1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CodeGen.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "AArch64GenInstrInfo.inc"
56 static cl::opt
<unsigned> TBZDisplacementBits(
57 "aarch64-tbz-offset-bits", cl::Hidden
, cl::init(14),
58 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
60 static cl::opt
<unsigned> CBZDisplacementBits(
61 "aarch64-cbz-offset-bits", cl::Hidden
, cl::init(19),
62 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
64 static cl::opt
<unsigned>
65 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden
, cl::init(19),
66 cl::desc("Restrict range of Bcc instructions (DEBUG)"));
68 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget
&STI
)
69 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN
, AArch64::ADJCALLSTACKUP
,
71 RI(STI
.getTargetTriple()), Subtarget(STI
) {}
73 /// GetInstSize - Return the number of bytes of code the specified
74 /// instruction may be. This returns the maximum number of bytes.
75 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
76 const MachineBasicBlock
&MBB
= *MI
.getParent();
77 const MachineFunction
*MF
= MBB
.getParent();
78 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
81 auto Op
= MI
.getOpcode();
82 if (Op
== AArch64::INLINEASM
|| Op
== AArch64::INLINEASM_BR
)
83 return getInlineAsmLength(MI
.getOperand(0).getSymbolName(), *MAI
);
86 // Meta-instructions emit no code.
87 if (MI
.isMetaInstruction())
90 // FIXME: We currently only handle pseudoinstructions that don't get expanded
91 // before the assembly printer.
92 unsigned NumBytes
= 0;
93 const MCInstrDesc
&Desc
= MI
.getDesc();
94 switch (Desc
.getOpcode()) {
96 // Anything not explicitly designated otherwise is a normal 4-byte insn.
99 case TargetOpcode::STACKMAP
:
100 // The upper bound for a stackmap intrinsic is the full length of its shadow
101 NumBytes
= StackMapOpers(&MI
).getNumPatchBytes();
102 assert(NumBytes
% 4 == 0 && "Invalid number of NOP bytes requested!");
104 case TargetOpcode::PATCHPOINT
:
105 // The size of the patchpoint intrinsic is the number of bytes requested
106 NumBytes
= PatchPointOpers(&MI
).getNumPatchBytes();
107 assert(NumBytes
% 4 == 0 && "Invalid number of NOP bytes requested!");
109 case AArch64::TLSDESC_CALLSEQ
:
110 // This gets lowered to an instruction sequence which takes 16 bytes
113 case AArch64::JumpTableDest32
:
114 case AArch64::JumpTableDest16
:
115 case AArch64::JumpTableDest8
:
119 NumBytes
= MI
.getOperand(1).getImm();
126 static void parseCondBranch(MachineInstr
*LastInst
, MachineBasicBlock
*&Target
,
127 SmallVectorImpl
<MachineOperand
> &Cond
) {
128 // Block ends with fall-through condbranch.
129 switch (LastInst
->getOpcode()) {
131 llvm_unreachable("Unknown branch instruction?");
133 Target
= LastInst
->getOperand(1).getMBB();
134 Cond
.push_back(LastInst
->getOperand(0));
140 Target
= LastInst
->getOperand(1).getMBB();
141 Cond
.push_back(MachineOperand::CreateImm(-1));
142 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
143 Cond
.push_back(LastInst
->getOperand(0));
149 Target
= LastInst
->getOperand(2).getMBB();
150 Cond
.push_back(MachineOperand::CreateImm(-1));
151 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
152 Cond
.push_back(LastInst
->getOperand(0));
153 Cond
.push_back(LastInst
->getOperand(1));
157 static unsigned getBranchDisplacementBits(unsigned Opc
) {
160 llvm_unreachable("unexpected opcode!");
167 return TBZDisplacementBits
;
172 return CBZDisplacementBits
;
174 return BCCDisplacementBits
;
178 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp
,
179 int64_t BrOffset
) const {
180 unsigned Bits
= getBranchDisplacementBits(BranchOp
);
181 assert(Bits
>= 3 && "max branch displacement must be enough to jump"
182 "over conditional branch expansion");
183 return isIntN(Bits
, BrOffset
/ 4);
187 AArch64InstrInfo::getBranchDestBlock(const MachineInstr
&MI
) const {
188 switch (MI
.getOpcode()) {
190 llvm_unreachable("unexpected opcode!");
192 return MI
.getOperand(0).getMBB();
197 return MI
.getOperand(2).getMBB();
203 return MI
.getOperand(1).getMBB();
208 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
209 MachineBasicBlock
*&TBB
,
210 MachineBasicBlock
*&FBB
,
211 SmallVectorImpl
<MachineOperand
> &Cond
,
212 bool AllowModify
) const {
213 // If the block has no terminators, it just falls into the block after it.
214 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
218 if (!isUnpredicatedTerminator(*I
))
221 // Get the last instruction in the block.
222 MachineInstr
*LastInst
= &*I
;
224 // If there is only one terminator instruction, process it.
225 unsigned LastOpc
= LastInst
->getOpcode();
226 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
227 if (isUncondBranchOpcode(LastOpc
)) {
228 TBB
= LastInst
->getOperand(0).getMBB();
231 if (isCondBranchOpcode(LastOpc
)) {
232 // Block ends with fall-through condbranch.
233 parseCondBranch(LastInst
, TBB
, Cond
);
236 return true; // Can't handle indirect branch.
239 // Get the instruction before it if it is a terminator.
240 MachineInstr
*SecondLastInst
= &*I
;
241 unsigned SecondLastOpc
= SecondLastInst
->getOpcode();
243 // If AllowModify is true and the block ends with two or more unconditional
244 // branches, delete all but the first unconditional branch.
245 if (AllowModify
&& isUncondBranchOpcode(LastOpc
)) {
246 while (isUncondBranchOpcode(SecondLastOpc
)) {
247 LastInst
->eraseFromParent();
248 LastInst
= SecondLastInst
;
249 LastOpc
= LastInst
->getOpcode();
250 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
251 // Return now the only terminator is an unconditional branch.
252 TBB
= LastInst
->getOperand(0).getMBB();
255 SecondLastInst
= &*I
;
256 SecondLastOpc
= SecondLastInst
->getOpcode();
261 // If there are three terminators, we don't know what sort of block this is.
262 if (SecondLastInst
&& I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
265 // If the block ends with a B and a Bcc, handle it.
266 if (isCondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
267 parseCondBranch(SecondLastInst
, TBB
, Cond
);
268 FBB
= LastInst
->getOperand(0).getMBB();
272 // If the block ends with two unconditional branches, handle it. The second
273 // one is not executed, so remove it.
274 if (isUncondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
275 TBB
= SecondLastInst
->getOperand(0).getMBB();
278 I
->eraseFromParent();
282 // ...likewise if it ends with an indirect branch followed by an unconditional
284 if (isIndirectBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
287 I
->eraseFromParent();
291 // Otherwise, can't handle this.
295 bool AArch64InstrInfo::reverseBranchCondition(
296 SmallVectorImpl
<MachineOperand
> &Cond
) const {
297 if (Cond
[0].getImm() != -1) {
299 AArch64CC::CondCode CC
= (AArch64CC::CondCode
)(int)Cond
[0].getImm();
300 Cond
[0].setImm(AArch64CC::getInvertedCondCode(CC
));
302 // Folded compare-and-branch
303 switch (Cond
[1].getImm()) {
305 llvm_unreachable("Unknown conditional branch!");
307 Cond
[1].setImm(AArch64::CBNZW
);
310 Cond
[1].setImm(AArch64::CBZW
);
313 Cond
[1].setImm(AArch64::CBNZX
);
316 Cond
[1].setImm(AArch64::CBZX
);
319 Cond
[1].setImm(AArch64::TBNZW
);
322 Cond
[1].setImm(AArch64::TBZW
);
325 Cond
[1].setImm(AArch64::TBNZX
);
328 Cond
[1].setImm(AArch64::TBZX
);
336 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
337 int *BytesRemoved
) const {
338 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
342 if (!isUncondBranchOpcode(I
->getOpcode()) &&
343 !isCondBranchOpcode(I
->getOpcode()))
346 // Remove the branch.
347 I
->eraseFromParent();
351 if (I
== MBB
.begin()) {
357 if (!isCondBranchOpcode(I
->getOpcode())) {
363 // Remove the branch.
364 I
->eraseFromParent();
371 void AArch64InstrInfo::instantiateCondBranch(
372 MachineBasicBlock
&MBB
, const DebugLoc
&DL
, MachineBasicBlock
*TBB
,
373 ArrayRef
<MachineOperand
> Cond
) const {
374 if (Cond
[0].getImm() != -1) {
376 BuildMI(&MBB
, DL
, get(AArch64::Bcc
)).addImm(Cond
[0].getImm()).addMBB(TBB
);
378 // Folded compare-and-branch
379 // Note that we use addOperand instead of addReg to keep the flags.
380 const MachineInstrBuilder MIB
=
381 BuildMI(&MBB
, DL
, get(Cond
[1].getImm())).add(Cond
[2]);
383 MIB
.addImm(Cond
[3].getImm());
388 unsigned AArch64InstrInfo::insertBranch(
389 MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
390 ArrayRef
<MachineOperand
> Cond
, const DebugLoc
&DL
, int *BytesAdded
) const {
391 // Shouldn't be a fall through.
392 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
395 if (Cond
.empty()) // Unconditional branch?
396 BuildMI(&MBB
, DL
, get(AArch64::B
)).addMBB(TBB
);
398 instantiateCondBranch(MBB
, DL
, TBB
, Cond
);
406 // Two-way conditional branch.
407 instantiateCondBranch(MBB
, DL
, TBB
, Cond
);
408 BuildMI(&MBB
, DL
, get(AArch64::B
)).addMBB(FBB
);
416 // Find the original register that VReg is copied from.
417 static unsigned removeCopies(const MachineRegisterInfo
&MRI
, unsigned VReg
) {
418 while (Register::isVirtualRegister(VReg
)) {
419 const MachineInstr
*DefMI
= MRI
.getVRegDef(VReg
);
420 if (!DefMI
->isFullCopy())
422 VReg
= DefMI
->getOperand(1).getReg();
427 // Determine if VReg is defined by an instruction that can be folded into a
428 // csel instruction. If so, return the folded opcode, and the replacement
430 static unsigned canFoldIntoCSel(const MachineRegisterInfo
&MRI
, unsigned VReg
,
431 unsigned *NewVReg
= nullptr) {
432 VReg
= removeCopies(MRI
, VReg
);
433 if (!Register::isVirtualRegister(VReg
))
436 bool Is64Bit
= AArch64::GPR64allRegClass
.hasSubClassEq(MRI
.getRegClass(VReg
));
437 const MachineInstr
*DefMI
= MRI
.getVRegDef(VReg
);
439 unsigned SrcOpNum
= 0;
440 switch (DefMI
->getOpcode()) {
441 case AArch64::ADDSXri
:
442 case AArch64::ADDSWri
:
443 // if NZCV is used, do not fold.
444 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) == -1)
446 // fall-through to ADDXri and ADDWri.
448 case AArch64::ADDXri
:
449 case AArch64::ADDWri
:
450 // add x, 1 -> csinc.
451 if (!DefMI
->getOperand(2).isImm() || DefMI
->getOperand(2).getImm() != 1 ||
452 DefMI
->getOperand(3).getImm() != 0)
455 Opc
= Is64Bit
? AArch64::CSINCXr
: AArch64::CSINCWr
;
458 case AArch64::ORNXrr
:
459 case AArch64::ORNWrr
: {
460 // not x -> csinv, represented as orn dst, xzr, src.
461 unsigned ZReg
= removeCopies(MRI
, DefMI
->getOperand(1).getReg());
462 if (ZReg
!= AArch64::XZR
&& ZReg
!= AArch64::WZR
)
465 Opc
= Is64Bit
? AArch64::CSINVXr
: AArch64::CSINVWr
;
469 case AArch64::SUBSXrr
:
470 case AArch64::SUBSWrr
:
471 // if NZCV is used, do not fold.
472 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) == -1)
474 // fall-through to SUBXrr and SUBWrr.
476 case AArch64::SUBXrr
:
477 case AArch64::SUBWrr
: {
478 // neg x -> csneg, represented as sub dst, xzr, src.
479 unsigned ZReg
= removeCopies(MRI
, DefMI
->getOperand(1).getReg());
480 if (ZReg
!= AArch64::XZR
&& ZReg
!= AArch64::WZR
)
483 Opc
= Is64Bit
? AArch64::CSNEGXr
: AArch64::CSNEGWr
;
489 assert(Opc
&& SrcOpNum
&& "Missing parameters");
492 *NewVReg
= DefMI
->getOperand(SrcOpNum
).getReg();
496 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
497 ArrayRef
<MachineOperand
> Cond
,
498 unsigned TrueReg
, unsigned FalseReg
,
499 int &CondCycles
, int &TrueCycles
,
500 int &FalseCycles
) const {
501 // Check register classes.
502 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
503 const TargetRegisterClass
*RC
=
504 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
508 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
509 unsigned ExtraCondLat
= Cond
.size() != 1;
511 // GPRs are handled by csel.
512 // FIXME: Fold in x+1, -x, and ~x when applicable.
513 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
) ||
514 AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
515 // Single-cycle csel, csinc, csinv, and csneg.
516 CondCycles
= 1 + ExtraCondLat
;
517 TrueCycles
= FalseCycles
= 1;
518 if (canFoldIntoCSel(MRI
, TrueReg
))
520 else if (canFoldIntoCSel(MRI
, FalseReg
))
525 // Scalar floating point is handled by fcsel.
526 // FIXME: Form fabs, fmin, and fmax when applicable.
527 if (AArch64::FPR64RegClass
.hasSubClassEq(RC
) ||
528 AArch64::FPR32RegClass
.hasSubClassEq(RC
)) {
529 CondCycles
= 5 + ExtraCondLat
;
530 TrueCycles
= FalseCycles
= 2;
538 void AArch64InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
539 MachineBasicBlock::iterator I
,
540 const DebugLoc
&DL
, unsigned DstReg
,
541 ArrayRef
<MachineOperand
> Cond
,
542 unsigned TrueReg
, unsigned FalseReg
) const {
543 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
545 // Parse the condition code, see parseCondBranch() above.
546 AArch64CC::CondCode CC
;
547 switch (Cond
.size()) {
549 llvm_unreachable("Unknown condition opcode in Cond");
551 CC
= AArch64CC::CondCode(Cond
[0].getImm());
553 case 3: { // cbz/cbnz
554 // We must insert a compare against 0.
556 switch (Cond
[1].getImm()) {
558 llvm_unreachable("Unknown branch opcode in Cond");
576 Register SrcReg
= Cond
[2].getReg();
578 // cmp reg, #0 is actually subs xzr, reg, #0.
579 MRI
.constrainRegClass(SrcReg
, &AArch64::GPR64spRegClass
);
580 BuildMI(MBB
, I
, DL
, get(AArch64::SUBSXri
), AArch64::XZR
)
585 MRI
.constrainRegClass(SrcReg
, &AArch64::GPR32spRegClass
);
586 BuildMI(MBB
, I
, DL
, get(AArch64::SUBSWri
), AArch64::WZR
)
593 case 4: { // tbz/tbnz
594 // We must insert a tst instruction.
595 switch (Cond
[1].getImm()) {
597 llvm_unreachable("Unknown branch opcode in Cond");
607 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
608 if (Cond
[1].getImm() == AArch64::TBZW
|| Cond
[1].getImm() == AArch64::TBNZW
)
609 BuildMI(MBB
, I
, DL
, get(AArch64::ANDSWri
), AArch64::WZR
)
610 .addReg(Cond
[2].getReg())
612 AArch64_AM::encodeLogicalImmediate(1ull << Cond
[3].getImm(), 32));
614 BuildMI(MBB
, I
, DL
, get(AArch64::ANDSXri
), AArch64::XZR
)
615 .addReg(Cond
[2].getReg())
617 AArch64_AM::encodeLogicalImmediate(1ull << Cond
[3].getImm(), 64));
623 const TargetRegisterClass
*RC
= nullptr;
624 bool TryFold
= false;
625 if (MRI
.constrainRegClass(DstReg
, &AArch64::GPR64RegClass
)) {
626 RC
= &AArch64::GPR64RegClass
;
627 Opc
= AArch64::CSELXr
;
629 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::GPR32RegClass
)) {
630 RC
= &AArch64::GPR32RegClass
;
631 Opc
= AArch64::CSELWr
;
633 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::FPR64RegClass
)) {
634 RC
= &AArch64::FPR64RegClass
;
635 Opc
= AArch64::FCSELDrrr
;
636 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::FPR32RegClass
)) {
637 RC
= &AArch64::FPR32RegClass
;
638 Opc
= AArch64::FCSELSrrr
;
640 assert(RC
&& "Unsupported regclass");
642 // Try folding simple instructions into the csel.
644 unsigned NewVReg
= 0;
645 unsigned FoldedOpc
= canFoldIntoCSel(MRI
, TrueReg
, &NewVReg
);
647 // The folded opcodes csinc, csinc and csneg apply the operation to
648 // FalseReg, so we need to invert the condition.
649 CC
= AArch64CC::getInvertedCondCode(CC
);
652 FoldedOpc
= canFoldIntoCSel(MRI
, FalseReg
, &NewVReg
);
654 // Fold the operation. Leave any dead instructions for DCE to clean up.
658 // The extends the live range of NewVReg.
659 MRI
.clearKillFlags(NewVReg
);
663 // Pull all virtual register into the appropriate class.
664 MRI
.constrainRegClass(TrueReg
, RC
);
665 MRI
.constrainRegClass(FalseReg
, RC
);
668 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
674 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
675 static bool canBeExpandedToORR(const MachineInstr
&MI
, unsigned BitSize
) {
676 uint64_t Imm
= MI
.getOperand(1).getImm();
677 uint64_t UImm
= Imm
<< (64 - BitSize
) >> (64 - BitSize
);
679 return AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
);
682 // FIXME: this implementation should be micro-architecture dependent, so a
683 // micro-architecture target hook should be introduced here in future.
684 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr
&MI
) const {
685 if (!Subtarget
.hasCustomCheapAsMoveHandling())
686 return MI
.isAsCheapAsAMove();
688 const unsigned Opcode
= MI
.getOpcode();
690 // Firstly, check cases gated by features.
692 if (Subtarget
.hasZeroCycleZeroingFP()) {
693 if (Opcode
== AArch64::FMOVH0
||
694 Opcode
== AArch64::FMOVS0
||
695 Opcode
== AArch64::FMOVD0
)
699 if (Subtarget
.hasZeroCycleZeroingGP()) {
700 if (Opcode
== TargetOpcode::COPY
&&
701 (MI
.getOperand(1).getReg() == AArch64::WZR
||
702 MI
.getOperand(1).getReg() == AArch64::XZR
))
706 // Secondly, check cases specific to sub-targets.
708 if (Subtarget
.hasExynosCheapAsMoveHandling()) {
709 if (isExynosCheapAsMove(MI
))
712 return MI
.isAsCheapAsAMove();
715 // Finally, check generic cases.
721 // add/sub on register without shift
722 case AArch64::ADDWri
:
723 case AArch64::ADDXri
:
724 case AArch64::SUBWri
:
725 case AArch64::SUBXri
:
726 return (MI
.getOperand(3).getImm() == 0);
728 // logical ops on immediate
729 case AArch64::ANDWri
:
730 case AArch64::ANDXri
:
731 case AArch64::EORWri
:
732 case AArch64::EORXri
:
733 case AArch64::ORRWri
:
734 case AArch64::ORRXri
:
737 // logical ops on register without shift
738 case AArch64::ANDWrr
:
739 case AArch64::ANDXrr
:
740 case AArch64::BICWrr
:
741 case AArch64::BICXrr
:
742 case AArch64::EONWrr
:
743 case AArch64::EONXrr
:
744 case AArch64::EORWrr
:
745 case AArch64::EORXrr
:
746 case AArch64::ORNWrr
:
747 case AArch64::ORNXrr
:
748 case AArch64::ORRWrr
:
749 case AArch64::ORRXrr
:
752 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
753 // ORRXri, it is as cheap as MOV
754 case AArch64::MOVi32imm
:
755 return canBeExpandedToORR(MI
, 32);
756 case AArch64::MOVi64imm
:
757 return canBeExpandedToORR(MI
, 64);
760 llvm_unreachable("Unknown opcode to check as cheap as a move!");
763 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr
&MI
) {
764 switch (MI
.getOpcode()) {
768 case AArch64::ADDWrs
:
769 case AArch64::ADDXrs
:
770 case AArch64::ADDSWrs
:
771 case AArch64::ADDSXrs
: {
772 unsigned Imm
= MI
.getOperand(3).getImm();
773 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
776 return AArch64_AM::getShiftType(Imm
) == AArch64_AM::LSL
&& ShiftVal
<= 5;
779 case AArch64::ADDWrx
:
780 case AArch64::ADDXrx
:
781 case AArch64::ADDXrx64
:
782 case AArch64::ADDSWrx
:
783 case AArch64::ADDSXrx
:
784 case AArch64::ADDSXrx64
: {
785 unsigned Imm
= MI
.getOperand(3).getImm();
786 switch (AArch64_AM::getArithExtendType(Imm
)) {
789 case AArch64_AM::UXTB
:
790 case AArch64_AM::UXTH
:
791 case AArch64_AM::UXTW
:
792 case AArch64_AM::UXTX
:
793 return AArch64_AM::getArithShiftValue(Imm
) <= 4;
797 case AArch64::SUBWrs
:
798 case AArch64::SUBSWrs
: {
799 unsigned Imm
= MI
.getOperand(3).getImm();
800 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
801 return ShiftVal
== 0 ||
802 (AArch64_AM::getShiftType(Imm
) == AArch64_AM::ASR
&& ShiftVal
== 31);
805 case AArch64::SUBXrs
:
806 case AArch64::SUBSXrs
: {
807 unsigned Imm
= MI
.getOperand(3).getImm();
808 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
809 return ShiftVal
== 0 ||
810 (AArch64_AM::getShiftType(Imm
) == AArch64_AM::ASR
&& ShiftVal
== 63);
813 case AArch64::SUBWrx
:
814 case AArch64::SUBXrx
:
815 case AArch64::SUBXrx64
:
816 case AArch64::SUBSWrx
:
817 case AArch64::SUBSXrx
:
818 case AArch64::SUBSXrx64
: {
819 unsigned Imm
= MI
.getOperand(3).getImm();
820 switch (AArch64_AM::getArithExtendType(Imm
)) {
823 case AArch64_AM::UXTB
:
824 case AArch64_AM::UXTH
:
825 case AArch64_AM::UXTW
:
826 case AArch64_AM::UXTX
:
827 return AArch64_AM::getArithShiftValue(Imm
) == 0;
831 case AArch64::LDRBBroW
:
832 case AArch64::LDRBBroX
:
833 case AArch64::LDRBroW
:
834 case AArch64::LDRBroX
:
835 case AArch64::LDRDroW
:
836 case AArch64::LDRDroX
:
837 case AArch64::LDRHHroW
:
838 case AArch64::LDRHHroX
:
839 case AArch64::LDRHroW
:
840 case AArch64::LDRHroX
:
841 case AArch64::LDRQroW
:
842 case AArch64::LDRQroX
:
843 case AArch64::LDRSBWroW
:
844 case AArch64::LDRSBWroX
:
845 case AArch64::LDRSBXroW
:
846 case AArch64::LDRSBXroX
:
847 case AArch64::LDRSHWroW
:
848 case AArch64::LDRSHWroX
:
849 case AArch64::LDRSHXroW
:
850 case AArch64::LDRSHXroX
:
851 case AArch64::LDRSWroW
:
852 case AArch64::LDRSWroX
:
853 case AArch64::LDRSroW
:
854 case AArch64::LDRSroX
:
855 case AArch64::LDRWroW
:
856 case AArch64::LDRWroX
:
857 case AArch64::LDRXroW
:
858 case AArch64::LDRXroX
:
859 case AArch64::PRFMroW
:
860 case AArch64::PRFMroX
:
861 case AArch64::STRBBroW
:
862 case AArch64::STRBBroX
:
863 case AArch64::STRBroW
:
864 case AArch64::STRBroX
:
865 case AArch64::STRDroW
:
866 case AArch64::STRDroX
:
867 case AArch64::STRHHroW
:
868 case AArch64::STRHHroX
:
869 case AArch64::STRHroW
:
870 case AArch64::STRHroX
:
871 case AArch64::STRQroW
:
872 case AArch64::STRQroX
:
873 case AArch64::STRSroW
:
874 case AArch64::STRSroX
:
875 case AArch64::STRWroW
:
876 case AArch64::STRWroX
:
877 case AArch64::STRXroW
:
878 case AArch64::STRXroX
: {
879 unsigned IsSigned
= MI
.getOperand(3).getImm();
885 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr
&MI
) {
886 unsigned Opc
= MI
.getOpcode();
890 case AArch64::SEH_StackAlloc
:
891 case AArch64::SEH_SaveFPLR
:
892 case AArch64::SEH_SaveFPLR_X
:
893 case AArch64::SEH_SaveReg
:
894 case AArch64::SEH_SaveReg_X
:
895 case AArch64::SEH_SaveRegP
:
896 case AArch64::SEH_SaveRegP_X
:
897 case AArch64::SEH_SaveFReg
:
898 case AArch64::SEH_SaveFReg_X
:
899 case AArch64::SEH_SaveFRegP
:
900 case AArch64::SEH_SaveFRegP_X
:
901 case AArch64::SEH_SetFP
:
902 case AArch64::SEH_AddFP
:
903 case AArch64::SEH_Nop
:
904 case AArch64::SEH_PrologEnd
:
905 case AArch64::SEH_EpilogStart
:
906 case AArch64::SEH_EpilogEnd
:
911 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
912 unsigned &SrcReg
, unsigned &DstReg
,
913 unsigned &SubIdx
) const {
914 switch (MI
.getOpcode()) {
917 case AArch64::SBFMXri
: // aka sxtw
918 case AArch64::UBFMXri
: // aka uxtw
919 // Check for the 32 -> 64 bit extension case, these instructions can do
921 if (MI
.getOperand(2).getImm() != 0 || MI
.getOperand(3).getImm() != 31)
923 // This is a signed or unsigned 32 -> 64 bit extension.
