1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
268 setOperationAction(ISD::CTPOP
, VT
, Expand
);
271 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
274 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
275 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
276 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
277 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
280 // Pre and Post inc are supported on loads and stores
281 for (unsigned im
= (unsigned)ISD::PRE_INC
;
282 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
283 setIndexedLoadAction(im
, VT
, Legal
);
284 setIndexedStoreAction(im
, VT
, Legal
);
288 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
289 for (auto VT
: FloatTypes
) {
290 addRegisterClass(VT
, &ARM::MQPRRegClass
);
294 // These are legal or custom whether we have MVE.fp or not
295 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
296 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
297 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
298 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
299 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
300 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
301 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
302 setOperationAction(ISD::SETCC
, VT
, Custom
);
304 // Pre and Post inc are supported on loads and stores
305 for (unsigned im
= (unsigned)ISD::PRE_INC
;
306 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
307 setIndexedLoadAction(im
, VT
, Legal
);
308 setIndexedStoreAction(im
, VT
, Legal
);
312 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
313 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
314 setOperationAction(ISD::FROUND
, VT
, Legal
);
316 // No native support for these.
317 setOperationAction(ISD::FDIV
, VT
, Expand
);
318 setOperationAction(ISD::FREM
, VT
, Expand
);
319 setOperationAction(ISD::FSQRT
, VT
, Expand
);
320 setOperationAction(ISD::FSIN
, VT
, Expand
);
321 setOperationAction(ISD::FCOS
, VT
, Expand
);
322 setOperationAction(ISD::FPOW
, VT
, Expand
);
323 setOperationAction(ISD::FLOG
, VT
, Expand
);
324 setOperationAction(ISD::FLOG2
, VT
, Expand
);
325 setOperationAction(ISD::FLOG10
, VT
, Expand
);
326 setOperationAction(ISD::FEXP
, VT
, Expand
);
327 setOperationAction(ISD::FEXP2
, VT
, Expand
);
328 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
332 // We 'support' these types up to bitcast/load/store level, regardless of
333 // MVE integer-only / float support. Only doing FP data processing on the FP
334 // vector types is inhibited at integer-only level.
335 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
336 for (auto VT
: LongTypes
) {
337 addRegisterClass(VT
, &ARM::MQPRRegClass
);
339 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
340 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
341 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
343 // We can do bitwise operations on v2i64 vectors
344 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
345 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
346 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
348 // It is legal to extload from v4i8 to v4i16 or v4i32.
349 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
350 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
351 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
353 // Some truncating stores are legal too.
354 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
355 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
356 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
358 // Pre and Post inc on these are legal, given the correct extends
359 for (unsigned im
= (unsigned)ISD::PRE_INC
;
360 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
361 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
362 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
363 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
364 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
365 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
366 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
370 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
371 for (auto VT
: pTypes
) {
372 addRegisterClass(VT
, &ARM::VCCRRegClass
);
373 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
374 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
376 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
377 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
378 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
379 setOperationAction(ISD::SETCC
, VT
, Custom
);
380 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
384 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
385 const ARMSubtarget
&STI
)
386 : TargetLowering(TM
), Subtarget(&STI
) {
387 RegInfo
= Subtarget
->getRegisterInfo();
388 Itins
= Subtarget
->getInstrItineraryData();
390 setBooleanContents(ZeroOrOneBooleanContent
);
391 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
393 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
394 !Subtarget
->isTargetWatchOS()) {
395 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
396 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
397 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
398 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
399 : CallingConv::ARM_AAPCS
);
402 if (Subtarget
->isTargetMachO()) {
403 // Uses VFP for Thumb libfuncs if available.
404 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
405 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
406 static const struct {
407 const RTLIB::Libcall Op
;
408 const char * const Name
;
409 const ISD::CondCode Cond
;
411 // Single-precision floating-point arithmetic.
412 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
413 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
414 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
415 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
417 // Double-precision floating-point arithmetic.
418 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
419 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
420 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
421 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
423 // Single-precision comparisons.
424 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
425 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
426 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
427 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
428 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
429 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
430 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
431 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
433 // Double-precision comparisons.
434 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
435 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
436 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
437 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
438 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
439 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
440 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
441 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
443 // Floating-point to integer conversions.
444 // i64 conversions are done via library routines even when generating VFP
445 // instructions, so use the same ones.
446 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
447 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
448 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
449 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
451 // Conversions between floating types.
452 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
453 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
455 // Integer to floating-point conversions.
456 // i64 conversions are done via library routines even when generating VFP
457 // instructions, so use the same ones.
458 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
459 // e.g., __floatunsidf vs. __floatunssidfvfp.
460 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
461 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
462 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
463 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
466 for (const auto &LC
: LibraryCalls
) {
467 setLibcallName(LC
.Op
, LC
.Name
);
468 if (LC
.Cond
!= ISD::SETCC_INVALID
)
469 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
474 // These libcalls are not available in 32-bit.
475 setLibcallName(RTLIB::SHL_I128
, nullptr);
476 setLibcallName(RTLIB::SRL_I128
, nullptr);
477 setLibcallName(RTLIB::SRA_I128
, nullptr);
480 if (Subtarget
->isAAPCS_ABI() &&
481 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
482 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
483 static const struct {
484 const RTLIB::Libcall Op
;
485 const char * const Name
;
486 const CallingConv::ID CC
;
487 const ISD::CondCode Cond
;
489 // Double-precision floating-point arithmetic helper functions
490 // RTABI chapter 4.1.2, Table 2
491 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
492 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
493 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
494 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
496 // Double-precision floating-point comparison helper functions
497 // RTABI chapter 4.1.2, Table 3
498 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
499 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
500 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
501 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
502 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
503 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
504 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
505 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
507 // Single-precision floating-point arithmetic helper functions
508 // RTABI chapter 4.1.2, Table 4
509 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 // Single-precision floating-point comparison helper functions
515 // RTABI chapter 4.1.2, Table 5
516 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
518 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
525 // Floating-point to integer conversions.
526 // RTABI chapter 4.1.2, Table 6
527 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
533 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 // Conversions between floating types.
537 // RTABI chapter 4.1.2, Table 7
538 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 // Integer to floating-point conversions.
543 // RTABI chapter 4.1.2, Table 8
544 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 // Long long helper functions
554 // RTABI chapter 4.2, Table 9
555 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
556 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 // Integer division functions
561 // RTABI chapter 4.3.1
562 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
572 for (const auto &LC
: LibraryCalls
) {
573 setLibcallName(LC
.Op
, LC
.Name
);
574 setLibcallCallingConv(LC
.Op
, LC
.CC
);
575 if (LC
.Cond
!= ISD::SETCC_INVALID
)
576 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
579 // EABI dependent RTLIB
580 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
581 TM
.Options
.EABIVersion
== EABI::EABI5
) {
582 static const struct {
583 const RTLIB::Libcall Op
;
584 const char *const Name
;
585 const CallingConv::ID CC
;
586 const ISD::CondCode Cond
;
587 } MemOpsLibraryCalls
[] = {
589 // RTABI chapter 4.3.4
590 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
591 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
592 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
595 for (const auto &LC
: MemOpsLibraryCalls
) {
596 setLibcallName(LC
.Op
, LC
.Name
);
597 setLibcallCallingConv(LC
.Op
, LC
.CC
);
598 if (LC
.Cond
!= ISD::SETCC_INVALID
)
599 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
604 if (Subtarget
->isTargetWindows()) {
605 static const struct {
606 const RTLIB::Libcall Op
;
607 const char * const Name
;
608 const CallingConv::ID CC
;
610 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
611 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
612 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
613 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
614 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
615 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
616 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
617 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
620 for (const auto &LC
: LibraryCalls
) {
621 setLibcallName(LC
.Op
, LC
.Name
);
622 setLibcallCallingConv(LC
.Op
, LC
.CC
);
626 // Use divmod compiler-rt calls for iOS 5.0 and later.
627 if (Subtarget
->isTargetMachO() &&
628 !(Subtarget
->isTargetIOS() &&
629 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
630 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
631 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
634 // The half <-> float conversion functions are always soft-float on
635 // non-watchos platforms, but are needed for some targets which use a
636 // hard-float calling convention by default.
637 if (!Subtarget
->isTargetWatchABI()) {
638 if (Subtarget
->isAAPCS_ABI()) {
639 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
640 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
641 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
643 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
644 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
645 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
649 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
650 // a __gnu_ prefix (which is the default).
651 if (Subtarget
->isTargetAEABI()) {
652 static const struct {
653 const RTLIB::Libcall Op
;
654 const char * const Name
;
655 const CallingConv::ID CC
;
657 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
658 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
659 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
662 for (const auto &LC
: LibraryCalls
) {
663 setLibcallName(LC
.Op
, LC
.Name
);
664 setLibcallCallingConv(LC
.Op
, LC
.CC
);
668 if (Subtarget
->isThumb1Only())
669 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
671 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
673 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
674 Subtarget
->hasFPRegs()) {
675 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
676 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
677 if (!Subtarget
->hasVFP2Base())
678 setAllExpand(MVT::f32
);
679 if (!Subtarget
->hasFP64())
680 setAllExpand(MVT::f64
);
683 if (Subtarget
->hasFullFP16()) {
684 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
685 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
686 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
687 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
689 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
690 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
693 for (MVT VT
: MVT::vector_valuetypes()) {
694 for (MVT InnerVT
: MVT::vector_valuetypes()) {
695 setTruncStoreAction(VT
, InnerVT
, Expand
);
696 addAllExtLoads(VT
, InnerVT
, Expand
);
699 setOperationAction(ISD::MULHS
, VT
, Expand
);
700 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
701 setOperationAction(ISD::MULHU
, VT
, Expand
);
702 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
704 setOperationAction(ISD::BSWAP
, VT
, Expand
);
707 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
708 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
710 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
711 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
713 if (Subtarget
->hasMVEIntegerOps())
714 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
716 // Combine low-overhead loop intrinsics so that we can lower i1 types.
