with an
2220 // inverted condition code, rather than a cset + eor sequence.
2221 if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2222 // Only lower legal XALUO ops.
2223 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2224 return SDValue();
2226 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2227 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2228 AArch64CC::CondCode CC;
2229 SDValue Value, Overflow;
2230 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2231 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2232 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2233 CCVal, Overflow);
2235 // If neither operand is a SELECT_CC, give up.
2236 if (Sel.getOpcode() != ISD::SELECT_CC)
2237 std::swap(Sel, Other);
2238 if (Sel.getOpcode() != ISD::SELECT_CC)
2239 return Op;
2241 // The folding we want to perform is:
2242 // (xor x, (select_cc a, b, cc, 0, -1) )
2243 // -->
2244 // (csel x, (xor x, -1), cc ...)
2246 // The latter will get matched to a CSINV instruction.
2248 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2249 SDValue LHS = Sel.getOperand(0);
2250 SDValue RHS = Sel.getOperand(1);
2251 SDValue TVal = Sel.getOperand(2);
2252 SDValue FVal = Sel.getOperand(3);
2254 // FIXME: This could be generalized to non-integer comparisons.
2255 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2256 return Op;
2258 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2259 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2261 // The values aren't constants, this isn't the pattern we're looking for.
2262 if (!CFVal || !CTVal)
2263 return Op;
2265 // We can commute the SELECT_CC by inverting the condition. This
2266 // might be needed to make this fit into a CSINV pattern.
2267 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2268 std::swap(TVal, FVal);
2269 std::swap(CTVal, CFVal);
2270 CC = ISD::getSetCCInverse(CC, true);
2273 // If the constants line up, perform the transform!
2274 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2275 SDValue CCVal;
2276 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2278 FVal = Other;
2279 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2280 DAG.getConstant(-1ULL, dl, Other.getValueType()));
2282 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2283 CCVal, Cmp);
2286 return Op;
2289 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2290 EVT VT = Op.getValueType();
2292 // Let legalize expand this if it isn't a legal type yet.
2293 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2294 return SDValue();
2296 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2298 unsigned Opc;
2299 bool ExtraOp = false;
2300 switch (Op.getOpcode()) {
2301 default:
2302 llvm_unreachable("Invalid code");
2303 case ISD::ADDC:
2304 Opc = AArch64ISD::ADDS;
2305 break;
2306 case ISD::SUBC:
2307 Opc = AArch64ISD::SUBS;
2308 break;
2309 case ISD::ADDE:
2310 Opc = AArch64ISD::ADCS;
2311 ExtraOp = true;
2312 break;
2313 case ISD::SUBE:
2314 Opc = AArch64ISD::SBCS;
2315 ExtraOp = true;
2316 break;
2319 if (!ExtraOp)
2320 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2321 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2322 Op.getOperand(2));
2325 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2326 // Let legalize expand this if it isn't a legal type yet.
2327 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2328 return SDValue();
2330 SDLoc dl(Op);
2331 AArch64CC::CondCode CC;
2332 // The actual operation that sets the overflow or carry flag.
2333 SDValue Value, Overflow;
2334 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2336 // We use 0 and 1 as false and true values.
2337 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2338 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2340 // We use an inverted condition, because the conditional select is inverted
2341 // too. This will allow it to be selected to a single instruction:
2342 // CSINC Wd, WZR, WZR, invert(cond).
2343 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2344 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2345 CCVal, Overflow);
2347 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2348 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2351 // Prefetch operands are:
2352 // 1: Address to prefetch
2353 // 2: bool isWrite
2354 // 3: int locality (0 = no locality ... 3 = extreme locality)
2355 // 4: bool isDataCache
2356 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2357 SDLoc DL(Op);
2358 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2359 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2360 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2362 bool IsStream = !Locality;
2363 // When the locality number is set
2364 if (Locality) {
2365 // The front-end should have filtered out the out-of-range values
2366 assert(Locality <= 3 && "Prefetch locality out-of-range");
2367 // The locality degree is the opposite of the cache speed.
2368 // Put the number the other way around.
2369 // The encoding starts at 0 for level 1
2370 Locality = 3 - Locality;
2373 // built the mask value encoding the expected behavior.
2374 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
2375 (!IsData << 3) | // IsDataCache bit
2376 (Locality << 1) | // Cache level bits
2377 (unsigned)IsStream; // Stream bit
2378 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2379 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2382 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2383 SelectionDAG &DAG) const {
2384 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2386 RTLIB::Libcall LC;
2387 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2389 return LowerF128Call(Op, DAG, LC);
2392 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2393 SelectionDAG &DAG) const {
2394 if (Op.getOperand(0).getValueType() != MVT::f128) {
2395 // It's legal except when f128 is involved
2396 return Op;
2399 RTLIB::Libcall LC;
2400 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2402 // FP_ROUND node has a second operand indicating whether it is known to be
2403 // precise. That doesn't take part in the LibCall so we can't directly use
2404 // LowerF128Call.
2405 SDValue SrcVal = Op.getOperand(0);
2406 MakeLibCallOptions CallOptions;
2407 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, CallOptions,
2408 SDLoc(Op)).first;
2411 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
2412 SelectionDAG &DAG) const {
2413 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2414 // Any additional optimization in this function should be recorded
2415 // in the cost tables.
2416 EVT InVT = Op.getOperand(0).getValueType();
2417 EVT VT = Op.getValueType();
2418 unsigned NumElts = InVT.getVectorNumElements();
2420 // f16 conversions are promoted to f32 when full fp16 is not supported.
2421 if (InVT.getVectorElementType() == MVT::f16 &&
2422 !Subtarget->hasFullFP16()) {
2423 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2424 SDLoc dl(Op);
2425 return DAG.getNode(
2426 Op.getOpcode(), dl, Op.getValueType(),
2427 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2430 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2431 SDLoc dl(Op);
2432 SDValue Cv =
2433 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2434 Op.getOperand(0));
2435 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2438 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2439 SDLoc dl(Op);
2440 MVT ExtVT =
2441 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2442 VT.getVectorNumElements());
2443 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2444 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2447 // Type changing conversions are illegal.
2448 return Op;
2451 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2452 SelectionDAG &DAG) const {
2453 if (Op.getOperand(0).getValueType().isVector())
2454 return LowerVectorFP_TO_INT(Op, DAG);
2456 // f16 conversions are promoted to f32 when full fp16 is not supported.
2457 if (Op.getOperand(0).getValueType() == MVT::f16 &&
2458 !Subtarget->hasFullFP16()) {
2459 SDLoc dl(Op);
2460 return DAG.getNode(
2461 Op.getOpcode(), dl, Op.getValueType(),
2462 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2465 if (Op.getOperand(0).getValueType() != MVT::f128) {
2466 // It's legal except when f128 is involved
2467 return Op;
2470 RTLIB::Libcall LC;
2471 if (Op.getOpcode() == ISD::FP_TO_SINT)
2472 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2473 else
2474 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2476 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2477 MakeLibCallOptions CallOptions;
2478 return makeLibCall(DAG, LC, Op.getValueType(), Ops, CallOptions, SDLoc(Op)).first;
2481 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2482 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2483 // Any additional optimization in this function should be recorded
2484 // in the cost tables.
2485 EVT VT = Op.getValueType();
2486 SDLoc dl(Op);
2487 SDValue In = Op.getOperand(0);
2488 EVT InVT = In.getValueType();
2490 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2491 MVT CastVT =
2492 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2493 InVT.getVectorNumElements());
2494 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2495 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2498 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2499 unsigned CastOpc =
2500 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2501 EVT CastVT = VT.changeVectorElementTypeToInteger();
2502 In = DAG.getNode(CastOpc, dl, CastVT, In);
2503 return DAG.getNode(Op.getOpcode(), dl, VT, In);
2506 return Op;
2509 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2510 SelectionDAG &DAG) const {
2511 if (Op.getValueType().isVector())
2512 return LowerVectorINT_TO_FP(Op, DAG);
2514 // f16 conversions are promoted to f32 when full fp16 is not supported.
2515 if (Op.getValueType() == MVT::f16 &&
2516 !Subtarget->hasFullFP16()) {
2517 SDLoc dl(Op);
2518 return DAG.getNode(
2519 ISD::FP_ROUND, dl, MVT::f16,
2520 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2521 DAG.getIntPtrConstant(0, dl));
2524 // i128 conversions are libcalls.
2525 if (Op.getOperand(0).getValueType() == MVT::i128)
2526 return SDValue();
2528 // Other conversions are legal, unless it's to the completely software-based
2529 // fp128.
2530 if (Op.getValueType() != MVT::f128)
2531 return Op;
2533 RTLIB::Libcall LC;
2534 if (Op.getOpcode() == ISD::SINT_TO_FP)
2535 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2536 else
2537 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2539 return LowerF128Call(Op, DAG, LC);
2542 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2543 SelectionDAG &DAG) const {
2544 // For iOS, we want to call an alternative entry point: __sincos_stret,
2545 // which returns the values in two S / D registers.
2546 SDLoc dl(Op);
2547 SDValue Arg = Op.getOperand(0);
2548 EVT ArgVT = Arg.getValueType();
2549 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2551 ArgListTy Args;
2552 ArgListEntry Entry;
2554 Entry.Node = Arg;
2555 Entry.Ty = ArgTy;
2556 Entry.IsSExt = false;
2557 Entry.IsZExt = false;
2558 Args.push_back(Entry);
2560 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2561 : RTLIB::SINCOS_STRET_F32;
2562 const char *LibcallName = getLibcallName(LC);
2563 SDValue Callee =
2564 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2566 StructType *RetTy = StructType::get(ArgTy, ArgTy);
2567 TargetLowering::CallLoweringInfo CLI(DAG);
2568 CLI.setDebugLoc(dl)
2569 .setChain(DAG.getEntryNode())
2570 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2572 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2573 return CallResult.first;
2576 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2577 if (Op.getValueType() != MVT::f16)
2578 return SDValue();
2580 assert(Op.getOperand(0).getValueType() == MVT::i16);
2581 SDLoc DL(Op);
2583 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2584 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2585 return SDValue(
2586 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2587 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2591 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2592 if (OrigVT.getSizeInBits() >= 64)
2593 return OrigVT;
2595 assert(OrigVT.isSimple() && "Expecting a simple value type");
2597 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2598 switch (OrigSimpleTy) {
2599 default: llvm_unreachable("Unexpected Vector Type");
2600 case MVT::v2i8:
2601 case MVT::v2i16:
2602 return MVT::v2i32;
2603 case MVT::v4i8:
2604 return MVT::v4i16;
2608 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2609 const EVT &OrigTy,
2610 const EVT &ExtTy,
2611 unsigned ExtOpcode) {
2612 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2613 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2614 // 64-bits we need to insert a new extension so that it will be 64-bits.
2615 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2616 if (OrigTy.getSizeInBits() >= 64)
2617 return N;
2619 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2620 EVT NewVT = getExtensionTo64Bits(OrigTy);
2622 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2625 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2626 bool isSigned) {
2627 EVT VT = N->getValueType(0);
2629 if (N->getOpcode() != ISD::BUILD_VECTOR)
2630 return false;
2632 for (const SDValue &Elt : N->op_values()) {
2633 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2634 unsigned EltSize = VT.getScalarSizeInBits();
2635 unsigned HalfSize = EltSize / 2;
2636 if (isSigned) {
2637 if (!isIntN(HalfSize, C->getSExtValue()))
2638 return false;
2639 } else {
2640 if (!isUIntN(HalfSize, C->getZExtValue()))
2641 return false;
2643 continue;
2645 return false;
2648 return true;
2651 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2652 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2653 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2654 N->getOperand(0)->getValueType(0),
2655 N->getValueType(0),
2656 N->getOpcode());
2658 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2659 EVT VT = N->getValueType(0);
2660 SDLoc dl(N);
2661 unsigned EltSize = VT.getScalarSizeInBits() / 2;
2662 unsigned NumElts = VT.getVectorNumElements();
2663 MVT TruncVT = MVT::getIntegerVT(EltSize);
2664 SmallVector<SDValue, 8> Ops;
2665 for (unsigned i = 0; i != NumElts; ++i) {
2666 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2667 const APInt &CInt = C->getAPIntValue();
2668 // Element types smaller than 32 bits are not legal, so use i32 elements.
2669 // The values are implicitly truncated so sext vs. zext doesn't matter.
2670 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2672 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2675 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2676 return N->getOpcode() == ISD::SIGN_EXTEND ||
2677 isExtendedBUILD_VECTOR(N, DAG, true);
2680 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2681 return N->getOpcode() == ISD::ZERO_EXTEND ||
2682 isExtendedBUILD_VECTOR(N, DAG, false);
2685 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2686 unsigned Opcode = N->getOpcode();
2687 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2688 SDNode *N0 = N->getOperand(0).getNode();
2689 SDNode *N1 = N->getOperand(1).getNode();
2690 return N0->hasOneUse() && N1->hasOneUse() &&
2691 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2693 return false;
2696 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2697 unsigned Opcode = N->getOpcode();
2698 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2699 SDNode *N0 = N->getOperand(0).getNode();
2700 SDNode *N1 = N->getOperand(1).getNode();
2701 return N0->hasOneUse() && N1->hasOneUse() &&
2702 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2704 return false;
2707 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2708 SelectionDAG &DAG) const {
2709 // The rounding mode is in bits 23:22 of the FPSCR.
2710 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2711 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2712 // so that the shift + and get folded into a bitfield extract.
2713 SDLoc dl(Op);
2715 SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2716 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2717 MVT::i64));
2718 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2719 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2720 DAG.getConstant(1U << 22, dl, MVT::i32));
2721 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2722 DAG.getConstant(22, dl, MVT::i32));
2723 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2724 DAG.getConstant(3, dl, MVT::i32));
2727 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2728 // Multiplications are only custom-lowered for 128-bit vectors so that
2729 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2730 EVT VT = Op.getValueType();
2731 assert(VT.is128BitVector() && VT.isInteger() &&
2732 "unexpected type for custom-lowering ISD::MUL");
2733 SDNode *N0 = Op.getOperand(0).getNode();
2734 SDNode *N1 = Op.getOperand(1).getNode();
2735 unsigned NewOpc = 0;
2736 bool isMLA = false;
2737 bool isN0SExt = isSignExtended(N0, DAG);
2738 bool isN1SExt = isSignExtended(N1, DAG);
2739 if (isN0SExt && isN1SExt)
2740 NewOpc = AArch64ISD::SMULL;
2741 else {
2742 bool isN0ZExt = isZeroExtended(N0, DAG);
2743 bool isN1ZExt = isZeroExtended(N1, DAG);
2744 if (isN0ZExt && isN1ZExt)
2745 NewOpc = AArch64ISD::UMULL;
2746 else if (isN1SExt || isN1ZExt) {
2747 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2748 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2749 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2750 NewOpc = AArch64ISD::SMULL;
2751 isMLA = true;
2752 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2753 NewOpc = AArch64ISD::UMULL;
2754 isMLA = true;
2755 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2756 std::swap(N0, N1);
2757 NewOpc = AArch64ISD::UMULL;
2758 isMLA = true;
2762 if (!NewOpc) {
2763 if (VT == MVT::v2i64)
2764 // Fall through to expand this. It is not legal.
2765 return SDValue();
2766 else
2767 // Other vector multiplications are legal.
2768 return Op;
2772 // Legalize to a S/UMULL instruction
2773 SDLoc DL(Op);
2774 SDValue Op0;
2775 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2776 if (!isMLA) {
2777 Op0 = skipExtensionForVectorMULL(N0, DAG);
2778 assert(Op0.getValueType().is64BitVector() &&
2779 Op1.getValueType().is64BitVector() &&
2780 "unexpected types for extended operands to VMULL");
2781 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2783 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2784 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2785 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2786 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2787 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2788 EVT Op1VT = Op1.getValueType();
2789 return DAG.getNode(N0->getOpcode(), DL, VT,
2790 DAG.getNode(NewOpc, DL, VT,
2791 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2792 DAG.getNode(NewOpc, DL, VT,
2793 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2796 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2797 SelectionDAG &DAG) const {
2798 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2799 SDLoc dl(Op);
2800 switch (IntNo) {
2801 default: return SDValue(); // Don't custom lower most intrinsics.
2802 case Intrinsic::thread_pointer: {
2803 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2804 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2806 case Intrinsic::aarch64_neon_abs: {
2807 EVT Ty = Op.getValueType();
2808 if (Ty == MVT::i64) {
2809 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
2810 Op.getOperand(1));
2811 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
2812 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
2813 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
2814 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
2815 } else {
2816 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2819 case Intrinsic::aarch64_neon_smax:
2820 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2821 Op.getOperand(1), Op.getOperand(2));
2822 case Intrinsic::aarch64_neon_umax:
2823 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2824 Op.getOperand(1), Op.getOperand(2));
2825 case Intrinsic::aarch64_neon_smin:
2826 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2827 Op.getOperand(1), Op.getOperand(2));
2828 case Intrinsic::aarch64_neon_umin:
2829 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2830 Op.getOperand(1), Op.getOperand(2));
2832 case Intrinsic::localaddress: {
2833 const auto &MF = DAG.getMachineFunction();
2834 const auto *RegInfo = Subtarget->getRegisterInfo();
2835 unsigned Reg = RegInfo->getLocalAddressRegister(MF);
2836 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
2837 Op.getSimpleValueType());
2840 case Intrinsic::eh_recoverfp: {
2841 // FIXME: This needs to be implemented to correctly handle highly aligned
2842 // stack objects. For now we simply return the incoming FP. Refer D53541
2843 // for more details.
2844 SDValue FnOp = Op.getOperand(1);
2845 SDValue IncomingFPOp = Op.getOperand(2);
2846 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
2847 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
2848 if (!Fn)
2849 report_fatal_error(
2850 "llvm.eh.recoverfp must take a function as the first argument");
2851 return IncomingFPOp;
2856 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
2857 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2858 EVT VT, EVT MemVT,
2859 SelectionDAG &DAG) {
2860 assert(VT.isVector() && "VT should be a vector type");
2861 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2863 SDValue Value = ST->getValue();
2865 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2866 // the word lane which represent the v4i8 subvector. It optimizes the store
2867 // to:
2869 // xtn v0.8b, v0.8h
2870 // str s0, [x0]
2872 SDValue Undef = DAG.getUNDEF(MVT::i16);
2873 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2874 {Undef, Undef, Undef, Undef});
2876 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2877 Value, UndefVec);
2878 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2880 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2881 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2882 Trunc, DAG.getConstant(0, DL, MVT::i64));
2884 return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2885 ST->getBasePtr(), ST->getMemOperand());
2888 // Custom lowering for any store, vector or scalar and/or default or with
2889 // a truncate operations. Currently only custom lower truncate operation
2890 // from vector v4i16 to v4i8.
2891 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2892 SelectionDAG &DAG) const {
2893 SDLoc Dl(Op);
2894 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2895 assert (StoreNode && "Can only custom lower store nodes");
2897 SDValue Value = StoreNode->getValue();
2899 EVT VT = Value.getValueType();
2900 EVT MemVT = StoreNode->getMemoryVT();
2902 assert (VT.isVector() && "Can only custom lower vector store types");
2904 unsigned AS = StoreNode->getAddressSpace();
2905 unsigned Align = StoreNode->getAlignment();
2906 if (Align < MemVT.getStoreSize() &&
2907 !allowsMisalignedMemoryAccesses(
2908 MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
2909 return scalarizeVectorStore(StoreNode, DAG);
2912 if (StoreNode->isTruncatingStore()) {
2913 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2916 return SDValue();
2919 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2920 SelectionDAG &DAG) const {
2921 LLVM_DEBUG(dbgs() << "Custom lowering: ");
2922 LLVM_DEBUG(Op.dump());
2924 switch (Op.getOpcode()) {
2925 default:
2926 llvm_unreachable("unimplemented operand");
2927 return SDValue();
2928 case ISD::BITCAST:
2929 return LowerBITCAST(Op, DAG);
2930 case ISD::GlobalAddress:
2931 return LowerGlobalAddress(Op, DAG);
2932 case ISD::GlobalTLSAddress:
2933 return LowerGlobalTLSAddress(Op, DAG);
2934 case ISD::SETCC:
2935 return LowerSETCC(Op, DAG);
2936 case ISD::BR_CC:
2937 return LowerBR_CC(Op, DAG);
2938 case ISD::SELECT:
2939 return LowerSELECT(Op, DAG);
2940 case ISD::SELECT_CC:
2941 return LowerSELECT_CC(Op, DAG);
2942 case ISD::JumpTable:
2943 return LowerJumpTable(Op, DAG);
2944 case ISD::BR_JT:
2945 return LowerBR_JT(Op, DAG);
2946 case ISD::ConstantPool:
2947 return LowerConstantPool(Op, DAG);
2948 case ISD::BlockAddress:
2949 return LowerBlockAddress(Op, DAG);
2950 case ISD::VASTART:
2951 return LowerVASTART(Op, DAG);
2952 case ISD::VACOPY:
2953 return LowerVACOPY(Op, DAG);
2954 case ISD::VAARG:
2955 return LowerVAARG(Op, DAG);
2956 case ISD::ADDC:
2957 case ISD::ADDE:
2958 case ISD::SUBC:
2959 case ISD::SUBE:
2960 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2961 case ISD::SADDO:
2962 case ISD::UADDO:
2963 case ISD::SSUBO:
2964 case ISD::USUBO:
2965 case ISD::SMULO:
2966 case ISD::UMULO:
2967 return LowerXALUO(Op, DAG);
2968 case ISD::FADD:
2969 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2970 case ISD::FSUB:
2971 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2972 case ISD::FMUL:
2973 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2974 case ISD::FDIV:
2975 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2976 case ISD::FP_ROUND:
2977 return LowerFP_ROUND(Op, DAG);
2978 case ISD::FP_EXTEND:
2979 return LowerFP_EXTEND(Op, DAG);
2980 case ISD::FRAMEADDR:
2981 return LowerFRAMEADDR(Op, DAG);
2982 case ISD::SPONENTRY:
2983 return LowerSPONENTRY(Op, DAG);
2984 case ISD::RETURNADDR:
2985 return LowerRETURNADDR(Op, DAG);
2986 case ISD::ADDROFRETURNADDR:
2987 return LowerADDROFRETURNADDR(Op, DAG);
2988 case ISD::INSERT_VECTOR_ELT:
2989 return LowerINSERT_VECTOR_ELT(Op, DAG);
2990 case ISD::EXTRACT_VECTOR_ELT:
2991 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2992 case ISD::BUILD_VECTOR:
2993 return LowerBUILD_VECTOR(Op, DAG);
2994 case ISD::VECTOR_SHUFFLE:
2995 return LowerVECTOR_SHUFFLE(Op, DAG);
2996 case ISD::EXTRACT_SUBVECTOR:
2997 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2998 case ISD::SRA:
2999 case ISD::SRL:
3000 case ISD::SHL:
3001 return LowerVectorSRA_SRL_SHL(Op, DAG);
3002 case ISD::SHL_PARTS:
3003 return LowerShiftLeftParts(Op, DAG);
3004 case ISD::SRL_PARTS:
3005 case ISD::SRA_PARTS:
3006 return LowerShiftRightParts(Op, DAG);
3007 case ISD::CTPOP:
3008 return LowerCTPOP(Op, DAG);
3009 case ISD::FCOPYSIGN:
3010 return LowerFCOPYSIGN(Op, DAG);
3011 case ISD::OR:
3012 return LowerVectorOR(Op, DAG);
3013 case ISD::XOR:
3014 return LowerXOR(Op, DAG);
3015 case ISD::PREFETCH:
3016 return LowerPREFETCH(Op, DAG);
3017 case ISD::SINT_TO_FP:
3018 case ISD::UINT_TO_FP:
3019 return LowerINT_TO_FP(Op, DAG);
3020 case ISD::FP_TO_SINT:
3021 case ISD::FP_TO_UINT:
3022 return LowerFP_TO_INT(Op, DAG);
3023 case ISD::FSINCOS:
3024 return LowerFSINCOS(Op, DAG);
3025 case ISD::FLT_ROUNDS_:
3026 return LowerFLT_ROUNDS_(Op, DAG);
3027 case ISD::MUL:
3028 return LowerMUL(Op, DAG);
3029 case ISD::INTRINSIC_WO_CHAIN:
3030 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3031 case ISD::STORE:
3032 return LowerSTORE(Op, DAG);
3033 case ISD::VECREDUCE_ADD:
3034 case ISD::VECREDUCE_SMAX:
3035 case ISD::VECREDUCE_SMIN:
3036 case ISD::VECREDUCE_UMAX:
3037 case ISD::VECREDUCE_UMIN:
3038 case ISD::VECREDUCE_FMAX:
3039 case ISD::VECREDUCE_FMIN:
3040 return LowerVECREDUCE(Op, DAG);
3041 case ISD::ATOMIC_LOAD_SUB:
3042 return LowerATOMIC_LOAD_SUB(Op, DAG);
3043 case ISD::ATOMIC_LOAD_AND:
3044 return LowerATOMIC_LOAD_AND(Op, DAG);
3045 case ISD::DYNAMIC_STACKALLOC:
3046 return LowerDYNAMIC_STACKALLOC(Op, DAG);
3050 //===----------------------------------------------------------------------===//
3051 // Calling Convention Implementation
3052 //===----------------------------------------------------------------------===//
3054 /// Selects the correct CCAssignFn for a given CallingConvention value.
3055 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
3056 bool IsVarArg) const {
3057 switch (CC) {
3058 default:
3059 report_fatal_error("Unsupported calling convention.");
3060 case CallingConv::WebKit_JS:
3061 return CC_AArch64_WebKit_JS;
3062 case CallingConv::GHC:
3063 return CC_AArch64_GHC;
3064 case CallingConv::C:
3065 case CallingConv::Fast:
3066 case CallingConv::PreserveMost:
3067 case CallingConv::CXX_FAST_TLS:
3068 case CallingConv::Swift:
3069 if (Subtarget->isTargetWindows() && IsVarArg)
3070 return CC_AArch64_Win64_VarArg;
3071 if (!Subtarget->isTargetDarwin())
3072 return CC_AArch64_AAPCS;
3073 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
3074 case CallingConv::Win64:
3075 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
3076 case CallingConv::AArch64_VectorCall:
3077 return CC_AArch64_AAPCS;
3081 CCAssignFn *
3082 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
3083 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3084 : RetCC_AArch64_AAPCS;
3087 SDValue AArch64TargetLowering::LowerFormalArguments(
3088 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3089 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3090 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3091 MachineFunction &MF = DAG.getMachineFunction();
3092 MachineFrameInfo &MFI = MF.getFrameInfo();
3093 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3095 // Assign locations to all of the incoming arguments.
3096 SmallVector<CCValAssign, 16> ArgLocs;
3097 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3098 *DAG.getContext());
3100 // At this point, Ins[].VT may already be promoted to i32. To correctly
3101 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3102 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3103 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3104 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3105 // LocVT.
3106 unsigned NumArgs = Ins.size();
3107 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3108 unsigned CurArgIdx = 0;
3109 for (unsigned i = 0; i != NumArgs; ++i) {
3110 MVT ValVT = Ins[i].VT;
3111 if (Ins[i].isOrigArg()) {
3112 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3113 CurArgIdx = Ins[i].getOrigArgIndex();
3115 // Get type of the original argument.
3116 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
3117 /*AllowUnknown*/ true);
3118 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
3119 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3120 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3121 ValVT = MVT::i8;
3122 else if (ActualMVT == MVT::i16)
3123 ValVT = MVT::i16;
3125 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3126 bool Res =
3127 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
3128 assert(!Res && "Call operand has unhandled type");
3129 (void)Res;
3131 assert(ArgLocs.size() == Ins.size());
3132 SmallVector<SDValue, 16> ArgValues;
3133 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3134 CCValAssign &VA = ArgLocs[i];
3136 if (Ins[i].Flags.isByVal()) {
3137 // Byval is used for HFAs in the PCS, but the system should work in a
3138 // non-compliant manner for larger structs.
3139 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3140 int Size = Ins[i].Flags.getByValSize();
3141 unsigned NumRegs = (Size + 7) / 8;
3143 // FIXME: This works on big-endian for composite byvals, which are the common
3144 // case. It should also work for fundamental types too.
3145 unsigned FrameIdx =
3146 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
3147 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3148 InVals.push_back(FrameIdxN);
3150 continue;
3153 if (VA.isRegLoc()) {
3154 // Arguments stored in registers.
3155 EVT RegVT = VA.getLocVT();
3157 SDValue ArgValue;
3158 const TargetRegisterClass *RC;
3160 if (RegVT == MVT::i32)
3161 RC = &AArch64::GPR32RegClass;
3162 else if (RegVT == MVT::i64)
3163 RC = &AArch64::GPR64RegClass;
3164 else if (RegVT == MVT::f16)
3165 RC = &AArch64::FPR16RegClass;
3166 else if (RegVT == MVT::f32)
3167 RC = &AArch64::FPR32RegClass;
3168 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3169 RC = &AArch64::FPR64RegClass;
3170 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3171 RC = &AArch64::FPR128RegClass;
3172 else if (RegVT.isScalableVector() &&
3173 RegVT.getVectorElementType() == MVT::i1)
3174 RC = &AArch64::PPRRegClass;
3175 else if (RegVT.isScalableVector())
3176 RC = &AArch64::ZPRRegClass;
3177 else
3178 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3180 // Transform the arguments in physical registers into virtual ones.
3181 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3182 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3184 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3185 // to 64 bits. Insert an assert[sz]ext to capture this, then
3186 // truncate to the right size.
3187 switch (VA.getLocInfo()) {
3188 default:
3189 llvm_unreachable("Unknown loc info!");
3190 case CCValAssign::Full:
3191 break;
3192 case CCValAssign::Indirect:
3193 assert(VA.getValVT().isScalableVector() &&
3194 "Only scalable vectors can be passed indirectly");
3195 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3196 case CCValAssign::BCvt:
3197 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3198 break;
3199 case CCValAssign::AExt:
3200 case CCValAssign::SExt:
3201 case CCValAssign::ZExt:
3202 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
3203 // nodes after our lowering.
3204 assert(RegVT == Ins[i].VT && "incorrect register location selected");
3205 break;
3208 InVals.push_back(ArgValue);
3210 } else { // VA.isRegLoc()
3211 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3212 unsigned ArgOffset = VA.getLocMemOffset();
3213 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3215 uint32_t BEAlign = 0;
3216 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3217 !Ins[i].Flags.isInConsecutiveRegs())
3218 BEAlign = 8 - ArgSize;
3220 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3222 // Create load nodes to retrieve arguments from the stack.
3223 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3224 SDValue ArgValue;
3226 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3227 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3228 MVT MemVT = VA.getValVT();
3230 switch (VA.getLocInfo()) {
3231 default:
3232 break;
3233 case CCValAssign::BCvt:
3234 MemVT = VA.getLocVT();
3235 break;
3236 case CCValAssign::Indirect:
3237 assert(VA.getValVT().isScalableVector() &&
3238 "Only scalable vectors can be passed indirectly");
3239 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3240 case CCValAssign::SExt:
3241 ExtType = ISD::SEXTLOAD;
3242 break;
3243 case CCValAssign::ZExt:
3244 ExtType = ISD::ZEXTLOAD;
3245 break;
3246 case CCValAssign::AExt:
3247 ExtType = ISD::EXTLOAD;
3248 break;
3251 ArgValue = DAG.getExtLoad(
3252 ExtType, DL, VA.getLocVT(), Chain, FIN,
3253 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3254 MemVT);
3256 InVals.push_back(ArgValue);
3260 // varargs
3261 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3262 if (isVarArg) {
3263 if (!Subtarget->isTargetDarwin() || IsWin64) {
3264 // The AAPCS variadic function ABI is identical to the non-variadic
3265 // one. As a result there may be more arguments in registers and we should
3266 // save them for future reference.
3267 // Win64 variadic functions also pass arguments in registers, but all float
3268 // arguments are passed in integer registers.
3269 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3272 // This will point to the next argument passed via stack.
3273 unsigned StackOffset = CCInfo.getNextStackOffset();
3274 // We currently pass all varargs at 8-byte alignment.
3275 StackOffset = ((StackOffset + 7) & ~7);
3276 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3278 if (MFI.hasMustTailInVarArgFunc()) {
3279 SmallVector<MVT, 2> RegParmTypes;
3280 RegParmTypes.push_back(MVT::i64);
3281 RegParmTypes.push_back(MVT::f128);
3282 // Compute the set of forwarded registers. The rest are scratch.
3283 SmallVectorImpl<ForwardedRegister> &Forwards =
3284 FuncInfo->getForwardedMustTailRegParms();
3285 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
3286 CC_AArch64_AAPCS);
3288 // Conservatively forward X8, since it might be used for aggregate return.
3289 if (!CCInfo.isAllocated(AArch64::X8)) {
3290 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
3291 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
3296 // On Windows, InReg pointers must be returned, so record the pointer in a
3297 // virtual register at the start of the function so it can be returned in the
3298 // epilogue.
3299 if (IsWin64) {
3300 for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
3301 if (Ins[I].Flags.isInReg()) {
3302 assert(!FuncInfo->getSRetReturnReg());
3304 MVT PtrTy = getPointerTy(DAG.getDataLayout());
3305 Register Reg =
3306 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
3307 FuncInfo->setSRetReturnReg(Reg);
3309 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
3310 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3311 break;
3316 unsigned StackArgSize = CCInfo.getNextStackOffset();
3317 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3318 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3319 // This is a non-standard ABI so by fiat I say we're allowed to make full
3320 // use of the stack area to be popped, which must be aligned to 16 bytes in
3321 // any case:
3322 StackArgSize = alignTo(StackArgSize, 16);
3324 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3325 // a multiple of 16.
3326 FuncInfo->setArgumentStackToRestore(StackArgSize);
3328 // This realignment carries over to the available bytes below. Our own
3329 // callers will guarantee the space is free by giving an aligned value to
3330 // CALLSEQ_START.
3332 // Even if we're not expected to free up the space, it's useful to know how
3333 // much is there while considering tail calls (because we can reuse it).
3334 FuncInfo->setBytesInStackArgArea(StackArgSize);
3336 if (Subtarget->hasCustomCallingConv())
3337 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
3339 return Chain;
3342 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3343 SelectionDAG &DAG,
3344 const SDLoc &DL,
3345 SDValue &Chain) const {
3346 MachineFunction &MF = DAG.getMachineFunction();
3347 MachineFrameInfo &MFI = MF.getFrameInfo();
3348 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3349 auto PtrVT = getPointerTy(DAG.getDataLayout());
3350 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3352 SmallVector<SDValue, 8> MemOps;
3354 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3355 AArch64::X3, AArch64::X4, AArch64::X5,
3356 AArch64::X6, AArch64::X7 };
3357 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3358 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3360 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3361 int GPRIdx = 0;
3362 if (GPRSaveSize != 0) {
3363 if (IsWin64) {
3364 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3365 if (GPRSaveSize & 15)
3366 // The extra size here, if triggered, will always be 8.
3367 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3368 } else
3369 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3371 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3373 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3374 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3375 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3376 SDValue Store = DAG.getStore(
3377 Val.getValue(1), DL, Val, FIN,
3378 IsWin64
3379 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3380 GPRIdx,
3381 (i - FirstVariadicGPR) * 8)
3382 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3383 MemOps.push_back(Store);
3384 FIN =
3385 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3388 FuncInfo->setVarArgsGPRIndex(GPRIdx);
3389 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3391 if (Subtarget->hasFPARMv8() && !IsWin64) {
3392 static const MCPhysReg FPRArgRegs[] = {
3393 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3394 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3395 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3396 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3398 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3399 int FPRIdx = 0;
3400 if (FPRSaveSize != 0) {
3401 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3403 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3405 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3406 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3407 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3409 SDValue Store = DAG.getStore(
3410 Val.getValue(1), DL, Val, FIN,
3411 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3412 MemOps.push_back(Store);
3413 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3414 DAG.getConstant(16, DL, PtrVT));
3417 FuncInfo->setVarArgsFPRIndex(FPRIdx);
3418 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3421 if (!MemOps.empty()) {
3422 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3426 /// LowerCallResult - Lower the result values of a call into the
3427 /// appropriate copies out of appropriate physical registers.