924 SrcReg
= MI
.getOperand(1).getReg();
925 DstReg
= MI
.getOperand(0).getReg();
926 SubIdx
= AArch64::sub_32
;
931 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
932 const MachineInstr
&MIa
, const MachineInstr
&MIb
, AliasAnalysis
*AA
) const {
933 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
934 const MachineOperand
*BaseOpA
= nullptr, *BaseOpB
= nullptr;
935 int64_t OffsetA
= 0, OffsetB
= 0;
936 unsigned WidthA
= 0, WidthB
= 0;
938 assert(MIa
.mayLoadOrStore() && "MIa must be a load or store.");
939 assert(MIb
.mayLoadOrStore() && "MIb must be a load or store.");
941 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
942 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
945 // Retrieve the base, offset from the base and width. Width
946 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
947 // base are identical, and the offset of a lower memory access +
948 // the width doesn't overlap the offset of a higher memory access,
949 // then the memory accesses are different.
950 if (getMemOperandWithOffsetWidth(MIa
, BaseOpA
, OffsetA
, WidthA
, TRI
) &&
951 getMemOperandWithOffsetWidth(MIb
, BaseOpB
, OffsetB
, WidthB
, TRI
)) {
952 if (BaseOpA
->isIdenticalTo(*BaseOpB
)) {
953 int LowOffset
= OffsetA
< OffsetB
? OffsetA
: OffsetB
;
954 int HighOffset
= OffsetA
< OffsetB
? OffsetB
: OffsetA
;
955 int LowWidth
= (LowOffset
== OffsetA
) ? WidthA
: WidthB
;
956 if (LowOffset
+ LowWidth
<= HighOffset
)
963 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
964 const MachineBasicBlock
*MBB
,
965 const MachineFunction
&MF
) const {
966 if (TargetInstrInfo::isSchedulingBoundary(MI
, MBB
, MF
))
968 switch (MI
.getOpcode()) {
970 // CSDB hints are scheduling barriers.
971 if (MI
.getOperand(0).getImm() == 0x14)
976 // DSB and ISB also are scheduling barriers.
980 return isSEHInstruction(MI
);
983 /// analyzeCompare - For a comparison instruction, return the source registers
984 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
985 /// Return true if the comparison instruction can be analyzed.
986 bool AArch64InstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
987 unsigned &SrcReg2
, int &CmpMask
,
988 int &CmpValue
) const {
989 // The first operand can be a frame index where we'd normally expect a
991 assert(MI
.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
992 if (!MI
.getOperand(1).isReg())
995 switch (MI
.getOpcode()) {
998 case AArch64::SUBSWrr
:
999 case AArch64::SUBSWrs
:
1000 case AArch64::SUBSWrx
:
1001 case AArch64::SUBSXrr
:
1002 case AArch64::SUBSXrs
:
1003 case AArch64::SUBSXrx
:
1004 case AArch64::ADDSWrr
:
1005 case AArch64::ADDSWrs
:
1006 case AArch64::ADDSWrx
:
1007 case AArch64::ADDSXrr
:
1008 case AArch64::ADDSXrs
:
1009 case AArch64::ADDSXrx
:
1010 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1011 SrcReg
= MI
.getOperand(1).getReg();
1012 SrcReg2
= MI
.getOperand(2).getReg();
1016 case AArch64::SUBSWri
:
1017 case AArch64::ADDSWri
:
1018 case AArch64::SUBSXri
:
1019 case AArch64::ADDSXri
:
1020 SrcReg
= MI
.getOperand(1).getReg();
1023 // FIXME: In order to convert CmpValue to 0 or 1
1024 CmpValue
= MI
.getOperand(2).getImm() != 0;
1026 case AArch64::ANDSWri
:
1027 case AArch64::ANDSXri
:
1028 // ANDS does not use the same encoding scheme as the others xxxS
1030 SrcReg
= MI
.getOperand(1).getReg();
1033 // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
1034 // while the type of CmpValue is int. When converting uint64_t to int,
1035 // the high 32 bits of uint64_t will be lost.
1036 // In fact it causes a bug in spec2006-483.xalancbmk
1037 // CmpValue is only used to compare with zero in OptimizeCompareInstr
1038 CmpValue
= AArch64_AM::decodeLogicalImmediate(
1039 MI
.getOperand(2).getImm(),
1040 MI
.getOpcode() == AArch64::ANDSWri
? 32 : 64) != 0;
1047 static bool UpdateOperandRegClass(MachineInstr
&Instr
) {
1048 MachineBasicBlock
*MBB
= Instr
.getParent();
1049 assert(MBB
&& "Can't get MachineBasicBlock here");
1050 MachineFunction
*MF
= MBB
->getParent();
1051 assert(MF
&& "Can't get MachineFunction here");
1052 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1053 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1054 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
1056 for (unsigned OpIdx
= 0, EndIdx
= Instr
.getNumOperands(); OpIdx
< EndIdx
;
1058 MachineOperand
&MO
= Instr
.getOperand(OpIdx
);
1059 const TargetRegisterClass
*OpRegCstraints
=
1060 Instr
.getRegClassConstraint(OpIdx
, TII
, TRI
);
1062 // If there's no constraint, there's nothing to do.
1063 if (!OpRegCstraints
)
1065 // If the operand is a frame index, there's nothing to do here.
1066 // A frame index operand will resolve correctly during PEI.
1070 assert(MO
.isReg() &&
1071 "Operand has register constraints without being a register!");
1073 Register Reg
= MO
.getReg();
1074 if (Register::isPhysicalRegister(Reg
)) {
1075 if (!OpRegCstraints
->contains(Reg
))
1077 } else if (!OpRegCstraints
->hasSubClassEq(MRI
->getRegClass(Reg
)) &&
1078 !MRI
->constrainRegClass(Reg
, OpRegCstraints
))
1085 /// Return the opcode that does not set flags when possible - otherwise
1086 /// return the original opcode. The caller is responsible to do the actual
1087 /// substitution and legality checking.
1088 static unsigned convertToNonFlagSettingOpc(const MachineInstr
&MI
) {
1089 // Don't convert all compare instructions, because for some the zero register
1090 // encoding becomes the sp register.
1091 bool MIDefinesZeroReg
= false;
1092 if (MI
.definesRegister(AArch64::WZR
) || MI
.definesRegister(AArch64::XZR
))
1093 MIDefinesZeroReg
= true;
1095 switch (MI
.getOpcode()) {
1097 return MI
.getOpcode();
1098 case AArch64::ADDSWrr
:
1099 return AArch64::ADDWrr
;
1100 case AArch64::ADDSWri
:
1101 return MIDefinesZeroReg
? AArch64::ADDSWri
: AArch64::ADDWri
;
1102 case AArch64::ADDSWrs
:
1103 return MIDefinesZeroReg
? AArch64::ADDSWrs
: AArch64::ADDWrs
;
1104 case AArch64::ADDSWrx
:
1105 return AArch64::ADDWrx
;
1106 case AArch64::ADDSXrr
:
1107 return AArch64::ADDXrr
;
1108 case AArch64::ADDSXri
:
1109 return MIDefinesZeroReg
? AArch64::ADDSXri
: AArch64::ADDXri
;
1110 case AArch64::ADDSXrs
:
1111 return MIDefinesZeroReg
? AArch64::ADDSXrs
: AArch64::ADDXrs
;
1112 case AArch64::ADDSXrx
:
1113 return AArch64::ADDXrx
;
1114 case AArch64::SUBSWrr
:
1115 return AArch64::SUBWrr
;
1116 case AArch64::SUBSWri
:
1117 return MIDefinesZeroReg
? AArch64::SUBSWri
: AArch64::SUBWri
;
1118 case AArch64::SUBSWrs
:
1119 return MIDefinesZeroReg
? AArch64::SUBSWrs
: AArch64::SUBWrs
;
1120 case AArch64::SUBSWrx
:
1121 return AArch64::SUBWrx
;
1122 case AArch64::SUBSXrr
:
1123 return AArch64::SUBXrr
;
1124 case AArch64::SUBSXri
:
1125 return MIDefinesZeroReg
? AArch64::SUBSXri
: AArch64::SUBXri
;
1126 case AArch64::SUBSXrs
:
1127 return MIDefinesZeroReg
? AArch64::SUBSXrs
: AArch64::SUBXrs
;
1128 case AArch64::SUBSXrx
:
1129 return AArch64::SUBXrx
;
1133 enum AccessKind
{ AK_Write
= 0x01, AK_Read
= 0x10, AK_All
= 0x11 };
1135 /// True when condition flags are accessed (either by writing or reading)
1136 /// on the instruction trace starting at From and ending at To.
1138 /// Note: If From and To are from different blocks it's assumed CC are accessed
1140 static bool areCFlagsAccessedBetweenInstrs(
1141 MachineBasicBlock::iterator From
, MachineBasicBlock::iterator To
,
1142 const TargetRegisterInfo
*TRI
, const AccessKind AccessToCheck
= AK_All
) {
1143 // Early exit if To is at the beginning of the BB.
1144 if (To
== To
->getParent()->begin())
1147 // Check whether the instructions are in the same basic block
1148 // If not, assume the condition flags might get modified somewhere.
1149 if (To
->getParent() != From
->getParent())
1152 // From must be above To.
1153 assert(std::find_if(++To
.getReverse(), To
->getParent()->rend(),
1154 [From
](MachineInstr
&MI
) {
1155 return MI
.getIterator() == From
;
1156 }) != To
->getParent()->rend());
1158 // We iterate backward starting \p To until we hit \p From.
1159 for (--To
; To
!= From
; --To
) {
1160 const MachineInstr
&Instr
= *To
;
1162 if (((AccessToCheck
& AK_Write
) &&
1163 Instr
.modifiesRegister(AArch64::NZCV
, TRI
)) ||
1164 ((AccessToCheck
& AK_Read
) && Instr
.readsRegister(AArch64::NZCV
, TRI
)))
1170 /// Try to optimize a compare instruction. A compare instruction is an
1171 /// instruction which produces AArch64::NZCV. It can be truly compare
1173 /// when there are no uses of its destination register.
1175 /// The following steps are tried in order:
1176 /// 1. Convert CmpInstr into an unconditional version.
1177 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1178 /// condition code or an instruction which can be converted into such an
1180 /// Only comparison with zero is supported.
1181 bool AArch64InstrInfo::optimizeCompareInstr(
1182 MachineInstr
&CmpInstr
, unsigned SrcReg
, unsigned SrcReg2
, int CmpMask
,
1183 int CmpValue
, const MachineRegisterInfo
*MRI
) const {
1184 assert(CmpInstr
.getParent());
1187 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1188 int DeadNZCVIdx
= CmpInstr
.findRegisterDefOperandIdx(AArch64::NZCV
, true);
1189 if (DeadNZCVIdx
!= -1) {
1190 if (CmpInstr
.definesRegister(AArch64::WZR
) ||
1191 CmpInstr
.definesRegister(AArch64::XZR
)) {
1192 CmpInstr
.eraseFromParent();
1195 unsigned Opc
= CmpInstr
.getOpcode();
1196 unsigned NewOpc
= convertToNonFlagSettingOpc(CmpInstr
);
1199 const MCInstrDesc
&MCID
= get(NewOpc
);
1200 CmpInstr
.setDesc(MCID
);
1201 CmpInstr
.RemoveOperand(DeadNZCVIdx
);
1202 bool succeeded
= UpdateOperandRegClass(CmpInstr
);
1204 assert(succeeded
&& "Some operands reg class are incompatible!");
1208 // Continue only if we have a "ri" where immediate is zero.
1209 // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
1211 assert((CmpValue
== 0 || CmpValue
== 1) && "CmpValue must be 0 or 1!");
1212 if (CmpValue
!= 0 || SrcReg2
!= 0)
1215 // CmpInstr is a Compare instruction if destination register is not used.
1216 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
1219 return substituteCmpToZero(CmpInstr
, SrcReg
, MRI
);
1222 /// Get opcode of S version of Instr.
1223 /// If Instr is S version its opcode is returned.
1224 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1225 /// or we are not interested in it.
1226 static unsigned sForm(MachineInstr
&Instr
) {
1227 switch (Instr
.getOpcode()) {
1229 return AArch64::INSTRUCTION_LIST_END
;
1231 case AArch64::ADDSWrr
:
1232 case AArch64::ADDSWri
:
1233 case AArch64::ADDSXrr
:
1234 case AArch64::ADDSXri
:
1235 case AArch64::SUBSWrr
:
1236 case AArch64::SUBSWri
:
1237 case AArch64::SUBSXrr
:
1238 case AArch64::SUBSXri
:
1239 return Instr
.getOpcode();
1241 case AArch64::ADDWrr
:
1242 return AArch64::ADDSWrr
;
1243 case AArch64::ADDWri
:
1244 return AArch64::ADDSWri
;
1245 case AArch64::ADDXrr
:
1246 return AArch64::ADDSXrr
;
1247 case AArch64::ADDXri
:
1248 return AArch64::ADDSXri
;
1249 case AArch64::ADCWr
:
1250 return AArch64::ADCSWr
;
1251 case AArch64::ADCXr
:
1252 return AArch64::ADCSXr
;
1253 case AArch64::SUBWrr
:
1254 return AArch64::SUBSWrr
;
1255 case AArch64::SUBWri
:
1256 return AArch64::SUBSWri
;
1257 case AArch64::SUBXrr
:
1258 return AArch64::SUBSXrr
;
1259 case AArch64::SUBXri
:
1260 return AArch64::SUBSXri
;
1261 case AArch64::SBCWr
:
1262 return AArch64::SBCSWr
;
1263 case AArch64::SBCXr
:
1264 return AArch64::SBCSXr
;
1265 case AArch64::ANDWri
:
1266 return AArch64::ANDSWri
;
1267 case AArch64::ANDXri
:
1268 return AArch64::ANDSXri
;
1272 /// Check if AArch64::NZCV should be alive in successors of MBB.
1273 static bool areCFlagsAliveInSuccessors(MachineBasicBlock
*MBB
) {
1274 for (auto *BB
: MBB
->successors())
1275 if (BB
->isLiveIn(AArch64::NZCV
))
1288 UsedNZCV() = default;
1290 UsedNZCV
&operator|=(const UsedNZCV
&UsedFlags
) {
1291 this->N
|= UsedFlags
.N
;
1292 this->Z
|= UsedFlags
.Z
;
1293 this->C
|= UsedFlags
.C
;
1294 this->V
|= UsedFlags
.V
;
1299 } // end anonymous namespace
1301 /// Find a condition code used by the instruction.
1302 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1303 /// codes or we don't optimize CmpInstr in the presence of such instructions.
1304 static AArch64CC::CondCode
findCondCodeUsedByInstr(const MachineInstr
&Instr
) {
1305 switch (Instr
.getOpcode()) {
1307 return AArch64CC::Invalid
;
1309 case AArch64::Bcc
: {
1310 int Idx
= Instr
.findRegisterUseOperandIdx(AArch64::NZCV
);
1312 return static_cast<AArch64CC::CondCode
>(Instr
.getOperand(Idx
- 2).getImm());
1315 case AArch64::CSINVWr
:
1316 case AArch64::CSINVXr
:
1317 case AArch64::CSINCWr
:
1318 case AArch64::CSINCXr
:
1319 case AArch64::CSELWr
:
1320 case AArch64::CSELXr
:
1321 case AArch64::CSNEGWr
:
1322 case AArch64::CSNEGXr
:
1323 case AArch64::FCSELSrrr
:
1324 case AArch64::FCSELDrrr
: {
1325 int Idx
= Instr
.findRegisterUseOperandIdx(AArch64::NZCV
);
1327 return static_cast<AArch64CC::CondCode
>(Instr
.getOperand(Idx
- 1).getImm());
1332 static UsedNZCV
getUsedNZCV(AArch64CC::CondCode CC
) {
1333 assert(CC
!= AArch64CC::Invalid
);
1339 case AArch64CC::EQ
: // Z set
1340 case AArch64CC::NE
: // Z clear
1344 case AArch64CC::HI
: // Z clear and C set
1345 case AArch64CC::LS
: // Z set or C clear
1348 case AArch64CC::HS
: // C set
1349 case AArch64CC::LO
: // C clear
1353 case AArch64CC::MI
: // N set
1354 case AArch64CC::PL
: // N clear
1358 case AArch64CC::VS
: // V set
1359 case AArch64CC::VC
: // V clear
1363 case AArch64CC::GT
: // Z clear, N and V the same
1364 case AArch64CC::LE
: // Z set, N and V differ
1367 case AArch64CC::GE
: // N and V the same
1368 case AArch64CC::LT
: // N and V differ
1376 static bool isADDSRegImm(unsigned Opcode
) {
1377 return Opcode
== AArch64::ADDSWri
|| Opcode
== AArch64::ADDSXri
;
1380 static bool isSUBSRegImm(unsigned Opcode
) {
1381 return Opcode
== AArch64::SUBSWri
|| Opcode
== AArch64::SUBSXri
;
1384 /// Check if CmpInstr can be substituted by MI.
1386 /// CmpInstr can be substituted:
1387 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1388 /// - and, MI and CmpInstr are from the same MachineBB
1389 /// - and, condition flags are not alive in successors of the CmpInstr parent
1390 /// - and, if MI opcode is the S form there must be no defs of flags between
1392 /// or if MI opcode is not the S form there must be neither defs of flags
1393 /// nor uses of flags between MI and CmpInstr.
1394 /// - and C/V flags are not used after CmpInstr
1395 static bool canInstrSubstituteCmpInstr(MachineInstr
*MI
, MachineInstr
*CmpInstr
,
1396 const TargetRegisterInfo
*TRI
) {
1398 assert(sForm(*MI
) != AArch64::INSTRUCTION_LIST_END
);
1401 const unsigned CmpOpcode
= CmpInstr
->getOpcode();
1402 if (!isADDSRegImm(CmpOpcode
) && !isSUBSRegImm(CmpOpcode
))
1405 if (MI
->getParent() != CmpInstr
->getParent())
1408 if (areCFlagsAliveInSuccessors(CmpInstr
->getParent()))
1411 AccessKind AccessToCheck
= AK_Write
;
1412 if (sForm(*MI
) != MI
->getOpcode())
1413 AccessToCheck
= AK_All
;
1414 if (areCFlagsAccessedBetweenInstrs(MI
, CmpInstr
, TRI
, AccessToCheck
))
1417 UsedNZCV NZCVUsedAfterCmp
;
1418 for (auto I
= std::next(CmpInstr
->getIterator()),
1419 E
= CmpInstr
->getParent()->instr_end();
1421 const MachineInstr
&Instr
= *I
;
1422 if (Instr
.readsRegister(AArch64::NZCV
, TRI
)) {
1423 AArch64CC::CondCode CC
= findCondCodeUsedByInstr(Instr
);
1424 if (CC
== AArch64CC::Invalid
) // Unsupported conditional instruction
1426 NZCVUsedAfterCmp
|= getUsedNZCV(CC
);
1429 if (Instr
.modifiesRegister(AArch64::NZCV
, TRI
))
1433 return !NZCVUsedAfterCmp
.C
&& !NZCVUsedAfterCmp
.V
;
1436 /// Substitute an instruction comparing to zero with another instruction
1437 /// which produces needed condition flags.
1439 /// Return true on success.
1440 bool AArch64InstrInfo::substituteCmpToZero(
1441 MachineInstr
&CmpInstr
, unsigned SrcReg
,
1442 const MachineRegisterInfo
*MRI
) const {
1444 // Get the unique definition of SrcReg.
1445 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1449 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1451 unsigned NewOpc
= sForm(*MI
);
1452 if (NewOpc
== AArch64::INSTRUCTION_LIST_END
)
1455 if (!canInstrSubstituteCmpInstr(MI
, &CmpInstr
, TRI
))
1458 // Update the instruction to set NZCV.
1459 MI
->setDesc(get(NewOpc
));
1460 CmpInstr
.eraseFromParent();
1461 bool succeeded
= UpdateOperandRegClass(*MI
);
1463 assert(succeeded
&& "Some operands reg class are incompatible!");
1464 MI
->addRegisterDefined(AArch64::NZCV
, TRI
);
1468 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1469 if (MI
.getOpcode() != TargetOpcode::LOAD_STACK_GUARD
&&
1470 MI
.getOpcode() != AArch64::CATCHRET
)
1473 MachineBasicBlock
&MBB
= *MI
.getParent();
1474 DebugLoc DL
= MI
.getDebugLoc();
1476 if (MI
.getOpcode() == AArch64::CATCHRET
) {
1477 // Skip to the first instruction before the epilog.
1478 const TargetInstrInfo
*TII
=
1479 MBB
.getParent()->getSubtarget().getInstrInfo();
1480 MachineBasicBlock
*TargetMBB
= MI
.getOperand(0).getMBB();
1481 auto MBBI
= MachineBasicBlock::iterator(MI
);
1482 MachineBasicBlock::iterator FirstEpilogSEH
= std::prev(MBBI
);
1483 while (FirstEpilogSEH
->getFlag(MachineInstr::FrameDestroy
) &&
1484 FirstEpilogSEH
!= MBB
.begin())
1485 FirstEpilogSEH
= std::prev(FirstEpilogSEH
);
1486 if (FirstEpilogSEH
!= MBB
.begin())
1487 FirstEpilogSEH
= std::next(FirstEpilogSEH
);
1488 BuildMI(MBB
, FirstEpilogSEH
, DL
, TII
->get(AArch64::ADRP
))
1489 .addReg(AArch64::X0
, RegState::Define
)
1491 BuildMI(MBB
, FirstEpilogSEH
, DL
, TII
->get(AArch64::ADDXri
))
1492 .addReg(AArch64::X0
, RegState::Define
)
1493 .addReg(AArch64::X0
)
1499 Register Reg
= MI
.getOperand(0).getReg();
1500 const GlobalValue
*GV
=
1501 cast
<GlobalValue
>((*MI
.memoperands_begin())->getValue());
1502 const TargetMachine
&TM
= MBB
.getParent()->getTarget();
1503 unsigned OpFlags
= Subtarget
.ClassifyGlobalReference(GV
, TM
);
1504 const unsigned char MO_NC
= AArch64II::MO_NC
;
1506 if ((OpFlags
& AArch64II::MO_GOT
) != 0) {
1507 BuildMI(MBB
, MI
, DL
, get(AArch64::LOADgot
), Reg
)
1508 .addGlobalAddress(GV
, 0, OpFlags
);
1509 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1510 .addReg(Reg
, RegState::Kill
)
1512 .addMemOperand(*MI
.memoperands_begin());
1513 } else if (TM
.getCodeModel() == CodeModel::Large
) {
1514 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVZXi
), Reg
)
1515 .addGlobalAddress(GV
, 0, AArch64II::MO_G0
| MO_NC
)
1517 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1518 .addReg(Reg
, RegState::Kill
)
1519 .addGlobalAddress(GV
, 0, AArch64II::MO_G1
| MO_NC
)
1521 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1522 .addReg(Reg
, RegState::Kill
)
1523 .addGlobalAddress(GV
, 0, AArch64II::MO_G2
| MO_NC
)
1525 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1526 .addReg(Reg
, RegState::Kill
)
1527 .addGlobalAddress(GV
, 0, AArch64II::MO_G3
)
1529 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1530 .addReg(Reg
, RegState::Kill
)
1532 .addMemOperand(*MI
.memoperands_begin());
1533 } else if (TM
.getCodeModel() == CodeModel::Tiny
) {
1534 BuildMI(MBB
, MI
, DL
, get(AArch64::ADR
), Reg
)
1535 .addGlobalAddress(GV
, 0, OpFlags
);
1537 BuildMI(MBB
, MI
, DL
, get(AArch64::ADRP
), Reg
)
1538 .addGlobalAddress(GV
, 0, OpFlags
| AArch64II::MO_PAGE
);
1539 unsigned char LoFlags
= OpFlags
| AArch64II::MO_PAGEOFF
| MO_NC
;
1540 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1541 .addReg(Reg
, RegState::Kill
)
1542 .addGlobalAddress(GV
, 0, LoFlags
)
1543 .addMemOperand(*MI
.memoperands_begin());
1551 // Return true if this instruction simply sets its single destination register
1552 // to zero. This is equivalent to a register rename of the zero-register.