717 if (Subtarget
->hasLOB()) {
718 setTargetDAGCombine(ISD::BRCOND
);
719 setTargetDAGCombine(ISD::BR_CC
);
722 if (Subtarget
->hasNEON()) {
723 addDRTypeForNEON(MVT::v2f32
);
724 addDRTypeForNEON(MVT::v8i8
);
725 addDRTypeForNEON(MVT::v4i16
);
726 addDRTypeForNEON(MVT::v2i32
);
727 addDRTypeForNEON(MVT::v1i64
);
729 addQRTypeForNEON(MVT::v4f32
);
730 addQRTypeForNEON(MVT::v2f64
);
731 addQRTypeForNEON(MVT::v16i8
);
732 addQRTypeForNEON(MVT::v8i16
);
733 addQRTypeForNEON(MVT::v4i32
);
734 addQRTypeForNEON(MVT::v2i64
);
736 if (Subtarget
->hasFullFP16()) {
737 addQRTypeForNEON(MVT::v8f16
);
738 addDRTypeForNEON(MVT::v4f16
);
742 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
743 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
744 // none of Neon, MVE or VFP supports any arithmetic operations on it.
745 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
748 // FIXME: Code duplication: FDIV and FREM are expanded always, see
749 // ARMTargetLowering::addTypeForNEON method for details.
750 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
751 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
752 // FIXME: Create unittest.
753 // In another words, find a way when "copysign" appears in DAG with vector
755 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
756 // FIXME: Code duplication: SETCC has custom operation action, see
757 // ARMTargetLowering::addTypeForNEON method for details.
758 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
759 // FIXME: Create unittest for FNEG and for FABS.
760 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
761 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
762 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
766 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
768 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
770 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
771 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
772 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
773 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
774 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
775 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
776 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
780 if (Subtarget
->hasNEON()) {
781 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
782 // supported for v4f32.
783 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
784 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
785 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
786 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
787 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
788 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
789 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
790 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
791 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
792 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
793 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
794 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
795 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
796 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
798 // Mark v2f32 intrinsics.
799 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
800 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
801 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
802 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
803 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
804 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
805 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
806 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
807 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
808 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
809 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
811 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
812 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
814 // Neon does not support some operations on v1i64 and v2i64 types.
815 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
816 // Custom handling for some quad-vector types to detect VMULL.
817 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
818 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
819 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
820 // Custom handling for some vector types to avoid expensive expansions
821 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
822 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
823 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
824 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
825 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
826 // a destination type that is wider than the source, and nor does
827 // it have a FP_TO_[SU]INT instruction with a narrower destination than
829 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
830 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
831 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
832 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
834 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
835 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
836 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
838 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
839 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
841 // NEON does not have single instruction CTPOP for vectors with element
842 // types wider than 8-bits. However, custom lowering can leverage the
843 // v8i8/v16i8 vcnt instruction.
844 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
845 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
846 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
847 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
848 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
849 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
851 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
852 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
854 // NEON does not have single instruction CTTZ for vectors.
855 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
856 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
857 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
858 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
860 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
861 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
862 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
863 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
865 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
866 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
871 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
872 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
873 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
875 // NEON only has FMA instructions as of VFP4.
876 if (!Subtarget
->hasVFP4Base()) {
877 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
878 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
881 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
882 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
883 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
884 setTargetDAGCombine(ISD::SHL
);
885 setTargetDAGCombine(ISD::SRL
);
886 setTargetDAGCombine(ISD::SRA
);
887 setTargetDAGCombine(ISD::SIGN_EXTEND
);
888 setTargetDAGCombine(ISD::ZERO_EXTEND
);
889 setTargetDAGCombine(ISD::ANY_EXTEND
);
890 setTargetDAGCombine(ISD::STORE
);
891 setTargetDAGCombine(ISD::FP_TO_SINT
);
892 setTargetDAGCombine(ISD::FP_TO_UINT
);
893 setTargetDAGCombine(ISD::FDIV
);
894 setTargetDAGCombine(ISD::LOAD
);
896 // It is legal to extload from v4i8 to v4i16 or v4i32.
897 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
899 for (MVT VT
: MVT::integer_vector_valuetypes()) {
900 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
901 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
902 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
907 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
908 setTargetDAGCombine(ISD::BUILD_VECTOR
);
909 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
910 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
913 if (!Subtarget
->hasFP64()) {
914 // When targeting a floating-point unit with only single-precision
915 // operations, f64 is legal for the few double-precision instructions which
916 // are present However, no double-precision operations other than moves,
917 // loads and stores are provided by the hardware.
918 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
919 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
920 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
921 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
922 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
923 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
924 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
925 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
926 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
927 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
928 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
929 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
930 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
931 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
932 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
942 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
943 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
944 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
945 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
946 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
947 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
948 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
951 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
952 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
953 if (Subtarget
->hasFullFP16())
954 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
957 if (!Subtarget
->hasFP16())
958 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
960 if (!Subtarget
->hasFP64())
961 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
963 computeRegisterProperties(Subtarget
->getRegisterInfo());
965 // ARM does not have floating-point extending loads.
966 for (MVT VT
: MVT::fp_valuetypes()) {
967 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
968 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
971 // ... or truncating stores
972 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
973 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
974 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
976 // ARM does not have i1 sign extending load.
977 for (MVT VT
: MVT::integer_valuetypes())
978 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
980 // ARM supports all 4 flavors of integer indexed load / store.
981 if (!Subtarget
->isThumb1Only()) {
982 for (unsigned im
= (unsigned)ISD::PRE_INC
;
983 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
984 setIndexedLoadAction(im
, MVT::i1
, Legal
);
985 setIndexedLoadAction(im
, MVT::i8
, Legal
);
986 setIndexedLoadAction(im
, MVT::i16
, Legal
);
987 setIndexedLoadAction(im
, MVT::i32
, Legal
);
988 setIndexedStoreAction(im
, MVT::i1
, Legal
);
989 setIndexedStoreAction(im
, MVT::i8
, Legal
);
990 setIndexedStoreAction(im
, MVT::i16
, Legal
);
991 setIndexedStoreAction(im
, MVT::i32
, Legal
);
994 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
995 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
996 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
999 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1000 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1001 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1002 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1004 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1005 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1007 // i64 operation support.
1008 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1009 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1010 if (Subtarget
->isThumb1Only()) {
1011 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1012 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1014 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1015 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1016 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1018 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1021 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1022 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1023 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1024 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1026 // MVE lowers 64 bit shifts to lsll and lsrl
1027 // assuming that ISD::SRL and SRA of i64 are already marked custom
1028 if (Subtarget
->hasMVEIntegerOps())
1029 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1031 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1032 if (Subtarget
->isThumb1Only()) {
1033 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1034 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1035 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1038 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1039 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1041 // ARM does not have ROTL.
1042 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1043 for (MVT VT
: MVT::vector_valuetypes()) {
1044 setOperationAction(ISD::ROTL
, VT
, Expand
);
1045 setOperationAction(ISD::ROTR
, VT
, Expand
);
1047 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1048 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1049 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1050 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1054 // @llvm.readcyclecounter requires the Performance Monitors extension.
1055 // Default to the 0 expansion on unsupported platforms.
1056 // FIXME: Technically there are older ARM CPUs that have
1057 // implementation-specific ways of obtaining this information.
1058 if (Subtarget
->hasPerfMon())
1059 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1061 // Only ARMv6 has BSWAP.
1062 if (!Subtarget
->hasV6Ops())
1063 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1065 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1066 : Subtarget
->hasDivideInARMMode();
1068 // These are expanded into libcalls if the cpu doesn't have HW divider.
1069 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1070 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1073 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1074 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1075 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1077 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1078 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1081 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1082 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1084 // Register based DivRem for AEABI (RTABI 4.2)
1085 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1086 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1087 Subtarget
->isTargetWindows()) {
1088 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1089 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1090 HasStandaloneRem
= false;
1092 if (Subtarget
->isTargetWindows()) {
1094 const RTLIB::Libcall Op
;
1095 const char * const Name
;
1096 const CallingConv::ID CC
;
1097 } LibraryCalls
[] = {
1098 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1099 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1100 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1101 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1103 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1104 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1105 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1106 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1109 for (const auto &LC
: LibraryCalls
) {
1110 setLibcallName(LC
.Op
, LC
.Name
);
1111 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1115 const RTLIB::Libcall Op
;
1116 const char * const Name
;
1117 const CallingConv::ID CC
;
1118 } LibraryCalls
[] = {
1119 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1120 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1121 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1122 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1124 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1125 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1126 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1127 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1130 for (const auto &LC
: LibraryCalls
) {
1131 setLibcallName(LC
.Op
, LC
.Name
);
1132 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1136 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1138 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1139 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1141 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1142 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1145 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1146 for (auto &VT
: {MVT::f32
, MVT::f64
})
1147 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1149 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1150 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1151 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1155 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1157 // Use the default implementation.