3428 SDValue AArch64TargetLowering::LowerCallResult(
3429 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3430 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3431 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3432 SDValue ThisVal) const {
3433 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3434 ? RetCC_AArch64_WebKit_JS
3435 : RetCC_AArch64_AAPCS;
3436 // Assign locations to each value returned by this call.
3437 SmallVector<CCValAssign, 16> RVLocs;
3438 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3439 *DAG.getContext());
3440 CCInfo.AnalyzeCallResult(Ins, RetCC);
3442 // Copy all of the result registers out of their specified physreg.
3443 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3444 CCValAssign VA = RVLocs[i];
3446 // Pass 'this' value directly from the argument to return value, to avoid
3447 // reg unit interference
3448 if (i == 0 && isThisReturn) {
3449 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3450 "unexpected return calling convention register assignment");
3451 InVals.push_back(ThisVal);
3452 continue;
3455 SDValue Val =
3456 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3457 Chain = Val.getValue(1);
3458 InFlag = Val.getValue(2);
3460 switch (VA.getLocInfo()) {
3461 default:
3462 llvm_unreachable("Unknown loc info!");
3463 case CCValAssign::Full:
3464 break;
3465 case CCValAssign::BCvt:
3466 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3467 break;
3470 InVals.push_back(Val);
3473 return Chain;
3476 /// Return true if the calling convention is one that we can guarantee TCO for.
3477 static bool canGuaranteeTCO(CallingConv::ID CC) {
3478 return CC == CallingConv::Fast;
3481 /// Return true if we might ever do TCO for calls with this calling convention.
3482 static bool mayTailCallThisCC(CallingConv::ID CC) {
3483 switch (CC) {
3484 case CallingConv::C:
3485 case CallingConv::PreserveMost:
3486 case CallingConv::Swift:
3487 return true;
3488 default:
3489 return canGuaranteeTCO(CC);
3493 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3494 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3495 const SmallVectorImpl<ISD::OutputArg> &Outs,
3496 const SmallVectorImpl<SDValue> &OutVals,
3497 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3498 if (!mayTailCallThisCC(CalleeCC))
3499 return false;
3501 MachineFunction &MF = DAG.getMachineFunction();
3502 const Function &CallerF = MF.getFunction();
3503 CallingConv::ID CallerCC = CallerF.getCallingConv();
3504 bool CCMatch = CallerCC == CalleeCC;
3506 // Byval parameters hand the function a pointer directly into the stack area
3507 // we want to reuse during a tail call. Working around this *is* possible (see
3508 // X86) but less efficient and uglier in LowerCall.
3509 for (Function::const_arg_iterator i = CallerF.arg_begin(),
3510 e = CallerF.arg_end();
3511 i != e; ++i) {
3512 if (i->hasByValAttr())
3513 return false;
3515 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3516 // In this case, it is necessary to save/restore X0 in the callee. Tail
3517 // call opt interferes with this. So we disable tail call opt when the
3518 // caller has an argument with "inreg" attribute.
3520 // FIXME: Check whether the callee also has an "inreg" argument.
3521 if (i->hasInRegAttr())
3522 return false;
3525 if (getTargetMachine().Options.GuaranteedTailCallOpt)
3526 return canGuaranteeTCO(CalleeCC) && CCMatch;
3528 // Externally-defined functions with weak linkage should not be
3529 // tail-called on AArch64 when the OS does not support dynamic
3530 // pre-emption of symbols, as the AAELF spec requires normal calls
3531 // to undefined weak functions to be replaced with a NOP or jump to the
3532 // next instruction. The behaviour of branch instructions in this
3533 // situation (as used for tail calls) is implementation-defined, so we
3534 // cannot rely on the linker replacing the tail call with a return.
3535 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3536 const GlobalValue *GV = G->getGlobal();
3537 const Triple &TT = getTargetMachine().getTargetTriple();
3538 if (GV->hasExternalWeakLinkage() &&
3539 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3540 return false;
3543 // Now we search for cases where we can use a tail call without changing the
3544 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3545 // concept.
3547 // I want anyone implementing a new calling convention to think long and hard
3548 // about this assert.
3549 assert((!isVarArg || CalleeCC == CallingConv::C) &&
3550 "Unexpected variadic calling convention");
3552 LLVMContext &C = *DAG.getContext();
3553 if (isVarArg && !Outs.empty()) {
3554 // At least two cases here: if caller is fastcc then we can't have any
3555 // memory arguments (we'd be expected to clean up the stack afterwards). If
3556 // caller is C then we could potentially use its argument area.
3558 // FIXME: for now we take the most conservative of these in both cases:
3559 // disallow all variadic memory operands.
3560 SmallVector<CCValAssign, 16> ArgLocs;
3561 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3563 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3564 for (const CCValAssign &ArgLoc : ArgLocs)
3565 if (!ArgLoc.isRegLoc())
3566 return false;
3569 // Check that the call results are passed in the same way.
3570 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3571 CCAssignFnForCall(CalleeCC, isVarArg),
3572 CCAssignFnForCall(CallerCC, isVarArg)))
3573 return false;
3574 // The callee has to preserve all registers the caller needs to preserve.
3575 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3576 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3577 if (!CCMatch) {
3578 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3579 if (Subtarget->hasCustomCallingConv()) {
3580 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
3581 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
3583 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3584 return false;
3587 // Nothing more to check if the callee is taking no arguments
3588 if (Outs.empty())
3589 return true;
3591 SmallVector<CCValAssign, 16> ArgLocs;
3592 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3594 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3596 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3598 // If the stack arguments for this call do not fit into our own save area then
3599 // the call cannot be made tail.
3600 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3601 return false;
3603 const MachineRegisterInfo &MRI = MF.getRegInfo();
3604 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3605 return false;
3607 return true;
3610 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3611 SelectionDAG &DAG,
3612 MachineFrameInfo &MFI,
3613 int ClobberedFI) const {
3614 SmallVector<SDValue, 8> ArgChains;
3615 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3616 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3618 // Include the original chain at the beginning of the list. When this is
3619 // used by target LowerCall hooks, this helps legalize find the
3620 // CALLSEQ_BEGIN node.
3621 ArgChains.push_back(Chain);
3623 // Add a chain value for each stack argument corresponding
3624 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3625 UE = DAG.getEntryNode().getNode()->use_end();
3626 U != UE; ++U)
3627 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3628 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3629 if (FI->getIndex() < 0) {
3630 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3631 int64_t InLastByte = InFirstByte;
3632 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3634 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3635 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3636 ArgChains.push_back(SDValue(L, 1));
3639 // Build a tokenfactor for all the chains.
3640 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3643 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3644 bool TailCallOpt) const {
3645 return CallCC == CallingConv::Fast && TailCallOpt;
3648 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3649 /// and add input and output parameter nodes.
3650 SDValue
3651 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3652 SmallVectorImpl<SDValue> &InVals) const {
3653 SelectionDAG &DAG = CLI.DAG;
3654 SDLoc &DL = CLI.DL;
3655 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3656 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3657 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3658 SDValue Chain = CLI.Chain;
3659 SDValue Callee = CLI.Callee;
3660 bool &IsTailCall = CLI.IsTailCall;
3661 CallingConv::ID CallConv = CLI.CallConv;
3662 bool IsVarArg = CLI.IsVarArg;
3664 MachineFunction &MF = DAG.getMachineFunction();
3665 bool IsThisReturn = false;
3667 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3668 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3669 bool IsSibCall = false;
3671 if (IsTailCall) {
3672 // Check if it's really possible to do a tail call.
3673 IsTailCall = isEligibleForTailCallOptimization(
3674 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3675 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3676 report_fatal_error("failed to perform tail call elimination on a call "
3677 "site marked musttail");
3679 // A sibling call is one where we're under the usual C ABI and not planning
3680 // to change that but can still do a tail call:
3681 if (!TailCallOpt && IsTailCall)
3682 IsSibCall = true;
3684 if (IsTailCall)
3685 ++NumTailCalls;
3688 // Analyze operands of the call, assigning locations to each operand.
3689 SmallVector<CCValAssign, 16> ArgLocs;
3690 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3691 *DAG.getContext());
3693 if (IsVarArg) {
3694 // Handle fixed and variable vector arguments differently.
3695 // Variable vector arguments always go into memory.
3696 unsigned NumArgs = Outs.size();
3698 for (unsigned i = 0; i != NumArgs; ++i) {
3699 MVT ArgVT = Outs[i].VT;
3700 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3701 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3702 /*IsVarArg=*/ !Outs[i].IsFixed);
3703 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3704 assert(!Res && "Call operand has unhandled type");
3705 (void)Res;
3707 } else {
3708 // At this point, Outs[].VT may already be promoted to i32. To correctly
3709 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3710 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3711 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3712 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3713 // LocVT.
3714 unsigned NumArgs = Outs.size();
3715 for (unsigned i = 0; i != NumArgs; ++i) {
3716 MVT ValVT = Outs[i].VT;
3717 // Get type of the original argument.
3718 EVT ActualVT = getValueType(DAG.getDataLayout(),
3719 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3720 /*AllowUnknown*/ true);
3721 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3722 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3723 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3724 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3725 ValVT = MVT::i8;
3726 else if (ActualMVT == MVT::i16)
3727 ValVT = MVT::i16;
3729 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3730 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3731 assert(!Res && "Call operand has unhandled type");
3732 (void)Res;
3736 // Get a count of how many bytes are to be pushed on the stack.
3737 unsigned NumBytes = CCInfo.getNextStackOffset();
3739 if (IsSibCall) {
3740 // Since we're not changing the ABI to make this a tail call, the memory
3741 // operands are already available in the caller's incoming argument space.
3742 NumBytes = 0;
3745 // FPDiff is the byte offset of the call's argument area from the callee's.
3746 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3747 // by this amount for a tail call. In a sibling call it must be 0 because the
3748 // caller will deallocate the entire stack and the callee still expects its
3749 // arguments to begin at SP+0. Completely unused for non-tail calls.
3750 int FPDiff = 0;
3752 if (IsTailCall && !IsSibCall) {
3753 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3755 // Since callee will pop argument stack as a tail call, we must keep the
3756 // popped size 16-byte aligned.
3757 NumBytes = alignTo(NumBytes, 16);
3759 // FPDiff will be negative if this tail call requires more space than we
3760 // would automatically have in our incoming argument space. Positive if we
3761 // can actually shrink the stack.
3762 FPDiff = NumReusableBytes - NumBytes;
3764 // The stack pointer must be 16-byte aligned at all times it's used for a
3765 // memory operation, which in practice means at *all* times and in
3766 // particular across call boundaries. Therefore our own arguments started at
3767 // a 16-byte aligned SP and the delta applied for the tail call should
3768 // satisfy the same constraint.
3769 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3772 // Adjust the stack pointer for the new arguments...
3773 // These operations are automatically eliminated by the prolog/epilog pass
3774 if (!IsSibCall)
3775 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3777 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3778 getPointerTy(DAG.getDataLayout()));
3780 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3781 SmallVector<SDValue, 8> MemOpChains;
3782 auto PtrVT = getPointerTy(DAG.getDataLayout());
3784 if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
3785 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
3786 for (const auto &F : Forwards) {
3787 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
3788 RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
3792 // Walk the register/memloc assignments, inserting copies/loads.
3793 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3794 ++i, ++realArgIdx) {
3795 CCValAssign &VA = ArgLocs[i];
3796 SDValue Arg = OutVals[realArgIdx];
3797 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3799 // Promote the value if needed.
3800 switch (VA.getLocInfo()) {
3801 default:
3802 llvm_unreachable("Unknown loc info!");
3803 case CCValAssign::Full:
3804 break;
3805 case CCValAssign::SExt:
3806 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3807 break;
3808 case CCValAssign::ZExt:
3809 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3810 break;
3811 case CCValAssign::AExt:
3812 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3813 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3814 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3815 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3817 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3818 break;
3819 case CCValAssign::BCvt:
3820 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3821 break;
3822 case CCValAssign::FPExt:
3823 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3824 break;
3825 case CCValAssign::Indirect:
3826 assert(VA.getValVT().isScalableVector() &&
3827 "Only scalable vectors can be passed indirectly");
3828 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3831 if (VA.isRegLoc()) {
3832 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3833 Outs[0].VT == MVT::i64) {
3834 assert(VA.getLocVT() == MVT::i64 &&
3835 "unexpected calling convention register assignment");
3836 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3837 "unexpected use of 'returned'");
3838 IsThisReturn = true;
3840 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3841 } else {
3842 assert(VA.isMemLoc());
3844 SDValue DstAddr;
3845 MachinePointerInfo DstInfo;
3847 // FIXME: This works on big-endian for composite byvals, which are the
3848 // common case. It should also work for fundamental types too.
3849 uint32_t BEAlign = 0;
3850 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3851 : VA.getValVT().getSizeInBits();
3852 OpSize = (OpSize + 7) / 8;
3853 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3854 !Flags.isInConsecutiveRegs()) {
3855 if (OpSize < 8)
3856 BEAlign = 8 - OpSize;
3858 unsigned LocMemOffset = VA.getLocMemOffset();
3859 int32_t Offset = LocMemOffset + BEAlign;
3860 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3861 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3863 if (IsTailCall) {
3864 Offset = Offset + FPDiff;
3865 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3867 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3868 DstInfo =
3869 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3871 // Make sure any stack arguments overlapping with where we're storing
3872 // are loaded before this eventual operation. Otherwise they'll be
3873 // clobbered.
3874 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3875 } else {
3876 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3878 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3879 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3880 LocMemOffset);
3883 if (Outs[i].Flags.isByVal()) {
3884 SDValue SizeNode =
3885 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3886 SDValue Cpy = DAG.getMemcpy(
3887 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3888 /*isVol = */ false, /*AlwaysInline = */ false,
3889 /*isTailCall = */ false,
3890 DstInfo, MachinePointerInfo());
3892 MemOpChains.push_back(Cpy);
3893 } else {
3894 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3895 // promoted to a legal register type i32, we should truncate Arg back to
3896 // i1/i8/i16.
3897 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3898 VA.getValVT() == MVT::i16)
3899 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3901 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3902 MemOpChains.push_back(Store);
3907 if (!MemOpChains.empty())
3908 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3910 // Build a sequence of copy-to-reg nodes chained together with token chain
3911 // and flag operands which copy the outgoing args into the appropriate regs.
3912 SDValue InFlag;
3913 for (auto &RegToPass : RegsToPass) {
3914 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3915 RegToPass.second, InFlag);
3916 InFlag = Chain.getValue(1);
3919 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3920 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3921 // node so that legalize doesn't hack it.
3922 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3923 auto GV = G->getGlobal();
3924 if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3925 AArch64II::MO_GOT) {
3926 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3927 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3928 } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
3929 assert(Subtarget->isTargetWindows() &&
3930 "Windows is the only supported COFF target");
3931 Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
3932 } else {
3933 const GlobalValue *GV = G->getGlobal();
3934 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3936 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3937 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3938 Subtarget->isTargetMachO()) {
3939 const char *Sym = S->getSymbol();
3940 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3941 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3942 } else {
3943 const char *Sym = S->getSymbol();
3944 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3948 // We don't usually want to end the call-sequence here because we would tidy
3949 // the frame up *after* the call, however in the ABI-changing tail-call case
3950 // we've carefully laid out the parameters so that when sp is reset they'll be
3951 // in the correct location.
3952 if (IsTailCall && !IsSibCall) {
3953 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3954 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3955 InFlag = Chain.getValue(1);
3958 std::vector<SDValue> Ops;
3959 Ops.push_back(Chain);
3960 Ops.push_back(Callee);
3962 if (IsTailCall) {
3963 // Each tail call may have to adjust the stack by a different amount, so
3964 // this information must travel along with the operation for eventual
3965 // consumption by emitEpilogue.
3966 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3969 // Add argument registers to the end of the list so that they are known live
3970 // into the call.
3971 for (auto &RegToPass : RegsToPass)
3972 Ops.push_back(DAG.getRegister(RegToPass.first,
3973 RegToPass.second.getValueType()));
3975 // Check callee args/returns for SVE registers and set calling convention
3976 // accordingly.
3977 if (CallConv == CallingConv::C) {
3978 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
3979 return Out.VT.isScalableVector();
3981 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
3982 return In.VT.isScalableVector();
3985 if (CalleeInSVE || CalleeOutSVE)
3986 CallConv = CallingConv::AArch64_SVE_VectorCall;
3989 // Add a register mask operand representing the call-preserved registers.
3990 const uint32_t *Mask;
3991 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3992 if (IsThisReturn) {
3993 // For 'this' returns, use the X0-preserving mask if applicable
3994 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3995 if (!Mask) {
3996 IsThisReturn = false;
3997 Mask = TRI->getCallPreservedMask(MF, CallConv);
3999 } else
4000 Mask = TRI->getCallPreservedMask(MF, CallConv);
4002 if (Subtarget->hasCustomCallingConv())
4003 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
4005 if (TRI->isAnyArgRegReserved(MF))
4006 TRI->emitReservedArgRegCallError(MF);
4008 assert(Mask && "Missing call preserved mask for calling convention");
4009 Ops.push_back(DAG.getRegisterMask(Mask));
4011 if (InFlag.getNode())
4012 Ops.push_back(InFlag);
4014 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4016 // If we're doing a tall call, use a TC_RETURN here rather than an
4017 // actual call instruction.
4018 if (IsTailCall) {
4019 MF.getFrameInfo().setHasTailCall();
4020 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
4023 // Returns a chain and a flag for retval copy to use.
4024 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
4025 InFlag = Chain.getValue(1);
4027 uint64_t CalleePopBytes =
4028 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
4030 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
4031 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
4032 InFlag, DL);
4033 if (!Ins.empty())
4034 InFlag = Chain.getValue(1);
4036 // Handle result values, copying them out of physregs into vregs that we
4037 // return.
4038 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
4039 InVals, IsThisReturn,
4040 IsThisReturn ? OutVals[0] : SDValue());
4043 bool AArch64TargetLowering::CanLowerReturn(
4044 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
4045 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
4046 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4047 ? RetCC_AArch64_WebKit_JS
4048 : RetCC_AArch64_AAPCS;
4049 SmallVector<CCValAssign, 16> RVLocs;
4050 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
4051 return CCInfo.CheckReturn(Outs, RetCC);
4054 SDValue
4055 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
4056 bool isVarArg,
4057 const SmallVectorImpl<ISD::OutputArg> &Outs,
4058 const SmallVectorImpl<SDValue> &OutVals,
4059 const SDLoc &DL, SelectionDAG &DAG) const {
4060 auto &MF = DAG.getMachineFunction();
4061 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4063 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4064 ? RetCC_AArch64_WebKit_JS
4065 : RetCC_AArch64_AAPCS;
4066 SmallVector<CCValAssign, 16> RVLocs;
4067 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4068 *DAG.getContext());
4069 CCInfo.AnalyzeReturn(Outs, RetCC);
4071 // Copy the result values into the output registers.
4072 SDValue Flag;
4073 SmallVector<SDValue, 4> RetOps(1, Chain);
4074 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
4075 ++i, ++realRVLocIdx) {
4076 CCValAssign &VA = RVLocs[i];
4077 assert(VA.isRegLoc() && "Can only return in registers!");
4078 SDValue Arg = OutVals[realRVLocIdx];
4080 switch (VA.getLocInfo()) {
4081 default:
4082 llvm_unreachable("Unknown loc info!");
4083 case CCValAssign::Full:
4084 if (Outs[i].ArgVT == MVT::i1) {
4085 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4086 // value. This is strictly redundant on Darwin (which uses "zeroext
4087 // i1"), but will be optimised out before ISel.
4088 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
4089 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4091 break;
4092 case CCValAssign::BCvt:
4093 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
4094 break;
4097 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
4098 Flag = Chain.getValue(1);
4099 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4102 // Windows AArch64 ABIs require that for returning structs by value we copy
4103 // the sret argument into X0 for the return.
4104 // We saved the argument into a virtual register in the entry block,
4105 // so now we copy the value out and into X0.
4106 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
4107 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
4108 getPointerTy(MF.getDataLayout()));
4110 unsigned RetValReg = AArch64::X0;
4111 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
4112 Flag = Chain.getValue(1);
4114 RetOps.push_back(
4115 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
4118 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4119 const MCPhysReg *I =
4120 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
4121 if (I) {
4122 for (; *I; ++I) {
4123 if (AArch64::GPR64RegClass.contains(*I))
4124 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
4125 else if (AArch64::FPR64RegClass.contains(*I))
4126 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
4127 else
4128 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4132 RetOps[0] = Chain; // Update chain.
4134 // Add the flag if we have it.
4135 if (Flag.getNode())
4136 RetOps.push_back(Flag);
4138 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
4141 //===----------------------------------------------------------------------===//
4142 // Other Lowering Code
4143 //===----------------------------------------------------------------------===//
4145 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
4146 SelectionDAG &DAG,
4147 unsigned Flag) const {
4148 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
4149 N->getOffset(), Flag);
4152 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
4153 SelectionDAG &DAG,
4154 unsigned Flag) const {
4155 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
4158 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
4159 SelectionDAG &DAG,
4160 unsigned Flag) const {
4161 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
4162 N->getOffset(), Flag);
4165 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
4166 SelectionDAG &DAG,
4167 unsigned Flag) const {
4168 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
4171 // (loadGOT sym)
4172 template <class NodeTy>
4173 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
4174 unsigned Flags) const {
4175 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4176 SDLoc DL(N);
4177 EVT Ty = getPointerTy(DAG.getDataLayout());
4178 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
4179 // FIXME: Once remat is capable of dealing with instructions with register
4180 // operands, expand this into two nodes instead of using a wrapper node.
4181 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
4184 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4185 template <class NodeTy>
4186 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
4187 unsigned Flags) const {
4188 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4189 SDLoc DL(N);
4190 EVT Ty = getPointerTy(DAG.getDataLayout());
4191 const unsigned char MO_NC = AArch64II::MO_NC;
4192 return DAG.getNode(
4193 AArch64ISD::WrapperLarge, DL, Ty,
4194 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
4195 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
4196 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
4197 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
4200 // (addlow (adrp %hi(sym)) %lo(sym))
4201 template <class NodeTy>
4202 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4203 unsigned Flags) const {
4204 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4205 SDLoc DL(N);
4206 EVT Ty = getPointerTy(DAG.getDataLayout());
4207 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
4208 SDValue Lo = getTargetNode(N, Ty, DAG,
4209 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
4210 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
4211 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
4214 // (adr sym)
4215 template <class NodeTy>
4216 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
4217 unsigned Flags) const {
4218 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4219 SDLoc DL(N);
4220 EVT Ty = getPointerTy(DAG.getDataLayout());
4221 SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
4222 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
4225 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
4226 SelectionDAG &DAG) const {
4227 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
4228 const GlobalValue *GV = GN->getGlobal();
4229 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4231 if (OpFlags != AArch64II::MO_NO_FLAG)
4232 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
4233 "unexpected offset in global node");
4235 // This also catches the large code model case for Darwin, and tiny code
4236 // model with got relocations.
4237 if ((OpFlags & AArch64II::MO_GOT) != 0) {
4238 return getGOT(GN, DAG, OpFlags);
4241 SDValue Result;
4242 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4243 Result = getAddrLarge(GN, DAG, OpFlags);
4244 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4245 Result = getAddrTiny(GN, DAG, OpFlags);
4246 } else {
4247 Result = getAddr(GN, DAG, OpFlags);
4249 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4250 SDLoc DL(GN);
4251 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
4252 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4253 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4254 return Result;
4257 /// Convert a TLS address reference into the correct sequence of loads
4258 /// and calls to compute the variable's address (for Darwin, currently) and
4259 /// return an SDValue containing the final node.
4261 /// Darwin only has one TLS scheme which must be capable of dealing with the
4262 /// fully general situation, in the worst case. This means:
4263 /// + "extern __thread" declaration.
4264 /// + Defined in a possibly unknown dynamic library.
4266 /// The general system is that each __thread variable has a [3 x i64] descriptor
4267 /// which contains information used by the runtime to calculate the address. The
4268 /// only part of this the compiler needs to know about is the first xword, which
4269 /// contains a function pointer that must be called with the address of the
4270 /// entire descriptor in "x0".
4272 /// Since this descriptor may be in a different unit, in general even the
4273 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4274 /// is:
4275 /// adrp x0, _var@TLVPPAGE
4276 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4277 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4278 /// ; the function pointer
4279 /// blr x1 ; Uses descriptor address in x0
4280 /// ; Address of _var is now in x0.
4282 /// If the address of _var's descriptor *is* known to the linker, then it can
4283 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4284 /// a slight efficiency gain.
4285 SDValue
4286 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4287 SelectionDAG &DAG) const {
4288 assert(Subtarget->isTargetDarwin() &&
4289 "This function expects a Darwin target");
4291 SDLoc DL(Op);
4292 MVT PtrVT = getPointerTy(DAG.getDataLayout());
4293 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4295 SDValue TLVPAddr =
4296 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4297 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4299 // The first entry in the descriptor is a function pointer that we must call
4300 // to obtain the address of the variable.
4301 SDValue Chain = DAG.getEntryNode();
4302 SDValue FuncTLVGet = DAG.getLoad(
4303 MVT::i64, DL, Chain, DescAddr,
4304 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4305 /* Alignment = */ 8,
4306 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
4307 Chain = FuncTLVGet.getValue(1);
4309 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4310 MFI.setAdjustsStack(true);
4312 // TLS calls preserve all registers except those that absolutely must be
4313 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4314 // silly).
4315 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4316 const uint32_t *Mask = TRI->getTLSCallPreservedMask();
4317 if (Subtarget->hasCustomCallingConv())
4318 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
4320 // Finally, we can make the call. This is just a degenerate version of a
4321 // normal AArch64 call node: x0 takes the address of the descriptor, and
4322 // returns the address of the variable in this thread.
4323 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4324 Chain =
4325 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4326 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4327 DAG.getRegisterMask(Mask), Chain.getValue(1));
4328 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4331 /// When accessing thread-local variables under either the general-dynamic or
4332 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4333 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4334 /// is a function pointer to carry out the resolution.
4336 /// The sequence is:
4337 /// adrp x0, :tlsdesc:var
4338 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4339 /// add x0, x0, #:tlsdesc_lo12:var
4340 /// .tlsdesccall var
4341 /// blr x1
4342 /// (TPIDR_EL0 offset now in x0)
4344 /// The above sequence must be produced unscheduled, to enable the linker to
4345 /// optimize/relax this sequence.
4346 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4347 /// above sequence, and expanded really late in the compilation flow, to ensure
4348 /// the sequence is produced as per above.
4349 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4350 const SDLoc &DL,
4351 SelectionDAG &DAG) const {
4352 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4354 SDValue Chain = DAG.getEntryNode();
4355 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4357 Chain =
4358 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4359 SDValue Glue = Chain.getValue(1);
4361 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4364 SDValue
4365 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4366 SelectionDAG &DAG) const {
4367 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4368 if (getTargetMachine().getCodeModel() == CodeModel::Large)
4369 report_fatal_error("ELF TLS only supported in small memory model");
4370 // Different choices can be made for the maximum size of the TLS area for a
4371 // module. For the small address model, the default TLS size is 16MiB and the
4372 // maximum TLS size is 4GiB.
4373 // FIXME: add -mtls-size command line option and make it control the 16MiB
4374 // vs. 4GiB code sequence generation.
4375 // FIXME: add tiny codemodel support. We currently generate the same code as
4376 // small, which may be larger than needed.
4377 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4379 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4381 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4382 if (Model == TLSModel::LocalDynamic)
4383 Model = TLSModel::GeneralDynamic;
4386 SDValue TPOff;
4387 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4388 SDLoc DL(Op);
4389 const GlobalValue *GV = GA->getGlobal();
4391 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4393 if (Model == TLSModel::LocalExec) {
4394 SDValue HiVar = DAG.getTargetGlobalAddress(
4395 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4396 SDValue LoVar = DAG.getTargetGlobalAddress(
4397 GV, DL, PtrVT, 0,
4398 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4400 SDValue TPWithOff_lo =
4401 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4402 HiVar,
4403 DAG.getTargetConstant(0, DL, MVT::i32)),
4405 SDValue TPWithOff =
4406 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4407 LoVar,
4408 DAG.getTargetConstant(0, DL, MVT::i32)),
4410 return TPWithOff;
4411 } else if (Model == TLSModel::InitialExec) {
4412 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4413 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4414 } else if (Model == TLSModel::LocalDynamic) {
4415 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4416 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4417 // the beginning of the module's TLS region, followed by a DTPREL offset
4418 // calculation.
4420 // These accesses will need deduplicating if there's more than one.
4421 AArch64FunctionInfo *MFI =
4422 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4423 MFI->incNumLocalDynamicTLSAccesses();
4425 // The call needs a relocation too for linker relaxation. It doesn't make
4426 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4427 // the address.
4428 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4429 AArch64II::MO_TLS);
4431 // Now we can calculate the offset from TPIDR_EL0 to this module's
4432 // thread-local area.
4433 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4435 // Now use :dtprel_whatever: operations to calculate this variable's offset
4436 // in its thread-storage area.
4437 SDValue HiVar = DAG.getTargetGlobalAddress(
4438 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4439 SDValue LoVar = DAG.getTargetGlobalAddress(
4440 GV, DL, MVT::i64, 0,
4441 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4443 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4444 DAG.getTargetConstant(0, DL, MVT::i32)),
4446 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4447 DAG.getTargetConstant(0, DL, MVT::i32)),
4449 } else if (Model == TLSModel::GeneralDynamic) {
4450 // The call needs a relocation too for linker relaxation. It doesn't make
4451 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4452 // the address.
4453 SDValue SymAddr =
4454 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4456 // Finally we can make a call to calculate the offset from tpidr_el0.
4457 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4458 } else
4459 llvm_unreachable("Unsupported ELF TLS access model");
4461 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4464 SDValue
4465 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4466 SelectionDAG &DAG) const {
4467 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4469 SDValue Chain = DAG.getEntryNode();
4470 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4471 SDLoc DL(Op);
4473 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4475 // Load the ThreadLocalStoragePointer from the TEB
4476 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4477 SDValue TLSArray =
4478 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4479 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4480 Chain = TLSArray.getValue(1);
4482 // Load the TLS index from the C runtime;
4483 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4484 // This also does the same as LOADgot, but using a generic i32 load,
4485 // while LOADgot only loads i64.
4486 SDValue TLSIndexHi =
4487 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4488 SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4489 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4490 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4491 SDValue TLSIndex =
4492 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4493 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4494 Chain = TLSIndex.getValue(1);
4496 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4497 // offset into the TLSArray.
4498 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4499 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4500 DAG.getConstant(3, DL, PtrVT));
4501 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4502 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4503 MachinePointerInfo());
4504 Chain = TLS.getValue(1);
4506 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4507 const GlobalValue *GV = GA->getGlobal();
4508 SDValue TGAHi = DAG.getTargetGlobalAddress(
4509 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4510 SDValue TGALo = DAG.getTargetGlobalAddress(
4511 GV, DL, PtrVT, 0,
4512 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4514 // Add the offset from the start of the .tls section (section base).
4515 SDValue Addr =
4516 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4517 DAG.getTargetConstant(0, DL, MVT::i32)),
4519 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4520 return Addr;
4523 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4524 SelectionDAG &DAG) const {
4525 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4526 if (DAG.getTarget().useEmulatedTLS())
4527 return LowerToTLSEmulatedModel(GA, DAG);
4529 if (Subtarget->isTargetDarwin())
4530 return LowerDarwinGlobalTLSAddress(Op, DAG);
4531 if (Subtarget->isTargetELF())
4532 return LowerELFGlobalTLSAddress(Op, DAG);
4533 if (Subtarget->isTargetWindows())
4534 return LowerWindowsGlobalTLSAddress(Op, DAG);
4536 llvm_unreachable("Unexpected platform trying to use TLS");
4539 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4540 SDValue Chain = Op.getOperand(0);
4541 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4542 SDValue LHS = Op.getOperand(2);
4543 SDValue RHS = Op.getOperand(3);
4544 SDValue Dest = Op.getOperand(4);
4545 SDLoc dl(Op);
4547 MachineFunction &MF = DAG.getMachineFunction();
4548 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4549 // will not be produced, as they are conditional branch instructions that do
4550 // not set flags.
4551 bool ProduceNonFlagSettingCondBr =
4552 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
4554 // Handle f128 first, since lowering it will result in comparing the return
4555 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4556 // is expecting to deal with.
4557 if (LHS.getValueType() == MVT::f128) {
4558 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4560 // If softenSetCCOperands returned a scalar, we need to compare the result
4561 // against zero to select between true and false values.
4562 if (!RHS.getNode()) {
4563 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4564 CC = ISD::SETNE;
4568 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4569 // instruction.
4570 if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4571 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4572 // Only lower legal XALUO ops.
4573 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4574 return SDValue();
4576 // The actual operation with overflow check.
4577 AArch64CC::CondCode OFCC;
4578 SDValue Value, Overflow;
4579 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4581 if (CC == ISD::SETNE)
4582 OFCC = getInvertedCondCode(OFCC);
4583 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4585 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4586 Overflow);
4589 if (LHS.getValueType().isInteger()) {
4590 assert((LHS.getValueType() == RHS.getValueType()) &&
4591 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4593 // If the RHS of the comparison is zero, we can potentially fold this
4594 // to a specialized branch.
4595 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4596 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
4597 if (CC == ISD::SETEQ) {
4598 // See if we can use a TBZ to fold in an AND as well.
4599 // TBZ has a smaller branch displacement than CBZ. If the offset is
4600 // out of bounds, a late MI-layer pass rewrites branches.
4601 // 403.gcc is an example that hits this case.
4602 if (LHS.getOpcode() == ISD::AND &&
4603 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4604 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4605 SDValue Test = LHS.getOperand(0);
4606 uint64_t Mask = LHS.getConstantOperandVal(1);
4607 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4608 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4609 Dest);
4612 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4613 } else if (CC == ISD::SETNE) {
4614 // See if we can use a TBZ to fold in an AND as well.
4615 // TBZ has a smaller branch displacement than CBZ. If the offset is
4616 // out of bounds, a late MI-layer pass rewrites branches.
4617 // 403.gcc is an example that hits this case.
4618 if (LHS.getOpcode() == ISD::AND &&
4619 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4620 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4621 SDValue Test = LHS.getOperand(0);
4622 uint64_t Mask = LHS.getConstantOperandVal(1);
4623 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4624 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4625 Dest);
4628 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4629 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4630 // Don't combine AND since emitComparison converts the AND to an ANDS
4631 // (a.k.a. TST) and the test in the test bit and branch instruction
4632 // becomes redundant. This would also increase register pressure.
4633 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4634 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4635 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4638 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4639 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
4640 // Don't combine AND since emitComparison converts the AND to an ANDS
4641 // (a.k.a. TST) and the test in the test bit and branch instruction
4642 // becomes redundant. This would also increase register pressure.
4643 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4644 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4645 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4648 SDValue CCVal;
4649 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4650 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4651 Cmp);
4654 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4655 LHS.getValueType() == MVT::f64);
4657 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4658 // clean. Some of them require two branches to implement.
4659 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4660 AArch64CC::CondCode CC1, CC2;
4661 changeFPCCToAArch64CC(CC, CC1, CC2);
4662 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4663 SDValue BR1 =
4664 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4665 if (CC2 != AArch64CC::AL) {
4666 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4667 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4668 Cmp);
4671 return BR1;
4674 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4675 SelectionDAG &DAG) const {
4676 EVT VT = Op.getValueType();
4677 SDLoc DL(Op);
4679 SDValue In1 = Op.getOperand(0);
4680 SDValue In2 = Op.getOperand(1);
4681 EVT SrcVT = In2.getValueType();
4683 if (SrcVT.bitsLT(VT))
4684 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4685 else if (SrcVT.bitsGT(VT))
4686 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4688 EVT VecVT;
4689 uint64_t EltMask;
4690 SDValue VecVal1, VecVal2;
4692 auto setVecVal = [&] (int Idx) {
4693 if (!VT.isVector()) {
4694 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4695 DAG.getUNDEF(VecVT), In1);
4696 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4697 DAG.getUNDEF(VecVT), In2);
4698 } else {
4699 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4700 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4704 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4705 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4706 EltMask = 0x80000000ULL;
4707 setVecVal(AArch64::ssub);
4708 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4709 VecVT = MVT::v2i64;
4711 // We want to materialize a mask with the high bit set, but the AdvSIMD
4712 // immediate moves cannot materialize that in a single instruction for
4713 // 64-bit elements. Instead, materialize zero and then negate it.