1553 bool AArch64InstrInfo::isGPRZero(const MachineInstr
&MI
) {
1554 switch (MI
.getOpcode()) {
1557 case AArch64::MOVZWi
:
1558 case AArch64::MOVZXi
: // movz Rd, #0 (LSL #0)
1559 if (MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) {
1560 assert(MI
.getDesc().getNumOperands() == 3 &&
1561 MI
.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
1565 case AArch64::ANDWri
: // and Rd, Rzr, #imm
1566 return MI
.getOperand(1).getReg() == AArch64::WZR
;
1567 case AArch64::ANDXri
:
1568 return MI
.getOperand(1).getReg() == AArch64::XZR
;
1569 case TargetOpcode::COPY
:
1570 return MI
.getOperand(1).getReg() == AArch64::WZR
;
1575 // Return true if this instruction simply renames a general register without
1577 bool AArch64InstrInfo::isGPRCopy(const MachineInstr
&MI
) {
1578 switch (MI
.getOpcode()) {
1581 case TargetOpcode::COPY
: {
1582 // GPR32 copies will by lowered to ORRXrs
1583 Register DstReg
= MI
.getOperand(0).getReg();
1584 return (AArch64::GPR32RegClass
.contains(DstReg
) ||
1585 AArch64::GPR64RegClass
.contains(DstReg
));
1587 case AArch64::ORRXrs
: // orr Xd, Xzr, Xm (LSL #0)
1588 if (MI
.getOperand(1).getReg() == AArch64::XZR
) {
1589 assert(MI
.getDesc().getNumOperands() == 4 &&
1590 MI
.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1594 case AArch64::ADDXri
: // add Xd, Xn, #0 (LSL #0)
1595 if (MI
.getOperand(2).getImm() == 0) {
1596 assert(MI
.getDesc().getNumOperands() == 4 &&
1597 MI
.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1605 // Return true if this instruction simply renames a general register without
1607 bool AArch64InstrInfo::isFPRCopy(const MachineInstr
&MI
) {
1608 switch (MI
.getOpcode()) {
1611 case TargetOpcode::COPY
: {
1612 // FPR64 copies will by lowered to ORR.16b
1613 Register DstReg
= MI
.getOperand(0).getReg();
1614 return (AArch64::FPR64RegClass
.contains(DstReg
) ||
1615 AArch64::FPR128RegClass
.contains(DstReg
));
1617 case AArch64::ORRv16i8
:
1618 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg()) {
1619 assert(MI
.getDesc().getNumOperands() == 3 && MI
.getOperand(0).isReg() &&
1620 "invalid ORRv16i8 operands");
1628 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
1629 int &FrameIndex
) const {
1630 switch (MI
.getOpcode()) {
1633 case AArch64::LDRWui
:
1634 case AArch64::LDRXui
:
1635 case AArch64::LDRBui
:
1636 case AArch64::LDRHui
:
1637 case AArch64::LDRSui
:
1638 case AArch64::LDRDui
:
1639 case AArch64::LDRQui
:
1640 if (MI
.getOperand(0).getSubReg() == 0 && MI
.getOperand(1).isFI() &&
1641 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) {
1642 FrameIndex
= MI
.getOperand(1).getIndex();
1643 return MI
.getOperand(0).getReg();
1651 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
1652 int &FrameIndex
) const {
1653 switch (MI
.getOpcode()) {
1656 case AArch64::STRWui
:
1657 case AArch64::STRXui
:
1658 case AArch64::STRBui
:
1659 case AArch64::STRHui
:
1660 case AArch64::STRSui
:
1661 case AArch64::STRDui
:
1662 case AArch64::STRQui
:
1663 if (MI
.getOperand(0).getSubReg() == 0 && MI
.getOperand(1).isFI() &&
1664 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) {
1665 FrameIndex
= MI
.getOperand(1).getIndex();
1666 return MI
.getOperand(0).getReg();
1673 /// Check all MachineMemOperands for a hint to suppress pairing.
1674 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr
&MI
) {
1675 return llvm::any_of(MI
.memoperands(), [](MachineMemOperand
*MMO
) {
1676 return MMO
->getFlags() & MOSuppressPair
;
1680 /// Set a flag on the first MachineMemOperand to suppress pairing.
1681 void AArch64InstrInfo::suppressLdStPair(MachineInstr
&MI
) {
1682 if (MI
.memoperands_empty())
1684 (*MI
.memoperands_begin())->setFlags(MOSuppressPair
);
1687 /// Check all MachineMemOperands for a hint that the load/store is strided.
1688 bool AArch64InstrInfo::isStridedAccess(const MachineInstr
&MI
) {
1689 return llvm::any_of(MI
.memoperands(), [](MachineMemOperand
*MMO
) {
1690 return MMO
->getFlags() & MOStridedAccess
;
1694 bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc
) {
1698 case AArch64::STURSi
:
1699 case AArch64::STURDi
:
1700 case AArch64::STURQi
:
1701 case AArch64::STURBBi
:
1702 case AArch64::STURHHi
:
1703 case AArch64::STURWi
:
1704 case AArch64::STURXi
:
1705 case AArch64::LDURSi
:
1706 case AArch64::LDURDi
:
1707 case AArch64::LDURQi
:
1708 case AArch64::LDURWi
:
1709 case AArch64::LDURXi
:
1710 case AArch64::LDURSWi
:
1711 case AArch64::LDURHHi
:
1712 case AArch64::LDURBBi
:
1713 case AArch64::LDURSBWi
:
1714 case AArch64::LDURSHWi
:
1719 Optional
<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc
) {
1722 case AArch64::PRFMui
: return AArch64::PRFUMi
;
1723 case AArch64::LDRXui
: return AArch64::LDURXi
;
1724 case AArch64::LDRWui
: return AArch64::LDURWi
;
1725 case AArch64::LDRBui
: return AArch64::LDURBi
;
1726 case AArch64::LDRHui
: return AArch64::LDURHi
;
1727 case AArch64::LDRSui
: return AArch64::LDURSi
;
1728 case AArch64::LDRDui
: return AArch64::LDURDi
;
1729 case AArch64::LDRQui
: return AArch64::LDURQi
;
1730 case AArch64::LDRBBui
: return AArch64::LDURBBi
;
1731 case AArch64::LDRHHui
: return AArch64::LDURHHi
;
1732 case AArch64::LDRSBXui
: return AArch64::LDURSBXi
;
1733 case AArch64::LDRSBWui
: return AArch64::LDURSBWi
;
1734 case AArch64::LDRSHXui
: return AArch64::LDURSHXi
;
1735 case AArch64::LDRSHWui
: return AArch64::LDURSHWi
;
1736 case AArch64::LDRSWui
: return AArch64::LDURSWi
;
1737 case AArch64::STRXui
: return AArch64::STURXi
;
1738 case AArch64::STRWui
: return AArch64::STURWi
;
1739 case AArch64::STRBui
: return AArch64::STURBi
;
1740 case AArch64::STRHui
: return AArch64::STURHi
;
1741 case AArch64::STRSui
: return AArch64::STURSi
;
1742 case AArch64::STRDui
: return AArch64::STURDi
;
1743 case AArch64::STRQui
: return AArch64::STURQi
;
1744 case AArch64::STRBBui
: return AArch64::STURBBi
;
1745 case AArch64::STRHHui
: return AArch64::STURHHi
;
1749 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc
) {
1753 case AArch64::LDPXi
:
1754 case AArch64::LDPDi
:
1755 case AArch64::STPXi
:
1756 case AArch64::STPDi
:
1757 case AArch64::LDNPXi
:
1758 case AArch64::LDNPDi
:
1759 case AArch64::STNPXi
:
1760 case AArch64::STNPDi
:
1761 case AArch64::LDPQi
:
1762 case AArch64::STPQi
:
1763 case AArch64::LDNPQi
:
1764 case AArch64::STNPQi
:
1765 case AArch64::LDPWi
:
1766 case AArch64::LDPSi
:
1767 case AArch64::STPWi
:
1768 case AArch64::STPSi
:
1769 case AArch64::LDNPWi
:
1770 case AArch64::LDNPSi
:
1771 case AArch64::STNPWi
:
1772 case AArch64::STNPSi
:
1774 case AArch64::STGPi
:
1777 case AArch64::STGOffset
:
1782 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr
&MI
) {
1783 switch (MI
.getOpcode()) {
1786 // Scaled instructions.
1787 case AArch64::STRSui
:
1788 case AArch64::STRDui
:
1789 case AArch64::STRQui
:
1790 case AArch64::STRXui
:
1791 case AArch64::STRWui
:
1792 case AArch64::LDRSui
:
1793 case AArch64::LDRDui
:
1794 case AArch64::LDRQui
:
1795 case AArch64::LDRXui
:
1796 case AArch64::LDRWui
:
1797 case AArch64::LDRSWui
:
1798 // Unscaled instructions.
1799 case AArch64::STURSi
:
1800 case AArch64::STURDi
:
1801 case AArch64::STURQi
:
1802 case AArch64::STURWi
:
1803 case AArch64::STURXi
:
1804 case AArch64::LDURSi
:
1805 case AArch64::LDURDi
:
1806 case AArch64::LDURQi
:
1807 case AArch64::LDURWi
:
1808 case AArch64::LDURXi
:
1809 case AArch64::LDURSWi
:
1814 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc
,
1818 llvm_unreachable("Opcode has no flag setting equivalent!");
1820 case AArch64::ADDWri
:
1822 return AArch64::ADDSWri
;
1823 case AArch64::ADDWrr
:
1825 return AArch64::ADDSWrr
;
1826 case AArch64::ADDWrs
:
1828 return AArch64::ADDSWrs
;
1829 case AArch64::ADDWrx
:
1831 return AArch64::ADDSWrx
;
1832 case AArch64::ANDWri
:
1834 return AArch64::ANDSWri
;
1835 case AArch64::ANDWrr
:
1837 return AArch64::ANDSWrr
;
1838 case AArch64::ANDWrs
:
1840 return AArch64::ANDSWrs
;
1841 case AArch64::BICWrr
:
1843 return AArch64::BICSWrr
;
1844 case AArch64::BICWrs
:
1846 return AArch64::BICSWrs
;
1847 case AArch64::SUBWri
:
1849 return AArch64::SUBSWri
;
1850 case AArch64::SUBWrr
:
1852 return AArch64::SUBSWrr
;
1853 case AArch64::SUBWrs
:
1855 return AArch64::SUBSWrs
;
1856 case AArch64::SUBWrx
:
1858 return AArch64::SUBSWrx
;
1860 case AArch64::ADDXri
:
1862 return AArch64::ADDSXri
;
1863 case AArch64::ADDXrr
:
1865 return AArch64::ADDSXrr
;
1866 case AArch64::ADDXrs
:
1868 return AArch64::ADDSXrs
;
1869 case AArch64::ADDXrx
:
1871 return AArch64::ADDSXrx
;
1872 case AArch64::ANDXri
:
1874 return AArch64::ANDSXri
;
1875 case AArch64::ANDXrr
:
1877 return AArch64::ANDSXrr
;
1878 case AArch64::ANDXrs
:
1880 return AArch64::ANDSXrs
;
1881 case AArch64::BICXrr
:
1883 return AArch64::BICSXrr
;
1884 case AArch64::BICXrs
:
1886 return AArch64::BICSXrs
;
1887 case AArch64::SUBXri
:
1889 return AArch64::SUBSXri
;
1890 case AArch64::SUBXrr
:
1892 return AArch64::SUBSXrr
;
1893 case AArch64::SUBXrs
:
1895 return AArch64::SUBSXrs
;
1896 case AArch64::SUBXrx
:
1898 return AArch64::SUBSXrx
;
1902 // Is this a candidate for ld/st merging or pairing? For example, we don't
1903 // touch volatiles or load/stores that have a hint to avoid pair formation.
1904 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr
&MI
) const {
1905 // If this is a volatile load/store, don't mess with it.
1906 if (MI
.hasOrderedMemoryRef())
1909 // Make sure this is a reg/fi+imm (as opposed to an address reloc).
1910 assert((MI
.getOperand(1).isReg() || MI
.getOperand(1).isFI()) &&
1911 "Expected a reg or frame index operand.");
1912 if (!MI
.getOperand(2).isImm())
1915 // Can't merge/pair if the instruction modifies the base register.
1916 // e.g., ldr x0, [x0]
1917 // This case will never occur with an FI base.
1918 if (MI
.getOperand(1).isReg()) {
1919 Register BaseReg
= MI
.getOperand(1).getReg();
1920 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1921 if (MI
.modifiesRegister(BaseReg
, TRI
))
1925 // Check if this load/store has a hint to avoid pair formation.
1926 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
1927 if (isLdStPairSuppressed(MI
))
1930 // Do not pair any callee-save store/reload instructions in the
1931 // prologue/epilogue if the CFI information encoded the operations as separate
1932 // instructions, as that will cause the size of the actual prologue to mismatch
1933 // with the prologue size recorded in the Windows CFI.
1934 const MCAsmInfo
*MAI
= MI
.getMF()->getTarget().getMCAsmInfo();
1935 bool NeedsWinCFI
= MAI
->usesWindowsCFI() &&
1936 MI
.getMF()->getFunction().needsUnwindTableEntry();
1937 if (NeedsWinCFI
&& (MI
.getFlag(MachineInstr::FrameSetup
) ||
1938 MI
.getFlag(MachineInstr::FrameDestroy
)))
1941 // On some CPUs quad load/store pairs are slower than two single load/stores.
1942 if (Subtarget
.isPaired128Slow()) {
1943 switch (MI
.getOpcode()) {
1946 case AArch64::LDURQi
:
1947 case AArch64::STURQi
:
1948 case AArch64::LDRQui
:
1949 case AArch64::STRQui
:
1957 bool AArch64InstrInfo::getMemOperandWithOffset(const MachineInstr
&LdSt
,
1958 const MachineOperand
*&BaseOp
,
1960 const TargetRegisterInfo
*TRI
) const {
1962 return getMemOperandWithOffsetWidth(LdSt
, BaseOp
, Offset
, Width
, TRI
);
1965 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
1966 const MachineInstr
&LdSt
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
1967 unsigned &Width
, const TargetRegisterInfo
*TRI
) const {
1968 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
1969 // Handle only loads/stores with base register followed by immediate offset.
1970 if (LdSt
.getNumExplicitOperands() == 3) {
1971 // Non-paired instruction (e.g., ldr x1, [x0, #8]).
1972 if ((!LdSt
.getOperand(1).isReg() && !LdSt
.getOperand(1).isFI()) ||
1973 !LdSt
.getOperand(2).isImm())
1975 } else if (LdSt
.getNumExplicitOperands() == 4) {
1976 // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
1977 if (!LdSt
.getOperand(1).isReg() ||
1978 (!LdSt
.getOperand(2).isReg() && !LdSt
.getOperand(2).isFI()) ||
1979 !LdSt
.getOperand(3).isImm())
1984 // Get the scaling factor for the instruction and set the width for the
1987 int64_t Dummy1
, Dummy2
;
1989 // If this returns false, then it's an instruction we don't want to handle.
1990 if (!getMemOpInfo(LdSt
.getOpcode(), Scale
, Width
, Dummy1
, Dummy2
))
1993 // Compute the offset. Offset is calculated as the immediate operand
1994 // multiplied by the scaling factor. Unscaled instructions have scaling factor
1996 if (LdSt
.getNumExplicitOperands() == 3) {
1997 BaseOp
= &LdSt
.getOperand(1);
1998 Offset
= LdSt
.getOperand(2).getImm() * Scale
;
2000 assert(LdSt
.getNumExplicitOperands() == 4 && "invalid number of operands");
2001 BaseOp
= &LdSt
.getOperand(2);
2002 Offset
= LdSt
.getOperand(3).getImm() * Scale
;
2005 assert((BaseOp
->isReg() || BaseOp
->isFI()) &&
2006 "getMemOperandWithOffset only supports base "
2007 "operands of type register or frame index.");
2013 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr
&LdSt
) const {
2014 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
2015 MachineOperand
&OfsOp
= LdSt
.getOperand(LdSt
.getNumExplicitOperands() - 1);
2016 assert(OfsOp
.isImm() && "Offset operand wasn't immediate.");
2020 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode
, unsigned &Scale
,
2021 unsigned &Width
, int64_t &MinOffset
,
2022 int64_t &MaxOffset
) {
2024 // Not a memory operation or something we want to handle.
2027 MinOffset
= MaxOffset
= 0;
2029 case AArch64::STRWpost
:
2030 case AArch64::LDRWpost
:
2036 case AArch64::LDURQi
:
2037 case AArch64::STURQi
:
2043 case AArch64::PRFUMi
:
2044 case AArch64::LDURXi
:
2045 case AArch64::LDURDi
:
2046 case AArch64::STURXi
:
2047 case AArch64::STURDi
:
2053 case AArch64::LDURWi
:
2054 case AArch64::LDURSi
:
2055 case AArch64::LDURSWi
:
2056 case AArch64::STURWi
:
2057 case AArch64::STURSi
:
2063 case AArch64::LDURHi
:
2064 case AArch64::LDURHHi
:
2065 case AArch64::LDURSHXi
:
2066 case AArch64::LDURSHWi
:
2067 case AArch64::STURHi
:
2068 case AArch64::STURHHi
:
2074 case AArch64::LDURBi
:
2075 case AArch64::LDURBBi
:
2076 case AArch64::LDURSBXi
:
2077 case AArch64::LDURSBWi
:
2078 case AArch64::STURBi
:
2079 case AArch64::STURBBi
:
2085 case AArch64::LDPQi
:
2086 case AArch64::LDNPQi
:
2087 case AArch64::STPQi
:
2088 case AArch64::STNPQi
:
2094 case AArch64::LDRQui
:
2095 case AArch64::STRQui
:
2100 case AArch64::LDPXi
:
2101 case AArch64::LDPDi
:
2102 case AArch64::LDNPXi
:
2103 case AArch64::LDNPDi
:
2104 case AArch64::STPXi
:
2105 case AArch64::STPDi
:
2106 case AArch64::STNPXi
:
2107 case AArch64::STNPDi
:
2113 case AArch64::PRFMui
:
2114 case AArch64::LDRXui
:
2115 case AArch64::LDRDui
:
2116 case AArch64::STRXui
:
2117 case AArch64::STRDui
:
2122 case AArch64::LDPWi
:
2123 case AArch64::LDPSi
:
2124 case AArch64::LDNPWi
:
2125 case AArch64::LDNPSi
:
2126 case AArch64::STPWi
:
2127 case AArch64::STPSi
:
2128 case AArch64::STNPWi
:
2129 case AArch64::STNPSi
:
2135 case AArch64::LDRWui
:
2136 case AArch64::LDRSui
:
2137 case AArch64::LDRSWui
:
2138 case AArch64::STRWui
:
2139 case AArch64::STRSui
:
2144 case AArch64::LDRHui
:
2145 case AArch64::LDRHHui
:
2146 case AArch64::LDRSHWui
:
2147 case AArch64::LDRSHXui
:
2148 case AArch64::STRHui
:
2149 case AArch64::STRHHui
:
2154 case AArch64::LDRBui
:
2155 case AArch64::LDRBBui
:
2156 case AArch64::LDRSBWui
:
2157 case AArch64::LDRSBXui
:
2158 case AArch64::STRBui
:
2159 case AArch64::STRBBui
:
2165 case AArch64::TAGPstack
:
2172 case AArch64::STGOffset
:
2173 case AArch64::STZGOffset
:
2178 case AArch64::ST2GOffset
:
2179 case AArch64::STZ2GOffset
:
2185 case AArch64::STGPi
:
2195 static unsigned getOffsetStride(unsigned Opc
) {
2199 case AArch64::LDURQi
:
2200 case AArch64::STURQi
:
2202 case AArch64::LDURXi
:
2203 case AArch64::LDURDi
:
2204 case AArch64::STURXi
:
2205 case AArch64::STURDi
:
2207 case AArch64::LDURWi
:
2208 case AArch64::LDURSi
:
2209 case AArch64::LDURSWi
:
2210 case AArch64::STURWi
:
2211 case AArch64::STURSi
:
2216 // Scale the unscaled offsets. Returns false if the unscaled offset can't be
2218 static bool scaleOffset(unsigned Opc
, int64_t &Offset
) {
2219 unsigned OffsetStride
= getOffsetStride(Opc
);
2220 if (OffsetStride
== 0)
2222 // If the byte-offset isn't a multiple of the stride, we can't scale this
2224 if (Offset
% OffsetStride
!= 0)
2227 // Convert the byte-offset used by unscaled into an "element" offset used
2228 // by the scaled pair load/store instructions.
2229 Offset
/= OffsetStride
;
2233 // Unscale the scaled offsets. Returns false if the scaled offset can't be
2235 static bool unscaleOffset(unsigned Opc
, int64_t &Offset
) {
2236 unsigned OffsetStride
= getOffsetStride(Opc
);
2237 if (OffsetStride
== 0)
2240 // Convert the "element" offset used by scaled pair load/store instructions
2241 // into the byte-offset used by unscaled.
2242 Offset
*= OffsetStride
;
2246 static bool canPairLdStOpc(unsigned FirstOpc
, unsigned SecondOpc
) {
2247 if (FirstOpc
== SecondOpc
)
2249 // We can also pair sign-ext and zero-ext instructions.
2253 case AArch64::LDRWui
:
2254 case AArch64::LDURWi
:
2255 return SecondOpc
== AArch64::LDRSWui
|| SecondOpc
== AArch64::LDURSWi
;
2256 case AArch64::LDRSWui
:
2257 case AArch64::LDURSWi
:
2258 return SecondOpc
== AArch64::LDRWui
|| SecondOpc
== AArch64::LDURWi
;
2260 // These instructions can't be paired based on their opcodes.
2264 static bool shouldClusterFI(const MachineFrameInfo
&MFI
, int FI1
,
2265 int64_t Offset1
, unsigned Opcode1
, int FI2
,
2266 int64_t Offset2
, unsigned Opcode2
) {
2267 // Accesses through fixed stack object frame indices may access a different
2268 // fixed stack slot. Check that the object offsets + offsets match.
2269 if (MFI
.isFixedObjectIndex(FI1
) && MFI
.isFixedObjectIndex(FI2
)) {
2270 int64_t ObjectOffset1
= MFI
.getObjectOffset(FI1
);
2271 int64_t ObjectOffset2
= MFI
.getObjectOffset(FI2
);
2272 assert(ObjectOffset1
<= ObjectOffset2
&& "Object offsets are not ordered.");
2273 // Get the byte-offset from the object offset.
2274 if (!unscaleOffset(Opcode1
, Offset1
) || !unscaleOffset(Opcode2
, Offset2
))
2276 ObjectOffset1
+= Offset1
;
2277 ObjectOffset2
+= Offset2
;
2278 // Get the "element" index in the object.
2279 if (!scaleOffset(Opcode1
, ObjectOffset1
) ||
2280 !scaleOffset(Opcode2
, ObjectOffset2
))
2282 return ObjectOffset1
+ 1 == ObjectOffset2
;
2288 /// Detect opportunities for ldp/stp formation.
2290 /// Only called for LdSt for which getMemOperandWithOffset returns true.
2291 bool AArch64InstrInfo::shouldClusterMemOps(const MachineOperand
&BaseOp1
,
2292 const MachineOperand
&BaseOp2
,
2293 unsigned NumLoads
) const {
2294 const MachineInstr
&FirstLdSt
= *BaseOp1
.getParent();
2295 const MachineInstr
&SecondLdSt
= *BaseOp2
.getParent();
2296 if (BaseOp1
.getType() != BaseOp2
.getType())
2299 assert((BaseOp1
.isReg() || BaseOp1
.isFI()) &&
2300 "Only base registers and frame indices are supported.");
2302 // Check for both base regs and base FI.
2303 if (BaseOp1
.isReg() && BaseOp1
.getReg() != BaseOp2
.getReg())
2306 // Only cluster up to a single pair.
2310 if (!isPairableLdStInst(FirstLdSt
) || !isPairableLdStInst(SecondLdSt
))
2313 // Can we pair these instructions based on their opcodes?