1158 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1159 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1160 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1161 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1162 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1163 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1165 if (Subtarget
->isTargetWindows())
1166 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1168 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1170 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1171 // the default expansion.
1172 InsertFencesForAtomic
= false;
1173 if (Subtarget
->hasAnyDataBarrier() &&
1174 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1175 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1176 // to ldrex/strex loops already.
1177 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1178 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1179 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1181 // On v8, we have particularly efficient implementations of atomic fences
1182 // if they can be combined with nearby atomic loads and stores.
1183 if (!Subtarget
->hasAcquireRelease() ||
1184 getTargetMachine().getOptLevel() == 0) {
1185 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1186 InsertFencesForAtomic
= true;
1189 // If there's anything we can use as a barrier, go through custom lowering
1190 // for ATOMIC_FENCE.
1191 // If target has DMB in thumb, Fences can be inserted.
1192 if (Subtarget
->hasDataBarrier())
1193 InsertFencesForAtomic
= true;
1195 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1196 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1198 // Set them all for expansion, which will force libcalls.
1199 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1200 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1201 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1204 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1205 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1206 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1207 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1208 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1209 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1210 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1211 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1212 // Unordered/Monotonic case.
1213 if (!InsertFencesForAtomic
) {
1214 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1215 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1219 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1221 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1222 if (!Subtarget
->hasV6Ops()) {
1223 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1224 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1226 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1228 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1229 !Subtarget
->isThumb1Only()) {
1230 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1231 // iff target supports vfp2.
1232 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1233 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1236 // We want to custom lower some of our intrinsics.
1237 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1238 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1239 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1240 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1241 if (Subtarget
->useSjLjEH())
1242 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1244 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1245 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1246 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1247 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1248 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1249 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1251 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1253 if (Subtarget
->hasFullFP16()) {
1254 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1255 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1256 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1259 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1261 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1262 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1263 if (Subtarget
->hasFullFP16())
1264 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1265 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1266 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1267 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1269 // We don't support sin/cos/fmod/copysign/pow
1270 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1271 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1272 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1273 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1274 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1275 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1276 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1277 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1278 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1279 !Subtarget
->isThumb1Only()) {
1280 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1281 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1283 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1284 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1286 if (!Subtarget
->hasVFP4Base()) {
1287 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1288 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1291 // Various VFP goodness
1292 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1293 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1294 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1295 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1296 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1299 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1300 if (!Subtarget
->hasFP16()) {
1301 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1302 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1306 // Use __sincos_stret if available.
1307 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1308 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1309 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1310 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1313 // FP-ARMv8 implements a lot of rounding-like FP operations.
1314 if (Subtarget
->hasFPARMv8Base()) {
1315 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1316 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1317 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1318 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1319 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1320 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1321 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1322 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1323 if (Subtarget
->hasNEON()) {
1324 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1325 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1326 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1327 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1330 if (Subtarget
->hasFP64()) {
1331 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1332 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1333 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1334 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1335 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1336 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1337 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1338 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1342 // FP16 often need to be promoted to call lib functions
1343 if (Subtarget
->hasFullFP16()) {
1344 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1345 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1346 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1347 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1348 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1349 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1350 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1351 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1352 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1353 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1354 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1355 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1357 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1360 if (Subtarget
->hasNEON()) {
1361 // vmin and vmax aren't available in a scalar form, so we use
1362 // a NEON instruction with an undef lane instead.
1363 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1364 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1365 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1366 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1367 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1368 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1369 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1370 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1372 if (Subtarget
->hasFullFP16()) {
1373 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1374 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1375 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1376 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1378 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1379 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1380 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1381 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1385 // We have target-specific dag combine patterns for the following nodes:
1386 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1387 setTargetDAGCombine(ISD::ADD
);
1388 setTargetDAGCombine(ISD::SUB
);
1389 setTargetDAGCombine(ISD::MUL
);
1390 setTargetDAGCombine(ISD::AND
);
1391 setTargetDAGCombine(ISD::OR
);
1392 setTargetDAGCombine(ISD::XOR
);
1394 if (Subtarget
->hasV6Ops())
1395 setTargetDAGCombine(ISD::SRL
);
1396 if (Subtarget
->isThumb1Only())
1397 setTargetDAGCombine(ISD::SHL
);
1399 setStackPointerRegisterToSaveRestore(ARM::SP
);
1401 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1402 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1403 setSchedulingPreference(Sched::RegPressure
);
1405 setSchedulingPreference(Sched::Hybrid
);
1407 //// temporary - rewrite interface to use type
1408 MaxStoresPerMemset
= 8;
1409 MaxStoresPerMemsetOptSize
= 4;
1410 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1411 MaxStoresPerMemcpyOptSize
= 2;
1412 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1413 MaxStoresPerMemmoveOptSize
= 2;
1415 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1416 // are at least 4 bytes aligned.
1417 setMinStackArgumentAlignment(4);
1419 // Prefer likely predicted branches to selects on out-of-order cores.
1420 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1422 setPrefLoopAlignment(
1423 llvm::Align(1UL << Subtarget
->getPrefLoopLogAlignment()));
1425 setMinFunctionAlignment(Subtarget
->isThumb() ? llvm::Align(2)
1428 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1429 setTargetDAGCombine(ISD::ABS
);
1432 bool ARMTargetLowering::useSoftFloat() const {
1433 return Subtarget
->useSoftFloat();
1436 // FIXME: It might make sense to define the representative register class as the
1437 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1438 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1439 // SPR's representative would be DPR_VFP2. This should work well if register
1440 // pressure tracking were modified such that a register use would increment the
1441 // pressure of the register class's representative and all of it's super
1442 // classes' representatives transitively. We have not implemented this because
1443 // of the difficulty prior to coalescing of modeling operand register classes
1444 // due to the common occurrence of cross class copies and subregister insertions
1446 std::pair
<const TargetRegisterClass
*, uint8_t>
1447 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1449 const TargetRegisterClass
*RRC
= nullptr;
1451 switch (VT
.SimpleTy
) {
1453 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1454 // Use DPR as representative register class for all floating point
1455 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1456 // the cost is 1 for both f32 and f64.
1457 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1458 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1459 RRC
= &ARM::DPRRegClass
;
1460 // When NEON is used for SP, only half of the register file is available
1461 // because operations that define both SP and DP results will be constrained
1462 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1463 // coalescing by double-counting the SP regs. See the FIXME above.
1464 if (Subtarget
->useNEONForSinglePrecisionFP())
1467 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1468 case MVT::v4f32
: case MVT::v2f64
:
1469 RRC
= &ARM::DPRRegClass
;
1473 RRC
= &ARM::DPRRegClass
;
1477 RRC
= &ARM::DPRRegClass
;
1481 return std::make_pair(RRC
, Cost
);
1484 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1485 switch ((ARMISD::NodeType
)Opcode
) {
1486 case ARMISD::FIRST_NUMBER
: break;
1487 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1488 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1489 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1490 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1491 case ARMISD::CALL
: return "ARMISD::CALL";
1492 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1493 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1494 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1495 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1496 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1497 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1498 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1499 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1500 case ARMISD::CMP
: return "ARMISD::CMP";
1501 case ARMISD::CMN
: return "ARMISD::CMN";
1502 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1503 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1504 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1505 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1506 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1508 case ARMISD::CMOV
: return "ARMISD::CMOV";
1509 case ARMISD::SUBS
: return "ARMISD::SUBS";
1511 case ARMISD::SSAT
: return "ARMISD::SSAT";
1512 case ARMISD::USAT
: return "ARMISD::USAT";
1514 case ARMISD::ASRL
: return "ARMISD::ASRL";
1515 case ARMISD::LSRL
: return "ARMISD::LSRL";
1516 case ARMISD::LSLL
: return "ARMISD::LSLL";
1518 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1519 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1520 case ARMISD::RRX
: return "ARMISD::RRX";
1522 case ARMISD::ADDC
: return "ARMISD::ADDC";
1523 case ARMISD::ADDE
: return "ARMISD::ADDE";
1524 case ARMISD::SUBC
: return "ARMISD::SUBC";
1525 case ARMISD::SUBE
: return "ARMISD::SUBE";
1526 case ARMISD::LSLS
: return "ARMISD::LSLS";
1528 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1529 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1530 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1531 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1532 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1534 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1535 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1536 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1538 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1540 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1542 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1544 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1546 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1548 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1549 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1551 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1552 case ARMISD::VCMP
: return "ARMISD::VCMP";
1553 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1554 case ARMISD::VTST
: return "ARMISD::VTST";
1556 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1557 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1558 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1559 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1560 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1561 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1562 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1563 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1564 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1565 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1566 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1567 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1568 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1569 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1570 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1571 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1572 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1573 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1574 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1575 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1576 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1577 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1578 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1579 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1580 case ARMISD::VDUP
: return "ARMISD::VDUP";
1581 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1582 case ARMISD::VEXT
: return "ARMISD::VEXT";
1583 case ARMISD::VREV64
: return "ARMISD::VREV64";
1584 case ARMISD::VREV32
: return "ARMISD::VREV32";
1585 case ARMISD::VREV16
: return "ARMISD::VREV16";
1586 case ARMISD::VZIP
: return "ARMISD::VZIP";
1587 case ARMISD::VUZP
: return "ARMISD::VUZP";
1588 case ARMISD::VTRN
: return "ARMISD::VTRN";
1589 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1590 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1591 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1592 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1593 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1594 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1595 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1596 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1597 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1598 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1599 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1600 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1601 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1602 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1603 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1604 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1605 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1606 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1607 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1608 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1609 case ARMISD::BFI
: return "ARMISD::BFI";
1610 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1611 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1612 case ARMISD::VBSL
: return "ARMISD::VBSL";
1613 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1614 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1615 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1616 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1617 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1618 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1619 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1620 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1621 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1622 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1623 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1624 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1625 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1626 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1627 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1628 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1629 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1630 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1631 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1632 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1633 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1634 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1635 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1636 case ARMISD::WLS
: return "ARMISD::WLS";
1637 case ARMISD::LE
: return "ARMISD::LE";
1638 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1639 case ARMISD::CSINV
: return "ARMISD::CSINV";
1640 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1641 case ARMISD::CSINC
: return "ARMISD::CSINC";
1646 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1649 return getPointerTy(DL
);
1651 // MVE has a predicate register.