4714 EltMask = 0;
4716 setVecVal(AArch64::dsub);
4717 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4718 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4719 EltMask = 0x8000ULL;
4720 setVecVal(AArch64::hsub);
4721 } else {
4722 llvm_unreachable("Invalid type for copysign!");
4725 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4727 // If we couldn't materialize the mask above, then the mask vector will be
4728 // the zero vector, and we need to negate it here.
4729 if (VT == MVT::f64 || VT == MVT::v2f64) {
4730 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4731 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4732 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4735 SDValue Sel =
4736 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4738 if (VT == MVT::f16)
4739 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4740 if (VT == MVT::f32)
4741 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4742 else if (VT == MVT::f64)
4743 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4744 else
4745 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4748 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4749 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4750 Attribute::NoImplicitFloat))
4751 return SDValue();
4753 if (!Subtarget->hasNEON())
4754 return SDValue();
4756 // While there is no integer popcount instruction, it can
4757 // be more efficiently lowered to the following sequence that uses
4758 // AdvSIMD registers/instructions as long as the copies to/from
4759 // the AdvSIMD registers are cheap.
4760 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
4761 // CNT V0.8B, V0.8B // 8xbyte pop-counts
4762 // ADDV B0, V0.8B // sum 8xbyte pop-counts
4763 // UMOV X0, V0.B[0] // copy byte result back to integer reg
4764 SDValue Val = Op.getOperand(0);
4765 SDLoc DL(Op);
4766 EVT VT = Op.getValueType();
4768 if (VT == MVT::i32 || VT == MVT::i64) {
4769 if (VT == MVT::i32)
4770 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4771 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4773 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4774 SDValue UaddLV = DAG.getNode(
4775 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4776 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4778 if (VT == MVT::i64)
4779 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4780 return UaddLV;
4783 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
4784 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
4785 "Unexpected type for custom ctpop lowering");
4787 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4788 Val = DAG.getBitcast(VT8Bit, Val);
4789 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
4791 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4792 unsigned EltSize = 8;
4793 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
4794 while (EltSize != VT.getScalarSizeInBits()) {
4795 EltSize *= 2;
4796 NumElts /= 2;
4797 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
4798 Val = DAG.getNode(
4799 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
4800 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
4803 return Val;
4806 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4808 if (Op.getValueType().isVector())
4809 return LowerVSETCC(Op, DAG);
4811 SDValue LHS = Op.getOperand(0);
4812 SDValue RHS = Op.getOperand(1);
4813 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4814 SDLoc dl(Op);
4816 // We chose ZeroOrOneBooleanContents, so use zero and one.
4817 EVT VT = Op.getValueType();
4818 SDValue TVal = DAG.getConstant(1, dl, VT);
4819 SDValue FVal = DAG.getConstant(0, dl, VT);
4821 // Handle f128 first, since one possible outcome is a normal integer
4822 // comparison which gets picked up by the next if statement.
4823 if (LHS.getValueType() == MVT::f128) {
4824 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4826 // If softenSetCCOperands returned a scalar, use it.
4827 if (!RHS.getNode()) {
4828 assert(LHS.getValueType() == Op.getValueType() &&
4829 "Unexpected setcc expansion!");
4830 return LHS;
4834 if (LHS.getValueType().isInteger()) {
4835 SDValue CCVal;
4836 SDValue Cmp =
4837 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4839 // Note that we inverted the condition above, so we reverse the order of
4840 // the true and false operands here. This will allow the setcc to be
4841 // matched to a single CSINC instruction.
4842 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4845 // Now we know we're dealing with FP values.
4846 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4847 LHS.getValueType() == MVT::f64);
4849 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
4850 // and do the comparison.
4851 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4853 AArch64CC::CondCode CC1, CC2;
4854 changeFPCCToAArch64CC(CC, CC1, CC2);
4855 if (CC2 == AArch64CC::AL) {
4856 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4857 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4859 // Note that we inverted the condition above, so we reverse the order of
4860 // the true and false operands here. This will allow the setcc to be
4861 // matched to a single CSINC instruction.
4862 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4863 } else {
4864 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4865 // totally clean. Some of them require two CSELs to implement. As is in
4866 // this case, we emit the first CSEL and then emit a second using the output
4867 // of the first as the RHS. We're effectively OR'ing the two CC's together.
4869 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4870 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4871 SDValue CS1 =
4872 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4874 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4875 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4879 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
4880 SDValue RHS, SDValue TVal,
4881 SDValue FVal, const SDLoc &dl,
4882 SelectionDAG &DAG) const {
4883 // Handle f128 first, because it will result in a comparison of some RTLIB
4884 // call result against zero.
4885 if (LHS.getValueType() == MVT::f128) {
4886 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4888 // If softenSetCCOperands returned a scalar, we need to compare the result
4889 // against zero to select between true and false values.
4890 if (!RHS.getNode()) {
4891 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4892 CC = ISD::SETNE;
4896 // Also handle f16, for which we need to do a f32 comparison.
4897 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
4898 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4899 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4902 // Next, handle integers.
4903 if (LHS.getValueType().isInteger()) {
4904 assert((LHS.getValueType() == RHS.getValueType()) &&
4905 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4907 unsigned Opcode = AArch64ISD::CSEL;
4909 // If both the TVal and the FVal are constants, see if we can swap them in
4910 // order to for a CSINV or CSINC out of them.
4911 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4912 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4914 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4915 std::swap(TVal, FVal);
4916 std::swap(CTVal, CFVal);
4917 CC = ISD::getSetCCInverse(CC, true);
4918 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4919 std::swap(TVal, FVal);
4920 std::swap(CTVal, CFVal);
4921 CC = ISD::getSetCCInverse(CC, true);
4922 } else if (TVal.getOpcode() == ISD::XOR) {
4923 // If TVal is a NOT we want to swap TVal and FVal so that we can match
4924 // with a CSINV rather than a CSEL.
4925 if (isAllOnesConstant(TVal.getOperand(1))) {
4926 std::swap(TVal, FVal);
4927 std::swap(CTVal, CFVal);
4928 CC = ISD::getSetCCInverse(CC, true);
4930 } else if (TVal.getOpcode() == ISD::SUB) {
4931 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4932 // that we can match with a CSNEG rather than a CSEL.
4933 if (isNullConstant(TVal.getOperand(0))) {
4934 std::swap(TVal, FVal);
4935 std::swap(CTVal, CFVal);
4936 CC = ISD::getSetCCInverse(CC, true);
4938 } else if (CTVal && CFVal) {
4939 const int64_t TrueVal = CTVal->getSExtValue();
4940 const int64_t FalseVal = CFVal->getSExtValue();
4941 bool Swap = false;
4943 // If both TVal and FVal are constants, see if FVal is the
4944 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4945 // instead of a CSEL in that case.
4946 if (TrueVal == ~FalseVal) {
4947 Opcode = AArch64ISD::CSINV;
4948 } else if (TrueVal == -FalseVal) {
4949 Opcode = AArch64ISD::CSNEG;
4950 } else if (TVal.getValueType() == MVT::i32) {
4951 // If our operands are only 32-bit wide, make sure we use 32-bit
4952 // arithmetic for the check whether we can use CSINC. This ensures that
4953 // the addition in the check will wrap around properly in case there is
4954 // an overflow (which would not be the case if we do the check with
4955 // 64-bit arithmetic).
4956 const uint32_t TrueVal32 = CTVal->getZExtValue();
4957 const uint32_t FalseVal32 = CFVal->getZExtValue();
4959 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4960 Opcode = AArch64ISD::CSINC;
4962 if (TrueVal32 > FalseVal32) {
4963 Swap = true;
4966 // 64-bit check whether we can use CSINC.
4967 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4968 Opcode = AArch64ISD::CSINC;
4970 if (TrueVal > FalseVal) {
4971 Swap = true;
4975 // Swap TVal and FVal if necessary.
4976 if (Swap) {
4977 std::swap(TVal, FVal);
4978 std::swap(CTVal, CFVal);
4979 CC = ISD::getSetCCInverse(CC, true);
4982 if (Opcode != AArch64ISD::CSEL) {
4983 // Drop FVal since we can get its value by simply inverting/negating
4984 // TVal.
4985 FVal = TVal;
4989 // Avoid materializing a constant when possible by reusing a known value in
4990 // a register. However, don't perform this optimization if the known value
4991 // is one, zero or negative one in the case of a CSEL. We can always
4992 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4993 // FVal, respectively.
4994 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4995 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4996 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4997 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4998 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4999 // "a != C ? x : a" to avoid materializing C.
5000 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
5001 TVal = LHS;
5002 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
5003 FVal = LHS;
5004 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
5005 assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
5006 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5007 // avoid materializing C.
5008 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5009 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
5010 Opcode = AArch64ISD::CSINV;
5011 TVal = LHS;
5012 FVal = DAG.getConstant(0, dl, FVal.getValueType());
5016 SDValue CCVal;
5017 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
5018 EVT VT = TVal.getValueType();
5019 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
5022 // Now we know we're dealing with FP values.
5023 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
5024 LHS.getValueType() == MVT::f64);
5025 assert(LHS.getValueType() == RHS.getValueType());
5026 EVT VT = TVal.getValueType();
5027 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
5029 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5030 // clean. Some of them require two CSELs to implement.
5031 AArch64CC::CondCode CC1, CC2;
5032 changeFPCCToAArch64CC(CC, CC1, CC2);
5034 if (DAG.getTarget().Options.UnsafeFPMath) {
5035 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5036 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5037 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
5038 if (RHSVal && RHSVal->isZero()) {
5039 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
5040 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
5042 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
5043 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
5044 TVal = LHS;
5045 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
5046 CFVal && CFVal->isZero() &&
5047 FVal.getValueType() == LHS.getValueType())
5048 FVal = LHS;
5052 // Emit first, and possibly only, CSEL.
5053 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5054 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
5056 // If we need a second CSEL, emit it, using the output of the first as the
5057 // RHS. We're effectively OR'ing the two CC's together.
5058 if (CC2 != AArch64CC::AL) {
5059 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5060 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
5063 // Otherwise, return the output of the first CSEL.
5064 return CS1;
5067 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
5068 SelectionDAG &DAG) const {
5069 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5070 SDValue LHS = Op.getOperand(0);
5071 SDValue RHS = Op.getOperand(1);
5072 SDValue TVal = Op.getOperand(2);
5073 SDValue FVal = Op.getOperand(3);
5074 SDLoc DL(Op);
5075 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5078 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
5079 SelectionDAG &DAG) const {
5080 SDValue CCVal = Op->getOperand(0);
5081 SDValue TVal = Op->getOperand(1);
5082 SDValue FVal = Op->getOperand(2);
5083 SDLoc DL(Op);
5085 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5086 // instruction.
5087 if (isOverflowIntrOpRes(CCVal)) {
5088 // Only lower legal XALUO ops.
5089 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
5090 return SDValue();
5092 AArch64CC::CondCode OFCC;
5093 SDValue Value, Overflow;
5094 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
5095 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
5097 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
5098 CCVal, Overflow);
5101 // Lower it the same way as we would lower a SELECT_CC node.
5102 ISD::CondCode CC;
5103 SDValue LHS, RHS;
5104 if (CCVal.getOpcode() == ISD::SETCC) {
5105 LHS = CCVal.getOperand(0);
5106 RHS = CCVal.getOperand(1);
5107 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
5108 } else {
5109 LHS = CCVal;
5110 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
5111 CC = ISD::SETNE;
5113 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5116 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
5117 SelectionDAG &DAG) const {
5118 // Jump table entries as PC relative offsets. No additional tweaking
5119 // is necessary here. Just get the address of the jump table.
5120 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5122 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5123 !Subtarget->isTargetMachO()) {
5124 return getAddrLarge(JT, DAG);
5125 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5126 return getAddrTiny(JT, DAG);
5128 return getAddr(JT, DAG);
5131 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
5132 SelectionDAG &DAG) const {
5133 // Jump table entries as PC relative offsets. No additional tweaking
5134 // is necessary here. Just get the address of the jump table.
5135 SDLoc DL(Op);
5136 SDValue JT = Op.getOperand(1);
5137 SDValue Entry = Op.getOperand(2);
5138 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
5140 SDNode *Dest =
5141 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
5142 Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
5143 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
5144 SDValue(Dest, 0));
5147 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
5148 SelectionDAG &DAG) const {
5149 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5151 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
5152 // Use the GOT for the large code model on iOS.
5153 if (Subtarget->isTargetMachO()) {
5154 return getGOT(CP, DAG);
5156 return getAddrLarge(CP, DAG);
5157 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5158 return getAddrTiny(CP, DAG);
5159 } else {
5160 return getAddr(CP, DAG);
5164 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
5165 SelectionDAG &DAG) const {
5166 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
5167 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5168 !Subtarget->isTargetMachO()) {
5169 return getAddrLarge(BA, DAG);
5170 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5171 return getAddrTiny(BA, DAG);
5173 return getAddr(BA, DAG);
5176 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
5177 SelectionDAG &DAG) const {
5178 AArch64FunctionInfo *FuncInfo =
5179 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5181 SDLoc DL(Op);
5182 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
5183 getPointerTy(DAG.getDataLayout()));
5184 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5185 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5186 MachinePointerInfo(SV));
5189 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
5190 SelectionDAG &DAG) const {
5191 AArch64FunctionInfo *FuncInfo =
5192 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5194 SDLoc DL(Op);
5195 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
5196 ? FuncInfo->getVarArgsGPRIndex()
5197 : FuncInfo->getVarArgsStackIndex(),
5198 getPointerTy(DAG.getDataLayout()));
5199 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5200 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5201 MachinePointerInfo(SV));
5204 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
5205 SelectionDAG &DAG) const {
5206 // The layout of the va_list struct is specified in the AArch64 Procedure Call
5207 // Standard, section B.3.
5208 MachineFunction &MF = DAG.getMachineFunction();
5209 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5210 auto PtrVT = getPointerTy(DAG.getDataLayout());
5211 SDLoc DL(Op);
5213 SDValue Chain = Op.getOperand(0);
5214 SDValue VAList = Op.getOperand(1);
5215 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5216 SmallVector<SDValue, 4> MemOps;
5218 // void *__stack at offset 0
5219 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
5220 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
5221 MachinePointerInfo(SV), /* Alignment = */ 8));
5223 // void *__gr_top at offset 8
5224 int GPRSize = FuncInfo->getVarArgsGPRSize();
5225 if (GPRSize > 0) {
5226 SDValue GRTop, GRTopAddr;
5228 GRTopAddr =
5229 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
5231 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
5232 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
5233 DAG.getConstant(GPRSize, DL, PtrVT));
5235 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
5236 MachinePointerInfo(SV, 8),
5237 /* Alignment = */ 8));
5240 // void *__vr_top at offset 16
5241 int FPRSize = FuncInfo->getVarArgsFPRSize();
5242 if (FPRSize > 0) {
5243 SDValue VRTop, VRTopAddr;
5244 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5245 DAG.getConstant(16, DL, PtrVT));
5247 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
5248 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
5249 DAG.getConstant(FPRSize, DL, PtrVT));
5251 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
5252 MachinePointerInfo(SV, 16),
5253 /* Alignment = */ 8));
5256 // int __gr_offs at offset 24
5257 SDValue GROffsAddr =
5258 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
5259 MemOps.push_back(DAG.getStore(
5260 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
5261 MachinePointerInfo(SV, 24), /* Alignment = */ 4));
5263 // int __vr_offs at offset 28
5264 SDValue VROffsAddr =
5265 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
5266 MemOps.push_back(DAG.getStore(
5267 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
5268 MachinePointerInfo(SV, 28), /* Alignment = */ 4));
5270 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5273 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
5274 SelectionDAG &DAG) const {
5275 MachineFunction &MF = DAG.getMachineFunction();
5277 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
5278 return LowerWin64_VASTART(Op, DAG);
5279 else if (Subtarget->isTargetDarwin())
5280 return LowerDarwin_VASTART(Op, DAG);
5281 else
5282 return LowerAAPCS_VASTART(Op, DAG);
5285 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
5286 SelectionDAG &DAG) const {
5287 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5288 // pointer.
5289 SDLoc DL(Op);
5290 unsigned VaListSize =
5291 Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
5292 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5293 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5295 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
5296 Op.getOperand(2),
5297 DAG.getConstant(VaListSize, DL, MVT::i32),
5298 8, false, false, false, MachinePointerInfo(DestSV),
5299 MachinePointerInfo(SrcSV));
5302 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
5303 assert(Subtarget->isTargetDarwin() &&
5304 "automatic va_arg instruction only works on Darwin");
5306 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5307 EVT VT = Op.getValueType();
5308 SDLoc DL(Op);
5309 SDValue Chain = Op.getOperand(0);
5310 SDValue Addr = Op.getOperand(1);
5311 unsigned Align = Op.getConstantOperandVal(3);
5312 auto PtrVT = getPointerTy(DAG.getDataLayout());
5314 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
5315 Chain = VAList.getValue(1);
5317 if (Align > 8) {
5318 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
5319 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5320 DAG.getConstant(Align - 1, DL, PtrVT));
5321 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
5322 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
5325 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5326 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
5328 // Scalar integer and FP values smaller than 64 bits are implicitly extended
5329 // up to 64 bits. At the very least, we have to increase the striding of the
5330 // vaargs list to match this, and for FP values we need to introduce
5331 // FP_ROUND nodes as well.
5332 if (VT.isInteger() && !VT.isVector())
5333 ArgSize = 8;
5334 bool NeedFPTrunc = false;
5335 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5336 ArgSize = 8;
5337 NeedFPTrunc = true;
5340 // Increment the pointer, VAList, to the next vaarg
5341 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5342 DAG.getConstant(ArgSize, DL, PtrVT));
5343 // Store the incremented VAList to the legalized pointer
5344 SDValue APStore =
5345 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5347 // Load the actual argument out of the pointer VAList
5348 if (NeedFPTrunc) {
5349 // Load the value as an f64.
5350 SDValue WideFP =
5351 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5352 // Round the value down to an f32.
5353 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5354 DAG.getIntPtrConstant(1, DL));
5355 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5356 // Merge the rounded value with the chain output of the load.
5357 return DAG.getMergeValues(Ops, DL);
5360 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5363 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5364 SelectionDAG &DAG) const {
5365 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5366 MFI.setFrameAddressIsTaken(true);
5368 EVT VT = Op.getValueType();
5369 SDLoc DL(Op);
5370 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5371 SDValue FrameAddr =
5372 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5373 while (Depth--)
5374 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5375 MachinePointerInfo());
5376 return FrameAddr;
5379 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
5380 SelectionDAG &DAG) const {
5381 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5383 EVT VT = getPointerTy(DAG.getDataLayout());
5384 SDLoc DL(Op);
5385 int FI = MFI.CreateFixedObject(4, 0, false);
5386 return DAG.getFrameIndex(FI, VT);
5389 #define GET_REGISTER_MATCHER
5390 #include "AArch64GenAsmMatcher.inc"
5392 // FIXME? Maybe this could be a TableGen attribute on some registers and
5393 // this table could be generated automatically from RegInfo.
5394 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
5395 SelectionDAG &DAG) const {
5396 unsigned Reg = MatchRegisterName(RegName);
5397 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
5398 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
5399 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
5400 if (!Subtarget->isXRegisterReserved(DwarfRegNum))
5401 Reg = 0;
5403 if (Reg)
5404 return Reg;
5405 report_fatal_error(Twine("Invalid register name \""
5406 + StringRef(RegName) + "\"."));
5409 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
5410 SelectionDAG &DAG) const {
5411 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5413 EVT VT = Op.getValueType();
5414 SDLoc DL(Op);
5416 SDValue FrameAddr =
5417 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5418 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5420 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
5423 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5424 SelectionDAG &DAG) const {
5425 MachineFunction &MF = DAG.getMachineFunction();
5426 MachineFrameInfo &MFI = MF.getFrameInfo();
5427 MFI.setReturnAddressIsTaken(true);
5429 EVT VT = Op.getValueType();
5430 SDLoc DL(Op);
5431 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5432 if (Depth) {
5433 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5434 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5435 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5436 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5437 MachinePointerInfo());
5440 // Return LR, which contains the return address. Mark it an implicit live-in.
5441 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5442 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5445 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5446 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5447 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5448 SelectionDAG &DAG) const {
5449 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5450 EVT VT = Op.getValueType();
5451 unsigned VTBits = VT.getSizeInBits();
5452 SDLoc dl(Op);
5453 SDValue ShOpLo = Op.getOperand(0);
5454 SDValue ShOpHi = Op.getOperand(1);
5455 SDValue ShAmt = Op.getOperand(2);
5456 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5458 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5460 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5461 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5462 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5464 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5465 // is "undef". We wanted 0, so CSEL it directly.
5466 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5467 ISD::SETEQ, dl, DAG);
5468 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5469 HiBitsForLo =
5470 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5471 HiBitsForLo, CCVal, Cmp);
5473 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5474 DAG.getConstant(VTBits, dl, MVT::i64));
5476 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5477 SDValue LoForNormalShift =
5478 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5480 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5481 dl, DAG);
5482 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5483 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5484 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5485 LoForNormalShift, CCVal, Cmp);
5487 // AArch64 shifts larger than the register width are wrapped rather than
5488 // clamped, so we can't just emit "hi >> x".
5489 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5490 SDValue HiForBigShift =
5491 Opc == ISD::SRA
5492 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5493 DAG.getConstant(VTBits - 1, dl, MVT::i64))
5494 : DAG.getConstant(0, dl, VT);
5495 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5496 HiForNormalShift, CCVal, Cmp);
5498 SDValue Ops[2] = { Lo, Hi };
5499 return DAG.getMergeValues(Ops, dl);
5502 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5503 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5504 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5505 SelectionDAG &DAG) const {
5506 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5507 EVT VT = Op.getValueType();
5508 unsigned VTBits = VT.getSizeInBits();
5509 SDLoc dl(Op);
5510 SDValue ShOpLo = Op.getOperand(0);
5511 SDValue ShOpHi = Op.getOperand(1);
5512 SDValue ShAmt = Op.getOperand(2);
5514 assert(Op.getOpcode() == ISD::SHL_PARTS);
5515 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5516 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5517 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5519 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5520 // is "undef". We wanted 0, so CSEL it directly.
5521 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5522 ISD::SETEQ, dl, DAG);
5523 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5524 LoBitsForHi =
5525 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5526 LoBitsForHi, CCVal, Cmp);
5528 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5529 DAG.getConstant(VTBits, dl, MVT::i64));
5530 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5531 SDValue HiForNormalShift =
5532 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5534 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5536 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5537 dl, DAG);
5538 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5539 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5540 HiForNormalShift, CCVal, Cmp);
5542 // AArch64 shifts of larger than register sizes are wrapped rather than
5543 // clamped, so we can't just emit "lo << a" if a is too big.
5544 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5545 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5546 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5547 LoForNormalShift, CCVal, Cmp);
5549 SDValue Ops[2] = { Lo, Hi };
5550 return DAG.getMergeValues(Ops, dl);
5553 bool AArch64TargetLowering::isOffsetFoldingLegal(
5554 const GlobalAddressSDNode *GA) const {
5555 // Offsets are folded in the DAG combine rather than here so that we can
5556 // intelligently choose an offset based on the uses.
5557 return false;
5560 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5561 bool OptForSize) const {
5562 bool IsLegal = false;
5563 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5564 // 16-bit case when target has full fp16 support.
5565 // FIXME: We should be able to handle f128 as well with a clever lowering.
5566 const APInt ImmInt = Imm.bitcastToAPInt();
5567 if (VT == MVT::f64)
5568 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
5569 else if (VT == MVT::f32)
5570 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
5571 else if (VT == MVT::f16 && Subtarget->hasFullFP16())
5572 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
5573 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5574 // generate that fmov.
5576 // If we can not materialize in immediate field for fmov, check if the
5577 // value can be encoded as the immediate operand of a logical instruction.
5578 // The immediate value will be created with either MOVZ, MOVN, or ORR.
5579 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
5580 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5581 // however the mov+fmov sequence is always better because of the reduced
5582 // cache pressure. The timings are still the same if you consider
5583 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5584 // movw+movk is fused). So we limit up to 2 instrdduction at most.
5585 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
5586 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
5587 Insn);
5588 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
5589 IsLegal = Insn.size() <= Limit;
5592 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
5593 << " imm value: "; Imm.dump(););
5594 return IsLegal;
5597 //===----------------------------------------------------------------------===//
5598 // AArch64 Optimization Hooks
5599 //===----------------------------------------------------------------------===//
5601 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5602 SDValue Operand, SelectionDAG &DAG,
5603 int &ExtraSteps) {
5604 EVT VT = Operand.getValueType();
5605 if (ST->hasNEON() &&
5606 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5607 VT == MVT::f32 || VT == MVT::v1f32 ||
5608 VT == MVT::v2f32 || VT == MVT::v4f32)) {
5609 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5610 // For the reciprocal estimates, convergence is quadratic, so the number
5611 // of digits is doubled after each iteration. In ARMv8, the accuracy of
5612 // the initial estimate is 2^-8. Thus the number of extra steps to refine
5613 // the result for float (23 mantissa bits) is 2 and for double (52
5614 // mantissa bits) is 3.
5615 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5617 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5620 return SDValue();
5623 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5624 SelectionDAG &DAG, int Enabled,
5625 int &ExtraSteps,
5626 bool &UseOneConst,
5627 bool Reciprocal) const {
5628 if (Enabled == ReciprocalEstimate::Enabled ||
5629 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5630 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5631 DAG, ExtraSteps)) {
5632 SDLoc DL(Operand);
5633 EVT VT = Operand.getValueType();
5635 SDNodeFlags Flags;
5636 Flags.setAllowReassociation(true);
5638 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5639 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5640 for (int i = ExtraSteps; i > 0; --i) {
5641 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5642 Flags);
5643 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5644 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5646 if (!Reciprocal) {
5647 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5648 VT);
5649 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5650 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5652 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5653 // Correct the result if the operand is 0.0.
5654 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5655 VT, Eq, Operand, Estimate);
5658 ExtraSteps = 0;
5659 return Estimate;
5662 return SDValue();
5665 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5666 SelectionDAG &DAG, int Enabled,
5667 int &ExtraSteps) const {
5668 if (Enabled == ReciprocalEstimate::Enabled)
5669 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5670 DAG, ExtraSteps)) {
5671 SDLoc DL(Operand);
5672 EVT VT = Operand.getValueType();
5674 SDNodeFlags Flags;
5675 Flags.setAllowReassociation(true);
5677 // Newton reciprocal iteration: E * (2 - X * E)
5678 // AArch64 reciprocal iteration instruction: (2 - M * N)
5679 for (int i = ExtraSteps; i > 0; --i) {
5680 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5681 Estimate, Flags);
5682 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5685 ExtraSteps = 0;
5686 return Estimate;
5689 return SDValue();
5692 //===----------------------------------------------------------------------===//
5693 // AArch64 Inline Assembly Support
5694 //===----------------------------------------------------------------------===//
5696 // Table of Constraints
5697 // TODO: This is the current set of constraints supported by ARM for the
5698 // compiler, not all of them may make sense.
5700 // r - A general register
5701 // w - An FP/SIMD register of some size in the range v0-v31
5702 // x - An FP/SIMD register of some size in the range v0-v15
5703 // I - Constant that can be used with an ADD instruction
5704 // J - Constant that can be used with a SUB instruction
5705 // K - Constant that can be used with a 32-bit logical instruction
5706 // L - Constant that can be used with a 64-bit logical instruction
5707 // M - Constant that can be used as a 32-bit MOV immediate
5708 // N - Constant that can be used as a 64-bit MOV immediate
5709 // Q - A memory reference with base register and no offset
5710 // S - A symbolic address
5711 // Y - Floating point constant zero
5712 // Z - Integer constant zero
5714 // Note that general register operands will be output using their 64-bit x
5715 // register name, whatever the size of the variable, unless the asm operand
5716 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5717 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5718 // %q modifier.
5719 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5720 // At this point, we have to lower this constraint to something else, so we
5721 // lower it to an "r" or "w". However, by doing this we will force the result
5722 // to be in register, while the X constraint is much more permissive.
5724 // Although we are correct (we are free to emit anything, without
5725 // constraints), we might break use cases that would expect us to be more
5726 // efficient and emit something else.
5727 if (!Subtarget->hasFPARMv8())
5728 return "r";
5730 if (ConstraintVT.isFloatingPoint())
5731 return "w";
5733 if (ConstraintVT.isVector() &&
5734 (ConstraintVT.getSizeInBits() == 64 ||
5735 ConstraintVT.getSizeInBits() == 128))
5736 return "w";
5738 return "r";
5741 /// getConstraintType - Given a constraint letter, return the type of
5742 /// constraint it is for this target.
5743 AArch64TargetLowering::ConstraintType
5744 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5745 if (Constraint.size() == 1) {
5746 switch (Constraint[0]) {
5747 default:
5748 break;
5749 case 'x':
5750 case 'w':
5751 case 'y':
5752 return C_RegisterClass;
5753 // An address with a single base register. Due to the way we
5754 // currently handle addresses it is the same as 'r'.
5755 case 'Q':
5756 return C_Memory;
5757 case 'I':
5758 case 'J':
5759 case 'K':
5760 case 'L':
5761 case 'M':
5762 case 'N':
5763 case 'Y':
5764 case 'Z':
5765 return C_Immediate;
5766 case 'z':
5767 case 'S': // A symbolic address
5768 return C_Other;
5771 return TargetLowering::getConstraintType(Constraint);
5774 /// Examine constraint type and operand type and determine a weight value.
5775 /// This object must already have been set up with the operand type
5776 /// and the current alternative constraint selected.
5777 TargetLowering::ConstraintWeight
5778 AArch64TargetLowering::getSingleConstraintMatchWeight(
5779 AsmOperandInfo &info, const char *constraint) const {
5780 ConstraintWeight weight = CW_Invalid;
5781 Value *CallOperandVal = info.CallOperandVal;
5782 // If we don't have a value, we can't do a match,
5783 // but allow it at the lowest weight.
5784 if (!CallOperandVal)
5785 return CW_Default;
5786 Type *type = CallOperandVal->getType();
5787 // Look at the constraint type.
5788 switch (*constraint) {
5789 default:
5790 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5791 break;
5792 case 'x':
5793 case 'w':
5794 case 'y':
5795 if (type->isFloatingPointTy() || type->isVectorTy())
5796 weight = CW_Register;
5797 break;
5798 case 'z':
5799 weight = CW_Constant;
5800 break;
5802 return weight;
5805 std::pair<unsigned, const TargetRegisterClass *>
5806 AArch64TargetLowering::getRegForInlineAsmConstraint(
5807 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5808 if (Constraint.size() == 1) {
5809 switch (Constraint[0]) {
5810 case 'r':
5811 if (VT.getSizeInBits() == 64)
5812 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5813 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5814 case 'w':
5815 if (!Subtarget->hasFPARMv8())
5816 break;
5817 if (VT.isScalableVector())
5818 return std::make_pair(0U, &AArch64::ZPRRegClass);
5819 if (VT.getSizeInBits() == 16)
5820 return std::make_pair(0U, &AArch64::FPR16RegClass);
5821 if (VT.getSizeInBits() == 32)
5822 return std::make_pair(0U, &AArch64::FPR32RegClass);
5823 if (VT.getSizeInBits() == 64)
5824 return std::make_pair(0U, &AArch64::FPR64RegClass);
5825 if (VT.getSizeInBits() == 128)
5826 return std::make_pair(0U, &AArch64::FPR128RegClass);
5827 break;
5828 // The instructions that this constraint is designed for can
5829 // only take 128-bit registers so just use that regclass.
5830 case 'x':
5831 if (!Subtarget->hasFPARMv8())
5832 break;
5833 if (VT.isScalableVector())
5834 return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
5835 if (VT.getSizeInBits() == 128)
5836 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5837 break;
5838 case 'y':
5839 if (!Subtarget->hasFPARMv8())
5840 break;
5841 if (VT.isScalableVector())
5842 return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
5843 break;
5846 if (StringRef("{cc}").equals_lower(Constraint))
5847 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
5849 // Use the default implementation in TargetLowering to convert the register
5850 // constraint into a member of a register class.
5851 std::pair<unsigned, const TargetRegisterClass *> Res;
5852 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5854 // Not found as a standard register?
5855 if (!Res.second) {
5856 unsigned Size = Constraint.size();
5857 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
5858 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
5859 int RegNo;
5860 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
5861 if (!Failed && RegNo >= 0 && RegNo <= 31) {
5862 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
5863 // By default we'll emit v0-v31 for this unless there's a modifier where
5864 // we'll emit the correct register as well.
5865 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
5866 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
5867 Res.second = &AArch64::FPR64RegClass;
5868 } else {
5869 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
5870 Res.second = &AArch64::FPR128RegClass;
5876 if (Res.second && !Subtarget->hasFPARMv8() &&
5877 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
5878 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
5879 return std::make_pair(0U, nullptr);
5881 return Res;
5884 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5885 /// vector. If it is invalid, don't add anything to Ops.
5886 void AArch64TargetLowering::LowerAsmOperandForConstraint(
5887 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5888 SelectionDAG &DAG) const {
5889 SDValue Result;
5891 // Currently only support length 1 constraints.
5892 if (Constraint.length() != 1)
5893 return;
5895 char ConstraintLetter = Constraint[0];
5896 switch (ConstraintLetter) {
5897 default:
5898 break;
5900 // This set of constraints deal with valid constants for various instructions.
5901 // Validate and return a target constant for them if we can.
5902 case 'z': {
5903 // 'z' maps to xzr or wzr so it needs an input of 0.
5904 if (!isNullConstant(Op))
5905 return;
5907 if (Op.getValueType() == MVT::i64)
5908 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
5909 else
5910 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
5911 break;
5913 case 'S': {
5914 // An absolute symbolic address or label reference.
5915 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5916 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5917 GA->getValueType(0));
5918 } else if (const BlockAddressSDNode *BA =
5919 dyn_cast<BlockAddressSDNode>(Op)) {
5920 Result =
5921 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
5922 } else if (const ExternalSymbolSDNode *ES =
5923 dyn_cast<ExternalSymbolSDNode>(Op)) {
5924 Result =
5925 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
5926 } else
5927 return;
5928 break;
5931 case 'I':
5932 case 'J':
5933 case 'K':
5934 case 'L':
5935 case 'M':
5936 case 'N':
5937 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5938 if (!C)
5939 return;
5941 // Grab the value and do some validation.
5942 uint64_t CVal = C->getZExtValue();
5943 switch (ConstraintLetter) {
5944 // The I constraint applies only to simple ADD or SUB immediate operands:
5945 // i.e. 0 to 4095 with optional shift by 12
5946 // The J constraint applies only to ADD or SUB immediates that would be
5947 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
5948 // instruction [or vice versa], in other words -1 to -4095 with optional
5949 // left shift by 12.
5950 case 'I':
5951 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
5952 break;
5953 return;
5954 case 'J': {
5955 uint64_t NVal = -C->getSExtValue();
5956 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
5957 CVal = C->getSExtValue();
5958 break;
5960 return;
5962 // The K and L constraints apply *only* to logical immediates, including
5963 // what used to be the MOVI alias for ORR (though the MOVI alias has now
5964 // been removed and MOV should be used). So these constraints have to
5965 // distinguish between bit patterns that are valid 32-bit or 64-bit
5966 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
5967 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
5968 // versa.
5969 case 'K':
5970 if (AArch64_AM::isLogicalImmediate(CVal, 32))
5971 break;
5972 return;
5973 case 'L':
5974 if (AArch64_AM::isLogicalImmediate(CVal, 64))
5975 break;
5976 return;
5977 // The M and N constraints are a superset of K and L respectively, for use
5978 // with the MOV (immediate) alias. As well as the logical immediates they
5979 // also match 32 or 64-bit immediates that can be loaded either using a
5980 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5981 // (M) or 64-bit 0x1234000000000000 (N) etc.
5982 // As a note some of this code is liberally stolen from the asm parser.