2314 unsigned FirstOpc
= FirstLdSt
.getOpcode();
2315 unsigned SecondOpc
= SecondLdSt
.getOpcode();
2316 if (!canPairLdStOpc(FirstOpc
, SecondOpc
))
2319 // Can't merge volatiles or load/stores that have a hint to avoid pair
2320 // formation, for example.
2321 if (!isCandidateToMergeOrPair(FirstLdSt
) ||
2322 !isCandidateToMergeOrPair(SecondLdSt
))
2325 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
2326 int64_t Offset1
= FirstLdSt
.getOperand(2).getImm();
2327 if (isUnscaledLdSt(FirstOpc
) && !scaleOffset(FirstOpc
, Offset1
))
2330 int64_t Offset2
= SecondLdSt
.getOperand(2).getImm();
2331 if (isUnscaledLdSt(SecondOpc
) && !scaleOffset(SecondOpc
, Offset2
))
2334 // Pairwise instructions have a 7-bit signed offset field.
2335 if (Offset1
> 63 || Offset1
< -64)
2338 // The caller should already have ordered First/SecondLdSt by offset.
2339 // Note: except for non-equal frame index bases
2340 if (BaseOp1
.isFI()) {
2341 assert((!BaseOp1
.isIdenticalTo(BaseOp2
) || Offset1
>= Offset2
) &&
2342 "Caller should have ordered offsets.");
2344 const MachineFrameInfo
&MFI
=
2345 FirstLdSt
.getParent()->getParent()->getFrameInfo();
2346 return shouldClusterFI(MFI
, BaseOp1
.getIndex(), Offset1
, FirstOpc
,
2347 BaseOp2
.getIndex(), Offset2
, SecondOpc
);
2350 assert((!BaseOp1
.isIdenticalTo(BaseOp2
) || Offset1
<= Offset2
) &&
2351 "Caller should have ordered offsets.");
2353 return Offset1
+ 1 == Offset2
;
2356 static const MachineInstrBuilder
&AddSubReg(const MachineInstrBuilder
&MIB
,
2357 unsigned Reg
, unsigned SubIdx
,
2359 const TargetRegisterInfo
*TRI
) {
2361 return MIB
.addReg(Reg
, State
);
2363 if (Register::isPhysicalRegister(Reg
))
2364 return MIB
.addReg(TRI
->getSubReg(Reg
, SubIdx
), State
);
2365 return MIB
.addReg(Reg
, State
, SubIdx
);
2368 static bool forwardCopyWillClobberTuple(unsigned DestReg
, unsigned SrcReg
,
2370 // We really want the positive remainder mod 32 here, that happens to be
2371 // easily obtainable with a mask.
2372 return ((DestReg
- SrcReg
) & 0x1f) < NumRegs
;
2375 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock
&MBB
,
2376 MachineBasicBlock::iterator I
,
2377 const DebugLoc
&DL
, unsigned DestReg
,
2378 unsigned SrcReg
, bool KillSrc
,
2380 ArrayRef
<unsigned> Indices
) const {
2381 assert(Subtarget
.hasNEON() && "Unexpected register copy without NEON");
2382 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2383 uint16_t DestEncoding
= TRI
->getEncodingValue(DestReg
);
2384 uint16_t SrcEncoding
= TRI
->getEncodingValue(SrcReg
);
2385 unsigned NumRegs
= Indices
.size();
2387 int SubReg
= 0, End
= NumRegs
, Incr
= 1;
2388 if (forwardCopyWillClobberTuple(DestEncoding
, SrcEncoding
, NumRegs
)) {
2389 SubReg
= NumRegs
- 1;
2394 for (; SubReg
!= End
; SubReg
+= Incr
) {
2395 const MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opcode
));
2396 AddSubReg(MIB
, DestReg
, Indices
[SubReg
], RegState::Define
, TRI
);
2397 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], 0, TRI
);
2398 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], getKillRegState(KillSrc
), TRI
);
2402 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock
&MBB
,
2403 MachineBasicBlock::iterator I
,
2404 DebugLoc DL
, unsigned DestReg
,
2405 unsigned SrcReg
, bool KillSrc
,
2406 unsigned Opcode
, unsigned ZeroReg
,
2407 llvm::ArrayRef
<unsigned> Indices
) const {
2408 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2409 unsigned NumRegs
= Indices
.size();
2412 uint16_t DestEncoding
= TRI
->getEncodingValue(DestReg
);
2413 uint16_t SrcEncoding
= TRI
->getEncodingValue(SrcReg
);
2414 assert(DestEncoding
% NumRegs
== 0 && SrcEncoding
% NumRegs
== 0 &&
2415 "GPR reg sequences should not be able to overlap");
2418 for (unsigned SubReg
= 0; SubReg
!= NumRegs
; ++SubReg
) {
2419 const MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opcode
));
2420 AddSubReg(MIB
, DestReg
, Indices
[SubReg
], RegState::Define
, TRI
);
2421 MIB
.addReg(ZeroReg
);
2422 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], getKillRegState(KillSrc
), TRI
);
2427 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
2428 MachineBasicBlock::iterator I
,
2429 const DebugLoc
&DL
, unsigned DestReg
,
2430 unsigned SrcReg
, bool KillSrc
) const {
2431 if (AArch64::GPR32spRegClass
.contains(DestReg
) &&
2432 (AArch64::GPR32spRegClass
.contains(SrcReg
) || SrcReg
== AArch64::WZR
)) {
2433 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2435 if (DestReg
== AArch64::WSP
|| SrcReg
== AArch64::WSP
) {
2436 // If either operand is WSP, expand to ADD #0.
2437 if (Subtarget
.hasZeroCycleRegMove()) {
2438 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
2439 unsigned DestRegX
= TRI
->getMatchingSuperReg(DestReg
, AArch64::sub_32
,
2440 &AArch64::GPR64spRegClass
);
2441 unsigned SrcRegX
= TRI
->getMatchingSuperReg(SrcReg
, AArch64::sub_32
,
2442 &AArch64::GPR64spRegClass
);
2443 // This instruction is reading and writing X registers. This may upset
2444 // the register scavenger and machine verifier, so we need to indicate
2445 // that we are reading an undefined value from SrcRegX, but a proper
2446 // value from SrcReg.
2447 BuildMI(MBB
, I
, DL
, get(AArch64::ADDXri
), DestRegX
)
2448 .addReg(SrcRegX
, RegState::Undef
)
2450 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0))
2451 .addReg(SrcReg
, RegState::Implicit
| getKillRegState(KillSrc
));
2453 BuildMI(MBB
, I
, DL
, get(AArch64::ADDWri
), DestReg
)
2454 .addReg(SrcReg
, getKillRegState(KillSrc
))
2456 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2458 } else if (SrcReg
== AArch64::WZR
&& Subtarget
.hasZeroCycleZeroingGP()) {
2459 BuildMI(MBB
, I
, DL
, get(AArch64::MOVZWi
), DestReg
)
2461 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2463 if (Subtarget
.hasZeroCycleRegMove()) {
2464 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
2465 unsigned DestRegX
= TRI
->getMatchingSuperReg(DestReg
, AArch64::sub_32
,
2466 &AArch64::GPR64spRegClass
);
2467 unsigned SrcRegX
= TRI
->getMatchingSuperReg(SrcReg
, AArch64::sub_32
,
2468 &AArch64::GPR64spRegClass
);
2469 // This instruction is reading and writing X registers. This may upset
2470 // the register scavenger and machine verifier, so we need to indicate
2471 // that we are reading an undefined value from SrcRegX, but a proper
2472 // value from SrcReg.
2473 BuildMI(MBB
, I
, DL
, get(AArch64::ORRXrr
), DestRegX
)
2474 .addReg(AArch64::XZR
)
2475 .addReg(SrcRegX
, RegState::Undef
)
2476 .addReg(SrcReg
, RegState::Implicit
| getKillRegState(KillSrc
));
2478 // Otherwise, expand to ORR WZR.
2479 BuildMI(MBB
, I
, DL
, get(AArch64::ORRWrr
), DestReg
)
2480 .addReg(AArch64::WZR
)
2481 .addReg(SrcReg
, getKillRegState(KillSrc
));
2487 // Copy a Z register by ORRing with itself.
2488 if (AArch64::ZPRRegClass
.contains(DestReg
) &&
2489 AArch64::ZPRRegClass
.contains(SrcReg
)) {
2490 assert(Subtarget
.hasSVE() && "Unexpected SVE register.");
2491 BuildMI(MBB
, I
, DL
, get(AArch64::ORR_ZZZ
), DestReg
)
2493 .addReg(SrcReg
, getKillRegState(KillSrc
));
2497 if (AArch64::GPR64spRegClass
.contains(DestReg
) &&
2498 (AArch64::GPR64spRegClass
.contains(SrcReg
) || SrcReg
== AArch64::XZR
)) {
2499 if (DestReg
== AArch64::SP
|| SrcReg
== AArch64::SP
) {
2500 // If either operand is SP, expand to ADD #0.
2501 BuildMI(MBB
, I
, DL
, get(AArch64::ADDXri
), DestReg
)
2502 .addReg(SrcReg
, getKillRegState(KillSrc
))
2504 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2505 } else if (SrcReg
== AArch64::XZR
&& Subtarget
.hasZeroCycleZeroingGP()) {
2506 BuildMI(MBB
, I
, DL
, get(AArch64::MOVZXi
), DestReg
)
2508 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2510 // Otherwise, expand to ORR XZR.
2511 BuildMI(MBB
, I
, DL
, get(AArch64::ORRXrr
), DestReg
)
2512 .addReg(AArch64::XZR
)
2513 .addReg(SrcReg
, getKillRegState(KillSrc
));
2518 // Copy a DDDD register quad by copying the individual sub-registers.
2519 if (AArch64::DDDDRegClass
.contains(DestReg
) &&
2520 AArch64::DDDDRegClass
.contains(SrcReg
)) {
2521 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
,
2522 AArch64::dsub2
, AArch64::dsub3
};
2523 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2528 // Copy a DDD register triple by copying the individual sub-registers.
2529 if (AArch64::DDDRegClass
.contains(DestReg
) &&
2530 AArch64::DDDRegClass
.contains(SrcReg
)) {
2531 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
,
2533 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2538 // Copy a DD register pair by copying the individual sub-registers.
2539 if (AArch64::DDRegClass
.contains(DestReg
) &&
2540 AArch64::DDRegClass
.contains(SrcReg
)) {
2541 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
};
2542 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2547 // Copy a QQQQ register quad by copying the individual sub-registers.
2548 if (AArch64::QQQQRegClass
.contains(DestReg
) &&
2549 AArch64::QQQQRegClass
.contains(SrcReg
)) {
2550 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
,
2551 AArch64::qsub2
, AArch64::qsub3
};
2552 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2557 // Copy a QQQ register triple by copying the individual sub-registers.
2558 if (AArch64::QQQRegClass
.contains(DestReg
) &&
2559 AArch64::QQQRegClass
.contains(SrcReg
)) {
2560 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
,
2562 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2567 // Copy a QQ register pair by copying the individual sub-registers.
2568 if (AArch64::QQRegClass
.contains(DestReg
) &&
2569 AArch64::QQRegClass
.contains(SrcReg
)) {
2570 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
};
2571 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2576 if (AArch64::XSeqPairsClassRegClass
.contains(DestReg
) &&
2577 AArch64::XSeqPairsClassRegClass
.contains(SrcReg
)) {
2578 static const unsigned Indices
[] = {AArch64::sube64
, AArch64::subo64
};
2579 copyGPRRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRXrs
,
2580 AArch64::XZR
, Indices
);
2584 if (AArch64::WSeqPairsClassRegClass
.contains(DestReg
) &&
2585 AArch64::WSeqPairsClassRegClass
.contains(SrcReg
)) {
2586 static const unsigned Indices
[] = {AArch64::sube32
, AArch64::subo32
};
2587 copyGPRRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRWrs
,
2588 AArch64::WZR
, Indices
);
2592 if (AArch64::FPR128RegClass
.contains(DestReg
) &&
2593 AArch64::FPR128RegClass
.contains(SrcReg
)) {
2594 if (Subtarget
.hasNEON()) {
2595 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2597 .addReg(SrcReg
, getKillRegState(KillSrc
));
2599 BuildMI(MBB
, I
, DL
, get(AArch64::STRQpre
))
2600 .addReg(AArch64::SP
, RegState::Define
)
2601 .addReg(SrcReg
, getKillRegState(KillSrc
))
2602 .addReg(AArch64::SP
)
2604 BuildMI(MBB
, I
, DL
, get(AArch64::LDRQpre
))
2605 .addReg(AArch64::SP
, RegState::Define
)
2606 .addReg(DestReg
, RegState::Define
)
2607 .addReg(AArch64::SP
)
2613 if (AArch64::FPR64RegClass
.contains(DestReg
) &&
2614 AArch64::FPR64RegClass
.contains(SrcReg
)) {
2615 if (Subtarget
.hasNEON()) {
2616 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::dsub
,
2617 &AArch64::FPR128RegClass
);
2618 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::dsub
,
2619 &AArch64::FPR128RegClass
);
2620 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2622 .addReg(SrcReg
, getKillRegState(KillSrc
));
2624 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVDr
), DestReg
)
2625 .addReg(SrcReg
, getKillRegState(KillSrc
));
2630 if (AArch64::FPR32RegClass
.contains(DestReg
) &&
2631 AArch64::FPR32RegClass
.contains(SrcReg
)) {
2632 if (Subtarget
.hasNEON()) {
2633 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::ssub
,
2634 &AArch64::FPR128RegClass
);
2635 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::ssub
,
2636 &AArch64::FPR128RegClass
);
2637 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2639 .addReg(SrcReg
, getKillRegState(KillSrc
));
2641 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2642 .addReg(SrcReg
, getKillRegState(KillSrc
));
2647 if (AArch64::FPR16RegClass
.contains(DestReg
) &&
2648 AArch64::FPR16RegClass
.contains(SrcReg
)) {
2649 if (Subtarget
.hasNEON()) {
2650 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::hsub
,
2651 &AArch64::FPR128RegClass
);
2652 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::hsub
,
2653 &AArch64::FPR128RegClass
);
2654 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2656 .addReg(SrcReg
, getKillRegState(KillSrc
));
2658 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::hsub
,
2659 &AArch64::FPR32RegClass
);
2660 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::hsub
,
2661 &AArch64::FPR32RegClass
);
2662 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2663 .addReg(SrcReg
, getKillRegState(KillSrc
));
2668 if (AArch64::FPR8RegClass
.contains(DestReg
) &&
2669 AArch64::FPR8RegClass
.contains(SrcReg
)) {
2670 if (Subtarget
.hasNEON()) {
2671 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::bsub
,
2672 &AArch64::FPR128RegClass
);
2673 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::bsub
,
2674 &AArch64::FPR128RegClass
);
2675 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2677 .addReg(SrcReg
, getKillRegState(KillSrc
));
2679 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::bsub
,
2680 &AArch64::FPR32RegClass
);
2681 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::bsub
,
2682 &AArch64::FPR32RegClass
);
2683 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2684 .addReg(SrcReg
, getKillRegState(KillSrc
));
2689 // Copies between GPR64 and FPR64.
2690 if (AArch64::FPR64RegClass
.contains(DestReg
) &&
2691 AArch64::GPR64RegClass
.contains(SrcReg
)) {
2692 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVXDr
), DestReg
)
2693 .addReg(SrcReg
, getKillRegState(KillSrc
));
2696 if (AArch64::GPR64RegClass
.contains(DestReg
) &&
2697 AArch64::FPR64RegClass
.contains(SrcReg
)) {
2698 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVDXr
), DestReg
)
2699 .addReg(SrcReg
, getKillRegState(KillSrc
));
2702 // Copies between GPR32 and FPR32.
2703 if (AArch64::FPR32RegClass
.contains(DestReg
) &&
2704 AArch64::GPR32RegClass
.contains(SrcReg
)) {
2705 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVWSr
), DestReg
)
2706 .addReg(SrcReg
, getKillRegState(KillSrc
));
2709 if (AArch64::GPR32RegClass
.contains(DestReg
) &&
2710 AArch64::FPR32RegClass
.contains(SrcReg
)) {
2711 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSWr
), DestReg
)
2712 .addReg(SrcReg
, getKillRegState(KillSrc
));
2716 if (DestReg
== AArch64::NZCV
) {
2717 assert(AArch64::GPR64RegClass
.contains(SrcReg
) && "Invalid NZCV copy");
2718 BuildMI(MBB
, I
, DL
, get(AArch64::MSR
))
2719 .addImm(AArch64SysReg::NZCV
)
2720 .addReg(SrcReg
, getKillRegState(KillSrc
))
2721 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
);
2725 if (SrcReg
== AArch64::NZCV
) {
2726 assert(AArch64::GPR64RegClass
.contains(DestReg
) && "Invalid NZCV copy");
2727 BuildMI(MBB
, I
, DL
, get(AArch64::MRS
), DestReg
)
2728 .addImm(AArch64SysReg::NZCV
)
2729 .addReg(AArch64::NZCV
, RegState::Implicit
| getKillRegState(KillSrc
));
2733 llvm_unreachable("unimplemented reg-to-reg copy");
2736 static void storeRegPairToStackSlot(const TargetRegisterInfo
&TRI
,
2737 MachineBasicBlock
&MBB
,
2738 MachineBasicBlock::iterator InsertBefore
,
2739 const MCInstrDesc
&MCID
,
2740 unsigned SrcReg
, bool IsKill
,
2741 unsigned SubIdx0
, unsigned SubIdx1
, int FI
,
2742 MachineMemOperand
*MMO
) {
2743 unsigned SrcReg0
= SrcReg
;
2744 unsigned SrcReg1
= SrcReg
;
2745 if (Register::isPhysicalRegister(SrcReg
)) {
2746 SrcReg0
= TRI
.getSubReg(SrcReg
, SubIdx0
);
2748 SrcReg1
= TRI
.getSubReg(SrcReg
, SubIdx1
);
2751 BuildMI(MBB
, InsertBefore
, DebugLoc(), MCID
)
2752 .addReg(SrcReg0
, getKillRegState(IsKill
), SubIdx0
)
2753 .addReg(SrcReg1
, getKillRegState(IsKill
), SubIdx1
)
2756 .addMemOperand(MMO
);
2759 void AArch64InstrInfo::storeRegToStackSlot(
2760 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, unsigned SrcReg
,
2761 bool isKill
, int FI
, const TargetRegisterClass
*RC
,
2762 const TargetRegisterInfo
*TRI
) const {
2763 MachineFunction
&MF
= *MBB
.getParent();
2764 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2765 unsigned Align
= MFI
.getObjectAlignment(FI
);
2767 MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
2768 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
2769 PtrInfo
, MachineMemOperand::MOStore
, MFI
.getObjectSize(FI
), Align
);
2772 switch (TRI
->getSpillSize(*RC
)) {
2774 if (AArch64::FPR8RegClass
.hasSubClassEq(RC
))
2775 Opc
= AArch64::STRBui
;
2778 if (AArch64::FPR16RegClass
.hasSubClassEq(RC
))
2779 Opc
= AArch64::STRHui
;
2782 if (AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
2783 Opc
= AArch64::STRWui
;
2784 if (Register::isVirtualRegister(SrcReg
))
2785 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR32RegClass
);
2787 assert(SrcReg
!= AArch64::WSP
);
2788 } else if (AArch64::FPR32RegClass
.hasSubClassEq(RC
))
2789 Opc
= AArch64::STRSui
;
2792 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
)) {
2793 Opc
= AArch64::STRXui
;
2794 if (Register::isVirtualRegister(SrcReg
))
2795 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR64RegClass
);
2797 assert(SrcReg
!= AArch64::SP
);
2798 } else if (AArch64::FPR64RegClass
.hasSubClassEq(RC
)) {
2799 Opc
= AArch64::STRDui
;
2800 } else if (AArch64::WSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2801 storeRegPairToStackSlot(getRegisterInfo(), MBB
, MBBI
,
2802 get(AArch64::STPWi
), SrcReg
, isKill
,
2803 AArch64::sube32
, AArch64::subo32
, FI
, MMO
);
2808 if (AArch64::FPR128RegClass
.hasSubClassEq(RC
))
2809 Opc
= AArch64::STRQui
;
2810 else if (AArch64::DDRegClass
.hasSubClassEq(RC
)) {
2811 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2812 Opc
= AArch64::ST1Twov1d
;
2814 } else if (AArch64::XSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2815 storeRegPairToStackSlot(getRegisterInfo(), MBB
, MBBI
,
2816 get(AArch64::STPXi
), SrcReg
, isKill
,
2817 AArch64::sube64
, AArch64::subo64
, FI
, MMO
);
2822 if (AArch64::DDDRegClass
.hasSubClassEq(RC
)) {
2823 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2824 Opc
= AArch64::ST1Threev1d
;
2829 if (AArch64::DDDDRegClass
.hasSubClassEq(RC
)) {
2830 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2831 Opc
= AArch64::ST1Fourv1d
;
2833 } else if (AArch64::QQRegClass
.hasSubClassEq(RC
)) {
2834 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2835 Opc
= AArch64::ST1Twov2d
;
2840 if (AArch64::QQQRegClass
.hasSubClassEq(RC
)) {
2841 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2842 Opc
= AArch64::ST1Threev2d
;
2847 if (AArch64::QQQQRegClass
.hasSubClassEq(RC
)) {
2848 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2849 Opc
= AArch64::ST1Fourv2d
;
2854 assert(Opc
&& "Unknown register class");
2856 const MachineInstrBuilder MI
= BuildMI(MBB
, MBBI
, DebugLoc(), get(Opc
))
2857 .addReg(SrcReg
, getKillRegState(isKill
))
2862 MI
.addMemOperand(MMO
);
2865 static void loadRegPairFromStackSlot(const TargetRegisterInfo
&TRI
,
2866 MachineBasicBlock
&MBB
,
2867 MachineBasicBlock::iterator InsertBefore
,
2868 const MCInstrDesc
&MCID
,
2869 unsigned DestReg
, unsigned SubIdx0
,
2870 unsigned SubIdx1
, int FI
,
2871 MachineMemOperand
*MMO
) {
2872 unsigned DestReg0
= DestReg
;
2873 unsigned DestReg1
= DestReg
;
2874 bool IsUndef
= true;
2875 if (Register::isPhysicalRegister(DestReg
)) {
2876 DestReg0
= TRI
.getSubReg(DestReg
, SubIdx0
);
2878 DestReg1
= TRI
.getSubReg(DestReg
, SubIdx1
);
2882 BuildMI(MBB
, InsertBefore
, DebugLoc(), MCID
)
2883 .addReg(DestReg0
, RegState::Define
| getUndefRegState(IsUndef
), SubIdx0
)
2884 .addReg(DestReg1
, RegState::Define
| getUndefRegState(IsUndef
), SubIdx1
)
2887 .addMemOperand(MMO
);
2890 void AArch64InstrInfo::loadRegFromStackSlot(
2891 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, unsigned DestReg
,
2892 int FI
, const TargetRegisterClass
*RC
,
2893 const TargetRegisterInfo
*TRI
) const {
2894 MachineFunction
&MF
= *MBB
.getParent();
2895 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2896 unsigned Align
= MFI
.getObjectAlignment(FI
);
2897 MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
2898 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
2899 PtrInfo
, MachineMemOperand::MOLoad
, MFI
.getObjectSize(FI
), Align
);
2903 switch (TRI
->getSpillSize(*RC
)) {
2905 if (AArch64::FPR8RegClass
.hasSubClassEq(RC
))
2906 Opc
= AArch64::LDRBui
;
2909 if (AArch64::FPR16RegClass
.hasSubClassEq(RC
))
2910 Opc
= AArch64::LDRHui
;
2913 if (AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
2914 Opc
= AArch64::LDRWui
;
2915 if (Register::isVirtualRegister(DestReg
))
2916 MF
.getRegInfo().constrainRegClass(DestReg
, &AArch64::GPR32RegClass
);
2918 assert(DestReg
!= AArch64::WSP
);
2919 } else if (AArch64::FPR32RegClass
.hasSubClassEq(RC
))
2920 Opc
= AArch64::LDRSui
;
2923 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
)) {
2924 Opc
= AArch64::LDRXui
;
2925 if (Register::isVirtualRegister(DestReg
))
2926 MF
.getRegInfo().constrainRegClass(DestReg
, &AArch64::GPR64RegClass
);
2928 assert(DestReg
!= AArch64::SP
);
2929 } else if (AArch64::FPR64RegClass
.hasSubClassEq(RC
)) {
2930 Opc
= AArch64::LDRDui
;
2931 } else if (AArch64::WSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2932 loadRegPairFromStackSlot(getRegisterInfo(), MBB
, MBBI
,
2933 get(AArch64::LDPWi
), DestReg
, AArch64::sube32
,
2934 AArch64::subo32
, FI
, MMO
);
2939 if (AArch64::FPR128RegClass
.hasSubClassEq(RC
))
2940 Opc
= AArch64::LDRQui
;
2941 else if (AArch64::DDRegClass
.hasSubClassEq(RC
)) {
2942 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2943 Opc
= AArch64::LD1Twov1d
;
2945 } else if (AArch64::XSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2946 loadRegPairFromStackSlot(getRegisterInfo(), MBB
, MBBI
,
2947 get(AArch64::LDPXi
), DestReg
, AArch64::sube64
,
2948 AArch64::subo64
, FI
, MMO
);
2953 if (AArch64::DDDRegClass
.hasSubClassEq(RC
)) {
2954 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2955 Opc
= AArch64::LD1Threev1d
;
2960 if (AArch64::DDDDRegClass
.hasSubClassEq(RC
)) {
2961 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2962 Opc
= AArch64::LD1Fourv1d
;
2964 } else if (AArch64::QQRegClass
.hasSubClassEq(RC
)) {
2965 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2966 Opc
= AArch64::LD1Twov2d
;
2971 if (AArch64::QQQRegClass
.hasSubClassEq(RC
)) {
2972 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2973 Opc
= AArch64::LD1Threev2d
;
2978 if (AArch64::QQQQRegClass
.hasSubClassEq(RC
)) {
2979 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2980 Opc
= AArch64::LD1Fourv2d
;
2985 assert(Opc
&& "Unknown register class");
2987 const MachineInstrBuilder MI
= BuildMI(MBB
, MBBI
, DebugLoc(), get(Opc
))
2988 .addReg(DestReg
, getDefRegState(true))
2992 MI
.addMemOperand(MMO
);
2995 // Helper function to emit a frame offset adjustment from a given
2996 // pointer (SrcReg), stored into DestReg. This function is explicit
2997 // in that it requires the opcode.