1652 if (Subtarget
->hasMVEIntegerOps() &&
1653 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1654 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1655 return VT
.changeVectorElementTypeToInteger();
1658 /// getRegClassFor - Return the register class that should be used for the
1659 /// specified value type.
1660 const TargetRegisterClass
*
1661 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1663 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1664 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1665 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1667 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1668 if (VT
== MVT::v4i64
)
1669 return &ARM::QQPRRegClass
;
1670 if (VT
== MVT::v8i64
)
1671 return &ARM::QQQQPRRegClass
;
1673 return TargetLowering::getRegClassFor(VT
);
1676 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1677 // source/dest is aligned and the copy size is large enough. We therefore want
1678 // to align such objects passed to memory intrinsics.
1679 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1680 unsigned &PrefAlign
) const {
1681 if (!isa
<MemIntrinsic
>(CI
))
1684 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1685 // cycle faster than 4-byte aligned LDM.
1686 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1690 // Create a fast isel object.
1692 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1693 const TargetLibraryInfo
*libInfo
) const {
1694 return ARM::createFastISel(funcInfo
, libInfo
);
1697 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1698 unsigned NumVals
= N
->getNumValues();
1700 return Sched::RegPressure
;
1702 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1703 EVT VT
= N
->getValueType(i
);
1704 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1706 if (VT
.isFloatingPoint() || VT
.isVector())
1710 if (!N
->isMachineOpcode())
1711 return Sched::RegPressure
;
1713 // Load are scheduled for latency even if there instruction itinerary
1714 // is not available.
1715 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1716 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1718 if (MCID
.getNumDefs() == 0)
1719 return Sched::RegPressure
;
1720 if (!Itins
->isEmpty() &&
1721 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1724 return Sched::RegPressure
;
1727 //===----------------------------------------------------------------------===//
1729 //===----------------------------------------------------------------------===//
1731 static bool isSRL16(const SDValue
&Op
) {
1732 if (Op
.getOpcode() != ISD::SRL
)
1734 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1735 return Const
->getZExtValue() == 16;
1739 static bool isSRA16(const SDValue
&Op
) {
1740 if (Op
.getOpcode() != ISD::SRA
)
1742 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1743 return Const
->getZExtValue() == 16;
1747 static bool isSHL16(const SDValue
&Op
) {
1748 if (Op
.getOpcode() != ISD::SHL
)
1750 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1751 return Const
->getZExtValue() == 16;
1755 // Check for a signed 16-bit value. We special case SRA because it makes it
1756 // more simple when also looking for SRAs that aren't sign extending a
1757 // smaller value. Without the check, we'd need to take extra care with
1758 // checking order for some operations.
1759 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1761 return isSHL16(Op
.getOperand(0));
1762 return DAG
.ComputeNumSignBits(Op
) == 17;
1765 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1766 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1768 default: llvm_unreachable("Unknown condition code!");
1769 case ISD::SETNE
: return ARMCC::NE
;
1770 case ISD::SETEQ
: return ARMCC::EQ
;
1771 case ISD::SETGT
: return ARMCC::GT
;
1772 case ISD::SETGE
: return ARMCC::GE
;
1773 case ISD::SETLT
: return ARMCC::LT
;
1774 case ISD::SETLE
: return ARMCC::LE
;
1775 case ISD::SETUGT
: return ARMCC::HI
;
1776 case ISD::SETUGE
: return ARMCC::HS
;
1777 case ISD::SETULT
: return ARMCC::LO
;
1778 case ISD::SETULE
: return ARMCC::LS
;
1782 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1783 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1784 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1785 CondCode2
= ARMCC::AL
;
1786 InvalidOnQNaN
= true;
1788 default: llvm_unreachable("Unknown FP condition!");
1791 CondCode
= ARMCC::EQ
;
1792 InvalidOnQNaN
= false;
1795 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1797 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1798 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1799 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1801 CondCode
= ARMCC::MI
;
1802 CondCode2
= ARMCC::GT
;
1803 InvalidOnQNaN
= false;
1805 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1806 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1808 CondCode
= ARMCC::EQ
;
1809 CondCode2
= ARMCC::VS
;
1810 InvalidOnQNaN
= false;
1812 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1813 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1815 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1817 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1820 CondCode
= ARMCC::NE
;
1821 InvalidOnQNaN
= false;
1826 //===----------------------------------------------------------------------===//
1827 // Calling Convention Implementation
1828 //===----------------------------------------------------------------------===//
1830 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1831 /// account presence of floating point hardware and calling convention
1832 /// limitations, such as support for variadic functions.
1834 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1835 bool isVarArg
) const {
1838 report_fatal_error("Unsupported calling convention");
1839 case CallingConv::ARM_AAPCS
:
1840 case CallingConv::ARM_APCS
:
1841 case CallingConv::GHC
:
1843 case CallingConv::PreserveMost
:
1844 return CallingConv::PreserveMost
;
1845 case CallingConv::ARM_AAPCS_VFP
:
1846 case CallingConv::Swift
:
1847 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1848 case CallingConv::C
:
1849 if (!Subtarget
->isAAPCS_ABI())
1850 return CallingConv::ARM_APCS
;
1851 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1852 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1854 return CallingConv::ARM_AAPCS_VFP
;
1856 return CallingConv::ARM_AAPCS
;
1857 case CallingConv::Fast
:
1858 case CallingConv::CXX_FAST_TLS
:
1859 if (!Subtarget
->isAAPCS_ABI()) {
1860 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1861 return CallingConv::Fast
;
1862 return CallingConv::ARM_APCS
;
1863 } else if (Subtarget
->hasVFP2Base() &&
1864 !Subtarget
->isThumb1Only() && !isVarArg
)
1865 return CallingConv::ARM_AAPCS_VFP
;
1867 return CallingConv::ARM_AAPCS
;
1871 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1872 bool isVarArg
) const {
1873 return CCAssignFnForNode(CC
, false, isVarArg
);
1876 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1877 bool isVarArg
) const {
1878 return CCAssignFnForNode(CC
, true, isVarArg
);
1881 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1882 /// CallingConvention.
1883 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1885 bool isVarArg
) const {
1886 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1888 report_fatal_error("Unsupported calling convention");
1889 case CallingConv::ARM_APCS
:
1890 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1891 case CallingConv::ARM_AAPCS
:
1892 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1893 case CallingConv::ARM_AAPCS_VFP
:
1894 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1895 case CallingConv::Fast
:
1896 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1897 case CallingConv::GHC
:
1898 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1899 case CallingConv::PreserveMost
:
1900 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1904 /// LowerCallResult - Lower the result values of a call into the
1905 /// appropriate copies out of appropriate physical registers.
1906 SDValue
ARMTargetLowering::LowerCallResult(
1907 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1908 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1909 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1910 SDValue ThisVal
) const {
1911 // Assign locations to each value returned by this call.
1912 SmallVector
<CCValAssign
, 16> RVLocs
;
1913 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1915 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1917 // Copy all of the result registers out of their specified physreg.
1918 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1919 CCValAssign VA
= RVLocs
[i
];
1921 // Pass 'this' value directly from the argument to return value, to avoid
1922 // reg unit interference
1923 if (i
== 0 && isThisReturn
) {
1924 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1925 "unexpected return calling convention register assignment");
1926 InVals
.push_back(ThisVal
);
1931 if (VA
.needsCustom()) {
1932 // Handle f64 or half of a v2f64.