5983 case 'M': {
5984 if (!isUInt<32>(CVal))
5985 return;
5986 if (AArch64_AM::isLogicalImmediate(CVal, 32))
5987 break;
5988 if ((CVal & 0xFFFF) == CVal)
5989 break;
5990 if ((CVal & 0xFFFF0000ULL) == CVal)
5991 break;
5992 uint64_t NCVal = ~(uint32_t)CVal;
5993 if ((NCVal & 0xFFFFULL) == NCVal)
5994 break;
5995 if ((NCVal & 0xFFFF0000ULL) == NCVal)
5996 break;
5997 return;
5999 case 'N': {
6000 if (AArch64_AM::isLogicalImmediate(CVal, 64))
6001 break;
6002 if ((CVal & 0xFFFFULL) == CVal)
6003 break;
6004 if ((CVal & 0xFFFF0000ULL) == CVal)
6005 break;
6006 if ((CVal & 0xFFFF00000000ULL) == CVal)
6007 break;
6008 if ((CVal & 0xFFFF000000000000ULL) == CVal)
6009 break;
6010 uint64_t NCVal = ~CVal;
6011 if ((NCVal & 0xFFFFULL) == NCVal)
6012 break;
6013 if ((NCVal & 0xFFFF0000ULL) == NCVal)
6014 break;
6015 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
6016 break;
6017 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
6018 break;
6019 return;
6021 default:
6022 return;
6025 // All assembler immediates are 64-bit integers.
6026 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
6027 break;
6030 if (Result.getNode()) {
6031 Ops.push_back(Result);
6032 return;
6035 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6038 //===----------------------------------------------------------------------===//
6039 // AArch64 Advanced SIMD Support
6040 //===----------------------------------------------------------------------===//
6042 /// WidenVector - Given a value in the V64 register class, produce the
6043 /// equivalent value in the V128 register class.
6044 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
6045 EVT VT = V64Reg.getValueType();
6046 unsigned NarrowSize = VT.getVectorNumElements();
6047 MVT EltTy = VT.getVectorElementType().getSimpleVT();
6048 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
6049 SDLoc DL(V64Reg);
6051 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
6052 V64Reg, DAG.getConstant(0, DL, MVT::i32));
6055 /// getExtFactor - Determine the adjustment factor for the position when
6056 /// generating an "extract from vector registers" instruction.
6057 static unsigned getExtFactor(SDValue &V) {
6058 EVT EltType = V.getValueType().getVectorElementType();
6059 return EltType.getSizeInBits() / 8;
6062 /// NarrowVector - Given a value in the V128 register class, produce the
6063 /// equivalent value in the V64 register class.
6064 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
6065 EVT VT = V128Reg.getValueType();
6066 unsigned WideSize = VT.getVectorNumElements();
6067 MVT EltTy = VT.getVectorElementType().getSimpleVT();
6068 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
6069 SDLoc DL(V128Reg);
6071 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
6074 // Gather data to see if the operation can be modelled as a
6075 // shuffle in combination with VEXTs.
6076 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
6077 SelectionDAG &DAG) const {
6078 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6079 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6080 SDLoc dl(Op);
6081 EVT VT = Op.getValueType();
6082 unsigned NumElts = VT.getVectorNumElements();
6084 struct ShuffleSourceInfo {
6085 SDValue Vec;
6086 unsigned MinElt;
6087 unsigned MaxElt;
6089 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6090 // be compatible with the shuffle we intend to construct. As a result
6091 // ShuffleVec will be some sliding window into the original Vec.
6092 SDValue ShuffleVec;
6094 // Code should guarantee that element i in Vec starts at element "WindowBase
6095 // + i * WindowScale in ShuffleVec".
6096 int WindowBase;
6097 int WindowScale;
6099 ShuffleSourceInfo(SDValue Vec)
6100 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
6101 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
6103 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6106 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6107 // node.
6108 SmallVector<ShuffleSourceInfo, 2> Sources;
6109 for (unsigned i = 0; i < NumElts; ++i) {
6110 SDValue V = Op.getOperand(i);
6111 if (V.isUndef())
6112 continue;
6113 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6114 !isa<ConstantSDNode>(V.getOperand(1))) {
6115 LLVM_DEBUG(
6116 dbgs() << "Reshuffle failed: "
6117 "a shuffle can only come from building a vector from "
6118 "various elements of other vectors, provided their "
6119 "indices are constant\n");
6120 return SDValue();
6123 // Add this element source to the list if it's not already there.
6124 SDValue SourceVec = V.getOperand(0);
6125 auto Source = find(Sources, SourceVec);
6126 if (Source == Sources.end())
6127 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6129 // Update the minimum and maximum lane number seen.
6130 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6131 Source->MinElt = std::min(Source->MinElt, EltNo);
6132 Source->MaxElt = std::max(Source->MaxElt, EltNo);
6135 if (Sources.size() > 2) {
6136 LLVM_DEBUG(
6137 dbgs() << "Reshuffle failed: currently only do something sane when at "
6138 "most two source vectors are involved\n");
6139 return SDValue();
6142 // Find out the smallest element size among result and two sources, and use
6143 // it as element size to build the shuffle_vector.
6144 EVT SmallestEltTy = VT.getVectorElementType();
6145 for (auto &Source : Sources) {
6146 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6147 if (SrcEltTy.bitsLT(SmallestEltTy)) {
6148 SmallestEltTy = SrcEltTy;
6151 unsigned ResMultiplier =
6152 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6153 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6154 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6156 // If the source vector is too wide or too narrow, we may nevertheless be able
6157 // to construct a compatible shuffle either by concatenating it with UNDEF or
6158 // extracting a suitable range of elements.
6159 for (auto &Src : Sources) {
6160 EVT SrcVT = Src.ShuffleVec.getValueType();
6162 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6163 continue;
6165 // This stage of the search produces a source with the same element type as
6166 // the original, but with a total width matching the BUILD_VECTOR output.
6167 EVT EltVT = SrcVT.getVectorElementType();
6168 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6169 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6171 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6172 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
6173 // We can pad out the smaller vector for free, so if it's part of a
6174 // shuffle...
6175 Src.ShuffleVec =
6176 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6177 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6178 continue;
6181 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
6183 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6184 LLVM_DEBUG(
6185 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6186 return SDValue();
6189 if (Src.MinElt >= NumSrcElts) {
6190 // The extraction can just take the second half
6191 Src.ShuffleVec =
6192 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6193 DAG.getConstant(NumSrcElts, dl, MVT::i64));
6194 Src.WindowBase = -NumSrcElts;
6195 } else if (Src.MaxElt < NumSrcElts) {
6196 // The extraction can just take the first half
6197 Src.ShuffleVec =
6198 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6199 DAG.getConstant(0, dl, MVT::i64));
6200 } else {
6201 // An actual VEXT is needed
6202 SDValue VEXTSrc1 =
6203 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6204 DAG.getConstant(0, dl, MVT::i64));
6205 SDValue VEXTSrc2 =
6206 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6207 DAG.getConstant(NumSrcElts, dl, MVT::i64));
6208 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
6210 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
6211 VEXTSrc2,
6212 DAG.getConstant(Imm, dl, MVT::i32));
6213 Src.WindowBase = -Src.MinElt;
6217 // Another possible incompatibility occurs from the vector element types. We
6218 // can fix this by bitcasting the source vectors to the same type we intend
6219 // for the shuffle.
6220 for (auto &Src : Sources) {
6221 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6222 if (SrcEltTy == SmallestEltTy)
6223 continue;
6224 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6225 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6226 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6227 Src.WindowBase *= Src.WindowScale;
6230 // Final sanity check before we try to actually produce a shuffle.
6231 LLVM_DEBUG(for (auto Src
6232 : Sources)
6233 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6235 // The stars all align, our next step is to produce the mask for the shuffle.
6236 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6237 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6238 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6239 SDValue Entry = Op.getOperand(i);
6240 if (Entry.isUndef())
6241 continue;
6243 auto Src = find(Sources, Entry.getOperand(0));
6244 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6246 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6247 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6248 // segment.
6249 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6250 int BitsDefined =
6251 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
6252 int LanesDefined = BitsDefined / BitsPerShuffleLane;
6254 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6255 // starting at the appropriate offset.
6256 int *LaneMask = &Mask[i * ResMultiplier];
6258 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6259 ExtractBase += NumElts * (Src - Sources.begin());
6260 for (int j = 0; j < LanesDefined; ++j)
6261 LaneMask[j] = ExtractBase + j;
6264 // Final check before we try to produce nonsense...
6265 if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
6266 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6267 return SDValue();
6270 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6271 for (unsigned i = 0; i < Sources.size(); ++i)
6272 ShuffleOps[i] = Sources[i].ShuffleVec;
6274 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6275 ShuffleOps[1], Mask);
6276 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6278 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
6279 dbgs() << "Reshuffle, creating node: "; V.dump(););
6281 return V;
6284 // check if an EXT instruction can handle the shuffle mask when the
6285 // vector sources of the shuffle are the same.
6286 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6287 unsigned NumElts = VT.getVectorNumElements();
6289 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6290 if (M[0] < 0)
6291 return false;
6293 Imm = M[0];
6295 // If this is a VEXT shuffle, the immediate value is the index of the first
6296 // element. The other shuffle indices must be the successive elements after
6297 // the first one.
6298 unsigned ExpectedElt = Imm;
6299 for (unsigned i = 1; i < NumElts; ++i) {
6300 // Increment the expected index. If it wraps around, just follow it
6301 // back to index zero and keep going.
6302 ++ExpectedElt;
6303 if (ExpectedElt == NumElts)
6304 ExpectedElt = 0;
6306 if (M[i] < 0)
6307 continue; // ignore UNDEF indices
6308 if (ExpectedElt != static_cast<unsigned>(M[i]))
6309 return false;
6312 return true;
6315 // check if an EXT instruction can handle the shuffle mask when the
6316 // vector sources of the shuffle are different.
6317 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
6318 unsigned &Imm) {
6319 // Look for the first non-undef element.
6320 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
6322 // Benefit form APInt to handle overflow when calculating expected element.
6323 unsigned NumElts = VT.getVectorNumElements();
6324 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
6325 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
6326 // The following shuffle indices must be the successive elements after the
6327 // first real element.
6328 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
6329 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
6330 if (FirstWrongElt != M.end())
6331 return false;
6333 // The index of an EXT is the first element if it is not UNDEF.
6334 // Watch out for the beginning UNDEFs. The EXT index should be the expected
6335 // value of the first element. E.g.
6336 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6337 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6338 // ExpectedElt is the last mask index plus 1.
6339 Imm = ExpectedElt.getZExtValue();
6341 // There are two difference cases requiring to reverse input vectors.
6342 // For example, for vector <4 x i32> we have the following cases,
6343 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6344 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6345 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6346 // to reverse two input vectors.
6347 if (Imm < NumElts)
6348 ReverseEXT = true;
6349 else
6350 Imm -= NumElts;
6352 return true;
6355 /// isREVMask - Check if a vector shuffle corresponds to a REV
6356 /// instruction with the specified blocksize. (The order of the elements
6357 /// within each block of the vector is reversed.)
6358 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6359 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
6360 "Only possible block sizes for REV are: 16, 32, 64");
6362 unsigned EltSz = VT.getScalarSizeInBits();
6363 if (EltSz == 64)
6364 return false;
6366 unsigned NumElts = VT.getVectorNumElements();
6367 unsigned BlockElts = M[0] + 1;
6368 // If the first shuffle index is UNDEF, be optimistic.
6369 if (M[0] < 0)
6370 BlockElts = BlockSize / EltSz;
6372 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6373 return false;
6375 for (unsigned i = 0; i < NumElts; ++i) {
6376 if (M[i] < 0)
6377 continue; // ignore UNDEF indices
6378 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6379 return false;
6382 return true;
6385 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6386 unsigned NumElts = VT.getVectorNumElements();
6387 if (NumElts % 2 != 0)
6388 return false;
6389 WhichResult = (M[0] == 0 ? 0 : 1);
6390 unsigned Idx = WhichResult * NumElts / 2;
6391 for (unsigned i = 0; i != NumElts; i += 2) {
6392 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6393 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6394 return false;
6395 Idx += 1;
6398 return true;
6401 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6402 unsigned NumElts = VT.getVectorNumElements();
6403 WhichResult = (M[0] == 0 ? 0 : 1);
6404 for (unsigned i = 0; i != NumElts; ++i) {
6405 if (M[i] < 0)
6406 continue; // ignore UNDEF indices
6407 if ((unsigned)M[i] != 2 * i + WhichResult)
6408 return false;
6411 return true;
6414 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6415 unsigned NumElts = VT.getVectorNumElements();
6416 if (NumElts % 2 != 0)
6417 return false;
6418 WhichResult = (M[0] == 0 ? 0 : 1);
6419 for (unsigned i = 0; i < NumElts; i += 2) {
6420 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6421 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6422 return false;
6424 return true;
6427 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6428 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6429 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6430 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6431 unsigned NumElts = VT.getVectorNumElements();
6432 if (NumElts % 2 != 0)
6433 return false;
6434 WhichResult = (M[0] == 0 ? 0 : 1);
6435 unsigned Idx = WhichResult * NumElts / 2;
6436 for (unsigned i = 0; i != NumElts; i += 2) {
6437 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6438 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6439 return false;
6440 Idx += 1;
6443 return true;
6446 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6447 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6448 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6449 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6450 unsigned Half = VT.getVectorNumElements() / 2;
6451 WhichResult = (M[0] == 0 ? 0 : 1);
6452 for (unsigned j = 0; j != 2; ++j) {
6453 unsigned Idx = WhichResult;
6454 for (unsigned i = 0; i != Half; ++i) {
6455 int MIdx = M[i + j * Half];
6456 if (MIdx >= 0 && (unsigned)MIdx != Idx)
6457 return false;
6458 Idx += 2;
6462 return true;
6465 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6466 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6467 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6468 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6469 unsigned NumElts = VT.getVectorNumElements();
6470 if (NumElts % 2 != 0)
6471 return false;
6472 WhichResult = (M[0] == 0 ? 0 : 1);
6473 for (unsigned i = 0; i < NumElts; i += 2) {
6474 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6475 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6476 return false;
6478 return true;
6481 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6482 bool &DstIsLeft, int &Anomaly) {
6483 if (M.size() != static_cast<size_t>(NumInputElements))
6484 return false;
6486 int NumLHSMatch = 0, NumRHSMatch = 0;
6487 int LastLHSMismatch = -1, LastRHSMismatch = -1;
6489 for (int i = 0; i < NumInputElements; ++i) {
6490 if (M[i] == -1) {
6491 ++NumLHSMatch;
6492 ++NumRHSMatch;
6493 continue;
6496 if (M[i] == i)
6497 ++NumLHSMatch;
6498 else
6499 LastLHSMismatch = i;
6501 if (M[i] == i + NumInputElements)
6502 ++NumRHSMatch;
6503 else
6504 LastRHSMismatch = i;
6507 if (NumLHSMatch == NumInputElements - 1) {
6508 DstIsLeft = true;
6509 Anomaly = LastLHSMismatch;
6510 return true;
6511 } else if (NumRHSMatch == NumInputElements - 1) {
6512 DstIsLeft = false;
6513 Anomaly = LastRHSMismatch;
6514 return true;
6517 return false;
6520 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6521 if (VT.getSizeInBits() != 128)
6522 return false;
6524 unsigned NumElts = VT.getVectorNumElements();
6526 for (int I = 0, E = NumElts / 2; I != E; I++) {
6527 if (Mask[I] != I)
6528 return false;
6531 int Offset = NumElts / 2;
6532 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6533 if (Mask[I] != I + SplitLHS * Offset)
6534 return false;
6537 return true;
6540 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6541 SDLoc DL(Op);
6542 EVT VT = Op.getValueType();
6543 SDValue V0 = Op.getOperand(0);
6544 SDValue V1 = Op.getOperand(1);
6545 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6547 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6548 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6549 return SDValue();
6551 bool SplitV0 = V0.getValueSizeInBits() == 128;
6553 if (!isConcatMask(Mask, VT, SplitV0))
6554 return SDValue();
6556 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6557 if (SplitV0) {
6558 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6559 DAG.getConstant(0, DL, MVT::i64));
6561 if (V1.getValueSizeInBits() == 128) {
6562 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6563 DAG.getConstant(0, DL, MVT::i64));
6565 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6568 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6569 /// the specified operations to build the shuffle.
6570 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6571 SDValue RHS, SelectionDAG &DAG,
6572 const SDLoc &dl) {
6573 unsigned OpNum = (PFEntry >> 26) & 0x0F;
6574 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6575 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6577 enum {
6578 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6579 OP_VREV,
6580 OP_VDUP0,
6581 OP_VDUP1,
6582 OP_VDUP2,
6583 OP_VDUP3,
6584 OP_VEXT1,
6585 OP_VEXT2,
6586 OP_VEXT3,
6587 OP_VUZPL, // VUZP, left result
6588 OP_VUZPR, // VUZP, right result
6589 OP_VZIPL, // VZIP, left result
6590 OP_VZIPR, // VZIP, right result
6591 OP_VTRNL, // VTRN, left result
6592 OP_VTRNR // VTRN, right result
6595 if (OpNum == OP_COPY) {
6596 if (LHSID == (1 * 9 + 2) * 9 + 3)
6597 return LHS;
6598 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6599 return RHS;
6602 SDValue OpLHS, OpRHS;
6603 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6604 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6605 EVT VT = OpLHS.getValueType();
6607 switch (OpNum) {
6608 default:
6609 llvm_unreachable("Unknown shuffle opcode!");
6610 case OP_VREV:
6611 // VREV divides the vector in half and swaps within the half.
6612 if (VT.getVectorElementType() == MVT::i32 ||
6613 VT.getVectorElementType() == MVT::f32)
6614 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6615 // vrev <4 x i16> -> REV32
6616 if (VT.getVectorElementType() == MVT::i16 ||
6617 VT.getVectorElementType() == MVT::f16)
6618 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6619 // vrev <4 x i8> -> REV16
6620 assert(VT.getVectorElementType() == MVT::i8);
6621 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6622 case OP_VDUP0:
6623 case OP_VDUP1:
6624 case OP_VDUP2:
6625 case OP_VDUP3: {
6626 EVT EltTy = VT.getVectorElementType();
6627 unsigned Opcode;
6628 if (EltTy == MVT::i8)
6629 Opcode = AArch64ISD::DUPLANE8;
6630 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6631 Opcode = AArch64ISD::DUPLANE16;
6632 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6633 Opcode = AArch64ISD::DUPLANE32;
6634 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6635 Opcode = AArch64ISD::DUPLANE64;
6636 else
6637 llvm_unreachable("Invalid vector element type?");
6639 if (VT.getSizeInBits() == 64)
6640 OpLHS = WidenVector(OpLHS, DAG);
6641 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6642 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6644 case OP_VEXT1:
6645 case OP_VEXT2:
6646 case OP_VEXT3: {
6647 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6648 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6649 DAG.getConstant(Imm, dl, MVT::i32));
6651 case OP_VUZPL:
6652 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6653 OpRHS);
6654 case OP_VUZPR:
6655 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6656 OpRHS);
6657 case OP_VZIPL:
6658 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6659 OpRHS);
6660 case OP_VZIPR:
6661 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6662 OpRHS);
6663 case OP_VTRNL:
6664 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6665 OpRHS);
6666 case OP_VTRNR:
6667 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6668 OpRHS);
6672 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6673 SelectionDAG &DAG) {
6674 // Check to see if we can use the TBL instruction.
6675 SDValue V1 = Op.getOperand(0);
6676 SDValue V2 = Op.getOperand(1);
6677 SDLoc DL(Op);
6679 EVT EltVT = Op.getValueType().getVectorElementType();
6680 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6682 SmallVector<SDValue, 8> TBLMask;
6683 for (int Val : ShuffleMask) {
6684 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6685 unsigned Offset = Byte + Val * BytesPerElt;
6686 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6690 MVT IndexVT = MVT::v8i8;
6691 unsigned IndexLen = 8;
6692 if (Op.getValueSizeInBits() == 128) {
6693 IndexVT = MVT::v16i8;
6694 IndexLen = 16;
6697 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6698 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6700 SDValue Shuffle;
6701 if (V2.getNode()->isUndef()) {
6702 if (IndexLen == 8)
6703 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6704 Shuffle = DAG.getNode(
6705 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6706 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6707 DAG.getBuildVector(IndexVT, DL,
6708 makeArrayRef(TBLMask.data(), IndexLen)));
6709 } else {
6710 if (IndexLen == 8) {
6711 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6712 Shuffle = DAG.getNode(
6713 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6714 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6715 DAG.getBuildVector(IndexVT, DL,
6716 makeArrayRef(TBLMask.data(), IndexLen)));
6717 } else {
6718 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6719 // cannot currently represent the register constraints on the input
6720 // table registers.
6721 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6722 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6723 // IndexLen));
6724 Shuffle = DAG.getNode(
6725 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6726 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6727 V2Cst, DAG.getBuildVector(IndexVT, DL,
6728 makeArrayRef(TBLMask.data(), IndexLen)));
6731 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6734 static unsigned getDUPLANEOp(EVT EltType) {
6735 if (EltType == MVT::i8)
6736 return AArch64ISD::DUPLANE8;
6737 if (EltType == MVT::i16 || EltType == MVT::f16)
6738 return AArch64ISD::DUPLANE16;
6739 if (EltType == MVT::i32 || EltType == MVT::f32)
6740 return AArch64ISD::DUPLANE32;
6741 if (EltType == MVT::i64 || EltType == MVT::f64)
6742 return AArch64ISD::DUPLANE64;
6744 llvm_unreachable("Invalid vector element type?");
6747 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6748 SelectionDAG &DAG) const {
6749 SDLoc dl(Op);
6750 EVT VT = Op.getValueType();
6752 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6754 // Convert shuffles that are directly supported on NEON to target-specific
6755 // DAG nodes, instead of keeping them as shuffles and matching them again
6756 // during code selection. This is more efficient and avoids the possibility
6757 // of inconsistencies between legalization and selection.
6758 ArrayRef<int> ShuffleMask = SVN->getMask();
6760 SDValue V1 = Op.getOperand(0);
6761 SDValue V2 = Op.getOperand(1);
6763 if (SVN->isSplat()) {
6764 int Lane = SVN->getSplatIndex();
6765 // If this is undef splat, generate it via "just" vdup, if possible.
6766 if (Lane == -1)
6767 Lane = 0;
6769 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6770 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6771 V1.getOperand(0));
6772 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6773 // constant. If so, we can just reference the lane's definition directly.
6774 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6775 !isa<ConstantSDNode>(V1.getOperand(Lane)))
6776 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6778 // Otherwise, duplicate from the lane of the input vector.
6779 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6781 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6782 // to make a vector of the same size as this SHUFFLE. We can ignore the
6783 // extract entirely, and canonicalise the concat using WidenVector.
6784 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6785 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6786 V1 = V1.getOperand(0);
6787 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6788 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6789 Lane -= Idx * VT.getVectorNumElements() / 2;
6790 V1 = WidenVector(V1.getOperand(Idx), DAG);
6791 } else if (VT.getSizeInBits() == 64)
6792 V1 = WidenVector(V1, DAG);
6794 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6797 if (isREVMask(ShuffleMask, VT, 64))
6798 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6799 if (isREVMask(ShuffleMask, VT, 32))
6800 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6801 if (isREVMask(ShuffleMask, VT, 16))
6802 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6804 bool ReverseEXT = false;
6805 unsigned Imm;
6806 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6807 if (ReverseEXT)
6808 std::swap(V1, V2);
6809 Imm *= getExtFactor(V1);
6810 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6811 DAG.getConstant(Imm, dl, MVT::i32));
6812 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6813 Imm *= getExtFactor(V1);
6814 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6815 DAG.getConstant(Imm, dl, MVT::i32));
6818 unsigned WhichResult;
6819 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6820 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6821 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6823 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6824 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6825 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6827 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6828 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6829 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6832 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6833 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6834 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6836 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6837 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6838 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6840 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6841 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6842 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6845 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
6846 return Concat;
6848 bool DstIsLeft;
6849 int Anomaly;
6850 int NumInputElements = V1.getValueType().getVectorNumElements();
6851 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
6852 SDValue DstVec = DstIsLeft ? V1 : V2;
6853 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
6855 SDValue SrcVec = V1;
6856 int SrcLane = ShuffleMask[Anomaly];
6857 if (SrcLane >= NumInputElements) {
6858 SrcVec = V2;
6859 SrcLane -= VT.getVectorNumElements();
6861 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
6863 EVT ScalarVT = VT.getVectorElementType();
6865 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
6866 ScalarVT = MVT::i32;
6868 return DAG.getNode(
6869 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6870 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
6871 DstLaneV);
6874 // If the shuffle is not directly supported and it has 4 elements, use
6875 // the PerfectShuffle-generated table to synthesize it from other shuffles.
6876 unsigned NumElts = VT.getVectorNumElements();
6877 if (NumElts == 4) {
6878 unsigned PFIndexes[4];
6879 for (unsigned i = 0; i != 4; ++i) {
6880 if (ShuffleMask[i] < 0)
6881 PFIndexes[i] = 8;
6882 else
6883 PFIndexes[i] = ShuffleMask[i];
6886 // Compute the index in the perfect shuffle table.
6887 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6888 PFIndexes[2] * 9 + PFIndexes[3];
6889 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6890 unsigned Cost = (PFEntry >> 30);
6892 if (Cost <= 4)
6893 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6896 return GenerateTBL(Op, ShuffleMask, DAG);
6899 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
6900 APInt &UndefBits) {
6901 EVT VT = BVN->getValueType(0);
6902 APInt SplatBits, SplatUndef;
6903 unsigned SplatBitSize;
6904 bool HasAnyUndefs;
6905 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6906 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
6908 for (unsigned i = 0; i < NumSplats; ++i) {
6909 CnstBits <<= SplatBitSize;
6910 UndefBits <<= SplatBitSize;
6911 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
6912 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
6915 return true;
6918 return false;
6921 // Try 64-bit splatted SIMD immediate.
6922 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6923 const APInt &Bits) {
6924 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6925 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6926 EVT VT = Op.getValueType();
6927 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
6929 if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
6930 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
6932 SDLoc dl(Op);
6933 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6934 DAG.getConstant(Value, dl, MVT::i32));
6935 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6939 return SDValue();
6942 // Try 32-bit splatted SIMD immediate.
6943 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6944 const APInt &Bits,
6945 const SDValue *LHS = nullptr) {
6946 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6947 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6948 EVT VT = Op.getValueType();
6949 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6950 bool isAdvSIMDModImm = false;
6951 uint64_t Shift;
6953 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
6954 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
6955 Shift = 0;
6957 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
6958 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
6959 Shift = 8;
6961 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
6962 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
6963 Shift = 16;
6965 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
6966 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
6967 Shift = 24;
6970 if (isAdvSIMDModImm) {
6971 SDLoc dl(Op);
6972 SDValue Mov;
6974 if (LHS)
6975 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6976 DAG.getConstant(Value, dl, MVT::i32),
6977 DAG.getConstant(Shift, dl, MVT::i32));
6978 else
6979 Mov = DAG.getNode(NewOp, dl, MovTy,
6980 DAG.getConstant(Value, dl, MVT::i32),
6981 DAG.getConstant(Shift, dl, MVT::i32));
6983 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6987 return SDValue();
6990 // Try 16-bit splatted SIMD immediate.
6991 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6992 const APInt &Bits,
6993 const SDValue *LHS = nullptr) {
6994 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6995 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6996 EVT VT = Op.getValueType();
6997 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6998 bool isAdvSIMDModImm = false;
6999 uint64_t Shift;
7001 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
7002 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
7003 Shift = 0;
7005 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
7006 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
7007 Shift = 8;
7010 if (isAdvSIMDModImm) {
7011 SDLoc dl(Op);
7012 SDValue Mov;
7014 if (LHS)
7015 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
7016 DAG.getConstant(Value, dl, MVT::i32),
7017 DAG.getConstant(Shift, dl, MVT::i32));
7018 else
7019 Mov = DAG.getNode(NewOp, dl, MovTy,
7020 DAG.getConstant(Value, dl, MVT::i32),
7021 DAG.getConstant(Shift, dl, MVT::i32));
7023 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7027 return SDValue();
7030 // Try 32-bit splatted SIMD immediate with shifted ones.
7031 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
7032 SelectionDAG &DAG, const APInt &Bits) {
7033 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7034 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7035 EVT VT = Op.getValueType();
7036 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
7037 bool isAdvSIMDModImm = false;
7038 uint64_t Shift;
7040 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
7041 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
7042 Shift = 264;
7044 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
7045 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
7046 Shift = 272;
7049 if (isAdvSIMDModImm) {
7050 SDLoc dl(Op);
7051 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7052 DAG.getConstant(Value, dl, MVT::i32),
7053 DAG.getConstant(Shift, dl, MVT::i32));
7054 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7058 return SDValue();
7061 // Try 8-bit splatted SIMD immediate.
7062 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7063 const APInt &Bits) {
7064 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7065 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7066 EVT VT = Op.getValueType();
7067 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
7069 if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
7070 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
7072 SDLoc dl(Op);
7073 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7074 DAG.getConstant(Value, dl, MVT::i32));
7075 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7079 return SDValue();
7082 // Try FP splatted SIMD immediate.
7083 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7084 const APInt &Bits) {
7085 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7086 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7087 EVT VT = Op.getValueType();
7088 bool isWide = (VT.getSizeInBits() == 128);
7089 MVT MovTy;
7090 bool isAdvSIMDModImm = false;
7092 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
7093 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
7094 MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
7096 else if (isWide &&
7097 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
7098 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
7099 MovTy = MVT::v2f64;
7102 if (isAdvSIMDModImm) {
7103 SDLoc dl(Op);
7104 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7105 DAG.getConstant(Value, dl, MVT::i32));
7106 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7110 return SDValue();
7113 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7114 // consists of only the same constant int value, returned in reference arg
7115 // ConstVal
7116 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
7117 uint64_t &ConstVal) {
7118 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
7119 if (!Bvec)
7120 return false;
7121 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
7122 if (!FirstElt)
7123 return false;
7124 EVT VT = Bvec->getValueType(0);
7125 unsigned NumElts = VT.getVectorNumElements();
7126 for (unsigned i = 1; i < NumElts; ++i)
7127 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
7128 return false;
7129 ConstVal = FirstElt->getZExtValue();
7130 return true;
7133 static unsigned getIntrinsicID(const SDNode *N) {
7134 unsigned Opcode = N->getOpcode();
7135 switch (Opcode) {
7136 default:
7137 return Intrinsic::not_intrinsic;
7138 case ISD::INTRINSIC_WO_CHAIN: {
7139 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7140 if (IID < Intrinsic::num_intrinsics)
7141 return IID;
7142 return Intrinsic::not_intrinsic;
7147 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7148 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7149 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7150 // Also, logical shift right -> sri, with the same structure.
7151 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
7152 EVT VT = N->getValueType(0);
7154 if (!VT.isVector())
7155 return SDValue();
7157 SDLoc DL(N);
7159 // Is the first op an AND?
7160 const SDValue And = N->getOperand(0);
7161 if (And.getOpcode() != ISD::AND)
7162 return SDValue();
7164 // Is the second op an shl or lshr?
7165 SDValue Shift = N->getOperand(1);
7166 // This will have been turned into: AArch64ISD::VSHL vector, #shift
7167 // or AArch64ISD::VLSHR vector, #shift
7168 unsigned ShiftOpc = Shift.getOpcode();
7169 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
7170 return SDValue();
7171 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
7173 // Is the shift amount constant?
7174 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7175 if (!C2node)
7176 return SDValue();
7178 // Is the and mask vector all constant?
7179 uint64_t C1;
7180 if (!isAllConstantBuildVector(And.getOperand(1), C1))
7181 return SDValue();
7183 // Is C1 == ~C2, taking into account how much one can shift elements of a
7184 // particular size?
7185 uint64_t C2 = C2node->getZExtValue();
7186 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
7187 if (C2 > ElemSizeInBits)
7188 return SDValue();
7189 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
7190 if ((C1 & ElemMask) != (~C2 & ElemMask))
7191 return SDValue();
7193 SDValue X = And.getOperand(0);
7194 SDValue Y = Shift.getOperand(0);
7196 unsigned Intrin =
7197 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
7198 SDValue ResultSLI =
7199 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7200 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
7201 Shift.getOperand(1));
7203 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7204 LLVM_DEBUG(N->dump(&DAG));
7205 LLVM_DEBUG(dbgs() << "into: \n");
7206 LLVM_DEBUG(ResultSLI->dump(&DAG));
7208 ++NumShiftInserts;
7209 return ResultSLI;
7212 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
7213 SelectionDAG &DAG) const {
7214 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7215 if (EnableAArch64SlrGeneration) {
7216 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
7217 return Res;
7220 EVT VT = Op.getValueType();
7222 SDValue LHS = Op.getOperand(0);
7223 BuildVectorSDNode *BVN =
7224 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
7225 if (!BVN) {
7226 // OR commutes, so try swapping the operands.
7227 LHS = Op.getOperand(1);
7228 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
7230 if (!BVN)
7231 return Op;
7233 APInt DefBits(VT.getSizeInBits(), 0);
7234 APInt UndefBits(VT.getSizeInBits(), 0);
7235 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7236 SDValue NewOp;
7238 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7239 DefBits, &LHS)) ||
7240 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7241 DefBits, &LHS)))
7242 return NewOp;
7244 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7245 UndefBits, &LHS)) ||
7246 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7247 UndefBits, &LHS)))
7248 return NewOp;
7251 // We can always fall back to a non-immediate OR.
7252 return Op;
7255 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7256 // be truncated to fit element width.
7257 static SDValue NormalizeBuildVector(SDValue Op,
7258 SelectionDAG &DAG) {
7259 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7260 SDLoc dl(Op);
7261 EVT VT = Op.getValueType();
7262 EVT EltTy= VT.getVectorElementType();
7264 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
7265 return Op;
7267 SmallVector<SDValue, 16> Ops;
7268 for (SDValue Lane : Op->ops()) {
7269 // For integer vectors, type legalization would have promoted the
7270 // operands already. Otherwise, if Op is a floating-point splat
7271 // (with operands cast to integers), then the only possibilities
7272 // are constants and UNDEFs.
7273 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
7274 APInt LowBits(EltTy.getSizeInBits(),
7275 CstLane->getZExtValue());
7276 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
7277 } else if (Lane.getNode()->isUndef()) {
7278 Lane = DAG.getUNDEF(MVT::i32);
7279 } else {
7280 assert(Lane.getValueType() == MVT::i32 &&
7281 "Unexpected BUILD_VECTOR operand type");
7283 Ops.push_back(Lane);
7285 return DAG.getBuildVector(VT, dl, Ops);
7288 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
7289 EVT VT = Op.getValueType();
7291 APInt DefBits(VT.getSizeInBits(), 0);
7292 APInt UndefBits(VT.getSizeInBits(), 0);
7293 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7294 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7295 SDValue NewOp;
7296 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7297 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7298 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7299 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7300 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7301 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7302 return NewOp;
7304 DefBits = ~DefBits;
7305 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7306 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7307 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7308 return NewOp;
7310 DefBits = UndefBits;
7311 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7312 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7313 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7314 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7315 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7316 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7317 return NewOp;
7319 DefBits = ~UndefBits;
7320 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7321 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7322 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7323 return NewOp;
7326 return SDValue();
7329 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
7330 SelectionDAG &DAG) const {
7331 EVT VT = Op.getValueType();
7333 // Try to build a simple constant vector.
7334 Op = NormalizeBuildVector(Op, DAG);
7335 if (VT.isInteger()) {
7336 // Certain vector constants, used to express things like logical NOT and
7337 // arithmetic NEG, are passed through unmodified. This allows special
7338 // patterns for these operations to match, which will lower these constants
7339 // to whatever is proven necessary.
7340 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7341 if (BVN->isConstant())
7342 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
7343 unsigned BitSize = VT.getVectorElementType().getSizeInBits();
7344 APInt Val(BitSize,
7345 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
7346 if (Val.isNullValue() || Val.isAllOnesValue())
7347 return Op;
7351 if (SDValue V = ConstantBuildVector(Op, DAG))
7352 return V;
7354 // Scan through the operands to find some interesting properties we can
7355 // exploit:
7356 // 1) If only one value is used, we can use a DUP, or
7357 // 2) if only the low element is not undef, we can just insert that, or
7358 // 3) if only one constant value is used (w/ some non-constant lanes),
7359 // we can splat the constant value into the whole vector then fill
7360 // in the non-constant lanes.