2998 static void emitFrameOffsetAdj(MachineBasicBlock
&MBB
,
2999 MachineBasicBlock::iterator MBBI
,
3000 const DebugLoc
&DL
, unsigned DestReg
,
3001 unsigned SrcReg
, int64_t Offset
, unsigned Opc
,
3002 const TargetInstrInfo
*TII
,
3003 MachineInstr::MIFlag Flag
, bool NeedsWinCFI
,
3006 unsigned MaxEncoding
, ShiftSize
;
3008 case AArch64::ADDXri
:
3009 case AArch64::ADDSXri
:
3010 case AArch64::SUBXri
:
3011 case AArch64::SUBSXri
:
3012 MaxEncoding
= 0xfff;
3016 llvm_unreachable("Unsupported opcode");
3019 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
3020 // scratch register. If DestReg is a virtual register, use it as the
3021 // scratch register; otherwise, create a new virtual register (to be
3022 // replaced by the scavenger at the end of PEI). That case can be optimized
3023 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
3024 // register can be loaded with offset%8 and the add/sub can use an extending
3025 // instruction with LSL#3.
3026 // Currently the function handles any offsets but generates a poor sequence
3028 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
3030 const unsigned MaxEncodableValue
= MaxEncoding
<< ShiftSize
;
3032 unsigned ThisVal
= std::min
<unsigned>(Offset
, MaxEncodableValue
);
3033 unsigned LocalShiftSize
= 0;
3034 if (ThisVal
> MaxEncoding
) {
3035 ThisVal
= ThisVal
>> ShiftSize
;
3036 LocalShiftSize
= ShiftSize
;
3038 assert((ThisVal
>> ShiftSize
) <= MaxEncoding
&&
3039 "Encoding cannot handle value that big");
3040 auto MBI
= BuildMI(MBB
, MBBI
, DL
, TII
->get(Opc
), DestReg
)
3042 .addImm(Sign
* (int)ThisVal
);
3045 AArch64_AM::getShifterImm(AArch64_AM::LSL
, LocalShiftSize
));
3046 MBI
= MBI
.setMIFlag(Flag
);
3049 assert(Sign
== 1 && "SEH directives should always have a positive sign");
3050 int Imm
= (int)(ThisVal
<< LocalShiftSize
);
3051 if ((DestReg
== AArch64::FP
&& SrcReg
== AArch64::SP
) ||
3052 (SrcReg
== AArch64::FP
&& DestReg
== AArch64::SP
)) {
3056 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_SetFP
)).setMIFlag(Flag
);
3058 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_AddFP
))
3061 assert((Offset
- Imm
) == 0 && "Expected remaining offset to be zero to "
3062 "emit a single SEH directive");
3063 } else if (DestReg
== AArch64::SP
) {
3066 assert(SrcReg
== AArch64::SP
&& "Unexpected SrcReg for SEH_StackAlloc");
3067 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
3076 Offset
-= ThisVal
<< LocalShiftSize
;
3080 void llvm::emitFrameOffset(MachineBasicBlock
&MBB
,
3081 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
,
3082 unsigned DestReg
, unsigned SrcReg
,
3083 StackOffset Offset
, const TargetInstrInfo
*TII
,
3084 MachineInstr::MIFlag Flag
, bool SetNZCV
,
3085 bool NeedsWinCFI
, bool *HasWinCFI
) {
3087 Offset
.getForFrameOffset(Bytes
);
3089 // First emit non-scalable frame offsets, or a simple 'mov'.
3090 if (Bytes
|| (!Offset
&& SrcReg
!= DestReg
)) {
3091 assert((DestReg
!= AArch64::SP
|| Bytes
% 16 == 0) &&
3092 "SP increment/decrement not 16-byte aligned");
3093 unsigned Opc
= SetNZCV
? AArch64::ADDSXri
: AArch64::ADDXri
;
3096 Opc
= SetNZCV
? AArch64::SUBSXri
: AArch64::SUBXri
;
3098 emitFrameOffsetAdj(MBB
, MBBI
, DL
, DestReg
, SrcReg
, Bytes
, Opc
, TII
, Flag
,
3099 NeedsWinCFI
, HasWinCFI
);
3104 MachineInstr
*AArch64InstrInfo::foldMemoryOperandImpl(
3105 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
3106 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
3107 LiveIntervals
*LIS
, VirtRegMap
*VRM
) const {
3108 // This is a bit of a hack. Consider this instruction:
3110 // %0 = COPY %sp; GPR64all:%0
3112 // We explicitly chose GPR64all for the virtual register so such a copy might
3113 // be eliminated by RegisterCoalescer. However, that may not be possible, and
3114 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
3115 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
3117 // To prevent that, we are going to constrain the %0 register class here.
3119 // <rdar://problem/11522048>
3121 if (MI
.isFullCopy()) {
3122 Register DstReg
= MI
.getOperand(0).getReg();
3123 Register SrcReg
= MI
.getOperand(1).getReg();
3124 if (SrcReg
== AArch64::SP
&& Register::isVirtualRegister(DstReg
)) {
3125 MF
.getRegInfo().constrainRegClass(DstReg
, &AArch64::GPR64RegClass
);
3128 if (DstReg
== AArch64::SP
&& Register::isVirtualRegister(SrcReg
)) {
3129 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR64RegClass
);
3134 // Handle the case where a copy is being spilled or filled but the source
3135 // and destination register class don't match. For example:
3137 // %0 = COPY %xzr; GPR64common:%0
3139 // In this case we can still safely fold away the COPY and generate the
3140 // following spill code:
3142 // STRXui %xzr, %stack.0
3144 // This also eliminates spilled cross register class COPYs (e.g. between x and
3145 // d regs) of the same size. For example:
3147 // %0 = COPY %1; GPR64:%0, FPR64:%1
3149 // will be filled as
3151 // LDRDui %0, fi<#0>
3155 // LDRXui %Temp, fi<#0>
3158 if (MI
.isCopy() && Ops
.size() == 1 &&
3159 // Make sure we're only folding the explicit COPY defs/uses.
3160 (Ops
[0] == 0 || Ops
[0] == 1)) {
3161 bool IsSpill
= Ops
[0] == 0;
3162 bool IsFill
= !IsSpill
;
3163 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3164 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3165 MachineBasicBlock
&MBB
= *MI
.getParent();
3166 const MachineOperand
&DstMO
= MI
.getOperand(0);
3167 const MachineOperand
&SrcMO
= MI
.getOperand(1);
3168 Register DstReg
= DstMO
.getReg();
3169 Register SrcReg
= SrcMO
.getReg();
3170 // This is slightly expensive to compute for physical regs since
3171 // getMinimalPhysRegClass is slow.
3172 auto getRegClass
= [&](unsigned Reg
) {
3173 return Register::isVirtualRegister(Reg
) ? MRI
.getRegClass(Reg
)
3174 : TRI
.getMinimalPhysRegClass(Reg
);
3177 if (DstMO
.getSubReg() == 0 && SrcMO
.getSubReg() == 0) {
3178 assert(TRI
.getRegSizeInBits(*getRegClass(DstReg
)) ==
3179 TRI
.getRegSizeInBits(*getRegClass(SrcReg
)) &&
3180 "Mismatched register size in non subreg COPY");
3182 storeRegToStackSlot(MBB
, InsertPt
, SrcReg
, SrcMO
.isKill(), FrameIndex
,
3183 getRegClass(SrcReg
), &TRI
);
3185 loadRegFromStackSlot(MBB
, InsertPt
, DstReg
, FrameIndex
,
3186 getRegClass(DstReg
), &TRI
);
3187 return &*--InsertPt
;
3190 // Handle cases like spilling def of:
3192 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
3194 // where the physical register source can be widened and stored to the full
3195 // virtual reg destination stack slot, in this case producing:
3197 // STRXui %xzr, %stack.0
3199 if (IsSpill
&& DstMO
.isUndef() && Register::isPhysicalRegister(SrcReg
)) {
3200 assert(SrcMO
.getSubReg() == 0 &&
3201 "Unexpected subreg on physical register");
3202 const TargetRegisterClass
*SpillRC
;
3203 unsigned SpillSubreg
;
3204 switch (DstMO
.getSubReg()) {
3208 case AArch64::sub_32
:
3210 if (AArch64::GPR32RegClass
.contains(SrcReg
)) {
3211 SpillRC
= &AArch64::GPR64RegClass
;
3212 SpillSubreg
= AArch64::sub_32
;
3213 } else if (AArch64::FPR32RegClass
.contains(SrcReg
)) {
3214 SpillRC
= &AArch64::FPR64RegClass
;
3215 SpillSubreg
= AArch64::ssub
;
3220 if (AArch64::FPR64RegClass
.contains(SrcReg
)) {
3221 SpillRC
= &AArch64::FPR128RegClass
;
3222 SpillSubreg
= AArch64::dsub
;
3229 if (unsigned WidenedSrcReg
=
3230 TRI
.getMatchingSuperReg(SrcReg
, SpillSubreg
, SpillRC
)) {
3231 storeRegToStackSlot(MBB
, InsertPt
, WidenedSrcReg
, SrcMO
.isKill(),
3232 FrameIndex
, SpillRC
, &TRI
);
3233 return &*--InsertPt
;
3237 // Handle cases like filling use of:
3239 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
3241 // where we can load the full virtual reg source stack slot, into the subreg
3242 // destination, in this case producing:
3244 // LDRWui %0:sub_32<def,read-undef>, %stack.0
3246 if (IsFill
&& SrcMO
.getSubReg() == 0 && DstMO
.isUndef()) {
3247 const TargetRegisterClass
*FillRC
;
3248 switch (DstMO
.getSubReg()) {
3252 case AArch64::sub_32
:
3253 FillRC
= &AArch64::GPR32RegClass
;
3256 FillRC
= &AArch64::FPR32RegClass
;
3259 FillRC
= &AArch64::FPR64RegClass
;
3264 assert(TRI
.getRegSizeInBits(*getRegClass(SrcReg
)) ==
3265 TRI
.getRegSizeInBits(*FillRC
) &&
3266 "Mismatched regclass size on folded subreg COPY");
3267 loadRegFromStackSlot(MBB
, InsertPt
, DstReg
, FrameIndex
, FillRC
, &TRI
);
3268 MachineInstr
&LoadMI
= *--InsertPt
;
3269 MachineOperand
&LoadDst
= LoadMI
.getOperand(0);
3270 assert(LoadDst
.getSubReg() == 0 && "unexpected subreg on fill load");
3271 LoadDst
.setSubReg(DstMO
.getSubReg());
3272 LoadDst
.setIsUndef();
3282 int llvm::isAArch64FrameOffsetLegal(const MachineInstr
&MI
,
3283 StackOffset
&SOffset
,
3284 bool *OutUseUnscaledOp
,
3285 unsigned *OutUnscaledOp
,
3286 int *EmittableOffset
) {
3287 // Set output values in case of early exit.
3288 if (EmittableOffset
)
3289 *EmittableOffset
= 0;
3290 if (OutUseUnscaledOp
)
3291 *OutUseUnscaledOp
= false;
3295 // Exit early for structured vector spills/fills as they can't take an
3296 // immediate offset.
3297 switch (MI
.getOpcode()) {
3300 case AArch64::LD1Twov2d
:
3301 case AArch64::LD1Threev2d
:
3302 case AArch64::LD1Fourv2d
:
3303 case AArch64::LD1Twov1d
:
3304 case AArch64::LD1Threev1d
:
3305 case AArch64::LD1Fourv1d
:
3306 case AArch64::ST1Twov2d
:
3307 case AArch64::ST1Threev2d
:
3308 case AArch64::ST1Fourv2d
:
3309 case AArch64::ST1Twov1d
:
3310 case AArch64::ST1Threev1d
:
3311 case AArch64::ST1Fourv1d
:
3313 case AArch64::IRGstack
:
3314 return AArch64FrameOffsetCannotUpdate
;
3317 // Get the min/max offset and the scale.
3318 unsigned Scale
, Width
;
3319 int64_t MinOff
, MaxOff
;
3320 if (!AArch64InstrInfo::getMemOpInfo(MI
.getOpcode(), Scale
, Width
, MinOff
,
3322 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3324 // Construct the complete offset.
3325 const MachineOperand
&ImmOpnd
=
3326 MI
.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI
.getOpcode()));
3327 int Offset
= SOffset
.getBytes() + ImmOpnd
.getImm() * Scale
;
3329 // If the offset doesn't match the scale, we rewrite the instruction to
3330 // use the unscaled instruction instead. Likewise, if we have a negative
3331 // offset and there is an unscaled op to use.
3332 Optional
<unsigned> UnscaledOp
=
3333 AArch64InstrInfo::getUnscaledLdSt(MI
.getOpcode());
3334 bool useUnscaledOp
= UnscaledOp
&& (Offset
% Scale
|| Offset
< 0);
3335 if (useUnscaledOp
&&
3336 !AArch64InstrInfo::getMemOpInfo(*UnscaledOp
, Scale
, Width
, MinOff
, MaxOff
))
3337 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3339 int64_t Remainder
= Offset
% Scale
;
3340 assert(!(Remainder
&& useUnscaledOp
) &&
3341 "Cannot have remainder when using unscaled op");
3343 assert(MinOff
< MaxOff
&& "Unexpected Min/Max offsets");
3344 int NewOffset
= Offset
/ Scale
;
3345 if (MinOff
<= NewOffset
&& NewOffset
<= MaxOff
)
3348 NewOffset
= NewOffset
< 0 ? MinOff
: MaxOff
;
3349 Offset
= Offset
- NewOffset
* Scale
+ Remainder
;
3352 if (EmittableOffset
)
3353 *EmittableOffset
= NewOffset
;
3354 if (OutUseUnscaledOp
)
3355 *OutUseUnscaledOp
= useUnscaledOp
;
3356 if (OutUnscaledOp
&& UnscaledOp
)
3357 *OutUnscaledOp
= *UnscaledOp
;
3359 SOffset
= StackOffset(Offset
, MVT::i8
);
3360 return AArch64FrameOffsetCanUpdate
|
3361 (Offset
== 0 ? AArch64FrameOffsetIsLegal
: 0);
3364 bool llvm::rewriteAArch64FrameIndex(MachineInstr
&MI
, unsigned FrameRegIdx
,
3365 unsigned FrameReg
, StackOffset
&Offset
,
3366 const AArch64InstrInfo
*TII
) {
3367 unsigned Opcode
= MI
.getOpcode();
3368 unsigned ImmIdx
= FrameRegIdx
+ 1;
3370 if (Opcode
== AArch64::ADDSXri
|| Opcode
== AArch64::ADDXri
) {
3371 Offset
+= StackOffset(MI
.getOperand(ImmIdx
).getImm(), MVT::i8
);
3372 emitFrameOffset(*MI
.getParent(), MI
, MI
.getDebugLoc(),
3373 MI
.getOperand(0).getReg(), FrameReg
, Offset
, TII
,
3374 MachineInstr::NoFlags
, (Opcode
== AArch64::ADDSXri
));
3375 MI
.eraseFromParent();
3376 Offset
= StackOffset();
3381 unsigned UnscaledOp
;
3383 int Status
= isAArch64FrameOffsetLegal(MI
, Offset
, &UseUnscaledOp
,
3384 &UnscaledOp
, &NewOffset
);
3385 if (Status
& AArch64FrameOffsetCanUpdate
) {
3386 if (Status
& AArch64FrameOffsetIsLegal
)
3387 // Replace the FrameIndex with FrameReg.
3388 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
3390 MI
.setDesc(TII
->get(UnscaledOp
));
3392 MI
.getOperand(ImmIdx
).ChangeToImmediate(NewOffset
);
3399 void AArch64InstrInfo::getNoop(MCInst
&NopInst
) const {
3400 NopInst
.setOpcode(AArch64::HINT
);
3401 NopInst
.addOperand(MCOperand::createImm(0));
3404 // AArch64 supports MachineCombiner.
3405 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
3407 // True when Opc sets flag
3408 static bool isCombineInstrSettingFlag(unsigned Opc
) {
3410 case AArch64::ADDSWrr
:
3411 case AArch64::ADDSWri
:
3412 case AArch64::ADDSXrr
:
3413 case AArch64::ADDSXri
:
3414 case AArch64::SUBSWrr
:
3415 case AArch64::SUBSXrr
:
3416 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3417 case AArch64::SUBSWri
:
3418 case AArch64::SUBSXri
:
3426 // 32b Opcodes that can be combined with a MUL
3427 static bool isCombineInstrCandidate32(unsigned Opc
) {
3429 case AArch64::ADDWrr
:
3430 case AArch64::ADDWri
:
3431 case AArch64::SUBWrr
:
3432 case AArch64::ADDSWrr
:
3433 case AArch64::ADDSWri
:
3434 case AArch64::SUBSWrr
:
3435 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3436 case AArch64::SUBWri
:
3437 case AArch64::SUBSWri
:
3445 // 64b Opcodes that can be combined with a MUL
3446 static bool isCombineInstrCandidate64(unsigned Opc
) {
3448 case AArch64::ADDXrr
:
3449 case AArch64::ADDXri
:
3450 case AArch64::SUBXrr
:
3451 case AArch64::ADDSXrr
:
3452 case AArch64::ADDSXri
:
3453 case AArch64::SUBSXrr
:
3454 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3455 case AArch64::SUBXri
:
3456 case AArch64::SUBSXri
:
3464 // FP Opcodes that can be combined with a FMUL
3465 static bool isCombineInstrCandidateFP(const MachineInstr
&Inst
) {
3466 switch (Inst
.getOpcode()) {
3469 case AArch64::FADDSrr
:
3470 case AArch64::FADDDrr
:
3471 case AArch64::FADDv2f32
:
3472 case AArch64::FADDv2f64
:
3473 case AArch64::FADDv4f32
:
3474 case AArch64::FSUBSrr
:
3475 case AArch64::FSUBDrr
:
3476 case AArch64::FSUBv2f32
:
3477 case AArch64::FSUBv2f64
:
3478 case AArch64::FSUBv4f32
:
3479 TargetOptions Options
= Inst
.getParent()->getParent()->getTarget().Options
;
3480 return (Options
.UnsafeFPMath
||
3481 Options
.AllowFPOpFusion
== FPOpFusion::Fast
);
3486 // Opcodes that can be combined with a MUL
3487 static bool isCombineInstrCandidate(unsigned Opc
) {
3488 return (isCombineInstrCandidate32(Opc
) || isCombineInstrCandidate64(Opc
));
3492 // Utility routine that checks if \param MO is defined by an
3493 // \param CombineOpc instruction in the basic block \param MBB
3494 static bool canCombine(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3495 unsigned CombineOpc
, unsigned ZeroReg
= 0,
3496 bool CheckZeroReg
= false) {
3497 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
3498 MachineInstr
*MI
= nullptr;
3500 if (MO
.isReg() && Register::isVirtualRegister(MO
.getReg()))
3501 MI
= MRI
.getUniqueVRegDef(MO
.getReg());
3502 // And it needs to be in the trace (otherwise, it won't have a depth).
3503 if (!MI
|| MI
->getParent() != &MBB
|| (unsigned)MI
->getOpcode() != CombineOpc
)
3505 // Must only used by the user we combine with.
3506 if (!MRI
.hasOneNonDBGUse(MI
->getOperand(0).getReg()))
3510 assert(MI
->getNumOperands() >= 4 && MI
->getOperand(0).isReg() &&
3511 MI
->getOperand(1).isReg() && MI
->getOperand(2).isReg() &&
3512 MI
->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
3513 // The third input reg must be zero.
3514 if (MI
->getOperand(3).getReg() != ZeroReg
)
3522 // Is \param MO defined by an integer multiply and can be combined?
3523 static bool canCombineWithMUL(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3524 unsigned MulOpc
, unsigned ZeroReg
) {
3525 return canCombine(MBB
, MO
, MulOpc
, ZeroReg
, true);
3529 // Is \param MO defined by a floating-point multiply and can be combined?
3530 static bool canCombineWithFMUL(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3532 return canCombine(MBB
, MO
, MulOpc
);
3535 // TODO: There are many more machine instruction opcodes to match:
3536 // 1. Other data types (integer, vectors)
3537 // 2. Other math / logic operations (xor, or)
3538 // 3. Other forms of the same operation (intrinsics and other variants)
3539 bool AArch64InstrInfo::isAssociativeAndCommutative(
3540 const MachineInstr
&Inst
) const {
3541 switch (Inst
.getOpcode()) {
3542 case AArch64::FADDDrr
:
3543 case AArch64::FADDSrr
:
3544 case AArch64::FADDv2f32
:
3545 case AArch64::FADDv2f64
:
3546 case AArch64::FADDv4f32
:
3547 case AArch64::FMULDrr
:
3548 case AArch64::FMULSrr
:
3549 case AArch64::FMULX32
:
3550 case AArch64::FMULX64
:
3551 case AArch64::FMULXv2f32
:
3552 case AArch64::FMULXv2f64
:
3553 case AArch64::FMULXv4f32
:
3554 case AArch64::FMULv2f32
:
3555 case AArch64::FMULv2f64
:
3556 case AArch64::FMULv4f32
:
3557 return Inst
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
;
3563 /// Find instructions that can be turned into madd.
3564 static bool getMaddPatterns(MachineInstr
&Root
,
3565 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) {
3566 unsigned Opc
= Root
.getOpcode();
3567 MachineBasicBlock
&MBB
= *Root
.getParent();
3570 if (!isCombineInstrCandidate(Opc
))
3572 if (isCombineInstrSettingFlag(Opc
)) {
3573 int Cmp_NZCV
= Root
.findRegisterDefOperandIdx(AArch64::NZCV
, true);
3574 // When NZCV is live bail out.
3577 unsigned NewOpc
= convertToNonFlagSettingOpc(Root
);
3578 // When opcode can't change bail out.
3579 // CHECKME: do we miss any cases for opcode conversion?
3588 case AArch64::ADDWrr
:
3589 assert(Root
.getOperand(1).isReg() && Root
.getOperand(2).isReg() &&
3590 "ADDWrr does not have register operands");
3591 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3593 Patterns
.push_back(MachineCombinerPattern::MULADDW_OP1
);
3596 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDWrrr
,
3598 Patterns
.push_back(MachineCombinerPattern::MULADDW_OP2
);
3602 case AArch64::ADDXrr
:
3603 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3605 Patterns
.push_back(MachineCombinerPattern::MULADDX_OP1
);
3608 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDXrrr
,
3610 Patterns
.push_back(MachineCombinerPattern::MULADDX_OP2
);
3614 case AArch64::SUBWrr
:
3615 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3617 Patterns
.push_back(MachineCombinerPattern::MULSUBW_OP1
);
3620 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDWrrr
,
3622 Patterns
.push_back(MachineCombinerPattern::MULSUBW_OP2
);
3626 case AArch64::SUBXrr
:
3627 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3629 Patterns
.push_back(MachineCombinerPattern::MULSUBX_OP1
);
3632 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDXrrr
,
3634 Patterns
.push_back(MachineCombinerPattern::MULSUBX_OP2
);
3638 case AArch64::ADDWri
:
3639 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3641 Patterns
.push_back(MachineCombinerPattern::MULADDWI_OP1
);
3645 case AArch64::ADDXri
:
3646 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3648 Patterns
.push_back(MachineCombinerPattern::MULADDXI_OP1
);
3652 case AArch64::SUBWri
:
3653 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3655 Patterns
.push_back(MachineCombinerPattern::MULSUBWI_OP1
);
3659 case AArch64::SUBXri
:
3660 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3662 Patterns
.push_back(MachineCombinerPattern::MULSUBXI_OP1
);
3669 /// Floating-Point Support
3671 /// Find instructions that can be turned into madd.