1933 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1935 Chain
= Lo
.getValue(1);
1936 InFlag
= Lo
.getValue(2);
1937 VA
= RVLocs
[++i
]; // skip ahead to next loc
1938 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1940 Chain
= Hi
.getValue(1);
1941 InFlag
= Hi
.getValue(2);
1942 if (!Subtarget
->isLittle())
1944 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1946 if (VA
.getLocVT() == MVT::v2f64
) {
1947 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1948 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1949 DAG
.getConstant(0, dl
, MVT::i32
));
1951 VA
= RVLocs
[++i
]; // skip ahead to next loc
1952 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1953 Chain
= Lo
.getValue(1);
1954 InFlag
= Lo
.getValue(2);
1955 VA
= RVLocs
[++i
]; // skip ahead to next loc
1956 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1957 Chain
= Hi
.getValue(1);
1958 InFlag
= Hi
.getValue(2);
1959 if (!Subtarget
->isLittle())
1961 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1962 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1963 DAG
.getConstant(1, dl
, MVT::i32
));
1966 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1968 Chain
= Val
.getValue(1);
1969 InFlag
= Val
.getValue(2);
1972 switch (VA
.getLocInfo()) {
1973 default: llvm_unreachable("Unknown loc info!");
1974 case CCValAssign::Full
: break;
1975 case CCValAssign::BCvt
:
1976 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1980 InVals
.push_back(Val
);
1986 /// LowerMemOpCallTo - Store the argument to the stack.
1987 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1988 SDValue Arg
, const SDLoc
&dl
,
1990 const CCValAssign
&VA
,
1991 ISD::ArgFlagsTy Flags
) const {
1992 unsigned LocMemOffset
= VA
.getLocMemOffset();
1993 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1994 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1996 return DAG
.getStore(
1997 Chain
, dl
, Arg
, PtrOff
,
1998 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2001 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2002 SDValue Chain
, SDValue
&Arg
,
2003 RegsToPassVector
&RegsToPass
,
2004 CCValAssign
&VA
, CCValAssign
&NextVA
,
2006 SmallVectorImpl
<SDValue
> &MemOpChains
,
2007 ISD::ArgFlagsTy Flags
) const {
2008 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2009 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2010 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2011 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2013 if (NextVA
.isRegLoc())
2014 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2016 assert(NextVA
.isMemLoc());
2017 if (!StackPtr
.getNode())
2018 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2019 getPointerTy(DAG
.getDataLayout()));
2021 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2027 /// LowerCall - Lowering a call into a callseq_start <-
2028 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2031 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2032 SmallVectorImpl
<SDValue
> &InVals
) const {
2033 SelectionDAG
&DAG
= CLI
.DAG
;
2035 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2036 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2037 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2038 SDValue Chain
= CLI
.Chain
;
2039 SDValue Callee
= CLI
.Callee
;
2040 bool &isTailCall
= CLI
.IsTailCall
;
2041 CallingConv::ID CallConv
= CLI
.CallConv
;
2042 bool doesNotRet
= CLI
.DoesNotReturn
;
2043 bool isVarArg
= CLI
.IsVarArg
;
2045 MachineFunction
&MF
= DAG
.getMachineFunction();
2046 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2047 bool isThisReturn
= false;
2048 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2049 bool PreferIndirect
= false;
2051 // Disable tail calls if they're not supported.
2052 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2055 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2056 // If we're optimizing for minimum size and the function is called three or
2057 // more times in this block, we can improve codesize by calling indirectly
2058 // as BLXr has a 16-bit encoding.
2059 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2061 auto *BB
= CLI
.CS
.getParent();
2062 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2063 count_if(GV
->users(), [&BB
](const User
*U
) {
2064 return isa
<Instruction
>(U
) &&
2065 cast
<Instruction
>(U
)->getParent() == BB
;
2070 // Check if it's really possible to do a tail call.
2071 isTailCall
= IsEligibleForTailCallOptimization(
2072 Callee
, CallConv
, isVarArg
, isStructRet
,
2073 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2075 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2076 report_fatal_error("failed to perform tail call elimination on a call "
2077 "site marked musttail");
2078 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2079 // detected sibcalls.
2084 // Analyze operands of the call, assigning locations to each operand.
2085 SmallVector
<CCValAssign
, 16> ArgLocs
;
2086 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2088 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2090 // Get a count of how many bytes are to be pushed on the stack.
2091 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2094 // For tail calls, memory operands are available in our caller's stack.
2097 // Adjust the stack pointer for the new arguments...
2098 // These operations are automatically eliminated by the prolog/epilog pass
2099 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2103 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2105 RegsToPassVector RegsToPass
;
2106 SmallVector
<SDValue
, 8> MemOpChains
;
2108 // Walk the register/memloc assignments, inserting copies/loads. In the case
2109 // of tail call optimization, arguments are handled later.
2110 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2112 ++i
, ++realArgIdx
) {
2113 CCValAssign
&VA
= ArgLocs
[i
];
2114 SDValue Arg
= OutVals
[realArgIdx
];
2115 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2116 bool isByVal
= Flags
.isByVal();
2118 // Promote the value if needed.
2119 switch (VA
.getLocInfo()) {
2120 default: llvm_unreachable("Unknown loc info!");
2121 case CCValAssign::Full
: break;
2122 case CCValAssign::SExt
:
2123 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2125 case CCValAssign::ZExt
:
2126 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2128 case CCValAssign::AExt
:
2129 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2131 case CCValAssign::BCvt
:
2132 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2136 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2137 if (VA
.needsCustom()) {
2138 if (VA
.getLocVT() == MVT::v2f64
) {
2139 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2140 DAG
.getConstant(0, dl
, MVT::i32
));
2141 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2142 DAG
.getConstant(1, dl
, MVT::i32
));
2144 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2145 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2147 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2148 if (VA
.isRegLoc()) {
2149 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2150 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2152 assert(VA
.isMemLoc());
2154 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2155 dl
, DAG
, VA
, Flags
));
2158 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2159 StackPtr
, MemOpChains
, Flags
);
2161 } else if (VA
.isRegLoc()) {
2162 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2163 Outs
[0].VT
== MVT::i32
) {
2164 assert(VA
.getLocVT() == MVT::i32
&&
2165 "unexpected calling convention register assignment");
2166 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2167 "unexpected use of 'returned'");
2168 isThisReturn
= true;
2170 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2171 } else if (isByVal
) {
2172 assert(VA
.isMemLoc());
2173 unsigned offset
= 0;
2175 // True if this byval aggregate will be split between registers
2177 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2178 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2180 if (CurByValIdx
< ByValArgsCount
) {
2182 unsigned RegBegin
, RegEnd
;
2183 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2186 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2188 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2189 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2190 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2191 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2192 MachinePointerInfo(),
2193 DAG
.InferPtrAlignment(AddArg
));
2194 MemOpChains
.push_back(Load
.getValue(1));
2195 RegsToPass
.push_back(std::make_pair(j
, Load
));
2198 // If parameter size outsides register area, "offset" value
2199 // helps us to calculate stack slot for remained part properly.
2200 offset
= RegEnd
- RegBegin
;
2202 CCInfo
.nextInRegsParam();
2205 if (Flags
.getByValSize() > 4*offset
) {
2206 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2207 unsigned LocMemOffset
= VA
.getLocMemOffset();
2208 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2209 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2210 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2211 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2212 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2214 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2217 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2218 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2219 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2222 } else if (!isTailCall
) {
2223 assert(VA
.isMemLoc());
2225 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2226 dl
, DAG
, VA
, Flags
));
2230 if (!MemOpChains
.empty())
2231 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2233 // Build a sequence of copy-to-reg nodes chained together with token chain
2234 // and flag operands which copy the outgoing args into the appropriate regs.
2236 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2237 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2238 RegsToPass
[i
].second
, InFlag
);
2239 InFlag
= Chain
.getValue(1);
2242 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2243 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2244 // node so that legalize doesn't hack it.
2245 bool isDirect
= false;
2247 const TargetMachine
&TM
= getTargetMachine();
2248 const Module
*Mod
= MF
.getFunction().getParent();
2249 const GlobalValue
*GV
= nullptr;
2250 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2251 GV
= G
->getGlobal();
2253 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2255 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2256 bool isLocalARMFunc
= false;
2257 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2258 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2260 if (Subtarget
->genLongCalls()) {
2261 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2262 "long-calls codegen is not position independent!");
2263 // Handle a global address or an external symbol. If it's not one of
2264 // those, the target's already in a register, so we don't need to do
2266 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2267 // Create a constant pool entry for the callee address
2268 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2269 ARMConstantPoolValue
*CPV
=
2270 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2272 // Get the address of the callee into a register
2273 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2274 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2275 Callee
= DAG
.getLoad(
2276 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2277 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2278 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2279 const char *Sym
= S
->getSymbol();
2281 // Create a constant pool entry for the callee address
2282 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2283 ARMConstantPoolValue
*CPV
=
2284 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2285 ARMPCLabelIndex
, 0);
2286 // Get the address of the callee into a register
2287 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2288 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2289 Callee
= DAG
.getLoad(
2290 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2291 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2293 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2294 if (!PreferIndirect
) {
2296 bool isDef
= GV
->isStrongDefinitionForLinker();
2298 // ARM call to a local ARM function is predicable.
2299 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2300 // tBX takes a register source operand.