7361 // 4) FIXME: If different constant values are used, but we can intelligently
7362 // select the values we'll be overwriting for the non-constant
7363 // lanes such that we can directly materialize the vector
7364 // some other way (MOVI, e.g.), we can be sneaky.
7365 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7366 SDLoc dl(Op);
7367 unsigned NumElts = VT.getVectorNumElements();
7368 bool isOnlyLowElement = true;
7369 bool usesOnlyOneValue = true;
7370 bool usesOnlyOneConstantValue = true;
7371 bool isConstant = true;
7372 bool AllLanesExtractElt = true;
7373 unsigned NumConstantLanes = 0;
7374 SDValue Value;
7375 SDValue ConstantValue;
7376 for (unsigned i = 0; i < NumElts; ++i) {
7377 SDValue V = Op.getOperand(i);
7378 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7379 AllLanesExtractElt = false;
7380 if (V.isUndef())
7381 continue;
7382 if (i > 0)
7383 isOnlyLowElement = false;
7384 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7385 isConstant = false;
7387 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7388 ++NumConstantLanes;
7389 if (!ConstantValue.getNode())
7390 ConstantValue = V;
7391 else if (ConstantValue != V)
7392 usesOnlyOneConstantValue = false;
7395 if (!Value.getNode())
7396 Value = V;
7397 else if (V != Value)
7398 usesOnlyOneValue = false;
7401 if (!Value.getNode()) {
7402 LLVM_DEBUG(
7403 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7404 return DAG.getUNDEF(VT);
7407 // Convert BUILD_VECTOR where all elements but the lowest are undef into
7408 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7409 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7410 if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
7411 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7412 "SCALAR_TO_VECTOR node\n");
7413 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7416 if (AllLanesExtractElt) {
7417 SDNode *Vector = nullptr;
7418 bool Even = false;
7419 bool Odd = false;
7420 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7421 // the Odd pattern <1,3,5,...>.
7422 for (unsigned i = 0; i < NumElts; ++i) {
7423 SDValue V = Op.getOperand(i);
7424 const SDNode *N = V.getNode();
7425 if (!isa<ConstantSDNode>(N->getOperand(1)))
7426 break;
7427 SDValue N0 = N->getOperand(0);
7429 // All elements are extracted from the same vector.
7430 if (!Vector) {
7431 Vector = N0.getNode();
7432 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7433 // BUILD_VECTOR.
7434 if (VT.getVectorElementType() !=
7435 N0.getValueType().getVectorElementType())
7436 break;
7437 } else if (Vector != N0.getNode()) {
7438 Odd = false;
7439 Even = false;
7440 break;
7443 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7444 // indices <1,3,5,...>.
7445 uint64_t Val = N->getConstantOperandVal(1);
7446 if (Val == 2 * i) {
7447 Even = true;
7448 continue;
7450 if (Val - 1 == 2 * i) {
7451 Odd = true;
7452 continue;
7455 // Something does not match: abort.
7456 Odd = false;
7457 Even = false;
7458 break;
7460 if (Even || Odd) {
7461 SDValue LHS =
7462 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7463 DAG.getConstant(0, dl, MVT::i64));
7464 SDValue RHS =
7465 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7466 DAG.getConstant(NumElts, dl, MVT::i64));
7468 if (Even && !Odd)
7469 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7470 RHS);
7471 if (Odd && !Even)
7472 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7473 RHS);
7477 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7478 // i32 and try again.
7479 if (usesOnlyOneValue) {
7480 if (!isConstant) {
7481 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7482 Value.getValueType() != VT) {
7483 LLVM_DEBUG(
7484 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7485 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7488 // This is actually a DUPLANExx operation, which keeps everything vectory.
7490 SDValue Lane = Value.getOperand(1);
7491 Value = Value.getOperand(0);
7492 if (Value.getValueSizeInBits() == 64) {
7493 LLVM_DEBUG(
7494 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7495 "widening it\n");
7496 Value = WidenVector(Value, DAG);
7499 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7500 return DAG.getNode(Opcode, dl, VT, Value, Lane);
7503 if (VT.getVectorElementType().isFloatingPoint()) {
7504 SmallVector<SDValue, 8> Ops;
7505 EVT EltTy = VT.getVectorElementType();
7506 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7507 "Unsupported floating-point vector type");
7508 LLVM_DEBUG(
7509 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7510 "BITCASTS, and try again\n");
7511 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7512 for (unsigned i = 0; i < NumElts; ++i)
7513 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7514 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7515 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7516 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7517 Val.dump(););
7518 Val = LowerBUILD_VECTOR(Val, DAG);
7519 if (Val.getNode())
7520 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7524 // If there was only one constant value used and for more than one lane,
7525 // start by splatting that value, then replace the non-constant lanes. This
7526 // is better than the default, which will perform a separate initialization
7527 // for each lane.
7528 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7529 // Firstly, try to materialize the splat constant.
7530 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7531 Val = ConstantBuildVector(Vec, DAG);
7532 if (!Val) {
7533 // Otherwise, materialize the constant and splat it.
7534 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7535 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7538 // Now insert the non-constant lanes.
7539 for (unsigned i = 0; i < NumElts; ++i) {
7540 SDValue V = Op.getOperand(i);
7541 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7542 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7543 // Note that type legalization likely mucked about with the VT of the
7544 // source operand, so we may have to convert it here before inserting.
7545 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7547 return Val;
7550 // This will generate a load from the constant pool.
7551 if (isConstant) {
7552 LLVM_DEBUG(
7553 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7554 "expansion\n");
7555 return SDValue();
7558 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7559 if (NumElts >= 4) {
7560 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7561 return shuffle;
7564 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7565 // know the default expansion would otherwise fall back on something even
7566 // worse. For a vector with one or two non-undef values, that's
7567 // scalar_to_vector for the elements followed by a shuffle (provided the
7568 // shuffle is valid for the target) and materialization element by element
7569 // on the stack followed by a load for everything else.
7570 if (!isConstant && !usesOnlyOneValue) {
7571 LLVM_DEBUG(
7572 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7573 "of INSERT_VECTOR_ELT\n");
7575 SDValue Vec = DAG.getUNDEF(VT);
7576 SDValue Op0 = Op.getOperand(0);
7577 unsigned i = 0;
7579 // Use SCALAR_TO_VECTOR for lane zero to
7580 // a) Avoid a RMW dependency on the full vector register, and
7581 // b) Allow the register coalescer to fold away the copy if the
7582 // value is already in an S or D register, and we're forced to emit an
7583 // INSERT_SUBREG that we can't fold anywhere.
7585 // We also allow types like i8 and i16 which are illegal scalar but legal
7586 // vector element types. After type-legalization the inserted value is
7587 // extended (i32) and it is safe to cast them to the vector type by ignoring
7588 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7589 if (!Op0.isUndef()) {
7590 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7591 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7592 ++i;
7594 LLVM_DEBUG(if (i < NumElts) dbgs()
7595 << "Creating nodes for the other vector elements:\n";);
7596 for (; i < NumElts; ++i) {
7597 SDValue V = Op.getOperand(i);
7598 if (V.isUndef())
7599 continue;
7600 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7601 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7603 return Vec;
7606 LLVM_DEBUG(
7607 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7608 "better alternative\n");
7609 return SDValue();
7612 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7613 SelectionDAG &DAG) const {
7614 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7616 // Check for non-constant or out of range lane.
7617 EVT VT = Op.getOperand(0).getValueType();
7618 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7619 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7620 return SDValue();
7623 // Insertion/extraction are legal for V128 types.
7624 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7625 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7626 VT == MVT::v8f16)
7627 return Op;
7629 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7630 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7631 return SDValue();
7633 // For V64 types, we perform insertion by expanding the value
7634 // to a V128 type and perform the insertion on that.
7635 SDLoc DL(Op);
7636 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7637 EVT WideTy = WideVec.getValueType();
7639 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7640 Op.getOperand(1), Op.getOperand(2));
7641 // Re-narrow the resultant vector.
7642 return NarrowVector(Node, DAG);
7645 SDValue
7646 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7647 SelectionDAG &DAG) const {
7648 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7650 // Check for non-constant or out of range lane.
7651 EVT VT = Op.getOperand(0).getValueType();
7652 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7653 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7654 return SDValue();
7657 // Insertion/extraction are legal for V128 types.
7658 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7659 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7660 VT == MVT::v8f16)
7661 return Op;
7663 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7664 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7665 return SDValue();
7667 // For V64 types, we perform extraction by expanding the value
7668 // to a V128 type and perform the extraction on that.
7669 SDLoc DL(Op);
7670 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7671 EVT WideTy = WideVec.getValueType();
7673 EVT ExtrTy = WideTy.getVectorElementType();
7674 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7675 ExtrTy = MVT::i32;
7677 // For extractions, we just return the result directly.
7678 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7679 Op.getOperand(1));
7682 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7683 SelectionDAG &DAG) const {
7684 EVT VT = Op.getOperand(0).getValueType();
7685 SDLoc dl(Op);
7686 // Just in case...
7687 if (!VT.isVector())
7688 return SDValue();
7690 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7691 if (!Cst)
7692 return SDValue();
7693 unsigned Val = Cst->getZExtValue();
7695 unsigned Size = Op.getValueSizeInBits();
7697 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7698 if (Val == 0)
7699 return Op;
7701 // If this is extracting the upper 64-bits of a 128-bit vector, we match
7702 // that directly.
7703 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7704 return Op;
7706 return SDValue();
7709 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7710 if (VT.getVectorNumElements() == 4 &&
7711 (VT.is128BitVector() || VT.is64BitVector())) {
7712 unsigned PFIndexes[4];
7713 for (unsigned i = 0; i != 4; ++i) {
7714 if (M[i] < 0)
7715 PFIndexes[i] = 8;
7716 else
7717 PFIndexes[i] = M[i];
7720 // Compute the index in the perfect shuffle table.
7721 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7722 PFIndexes[2] * 9 + PFIndexes[3];
7723 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7724 unsigned Cost = (PFEntry >> 30);
7726 if (Cost <= 4)
7727 return true;
7730 bool DummyBool;
7731 int DummyInt;
7732 unsigned DummyUnsigned;
7734 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7735 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7736 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7737 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7738 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7739 isZIPMask(M, VT, DummyUnsigned) ||
7740 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7741 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7742 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7743 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7744 isConcatMask(M, VT, VT.getSizeInBits() == 128));
7747 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7748 /// operand of a vector shift operation, where all the elements of the
7749 /// build_vector must have the same constant integer value.
7750 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7751 // Ignore bit_converts.
7752 while (Op.getOpcode() == ISD::BITCAST)
7753 Op = Op.getOperand(0);
7754 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7755 APInt SplatBits, SplatUndef;
7756 unsigned SplatBitSize;
7757 bool HasAnyUndefs;
7758 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7759 HasAnyUndefs, ElementBits) ||
7760 SplatBitSize > ElementBits)
7761 return false;
7762 Cnt = SplatBits.getSExtValue();
7763 return true;
7766 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7767 /// operand of a vector shift left operation. That value must be in the range:
7768 /// 0 <= Value < ElementBits for a left shift; or
7769 /// 0 <= Value <= ElementBits for a long left shift.
7770 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7771 assert(VT.isVector() && "vector shift count is not a vector type");
7772 int64_t ElementBits = VT.getScalarSizeInBits();
7773 if (!getVShiftImm(Op, ElementBits, Cnt))
7774 return false;
7775 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7778 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7779 /// operand of a vector shift right operation. The value must be in the range:
7780 /// 1 <= Value <= ElementBits for a right shift; or
7781 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7782 assert(VT.isVector() && "vector shift count is not a vector type");
7783 int64_t ElementBits = VT.getScalarSizeInBits();
7784 if (!getVShiftImm(Op, ElementBits, Cnt))
7785 return false;
7786 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7789 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7790 SelectionDAG &DAG) const {
7791 EVT VT = Op.getValueType();
7792 SDLoc DL(Op);
7793 int64_t Cnt;
7795 if (!Op.getOperand(1).getValueType().isVector())
7796 return Op;
7797 unsigned EltSize = VT.getScalarSizeInBits();
7799 switch (Op.getOpcode()) {
7800 default:
7801 llvm_unreachable("unexpected shift opcode");
7803 case ISD::SHL:
7804 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
7805 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
7806 DAG.getConstant(Cnt, DL, MVT::i32));
7807 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7808 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
7809 MVT::i32),
7810 Op.getOperand(0), Op.getOperand(1));
7811 case ISD::SRA:
7812 case ISD::SRL:
7813 // Right shift immediate
7814 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
7815 unsigned Opc =
7816 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
7817 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
7818 DAG.getConstant(Cnt, DL, MVT::i32));
7821 // Right shift register. Note, there is not a shift right register
7822 // instruction, but the shift left register instruction takes a signed
7823 // value, where negative numbers specify a right shift.
7824 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
7825 : Intrinsic::aarch64_neon_ushl;
7826 // negate the shift amount
7827 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
7828 SDValue NegShiftLeft =
7829 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7830 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
7831 NegShift);
7832 return NegShiftLeft;
7835 return SDValue();
7838 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
7839 AArch64CC::CondCode CC, bool NoNans, EVT VT,
7840 const SDLoc &dl, SelectionDAG &DAG) {
7841 EVT SrcVT = LHS.getValueType();
7842 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
7843 "function only supposed to emit natural comparisons");
7845 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
7846 APInt CnstBits(VT.getSizeInBits(), 0);
7847 APInt UndefBits(VT.getSizeInBits(), 0);
7848 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
7849 bool IsZero = IsCnst && (CnstBits == 0);
7851 if (SrcVT.getVectorElementType().isFloatingPoint()) {
7852 switch (CC) {
7853 default:
7854 return SDValue();
7855 case AArch64CC::NE: {
7856 SDValue Fcmeq;
7857 if (IsZero)
7858 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7859 else
7860 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7861 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
7863 case AArch64CC::EQ:
7864 if (IsZero)
7865 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7866 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7867 case AArch64CC::GE:
7868 if (IsZero)
7869 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
7870 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
7871 case AArch64CC::GT:
7872 if (IsZero)
7873 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
7874 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
7875 case AArch64CC::LS:
7876 if (IsZero)
7877 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
7878 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
7879 case AArch64CC::LT:
7880 if (!NoNans)
7881 return SDValue();
7882 // If we ignore NaNs then we can use to the MI implementation.
7883 LLVM_FALLTHROUGH;
7884 case AArch64CC::MI:
7885 if (IsZero)
7886 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
7887 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
7891 switch (CC) {
7892 default:
7893 return SDValue();
7894 case AArch64CC::NE: {
7895 SDValue Cmeq;
7896 if (IsZero)
7897 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7898 else
7899 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7900 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
7902 case AArch64CC::EQ:
7903 if (IsZero)
7904 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7905 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7906 case AArch64CC::GE:
7907 if (IsZero)
7908 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
7909 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
7910 case AArch64CC::GT:
7911 if (IsZero)
7912 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
7913 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
7914 case AArch64CC::LE:
7915 if (IsZero)
7916 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
7917 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
7918 case AArch64CC::LS:
7919 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
7920 case AArch64CC::LO:
7921 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
7922 case AArch64CC::LT:
7923 if (IsZero)
7924 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
7925 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
7926 case AArch64CC::HI:
7927 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
7928 case AArch64CC::HS:
7929 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
7933 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
7934 SelectionDAG &DAG) const {
7935 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7936 SDValue LHS = Op.getOperand(0);
7937 SDValue RHS = Op.getOperand(1);
7938 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
7939 SDLoc dl(Op);
7941 if (LHS.getValueType().getVectorElementType().isInteger()) {
7942 assert(LHS.getValueType() == RHS.getValueType());
7943 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7944 SDValue Cmp =
7945 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
7946 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7949 const bool FullFP16 =
7950 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
7952 // Make v4f16 (only) fcmp operations utilise vector instructions
7953 // v8f16 support will be a litle more complicated
7954 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
7955 if (LHS.getValueType().getVectorNumElements() == 4) {
7956 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
7957 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
7958 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
7959 DAG.ReplaceAllUsesWith(Op, NewSetcc);
7960 CmpVT = MVT::v4i32;
7961 } else
7962 return SDValue();
7965 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
7966 LHS.getValueType().getVectorElementType() != MVT::f128);
7968 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7969 // clean. Some of them require two branches to implement.
7970 AArch64CC::CondCode CC1, CC2;
7971 bool ShouldInvert;
7972 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
7974 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
7975 SDValue Cmp =
7976 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
7977 if (!Cmp.getNode())
7978 return SDValue();
7980 if (CC2 != AArch64CC::AL) {
7981 SDValue Cmp2 =
7982 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
7983 if (!Cmp2.getNode())
7984 return SDValue();
7986 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
7989 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7991 if (ShouldInvert)
7992 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
7994 return Cmp;
7997 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
7998 SelectionDAG &DAG) {
7999 SDValue VecOp = ScalarOp.getOperand(0);
8000 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
8001 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
8002 DAG.getConstant(0, DL, MVT::i64));
8005 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
8006 SelectionDAG &DAG) const {
8007 SDLoc dl(Op);
8008 switch (Op.getOpcode()) {
8009 case ISD::VECREDUCE_ADD:
8010 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
8011 case ISD::VECREDUCE_SMAX:
8012 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
8013 case ISD::VECREDUCE_SMIN:
8014 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
8015 case ISD::VECREDUCE_UMAX:
8016 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
8017 case ISD::VECREDUCE_UMIN:
8018 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
8019 case ISD::VECREDUCE_FMAX: {
8020 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8021 return DAG.getNode(
8022 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8023 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
8024 Op.getOperand(0));
8026 case ISD::VECREDUCE_FMIN: {
8027 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8028 return DAG.getNode(
8029 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8030 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
8031 Op.getOperand(0));
8033 default:
8034 llvm_unreachable("Unhandled reduction");
8038 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
8039 SelectionDAG &DAG) const {
8040 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8041 if (!Subtarget.hasLSE())
8042 return SDValue();
8044 // LSE has an atomic load-add instruction, but not a load-sub.
8045 SDLoc dl(Op);
8046 MVT VT = Op.getSimpleValueType();
8047 SDValue RHS = Op.getOperand(2);
8048 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8049 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
8050 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
8051 Op.getOperand(0), Op.getOperand(1), RHS,
8052 AN->getMemOperand());
8055 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
8056 SelectionDAG &DAG) const {
8057 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8058 if (!Subtarget.hasLSE())
8059 return SDValue();
8061 // LSE has an atomic load-clear instruction, but not a load-and.
8062 SDLoc dl(Op);
8063 MVT VT = Op.getSimpleValueType();
8064 SDValue RHS = Op.getOperand(2);
8065 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8066 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
8067 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
8068 Op.getOperand(0), Op.getOperand(1), RHS,
8069 AN->getMemOperand());
8072 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8073 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
8074 SDLoc dl(Op);
8075 EVT PtrVT = getPointerTy(DAG.getDataLayout());
8076 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
8078 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
8079 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
8080 if (Subtarget->hasCustomCallingConv())
8081 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
8083 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
8084 DAG.getConstant(4, dl, MVT::i64));
8085 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
8086 Chain =
8087 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
8088 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
8089 DAG.getRegisterMask(Mask), Chain.getValue(1));
8090 // To match the actual intent better, we should read the output from X15 here
8091 // again (instead of potentially spilling it to the stack), but rereading Size
8092 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8093 // here.
8095 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
8096 DAG.getConstant(4, dl, MVT::i64));
8097 return Chain;
8100 SDValue
8101 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8102 SelectionDAG &DAG) const {
8103 assert(Subtarget->isTargetWindows() &&
8104 "Only Windows alloca probing supported");
8105 SDLoc dl(Op);
8106 // Get the inputs.
8107 SDNode *Node = Op.getNode();
8108 SDValue Chain = Op.getOperand(0);
8109 SDValue Size = Op.getOperand(1);
8110 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8111 EVT VT = Node->getValueType(0);
8113 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
8114 "no-stack-arg-probe")) {
8115 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8116 Chain = SP.getValue(1);
8117 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8118 if (Align)
8119 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8120 DAG.getConstant(-(uint64_t)Align, dl, VT));
8121 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8122 SDValue Ops[2] = {SP, Chain};
8123 return DAG.getMergeValues(Ops, dl);
8126 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
8128 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
8130 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8131 Chain = SP.getValue(1);
8132 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8133 if (Align)
8134 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8135 DAG.getConstant(-(uint64_t)Align, dl, VT));
8136 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8138 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
8139 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
8141 SDValue Ops[2] = {SP, Chain};
8142 return DAG.getMergeValues(Ops, dl);
8145 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8146 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
8147 /// specified in the intrinsic calls.
8148 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8149 const CallInst &I,
8150 MachineFunction &MF,
8151 unsigned Intrinsic) const {
8152 auto &DL = I.getModule()->getDataLayout();
8153 switch (Intrinsic) {
8154 case Intrinsic::aarch64_neon_ld2:
8155 case Intrinsic::aarch64_neon_ld3:
8156 case Intrinsic::aarch64_neon_ld4:
8157 case Intrinsic::aarch64_neon_ld1x2:
8158 case Intrinsic::aarch64_neon_ld1x3:
8159 case Intrinsic::aarch64_neon_ld1x4:
8160 case Intrinsic::aarch64_neon_ld2lane:
8161 case Intrinsic::aarch64_neon_ld3lane:
8162 case Intrinsic::aarch64_neon_ld4lane:
8163 case Intrinsic::aarch64_neon_ld2r:
8164 case Intrinsic::aarch64_neon_ld3r:
8165 case Intrinsic::aarch64_neon_ld4r: {
8166 Info.opc = ISD::INTRINSIC_W_CHAIN;
8167 // Conservatively set memVT to the entire set of vectors loaded.
8168 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
8169 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8170 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8171 Info.offset = 0;
8172 Info.align.reset();
8173 // volatile loads with NEON intrinsics not supported
8174 Info.flags = MachineMemOperand::MOLoad;
8175 return true;
8177 case Intrinsic::aarch64_neon_st2:
8178 case Intrinsic::aarch64_neon_st3:
8179 case Intrinsic::aarch64_neon_st4:
8180 case Intrinsic::aarch64_neon_st1x2:
8181 case Intrinsic::aarch64_neon_st1x3:
8182 case Intrinsic::aarch64_neon_st1x4:
8183 case Intrinsic::aarch64_neon_st2lane:
8184 case Intrinsic::aarch64_neon_st3lane:
8185 case Intrinsic::aarch64_neon_st4lane: {
8186 Info.opc = ISD::INTRINSIC_VOID;
8187 // Conservatively set memVT to the entire set of vectors stored.
8188 unsigned NumElts = 0;
8189 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8190 Type *ArgTy = I.getArgOperand(ArgI)->getType();
8191 if (!ArgTy->isVectorTy())
8192 break;
8193 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
8195 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8196 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8197 Info.offset = 0;
8198 Info.align.reset();
8199 // volatile stores with NEON intrinsics not supported
8200 Info.flags = MachineMemOperand::MOStore;
8201 return true;
8203 case Intrinsic::aarch64_ldaxr:
8204 case Intrinsic::aarch64_ldxr: {
8205 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
8206 Info.opc = ISD::INTRINSIC_W_CHAIN;
8207 Info.memVT = MVT::getVT(PtrTy->getElementType());
8208 Info.ptrVal = I.getArgOperand(0);
8209 Info.offset = 0;
8210 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8211 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8212 return true;
8214 case Intrinsic::aarch64_stlxr:
8215 case Intrinsic::aarch64_stxr: {
8216 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8217 Info.opc = ISD::INTRINSIC_W_CHAIN;
8218 Info.memVT = MVT::getVT(PtrTy->getElementType());
8219 Info.ptrVal = I.getArgOperand(1);
8220 Info.offset = 0;
8221 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8222 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8223 return true;
8225 case Intrinsic::aarch64_ldaxp:
8226 case Intrinsic::aarch64_ldxp:
8227 Info.opc = ISD::INTRINSIC_W_CHAIN;
8228 Info.memVT = MVT::i128;
8229 Info.ptrVal = I.getArgOperand(0);
8230 Info.offset = 0;
8231 Info.align = Align(16);
8232 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8233 return true;
8234 case Intrinsic::aarch64_stlxp:
8235 case Intrinsic::aarch64_stxp:
8236 Info.opc = ISD::INTRINSIC_W_CHAIN;
8237 Info.memVT = MVT::i128;
8238 Info.ptrVal = I.getArgOperand(2);
8239 Info.offset = 0;
8240 Info.align = Align(16);
8241 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8242 return true;
8243 default:
8244 break;
8247 return false;
8250 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
8251 ISD::LoadExtType ExtTy,
8252 EVT NewVT) const {
8253 // TODO: This may be worth removing. Check regression tests for diffs.
8254 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
8255 return false;
8257 // If we're reducing the load width in order to avoid having to use an extra
8258 // instruction to do extension then it's probably a good idea.
8259 if (ExtTy != ISD::NON_EXTLOAD)
8260 return true;
8261 // Don't reduce load width if it would prevent us from combining a shift into
8262 // the offset.
8263 MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
8264 assert(Mem);
8265 const SDValue &Base = Mem->getBasePtr();
8266 if (Base.getOpcode() == ISD::ADD &&
8267 Base.getOperand(1).getOpcode() == ISD::SHL &&
8268 Base.getOperand(1).hasOneUse() &&
8269 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
8270 // The shift can be combined if it matches the size of the value being
8271 // loaded (and so reducing the width would make it not match).
8272 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
8273 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
8274 if (ShiftAmount == Log2_32(LoadBytes))
8275 return false;
8277 // We have no reason to disallow reducing the load width, so allow it.
8278 return true;
8281 // Truncations from 64-bit GPR to 32-bit GPR is free.
8282 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8283 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8284 return false;
8285 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8286 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8287 return NumBits1 > NumBits2;
8289 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8290 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8291 return false;
8292 unsigned NumBits1 = VT1.getSizeInBits();
8293 unsigned NumBits2 = VT2.getSizeInBits();
8294 return NumBits1 > NumBits2;
8297 /// Check if it is profitable to hoist instruction in then/else to if.
8298 /// Not profitable if I and it's user can form a FMA instruction
8299 /// because we prefer FMSUB/FMADD.
8300 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
8301 if (I->getOpcode() != Instruction::FMul)
8302 return true;
8304 if (!I->hasOneUse())
8305 return true;
8307 Instruction *User = I->user_back();
8309 if (User &&
8310 !(User->getOpcode() == Instruction::FSub ||
8311 User->getOpcode() == Instruction::FAdd))
8312 return true;
8314 const TargetOptions &Options = getTargetMachine().Options;
8315 const DataLayout &DL = I->getModule()->getDataLayout();
8316 EVT VT = getValueType(DL, User->getOperand(0)->getType());
8318 return !(isFMAFasterThanFMulAndFAdd(VT) &&
8319 isOperationLegalOrCustom(ISD::FMA, VT) &&
8320 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
8321 Options.UnsafeFPMath));
8324 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8325 // 64-bit GPR.
8326 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
8327 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8328 return false;
8329 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8330 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8331 return NumBits1 == 32 && NumBits2 == 64;
8333 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8334 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8335 return false;
8336 unsigned NumBits1 = VT1.getSizeInBits();
8337 unsigned NumBits2 = VT2.getSizeInBits();
8338 return NumBits1 == 32 && NumBits2 == 64;
8341 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
8342 EVT VT1 = Val.getValueType();
8343 if (isZExtFree(VT1, VT2)) {
8344 return true;
8347 if (Val.getOpcode() != ISD::LOAD)
8348 return false;
8350 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8351 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
8352 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
8353 VT1.getSizeInBits() <= 32);
8356 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
8357 if (isa<FPExtInst>(Ext))
8358 return false;
8360 // Vector types are not free.
8361 if (Ext->getType()->isVectorTy())
8362 return false;
8364 for (const Use &U : Ext->uses()) {
8365 // The extension is free if we can fold it with a left shift in an
8366 // addressing mode or an arithmetic operation: add, sub, and cmp.
8368 // Is there a shift?
8369 const Instruction *Instr = cast<Instruction>(U.getUser());
8371 // Is this a constant shift?
8372 switch (Instr->getOpcode()) {
8373 case Instruction::Shl:
8374 if (!isa<ConstantInt>(Instr->getOperand(1)))
8375 return false;
8376 break;
8377 case Instruction::GetElementPtr: {
8378 gep_type_iterator GTI = gep_type_begin(Instr);
8379 auto &DL = Ext->getModule()->getDataLayout();
8380 std::advance(GTI, U.getOperandNo()-1);
8381 Type *IdxTy = GTI.getIndexedType();
8382 // This extension will end up with a shift because of the scaling factor.
8383 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8384 // Get the shift amount based on the scaling factor:
8385 // log2(sizeof(IdxTy)) - log2(8).
8386 uint64_t ShiftAmt =
8387 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
8388 // Is the constant foldable in the shift of the addressing mode?
8389 // I.e., shift amount is between 1 and 4 inclusive.
8390 if (ShiftAmt == 0 || ShiftAmt > 4)
8391 return false;
8392 break;
8394 case Instruction::Trunc:
8395 // Check if this is a noop.
8396 // trunc(sext ty1 to ty2) to ty1.
8397 if (Instr->getType() == Ext->getOperand(0)->getType())
8398 continue;
8399 LLVM_FALLTHROUGH;
8400 default:
8401 return false;
8404 // At this point we can use the bfm family, so this extension is free
8405 // for that use.
8407 return true;
8410 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8411 /// or upper half of the vector elements.
8412 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
8413 auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
8414 auto *FullVT = cast<VectorType>(FullV->getType());
8415 auto *HalfVT = cast<VectorType>(HalfV->getType());
8416 return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
8419 auto extractHalf = [](Value *FullV, Value *HalfV) {
8420 auto *FullVT = cast<VectorType>(FullV->getType());
8421 auto *HalfVT = cast<VectorType>(HalfV->getType());
8422 return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
8425 Constant *M1, *M2;
8426 Value *S1Op1, *S2Op1;
8427 if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
8428 !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
8429 return false;
8431 // Check that the operands are half as wide as the result and we extract
8432 // half of the elements of the input vectors.
8433 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
8434 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
8435 return false;
8437 // Check the mask extracts either the lower or upper half of vector
8438 // elements.
8439 int M1Start = -1;
8440 int M2Start = -1;
8441 int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
8442 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
8443 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
8444 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
8445 return false;
8447 return true;
8450 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8451 /// of the vector elements.
8452 static bool areExtractExts(Value *Ext1, Value *Ext2) {
8453 auto areExtDoubled = [](Instruction *Ext) {
8454 return Ext->getType()->getScalarSizeInBits() ==
8455 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
8458 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
8459 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
8460 !areExtDoubled(cast<Instruction>(Ext1)) ||
8461 !areExtDoubled(cast<Instruction>(Ext2)))
8462 return false;
8464 return true;
8467 /// Check if sinking \p I's operands to I's basic block is profitable, because
8468 /// the operands can be folded into a target instruction, e.g.
8469 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
8470 bool AArch64TargetLowering::shouldSinkOperands(
8471 Instruction *I, SmallVectorImpl<Use *> &Ops) const {
8472 if (!I->getType()->isVectorTy())
8473 return false;
8475 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
8476 switch (II->getIntrinsicID()) {
8477 case Intrinsic::aarch64_neon_umull:
8478 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
8479 return false;
8480 Ops.push_back(&II->getOperandUse(0));
8481 Ops.push_back(&II->getOperandUse(1));
8482 return true;
8483 default:
8484 return false;
8488 switch (I->getOpcode()) {
8489 case Instruction::Sub:
8490 case Instruction::Add: {
8491 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
8492 return false;
8494 // If the exts' operands extract either the lower or upper elements, we
8495 // can sink them too.
8496 auto Ext1 = cast<Instruction>(I->getOperand(0));
8497 auto Ext2 = cast<Instruction>(I->getOperand(1));
8498 if (areExtractShuffleVectors(Ext1, Ext2)) {
8499 Ops.push_back(&Ext1->getOperandUse(0));
8500 Ops.push_back(&Ext2->getOperandUse(0));
8503 Ops.push_back(&I->getOperandUse(0));
8504 Ops.push_back(&I->getOperandUse(1));
8506 return true;
8508 default:
8509 return false;
8511 return false;
8514 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8515 unsigned &RequiredAligment) const {
8516 if (!LoadedType.isSimple() ||
8517 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8518 return false;
8519 // Cyclone supports unaligned accesses.
8520 RequiredAligment = 0;
8521 unsigned NumBits = LoadedType.getSizeInBits();
8522 return NumBits == 32 || NumBits == 64;
8525 /// A helper function for determining the number of interleaved accesses we
8526 /// will generate when lowering accesses of the given type.
8527 unsigned
8528 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8529 const DataLayout &DL) const {
8530 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8533 MachineMemOperand::Flags
8534 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8535 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8536 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8537 return MOStridedAccess;
8538 return MachineMemOperand::MONone;
8541 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8542 VectorType *VecTy, const DataLayout &DL) const {
8544 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8545 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8547 // Ensure the number of vector elements is greater than 1.
8548 if (VecTy->getNumElements() < 2)
8549 return false;
8551 // Ensure the element type is legal.
8552 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8553 return false;
8555 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8556 // 128 will be split into multiple interleaved accesses.
8557 return VecSize == 64 || VecSize % 128 == 0;
8560 /// Lower an interleaved load into a ldN intrinsic.
8562 /// E.g. Lower an interleaved load (Factor = 2):
8563 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8564 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
8565 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
8567 /// Into:
8568 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8569 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8570 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
8571 bool AArch64TargetLowering::lowerInterleavedLoad(
8572 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8573 ArrayRef<unsigned> Indices, unsigned Factor) const {
8574 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8575 "Invalid interleave factor");
8576 assert(!Shuffles.empty() && "Empty shufflevector input");
8577 assert(Shuffles.size() == Indices.size() &&
8578 "Unmatched number of shufflevectors and indices");
8580 const DataLayout &DL = LI->getModule()->getDataLayout();
8582 VectorType *VecTy = Shuffles[0]->getType();
8584 // Skip if we do not have NEON and skip illegal vector types. We can
8585 // "legalize" wide vector types into multiple interleaved accesses as long as
8586 // the vector types are divisible by 128.
8587 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8588 return false;
8590 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8592 // A pointer vector can not be the return type of the ldN intrinsics. Need to
8593 // load integer vectors first and then convert to pointer vectors.
8594 Type *EltTy = VecTy->getVectorElementType();
8595 if (EltTy->isPointerTy())
8596 VecTy =
8597 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8599 IRBuilder<> Builder(LI);
8601 // The base address of the load.
8602 Value *BaseAddr = LI->getPointerOperand();
8604 if (NumLoads > 1) {
8605 // If we're going to generate more than one load, reset the sub-vector type
8606 // to something legal.
8607 VecTy = VectorType::get(VecTy->getVectorElementType(),
8608 VecTy->getVectorNumElements() / NumLoads);
8610 // We will compute the pointer operand of each load from the original base
8611 // address using GEPs. Cast the base address to a pointer to the scalar
8612 // element type.
8613 BaseAddr = Builder.CreateBitCast(
8614 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8615 LI->getPointerAddressSpace()));
8618 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8619 Type *Tys[2] = {VecTy, PtrTy};
8620 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8621 Intrinsic::aarch64_neon_ld3,
8622 Intrinsic::aarch64_neon_ld4};
8623 Function *LdNFunc =
8624 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8626 // Holds sub-vectors extracted from the load intrinsic return values. The
8627 // sub-vectors are associated with the shufflevector instructions they will
8628 // replace.
8629 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8631 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8633 // If we're generating more than one load, compute the base address of
8634 // subsequent loads as an offset from the previous.
8635 if (LoadCount > 0)
8636 BaseAddr =
8637 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
8638 VecTy->getVectorNumElements() * Factor);
8640 CallInst *LdN = Builder.CreateCall(
8641 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8643 // Extract and store the sub-vectors returned by the load intrinsic.
8644 for (unsigned i = 0; i < Shuffles.size(); i++) {
8645 ShuffleVectorInst *SVI = Shuffles[i];
8646 unsigned Index = Indices[i];
8648 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8650 // Convert the integer vector to pointer vector if the element is pointer.