3672 static bool getFMAPatterns(MachineInstr
&Root
,
3673 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) {
3675 if (!isCombineInstrCandidateFP(Root
))
3678 MachineBasicBlock
&MBB
= *Root
.getParent();
3681 switch (Root
.getOpcode()) {
3683 assert(false && "Unsupported FP instruction in combiner\n");
3685 case AArch64::FADDSrr
:
3686 assert(Root
.getOperand(1).isReg() && Root
.getOperand(2).isReg() &&
3687 "FADDWrr does not have register operands");
3688 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULSrr
)) {
3689 Patterns
.push_back(MachineCombinerPattern::FMULADDS_OP1
);
3691 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3692 AArch64::FMULv1i32_indexed
)) {
3693 Patterns
.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP1
);
3696 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULSrr
)) {
3697 Patterns
.push_back(MachineCombinerPattern::FMULADDS_OP2
);
3699 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3700 AArch64::FMULv1i32_indexed
)) {
3701 Patterns
.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP2
);
3705 case AArch64::FADDDrr
:
3706 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULDrr
)) {
3707 Patterns
.push_back(MachineCombinerPattern::FMULADDD_OP1
);
3709 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3710 AArch64::FMULv1i64_indexed
)) {
3711 Patterns
.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP1
);
3714 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULDrr
)) {
3715 Patterns
.push_back(MachineCombinerPattern::FMULADDD_OP2
);
3717 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3718 AArch64::FMULv1i64_indexed
)) {
3719 Patterns
.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP2
);
3723 case AArch64::FADDv2f32
:
3724 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3725 AArch64::FMULv2i32_indexed
)) {
3726 Patterns
.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP1
);
3728 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3729 AArch64::FMULv2f32
)) {
3730 Patterns
.push_back(MachineCombinerPattern::FMLAv2f32_OP1
);
3733 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3734 AArch64::FMULv2i32_indexed
)) {
3735 Patterns
.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP2
);
3737 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3738 AArch64::FMULv2f32
)) {
3739 Patterns
.push_back(MachineCombinerPattern::FMLAv2f32_OP2
);
3743 case AArch64::FADDv2f64
:
3744 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3745 AArch64::FMULv2i64_indexed
)) {
3746 Patterns
.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP1
);
3748 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3749 AArch64::FMULv2f64
)) {
3750 Patterns
.push_back(MachineCombinerPattern::FMLAv2f64_OP1
);
3753 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3754 AArch64::FMULv2i64_indexed
)) {
3755 Patterns
.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP2
);
3757 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3758 AArch64::FMULv2f64
)) {
3759 Patterns
.push_back(MachineCombinerPattern::FMLAv2f64_OP2
);
3763 case AArch64::FADDv4f32
:
3764 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3765 AArch64::FMULv4i32_indexed
)) {
3766 Patterns
.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP1
);
3768 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3769 AArch64::FMULv4f32
)) {
3770 Patterns
.push_back(MachineCombinerPattern::FMLAv4f32_OP1
);
3773 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3774 AArch64::FMULv4i32_indexed
)) {
3775 Patterns
.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP2
);
3777 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3778 AArch64::FMULv4f32
)) {
3779 Patterns
.push_back(MachineCombinerPattern::FMLAv4f32_OP2
);
3784 case AArch64::FSUBSrr
:
3785 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULSrr
)) {
3786 Patterns
.push_back(MachineCombinerPattern::FMULSUBS_OP1
);
3789 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULSrr
)) {
3790 Patterns
.push_back(MachineCombinerPattern::FMULSUBS_OP2
);
3792 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3793 AArch64::FMULv1i32_indexed
)) {
3794 Patterns
.push_back(MachineCombinerPattern::FMLSv1i32_indexed_OP2
);
3797 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FNMULSrr
)) {
3798 Patterns
.push_back(MachineCombinerPattern::FNMULSUBS_OP1
);
3802 case AArch64::FSUBDrr
:
3803 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULDrr
)) {
3804 Patterns
.push_back(MachineCombinerPattern::FMULSUBD_OP1
);
3807 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULDrr
)) {
3808 Patterns
.push_back(MachineCombinerPattern::FMULSUBD_OP2
);
3810 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3811 AArch64::FMULv1i64_indexed
)) {
3812 Patterns
.push_back(MachineCombinerPattern::FMLSv1i64_indexed_OP2
);
3815 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FNMULDrr
)) {
3816 Patterns
.push_back(MachineCombinerPattern::FNMULSUBD_OP1
);
3820 case AArch64::FSUBv2f32
:
3821 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3822 AArch64::FMULv2i32_indexed
)) {
3823 Patterns
.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP2
);
3825 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3826 AArch64::FMULv2f32
)) {
3827 Patterns
.push_back(MachineCombinerPattern::FMLSv2f32_OP2
);
3830 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3831 AArch64::FMULv2i32_indexed
)) {
3832 Patterns
.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP1
);
3834 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3835 AArch64::FMULv2f32
)) {
3836 Patterns
.push_back(MachineCombinerPattern::FMLSv2f32_OP1
);
3840 case AArch64::FSUBv2f64
:
3841 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3842 AArch64::FMULv2i64_indexed
)) {
3843 Patterns
.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP2
);
3845 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3846 AArch64::FMULv2f64
)) {
3847 Patterns
.push_back(MachineCombinerPattern::FMLSv2f64_OP2
);
3850 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3851 AArch64::FMULv2i64_indexed
)) {
3852 Patterns
.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP1
);
3854 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3855 AArch64::FMULv2f64
)) {
3856 Patterns
.push_back(MachineCombinerPattern::FMLSv2f64_OP1
);
3860 case AArch64::FSUBv4f32
:
3861 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3862 AArch64::FMULv4i32_indexed
)) {
3863 Patterns
.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP2
);
3865 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3866 AArch64::FMULv4f32
)) {
3867 Patterns
.push_back(MachineCombinerPattern::FMLSv4f32_OP2
);
3870 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3871 AArch64::FMULv4i32_indexed
)) {
3872 Patterns
.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP1
);
3874 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3875 AArch64::FMULv4f32
)) {
3876 Patterns
.push_back(MachineCombinerPattern::FMLSv4f32_OP1
);
3884 /// Return true when a code sequence can improve throughput. It
3885 /// should be called only for instructions in loops.
3886 /// \param Pattern - combiner pattern
3887 bool AArch64InstrInfo::isThroughputPattern(
3888 MachineCombinerPattern Pattern
) const {
3892 case MachineCombinerPattern::FMULADDS_OP1
:
3893 case MachineCombinerPattern::FMULADDS_OP2
:
3894 case MachineCombinerPattern::FMULSUBS_OP1
:
3895 case MachineCombinerPattern::FMULSUBS_OP2
:
3896 case MachineCombinerPattern::FMULADDD_OP1
:
3897 case MachineCombinerPattern::FMULADDD_OP2
:
3898 case MachineCombinerPattern::FMULSUBD_OP1
:
3899 case MachineCombinerPattern::FMULSUBD_OP2
:
3900 case MachineCombinerPattern::FNMULSUBS_OP1
:
3901 case MachineCombinerPattern::FNMULSUBD_OP1
:
3902 case MachineCombinerPattern::FMLAv1i32_indexed_OP1
:
3903 case MachineCombinerPattern::FMLAv1i32_indexed_OP2
:
3904 case MachineCombinerPattern::FMLAv1i64_indexed_OP1
:
3905 case MachineCombinerPattern::FMLAv1i64_indexed_OP2
:
3906 case MachineCombinerPattern::FMLAv2f32_OP2
:
3907 case MachineCombinerPattern::FMLAv2f32_OP1
:
3908 case MachineCombinerPattern::FMLAv2f64_OP1
:
3909 case MachineCombinerPattern::FMLAv2f64_OP2
:
3910 case MachineCombinerPattern::FMLAv2i32_indexed_OP1
:
3911 case MachineCombinerPattern::FMLAv2i32_indexed_OP2
:
3912 case MachineCombinerPattern::FMLAv2i64_indexed_OP1
:
3913 case MachineCombinerPattern::FMLAv2i64_indexed_OP2
:
3914 case MachineCombinerPattern::FMLAv4f32_OP1
:
3915 case MachineCombinerPattern::FMLAv4f32_OP2
:
3916 case MachineCombinerPattern::FMLAv4i32_indexed_OP1
:
3917 case MachineCombinerPattern::FMLAv4i32_indexed_OP2
:
3918 case MachineCombinerPattern::FMLSv1i32_indexed_OP2
:
3919 case MachineCombinerPattern::FMLSv1i64_indexed_OP2
:
3920 case MachineCombinerPattern::FMLSv2i32_indexed_OP2
:
3921 case MachineCombinerPattern::FMLSv2i64_indexed_OP2
:
3922 case MachineCombinerPattern::FMLSv2f32_OP2
:
3923 case MachineCombinerPattern::FMLSv2f64_OP2
:
3924 case MachineCombinerPattern::FMLSv4i32_indexed_OP2
:
3925 case MachineCombinerPattern::FMLSv4f32_OP2
:
3927 } // end switch (Pattern)
3930 /// Return true when there is potentially a faster code sequence for an
3931 /// instruction chain ending in \p Root. All potential patterns are listed in
3932 /// the \p Pattern vector. Pattern should be sorted in priority order since the
3933 /// pattern evaluator stops checking as soon as it finds a faster sequence.
3935 bool AArch64InstrInfo::getMachineCombinerPatterns(
3937 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
3939 if (getMaddPatterns(Root
, Patterns
))
3941 // Floating point patterns
3942 if (getFMAPatterns(Root
, Patterns
))
3945 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
3948 enum class FMAInstKind
{ Default
, Indexed
, Accumulator
};
3949 /// genFusedMultiply - Generate fused multiply instructions.
3950 /// This function supports both integer and floating point instructions.
3951 /// A typical example:
3954 /// ==> F|MADD R,A,B,C
3955 /// \param MF Containing MachineFunction
3956 /// \param MRI Register information
3957 /// \param TII Target information
3958 /// \param Root is the F|ADD instruction
3959 /// \param [out] InsInstrs is a vector of machine instructions and will
3960 /// contain the generated madd instruction
3961 /// \param IdxMulOpd is index of operand in Root that is the result of
3962 /// the F|MUL. In the example above IdxMulOpd is 1.
3963 /// \param MaddOpc the opcode fo the f|madd instruction
3964 /// \param RC Register class of operands
3965 /// \param kind of fma instruction (addressing mode) to be generated
3966 /// \param ReplacedAddend is the result register from the instruction
3967 /// replacing the non-combined operand, if any.
3968 static MachineInstr
*
3969 genFusedMultiply(MachineFunction
&MF
, MachineRegisterInfo
&MRI
,
3970 const TargetInstrInfo
*TII
, MachineInstr
&Root
,
3971 SmallVectorImpl
<MachineInstr
*> &InsInstrs
, unsigned IdxMulOpd
,
3972 unsigned MaddOpc
, const TargetRegisterClass
*RC
,
3973 FMAInstKind kind
= FMAInstKind::Default
,
3974 const Register
*ReplacedAddend
= nullptr) {
3975 assert(IdxMulOpd
== 1 || IdxMulOpd
== 2);
3977 unsigned IdxOtherOpd
= IdxMulOpd
== 1 ? 2 : 1;
3978 MachineInstr
*MUL
= MRI
.getUniqueVRegDef(Root
.getOperand(IdxMulOpd
).getReg());
3979 Register ResultReg
= Root
.getOperand(0).getReg();
3980 Register SrcReg0
= MUL
->getOperand(1).getReg();
3981 bool Src0IsKill
= MUL
->getOperand(1).isKill();
3982 Register SrcReg1
= MUL
->getOperand(2).getReg();
3983 bool Src1IsKill
= MUL
->getOperand(2).isKill();
3987 if (ReplacedAddend
) {
3988 // If we just generated a new addend, we must be it's only use.
3989 SrcReg2
= *ReplacedAddend
;
3992 SrcReg2
= Root
.getOperand(IdxOtherOpd
).getReg();
3993 Src2IsKill
= Root
.getOperand(IdxOtherOpd
).isKill();
3996 if (Register::isVirtualRegister(ResultReg
))
3997 MRI
.constrainRegClass(ResultReg
, RC
);
3998 if (Register::isVirtualRegister(SrcReg0
))
3999 MRI
.constrainRegClass(SrcReg0
, RC
);
4000 if (Register::isVirtualRegister(SrcReg1
))
4001 MRI
.constrainRegClass(SrcReg1
, RC
);
4002 if (Register::isVirtualRegister(SrcReg2
))
4003 MRI
.constrainRegClass(SrcReg2
, RC
);
4005 MachineInstrBuilder MIB
;
4006 if (kind
== FMAInstKind::Default
)
4007 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4008 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4009 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4010 .addReg(SrcReg2
, getKillRegState(Src2IsKill
));
4011 else if (kind
== FMAInstKind::Indexed
)
4012 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4013 .addReg(SrcReg2
, getKillRegState(Src2IsKill
))
4014 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4015 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4016 .addImm(MUL
->getOperand(3).getImm());
4017 else if (kind
== FMAInstKind::Accumulator
)
4018 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4019 .addReg(SrcReg2
, getKillRegState(Src2IsKill
))
4020 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4021 .addReg(SrcReg1
, getKillRegState(Src1IsKill
));
4023 assert(false && "Invalid FMA instruction kind \n");
4024 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
4025 InsInstrs
.push_back(MIB
);
4029 /// genMaddR - Generate madd instruction and combine mul and add using
4030 /// an extra virtual register
4031 /// Example - an ADD intermediate needs to be stored in a register:
4034 /// ==> ORR V, ZR, Imm
4035 /// ==> MADD R,A,B,V
4036 /// \param MF Containing MachineFunction
4037 /// \param MRI Register information
4038 /// \param TII Target information
4039 /// \param Root is the ADD instruction
4040 /// \param [out] InsInstrs is a vector of machine instructions and will
4041 /// contain the generated madd instruction
4042 /// \param IdxMulOpd is index of operand in Root that is the result of
4043 /// the MUL. In the example above IdxMulOpd is 1.
4044 /// \param MaddOpc the opcode fo the madd instruction
4045 /// \param VR is a virtual register that holds the value of an ADD operand
4046 /// (V in the example above).
4047 /// \param RC Register class of operands
4048 static MachineInstr
*genMaddR(MachineFunction
&MF
, MachineRegisterInfo
&MRI
,
4049 const TargetInstrInfo
*TII
, MachineInstr
&Root
,
4050 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
4051 unsigned IdxMulOpd
, unsigned MaddOpc
, unsigned VR
,
4052 const TargetRegisterClass
*RC
) {
4053 assert(IdxMulOpd
== 1 || IdxMulOpd
== 2);
4055 MachineInstr
*MUL
= MRI
.getUniqueVRegDef(Root
.getOperand(IdxMulOpd
).getReg());
4056 Register ResultReg
= Root
.getOperand(0).getReg();
4057 Register SrcReg0
= MUL
->getOperand(1).getReg();
4058 bool Src0IsKill
= MUL
->getOperand(1).isKill();
4059 Register SrcReg1
= MUL
->getOperand(2).getReg();
4060 bool Src1IsKill
= MUL
->getOperand(2).isKill();
4062 if (Register::isVirtualRegister(ResultReg
))
4063 MRI
.constrainRegClass(ResultReg
, RC
);
4064 if (Register::isVirtualRegister(SrcReg0
))
4065 MRI
.constrainRegClass(SrcReg0
, RC
);
4066 if (Register::isVirtualRegister(SrcReg1
))
4067 MRI
.constrainRegClass(SrcReg1
, RC
);
4068 if (Register::isVirtualRegister(VR
))
4069 MRI
.constrainRegClass(VR
, RC
);
4071 MachineInstrBuilder MIB
=
4072 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4073 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4074 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4077 InsInstrs
.push_back(MIB
);
4081 /// When getMachineCombinerPatterns() finds potential patterns,
4082 /// this function generates the instructions that could replace the
4083 /// original code sequence
4084 void AArch64InstrInfo::genAlternativeCodeSequence(
4085 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
4086 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
4087 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
4088 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
4089 MachineBasicBlock
&MBB
= *Root
.getParent();
4090 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
4091 MachineFunction
&MF
= *MBB
.getParent();
4092 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
4095 const TargetRegisterClass
*RC
;
4099 // Reassociate instructions.
4100 TargetInstrInfo::genAlternativeCodeSequence(Root
, Pattern
, InsInstrs
,
4101 DelInstrs
, InstrIdxForVirtReg
);
4103 case MachineCombinerPattern::MULADDW_OP1
:
4104 case MachineCombinerPattern::MULADDX_OP1
:
4108 // --- Create(MADD);
4109 if (Pattern
== MachineCombinerPattern::MULADDW_OP1
) {
4110 Opc
= AArch64::MADDWrrr
;
4111 RC
= &AArch64::GPR32RegClass
;
4113 Opc
= AArch64::MADDXrrr
;
4114 RC
= &AArch64::GPR64RegClass
;
4116 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4118 case MachineCombinerPattern::MULADDW_OP2
:
4119 case MachineCombinerPattern::MULADDX_OP2
:
4123 // --- Create(MADD);
4124 if (Pattern
== MachineCombinerPattern::MULADDW_OP2
) {
4125 Opc
= AArch64::MADDWrrr
;
4126 RC
= &AArch64::GPR32RegClass
;
4128 Opc
= AArch64::MADDXrrr
;
4129 RC
= &AArch64::GPR64RegClass
;
4131 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4133 case MachineCombinerPattern::MULADDWI_OP1
:
4134 case MachineCombinerPattern::MULADDXI_OP1
: {
4137 // ==> ORR V, ZR, Imm
4139 // --- Create(MADD);
4140 const TargetRegisterClass
*OrrRC
;
4141 unsigned BitSize
, OrrOpc
, ZeroReg
;
4142 if (Pattern
== MachineCombinerPattern::MULADDWI_OP1
) {
4143 OrrOpc
= AArch64::ORRWri
;
4144 OrrRC
= &AArch64::GPR32spRegClass
;
4146 ZeroReg
= AArch64::WZR
;
4147 Opc
= AArch64::MADDWrrr
;
4148 RC
= &AArch64::GPR32RegClass
;
4150 OrrOpc
= AArch64::ORRXri
;
4151 OrrRC
= &AArch64::GPR64spRegClass
;
4153 ZeroReg
= AArch64::XZR
;
4154 Opc
= AArch64::MADDXrrr
;
4155 RC
= &AArch64::GPR64RegClass
;
4157 Register NewVR
= MRI
.createVirtualRegister(OrrRC
);
4158 uint64_t Imm
= Root
.getOperand(2).getImm();
4160 if (Root
.getOperand(3).isImm()) {
4161 unsigned Val
= Root
.getOperand(3).getImm();
4164 uint64_t UImm
= SignExtend64(Imm
, BitSize
);
4166 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
4167 MachineInstrBuilder MIB1
=
4168 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(OrrOpc
), NewVR
)
4171 InsInstrs
.push_back(MIB1
);
4172 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4173 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4177 case MachineCombinerPattern::MULSUBW_OP1
:
4178 case MachineCombinerPattern::MULSUBX_OP1
: {
4182 // ==> MADD R,A,B,V // = -C + A*B
4183 // --- Create(MADD);
4184 const TargetRegisterClass
*SubRC
;
4185 unsigned SubOpc
, ZeroReg
;
4186 if (Pattern
== MachineCombinerPattern::MULSUBW_OP1
) {
4187 SubOpc
= AArch64::SUBWrr
;
4188 SubRC
= &AArch64::GPR32spRegClass
;
4189 ZeroReg
= AArch64::WZR
;
4190 Opc
= AArch64::MADDWrrr
;
4191 RC
= &AArch64::GPR32RegClass
;
4193 SubOpc
= AArch64::SUBXrr
;
4194 SubRC
= &AArch64::GPR64spRegClass
;
4195 ZeroReg
= AArch64::XZR
;
4196 Opc
= AArch64::MADDXrrr
;
4197 RC
= &AArch64::GPR64RegClass
;
4199 Register NewVR
= MRI
.createVirtualRegister(SubRC
);
4201 MachineInstrBuilder MIB1
=
4202 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(SubOpc
), NewVR
)
4204 .add(Root
.getOperand(2));
4205 InsInstrs
.push_back(MIB1
);
4206 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4207 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4210 case MachineCombinerPattern::MULSUBW_OP2
:
4211 case MachineCombinerPattern::MULSUBX_OP2
:
4214 // ==> MSUB R,A,B,C (computes C - A*B)
4215 // --- Create(MSUB);
4216 if (Pattern
== MachineCombinerPattern::MULSUBW_OP2
) {
4217 Opc
= AArch64::MSUBWrrr
;
4218 RC
= &AArch64::GPR32RegClass
;
4220 Opc
= AArch64::MSUBXrrr
;
4221 RC
= &AArch64::GPR64RegClass
;
4223 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4225 case MachineCombinerPattern::MULSUBWI_OP1
:
4226 case MachineCombinerPattern::MULSUBXI_OP1
: {
4229 // ==> ORR V, ZR, -Imm
4230 // ==> MADD R,A,B,V // = -Imm + A*B
4231 // --- Create(MADD);
4232 const TargetRegisterClass
*OrrRC
;
4233 unsigned BitSize
, OrrOpc
, ZeroReg
;
4234 if (Pattern
== MachineCombinerPattern::MULSUBWI_OP1
) {
4235 OrrOpc
= AArch64::ORRWri
;
4236 OrrRC
= &AArch64::GPR32spRegClass
;
4238 ZeroReg
= AArch64::WZR
;
4239 Opc
= AArch64::MADDWrrr
;
4240 RC
= &AArch64::GPR32RegClass
;
4242 OrrOpc
= AArch64::ORRXri
;
4243 OrrRC
= &AArch64::GPR64spRegClass
;
4245 ZeroReg
= AArch64::XZR
;
4246 Opc
= AArch64::MADDXrrr
;
4247 RC
= &AArch64::GPR64RegClass
;
4249 Register NewVR
= MRI
.createVirtualRegister(OrrRC
);
4250 uint64_t Imm
= Root
.getOperand(2).getImm();
4251 if (Root
.getOperand(3).isImm()) {
4252 unsigned Val
= Root
.getOperand(3).getImm();
4255 uint64_t UImm
= SignExtend64(-Imm
, BitSize
);
4257 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
4258 MachineInstrBuilder MIB1
=
4259 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(OrrOpc
), NewVR
)
4262 InsInstrs
.push_back(MIB1
);
4263 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4264 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4268 // Floating Point Support
4269 case MachineCombinerPattern::FMULADDS_OP1
:
4270 case MachineCombinerPattern::FMULADDD_OP1
:
4274 // --- Create(MADD);
4275 if (Pattern
== MachineCombinerPattern::FMULADDS_OP1
) {
4276 Opc
= AArch64::FMADDSrrr
;
4277 RC
= &AArch64::FPR32RegClass
;
4279 Opc
= AArch64::FMADDDrrr
;
4280 RC
= &AArch64::FPR64RegClass
;
4282 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4284 case MachineCombinerPattern::FMULADDS_OP2
:
4285 case MachineCombinerPattern::FMULADDD_OP2
:
4288 // ==> FMADD R,A,B,C
4289 // --- Create(FMADD);
4290 if (Pattern
== MachineCombinerPattern::FMULADDS_OP2
) {