2301 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2302 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2303 Callee
= DAG
.getNode(
2304 ARMISD::WrapperPIC
, dl
, PtrVt
,
2305 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2306 Callee
= DAG
.getLoad(
2307 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2308 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2309 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2310 MachineMemOperand::MOInvariant
);
2311 } else if (Subtarget
->isTargetCOFF()) {
2312 assert(Subtarget
->isTargetWindows() &&
2313 "Windows is the only supported COFF target");
2314 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2315 ? ARMII::MO_DLLIMPORT
2316 : ARMII::MO_NO_FLAG
;
2317 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2319 if (GV
->hasDLLImportStorageClass())
2321 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2322 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2323 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2325 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2328 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2330 // tBX takes a register source operand.
2331 const char *Sym
= S
->getSymbol();
2332 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2333 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2334 ARMConstantPoolValue
*CPV
=
2335 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2336 ARMPCLabelIndex
, 4);
2337 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2338 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2339 Callee
= DAG
.getLoad(
2340 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2341 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2342 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2343 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2345 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2349 // FIXME: handle tail calls differently.
2351 if (Subtarget
->isThumb()) {
2352 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2353 CallOpc
= ARMISD::CALL_NOLINK
;
2355 CallOpc
= ARMISD::CALL
;
2357 if (!isDirect
&& !Subtarget
->hasV5TOps())
2358 CallOpc
= ARMISD::CALL_NOLINK
;
2359 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2360 // Emit regular call when code size is the priority
2361 !Subtarget
->hasMinSize())
2362 // "mov lr, pc; b _foo" to avoid confusing the RSP
2363 CallOpc
= ARMISD::CALL_NOLINK
;
2365 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2368 std::vector
<SDValue
> Ops
;
2369 Ops
.push_back(Chain
);
2370 Ops
.push_back(Callee
);
2372 // Add argument registers to the end of the list so that they are known live
2374 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2375 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2376 RegsToPass
[i
].second
.getValueType()));
2378 // Add a register mask operand representing the call-preserved registers.
2380 const uint32_t *Mask
;
2381 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2383 // For 'this' returns, use the R0-preserving mask if applicable
2384 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2386 // Set isThisReturn to false if the calling convention is not one that
2387 // allows 'returned' to be modeled in this way, so LowerCallResult does
2388 // not try to pass 'this' straight through
2389 isThisReturn
= false;
2390 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2393 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2395 assert(Mask
&& "Missing call preserved mask for calling convention");
2396 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2399 if (InFlag
.getNode())
2400 Ops
.push_back(InFlag
);
2402 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2404 MF
.getFrameInfo().setHasTailCall();
2405 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2408 // Returns a chain and a flag for retval copy to use.
2409 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2410 InFlag
= Chain
.getValue(1);
2412 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2413 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2415 InFlag
= Chain
.getValue(1);
2417 // Handle result values, copying them out of physregs into vregs that we
2419 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2420 InVals
, isThisReturn
,
2421 isThisReturn
? OutVals
[0] : SDValue());
2424 /// HandleByVal - Every parameter *after* a byval parameter is passed
2425 /// on the stack. Remember the next parameter register to allocate,
2426 /// and then confiscate the rest of the parameter registers to insure
2428 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2429 unsigned Align
) const {
2430 // Byval (as with any stack) slots are always at least 4 byte aligned.
2431 Align
= std::max(Align
, 4U);
2433 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2437 unsigned AlignInRegs
= Align
/ 4;
2438 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2439 for (unsigned i
= 0; i
< Waste
; ++i
)
2440 Reg
= State
->AllocateReg(GPRArgRegs
);
2445 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2447 // Special case when NSAA != SP and parameter size greater than size of
2448 // all remained GPR regs. In that case we can't split parameter, we must
2449 // send it to stack. We also must set NCRN to R4, so waste all
2450 // remained registers.
2451 const unsigned NSAAOffset
= State
->getNextStackOffset();
2452 if (NSAAOffset
!= 0 && Size
> Excess
) {
2453 while (State
->AllocateReg(GPRArgRegs
))
2458 // First register for byval parameter is the first register that wasn't
2459 // allocated before this method call, so it would be "reg".
2460 // If parameter is small enough to be saved in range [reg, r4), then
2461 // the end (first after last) register would be reg + param-size-in-regs,
2462 // else parameter would be splitted between registers and stack,
2463 // end register would be r4 in this case.
2464 unsigned ByValRegBegin
= Reg
;
2465 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2466 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2467 // Note, first register is allocated in the beginning of function already,
2468 // allocate remained amount of registers we need.
2469 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2470 State
->AllocateReg(GPRArgRegs
);
2471 // A byval parameter that is split between registers and memory needs its
2472 // size truncated here.
2473 // In the case where the entire structure fits in registers, we set the
2474 // size in memory to zero.
2475 Size
= std::max
<int>(Size
- Excess
, 0);
2478 /// MatchingStackOffset - Return true if the given stack call argument is
2479 /// already available in the same position (relatively) of the caller's
2480 /// incoming argument stack.
2482 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2483 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2484 const TargetInstrInfo
*TII
) {
2485 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2486 int FI
= std::numeric_limits
<int>::max();
2487 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2488 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2489 if (!Register::isVirtualRegister(VR
))
2491 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2494 if (!Flags
.isByVal()) {
2495 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2500 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2501 if (Flags
.isByVal())
2502 // ByVal argument is passed in as a pointer but it's now being
2503 // dereferenced. e.g.
2504 // define @foo(%struct.X* %A) {
2505 // tail call @bar(%struct.X* byval %A)
2508 SDValue Ptr
= Ld
->getBasePtr();
2509 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2512 FI
= FINode
->getIndex();
2516 assert(FI
!= std::numeric_limits
<int>::max());
2517 if (!MFI
.isFixedObjectIndex(FI
))
2519 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2522 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2523 /// for tail call optimization. Targets which want to do tail call
2524 /// optimization should implement this function.
2525 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2526 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2527 bool isCalleeStructRet
, bool isCallerStructRet
,
2528 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2529 const SmallVectorImpl
<SDValue
> &OutVals
,
2530 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2531 const bool isIndirect
) const {
2532 MachineFunction
&MF
= DAG
.getMachineFunction();
2533 const Function
&CallerF
= MF
.getFunction();
2534 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2536 assert(Subtarget
->supportsTailCall());
2538 // Indirect tail calls cannot be optimized for Thumb1 if the args
2539 // to the call take up r0-r3. The reason is that there are no legal registers
2540 // left to hold the pointer to the function to be called.
2541 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2542 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2545 // Look for obvious safe cases to perform tail call optimization that do not
2546 // require ABI changes. This is what gcc calls sibcall.
2548 // Exception-handling functions need a special set of instructions to indicate
2549 // a return to the hardware. Tail-calling another function would probably
2551 if (CallerF
.hasFnAttribute("interrupt"))
2554 // Also avoid sibcall optimization if either caller or callee uses struct
2555 // return semantics.
2556 if (isCalleeStructRet
|| isCallerStructRet
)
2559 // Externally-defined functions with weak linkage should not be
2560 // tail-called on ARM when the OS does not support dynamic
2561 // pre-emption of symbols, as the AAELF spec requires normal calls
2562 // to undefined weak functions to be replaced with a NOP or jump to the
2563 // next instruction. The behaviour of branch instructions in this
2564 // situation (as used for tail calls) is implementation-defined, so we
2565 // cannot rely on the linker replacing the tail call with a return.
2566 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2567 const GlobalValue
*GV
= G
->getGlobal();
2568 const Triple
&TT
= getTargetMachine().getTargetTriple();
2569 if (GV
->hasExternalWeakLinkage() &&
2570 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2574 // Check that the call results are passed in the same way.
2575 LLVMContext
&C
= *DAG
.getContext();
2576 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2577 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2578 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2580 // The callee has to preserve all registers the caller needs to preserve.
2581 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2582 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2583 if (CalleeCC
!= CallerCC
) {
2584 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2585 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2589 // If Caller's vararg or byval argument has been split between registers and
2590 // stack, do not perform tail call, since part of the argument is in caller's
2592 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2593 if (AFI_Caller
->getArgRegsSaveSize())
2596 // If the callee takes no arguments then go on to check the results of the
2598 if (!Outs
.empty()) {
2599 // Check if stack adjustment is needed. For now, do not do this if any
2600 // argument is passed on the stack.
2601 SmallVector
<CCValAssign
, 16> ArgLocs
;
2602 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2603 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2604 if (CCInfo
.getNextStackOffset()) {
2605 // Check if the arguments are already laid out in the right way as
2606 // the caller's fixed stack objects.
2607 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2608 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2609 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2610 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2612 ++i
, ++realArgIdx
) {
2613 CCValAssign
&VA
= ArgLocs
[i
];
2614 EVT RegVT
= VA
.getLocVT();
2615 SDValue Arg
= OutVals
[realArgIdx
];
2616 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2617 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2619 if (VA
.needsCustom()) {
2620 // f64 and vector types are split into multiple registers or
2621 // register/stack-slot combinations. The types will not match
2622 // the registers; give up on memory f64 refs until we figure
2623 // out what to do about this.
2626 if (!ArgLocs
[++i
].isRegLoc())
2628 if (RegVT
== MVT::v2f64
) {
2629 if (!ArgLocs
[++i
].isRegLoc())
2631 if (!ArgLocs
[++i
].isRegLoc())
2634 } else if (!VA
.isRegLoc()) {
2635 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2642 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2643 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2651 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2652 MachineFunction
&MF
, bool isVarArg
,
2653 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2654 LLVMContext
&Context
) const {
2655 SmallVector
<CCValAssign
, 16> RVLocs
;
2656 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2657 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2660 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2661 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2662 const MachineFunction
&MF
= DAG
.getMachineFunction();
2663 const Function
&F
= MF
.getFunction();
2665 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2667 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2668 // version of the "preferred return address". These offsets affect the return
2669 // instruction if this is a return from PL1 without hypervisor extensions.