8651 if (EltTy->isPointerTy())
8652 SubVec = Builder.CreateIntToPtr(
8653 SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8654 VecTy->getVectorNumElements()));
8655 SubVecs[SVI].push_back(SubVec);
8659 // Replace uses of the shufflevector instructions with the sub-vectors
8660 // returned by the load intrinsic. If a shufflevector instruction is
8661 // associated with more than one sub-vector, those sub-vectors will be
8662 // concatenated into a single wide vector.
8663 for (ShuffleVectorInst *SVI : Shuffles) {
8664 auto &SubVec = SubVecs[SVI];
8665 auto *WideVec =
8666 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8667 SVI->replaceAllUsesWith(WideVec);
8670 return true;
8673 /// Lower an interleaved store into a stN intrinsic.
8675 /// E.g. Lower an interleaved store (Factor = 3):
8676 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8677 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8678 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8680 /// Into:
8681 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8682 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8683 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8684 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8686 /// Note that the new shufflevectors will be removed and we'll only generate one
8687 /// st3 instruction in CodeGen.
8689 /// Example for a more general valid mask (Factor 3). Lower:
8690 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8691 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8692 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8694 /// Into:
8695 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8696 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8697 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8698 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8699 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8700 ShuffleVectorInst *SVI,
8701 unsigned Factor) const {
8702 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8703 "Invalid interleave factor");
8705 VectorType *VecTy = SVI->getType();
8706 assert(VecTy->getVectorNumElements() % Factor == 0 &&
8707 "Invalid interleaved store");
8709 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8710 Type *EltTy = VecTy->getVectorElementType();
8711 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8713 const DataLayout &DL = SI->getModule()->getDataLayout();
8715 // Skip if we do not have NEON and skip illegal vector types. We can
8716 // "legalize" wide vector types into multiple interleaved accesses as long as
8717 // the vector types are divisible by 128.
8718 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8719 return false;
8721 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8723 Value *Op0 = SVI->getOperand(0);
8724 Value *Op1 = SVI->getOperand(1);
8725 IRBuilder<> Builder(SI);
8727 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8728 // vectors to integer vectors.
8729 if (EltTy->isPointerTy()) {
8730 Type *IntTy = DL.getIntPtrType(EltTy);
8731 unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8733 // Convert to the corresponding integer vector.
8734 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8735 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8736 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8738 SubVecTy = VectorType::get(IntTy, LaneLen);
8741 // The base address of the store.
8742 Value *BaseAddr = SI->getPointerOperand();
8744 if (NumStores > 1) {
8745 // If we're going to generate more than one store, reset the lane length
8746 // and sub-vector type to something legal.
8747 LaneLen /= NumStores;
8748 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8750 // We will compute the pointer operand of each store from the original base
8751 // address using GEPs. Cast the base address to a pointer to the scalar
8752 // element type.
8753 BaseAddr = Builder.CreateBitCast(
8754 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8755 SI->getPointerAddressSpace()));
8758 auto Mask = SVI->getShuffleMask();
8760 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8761 Type *Tys[2] = {SubVecTy, PtrTy};
8762 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8763 Intrinsic::aarch64_neon_st3,
8764 Intrinsic::aarch64_neon_st4};
8765 Function *StNFunc =
8766 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8768 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8770 SmallVector<Value *, 5> Ops;
8772 // Split the shufflevector operands into sub vectors for the new stN call.
8773 for (unsigned i = 0; i < Factor; i++) {
8774 unsigned IdxI = StoreCount * LaneLen * Factor + i;
8775 if (Mask[IdxI] >= 0) {
8776 Ops.push_back(Builder.CreateShuffleVector(
8777 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8778 } else {
8779 unsigned StartMask = 0;
8780 for (unsigned j = 1; j < LaneLen; j++) {
8781 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8782 if (Mask[IdxJ * Factor + IdxI] >= 0) {
8783 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8784 break;
8787 // Note: Filling undef gaps with random elements is ok, since
8788 // those elements were being written anyway (with undefs).
8789 // In the case of all undefs we're defaulting to using elems from 0
8790 // Note: StartMask cannot be negative, it's checked in
8791 // isReInterleaveMask
8792 Ops.push_back(Builder.CreateShuffleVector(
8793 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
8797 // If we generating more than one store, we compute the base address of
8798 // subsequent stores as an offset from the previous.
8799 if (StoreCount > 0)
8800 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
8801 BaseAddr, LaneLen * Factor);
8803 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
8804 Builder.CreateCall(StNFunc, Ops);
8806 return true;
8809 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8810 unsigned AlignCheck) {
8811 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8812 (DstAlign == 0 || DstAlign % AlignCheck == 0));
8815 EVT AArch64TargetLowering::getOptimalMemOpType(
8816 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
8817 bool ZeroMemset, bool MemcpyStrSrc,
8818 const AttributeList &FuncAttributes) const {
8819 bool CanImplicitFloat =
8820 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
8821 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
8822 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
8823 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8824 // taken one instruction to materialize the v2i64 zero and one store (with
8825 // restrictive addressing mode). Just do i64 stores.
8826 bool IsSmallMemset = IsMemset && Size < 32;
8827 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
8828 if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
8829 return true;
8830 bool Fast;
8831 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
8832 &Fast) &&
8833 Fast;
8836 if (CanUseNEON && IsMemset && !IsSmallMemset &&
8837 AlignmentIsAcceptable(MVT::v2i64, 16))
8838 return MVT::v2i64;
8839 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
8840 return MVT::f128;
8841 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
8842 return MVT::i64;
8843 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
8844 return MVT::i32;
8845 return MVT::Other;
8848 LLT AArch64TargetLowering::getOptimalMemOpLLT(
8849 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
8850 bool ZeroMemset, bool MemcpyStrSrc,
8851 const AttributeList &FuncAttributes) const {
8852 bool CanImplicitFloat =
8853 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
8854 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
8855 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
8856 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8857 // taken one instruction to materialize the v2i64 zero and one store (with
8858 // restrictive addressing mode). Just do i64 stores.
8859 bool IsSmallMemset = IsMemset && Size < 32;
8860 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
8861 if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
8862 return true;
8863 bool Fast;
8864 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
8865 &Fast) &&
8866 Fast;
8869 if (CanUseNEON && IsMemset && !IsSmallMemset &&
8870 AlignmentIsAcceptable(MVT::v2i64, 16))
8871 return LLT::vector(2, 64);
8872 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
8873 return LLT::scalar(128);
8874 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
8875 return LLT::scalar(64);
8876 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
8877 return LLT::scalar(32);
8878 return LLT();
8881 // 12-bit optionally shifted immediates are legal for adds.
8882 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
8883 if (Immed == std::numeric_limits<int64_t>::min()) {
8884 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
8885 << ": avoid UB for INT64_MIN\n");
8886 return false;
8888 // Same encoding for add/sub, just flip the sign.
8889 Immed = std::abs(Immed);
8890 bool IsLegal = ((Immed >> 12) == 0 ||
8891 ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
8892 LLVM_DEBUG(dbgs() << "Is " << Immed
8893 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
8894 return IsLegal;
8897 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
8898 // immediates is the same as for an add or a sub.
8899 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
8900 return isLegalAddImmediate(Immed);
8903 /// isLegalAddressingMode - Return true if the addressing mode represented
8904 /// by AM is legal for this target, for a load/store of the specified type.
8905 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
8906 const AddrMode &AM, Type *Ty,
8907 unsigned AS, Instruction *I) const {
8908 // AArch64 has five basic addressing modes:
8909 // reg
8910 // reg + 9-bit signed offset
8911 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
8912 // reg1 + reg2
8913 // reg + SIZE_IN_BYTES * reg
8915 // No global is ever allowed as a base.
8916 if (AM.BaseGV)
8917 return false;
8919 // No reg+reg+imm addressing.
8920 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
8921 return false;
8923 // check reg + imm case:
8924 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
8925 uint64_t NumBytes = 0;
8926 if (Ty->isSized()) {
8927 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
8928 NumBytes = NumBits / 8;
8929 if (!isPowerOf2_64(NumBits))
8930 NumBytes = 0;
8933 if (!AM.Scale) {
8934 int64_t Offset = AM.BaseOffs;
8936 // 9-bit signed offset
8937 if (isInt<9>(Offset))
8938 return true;
8940 // 12-bit unsigned offset
8941 unsigned shift = Log2_64(NumBytes);
8942 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
8943 // Must be a multiple of NumBytes (NumBytes is a power of 2)
8944 (Offset >> shift) << shift == Offset)
8945 return true;
8946 return false;
8949 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
8951 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
8954 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
8955 // Consider splitting large offset of struct or array.
8956 return true;
8959 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
8960 const AddrMode &AM, Type *Ty,
8961 unsigned AS) const {
8962 // Scaling factors are not free at all.
8963 // Operands | Rt Latency
8964 // -------------------------------------------
8965 // Rt, [Xn, Xm] | 4
8966 // -------------------------------------------
8967 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
8968 // Rt, [Xn, Wm, <extend> #imm] |
8969 if (isLegalAddressingMode(DL, AM, Ty, AS))
8970 // Scale represents reg2 * scale, thus account for 1 if
8971 // it is not equal to 0 or 1.
8972 return AM.Scale != 0 && AM.Scale != 1;
8973 return -1;
8976 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8977 VT = VT.getScalarType();
8979 if (!VT.isSimple())
8980 return false;
8982 switch (VT.getSimpleVT().SimpleTy) {
8983 case MVT::f32:
8984 case MVT::f64:
8985 return true;
8986 default:
8987 break;
8990 return false;
8993 const MCPhysReg *
8994 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
8995 // LR is a callee-save register, but we must treat it as clobbered by any call
8996 // site. Hence we include LR in the scratch registers, which are in turn added
8997 // as implicit-defs for stackmaps and patchpoints.
8998 static const MCPhysReg ScratchRegs[] = {
8999 AArch64::X16, AArch64::X17, AArch64::LR, 0
9001 return ScratchRegs;
9004 bool
9005 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
9006 CombineLevel Level) const {
9007 N = N->getOperand(0).getNode();
9008 EVT VT = N->getValueType(0);
9009 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9010 // it with shift to let it be lowered to UBFX.
9011 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
9012 isa<ConstantSDNode>(N->getOperand(1))) {
9013 uint64_t TruncMask = N->getConstantOperandVal(1);
9014 if (isMask_64(TruncMask) &&
9015 N->getOperand(0).getOpcode() == ISD::SRL &&
9016 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
9017 return false;
9019 return true;
9022 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
9023 Type *Ty) const {
9024 assert(Ty->isIntegerTy());
9026 unsigned BitSize = Ty->getPrimitiveSizeInBits();
9027 if (BitSize == 0)
9028 return false;
9030 int64_t Val = Imm.getSExtValue();
9031 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
9032 return true;
9034 if ((int64_t)Val < 0)
9035 Val = ~Val;
9036 if (BitSize == 32)
9037 Val &= (1LL << 32) - 1;
9039 unsigned LZ = countLeadingZeros((uint64_t)Val);
9040 unsigned Shift = (63 - LZ) / 16;
9041 // MOVZ is free so return true for one or fewer MOVK.
9042 return Shift < 3;
9045 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
9046 unsigned Index) const {
9047 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
9048 return false;
9050 return (Index == 0 || Index == ResVT.getVectorNumElements());
9053 /// Turn vector tests of the signbit in the form of:
9054 /// xor (sra X, elt_size(X)-1), -1
9055 /// into:
9056 /// cmge X, X, #0
9057 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
9058 const AArch64Subtarget *Subtarget) {
9059 EVT VT = N->getValueType(0);
9060 if (!Subtarget->hasNEON() || !VT.isVector())
9061 return SDValue();
9063 // There must be a shift right algebraic before the xor, and the xor must be a
9064 // 'not' operation.
9065 SDValue Shift = N->getOperand(0);
9066 SDValue Ones = N->getOperand(1);
9067 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
9068 !ISD::isBuildVectorAllOnes(Ones.getNode()))
9069 return SDValue();
9071 // The shift should be smearing the sign bit across each vector element.
9072 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
9073 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
9074 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
9075 return SDValue();
9077 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
9080 // Generate SUBS and CSEL for integer abs.
9081 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
9082 EVT VT = N->getValueType(0);
9084 SDValue N0 = N->getOperand(0);
9085 SDValue N1 = N->getOperand(1);
9086 SDLoc DL(N);
9088 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9089 // and change it to SUB and CSEL.
9090 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
9091 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
9092 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
9093 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
9094 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
9095 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
9096 N0.getOperand(0));
9097 // Generate SUBS & CSEL.
9098 SDValue Cmp =
9099 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
9100 N0.getOperand(0), DAG.getConstant(0, DL, VT));
9101 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
9102 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
9103 SDValue(Cmp.getNode(), 1));
9105 return SDValue();
9108 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
9109 TargetLowering::DAGCombinerInfo &DCI,
9110 const AArch64Subtarget *Subtarget) {
9111 if (DCI.isBeforeLegalizeOps())
9112 return SDValue();
9114 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
9115 return Cmp;
9117 return performIntegerAbsCombine(N, DAG);
9120 SDValue
9121 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9122 SelectionDAG &DAG,
9123 SmallVectorImpl<SDNode *> &Created) const {
9124 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
9125 if (isIntDivCheap(N->getValueType(0), Attr))
9126 return SDValue(N,0); // Lower SDIV as SDIV
9128 // fold (sdiv X, pow2)
9129 EVT VT = N->getValueType(0);
9130 if ((VT != MVT::i32 && VT != MVT::i64) ||
9131 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
9132 return SDValue();
9134 SDLoc DL(N);
9135 SDValue N0 = N->getOperand(0);
9136 unsigned Lg2 = Divisor.countTrailingZeros();
9137 SDValue Zero = DAG.getConstant(0, DL, VT);
9138 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
9140 // Add (N0 < 0) ? Pow2 - 1 : 0;
9141 SDValue CCVal;
9142 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
9143 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
9144 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
9146 Created.push_back(Cmp.getNode());
9147 Created.push_back(Add.getNode());
9148 Created.push_back(CSel.getNode());
9150 // Divide by pow2.
9151 SDValue SRA =
9152 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
9154 // If we're dividing by a positive value, we're done. Otherwise, we must
9155 // negate the result.
9156 if (Divisor.isNonNegative())
9157 return SRA;
9159 Created.push_back(SRA.getNode());
9160 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
9163 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
9164 TargetLowering::DAGCombinerInfo &DCI,
9165 const AArch64Subtarget *Subtarget) {
9166 if (DCI.isBeforeLegalizeOps())
9167 return SDValue();
9169 // The below optimizations require a constant RHS.
9170 if (!isa<ConstantSDNode>(N->getOperand(1)))
9171 return SDValue();
9173 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
9174 const APInt &ConstValue = C->getAPIntValue();
9176 // Multiplication of a power of two plus/minus one can be done more
9177 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9178 // future CPUs have a cheaper MADD instruction, this may need to be
9179 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9180 // 64-bit is 5 cycles, so this is always a win.
9181 // More aggressively, some multiplications N0 * C can be lowered to
9182 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9183 // e.g. 6=3*2=(2+1)*2.
9184 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9185 // which equals to (1+2)*16-(1+2).
9186 SDValue N0 = N->getOperand(0);
9187 // TrailingZeroes is used to test if the mul can be lowered to
9188 // shift+add+shift.
9189 unsigned TrailingZeroes = ConstValue.countTrailingZeros();
9190 if (TrailingZeroes) {
9191 // Conservatively do not lower to shift+add+shift if the mul might be
9192 // folded into smul or umul.
9193 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
9194 isZeroExtended(N0.getNode(), DAG)))
9195 return SDValue();
9196 // Conservatively do not lower to shift+add+shift if the mul might be
9197 // folded into madd or msub.
9198 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
9199 N->use_begin()->getOpcode() == ISD::SUB))
9200 return SDValue();
9202 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9203 // and shift+add+shift.
9204 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
9206 unsigned ShiftAmt, AddSubOpc;
9207 // Is the shifted value the LHS operand of the add/sub?
9208 bool ShiftValUseIsN0 = true;
9209 // Do we need to negate the result?
9210 bool NegateResult = false;
9212 if (ConstValue.isNonNegative()) {
9213 // (mul x, 2^N + 1) => (add (shl x, N), x)
9214 // (mul x, 2^N - 1) => (sub (shl x, N), x)
9215 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9216 APInt SCVMinus1 = ShiftedConstValue - 1;
9217 APInt CVPlus1 = ConstValue + 1;
9218 if (SCVMinus1.isPowerOf2()) {
9219 ShiftAmt = SCVMinus1.logBase2();
9220 AddSubOpc = ISD::ADD;
9221 } else if (CVPlus1.isPowerOf2()) {
9222 ShiftAmt = CVPlus1.logBase2();
9223 AddSubOpc = ISD::SUB;
9224 } else
9225 return SDValue();
9226 } else {
9227 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9228 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9229 APInt CVNegPlus1 = -ConstValue + 1;
9230 APInt CVNegMinus1 = -ConstValue - 1;
9231 if (CVNegPlus1.isPowerOf2()) {
9232 ShiftAmt = CVNegPlus1.logBase2();
9233 AddSubOpc = ISD::SUB;
9234 ShiftValUseIsN0 = false;
9235 } else if (CVNegMinus1.isPowerOf2()) {
9236 ShiftAmt = CVNegMinus1.logBase2();
9237 AddSubOpc = ISD::ADD;
9238 NegateResult = true;
9239 } else
9240 return SDValue();
9243 SDLoc DL(N);
9244 EVT VT = N->getValueType(0);
9245 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
9246 DAG.getConstant(ShiftAmt, DL, MVT::i64));
9248 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
9249 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
9250 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
9251 assert(!(NegateResult && TrailingZeroes) &&
9252 "NegateResult and TrailingZeroes cannot both be true for now.");
9253 // Negate the result.
9254 if (NegateResult)
9255 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
9256 // Shift the result.
9257 if (TrailingZeroes)
9258 return DAG.getNode(ISD::SHL, DL, VT, Res,
9259 DAG.getConstant(TrailingZeroes, DL, MVT::i64));
9260 return Res;
9263 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
9264 SelectionDAG &DAG) {
9265 // Take advantage of vector comparisons producing 0 or -1 in each lane to
9266 // optimize away operation when it's from a constant.
9268 // The general transformation is:
9269 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9270 // AND(VECTOR_CMP(x,y), constant2)
9271 // constant2 = UNARYOP(constant)
9273 // Early exit if this isn't a vector operation, the operand of the
9274 // unary operation isn't a bitwise AND, or if the sizes of the operations
9275 // aren't the same.
9276 EVT VT = N->getValueType(0);
9277 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
9278 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
9279 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
9280 return SDValue();
9282 // Now check that the other operand of the AND is a constant. We could
9283 // make the transformation for non-constant splats as well, but it's unclear
9284 // that would be a benefit as it would not eliminate any operations, just
9285 // perform one more step in scalar code before moving to the vector unit.
9286 if (BuildVectorSDNode *BV =
9287 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
9288 // Bail out if the vector isn't a constant.
9289 if (!BV->isConstant())
9290 return SDValue();
9292 // Everything checks out. Build up the new and improved node.
9293 SDLoc DL(N);
9294 EVT IntVT = BV->getValueType(0);
9295 // Create a new constant of the appropriate type for the transformed
9296 // DAG.
9297 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
9298 // The AND node needs bitcasts to/from an integer vector type around it.
9299 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
9300 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
9301 N->getOperand(0)->getOperand(0), MaskConst);
9302 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
9303 return Res;
9306 return SDValue();
9309 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
9310 const AArch64Subtarget *Subtarget) {
9311 // First try to optimize away the conversion when it's conditionally from
9312 // a constant. Vectors only.
9313 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
9314 return Res;
9316 EVT VT = N->getValueType(0);
9317 if (VT != MVT::f32 && VT != MVT::f64)
9318 return SDValue();
9320 // Only optimize when the source and destination types have the same width.
9321 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
9322 return SDValue();
9324 // If the result of an integer load is only used by an integer-to-float
9325 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9326 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9327 SDValue N0 = N->getOperand(0);
9328 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9329 // Do not change the width of a volatile load.
9330 !cast<LoadSDNode>(N0)->isVolatile()) {
9331 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9332 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
9333 LN0->getPointerInfo(), LN0->getAlignment(),
9334 LN0->getMemOperand()->getFlags());
9336 // Make sure successors of the original load stay after it by updating them
9337 // to use the new Chain.
9338 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
9340 unsigned Opcode =
9341 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
9342 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
9345 return SDValue();
9348 /// Fold a floating-point multiply by power of two into floating-point to
9349 /// fixed-point conversion.
9350 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
9351 TargetLowering::DAGCombinerInfo &DCI,
9352 const AArch64Subtarget *Subtarget) {
9353 if (!Subtarget->hasNEON())
9354 return SDValue();
9356 if (!N->getValueType(0).isSimple())
9357 return SDValue();
9359 SDValue Op = N->getOperand(0);
9360 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9361 Op.getOpcode() != ISD::FMUL)
9362 return SDValue();
9364 SDValue ConstVec = Op->getOperand(1);
9365 if (!isa<BuildVectorSDNode>(ConstVec))
9366 return SDValue();
9368 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9369 uint32_t FloatBits = FloatTy.getSizeInBits();
9370 if (FloatBits != 32 && FloatBits != 64)
9371 return SDValue();
9373 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9374 uint32_t IntBits = IntTy.getSizeInBits();
9375 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9376 return SDValue();
9378 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9379 if (IntBits > FloatBits)
9380 return SDValue();
9382 BitVector UndefElements;
9383 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9384 int32_t Bits = IntBits == 64 ? 64 : 32;
9385 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
9386 if (C == -1 || C == 0 || C > Bits)
9387 return SDValue();
9389 MVT ResTy;
9390 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9391 switch (NumLanes) {
9392 default:
9393 return SDValue();
9394 case 2:
9395 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9396 break;
9397 case 4:
9398 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9399 break;
9402 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9403 return SDValue();
9405 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
9406 "Illegal vector type after legalization");
9408 SDLoc DL(N);
9409 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
9410 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
9411 : Intrinsic::aarch64_neon_vcvtfp2fxu;
9412 SDValue FixConv =
9413 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
9414 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
9415 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
9416 // We can handle smaller integers by generating an extra trunc.
9417 if (IntBits < FloatBits)
9418 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
9420 return FixConv;
9423 /// Fold a floating-point divide by power of two into fixed-point to
9424 /// floating-point conversion.
9425 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
9426 TargetLowering::DAGCombinerInfo &DCI,
9427 const AArch64Subtarget *Subtarget) {
9428 if (!Subtarget->hasNEON())
9429 return SDValue();
9431 SDValue Op = N->getOperand(0);
9432 unsigned Opc = Op->getOpcode();
9433 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9434 !Op.getOperand(0).getValueType().isSimple() ||
9435 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
9436 return SDValue();
9438 SDValue ConstVec = N->getOperand(1);
9439 if (!isa<BuildVectorSDNode>(ConstVec))
9440 return SDValue();
9442 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9443 int32_t IntBits = IntTy.getSizeInBits();
9444 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9445 return SDValue();
9447 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9448 int32_t FloatBits = FloatTy.getSizeInBits();
9449 if (FloatBits != 32 && FloatBits != 64)
9450 return SDValue();
9452 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9453 if (IntBits > FloatBits)
9454 return SDValue();
9456 BitVector UndefElements;
9457 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9458 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
9459 if (C == -1 || C == 0 || C > FloatBits)
9460 return SDValue();
9462 MVT ResTy;
9463 unsigned NumLanes = Op.getValueType().getVectorNumElements();
9464 switch (NumLanes) {
9465 default:
9466 return SDValue();
9467 case 2:
9468 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9469 break;
9470 case 4:
9471 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9472 break;
9475 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9476 return SDValue();
9478 SDLoc DL(N);
9479 SDValue ConvInput = Op.getOperand(0);
9480 bool IsSigned = Opc == ISD::SINT_TO_FP;
9481 if (IntBits < FloatBits)
9482 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
9483 ResTy, ConvInput);
9485 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
9486 : Intrinsic::aarch64_neon_vcvtfxu2fp;
9487 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
9488 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
9489 DAG.getConstant(C, DL, MVT::i32));
9492 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9493 /// searches for and classifies those shifts.
9494 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
9495 bool &FromHi) {
9496 if (N.getOpcode() == ISD::SHL)
9497 FromHi = false;
9498 else if (N.getOpcode() == ISD::SRL)
9499 FromHi = true;
9500 else
9501 return false;
9503 if (!isa<ConstantSDNode>(N.getOperand(1)))
9504 return false;
9506 ShiftAmount = N->getConstantOperandVal(1);
9507 Src = N->getOperand(0);
9508 return true;
9511 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9512 /// registers viewed as a high/low pair. This function looks for the pattern:
9513 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9514 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9515 /// aren't independent.
9516 static SDValue tryCombineToEXTR(SDNode *N,
9517 TargetLowering::DAGCombinerInfo &DCI) {
9518 SelectionDAG &DAG = DCI.DAG;
9519 SDLoc DL(N);
9520 EVT VT = N->getValueType(0);
9522 assert(N->getOpcode() == ISD::OR && "Unexpected root");
9524 if (VT != MVT::i32 && VT != MVT::i64)
9525 return SDValue();
9527 SDValue LHS;
9528 uint32_t ShiftLHS = 0;
9529 bool LHSFromHi = false;
9530 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9531 return SDValue();
9533 SDValue RHS;
9534 uint32_t ShiftRHS = 0;
9535 bool RHSFromHi = false;
9536 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9537 return SDValue();
9539 // If they're both trying to come from the high part of the register, they're
9540 // not really an EXTR.
9541 if (LHSFromHi == RHSFromHi)
9542 return SDValue();
9544 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9545 return SDValue();
9547 if (LHSFromHi) {
9548 std::swap(LHS, RHS);
9549 std::swap(ShiftLHS, ShiftRHS);
9552 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9553 DAG.getConstant(ShiftRHS, DL, MVT::i64));
9556 static SDValue tryCombineToBSL(SDNode *N,
9557 TargetLowering::DAGCombinerInfo &DCI) {
9558 EVT VT = N->getValueType(0);
9559 SelectionDAG &DAG = DCI.DAG;
9560 SDLoc DL(N);
9562 if (!VT.isVector())
9563 return SDValue();
9565 SDValue N0 = N->getOperand(0);
9566 if (N0.getOpcode() != ISD::AND)
9567 return SDValue();
9569 SDValue N1 = N->getOperand(1);
9570 if (N1.getOpcode() != ISD::AND)
9571 return SDValue();
9573 // We only have to look for constant vectors here since the general, variable
9574 // case can be handled in TableGen.
9575 unsigned Bits = VT.getScalarSizeInBits();
9576 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9577 for (int i = 1; i >= 0; --i)
9578 for (int j = 1; j >= 0; --j) {
9579 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9580 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9581 if (!BVN0 || !BVN1)
9582 continue;
9584 bool FoundMatch = true;
9585 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9586 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9587 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9588 if (!CN0 || !CN1 ||
9589 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9590 FoundMatch = false;
9591 break;
9595 if (FoundMatch)
9596 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9597 N0->getOperand(1 - i), N1->getOperand(1 - j));
9600 return SDValue();
9603 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9604 const AArch64Subtarget *Subtarget) {
9605 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9606 SelectionDAG &DAG = DCI.DAG;
9607 EVT VT = N->getValueType(0);
9609 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9610 return SDValue();
9612 if (SDValue Res = tryCombineToEXTR(N, DCI))
9613 return Res;
9615 if (SDValue Res = tryCombineToBSL(N, DCI))
9616 return Res;
9618 return SDValue();
9621 static SDValue performANDCombine(SDNode *N,
9622 TargetLowering::DAGCombinerInfo &DCI) {
9623 SelectionDAG &DAG = DCI.DAG;
9624 SDValue LHS = N->getOperand(0);
9625 EVT VT = N->getValueType(0);
9626 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
9627 return SDValue();
9629 BuildVectorSDNode *BVN =
9630 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
9631 if (!BVN)
9632 return SDValue();
9634 // AND does not accept an immediate, so check if we can use a BIC immediate
9635 // instruction instead. We do this here instead of using a (and x, (mvni imm))
9636 // pattern in isel, because some immediates may be lowered to the preferred
9637 // (and x, (movi imm)) form, even though an mvni representation also exists.
9638 APInt DefBits(VT.getSizeInBits(), 0);
9639 APInt UndefBits(VT.getSizeInBits(), 0);
9640 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
9641 SDValue NewOp;
9643 DefBits = ~DefBits;
9644 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9645 DefBits, &LHS)) ||
9646 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9647 DefBits, &LHS)))
9648 return NewOp;
9650 UndefBits = ~UndefBits;
9651 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9652 UndefBits, &LHS)) ||
9653 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9654 UndefBits, &LHS)))
9655 return NewOp;
9658 return SDValue();
9661 static SDValue performSRLCombine(SDNode *N,
9662 TargetLowering::DAGCombinerInfo &DCI) {
9663 SelectionDAG &DAG = DCI.DAG;
9664 EVT VT = N->getValueType(0);
9665 if (VT != MVT::i32 && VT != MVT::i64)
9666 return SDValue();
9668 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9669 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9670 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9671 SDValue N0 = N->getOperand(0);
9672 if (N0.getOpcode() == ISD::BSWAP) {
9673 SDLoc DL(N);
9674 SDValue N1 = N->getOperand(1);
9675 SDValue N00 = N0.getOperand(0);
9676 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9677 uint64_t ShiftAmt = C->getZExtValue();
9678 if (VT == MVT::i32 && ShiftAmt == 16 &&
9679 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9680 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9681 if (VT == MVT::i64 && ShiftAmt == 32 &&
9682 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9683 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9686 return SDValue();
9689 static SDValue performBitcastCombine(SDNode *N,
9690 TargetLowering::DAGCombinerInfo &DCI,
9691 SelectionDAG &DAG) {
9692 // Wait 'til after everything is legalized to try this. That way we have
9693 // legal vector types and such.
9694 if (DCI.isBeforeLegalizeOps())
9695 return SDValue();
9697 // Remove extraneous bitcasts around an extract_subvector.
9698 // For example,
9699 // (v4i16 (bitconvert
9700 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9701 // becomes
9702 // (extract_subvector ((v8i16 ...), (i64 4)))
9704 // Only interested in 64-bit vectors as the ultimate result.
9705 EVT VT = N->getValueType(0);
9706 if (!VT.isVector())
9707 return SDValue();
9708 if (VT.getSimpleVT().getSizeInBits() != 64)
9709 return SDValue();
9710 // Is the operand an extract_subvector starting at the beginning or halfway
9711 // point of the vector? A low half may also come through as an
9712 // EXTRACT_SUBREG, so look for that, too.
9713 SDValue Op0 = N->getOperand(0);
9714 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9715 !(Op0->isMachineOpcode() &&
9716 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9717 return SDValue();
9718 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9719 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9720 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9721 return SDValue();
9722 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9723 if (idx != AArch64::dsub)
9724 return SDValue();
9725 // The dsub reference is equivalent to a lane zero subvector reference.
9726 idx = 0;
9728 // Look through the bitcast of the input to the extract.
9729 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9730 return SDValue();
9731 SDValue Source = Op0->getOperand(0)->getOperand(0);
9732 // If the source type has twice the number of elements as our destination
9733 // type, we know this is an extract of the high or low half of the vector.
9734 EVT SVT = Source->getValueType(0);
9735 if (!SVT.isVector() ||
9736 SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9737 return SDValue();
9739 LLVM_DEBUG(
9740 dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9742 // Create the simplified form to just extract the low or high half of the
9743 // vector directly rather than bothering with the bitcasts.
9744 SDLoc dl(N);
9745 unsigned NumElements = VT.getVectorNumElements();
9746 if (idx) {
9747 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9748 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9749 } else {
9750 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9751 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9752 Source, SubReg),
9757 static SDValue performConcatVectorsCombine(SDNode *N,
9758 TargetLowering::DAGCombinerInfo &DCI,
9759 SelectionDAG &DAG) {
9760 SDLoc dl(N);
9761 EVT VT = N->getValueType(0);
9762 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9764 // Optimize concat_vectors of truncated vectors, where the intermediate
9765 // type is illegal, to avoid said illegality, e.g.,
9766 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9767 // (v2i16 (truncate (v2i64)))))
9768 // ->
9769 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9770 // (v4i32 (bitcast (v2i64))),
9771 // <0, 2, 4, 6>)))
9772 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9773 // on both input and result type, so we might generate worse code.
9774 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9775 if (N->getNumOperands() == 2 &&
9776 N0->getOpcode() == ISD::TRUNCATE &&
9777 N1->getOpcode() == ISD::TRUNCATE) {
9778 SDValue N00 = N0->getOperand(0);
9779 SDValue N10 = N1->getOperand(0);
9780 EVT N00VT = N00.getValueType();
9782 if (N00VT == N10.getValueType() &&
9783 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9784 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9785 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9786 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9787 for (size_t i = 0; i < Mask.size(); ++i)
9788 Mask[i] = i * 2;
9789 return DAG.getNode(ISD::TRUNCATE, dl, VT,
9790 DAG.getVectorShuffle(
9791 MidVT, dl,
9792 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9793 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
9797 // Wait 'til after everything is legalized to try this. That way we have
9798 // legal vector types and such.
9799 if (DCI.isBeforeLegalizeOps())
9800 return SDValue();
9802 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9803 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9804 // canonicalise to that.
9805 if (N0 == N1 && VT.getVectorNumElements() == 2) {
9806 assert(VT.getScalarSizeInBits() == 64);
9807 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
9808 DAG.getConstant(0, dl, MVT::i64));
9811 // Canonicalise concat_vectors so that the right-hand vector has as few
9812 // bit-casts as possible before its real operation. The primary matching
9813 // destination for these operations will be the narrowing "2" instructions,
9814 // which depend on the operation being performed on this right-hand vector.
9815 // For example,
9816 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
9817 // becomes
9818 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9820 if (N1->getOpcode() != ISD::BITCAST)
9821 return SDValue();
9822 SDValue RHS = N1->getOperand(0);
9823 MVT RHSTy = RHS.getValueType().getSimpleVT();
9824 // If the RHS is not a vector, this is not the pattern we're looking for.
9825 if (!RHSTy.isVector())
9826 return SDValue();
9828 LLVM_DEBUG(
9829 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9831 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
9832 RHSTy.getVectorNumElements() * 2);
9833 return DAG.getNode(ISD::BITCAST, dl, VT,
9834 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
9835 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
9836 RHS));
9839 static SDValue tryCombineFixedPointConvert(SDNode *N,
9840 TargetLowering::DAGCombinerInfo &DCI,
9841 SelectionDAG &DAG) {
9842 // Wait until after everything is legalized to try this. That way we have
9843 // legal vector types and such.
9844 if (DCI.isBeforeLegalizeOps())
9845 return SDValue();
9846 // Transform a scalar conversion of a value from a lane extract into a
9847 // lane extract of a vector conversion. E.g., from foo1 to foo2:
9848 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9849 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9851 // The second form interacts better with instruction selection and the
9852 // register allocator to avoid cross-class register copies that aren't
9853 // coalescable due to a lane reference.
9855 // Check the operand and see if it originates from a lane extract.
9856 SDValue Op1 = N->getOperand(1);
9857 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9858 // Yep, no additional predication needed. Perform the transform.
9859 SDValue IID = N->getOperand(0);
9860 SDValue Shift = N->getOperand(2);
9861 SDValue Vec = Op1.getOperand(0);
9862 SDValue Lane = Op1.getOperand(1);
9863 EVT ResTy = N->getValueType(0);
9864 EVT VecResTy;
9865 SDLoc DL(N);
9867 // The vector width should be 128 bits by the time we get here, even
9868 // if it started as 64 bits (the extract_vector handling will have
9869 // done so).
9870 assert(Vec.getValueSizeInBits() == 128 &&
9871 "unexpected vector size on extract_vector_elt!");
9872 if (Vec.getValueType() == MVT::v4i32)
9873 VecResTy = MVT::v4f32;
9874 else if (Vec.getValueType() == MVT::v2i64)
9875 VecResTy = MVT::v2f64;
9876 else
9877 llvm_unreachable("unexpected vector type!");
9879 SDValue Convert =
9880 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
9881 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
9883 return SDValue();
9886 // AArch64 high-vector "long" operations are formed by performing the non-high
9887 // version on an extract_subvector of each operand which gets the high half:
9889 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
9891 // However, there are cases which don't have an extract_high explicitly, but
9892 // have another operation that can be made compatible with one for free. For
9893 // example:
9895 // (dupv64 scalar) --> (extract_high (dup128 scalar))
9897 // This routine does the actual conversion of such DUPs, once outer routines
9898 // have determined that everything else is in order.