4291 Opc
= AArch64::FMADDSrrr
;
4292 RC
= &AArch64::FPR32RegClass
;
4294 Opc
= AArch64::FMADDDrrr
;
4295 RC
= &AArch64::FPR64RegClass
;
4297 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4300 case MachineCombinerPattern::FMLAv1i32_indexed_OP1
:
4301 Opc
= AArch64::FMLAv1i32_indexed
;
4302 RC
= &AArch64::FPR32RegClass
;
4303 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4304 FMAInstKind::Indexed
);
4306 case MachineCombinerPattern::FMLAv1i32_indexed_OP2
:
4307 Opc
= AArch64::FMLAv1i32_indexed
;
4308 RC
= &AArch64::FPR32RegClass
;
4309 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4310 FMAInstKind::Indexed
);
4313 case MachineCombinerPattern::FMLAv1i64_indexed_OP1
:
4314 Opc
= AArch64::FMLAv1i64_indexed
;
4315 RC
= &AArch64::FPR64RegClass
;
4316 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4317 FMAInstKind::Indexed
);
4319 case MachineCombinerPattern::FMLAv1i64_indexed_OP2
:
4320 Opc
= AArch64::FMLAv1i64_indexed
;
4321 RC
= &AArch64::FPR64RegClass
;
4322 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4323 FMAInstKind::Indexed
);
4326 case MachineCombinerPattern::FMLAv2i32_indexed_OP1
:
4327 case MachineCombinerPattern::FMLAv2f32_OP1
:
4328 RC
= &AArch64::FPR64RegClass
;
4329 if (Pattern
== MachineCombinerPattern::FMLAv2i32_indexed_OP1
) {
4330 Opc
= AArch64::FMLAv2i32_indexed
;
4331 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4332 FMAInstKind::Indexed
);
4334 Opc
= AArch64::FMLAv2f32
;
4335 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4336 FMAInstKind::Accumulator
);
4339 case MachineCombinerPattern::FMLAv2i32_indexed_OP2
:
4340 case MachineCombinerPattern::FMLAv2f32_OP2
:
4341 RC
= &AArch64::FPR64RegClass
;
4342 if (Pattern
== MachineCombinerPattern::FMLAv2i32_indexed_OP2
) {
4343 Opc
= AArch64::FMLAv2i32_indexed
;
4344 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4345 FMAInstKind::Indexed
);
4347 Opc
= AArch64::FMLAv2f32
;
4348 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4349 FMAInstKind::Accumulator
);
4353 case MachineCombinerPattern::FMLAv2i64_indexed_OP1
:
4354 case MachineCombinerPattern::FMLAv2f64_OP1
:
4355 RC
= &AArch64::FPR128RegClass
;
4356 if (Pattern
== MachineCombinerPattern::FMLAv2i64_indexed_OP1
) {
4357 Opc
= AArch64::FMLAv2i64_indexed
;
4358 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4359 FMAInstKind::Indexed
);
4361 Opc
= AArch64::FMLAv2f64
;
4362 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4363 FMAInstKind::Accumulator
);
4366 case MachineCombinerPattern::FMLAv2i64_indexed_OP2
:
4367 case MachineCombinerPattern::FMLAv2f64_OP2
:
4368 RC
= &AArch64::FPR128RegClass
;
4369 if (Pattern
== MachineCombinerPattern::FMLAv2i64_indexed_OP2
) {
4370 Opc
= AArch64::FMLAv2i64_indexed
;
4371 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4372 FMAInstKind::Indexed
);
4374 Opc
= AArch64::FMLAv2f64
;
4375 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4376 FMAInstKind::Accumulator
);
4380 case MachineCombinerPattern::FMLAv4i32_indexed_OP1
:
4381 case MachineCombinerPattern::FMLAv4f32_OP1
:
4382 RC
= &AArch64::FPR128RegClass
;
4383 if (Pattern
== MachineCombinerPattern::FMLAv4i32_indexed_OP1
) {
4384 Opc
= AArch64::FMLAv4i32_indexed
;
4385 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4386 FMAInstKind::Indexed
);
4388 Opc
= AArch64::FMLAv4f32
;
4389 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4390 FMAInstKind::Accumulator
);
4394 case MachineCombinerPattern::FMLAv4i32_indexed_OP2
:
4395 case MachineCombinerPattern::FMLAv4f32_OP2
:
4396 RC
= &AArch64::FPR128RegClass
;
4397 if (Pattern
== MachineCombinerPattern::FMLAv4i32_indexed_OP2
) {
4398 Opc
= AArch64::FMLAv4i32_indexed
;
4399 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4400 FMAInstKind::Indexed
);
4402 Opc
= AArch64::FMLAv4f32
;
4403 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4404 FMAInstKind::Accumulator
);
4408 case MachineCombinerPattern::FMULSUBS_OP1
:
4409 case MachineCombinerPattern::FMULSUBD_OP1
: {
4412 // ==> FNMSUB R,A,B,C // = -C + A*B
4413 // --- Create(FNMSUB);
4414 if (Pattern
== MachineCombinerPattern::FMULSUBS_OP1
) {
4415 Opc
= AArch64::FNMSUBSrrr
;
4416 RC
= &AArch64::FPR32RegClass
;
4418 Opc
= AArch64::FNMSUBDrrr
;
4419 RC
= &AArch64::FPR64RegClass
;
4421 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4425 case MachineCombinerPattern::FNMULSUBS_OP1
:
4426 case MachineCombinerPattern::FNMULSUBD_OP1
: {
4429 // ==> FNMADD R,A,B,C // = -A*B - C
4430 // --- Create(FNMADD);
4431 if (Pattern
== MachineCombinerPattern::FNMULSUBS_OP1
) {
4432 Opc
= AArch64::FNMADDSrrr
;
4433 RC
= &AArch64::FPR32RegClass
;
4435 Opc
= AArch64::FNMADDDrrr
;
4436 RC
= &AArch64::FPR64RegClass
;
4438 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4442 case MachineCombinerPattern::FMULSUBS_OP2
:
4443 case MachineCombinerPattern::FMULSUBD_OP2
: {
4446 // ==> FMSUB R,A,B,C (computes C - A*B)
4447 // --- Create(FMSUB);
4448 if (Pattern
== MachineCombinerPattern::FMULSUBS_OP2
) {
4449 Opc
= AArch64::FMSUBSrrr
;
4450 RC
= &AArch64::FPR32RegClass
;
4452 Opc
= AArch64::FMSUBDrrr
;
4453 RC
= &AArch64::FPR64RegClass
;
4455 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4459 case MachineCombinerPattern::FMLSv1i32_indexed_OP2
:
4460 Opc
= AArch64::FMLSv1i32_indexed
;
4461 RC
= &AArch64::FPR32RegClass
;
4462 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4463 FMAInstKind::Indexed
);
4466 case MachineCombinerPattern::FMLSv1i64_indexed_OP2
:
4467 Opc
= AArch64::FMLSv1i64_indexed
;
4468 RC
= &AArch64::FPR64RegClass
;
4469 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4470 FMAInstKind::Indexed
);
4473 case MachineCombinerPattern::FMLSv2f32_OP2
:
4474 case MachineCombinerPattern::FMLSv2i32_indexed_OP2
:
4475 RC
= &AArch64::FPR64RegClass
;
4476 if (Pattern
== MachineCombinerPattern::FMLSv2i32_indexed_OP2
) {
4477 Opc
= AArch64::FMLSv2i32_indexed
;
4478 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4479 FMAInstKind::Indexed
);
4481 Opc
= AArch64::FMLSv2f32
;
4482 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4483 FMAInstKind::Accumulator
);
4487 case MachineCombinerPattern::FMLSv2f64_OP2
:
4488 case MachineCombinerPattern::FMLSv2i64_indexed_OP2
:
4489 RC
= &AArch64::FPR128RegClass
;
4490 if (Pattern
== MachineCombinerPattern::FMLSv2i64_indexed_OP2
) {
4491 Opc
= AArch64::FMLSv2i64_indexed
;
4492 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4493 FMAInstKind::Indexed
);
4495 Opc
= AArch64::FMLSv2f64
;
4496 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4497 FMAInstKind::Accumulator
);
4501 case MachineCombinerPattern::FMLSv4f32_OP2
:
4502 case MachineCombinerPattern::FMLSv4i32_indexed_OP2
:
4503 RC
= &AArch64::FPR128RegClass
;
4504 if (Pattern
== MachineCombinerPattern::FMLSv4i32_indexed_OP2
) {
4505 Opc
= AArch64::FMLSv4i32_indexed
;
4506 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4507 FMAInstKind::Indexed
);
4509 Opc
= AArch64::FMLSv4f32
;
4510 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4511 FMAInstKind::Accumulator
);
4514 case MachineCombinerPattern::FMLSv2f32_OP1
:
4515 case MachineCombinerPattern::FMLSv2i32_indexed_OP1
: {
4516 RC
= &AArch64::FPR64RegClass
;
4517 Register NewVR
= MRI
.createVirtualRegister(RC
);
4518 MachineInstrBuilder MIB1
=
4519 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv2f32
), NewVR
)
4520 .add(Root
.getOperand(2));
4521 InsInstrs
.push_back(MIB1
);
4522 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4523 if (Pattern
== MachineCombinerPattern::FMLSv2i32_indexed_OP1
) {
4524 Opc
= AArch64::FMLAv2i32_indexed
;
4525 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4526 FMAInstKind::Indexed
, &NewVR
);
4528 Opc
= AArch64::FMLAv2f32
;
4529 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4530 FMAInstKind::Accumulator
, &NewVR
);
4534 case MachineCombinerPattern::FMLSv4f32_OP1
:
4535 case MachineCombinerPattern::FMLSv4i32_indexed_OP1
: {
4536 RC
= &AArch64::FPR128RegClass
;
4537 Register NewVR
= MRI
.createVirtualRegister(RC
);
4538 MachineInstrBuilder MIB1
=
4539 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv4f32
), NewVR
)
4540 .add(Root
.getOperand(2));
4541 InsInstrs
.push_back(MIB1
);
4542 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4543 if (Pattern
== MachineCombinerPattern::FMLSv4i32_indexed_OP1
) {
4544 Opc
= AArch64::FMLAv4i32_indexed
;
4545 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4546 FMAInstKind::Indexed
, &NewVR
);
4548 Opc
= AArch64::FMLAv4f32
;
4549 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4550 FMAInstKind::Accumulator
, &NewVR
);
4554 case MachineCombinerPattern::FMLSv2f64_OP1
:
4555 case MachineCombinerPattern::FMLSv2i64_indexed_OP1
: {
4556 RC
= &AArch64::FPR128RegClass
;
4557 Register NewVR
= MRI
.createVirtualRegister(RC
);
4558 MachineInstrBuilder MIB1
=
4559 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv2f64
), NewVR
)
4560 .add(Root
.getOperand(2));
4561 InsInstrs
.push_back(MIB1
);
4562 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4563 if (Pattern
== MachineCombinerPattern::FMLSv2i64_indexed_OP1
) {
4564 Opc
= AArch64::FMLAv2i64_indexed
;
4565 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4566 FMAInstKind::Indexed
, &NewVR
);
4568 Opc
= AArch64::FMLAv2f64
;
4569 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4570 FMAInstKind::Accumulator
, &NewVR
);
4574 } // end switch (Pattern)
4575 // Record MUL and ADD/SUB for deletion
4576 DelInstrs
.push_back(MUL
);
4577 DelInstrs
.push_back(&Root
);
4580 /// Replace csincr-branch sequence by simple conditional branch
4584 /// csinc w9, wzr, wzr, <condition code>
4585 /// tbnz w9, #0, 0x44
4589 /// b.<inverted condition code>
4593 /// csinc w9, wzr, wzr, <condition code>
4594 /// tbz w9, #0, 0x44
4598 /// b.<condition code>
4601 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
4602 /// compare's constant operand is power of 2.
4606 /// and w8, w8, #0x400
4611 /// tbnz w8, #10, L1
4614 /// \param MI Conditional Branch
4615 /// \return True when the simple conditional branch is generated
4617 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr
&MI
) const {
4618 bool IsNegativeBranch
= false;
4619 bool IsTestAndBranch
= false;
4620 unsigned TargetBBInMI
= 0;
4621 switch (MI
.getOpcode()) {
4623 llvm_unreachable("Unknown branch instruction?");
4630 case AArch64::CBNZW
:
4631 case AArch64::CBNZX
:
4633 IsNegativeBranch
= true;
4638 IsTestAndBranch
= true;
4640 case AArch64::TBNZW
:
4641 case AArch64::TBNZX
:
4643 IsNegativeBranch
= true;
4644 IsTestAndBranch
= true;
4647 // So we increment a zero register and test for bits other
4648 // than bit 0? Conservatively bail out in case the verifier
4649 // missed this case.
4650 if (IsTestAndBranch
&& MI
.getOperand(1).getImm())
4654 assert(MI
.getParent() && "Incomplete machine instruciton\n");
4655 MachineBasicBlock
*MBB
= MI
.getParent();
4656 MachineFunction
*MF
= MBB
->getParent();
4657 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
4658 Register VReg
= MI
.getOperand(0).getReg();
4659 if (!Register::isVirtualRegister(VReg
))
4662 MachineInstr
*DefMI
= MRI
->getVRegDef(VReg
);
4664 // Look through COPY instructions to find definition.
4665 while (DefMI
->isCopy()) {
4666 Register CopyVReg
= DefMI
->getOperand(1).getReg();
4667 if (!MRI
->hasOneNonDBGUse(CopyVReg
))
4669 if (!MRI
->hasOneDef(CopyVReg
))
4671 DefMI
= MRI
->getVRegDef(CopyVReg
);
4674 switch (DefMI
->getOpcode()) {
4677 // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
4678 case AArch64::ANDWri
:
4679 case AArch64::ANDXri
: {
4680 if (IsTestAndBranch
)
4682 if (DefMI
->getParent() != MBB
)
4684 if (!MRI
->hasOneNonDBGUse(VReg
))
4687 bool Is32Bit
= (DefMI
->getOpcode() == AArch64::ANDWri
);
4688 uint64_t Mask
= AArch64_AM::decodeLogicalImmediate(
4689 DefMI
->getOperand(2).getImm(), Is32Bit
? 32 : 64);
4690 if (!isPowerOf2_64(Mask
))
4693 MachineOperand
&MO
= DefMI
->getOperand(1);
4694 Register NewReg
= MO
.getReg();
4695 if (!Register::isVirtualRegister(NewReg
))
4698 assert(!MRI
->def_empty(NewReg
) && "Register must be defined.");
4700 MachineBasicBlock
&RefToMBB
= *MBB
;
4701 MachineBasicBlock
*TBB
= MI
.getOperand(1).getMBB();
4702 DebugLoc DL
= MI
.getDebugLoc();
4703 unsigned Imm
= Log2_64(Mask
);
4704 unsigned Opc
= (Imm
< 32)
4705 ? (IsNegativeBranch
? AArch64::TBNZW
: AArch64::TBZW
)
4706 : (IsNegativeBranch
? AArch64::TBNZX
: AArch64::TBZX
);
4707 MachineInstr
*NewMI
= BuildMI(RefToMBB
, MI
, DL
, get(Opc
))
4711 // Register lives on to the CBZ now.
4712 MO
.setIsKill(false);
4714 // For immediate smaller than 32, we need to use the 32-bit
4715 // variant (W) in all cases. Indeed the 64-bit variant does not
4716 // allow to encode them.
4717 // Therefore, if the input register is 64-bit, we need to take the
4719 if (!Is32Bit
&& Imm
< 32)
4720 NewMI
->getOperand(0).setSubReg(AArch64::sub_32
);
4721 MI
.eraseFromParent();
4725 case AArch64::CSINCWr
:
4726 case AArch64::CSINCXr
: {
4727 if (!(DefMI
->getOperand(1).getReg() == AArch64::WZR
&&
4728 DefMI
->getOperand(2).getReg() == AArch64::WZR
) &&
4729 !(DefMI
->getOperand(1).getReg() == AArch64::XZR
&&
4730 DefMI
->getOperand(2).getReg() == AArch64::XZR
))
4733 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) != -1)
4736 AArch64CC::CondCode CC
= (AArch64CC::CondCode
)DefMI
->getOperand(3).getImm();
4737 // Convert only when the condition code is not modified between
4738 // the CSINC and the branch. The CC may be used by other
4739 // instructions in between.
4740 if (areCFlagsAccessedBetweenInstrs(DefMI
, MI
, &getRegisterInfo(), AK_Write
))
4742 MachineBasicBlock
&RefToMBB
= *MBB
;
4743 MachineBasicBlock
*TBB
= MI
.getOperand(TargetBBInMI
).getMBB();
4744 DebugLoc DL
= MI
.getDebugLoc();
4745 if (IsNegativeBranch
)
4746 CC
= AArch64CC::getInvertedCondCode(CC
);
4747 BuildMI(RefToMBB
, MI
, DL
, get(AArch64::Bcc
)).addImm(CC
).addMBB(TBB
);
4748 MI
.eraseFromParent();
4754 std::pair
<unsigned, unsigned>
4755 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
4756 const unsigned Mask
= AArch64II::MO_FRAGMENT
;
4757 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
4760 ArrayRef
<std::pair
<unsigned, const char *>>
4761 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
4762 using namespace AArch64II
;
4764 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
4765 {MO_PAGE
, "aarch64-page"}, {MO_PAGEOFF
, "aarch64-pageoff"},
4766 {MO_G3
, "aarch64-g3"}, {MO_G2
, "aarch64-g2"},
4767 {MO_G1
, "aarch64-g1"}, {MO_G0
, "aarch64-g0"},
4768 {MO_HI12
, "aarch64-hi12"}};
4769 return makeArrayRef(TargetFlags
);
4772 ArrayRef
<std::pair
<unsigned, const char *>>
4773 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
4774 using namespace AArch64II
;
4776 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
4777 {MO_COFFSTUB
, "aarch64-coffstub"},
4778 {MO_GOT
, "aarch64-got"},
4779 {MO_NC
, "aarch64-nc"},
4780 {MO_S
, "aarch64-s"},
4781 {MO_TLS
, "aarch64-tls"},
4782 {MO_DLLIMPORT
, "aarch64-dllimport"},
4783 {MO_PREL
, "aarch64-prel"},
4784 {MO_TAGGED
, "aarch64-tagged"}};
4785 return makeArrayRef(TargetFlags
);
4788 ArrayRef
<std::pair
<MachineMemOperand::Flags
, const char *>>
4789 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
4790 static const std::pair
<MachineMemOperand::Flags
, const char *> TargetFlags
[] =
4791 {{MOSuppressPair
, "aarch64-suppress-pair"},
4792 {MOStridedAccess
, "aarch64-strided-access"}};
4793 return makeArrayRef(TargetFlags
);
4796 /// Constants defining how certain sequences should be outlined.
4797 /// This encompasses how an outlined function should be called, and what kind of
4798 /// frame should be emitted for that outlined function.
4800 /// \p MachineOutlinerDefault implies that the function should be called with
4801 /// a save and restore of LR to the stack.
4805 /// I1 Save LR OUTLINED_FUNCTION:
4806 /// I2 --> BL OUTLINED_FUNCTION I1
4807 /// I3 Restore LR I2
4811 /// * Call construction overhead: 3 (save + BL + restore)
4812 /// * Frame construction overhead: 1 (ret)
4813 /// * Requires stack fixups? Yes
4815 /// \p MachineOutlinerTailCall implies that the function is being created from
4816 /// a sequence of instructions ending in a return.
4820 /// I1 OUTLINED_FUNCTION:
4821 /// I2 --> B OUTLINED_FUNCTION I1
4825 /// * Call construction overhead: 1 (B)
4826 /// * Frame construction overhead: 0 (Return included in sequence)
4827 /// * Requires stack fixups? No
4829 /// \p MachineOutlinerNoLRSave implies that the function should be called using
4830 /// a BL instruction, but doesn't require LR to be saved and restored. This
4831 /// happens when LR is known to be dead.
4835 /// I1 OUTLINED_FUNCTION:
4836 /// I2 --> BL OUTLINED_FUNCTION I1
4841 /// * Call construction overhead: 1 (BL)
4842 /// * Frame construction overhead: 1 (RET)
4843 /// * Requires stack fixups? No
4845 /// \p MachineOutlinerThunk implies that the function is being created from
4846 /// a sequence of instructions ending in a call. The outlined function is
4847 /// called with a BL instruction, and the outlined function tail-calls the
4848 /// original call destination.
4852 /// I1 OUTLINED_FUNCTION:
4853 /// I2 --> BL OUTLINED_FUNCTION I1
4856 /// * Call construction overhead: 1 (BL)
4857 /// * Frame construction overhead: 0
4858 /// * Requires stack fixups? No
4860 /// \p MachineOutlinerRegSave implies that the function should be called with a
4861 /// save and restore of LR to an available register. This allows us to avoid
4862 /// stack fixups. Note that this outlining variant is compatible with the
4867 /// I1 Save LR OUTLINED_FUNCTION:
4868 /// I2 --> BL OUTLINED_FUNCTION I1
4869 /// I3 Restore LR I2
4873 /// * Call construction overhead: 3 (save + BL + restore)
4874 /// * Frame construction overhead: 1 (ret)
4875 /// * Requires stack fixups? No
4876 enum MachineOutlinerClass
{
4877 MachineOutlinerDefault
, /// Emit a save, restore, call, and return.
4878 MachineOutlinerTailCall
, /// Only emit a branch.
4879 MachineOutlinerNoLRSave
, /// Emit a call and return.
4880 MachineOutlinerThunk
, /// Emit a call and tail-call.
4881 MachineOutlinerRegSave
/// Same as default, but save to a register.
4884 enum MachineOutlinerMBBFlags
{
4885 LRUnavailableSomewhere
= 0x2,
4887 UnsafeRegsDead
= 0x8
4891 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate
&C
) const {
4892 assert(C
.LRUWasSet
&& "LRU wasn't set?");
4893 MachineFunction
*MF
= C
.getMF();
4894 const AArch64RegisterInfo
*ARI
= static_cast<const AArch64RegisterInfo
*>(
4895 MF
->getSubtarget().getRegisterInfo());
4897 // Check if there is an available register across the sequence that we can
4899 for (unsigned Reg
: AArch64::GPR64RegClass
) {
4900 if (!ARI
->isReservedReg(*MF
, Reg
) &&
4901 Reg
!= AArch64::LR
&& // LR is not reserved, but don't use it.
4902 Reg
!= AArch64::X16
&& // X16 is not guaranteed to be preserved.
4903 Reg
!= AArch64::X17
&& // Ditto for X17.
4904 C
.LRU
.available(Reg
) && C
.UsedInSequence
.available(Reg
))
4908 // No suitable register. Return 0.
4912 outliner::OutlinedFunction
4913 AArch64InstrInfo::getOutliningCandidateInfo(
4914 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
4915 outliner::Candidate
&FirstCand
= RepeatedSequenceLocs
[0];
4916 unsigned SequenceSize
=
4917 std::accumulate(FirstCand
.front(), std::next(FirstCand
.back()), 0,
4918 [this](unsigned Sum
, const MachineInstr
&MI
) {
4919 return Sum
+ getInstSizeInBytes(MI
);
4922 // Properties about candidate MBBs that hold for all of them.
4923 unsigned FlagsSetInAll
= 0xF;
4925 // Compute liveness information for each candidate, and set FlagsSetInAll.
4926 const TargetRegisterInfo
&TRI
= getRegisterInfo();
4927 std::for_each(RepeatedSequenceLocs
.begin(), RepeatedSequenceLocs
.end(),
4928 [&FlagsSetInAll
](outliner::Candidate
&C
) {
4929 FlagsSetInAll
&= C
.Flags
;
4932 // According to the AArch64 Procedure Call Standard, the following are
4933 // undefined on entry/exit from a function call:
4935 // * Registers x16, x17, (and thus w16, w17)
4936 // * Condition codes (and thus the NZCV register)
4938 // Because if this, we can't outline any sequence of instructions where
4940 // of these registers is live into/across it. Thus, we need to delete
4943 auto CantGuaranteeValueAcrossCall
= [&TRI
](outliner::Candidate
&C
) {
4944 // If the unsafe registers in this block are all dead, then we don't need
4945 // to compute liveness here.
4946 if (C
.Flags
& UnsafeRegsDead
)
4949 LiveRegUnits LRU
= C
.LRU
;
4950 return (!LRU
.available(AArch64::W16
) || !LRU
.available(AArch64::W17
) ||
4951 !LRU
.available(AArch64::NZCV
));
4954 // Are there any candidates where those registers are live?
4955 if (!(FlagsSetInAll
& UnsafeRegsDead
)) {
4956 // Erase every candidate that violates the restrictions above. (It could be
4957 // true that we have viable candidates, so it's not worth bailing out in
4958 // the case that, say, 1 out of 20 candidates violate the restructions.)
4959 RepeatedSequenceLocs
.erase(std::remove_if(RepeatedSequenceLocs
.begin(),
4960 RepeatedSequenceLocs
.end(),
4961 CantGuaranteeValueAcrossCall
),
4962 RepeatedSequenceLocs
.end());
4964 // If the sequence doesn't have enough candidates left, then we're done.
4965 if (RepeatedSequenceLocs
.size() < 2)
4966 return outliner::OutlinedFunction();
4969 // At this point, we have only "safe" candidates to outline. Figure out
4970 // frame + call instruction information.
4972 unsigned LastInstrOpcode
= RepeatedSequenceLocs
[0].back()->getOpcode();
4974 // Helper lambda which sets call information for every candidate.