2670 // IRQ/FIQ: +4 "subs pc, lr, #4"
2671 // SWI: 0 "subs pc, lr, #0"
2672 // ABORT: +4 "subs pc, lr, #4"
2673 // UNDEF: +4/+2 "subs pc, lr, #0"
2674 // UNDEF varies depending on where the exception came from ARM or Thumb
2675 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2678 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2681 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2684 report_fatal_error("Unsupported interrupt attribute. If present, value "
2685 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2687 RetOps
.insert(RetOps
.begin() + 1,
2688 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2690 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2694 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2696 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2697 const SmallVectorImpl
<SDValue
> &OutVals
,
2698 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2699 // CCValAssign - represent the assignment of the return value to a location.
2700 SmallVector
<CCValAssign
, 16> RVLocs
;
2702 // CCState - Info about the registers and stack slots.
2703 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2706 // Analyze outgoing return values.
2707 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2710 SmallVector
<SDValue
, 4> RetOps
;
2711 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2712 bool isLittleEndian
= Subtarget
->isLittle();
2714 MachineFunction
&MF
= DAG
.getMachineFunction();
2715 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2716 AFI
->setReturnRegsCount(RVLocs
.size());
2718 // Copy the result values into the output registers.
2719 for (unsigned i
= 0, realRVLocIdx
= 0;
2721 ++i
, ++realRVLocIdx
) {
2722 CCValAssign
&VA
= RVLocs
[i
];
2723 assert(VA
.isRegLoc() && "Can only return in registers!");
2725 SDValue Arg
= OutVals
[realRVLocIdx
];
2726 bool ReturnF16
= false;
2728 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2729 // Half-precision return values can be returned like this:
2731 // t11 f16 = fadd ...
2732 // t12: i16 = bitcast t11
2733 // t13: i32 = zero_extend t12
2734 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2736 // to avoid code generation for bitcasts, we simply set Arg to the node
2737 // that produces the f16 value, t11 in this case.
2739 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2740 SDValue ZE
= Arg
.getOperand(0);
2741 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2742 SDValue BC
= ZE
.getOperand(0);
2743 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2744 Arg
= BC
.getOperand(0);
2751 switch (VA
.getLocInfo()) {
2752 default: llvm_unreachable("Unknown loc info!");
2753 case CCValAssign::Full
: break;
2754 case CCValAssign::BCvt
:
2756 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2760 if (VA
.needsCustom()) {
2761 if (VA
.getLocVT() == MVT::v2f64
) {
2762 // Extract the first half and return it in two registers.
2763 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2764 DAG
.getConstant(0, dl
, MVT::i32
));
2765 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2766 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2768 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2769 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2771 Flag
= Chain
.getValue(1);
2772 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2773 VA
= RVLocs
[++i
]; // skip ahead to next loc
2774 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2775 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2777 Flag
= Chain
.getValue(1);
2778 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2779 VA
= RVLocs
[++i
]; // skip ahead to next loc
2781 // Extract the 2nd half and fall through to handle it as an f64 value.
2782 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2783 DAG
.getConstant(1, dl
, MVT::i32
));
2785 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2787 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2788 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2789 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2790 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2792 Flag
= Chain
.getValue(1);
2793 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2794 VA
= RVLocs
[++i
]; // skip ahead to next loc
2795 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2796 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2799 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2801 // Guarantee that all emitted copies are
2802 // stuck together, avoiding something bad.
2803 Flag
= Chain
.getValue(1);
2804 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2805 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2807 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2808 const MCPhysReg
*I
=
2809 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2812 if (ARM::GPRRegClass
.contains(*I
))
2813 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2814 else if (ARM::DPRRegClass
.contains(*I
))
2815 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2817 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2821 // Update chain and glue.
2824 RetOps
.push_back(Flag
);
2826 // CPUs which aren't M-class use a special sequence to return from
2827 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2828 // though we use "subs pc, lr, #N").
2830 // M-class CPUs actually use a normal return sequence with a special
2831 // (hardware-provided) value in LR, so the normal code path works.
2832 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2833 !Subtarget
->isMClass()) {
2834 if (Subtarget
->isThumb1Only())
2835 report_fatal_error("interrupt attribute is not supported in Thumb1");
2836 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2839 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2842 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2843 if (N
->getNumValues() != 1)
2845 if (!N
->hasNUsesOfValue(1, 0))
2848 SDValue TCChain
= Chain
;
2849 SDNode
*Copy
= *N
->use_begin();
2850 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2851 // If the copy has a glue operand, we conservatively assume it isn't safe to
2852 // perform a tail call.
2853 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2855 TCChain
= Copy
->getOperand(0);
2856 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2857 SDNode
*VMov
= Copy
;
2858 // f64 returned in a pair of GPRs.
2859 SmallPtrSet
<SDNode
*, 2> Copies
;
2860 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2862 if (UI
->getOpcode() != ISD::CopyToReg
)
2866 if (Copies
.size() > 2)
2869 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2871 SDValue UseChain
= UI
->getOperand(0);
2872 if (Copies
.count(UseChain
.getNode()))
2876 // We are at the top of this chain.
2877 // If the copy has a glue operand, we conservatively assume it
2878 // isn't safe to perform a tail call.
2879 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2885 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2886 // f32 returned in a single GPR.
2887 if (!Copy
->hasOneUse())
2889 Copy
= *Copy
->use_begin();
2890 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2892 // If the copy has a glue operand, we conservatively assume it isn't safe to
2893 // perform a tail call.
2894 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2896 TCChain
= Copy
->getOperand(0);
2901 bool HasRet
= false;
2902 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2904 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2905 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2917 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2918 if (!Subtarget
->supportsTailCall())
2922 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2923 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2929 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2930 // and pass the lower and high parts through.
2931 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2933 SDValue WriteValue
= Op
->getOperand(2);
2935 // This function is only supposed to be called for i64 type argument.
2936 assert(WriteValue
.getValueType() == MVT::i64
2937 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2939 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2940 DAG
.getConstant(0, DL
, MVT::i32
));
2941 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2942 DAG
.getConstant(1, DL
, MVT::i32
));
2943 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2944 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2947 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2948 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2949 // one of the above mentioned nodes. It has to be wrapped because otherwise
2950 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2951 // be used to form addressing mode. These wrapped nodes will be selected
2953 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2954 SelectionDAG
&DAG
) const {
2955 EVT PtrVT
= Op
.getValueType();
2956 // FIXME there is no actual debug info here
2958 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2961 // When generating execute-only code Constant Pools must be promoted to the
2962 // global data section. It's a bit ugly that we can't share them across basic
2963 // blocks, but this way we guarantee that execute-only behaves correct with
2964 // position-independent addressing modes.
2965 if (Subtarget
->genExecuteOnly()) {
2966 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2967 auto T
= const_cast<Type
*>(CP
->getType());
2968 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2969 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2970 getFunction().getParent());
2971 auto GV
= new GlobalVariable(
2972 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2973 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2974 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2975 Twine(AFI
->createPICLabelUId())
2977 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2979 return LowerGlobalAddress(GA
, DAG
);
2982 if (CP
->isMachineConstantPoolEntry())
2983 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2984 CP
->getAlignment());
2986 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2987 CP
->getAlignment());
2988 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2991 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2992 return MachineJumpTableInfo::EK_Inline
;
2995 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2996 SelectionDAG
&DAG
) const {
2997 MachineFunction
&MF
= DAG
.getMachineFunction();
2998 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2999 unsigned ARMPCLabelIndex
= 0;
3001 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3002 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3004 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3005 if (!IsPositionIndependent
) {
3006 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3008 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3009 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3010 ARMConstantPoolValue
*CPV
=
3011 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3012 ARMCP::CPBlockAddress
, PCAdj
);
3013 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3015 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3016 SDValue Result
= DAG
.getLoad(
3017 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3018 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3019 if (!IsPositionIndependent
)
3021 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3022 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3025 /// Convert a TLS address reference into the correct sequence of loads
3026 /// and calls to compute the variable's address for Darwin, and return an
3027 /// SDValue containing the final node.
3029 /// Darwin only has one TLS scheme which must be capable of dealing with the
3030 /// fully general situation, in the worst case. This means:
3031 /// + "extern __thread" declaration.
3032 /// + Defined in a possibly unknown dynamic library.
3034 /// The general system is that each __thread variable has a [3 x i32] descriptor
3035 /// which contains information used by the runtime to calculate the address. The
3036 /// only part of this the compiler needs to know about is the first word, which
3037 /// contains a function pointer that must be called with the address of the
3038 /// entire descriptor in "r0".
3040 /// Since this descriptor may be in a different unit, in general access must
3041 /// proceed along the usual ARM rules. A common sequence to produce is:
3043 /// movw rT1, :lower16:_var$non_lazy_ptr
3044 /// movt rT1, :upper16:_var$non_lazy_ptr
3048 /// [...address now in r0...]