9899 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
9900 // similarly here.
9901 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
9902 switch (N.getOpcode()) {
9903 case AArch64ISD::DUP:
9904 case AArch64ISD::DUPLANE8:
9905 case AArch64ISD::DUPLANE16:
9906 case AArch64ISD::DUPLANE32:
9907 case AArch64ISD::DUPLANE64:
9908 case AArch64ISD::MOVI:
9909 case AArch64ISD::MOVIshift:
9910 case AArch64ISD::MOVIedit:
9911 case AArch64ISD::MOVImsl:
9912 case AArch64ISD::MVNIshift:
9913 case AArch64ISD::MVNImsl:
9914 break;
9915 default:
9916 // FMOV could be supported, but isn't very useful, as it would only occur
9917 // if you passed a bitcast' floating point immediate to an eligible long
9918 // integer op (addl, smull, ...).
9919 return SDValue();
9922 MVT NarrowTy = N.getSimpleValueType();
9923 if (!NarrowTy.is64BitVector())
9924 return SDValue();
9926 MVT ElementTy = NarrowTy.getVectorElementType();
9927 unsigned NumElems = NarrowTy.getVectorNumElements();
9928 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
9930 SDLoc dl(N);
9931 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
9932 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
9933 DAG.getConstant(NumElems, dl, MVT::i64));
9936 static bool isEssentiallyExtractHighSubvector(SDValue N) {
9937 if (N.getOpcode() == ISD::BITCAST)
9938 N = N.getOperand(0);
9939 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9940 return false;
9941 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
9942 N.getOperand(0).getValueType().getVectorNumElements() / 2;
9945 /// Helper structure to keep track of ISD::SET_CC operands.
9946 struct GenericSetCCInfo {
9947 const SDValue *Opnd0;
9948 const SDValue *Opnd1;
9949 ISD::CondCode CC;
9952 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
9953 struct AArch64SetCCInfo {
9954 const SDValue *Cmp;
9955 AArch64CC::CondCode CC;
9958 /// Helper structure to keep track of SetCC information.
9959 union SetCCInfo {
9960 GenericSetCCInfo Generic;
9961 AArch64SetCCInfo AArch64;
9964 /// Helper structure to be able to read SetCC information. If set to
9965 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
9966 /// GenericSetCCInfo.
9967 struct SetCCInfoAndKind {
9968 SetCCInfo Info;
9969 bool IsAArch64;
9972 /// Check whether or not \p Op is a SET_CC operation, either a generic or
9973 /// an
9974 /// AArch64 lowered one.
9975 /// \p SetCCInfo is filled accordingly.
9976 /// \post SetCCInfo is meanginfull only when this function returns true.
9977 /// \return True when Op is a kind of SET_CC operation.
9978 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
9979 // If this is a setcc, this is straight forward.
9980 if (Op.getOpcode() == ISD::SETCC) {
9981 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
9982 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
9983 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9984 SetCCInfo.IsAArch64 = false;
9985 return true;
9987 // Otherwise, check if this is a matching csel instruction.
9988 // In other words:
9989 // - csel 1, 0, cc
9990 // - csel 0, 1, !cc
9991 if (Op.getOpcode() != AArch64ISD::CSEL)
9992 return false;
9993 // Set the information about the operands.
9994 // TODO: we want the operands of the Cmp not the csel
9995 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
9996 SetCCInfo.IsAArch64 = true;
9997 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
9998 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10000 // Check that the operands matches the constraints:
10001 // (1) Both operands must be constants.
10002 // (2) One must be 1 and the other must be 0.
10003 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
10004 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10006 // Check (1).
10007 if (!TValue || !FValue)
10008 return false;
10010 // Check (2).
10011 if (!TValue->isOne()) {
10012 // Update the comparison when we are interested in !cc.
10013 std::swap(TValue, FValue);
10014 SetCCInfo.Info.AArch64.CC =
10015 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
10017 return TValue->isOne() && FValue->isNullValue();
10020 // Returns true if Op is setcc or zext of setcc.
10021 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
10022 if (isSetCC(Op, Info))
10023 return true;
10024 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
10025 isSetCC(Op->getOperand(0), Info));
10028 // The folding we want to perform is:
10029 // (add x, [zext] (setcc cc ...) )
10030 // -->
10031 // (csel x, (add x, 1), !cc ...)
10033 // The latter will get matched to a CSINC instruction.
10034 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
10035 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
10036 SDValue LHS = Op->getOperand(0);
10037 SDValue RHS = Op->getOperand(1);
10038 SetCCInfoAndKind InfoAndKind;
10040 // If neither operand is a SET_CC, give up.
10041 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
10042 std::swap(LHS, RHS);
10043 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
10044 return SDValue();
10047 // FIXME: This could be generatized to work for FP comparisons.
10048 EVT CmpVT = InfoAndKind.IsAArch64
10049 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
10050 : InfoAndKind.Info.Generic.Opnd0->getValueType();
10051 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
10052 return SDValue();
10054 SDValue CCVal;
10055 SDValue Cmp;
10056 SDLoc dl(Op);
10057 if (InfoAndKind.IsAArch64) {
10058 CCVal = DAG.getConstant(
10059 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
10060 MVT::i32);
10061 Cmp = *InfoAndKind.Info.AArch64.Cmp;
10062 } else
10063 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
10064 *InfoAndKind.Info.Generic.Opnd1,
10065 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
10066 CCVal, DAG, dl);
10068 EVT VT = Op->getValueType(0);
10069 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
10070 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
10073 // The basic add/sub long vector instructions have variants with "2" on the end
10074 // which act on the high-half of their inputs. They are normally matched by
10075 // patterns like:
10077 // (add (zeroext (extract_high LHS)),
10078 // (zeroext (extract_high RHS)))
10079 // -> uaddl2 vD, vN, vM
10081 // However, if one of the extracts is something like a duplicate, this
10082 // instruction can still be used profitably. This function puts the DAG into a
10083 // more appropriate form for those patterns to trigger.
10084 static SDValue performAddSubLongCombine(SDNode *N,
10085 TargetLowering::DAGCombinerInfo &DCI,
10086 SelectionDAG &DAG) {
10087 if (DCI.isBeforeLegalizeOps())
10088 return SDValue();
10090 MVT VT = N->getSimpleValueType(0);
10091 if (!VT.is128BitVector()) {
10092 if (N->getOpcode() == ISD::ADD)
10093 return performSetccAddFolding(N, DAG);
10094 return SDValue();
10097 // Make sure both branches are extended in the same way.
10098 SDValue LHS = N->getOperand(0);
10099 SDValue RHS = N->getOperand(1);
10100 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
10101 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
10102 LHS.getOpcode() != RHS.getOpcode())
10103 return SDValue();
10105 unsigned ExtType = LHS.getOpcode();
10107 // It's not worth doing if at least one of the inputs isn't already an
10108 // extract, but we don't know which it'll be so we have to try both.
10109 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
10110 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
10111 if (!RHS.getNode())
10112 return SDValue();
10114 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
10115 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
10116 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
10117 if (!LHS.getNode())
10118 return SDValue();
10120 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
10123 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
10126 // Massage DAGs which we can use the high-half "long" operations on into
10127 // something isel will recognize better. E.g.
10129 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10130 // (aarch64_neon_umull (extract_high (v2i64 vec)))
10131 // (extract_high (v2i64 (dup128 scalar)))))
10133 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
10134 TargetLowering::DAGCombinerInfo &DCI,
10135 SelectionDAG &DAG) {
10136 if (DCI.isBeforeLegalizeOps())
10137 return SDValue();
10139 SDValue LHS = N->getOperand(1);
10140 SDValue RHS = N->getOperand(2);
10141 assert(LHS.getValueType().is64BitVector() &&
10142 RHS.getValueType().is64BitVector() &&
10143 "unexpected shape for long operation");
10145 // Either node could be a DUP, but it's not worth doing both of them (you'd
10146 // just as well use the non-high version) so look for a corresponding extract
10147 // operation on the other "wing".
10148 if (isEssentiallyExtractHighSubvector(LHS)) {
10149 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
10150 if (!RHS.getNode())
10151 return SDValue();
10152 } else if (isEssentiallyExtractHighSubvector(RHS)) {
10153 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
10154 if (!LHS.getNode())
10155 return SDValue();
10158 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
10159 N->getOperand(0), LHS, RHS);
10162 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
10163 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
10164 unsigned ElemBits = ElemTy.getSizeInBits();
10166 int64_t ShiftAmount;
10167 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
10168 APInt SplatValue, SplatUndef;
10169 unsigned SplatBitSize;
10170 bool HasAnyUndefs;
10171 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
10172 HasAnyUndefs, ElemBits) ||
10173 SplatBitSize != ElemBits)
10174 return SDValue();
10176 ShiftAmount = SplatValue.getSExtValue();
10177 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
10178 ShiftAmount = CVN->getSExtValue();
10179 } else
10180 return SDValue();
10182 unsigned Opcode;
10183 bool IsRightShift;
10184 switch (IID) {
10185 default:
10186 llvm_unreachable("Unknown shift intrinsic");
10187 case Intrinsic::aarch64_neon_sqshl:
10188 Opcode = AArch64ISD::SQSHL_I;
10189 IsRightShift = false;
10190 break;
10191 case Intrinsic::aarch64_neon_uqshl:
10192 Opcode = AArch64ISD::UQSHL_I;
10193 IsRightShift = false;
10194 break;
10195 case Intrinsic::aarch64_neon_srshl:
10196 Opcode = AArch64ISD::SRSHR_I;
10197 IsRightShift = true;
10198 break;
10199 case Intrinsic::aarch64_neon_urshl:
10200 Opcode = AArch64ISD::URSHR_I;
10201 IsRightShift = true;
10202 break;
10203 case Intrinsic::aarch64_neon_sqshlu:
10204 Opcode = AArch64ISD::SQSHLU_I;
10205 IsRightShift = false;
10206 break;
10209 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
10210 SDLoc dl(N);
10211 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10212 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
10213 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
10214 SDLoc dl(N);
10215 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10216 DAG.getConstant(ShiftAmount, dl, MVT::i32));
10219 return SDValue();
10222 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10223 // the intrinsics must be legal and take an i32, this means there's almost
10224 // certainly going to be a zext in the DAG which we can eliminate.
10225 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
10226 SDValue AndN = N->getOperand(2);
10227 if (AndN.getOpcode() != ISD::AND)
10228 return SDValue();
10230 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
10231 if (!CMask || CMask->getZExtValue() != Mask)
10232 return SDValue();
10234 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
10235 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
10238 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
10239 SelectionDAG &DAG) {
10240 SDLoc dl(N);
10241 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
10242 DAG.getNode(Opc, dl,
10243 N->getOperand(1).getSimpleValueType(),
10244 N->getOperand(1)),
10245 DAG.getConstant(0, dl, MVT::i64));
10248 static SDValue performIntrinsicCombine(SDNode *N,
10249 TargetLowering::DAGCombinerInfo &DCI,
10250 const AArch64Subtarget *Subtarget) {
10251 SelectionDAG &DAG = DCI.DAG;
10252 unsigned IID = getIntrinsicID(N);
10253 switch (IID) {
10254 default:
10255 break;
10256 case Intrinsic::aarch64_neon_vcvtfxs2fp:
10257 case Intrinsic::aarch64_neon_vcvtfxu2fp:
10258 return tryCombineFixedPointConvert(N, DCI, DAG);
10259 case Intrinsic::aarch64_neon_saddv:
10260 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
10261 case Intrinsic::aarch64_neon_uaddv:
10262 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
10263 case Intrinsic::aarch64_neon_sminv:
10264 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
10265 case Intrinsic::aarch64_neon_uminv:
10266 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
10267 case Intrinsic::aarch64_neon_smaxv:
10268 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
10269 case Intrinsic::aarch64_neon_umaxv:
10270 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
10271 case Intrinsic::aarch64_neon_fmax:
10272 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
10273 N->getOperand(1), N->getOperand(2));
10274 case Intrinsic::aarch64_neon_fmin:
10275 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
10276 N->getOperand(1), N->getOperand(2));
10277 case Intrinsic::aarch64_neon_fmaxnm:
10278 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
10279 N->getOperand(1), N->getOperand(2));
10280 case Intrinsic::aarch64_neon_fminnm:
10281 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
10282 N->getOperand(1), N->getOperand(2));
10283 case Intrinsic::aarch64_neon_smull:
10284 case Intrinsic::aarch64_neon_umull:
10285 case Intrinsic::aarch64_neon_pmull:
10286 case Intrinsic::aarch64_neon_sqdmull:
10287 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
10288 case Intrinsic::aarch64_neon_sqshl:
10289 case Intrinsic::aarch64_neon_uqshl:
10290 case Intrinsic::aarch64_neon_sqshlu:
10291 case Intrinsic::aarch64_neon_srshl:
10292 case Intrinsic::aarch64_neon_urshl:
10293 return tryCombineShiftImm(IID, N, DAG);
10294 case Intrinsic::aarch64_crc32b:
10295 case Intrinsic::aarch64_crc32cb:
10296 return tryCombineCRC32(0xff, N, DAG);
10297 case Intrinsic::aarch64_crc32h:
10298 case Intrinsic::aarch64_crc32ch:
10299 return tryCombineCRC32(0xffff, N, DAG);
10301 return SDValue();
10304 static SDValue performExtendCombine(SDNode *N,
10305 TargetLowering::DAGCombinerInfo &DCI,
10306 SelectionDAG &DAG) {
10307 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10308 // we can convert that DUP into another extract_high (of a bigger DUP), which
10309 // helps the backend to decide that an sabdl2 would be useful, saving a real
10310 // extract_high operation.
10311 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
10312 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
10313 SDNode *ABDNode = N->getOperand(0).getNode();
10314 unsigned IID = getIntrinsicID(ABDNode);
10315 if (IID == Intrinsic::aarch64_neon_sabd ||
10316 IID == Intrinsic::aarch64_neon_uabd) {
10317 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
10318 if (!NewABD.getNode())
10319 return SDValue();
10321 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
10322 NewABD);
10326 // This is effectively a custom type legalization for AArch64.
10328 // Type legalization will split an extend of a small, legal, type to a larger
10329 // illegal type by first splitting the destination type, often creating
10330 // illegal source types, which then get legalized in isel-confusing ways,
10331 // leading to really terrible codegen. E.g.,
10332 // %result = v8i32 sext v8i8 %value
10333 // becomes
10334 // %losrc = extract_subreg %value, ...
10335 // %hisrc = extract_subreg %value, ...
10336 // %lo = v4i32 sext v4i8 %losrc
10337 // %hi = v4i32 sext v4i8 %hisrc
10338 // Things go rapidly downhill from there.
10340 // For AArch64, the [sz]ext vector instructions can only go up one element
10341 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10342 // take two instructions.
10344 // This implies that the most efficient way to do the extend from v8i8
10345 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10346 // the normal splitting to happen for the v8i16->v8i32.
10348 // This is pre-legalization to catch some cases where the default
10349 // type legalization will create ill-tempered code.
10350 if (!DCI.isBeforeLegalizeOps())
10351 return SDValue();
10353 // We're only interested in cleaning things up for non-legal vector types
10354 // here. If both the source and destination are legal, things will just
10355 // work naturally without any fiddling.
10356 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10357 EVT ResVT = N->getValueType(0);
10358 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
10359 return SDValue();
10360 // If the vector type isn't a simple VT, it's beyond the scope of what
10361 // we're worried about here. Let legalization do its thing and hope for
10362 // the best.
10363 SDValue Src = N->getOperand(0);
10364 EVT SrcVT = Src->getValueType(0);
10365 if (!ResVT.isSimple() || !SrcVT.isSimple())
10366 return SDValue();
10368 // If the source VT is a 64-bit vector, we can play games and get the
10369 // better results we want.
10370 if (SrcVT.getSizeInBits() != 64)
10371 return SDValue();
10373 unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
10374 unsigned ElementCount = SrcVT.getVectorNumElements();
10375 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
10376 SDLoc DL(N);
10377 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
10379 // Now split the rest of the operation into two halves, each with a 64
10380 // bit source.
10381 EVT LoVT, HiVT;
10382 SDValue Lo, Hi;
10383 unsigned NumElements = ResVT.getVectorNumElements();
10384 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
10385 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
10386 ResVT.getVectorElementType(), NumElements / 2);
10388 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
10389 LoVT.getVectorNumElements());
10390 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10391 DAG.getConstant(0, DL, MVT::i64));
10392 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10393 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
10394 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
10395 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
10397 // Now combine the parts back together so we still have a single result
10398 // like the combiner expects.
10399 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
10402 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
10403 SDValue SplatVal, unsigned NumVecElts) {
10404 assert(!St.isTruncatingStore() && "cannot split truncating vector store");
10405 unsigned OrigAlignment = St.getAlignment();
10406 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
10408 // Create scalar stores. This is at least as good as the code sequence for a
10409 // split unaligned store which is a dup.s, ext.b, and two stores.
10410 // Most of the time the three stores should be replaced by store pair
10411 // instructions (stp).
10412 SDLoc DL(&St);
10413 SDValue BasePtr = St.getBasePtr();
10414 uint64_t BaseOffset = 0;
10416 const MachinePointerInfo &PtrInfo = St.getPointerInfo();
10417 SDValue NewST1 =
10418 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
10419 OrigAlignment, St.getMemOperand()->getFlags());
10421 // As this in ISel, we will not merge this add which may degrade results.
10422 if (BasePtr->getOpcode() == ISD::ADD &&
10423 isa<ConstantSDNode>(BasePtr->getOperand(1))) {
10424 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
10425 BasePtr = BasePtr->getOperand(0);
10428 unsigned Offset = EltOffset;
10429 while (--NumVecElts) {
10430 unsigned Alignment = MinAlign(OrigAlignment, Offset);
10431 SDValue OffsetPtr =
10432 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10433 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
10434 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
10435 PtrInfo.getWithOffset(Offset), Alignment,
10436 St.getMemOperand()->getFlags());
10437 Offset += EltOffset;
10439 return NewST1;
10442 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
10443 /// load store optimizer pass will merge them to store pair stores. This should
10444 /// be better than a movi to create the vector zero followed by a vector store
10445 /// if the zero constant is not re-used, since one instructions and one register
10446 /// live range will be removed.
10448 /// For example, the final generated code should be:
10450 /// stp xzr, xzr, [x0]
10452 /// instead of:
10454 /// movi v0.2d, #0
10455 /// str q0, [x0]
10457 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10458 SDValue StVal = St.getValue();
10459 EVT VT = StVal.getValueType();
10461 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10462 // 2, 3 or 4 i32 elements.
10463 int NumVecElts = VT.getVectorNumElements();
10464 if (!(((NumVecElts == 2 || NumVecElts == 3) &&
10465 VT.getVectorElementType().getSizeInBits() == 64) ||
10466 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
10467 VT.getVectorElementType().getSizeInBits() == 32)))
10468 return SDValue();
10470 if (StVal.getOpcode() != ISD::BUILD_VECTOR)
10471 return SDValue();
10473 // If the zero constant has more than one use then the vector store could be
10474 // better since the constant mov will be amortized and stp q instructions
10475 // should be able to be formed.
10476 if (!StVal.hasOneUse())
10477 return SDValue();
10479 // If the store is truncating then it's going down to i16 or smaller, which
10480 // means it can be implemented in a single store anyway.
10481 if (St.isTruncatingStore())
10482 return SDValue();
10484 // If the immediate offset of the address operand is too large for the stp
10485 // instruction, then bail out.
10486 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
10487 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
10488 if (Offset < -512 || Offset > 504)
10489 return SDValue();
10492 for (int I = 0; I < NumVecElts; ++I) {
10493 SDValue EltVal = StVal.getOperand(I);
10494 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
10495 return SDValue();
10498 // Use a CopyFromReg WZR/XZR here to prevent
10499 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10500 SDLoc DL(&St);
10501 unsigned ZeroReg;
10502 EVT ZeroVT;
10503 if (VT.getVectorElementType().getSizeInBits() == 32) {
10504 ZeroReg = AArch64::WZR;
10505 ZeroVT = MVT::i32;
10506 } else {
10507 ZeroReg = AArch64::XZR;
10508 ZeroVT = MVT::i64;
10510 SDValue SplatVal =
10511 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
10512 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10515 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10516 /// value. The load store optimizer pass will merge them to store pair stores.
10517 /// This has better performance than a splat of the scalar followed by a split
10518 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10519 /// followed by an ext.b and two stores.
10520 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10521 SDValue StVal = St.getValue();
10522 EVT VT = StVal.getValueType();
10524 // Don't replace floating point stores, they possibly won't be transformed to
10525 // stp because of the store pair suppress pass.
10526 if (VT.isFloatingPoint())
10527 return SDValue();
10529 // We can express a splat as store pair(s) for 2 or 4 elements.
10530 unsigned NumVecElts = VT.getVectorNumElements();
10531 if (NumVecElts != 4 && NumVecElts != 2)
10532 return SDValue();
10534 // If the store is truncating then it's going down to i16 or smaller, which
10535 // means it can be implemented in a single store anyway.
10536 if (St.isTruncatingStore())
10537 return SDValue();
10539 // Check that this is a splat.
10540 // Make sure that each of the relevant vector element locations are inserted
10541 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10542 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
10543 SDValue SplatVal;
10544 for (unsigned I = 0; I < NumVecElts; ++I) {
10545 // Check for insert vector elements.
10546 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
10547 return SDValue();
10549 // Check that same value is inserted at each vector element.
10550 if (I == 0)
10551 SplatVal = StVal.getOperand(1);
10552 else if (StVal.getOperand(1) != SplatVal)
10553 return SDValue();
10555 // Check insert element index.
10556 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
10557 if (!CIndex)
10558 return SDValue();
10559 uint64_t IndexVal = CIndex->getZExtValue();
10560 if (IndexVal >= NumVecElts)
10561 return SDValue();
10562 IndexNotInserted.reset(IndexVal);
10564 StVal = StVal.getOperand(0);
10566 // Check that all vector element locations were inserted to.
10567 if (IndexNotInserted.any())
10568 return SDValue();
10570 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10573 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10574 SelectionDAG &DAG,
10575 const AArch64Subtarget *Subtarget) {
10577 StoreSDNode *S = cast<StoreSDNode>(N);
10578 if (S->isVolatile() || S->isIndexed())
10579 return SDValue();
10581 SDValue StVal = S->getValue();
10582 EVT VT = StVal.getValueType();
10583 if (!VT.isVector())
10584 return SDValue();
10586 // If we get a splat of zeros, convert this vector store to a store of
10587 // scalars. They will be merged into store pairs of xzr thereby removing one
10588 // instruction and one register.
10589 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10590 return ReplacedZeroSplat;
10592 // FIXME: The logic for deciding if an unaligned store should be split should
10593 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10594 // a call to that function here.
10596 if (!Subtarget->isMisaligned128StoreSlow())
10597 return SDValue();
10599 // Don't split at -Oz.
10600 if (DAG.getMachineFunction().getFunction().hasMinSize())
10601 return SDValue();
10603 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10604 // those up regresses performance on micro-benchmarks and olden/bh.
10605 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10606 return SDValue();
10608 // Split unaligned 16B stores. They are terrible for performance.
10609 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10610 // extensions can use this to mark that it does not want splitting to happen
10611 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10612 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10613 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10614 S->getAlignment() <= 2)
10615 return SDValue();
10617 // If we get a splat of a scalar convert this vector store to a store of
10618 // scalars. They will be merged into store pairs thereby removing two
10619 // instructions.
10620 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10621 return ReplacedSplat;
10623 SDLoc DL(S);
10625 // Split VT into two.
10626 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
10627 unsigned NumElts = HalfVT.getVectorNumElements();
10628 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10629 DAG.getConstant(0, DL, MVT::i64));
10630 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10631 DAG.getConstant(NumElts, DL, MVT::i64));
10632 SDValue BasePtr = S->getBasePtr();
10633 SDValue NewST1 =
10634 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10635 S->getAlignment(), S->getMemOperand()->getFlags());
10636 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10637 DAG.getConstant(8, DL, MVT::i64));
10638 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10639 S->getPointerInfo(), S->getAlignment(),
10640 S->getMemOperand()->getFlags());
10643 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10644 /// post-increment LD1R.
10645 static SDValue performPostLD1Combine(SDNode *N,
10646 TargetLowering::DAGCombinerInfo &DCI,
10647 bool IsLaneOp) {
10648 if (DCI.isBeforeLegalizeOps())
10649 return SDValue();
10651 SelectionDAG &DAG = DCI.DAG;
10652 EVT VT = N->getValueType(0);
10654 unsigned LoadIdx = IsLaneOp ? 1 : 0;
10655 SDNode *LD = N->getOperand(LoadIdx).getNode();
10656 // If it is not LOAD, can not do such combine.
10657 if (LD->getOpcode() != ISD::LOAD)
10658 return SDValue();
10660 // The vector lane must be a constant in the LD1LANE opcode.
10661 SDValue Lane;
10662 if (IsLaneOp) {
10663 Lane = N->getOperand(2);
10664 auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10665 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10666 return SDValue();
10669 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10670 EVT MemVT = LoadSDN->getMemoryVT();
10671 // Check if memory operand is the same type as the vector element.
10672 if (MemVT != VT.getVectorElementType())
10673 return SDValue();
10675 // Check if there are other uses. If so, do not combine as it will introduce
10676 // an extra load.
10677 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10678 ++UI) {
10679 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10680 continue;
10681 if (*UI != N)
10682 return SDValue();
10685 SDValue Addr = LD->getOperand(1);
10686 SDValue Vector = N->getOperand(0);
10687 // Search for a use of the address operand that is an increment.
10688 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10689 Addr.getNode()->use_end(); UI != UE; ++UI) {
10690 SDNode *User = *UI;
10691 if (User->getOpcode() != ISD::ADD
10692 || UI.getUse().getResNo() != Addr.getResNo())
10693 continue;
10695 // If the increment is a constant, it must match the memory ref size.
10696 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10697 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10698 uint32_t IncVal = CInc->getZExtValue();
10699 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10700 if (IncVal != NumBytes)
10701 continue;
10702 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10705 // To avoid cycle construction make sure that neither the load nor the add
10706 // are predecessors to each other or the Vector.
10707 SmallPtrSet<const SDNode *, 32> Visited;
10708 SmallVector<const SDNode *, 16> Worklist;
10709 Visited.insert(Addr.getNode());
10710 Worklist.push_back(User);
10711 Worklist.push_back(LD);
10712 Worklist.push_back(Vector.getNode());
10713 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
10714 SDNode::hasPredecessorHelper(User, Visited, Worklist))
10715 continue;
10717 SmallVector<SDValue, 8> Ops;
10718 Ops.push_back(LD->getOperand(0)); // Chain
10719 if (IsLaneOp) {
10720 Ops.push_back(Vector); // The vector to be inserted
10721 Ops.push_back(Lane); // The lane to be inserted in the vector
10723 Ops.push_back(Addr);
10724 Ops.push_back(Inc);
10726 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10727 SDVTList SDTys = DAG.getVTList(Tys);
10728 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10729 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10730 MemVT,
10731 LoadSDN->getMemOperand());
10733 // Update the uses.
10734 SDValue NewResults[] = {
10735 SDValue(LD, 0), // The result of load
10736 SDValue(UpdN.getNode(), 2) // Chain
10738 DCI.CombineTo(LD, NewResults);
10739 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
10740 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
10742 break;
10744 return SDValue();
10747 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10748 /// address translation.
10749 static bool performTBISimplification(SDValue Addr,
10750 TargetLowering::DAGCombinerInfo &DCI,
10751 SelectionDAG &DAG) {
10752 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10753 KnownBits Known;
10754 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10755 !DCI.isBeforeLegalizeOps());
10756 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10757 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10758 DCI.CommitTargetLoweringOpt(TLO);
10759 return true;
10761 return false;
10764 static SDValue performSTORECombine(SDNode *N,
10765 TargetLowering::DAGCombinerInfo &DCI,
10766 SelectionDAG &DAG,
10767 const AArch64Subtarget *Subtarget) {
10768 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10769 return Split;
10771 if (Subtarget->supportsAddressTopByteIgnored() &&
10772 performTBISimplification(N->getOperand(2), DCI, DAG))
10773 return SDValue(N, 0);
10775 return SDValue();
10779 /// Target-specific DAG combine function for NEON load/store intrinsics
10780 /// to merge base address updates.
10781 static SDValue performNEONPostLDSTCombine(SDNode *N,
10782 TargetLowering::DAGCombinerInfo &DCI,
10783 SelectionDAG &DAG) {
10784 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10785 return SDValue();
10787 unsigned AddrOpIdx = N->getNumOperands() - 1;
10788 SDValue Addr = N->getOperand(AddrOpIdx);
10790 // Search for a use of the address operand that is an increment.
10791 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10792 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10793 SDNode *User = *UI;
10794 if (User->getOpcode() != ISD::ADD ||
10795 UI.getUse().getResNo() != Addr.getResNo())
10796 continue;
10798 // Check that the add is independent of the load/store. Otherwise, folding
10799 // it would create a cycle.
10800 SmallPtrSet<const SDNode *, 32> Visited;
10801 SmallVector<const SDNode *, 16> Worklist;
10802 Visited.insert(Addr.getNode());
10803 Worklist.push_back(N);
10804 Worklist.push_back(User);
10805 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
10806 SDNode::hasPredecessorHelper(User, Visited, Worklist))
10807 continue;
10809 // Find the new opcode for the updating load/store.
10810 bool IsStore = false;
10811 bool IsLaneOp = false;
10812 bool IsDupOp = false;
10813 unsigned NewOpc = 0;
10814 unsigned NumVecs = 0;
10815 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10816 switch (IntNo) {
10817 default: llvm_unreachable("unexpected intrinsic for Neon base update");
10818 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
10819 NumVecs = 2; break;
10820 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
10821 NumVecs = 3; break;
10822 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
10823 NumVecs = 4; break;
10824 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
10825 NumVecs = 2; IsStore = true; break;
10826 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
10827 NumVecs = 3; IsStore = true; break;
10828 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
10829 NumVecs = 4; IsStore = true; break;
10830 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
10831 NumVecs = 2; break;
10832 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
10833 NumVecs = 3; break;
10834 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
10835 NumVecs = 4; break;
10836 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
10837 NumVecs = 2; IsStore = true; break;
10838 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
10839 NumVecs = 3; IsStore = true; break;
10840 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
10841 NumVecs = 4; IsStore = true; break;
10842 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
10843 NumVecs = 2; IsDupOp = true; break;
10844 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
10845 NumVecs = 3; IsDupOp = true; break;
10846 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
10847 NumVecs = 4; IsDupOp = true; break;
10848 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
10849 NumVecs = 2; IsLaneOp = true; break;
10850 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
10851 NumVecs = 3; IsLaneOp = true; break;
10852 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
10853 NumVecs = 4; IsLaneOp = true; break;
10854 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
10855 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
10856 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
10857 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
10858 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
10859 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
10862 EVT VecTy;
10863 if (IsStore)
10864 VecTy = N->getOperand(2).getValueType();
10865 else
10866 VecTy = N->getValueType(0);
10868 // If the increment is a constant, it must match the memory ref size.
10869 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10870 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10871 uint32_t IncVal = CInc->getZExtValue();
10872 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10873 if (IsLaneOp || IsDupOp)
10874 NumBytes /= VecTy.getVectorNumElements();
10875 if (IncVal != NumBytes)
10876 continue;
10877 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10879 SmallVector<SDValue, 8> Ops;
10880 Ops.push_back(N->getOperand(0)); // Incoming chain
10881 // Load lane and store have vector list as input.
10882 if (IsLaneOp || IsStore)
10883 for (unsigned i = 2; i < AddrOpIdx; ++i)
10884 Ops.push_back(N->getOperand(i));
10885 Ops.push_back(Addr); // Base register
10886 Ops.push_back(Inc);
10888 // Return Types.
10889 EVT Tys[6];
10890 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
10891 unsigned n;
10892 for (n = 0; n < NumResultVecs; ++n)
10893 Tys[n] = VecTy;
10894 Tys[n++] = MVT::i64; // Type of write back register
10895 Tys[n] = MVT::Other; // Type of the chain
10896 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
10898 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
10899 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
10900 MemInt->getMemoryVT(),
10901 MemInt->getMemOperand());
10903 // Update the uses.
10904 std::vector<SDValue> NewResults;
10905 for (unsigned i = 0; i < NumResultVecs; ++i) {
10906 NewResults.push_back(SDValue(UpdN.getNode(), i));
10908 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
10909 DCI.CombineTo(N, NewResults);
10910 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10912 break;
10914 return SDValue();
10917 // Checks to see if the value is the prescribed width and returns information
10918 // about its extension mode.
10919 static
10920 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
10921 ExtType = ISD::NON_EXTLOAD;
10922 switch(V.getNode()->getOpcode()) {
10923 default:
10924 return false;
10925 case ISD::LOAD: {
10926 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
10927 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
10928 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
10929 ExtType = LoadNode->getExtensionType();
10930 return true;
10932 return false;
10934 case ISD::AssertSext: {
10935 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10936 if ((TypeNode->getVT() == MVT::i8 && width == 8)
10937 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10938 ExtType = ISD::SEXTLOAD;
10939 return true;
10941 return false;
10943 case ISD::AssertZext: {
10944 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10945 if ((TypeNode->getVT() == MVT::i8 && width == 8)
10946 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10947 ExtType = ISD::ZEXTLOAD;
10948 return true;
10950 return false;
10952 case ISD::Constant:
10953 case ISD::TargetConstant: {
10954 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
10955 1LL << (width - 1);
10959 return true;
10962 // This function does a whole lot of voodoo to determine if the tests are
10963 // equivalent without and with a mask. Essentially what happens is that given a
10964 // DAG resembling:
10966 // +-------------+ +-------------+ +-------------+ +-------------+
10967 // | Input | | AddConstant | | CompConstant| | CC |
10968 // +-------------+ +-------------+ +-------------+ +-------------+
10969 // | | | |
10970 // V V | +----------+
10971 // +-------------+ +----+ | |
10972 // | ADD | |0xff| | |
10973 // +-------------+ +----+ | |
10974 // | | | |
10975 // V V | |
10976 // +-------------+ | |
10977 // | AND | | |
10978 // +-------------+ | |
10979 // | | |
10980 // +-----+ | |
10981 // | | |
10982 // V V V
10983 // +-------------+
10984 // | CMP |
10985 // +-------------+
10987 // The AND node may be safely removed for some combinations of inputs. In
10988 // particular we need to take into account the extension type of the Input,
10989 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
10990 // width of the input (this can work for any width inputs, the above graph is
10991 // specific to 8 bits.
10993 // The specific equations were worked out by generating output tables for each
10994 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
10995 // problem was simplified by working with 4 bit inputs, which means we only
10996 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
10997 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
10998 // patterns present in both extensions (0,7). For every distinct set of
10999 // AddConstant and CompConstants bit patterns we can consider the masked and
11000 // unmasked versions to be equivalent if the result of this function is true for
11001 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11003 // sub w8, w0, w1
11004 // and w10, w8, #0x0f
11005 // cmp w8, w2
11006 // cset w9, AArch64CC
11007 // cmp w10, w2
11008 // cset w11, AArch64CC
11009 // cmp w9, w11
11010 // cset w0, eq
11011 // ret
11013 // Since the above function shows when the outputs are equivalent it defines
11014 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11015 // would be expensive to run during compiles. The equations below were written
11016 // in a test harness that confirmed they gave equivalent outputs to the above
11017 // for all inputs function, so they can be used determine if the removal is
11018 // legal instead.
11020 // isEquivalentMaskless() is the code for testing if the AND can be removed
11021 // factored out of the DAG recognition as the DAG can take several forms.
11023 static bool isEquivalentMaskless(unsigned CC, unsigned width,
11024 ISD::LoadExtType ExtType, int AddConstant,
11025 int CompConstant) {
11026 // By being careful about our equations and only writing the in term
11027 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11028 // make them generally applicable to all bit widths.