4975 auto SetCandidateCallInfo
=
4976 [&RepeatedSequenceLocs
](unsigned CallID
, unsigned NumBytesForCall
) {
4977 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
4978 C
.setCallInfo(CallID
, NumBytesForCall
);
4981 unsigned FrameID
= MachineOutlinerDefault
;
4982 unsigned NumBytesToCreateFrame
= 4;
4984 bool HasBTI
= any_of(RepeatedSequenceLocs
, [](outliner::Candidate
&C
) {
4985 return C
.getMF()->getFunction().hasFnAttribute("branch-target-enforcement");
4988 // Returns true if an instructions is safe to fix up, false otherwise.
4989 auto IsSafeToFixup
= [this, &TRI
](MachineInstr
&MI
) {
4993 if (!MI
.modifiesRegister(AArch64::SP
, &TRI
) &&
4994 !MI
.readsRegister(AArch64::SP
, &TRI
))
4997 // Any modification of SP will break our code to save/restore LR.
4998 // FIXME: We could handle some instructions which add a constant
4999 // offset to SP, with a bit more work.
5000 if (MI
.modifiesRegister(AArch64::SP
, &TRI
))
5003 // At this point, we have a stack instruction that we might need to
5004 // fix up. We'll handle it if it's a load or store.
5005 if (MI
.mayLoadOrStore()) {
5006 const MachineOperand
*Base
; // Filled with the base operand of MI.
5007 int64_t Offset
; // Filled with the offset of MI.
5009 // Does it allow us to offset the base operand and is the base the
5011 if (!getMemOperandWithOffset(MI
, Base
, Offset
, &TRI
) || !Base
->isReg() ||
5012 Base
->getReg() != AArch64::SP
)
5015 // Find the minimum/maximum offset for this instruction and check
5016 // if fixing it up would be in range.
5018 MaxOffset
; // Unscaled offsets for the instruction.
5019 unsigned Scale
; // The scale to multiply the offsets by.
5020 unsigned DummyWidth
;
5021 getMemOpInfo(MI
.getOpcode(), Scale
, DummyWidth
, MinOffset
, MaxOffset
);
5023 Offset
+= 16; // Update the offset to what it would be if we outlined.
5024 if (Offset
< MinOffset
* Scale
|| Offset
> MaxOffset
* Scale
)
5027 // It's in range, so we can outline it.
5031 // FIXME: Add handling for instructions like "add x0, sp, #8".
5033 // We can't fix it up, so don't outline it.
5037 // True if it's possible to fix up each stack instruction in this sequence.
5038 // Important for frames/call variants that modify the stack.
5039 bool AllStackInstrsSafe
= std::all_of(
5040 FirstCand
.front(), std::next(FirstCand
.back()), IsSafeToFixup
);
5042 // If the last instruction in any candidate is a terminator, then we should
5043 // tail call all of the candidates.
5044 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
5045 FrameID
= MachineOutlinerTailCall
;
5046 NumBytesToCreateFrame
= 0;
5047 SetCandidateCallInfo(MachineOutlinerTailCall
, 4);
5050 else if (LastInstrOpcode
== AArch64::BL
||
5051 (LastInstrOpcode
== AArch64::BLR
&& !HasBTI
)) {
5052 // FIXME: Do we need to check if the code after this uses the value of LR?
5053 FrameID
= MachineOutlinerThunk
;
5054 NumBytesToCreateFrame
= 0;
5055 SetCandidateCallInfo(MachineOutlinerThunk
, 4);
5059 // We need to decide how to emit calls + frames. We can always emit the same
5060 // frame if we don't need to save to the stack. If we have to save to the
5061 // stack, then we need a different frame.
5062 unsigned NumBytesNoStackCalls
= 0;
5063 std::vector
<outliner::Candidate
> CandidatesWithoutStackFixups
;
5065 for (outliner::Candidate
&C
: RepeatedSequenceLocs
) {
5068 // Is LR available? If so, we don't need a save.
5069 if (C
.LRU
.available(AArch64::LR
)) {
5070 NumBytesNoStackCalls
+= 4;
5071 C
.setCallInfo(MachineOutlinerNoLRSave
, 4);
5072 CandidatesWithoutStackFixups
.push_back(C
);
5075 // Is an unused register available? If so, we won't modify the stack, so
5076 // we can outline with the same frame type as those that don't save LR.
5077 else if (findRegisterToSaveLRTo(C
)) {
5078 NumBytesNoStackCalls
+= 12;
5079 C
.setCallInfo(MachineOutlinerRegSave
, 12);
5080 CandidatesWithoutStackFixups
.push_back(C
);
5083 // Is SP used in the sequence at all? If not, we don't have to modify
5084 // the stack, so we are guaranteed to get the same frame.
5085 else if (C
.UsedInSequence
.available(AArch64::SP
)) {
5086 NumBytesNoStackCalls
+= 12;
5087 C
.setCallInfo(MachineOutlinerDefault
, 12);
5088 CandidatesWithoutStackFixups
.push_back(C
);
5091 // If we outline this, we need to modify the stack. Pretend we don't
5092 // outline this by saving all of its bytes.
5094 NumBytesNoStackCalls
+= SequenceSize
;
5098 // If there are no places where we have to save LR, then note that we
5099 // don't have to update the stack. Otherwise, give every candidate the
5100 // default call type, as long as it's safe to do so.
5101 if (!AllStackInstrsSafe
||
5102 NumBytesNoStackCalls
<= RepeatedSequenceLocs
.size() * 12) {
5103 RepeatedSequenceLocs
= CandidatesWithoutStackFixups
;
5104 FrameID
= MachineOutlinerNoLRSave
;
5106 SetCandidateCallInfo(MachineOutlinerDefault
, 12);
5109 // If we dropped all of the candidates, bail out here.
5110 if (RepeatedSequenceLocs
.size() < 2) {
5111 RepeatedSequenceLocs
.clear();
5112 return outliner::OutlinedFunction();
5116 // Does every candidate's MBB contain a call? If so, then we might have a call
5118 if (FlagsSetInAll
& MachineOutlinerMBBFlags::HasCalls
) {
5119 // Check if the range contains a call. These require a save + restore of the
5121 bool ModStackToSaveLR
= false;
5122 if (std::any_of(FirstCand
.front(), FirstCand
.back(),
5123 [](const MachineInstr
&MI
) { return MI
.isCall(); }))
5124 ModStackToSaveLR
= true;
5126 // Handle the last instruction separately. If this is a tail call, then the
5127 // last instruction is a call. We don't want to save + restore in this case.
5128 // However, it could be possible that the last instruction is a call without
5129 // it being valid to tail call this sequence. We should consider this as
5131 else if (FrameID
!= MachineOutlinerThunk
&&
5132 FrameID
!= MachineOutlinerTailCall
&& FirstCand
.back()->isCall())
5133 ModStackToSaveLR
= true;
5135 if (ModStackToSaveLR
) {
5136 // We can't fix up the stack. Bail out.
5137 if (!AllStackInstrsSafe
) {
5138 RepeatedSequenceLocs
.clear();
5139 return outliner::OutlinedFunction();
5142 // Save + restore LR.
5143 NumBytesToCreateFrame
+= 8;
5147 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
5148 NumBytesToCreateFrame
, FrameID
);
5151 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
5152 MachineFunction
&MF
, bool OutlineFromLinkOnceODRs
) const {
5153 const Function
&F
= MF
.getFunction();
5155 // Can F be deduplicated by the linker? If it can, don't outline from it.
5156 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
5159 // Don't outline from functions with section markings; the program could
5160 // expect that all the code is in the named section.
5161 // FIXME: Allow outlining from multiple functions with the same section
5166 // Outlining from functions with redzones is unsafe since the outliner may
5167 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
5169 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
5170 if (!AFI
|| AFI
->hasRedZone().getValueOr(true))
5173 // It's safe to outline from MF.
5177 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock
&MBB
,
5178 unsigned &Flags
) const {
5179 // Check if LR is available through all of the MBB. If it's not, then set
5181 assert(MBB
.getParent()->getRegInfo().tracksLiveness() &&
5182 "Suitable Machine Function for outlining must track liveness");
5183 LiveRegUnits
LRU(getRegisterInfo());
5185 std::for_each(MBB
.rbegin(), MBB
.rend(),
5186 [&LRU
](MachineInstr
&MI
) { LRU
.accumulate(MI
); });
5188 // Check if each of the unsafe registers are available...
5189 bool W16AvailableInBlock
= LRU
.available(AArch64::W16
);
5190 bool W17AvailableInBlock
= LRU
.available(AArch64::W17
);
5191 bool NZCVAvailableInBlock
= LRU
.available(AArch64::NZCV
);
5193 // If all of these are dead (and not live out), we know we don't have to check
5195 if (W16AvailableInBlock
&& W17AvailableInBlock
&& NZCVAvailableInBlock
)
5196 Flags
|= MachineOutlinerMBBFlags::UnsafeRegsDead
;
5198 // Now, add the live outs to the set.
5199 LRU
.addLiveOuts(MBB
);
5201 // If any of these registers is available in the MBB, but also a live out of
5202 // the block, then we know outlining is unsafe.
5203 if (W16AvailableInBlock
&& !LRU
.available(AArch64::W16
))
5205 if (W17AvailableInBlock
&& !LRU
.available(AArch64::W17
))
5207 if (NZCVAvailableInBlock
&& !LRU
.available(AArch64::NZCV
))
5210 // Check if there's a call inside this MachineBasicBlock. If there is, then
5212 if (any_of(MBB
, [](MachineInstr
&MI
) { return MI
.isCall(); }))
5213 Flags
|= MachineOutlinerMBBFlags::HasCalls
;
5215 MachineFunction
*MF
= MBB
.getParent();
5217 // In the event that we outline, we may have to save LR. If there is an
5218 // available register in the MBB, then we'll always save LR there. Check if
5220 bool CanSaveLR
= false;
5221 const AArch64RegisterInfo
*ARI
= static_cast<const AArch64RegisterInfo
*>(
5222 MF
->getSubtarget().getRegisterInfo());
5224 // Check if there is an available register across the sequence that we can
5226 for (unsigned Reg
: AArch64::GPR64RegClass
) {
5227 if (!ARI
->isReservedReg(*MF
, Reg
) && Reg
!= AArch64::LR
&&
5228 Reg
!= AArch64::X16
&& Reg
!= AArch64::X17
&& LRU
.available(Reg
)) {
5234 // Check if we have a register we can save LR to, and if LR was used
5235 // somewhere. If both of those things are true, then we need to evaluate the
5236 // safety of outlining stack instructions later.
5237 if (!CanSaveLR
&& !LRU
.available(AArch64::LR
))
5238 Flags
|= MachineOutlinerMBBFlags::LRUnavailableSomewhere
;
5244 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
,
5245 unsigned Flags
) const {
5246 MachineInstr
&MI
= *MIT
;
5247 MachineBasicBlock
*MBB
= MI
.getParent();
5248 MachineFunction
*MF
= MBB
->getParent();
5249 AArch64FunctionInfo
*FuncInfo
= MF
->getInfo
<AArch64FunctionInfo
>();
5251 // Don't outline LOHs.
5252 if (FuncInfo
->getLOHRelated().count(&MI
))
5253 return outliner::InstrType::Illegal
;
5255 // Don't allow debug values to impact outlining type.
5256 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
5257 return outliner::InstrType::Invisible
;
5259 // At this point, KILL instructions don't really tell us much so we can go
5260 // ahead and skip over them.
5262 return outliner::InstrType::Invisible
;
5264 // Is this a terminator for a basic block?
5265 if (MI
.isTerminator()) {
5267 // Is this the end of a function?
5268 if (MI
.getParent()->succ_empty())
5269 return outliner::InstrType::Legal
;
5271 // It's not, so don't outline it.
5272 return outliner::InstrType::Illegal
;
5275 // Make sure none of the operands are un-outlinable.
5276 for (const MachineOperand
&MOP
: MI
.operands()) {
5277 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
5278 MOP
.isTargetIndex())
5279 return outliner::InstrType::Illegal
;
5281 // If it uses LR or W30 explicitly, then don't touch it.
5282 if (MOP
.isReg() && !MOP
.isImplicit() &&
5283 (MOP
.getReg() == AArch64::LR
|| MOP
.getReg() == AArch64::W30
))
5284 return outliner::InstrType::Illegal
;
5287 // Special cases for instructions that can always be outlined, but will fail
5288 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
5289 // be outlined because they don't require a *specific* value to be in LR.
5290 if (MI
.getOpcode() == AArch64::ADRP
)
5291 return outliner::InstrType::Legal
;
5293 // If MI is a call we might be able to outline it. We don't want to outline
5294 // any calls that rely on the position of items on the stack. When we outline
5295 // something containing a call, we have to emit a save and restore of LR in
5296 // the outlined function. Currently, this always happens by saving LR to the
5297 // stack. Thus, if we outline, say, half the parameters for a function call
5298 // plus the call, then we'll break the callee's expectations for the layout
5301 // FIXME: Allow calls to functions which construct a stack frame, as long
5302 // as they don't access arguments on the stack.
5303 // FIXME: Figure out some way to analyze functions defined in other modules.
5304 // We should be able to compute the memory usage based on the IR calling
5305 // convention, even if we can't see the definition.
5307 // Get the function associated with the call. Look at each operand and find
5308 // the one that represents the callee and get its name.
5309 const Function
*Callee
= nullptr;
5310 for (const MachineOperand
&MOP
: MI
.operands()) {
5311 if (MOP
.isGlobal()) {
5312 Callee
= dyn_cast
<Function
>(MOP
.getGlobal());
5317 // Never outline calls to mcount. There isn't any rule that would require
5318 // this, but the Linux kernel's "ftrace" feature depends on it.
5319 if (Callee
&& Callee
->getName() == "\01_mcount")
5320 return outliner::InstrType::Illegal
;
5322 // If we don't know anything about the callee, assume it depends on the
5323 // stack layout of the caller. In that case, it's only legal to outline
5324 // as a tail-call. Whitelist the call instructions we know about so we
5325 // don't get unexpected results with call pseudo-instructions.
5326 auto UnknownCallOutlineType
= outliner::InstrType::Illegal
;
5327 if (MI
.getOpcode() == AArch64::BLR
|| MI
.getOpcode() == AArch64::BL
)
5328 UnknownCallOutlineType
= outliner::InstrType::LegalTerminator
;
5331 return UnknownCallOutlineType
;
5333 // We have a function we have information about. Check it if it's something
5334 // can safely outline.
5335 MachineFunction
*CalleeMF
= MF
->getMMI().getMachineFunction(*Callee
);
5337 // We don't know what's going on with the callee at all. Don't touch it.
5339 return UnknownCallOutlineType
;
5341 // Check if we know anything about the callee saves on the function. If we
5342 // don't, then don't touch it, since that implies that we haven't
5343 // computed anything about its stack frame yet.
5344 MachineFrameInfo
&MFI
= CalleeMF
->getFrameInfo();
5345 if (!MFI
.isCalleeSavedInfoValid() || MFI
.getStackSize() > 0 ||
5346 MFI
.getNumObjects() > 0)
5347 return UnknownCallOutlineType
;
5349 // At this point, we can say that CalleeMF ought to not pass anything on the
5350 // stack. Therefore, we can outline it.
5351 return outliner::InstrType::Legal
;
5354 // Don't outline positions.
5355 if (MI
.isPosition())
5356 return outliner::InstrType::Illegal
;
5358 // Don't touch the link register or W30.
5359 if (MI
.readsRegister(AArch64::W30
, &getRegisterInfo()) ||
5360 MI
.modifiesRegister(AArch64::W30
, &getRegisterInfo()))
5361 return outliner::InstrType::Illegal
;
5363 // Don't outline BTI instructions, because that will prevent the outlining
5364 // site from being indirectly callable.
5365 if (MI
.getOpcode() == AArch64::HINT
) {
5366 int64_t Imm
= MI
.getOperand(0).getImm();
5367 if (Imm
== 32 || Imm
== 34 || Imm
== 36 || Imm
== 38)
5368 return outliner::InstrType::Illegal
;
5371 return outliner::InstrType::Legal
;
5374 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock
&MBB
) const {
5375 for (MachineInstr
&MI
: MBB
) {
5376 const MachineOperand
*Base
;
5380 // Is this a load or store with an immediate offset with SP as the base?
5381 if (!MI
.mayLoadOrStore() ||
5382 !getMemOperandWithOffsetWidth(MI
, Base
, Offset
, Width
, &RI
) ||
5383 (Base
->isReg() && Base
->getReg() != AArch64::SP
))
5386 // It is, so we have to fix it up.
5388 int64_t Dummy1
, Dummy2
;
5390 MachineOperand
&StackOffsetOperand
= getMemOpBaseRegImmOfsOffsetOperand(MI
);
5391 assert(StackOffsetOperand
.isImm() && "Stack offset wasn't immediate!");
5392 getMemOpInfo(MI
.getOpcode(), Scale
, Width
, Dummy1
, Dummy2
);
5393 assert(Scale
!= 0 && "Unexpected opcode!");
5395 // We've pushed the return address to the stack, so add 16 to the offset.
5396 // This is safe, since we already checked if it would overflow when we
5397 // checked if this instruction was legal to outline.
5398 int64_t NewImm
= (Offset
+ 16) / Scale
;
5399 StackOffsetOperand
.setImm(NewImm
);
5403 void AArch64InstrInfo::buildOutlinedFrame(
5404 MachineBasicBlock
&MBB
, MachineFunction
&MF
,
5405 const outliner::OutlinedFunction
&OF
) const {
5406 // For thunk outlining, rewrite the last instruction from a call to a
5408 if (OF
.FrameConstructionID
== MachineOutlinerThunk
) {
5409 MachineInstr
*Call
= &*--MBB
.instr_end();
5410 unsigned TailOpcode
;
5411 if (Call
->getOpcode() == AArch64::BL
) {
5412 TailOpcode
= AArch64::TCRETURNdi
;
5414 assert(Call
->getOpcode() == AArch64::BLR
);
5415 TailOpcode
= AArch64::TCRETURNriALL
;
5417 MachineInstr
*TC
= BuildMI(MF
, DebugLoc(), get(TailOpcode
))
5418 .add(Call
->getOperand(0))
5420 MBB
.insert(MBB
.end(), TC
);
5421 Call
->eraseFromParent();
5424 // Is there a call in the outlined range?
5425 auto IsNonTailCall
= [](MachineInstr
&MI
) {
5426 return MI
.isCall() && !MI
.isReturn();
5428 if (std::any_of(MBB
.instr_begin(), MBB
.instr_end(), IsNonTailCall
)) {
5429 // Fix up the instructions in the range, since we're going to modify the
5431 assert(OF
.FrameConstructionID
!= MachineOutlinerDefault
&&
5432 "Can only fix up stack references once");
5433 fixupPostOutline(MBB
);
5435 // LR has to be a live in so that we can save it.
5436 MBB
.addLiveIn(AArch64::LR
);
5438 MachineBasicBlock::iterator It
= MBB
.begin();
5439 MachineBasicBlock::iterator Et
= MBB
.end();
5441 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
||
5442 OF
.FrameConstructionID
== MachineOutlinerThunk
)
5443 Et
= std::prev(MBB
.end());
5445 // Insert a save before the outlined region
5446 MachineInstr
*STRXpre
= BuildMI(MF
, DebugLoc(), get(AArch64::STRXpre
))
5447 .addReg(AArch64::SP
, RegState::Define
)
5448 .addReg(AArch64::LR
)
5449 .addReg(AArch64::SP
)
5451 It
= MBB
.insert(It
, STRXpre
);
5453 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
5454 const MCRegisterInfo
*MRI
= STI
.getRegisterInfo();
5455 unsigned DwarfReg
= MRI
->getDwarfRegNum(AArch64::LR
, true);
5457 // Add a CFI saying the stack was moved 16 B down.
5458 int64_t StackPosEntry
=
5459 MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 16));
5460 BuildMI(MBB
, It
, DebugLoc(), get(AArch64::CFI_INSTRUCTION
))
5461 .addCFIIndex(StackPosEntry
)
5462 .setMIFlags(MachineInstr::FrameSetup
);
5464 // Add a CFI saying that the LR that we want to find is now 16 B higher than
5466 int64_t LRPosEntry
=
5467 MF
.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg
, 16));
5468 BuildMI(MBB
, It
, DebugLoc(), get(AArch64::CFI_INSTRUCTION
))
5469 .addCFIIndex(LRPosEntry
)
5470 .setMIFlags(MachineInstr::FrameSetup
);
5472 // Insert a restore before the terminator for the function.
5473 MachineInstr
*LDRXpost
= BuildMI(MF
, DebugLoc(), get(AArch64::LDRXpost
))
5474 .addReg(AArch64::SP
, RegState::Define
)
5475 .addReg(AArch64::LR
, RegState::Define
)
5476 .addReg(AArch64::SP
)
5478 Et
= MBB
.insert(Et
, LDRXpost
);
5481 // If this is a tail call outlined function, then there's already a return.
5482 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
||
5483 OF
.FrameConstructionID
== MachineOutlinerThunk
)
5486 // It's not a tail call, so we have to insert the return ourselves.
5487 MachineInstr
*ret
= BuildMI(MF
, DebugLoc(), get(AArch64::RET
))
5488 .addReg(AArch64::LR
, RegState::Undef
);
5489 MBB
.insert(MBB
.end(), ret
);
5491 // Did we have to modify the stack by saving the link register?
5492 if (OF
.FrameConstructionID
!= MachineOutlinerDefault
)
5495 // We modified the stack.
5496 // Walk over the basic block and fix up all the stack accesses.
5497 fixupPostOutline(MBB
);
5500 MachineBasicBlock::iterator
AArch64InstrInfo::insertOutlinedCall(
5501 Module
&M
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&It
,
5502 MachineFunction
&MF
, const outliner::Candidate
&C
) const {
5504 // Are we tail calling?
5505 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
5506 // If yes, then we can just branch to the label.
5507 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::TCRETURNdi
))
5508 .addGlobalAddress(M
.getNamedValue(MF
.getName()))
5513 // Are we saving the link register?
5514 if (C
.CallConstructionID
== MachineOutlinerNoLRSave
||
5515 C
.CallConstructionID
== MachineOutlinerThunk
) {
5516 // No, so just insert the call.
5517 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::BL
))
5518 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
5522 // We want to return the spot where we inserted the call.
5523 MachineBasicBlock::iterator CallPt
;
5525 // Instructions for saving and restoring LR around the call instruction we're
5528 MachineInstr
*Restore
;
5529 // Can we save to a register?
5530 if (C
.CallConstructionID
== MachineOutlinerRegSave
) {
5531 // FIXME: This logic should be sunk into a target-specific interface so that
5532 // we don't have to recompute the register.
5533 unsigned Reg
= findRegisterToSaveLRTo(C
);
5534 assert(Reg
!= 0 && "No callee-saved register available?");
5536 // Save and restore LR from that register.
5537 Save
= BuildMI(MF
, DebugLoc(), get(AArch64::ORRXrs
), Reg
)
5538 .addReg(AArch64::XZR
)
5539 .addReg(AArch64::LR
)
5541 Restore
= BuildMI(MF
, DebugLoc(), get(AArch64::ORRXrs
), AArch64::LR
)
5542 .addReg(AArch64::XZR
)
5546 // We have the default case. Save and restore from SP.
5547 Save
= BuildMI(MF
, DebugLoc(), get(AArch64::STRXpre
))
5548 .addReg(AArch64::SP
, RegState::Define
)
5549 .addReg(AArch64::LR
)
5550 .addReg(AArch64::SP
)
5552 Restore
= BuildMI(MF
, DebugLoc(), get(AArch64::LDRXpost
))
5553 .addReg(AArch64::SP
, RegState::Define
)
5554 .addReg(AArch64::LR
, RegState::Define
)
5555 .addReg(AArch64::SP
)
5559 It
= MBB
.insert(It
, Save
);
5563 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::BL
))
5564 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
5568 It
= MBB
.insert(It
, Restore
);
5572 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
5573 MachineFunction
&MF
) const {
5574 return MF
.getFunction().hasMinSize();
5577 bool AArch64InstrInfo::isCopyInstrImpl(
5578 const MachineInstr
&MI
, const MachineOperand
*&Source
,
5579 const MachineOperand
*&Destination
) const {
5581 // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
5582 // and zero immediate operands used as an alias for mov instruction.
5583 if (MI
.getOpcode() == AArch64::ORRWrs
&&
5584 MI
.getOperand(1).getReg() == AArch64::WZR
&&
5585 MI
.getOperand(3).getImm() == 0x0) {
5586 Destination
= &MI
.getOperand(0);
5587 Source
= &MI
.getOperand(2);
5591 if (MI
.getOpcode() == AArch64::ORRXrs
&&
5592 MI
.getOperand(1).getReg() == AArch64::XZR
&&
5593 MI
.getOperand(3).getImm() == 0x0) {
5594 Destination
= &MI
.getOperand(0);
5595 Source
= &MI
.getOperand(2);
5602 #define GET_INSTRINFO_HELPERS
5603 #include "AArch64GenInstrInfo.inc"