11029 int MaxUInt = (1 << width);
11031 // For the purposes of these comparisons sign extending the type is
11032 // equivalent to zero extending the add and displacing it by half the integer
11033 // width. Provided we are careful and make sure our equations are valid over
11034 // the whole range we can just adjust the input and avoid writing equations
11035 // for sign extended inputs.
11036 if (ExtType == ISD::SEXTLOAD)
11037 AddConstant -= (1 << (width-1));
11039 switch(CC) {
11040 case AArch64CC::LE:
11041 case AArch64CC::GT:
11042 if ((AddConstant == 0) ||
11043 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
11044 (AddConstant >= 0 && CompConstant < 0) ||
11045 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
11046 return true;
11047 break;
11048 case AArch64CC::LT:
11049 case AArch64CC::GE:
11050 if ((AddConstant == 0) ||
11051 (AddConstant >= 0 && CompConstant <= 0) ||
11052 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
11053 return true;
11054 break;
11055 case AArch64CC::HI:
11056 case AArch64CC::LS:
11057 if ((AddConstant >= 0 && CompConstant < 0) ||
11058 (AddConstant <= 0 && CompConstant >= -1 &&
11059 CompConstant < AddConstant + MaxUInt))
11060 return true;
11061 break;
11062 case AArch64CC::PL:
11063 case AArch64CC::MI:
11064 if ((AddConstant == 0) ||
11065 (AddConstant > 0 && CompConstant <= 0) ||
11066 (AddConstant < 0 && CompConstant <= AddConstant))
11067 return true;
11068 break;
11069 case AArch64CC::LO:
11070 case AArch64CC::HS:
11071 if ((AddConstant >= 0 && CompConstant <= 0) ||
11072 (AddConstant <= 0 && CompConstant >= 0 &&
11073 CompConstant <= AddConstant + MaxUInt))
11074 return true;
11075 break;
11076 case AArch64CC::EQ:
11077 case AArch64CC::NE:
11078 if ((AddConstant > 0 && CompConstant < 0) ||
11079 (AddConstant < 0 && CompConstant >= 0 &&
11080 CompConstant < AddConstant + MaxUInt) ||
11081 (AddConstant >= 0 && CompConstant >= 0 &&
11082 CompConstant >= AddConstant) ||
11083 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
11084 return true;
11085 break;
11086 case AArch64CC::VS:
11087 case AArch64CC::VC:
11088 case AArch64CC::AL:
11089 case AArch64CC::NV:
11090 return true;
11091 case AArch64CC::Invalid:
11092 break;
11095 return false;
11098 static
11099 SDValue performCONDCombine(SDNode *N,
11100 TargetLowering::DAGCombinerInfo &DCI,
11101 SelectionDAG &DAG, unsigned CCIndex,
11102 unsigned CmpIndex) {
11103 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
11104 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
11105 unsigned CondOpcode = SubsNode->getOpcode();
11107 if (CondOpcode != AArch64ISD::SUBS)
11108 return SDValue();
11110 // There is a SUBS feeding this condition. Is it fed by a mask we can
11111 // use?
11113 SDNode *AndNode = SubsNode->getOperand(0).getNode();
11114 unsigned MaskBits = 0;
11116 if (AndNode->getOpcode() != ISD::AND)
11117 return SDValue();
11119 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
11120 uint32_t CNV = CN->getZExtValue();
11121 if (CNV == 255)
11122 MaskBits = 8;
11123 else if (CNV == 65535)
11124 MaskBits = 16;
11127 if (!MaskBits)
11128 return SDValue();
11130 SDValue AddValue = AndNode->getOperand(0);
11132 if (AddValue.getOpcode() != ISD::ADD)
11133 return SDValue();
11135 // The basic dag structure is correct, grab the inputs and validate them.
11137 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
11138 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
11139 SDValue SubsInputValue = SubsNode->getOperand(1);
11141 // The mask is present and the provenance of all the values is a smaller type,
11142 // lets see if the mask is superfluous.
11144 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
11145 !isa<ConstantSDNode>(SubsInputValue.getNode()))
11146 return SDValue();
11148 ISD::LoadExtType ExtType;
11150 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
11151 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
11152 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
11153 return SDValue();
11155 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
11156 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
11157 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
11158 return SDValue();
11160 // The AND is not necessary, remove it.
11162 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
11163 SubsNode->getValueType(1));
11164 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
11166 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
11167 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
11169 return SDValue(N, 0);
11172 // Optimize compare with zero and branch.
11173 static SDValue performBRCONDCombine(SDNode *N,
11174 TargetLowering::DAGCombinerInfo &DCI,
11175 SelectionDAG &DAG) {
11176 MachineFunction &MF = DAG.getMachineFunction();
11177 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
11178 // will not be produced, as they are conditional branch instructions that do
11179 // not set flags.
11180 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
11181 return SDValue();
11183 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
11184 N = NV.getNode();
11185 SDValue Chain = N->getOperand(0);
11186 SDValue Dest = N->getOperand(1);
11187 SDValue CCVal = N->getOperand(2);
11188 SDValue Cmp = N->getOperand(3);
11190 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
11191 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
11192 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
11193 return SDValue();
11195 unsigned CmpOpc = Cmp.getOpcode();
11196 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
11197 return SDValue();
11199 // Only attempt folding if there is only one use of the flag and no use of the
11200 // value.
11201 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
11202 return SDValue();
11204 SDValue LHS = Cmp.getOperand(0);
11205 SDValue RHS = Cmp.getOperand(1);
11207 assert(LHS.getValueType() == RHS.getValueType() &&
11208 "Expected the value type to be the same for both operands!");
11209 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
11210 return SDValue();
11212 if (isNullConstant(LHS))
11213 std::swap(LHS, RHS);
11215 if (!isNullConstant(RHS))
11216 return SDValue();
11218 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
11219 LHS.getOpcode() == ISD::SRL)
11220 return SDValue();
11222 // Fold the compare into the branch instruction.
11223 SDValue BR;
11224 if (CC == AArch64CC::EQ)
11225 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11226 else
11227 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11229 // Do not add new nodes to DAG combiner worklist.
11230 DCI.CombineTo(N, BR, false);
11232 return SDValue();
11235 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
11236 // as well as whether the test should be inverted. This code is required to
11237 // catch these cases (as opposed to standard dag combines) because
11238 // AArch64ISD::TBZ is matched during legalization.
11239 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
11240 SelectionDAG &DAG) {
11242 if (!Op->hasOneUse())
11243 return Op;
11245 // We don't handle undef/constant-fold cases below, as they should have
11246 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
11247 // etc.)
11249 // (tbz (trunc x), b) -> (tbz x, b)
11250 // This case is just here to enable more of the below cases to be caught.
11251 if (Op->getOpcode() == ISD::TRUNCATE &&
11252 Bit < Op->getValueType(0).getSizeInBits()) {
11253 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11256 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
11257 if (Op->getOpcode() == ISD::ANY_EXTEND &&
11258 Bit < Op->getOperand(0).getValueSizeInBits()) {
11259 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11262 if (Op->getNumOperands() != 2)
11263 return Op;
11265 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11266 if (!C)
11267 return Op;
11269 switch (Op->getOpcode()) {
11270 default:
11271 return Op;
11273 // (tbz (and x, m), b) -> (tbz x, b)
11274 case ISD::AND:
11275 if ((C->getZExtValue() >> Bit) & 1)
11276 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11277 return Op;
11279 // (tbz (shl x, c), b) -> (tbz x, b-c)
11280 case ISD::SHL:
11281 if (C->getZExtValue() <= Bit &&
11282 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11283 Bit = Bit - C->getZExtValue();
11284 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11286 return Op;
11288 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
11289 case ISD::SRA:
11290 Bit = Bit + C->getZExtValue();
11291 if (Bit >= Op->getValueType(0).getSizeInBits())
11292 Bit = Op->getValueType(0).getSizeInBits() - 1;
11293 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11295 // (tbz (srl x, c), b) -> (tbz x, b+c)
11296 case ISD::SRL:
11297 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11298 Bit = Bit + C->getZExtValue();
11299 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11301 return Op;
11303 // (tbz (xor x, -1), b) -> (tbnz x, b)
11304 case ISD::XOR:
11305 if ((C->getZExtValue() >> Bit) & 1)
11306 Invert = !Invert;
11307 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11311 // Optimize test single bit zero/non-zero and branch.
11312 static SDValue performTBZCombine(SDNode *N,
11313 TargetLowering::DAGCombinerInfo &DCI,
11314 SelectionDAG &DAG) {
11315 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11316 bool Invert = false;
11317 SDValue TestSrc = N->getOperand(1);
11318 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
11320 if (TestSrc == NewTestSrc)
11321 return SDValue();
11323 unsigned NewOpc = N->getOpcode();
11324 if (Invert) {
11325 if (NewOpc == AArch64ISD::TBZ)
11326 NewOpc = AArch64ISD::TBNZ;
11327 else {
11328 assert(NewOpc == AArch64ISD::TBNZ);
11329 NewOpc = AArch64ISD::TBZ;
11333 SDLoc DL(N);
11334 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
11335 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
11338 // vselect (v1i1 setcc) ->
11339 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
11340 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11341 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11342 // such VSELECT.
11343 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
11344 SDValue N0 = N->getOperand(0);
11345 EVT CCVT = N0.getValueType();
11347 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
11348 CCVT.getVectorElementType() != MVT::i1)
11349 return SDValue();
11351 EVT ResVT = N->getValueType(0);
11352 EVT CmpVT = N0.getOperand(0).getValueType();
11353 // Only combine when the result type is of the same size as the compared
11354 // operands.
11355 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
11356 return SDValue();
11358 SDValue IfTrue = N->getOperand(1);
11359 SDValue IfFalse = N->getOperand(2);
11360 SDValue SetCC =
11361 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
11362 N0.getOperand(0), N0.getOperand(1),
11363 cast<CondCodeSDNode>(N0.getOperand(2))->get());
11364 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
11365 IfTrue, IfFalse);
11368 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11369 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11370 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11371 /// with a vector one followed by a DUP shuffle on the result.
11372 static SDValue performSelectCombine(SDNode *N,
11373 TargetLowering::DAGCombinerInfo &DCI) {
11374 SelectionDAG &DAG = DCI.DAG;
11375 SDValue N0 = N->getOperand(0);
11376 EVT ResVT = N->getValueType(0);
11378 if (N0.getOpcode() != ISD::SETCC)
11379 return SDValue();
11381 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11382 // scalar SetCCResultType. We also don't expect vectors, because we assume
11383 // that selects fed by vector SETCCs are canonicalized to VSELECT.
11384 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
11385 "Scalar-SETCC feeding SELECT has unexpected result type!");
11387 // If NumMaskElts == 0, the comparison is larger than select result. The
11388 // largest real NEON comparison is 64-bits per lane, which means the result is
11389 // at most 32-bits and an illegal vector. Just bail out for now.
11390 EVT SrcVT = N0.getOperand(0).getValueType();
11392 // Don't try to do this optimization when the setcc itself has i1 operands.
11393 // There are no legal vectors of i1, so this would be pointless.
11394 if (SrcVT == MVT::i1)
11395 return SDValue();
11397 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
11398 if (!ResVT.isVector() || NumMaskElts == 0)
11399 return SDValue();
11401 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
11402 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
11404 // Also bail out if the vector CCVT isn't the same size as ResVT.
11405 // This can happen if the SETCC operand size doesn't divide the ResVT size
11406 // (e.g., f64 vs v3f32).
11407 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
11408 return SDValue();
11410 // Make sure we didn't create illegal types, if we're not supposed to.
11411 assert(DCI.isBeforeLegalize() ||
11412 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
11414 // First perform a vector comparison, where lane 0 is the one we're interested
11415 // in.
11416 SDLoc DL(N0);
11417 SDValue LHS =
11418 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
11419 SDValue RHS =
11420 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
11421 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
11423 // Now duplicate the comparison mask we want across all other lanes.
11424 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
11425 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
11426 Mask = DAG.getNode(ISD::BITCAST, DL,
11427 ResVT.changeVectorElementTypeToInteger(), Mask);
11429 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
11432 /// Get rid of unnecessary NVCASTs (that don't change the type).
11433 static SDValue performNVCASTCombine(SDNode *N) {
11434 if (N->getValueType(0) == N->getOperand(0).getValueType())
11435 return N->getOperand(0);
11437 return SDValue();
11440 // If all users of the globaladdr are of the form (globaladdr + constant), find
11441 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11442 // globaladdr as (globaladdr + constant) - constant.
11443 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
11444 const AArch64Subtarget *Subtarget,
11445 const TargetMachine &TM) {
11446 auto *GN = cast<GlobalAddressSDNode>(N);
11447 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
11448 AArch64II::MO_NO_FLAG)
11449 return SDValue();
11451 uint64_t MinOffset = -1ull;
11452 for (SDNode *N : GN->uses()) {
11453 if (N->getOpcode() != ISD::ADD)
11454 return SDValue();
11455 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
11456 if (!C)
11457 C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11458 if (!C)
11459 return SDValue();
11460 MinOffset = std::min(MinOffset, C->getZExtValue());
11462 uint64_t Offset = MinOffset + GN->getOffset();
11464 // Require that the new offset is larger than the existing one. Otherwise, we
11465 // can end up oscillating between two possible DAGs, for example,
11466 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11467 if (Offset <= uint64_t(GN->getOffset()))
11468 return SDValue();
11470 // Check whether folding this offset is legal. It must not go out of bounds of
11471 // the referenced object to avoid violating the code model, and must be
11472 // smaller than 2^21 because this is the largest offset expressible in all
11473 // object formats.
11475 // This check also prevents us from folding negative offsets, which will end
11476 // up being treated in the same way as large positive ones. They could also
11477 // cause code model violations, and aren't really common enough to matter.
11478 if (Offset >= (1 << 21))
11479 return SDValue();
11481 const GlobalValue *GV = GN->getGlobal();
11482 Type *T = GV->getValueType();
11483 if (!T->isSized() ||
11484 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
11485 return SDValue();
11487 SDLoc DL(GN);
11488 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
11489 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
11490 DAG.getConstant(MinOffset, DL, MVT::i64));
11493 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
11494 DAGCombinerInfo &DCI) const {
11495 SelectionDAG &DAG = DCI.DAG;
11496 switch (N->getOpcode()) {
11497 default:
11498 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11499 break;
11500 case ISD::ADD:
11501 case ISD::SUB:
11502 return performAddSubLongCombine(N, DCI, DAG);
11503 case ISD::XOR:
11504 return performXorCombine(N, DAG, DCI, Subtarget);
11505 case ISD::MUL:
11506 return performMulCombine(N, DAG, DCI, Subtarget);
11507 case ISD::SINT_TO_FP:
11508 case ISD::UINT_TO_FP:
11509 return performIntToFpCombine(N, DAG, Subtarget);
11510 case ISD::FP_TO_SINT:
11511 case ISD::FP_TO_UINT:
11512 return performFpToIntCombine(N, DAG, DCI, Subtarget);
11513 case ISD::FDIV:
11514 return performFDivCombine(N, DAG, DCI, Subtarget);
11515 case ISD::OR:
11516 return performORCombine(N, DCI, Subtarget);
11517 case ISD::AND:
11518 return performANDCombine(N, DCI);
11519 case ISD::SRL:
11520 return performSRLCombine(N, DCI);
11521 case ISD::INTRINSIC_WO_CHAIN:
11522 return performIntrinsicCombine(N, DCI, Subtarget);
11523 case ISD::ANY_EXTEND:
11524 case ISD::ZERO_EXTEND:
11525 case ISD::SIGN_EXTEND:
11526 return performExtendCombine(N, DCI, DAG);
11527 case ISD::BITCAST:
11528 return performBitcastCombine(N, DCI, DAG);
11529 case ISD::CONCAT_VECTORS:
11530 return performConcatVectorsCombine(N, DCI, DAG);
11531 case ISD::SELECT:
11532 return performSelectCombine(N, DCI);
11533 case ISD::VSELECT:
11534 return performVSelectCombine(N, DCI.DAG);
11535 case ISD::LOAD:
11536 if (performTBISimplification(N->getOperand(1), DCI, DAG))
11537 return SDValue(N, 0);
11538 break;
11539 case ISD::STORE:
11540 return performSTORECombine(N, DCI, DAG, Subtarget);
11541 case AArch64ISD::BRCOND:
11542 return performBRCONDCombine(N, DCI, DAG);
11543 case AArch64ISD::TBNZ:
11544 case AArch64ISD::TBZ:
11545 return performTBZCombine(N, DCI, DAG);
11546 case AArch64ISD::CSEL:
11547 return performCONDCombine(N, DCI, DAG, 2, 3);
11548 case AArch64ISD::DUP:
11549 return performPostLD1Combine(N, DCI, false);
11550 case AArch64ISD::NVCAST:
11551 return performNVCASTCombine(N);
11552 case ISD::INSERT_VECTOR_ELT:
11553 return performPostLD1Combine(N, DCI, true);
11554 case ISD::INTRINSIC_VOID:
11555 case ISD::INTRINSIC_W_CHAIN:
11556 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11557 case Intrinsic::aarch64_neon_ld2:
11558 case Intrinsic::aarch64_neon_ld3:
11559 case Intrinsic::aarch64_neon_ld4:
11560 case Intrinsic::aarch64_neon_ld1x2:
11561 case Intrinsic::aarch64_neon_ld1x3:
11562 case Intrinsic::aarch64_neon_ld1x4:
11563 case Intrinsic::aarch64_neon_ld2lane:
11564 case Intrinsic::aarch64_neon_ld3lane:
11565 case Intrinsic::aarch64_neon_ld4lane:
11566 case Intrinsic::aarch64_neon_ld2r:
11567 case Intrinsic::aarch64_neon_ld3r:
11568 case Intrinsic::aarch64_neon_ld4r:
11569 case Intrinsic::aarch64_neon_st2:
11570 case Intrinsic::aarch64_neon_st3:
11571 case Intrinsic::aarch64_neon_st4:
11572 case Intrinsic::aarch64_neon_st1x2:
11573 case Intrinsic::aarch64_neon_st1x3:
11574 case Intrinsic::aarch64_neon_st1x4:
11575 case Intrinsic::aarch64_neon_st2lane:
11576 case Intrinsic::aarch64_neon_st3lane:
11577 case Intrinsic::aarch64_neon_st4lane:
11578 return performNEONPostLDSTCombine(N, DCI, DAG);
11579 default:
11580 break;
11582 break;
11583 case ISD::GlobalAddress:
11584 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11586 return SDValue();
11589 // Check if the return value is used as only a return value, as otherwise
11590 // we can't perform a tail-call. In particular, we need to check for
11591 // target ISD nodes that are returns and any other "odd" constructs
11592 // that the generic analysis code won't necessarily catch.
11593 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11594 SDValue &Chain) const {
11595 if (N->getNumValues() != 1)
11596 return false;
11597 if (!N->hasNUsesOfValue(1, 0))
11598 return false;
11600 SDValue TCChain = Chain;
11601 SDNode *Copy = *N->use_begin();
11602 if (Copy->getOpcode() == ISD::CopyToReg) {
11603 // If the copy has a glue operand, we conservatively assume it isn't safe to
11604 // perform a tail call.
11605 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11606 MVT::Glue)
11607 return false;
11608 TCChain = Copy->getOperand(0);
11609 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11610 return false;
11612 bool HasRet = false;
11613 for (SDNode *Node : Copy->uses()) {
11614 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11615 return false;
11616 HasRet = true;
11619 if (!HasRet)
11620 return false;
11622 Chain = TCChain;
11623 return true;
11626 // Return whether the an instruction can potentially be optimized to a tail
11627 // call. This will cause the optimizers to attempt to move, or duplicate,
11628 // return instructions to help enable tail call optimizations for this
11629 // instruction.
11630 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11631 return CI->isTailCall();
11634 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11635 SDValue &Offset,
11636 ISD::MemIndexedMode &AM,
11637 bool &IsInc,
11638 SelectionDAG &DAG) const {
11639 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11640 return false;
11642 Base = Op->getOperand(0);
11643 // All of the indexed addressing mode instructions take a signed
11644 // 9 bit immediate offset.
11645 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11646 int64_t RHSC = RHS->getSExtValue();
11647 if (Op->getOpcode() == ISD::SUB)
11648 RHSC = -(uint64_t)RHSC;
11649 if (!isInt<9>(RHSC))
11650 return false;
11651 IsInc = (Op->getOpcode() == ISD::ADD);
11652 Offset = Op->getOperand(1);
11653 return true;
11655 return false;
11658 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11659 SDValue &Offset,
11660 ISD::MemIndexedMode &AM,
11661 SelectionDAG &DAG) const {
11662 EVT VT;
11663 SDValue Ptr;
11664 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11665 VT = LD->getMemoryVT();
11666 Ptr = LD->getBasePtr();
11667 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11668 VT = ST->getMemoryVT();
11669 Ptr = ST->getBasePtr();
11670 } else
11671 return false;
11673 bool IsInc;
11674 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11675 return false;
11676 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11677 return true;
11680 bool AArch64TargetLowering::getPostIndexedAddressParts(
11681 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11682 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11683 EVT VT;
11684 SDValue Ptr;
11685 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11686 VT = LD->getMemoryVT();
11687 Ptr = LD->getBasePtr();
11688 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11689 VT = ST->getMemoryVT();
11690 Ptr = ST->getBasePtr();
11691 } else
11692 return false;
11694 bool IsInc;
11695 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11696 return false;
11697 // Post-indexing updates the base, so it's not a valid transform
11698 // if that's not the same as the load's pointer.
11699 if (Ptr != Base)
11700 return false;
11701 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11702 return true;
11705 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11706 SelectionDAG &DAG) {
11707 SDLoc DL(N);
11708 SDValue Op = N->getOperand(0);
11710 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11711 return;
11713 Op = SDValue(
11714 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11715 DAG.getUNDEF(MVT::i32), Op,
11716 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11718 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11719 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11722 static void ReplaceReductionResults(SDNode *N,
11723 SmallVectorImpl<SDValue> &Results,
11724 SelectionDAG &DAG, unsigned InterOp,
11725 unsigned AcrossOp) {
11726 EVT LoVT, HiVT;
11727 SDValue Lo, Hi;
11728 SDLoc dl(N);
11729 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11730 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11731 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11732 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11733 Results.push_back(SplitVal);
11736 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11737 SDLoc DL(N);
11738 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11739 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11740 DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11741 DAG.getConstant(64, DL, MVT::i64)));
11742 return std::make_pair(Lo, Hi);
11745 // Create an even/odd pair of X registers holding integer value V.
11746 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11747 SDLoc dl(V.getNode());
11748 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11749 SDValue VHi = DAG.getAnyExtOrTrunc(
11750 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11751 dl, MVT::i64);
11752 if (DAG.getDataLayout().isBigEndian())
11753 std::swap (VLo, VHi);
11754 SDValue RegClass =
11755 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11756 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11757 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11758 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11759 return SDValue(
11760 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11763 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11764 SmallVectorImpl<SDValue> &Results,
11765 SelectionDAG &DAG,
11766 const AArch64Subtarget *Subtarget) {
11767 assert(N->getValueType(0) == MVT::i128 &&
11768 "AtomicCmpSwap on types less than 128 should be legal");
11770 if (Subtarget->hasLSE()) {
11771 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11772 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11773 SDValue Ops[] = {
11774 createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11775 createGPRPairNode(DAG, N->getOperand(3)), // Store value
11776 N->getOperand(1), // Ptr
11777 N->getOperand(0), // Chain in
11780 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11782 unsigned Opcode;
11783 switch (MemOp->getOrdering()) {
11784 case AtomicOrdering::Monotonic:
11785 Opcode = AArch64::CASPX;
11786 break;
11787 case AtomicOrdering::Acquire:
11788 Opcode = AArch64::CASPAX;
11789 break;
11790 case AtomicOrdering::Release:
11791 Opcode = AArch64::CASPLX;
11792 break;
11793 case AtomicOrdering::AcquireRelease:
11794 case AtomicOrdering::SequentiallyConsistent:
11795 Opcode = AArch64::CASPALX;
11796 break;
11797 default:
11798 llvm_unreachable("Unexpected ordering!");
11801 MachineSDNode *CmpSwap = DAG.getMachineNode(
11802 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
11803 DAG.setNodeMemRefs(CmpSwap, {MemOp});
11805 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
11806 if (DAG.getDataLayout().isBigEndian())
11807 std::swap(SubReg1, SubReg2);
11808 Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
11809 SDValue(CmpSwap, 0)));
11810 Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
11811 SDValue(CmpSwap, 0)));
11812 Results.push_back(SDValue(CmpSwap, 1)); // Chain out
11813 return;
11816 auto Desired = splitInt128(N->getOperand(2), DAG);
11817 auto New = splitInt128(N->getOperand(3), DAG);
11818 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
11819 New.first, New.second, N->getOperand(0)};
11820 SDNode *CmpSwap = DAG.getMachineNode(
11821 AArch64::CMP_SWAP_128, SDLoc(N),
11822 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
11824 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11825 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
11827 Results.push_back(SDValue(CmpSwap, 0));
11828 Results.push_back(SDValue(CmpSwap, 1));
11829 Results.push_back(SDValue(CmpSwap, 3));
11832 void AArch64TargetLowering::ReplaceNodeResults(
11833 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
11834 switch (N->getOpcode()) {
11835 default:
11836 llvm_unreachable("Don't know how to custom expand this");
11837 case ISD::BITCAST:
11838 ReplaceBITCASTResults(N, Results, DAG);
11839 return;
11840 case ISD::VECREDUCE_ADD:
11841 case ISD::VECREDUCE_SMAX:
11842 case ISD::VECREDUCE_SMIN:
11843 case ISD::VECREDUCE_UMAX:
11844 case ISD::VECREDUCE_UMIN:
11845 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
11846 return;
11848 case AArch64ISD::SADDV:
11849 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
11850 return;
11851 case AArch64ISD::UADDV:
11852 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
11853 return;
11854 case AArch64ISD::SMINV:
11855 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
11856 return;
11857 case AArch64ISD::UMINV:
11858 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
11859 return;
11860 case AArch64ISD::SMAXV:
11861 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
11862 return;
11863 case AArch64ISD::UMAXV:
11864 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
11865 return;
11866 case ISD::FP_TO_UINT:
11867 case ISD::FP_TO_SINT:
11868 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
11869 // Let normal code take care of it by not adding anything to Results.
11870 return;
11871 case ISD::ATOMIC_CMP_SWAP:
11872 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
11873 return;
11877 bool AArch64TargetLowering::useLoadStackGuardNode() const {
11878 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
11879 return TargetLowering::useLoadStackGuardNode();
11880 return true;
11883 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
11884 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11885 // reciprocal if there are three or more FDIVs.
11886 return 3;
11889 TargetLoweringBase::LegalizeTypeAction
11890 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
11891 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
11892 // v4i16, v2i32 instead of to promote.
11893 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
11894 VT == MVT::v1f32)
11895 return TypeWidenVector;
11897 return TargetLoweringBase::getPreferredVectorAction(VT);
11900 // Loads and stores less than 128-bits are already atomic; ones above that
11901 // are doomed anyway, so defer to the default libcall and blame the OS when
11902 // things go wrong.
11903 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11904 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11905 return Size == 128;
11908 // Loads and stores less than 128-bits are already atomic; ones above that
11909 // are doomed anyway, so defer to the default libcall and blame the OS when
11910 // things go wrong.
11911 TargetLowering::AtomicExpansionKind
11912 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11913 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11914 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
11917 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
11918 TargetLowering::AtomicExpansionKind
11919 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11920 if (AI->isFloatingPointOperation())
11921 return AtomicExpansionKind::CmpXChg;
11923 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11924 if (Size > 128) return AtomicExpansionKind::None;
11925 // Nand not supported in LSE.
11926 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
11927 // Leave 128 bits to LLSC.
11928 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
11931 TargetLowering::AtomicExpansionKind
11932 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
11933 AtomicCmpXchgInst *AI) const {
11934 // If subtarget has LSE, leave cmpxchg intact for codegen.
11935 if (Subtarget->hasLSE())
11936 return AtomicExpansionKind::None;
11937 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
11938 // implement cmpxchg without spilling. If the address being exchanged is also
11939 // on the stack and close enough to the spill slot, this can lead to a
11940 // situation where the monitor always gets cleared and the atomic operation
11941 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
11942 if (getTargetMachine().getOptLevel() == 0)
11943 return AtomicExpansionKind::None;
11944 return AtomicExpansionKind::LLSC;
11947 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11948 AtomicOrdering Ord) const {
11949 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11950 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11951 bool IsAcquire = isAcquireOrStronger(Ord);
11953 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
11954 // intrinsic must return {i64, i64} and we have to recombine them into a
11955 // single i128 here.
11956 if (ValTy->getPrimitiveSizeInBits() == 128) {
11957 Intrinsic::ID Int =
11958 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
11959 Function *Ldxr = Intrinsic::getDeclaration(M, Int);
11961 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11962 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
11964 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11965 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11966 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11967 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11968 return Builder.CreateOr(
11969 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
11972 Type *Tys[] = { Addr->getType() };
11973 Intrinsic::ID Int =
11974 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
11975 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
11977 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
11979 const DataLayout &DL = M->getDataLayout();
11980 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
11981 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
11983 return Builder.CreateBitCast(Trunc, EltTy);
11986 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
11987 IRBuilder<> &Builder) const {
11988 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11989 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
11992 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
11993 Value *Val, Value *Addr,
11994 AtomicOrdering Ord) const {
11995 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11996 bool IsRelease = isReleaseOrStronger(Ord);
11998 // Since the intrinsics must have legal type, the i128 intrinsics take two
11999 // parameters: "i64, i64". We must marshal Val into the appropriate form
12000 // before the call.
12001 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
12002 Intrinsic::ID Int =
12003 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
12004 Function *Stxr = Intrinsic::getDeclaration(M, Int);
12005 Type *Int64Ty = Type::getInt64Ty(M->getContext());
12007 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
12008 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
12009 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12010 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
12013 Intrinsic::ID Int =
12014 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
12015 Type *Tys[] = { Addr->getType() };
12016 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
12018 const DataLayout &DL = M->getDataLayout();
12019 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
12020 Val = Builder.CreateBitCast(Val, IntValTy);
12022 return Builder.CreateCall(Stxr,
12023 {Builder.CreateZExtOrBitCast(
12024 Val, Stxr->getFunctionType()->getParamType(0)),
12025 Addr});
12028 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
12029 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
12030 return Ty->isArrayTy();
12033 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
12034 EVT) const {
12035 return false;
12038 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
12039 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
12040 Function *ThreadPointerFunc =
12041 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
12042 return IRB.CreatePointerCast(
12043 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
12044 Offset),
12045 IRB.getInt8PtrTy()->getPointerTo(0));
12048 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
12049 // Android provides a fixed TLS slot for the stack cookie. See the definition
12050 // of TLS_SLOT_STACK_GUARD in
12051 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12052 if (Subtarget->isTargetAndroid())
12053 return UseTlsOffset(IRB, 0x28);
12055 // Fuchsia is similar.
12056 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
12057 if (Subtarget->isTargetFuchsia())
12058 return UseTlsOffset(IRB, -0x10);
12060 return TargetLowering::getIRStackGuard(IRB);
12063 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
12064 // MSVC CRT provides functionalities for stack protection.
12065 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
12066 // MSVC CRT has a global variable holding security cookie.
12067 M.getOrInsertGlobal("__security_cookie",
12068 Type::getInt8PtrTy(M.getContext()));
12070 // MSVC CRT has a function to validate security cookie.
12071 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
12072 "__security_check_cookie", Type::getVoidTy(M.getContext()),
12073 Type::getInt8PtrTy(M.getContext()));
12074 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
12075 F->setCallingConv(CallingConv::Win64);
12076 F->addAttribute(1, Attribute::AttrKind::InReg);
12078 return;
12080 TargetLowering::insertSSPDeclarations(M);
12083 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
12084 // MSVC CRT has a global variable holding security cookie.
12085 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
12086 return M.getGlobalVariable("__security_cookie");
12087 return TargetLowering::getSDagStackGuard(M);
12090 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
12091 // MSVC CRT has a function to validate security cookie.
12092 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
12093 return M.getFunction("__security_check_cookie");
12094 return TargetLowering::getSSPStackGuardCheck(M);
12097 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
12098 // Android provides a fixed TLS slot for the SafeStack pointer. See the
12099 // definition of TLS_SLOT_SAFESTACK in
12100 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12101 if (Subtarget->isTargetAndroid())
12102 return UseTlsOffset(IRB, 0x48);
12104 // Fuchsia is similar.
12105 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
12106 if (Subtarget->isTargetFuchsia())
12107 return UseTlsOffset(IRB, -0x8);
12109 return TargetLowering::getSafeStackPointerLocation(IRB);
12112 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
12113 const Instruction &AndI) const {
12114 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
12115 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
12116 // may be beneficial to sink in other cases, but we would have to check that
12117 // the cmp would not get folded into the br to form a cbz for these to be
12118 // beneficial.
12119 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
12120 if (!Mask)
12121 return false;
12122 return Mask->getValue().isPowerOf2();
12125 bool AArch64TargetLowering::
12126 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12127 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
12128 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
12129 SelectionDAG &DAG) const {
12130 // Does baseline recommend not to perform the fold by default?
12131 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12132 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
12133 return false;
12134 // Else, if this is a vector shift, prefer 'shl'.
12135 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
12138 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
12139 SDNode *N) const {
12140 if (DAG.getMachineFunction().getFunction().hasMinSize() &&
12141 !Subtarget->isTargetWindows())
12142 return false;
12143 return true;
12146 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12147 // Update IsSplitCSR in AArch64unctionInfo.
12148 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
12149 AFI->setIsSplitCSR(true);
12152 void AArch64TargetLowering::insertCopiesSplitCSR(
12153 MachineBasicBlock *Entry,
12154 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12155 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
12156 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12157 if (!IStart)
12158 return;
12160 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12161 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12162 MachineBasicBlock::iterator MBBI = Entry->begin();
12163 for (const MCPhysReg *I = IStart; *I; ++I) {
12164 const TargetRegisterClass *RC = nullptr;
12165 if (AArch64::GPR64RegClass.contains(*I))
12166 RC = &AArch64::GPR64RegClass;
12167 else if (AArch64::FPR64RegClass.contains(*I))
12168 RC = &AArch64::FPR64RegClass;
12169 else
12170 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12172 Register NewVR = MRI->createVirtualRegister(RC);
12173 // Create copy from CSR to a virtual register.
12174 // FIXME: this currently does not emit CFI pseudo-instructions, it works
12175 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12176 // nounwind. If we want to generalize this later, we may need to emit
12177 // CFI pseudo-instructions.
12178 assert(Entry->getParent()->getFunction().hasFnAttribute(
12179 Attribute::NoUnwind) &&
12180 "Function should be nounwind in insertCopiesSplitCSR!");
12181 Entry->addLiveIn(*I);
12182 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12183 .addReg(*I);
12185 // Insert the copy-back instructions right before the terminator.
12186 for (auto *Exit : Exits)
12187 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12188 TII->get(TargetOpcode::COPY), *I)
12189 .addReg(NewVR);
12193 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
12194 // Integer division on AArch64 is expensive. However, when aggressively
12195 // optimizing for code size, we prefer to use a div instruction, as it is
12196 // usually smaller than the alternative sequence.
12197 // The exception to this is vector division. Since AArch64 doesn't have vector
12198 // integer division, leaving the division as-is is a loss even in terms of
12199 // size, because it will have to be scalarized, while the alternative code
12200 // sequence can be performed in vector form.
12201 bool OptSize =
12202 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
12203 return OptSize && !VT.isVector();
12206 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12207 // We want inc-of-add for scalars and sub-of-not for vectors.
12208 return VT.isScalarInteger();
12211 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
12212 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
12215 unsigned
12216 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
12217 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
12218 return getPointerTy(DL).getSizeInBits();
12220 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
12223 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
12224 MF.getFrameInfo().computeMaxCallFrameSize(MF);
12225 TargetLoweringBase::finalizeLowering(MF);
12228 // Unlike X86, we let frame lowering assign offsets to all catch objects.
12229 bool AArch64TargetLowering::needsFixedCatchObjects() const {
12230 return false;