3050 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3051 SelectionDAG
&DAG
) const {
3052 assert(Subtarget
->isTargetDarwin() &&
3053 "This function expects a Darwin target");
3056 // First step is to get the address of the actua global symbol. This is where
3057 // the TLS descriptor lives.
3058 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3060 // The first entry in the descriptor is a function pointer that we must call
3061 // to obtain the address of the variable.
3062 SDValue Chain
= DAG
.getEntryNode();
3063 SDValue FuncTLVGet
= DAG
.getLoad(
3064 MVT::i32
, DL
, Chain
, DescAddr
,
3065 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3066 /* Alignment = */ 4,
3067 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3068 MachineMemOperand::MOInvariant
);
3069 Chain
= FuncTLVGet
.getValue(1);
3071 MachineFunction
&F
= DAG
.getMachineFunction();
3072 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3073 MFI
.setAdjustsStack(true);
3075 // TLS calls preserve all registers except those that absolutely must be
3076 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3079 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3080 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3081 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3083 // Finally, we can make the call. This is just a degenerate version of a
3084 // normal AArch64 call node: r0 takes the address of the descriptor, and
3085 // returns the address of the variable in this thread.
3086 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3088 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3089 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3090 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3091 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3095 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3096 SelectionDAG
&DAG
) const {
3097 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3099 SDValue Chain
= DAG
.getEntryNode();
3100 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3103 // Load the current TEB (thread environment block)
3104 SDValue Ops
[] = {Chain
,
3105 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3106 DAG
.getConstant(15, DL
, MVT::i32
),
3107 DAG
.getConstant(0, DL
, MVT::i32
),
3108 DAG
.getConstant(13, DL
, MVT::i32
),
3109 DAG
.getConstant(0, DL
, MVT::i32
),
3110 DAG
.getConstant(2, DL
, MVT::i32
)};
3111 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3112 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3114 SDValue TEB
= CurrentTEB
.getValue(0);
3115 Chain
= CurrentTEB
.getValue(1);
3117 // Load the ThreadLocalStoragePointer from the TEB
3118 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3120 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3121 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3123 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3124 // offset into the TLSArray.
3126 // Load the TLS index from the C runtime
3128 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3129 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3130 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3132 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3133 DAG
.getConstant(2, DL
, MVT::i32
));
3134 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3135 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3136 MachinePointerInfo());
3138 // Get the offset of the start of the .tls section (section base)
3139 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3140 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3141 SDValue Offset
= DAG
.getLoad(
3142 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3143 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3144 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3146 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3149 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3151 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3152 SelectionDAG
&DAG
) const {
3154 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3155 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3156 MachineFunction
&MF
= DAG
.getMachineFunction();
3157 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3158 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3159 ARMConstantPoolValue
*CPV
=
3160 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3161 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3162 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3163 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3164 Argument
= DAG
.getLoad(
3165 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3166 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3167 SDValue Chain
= Argument
.getValue(1);
3169 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3170 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3172 // call __tls_get_addr.
3175 Entry
.Node
= Argument
;
3176 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3177 Args
.push_back(Entry
);
3179 // FIXME: is there useful debug info available here?
3180 TargetLowering::CallLoweringInfo
CLI(DAG
);
3181 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3182 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3183 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3185 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3186 return CallResult
.first
;
3189 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3190 // "local exec" model.
3192 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3194 TLSModel::Model model
) const {
3195 const GlobalValue
*GV
= GA
->getGlobal();
3198 SDValue Chain
= DAG
.getEntryNode();
3199 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3200 // Get the Thread Pointer
3201 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3203 if (model
== TLSModel::InitialExec
) {
3204 MachineFunction
&MF
= DAG
.getMachineFunction();
3205 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3206 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3207 // Initial exec model.
3208 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3209 ARMConstantPoolValue
*CPV
=
3210 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3211 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3213 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3214 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3215 Offset
= DAG
.getLoad(
3216 PtrVT
, dl
, Chain
, Offset
,
3217 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3218 Chain
= Offset
.getValue(1);
3220 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3221 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3223 Offset
= DAG
.getLoad(
3224 PtrVT
, dl
, Chain
, Offset
,
3225 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3228 assert(model
== TLSModel::LocalExec
);
3229 ARMConstantPoolValue
*CPV
=
3230 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3231 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3232 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3233 Offset
= DAG
.getLoad(
3234 PtrVT
, dl
, Chain
, Offset
,
3235 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3238 // The address of the thread local variable is the add of the thread
3239 // pointer with the offset of the variable.
3240 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3244 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3245 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3246 if (DAG
.getTarget().useEmulatedTLS())
3247 return LowerToTLSEmulatedModel(GA
, DAG
);
3249 if (Subtarget
->isTargetDarwin())
3250 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3252 if (Subtarget
->isTargetWindows())
3253 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3255 // TODO: implement the "local dynamic" model
3256 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3257 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3260 case TLSModel::GeneralDynamic
:
3261 case TLSModel::LocalDynamic
:
3262 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3263 case TLSModel::InitialExec
:
3264 case TLSModel::LocalExec
:
3265 return LowerToTLSExecModels(GA
, DAG
, model
);
3267 llvm_unreachable("bogus TLS model");
3270 /// Return true if all users of V are within function F, looking through
3272 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3273 SmallVector
<const User
*,4> Worklist
;
3274 for (auto *U
: V
->users())
3275 Worklist
.push_back(U
);
3276 while (!Worklist
.empty()) {
3277 auto *U
= Worklist
.pop_back_val();
3278 if (isa
<ConstantExpr
>(U
)) {
3279 for (auto *UU
: U
->users())
3280 Worklist
.push_back(UU
);
3284 auto *I
= dyn_cast
<Instruction
>(U
);
3285 if (!I
|| I
->getParent()->getParent() != F
)
3291 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3292 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3293 EVT PtrVT
, const SDLoc
&dl
) {
3294 // If we're creating a pool entry for a constant global with unnamed address,
3295 // and the global is small enough, we can emit it inline into the constant pool
3296 // to save ourselves an indirection.
3298 // This is a win if the constant is only used in one function (so it doesn't
3299 // need to be duplicated) or duplicating the constant wouldn't increase code
3300 // size (implying the constant is no larger than 4 bytes).
3301 const Function
&F
= DAG
.getMachineFunction().getFunction();
3303 // We rely on this decision to inline being idemopotent and unrelated to the
3304 // use-site. We know that if we inline a variable at one use site, we'll
3305 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3306 // doesn't know about this optimization, so bail out if it's enabled else
3307 // we could decide to inline here (and thus never emit the GV) but require
3308 // the GV from fast-isel generated code.
3309 if (!EnableConstpoolPromotion
||
3310 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3313 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3314 if (!GVar
|| !GVar
->hasInitializer() ||
3315 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3316 !GVar
->hasLocalLinkage())
3319 // If we inline a value that contains relocations, we move the relocations
3320 // from .data to .text. This is not allowed in position-independent code.
3321 auto *Init
= GVar
->getInitializer();
3322 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3323 Init
->needsRelocation())
3326 // The constant islands pass can only really deal with alignment requests
3327 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3328 // any type wanting greater alignment requirements than 4 bytes. We also
3329 // can only promote constants that are multiples of 4 bytes in size or
3330 // are paddable to a multiple of 4. Currently we only try and pad constants
3331 // that are strings for simplicity.
3332 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3333 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3334 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3335 unsigned RequiredPadding
= 4 - (Size
% 4);
3336 bool PaddingPossible
=
3337 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3338 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3342 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3343 MachineFunction
&MF
= DAG
.getMachineFunction();
3344 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3346 // We can't bloat the constant pool too much, else the ConstantIslands pass
3347 // may fail to converge. If we haven't promoted this global yet (it may have
3348 // multiple uses), and promoting it would increase the constant pool size (Sz
3349 // > 4), ensure we have space to do so up to MaxTotal.
3350 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3351 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3352 ConstpoolPromotionMaxTotal
)
3355 // This is only valid if all users are in a single function; we can't clone
3356 // the constant in general. The LLVM IR unnamed_addr allows merging
3357 // constants, but not cloning them.
3359 // We could potentially allow cloning if we could prove all uses of the
3360 // constant in the current function don't care about the address, like
3361 // printf format strings. But that isn't implemented for now.
3362 if (!allUsersAreInFunction(GVar
, &F
))
3365 // We're going to inline this global. Pad it out if needed.
3366 if (RequiredPadding
!= 4) {
3367 StringRef S
= CDAInit
->getAsString();
3369 SmallVector
<uint8_t,16> V(S
.size());
3370 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3371 while (RequiredPadding
--)
3373 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3376 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3378 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3379 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3380 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3381 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3384 ++NumConstpoolPromoted
;
3385 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3388 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3389 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3390 if (!(GV
= GA
->getBaseObject()))
3392 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3393 return V
->isConstant();
3394 return isa
<Function
>(GV
);
3397 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3398 SelectionDAG
&DAG
) const {
3399 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3400 default: llvm_unreachable("unknown object format");
3402 return LowerGlobalAddressWindows(Op
, DAG
);
3404 return LowerGlobalAddressELF(Op
, DAG
);
3406 return LowerGlobalAddressDarwin(Op
, DAG
);
3410 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3411 SelectionDAG
&DAG
) const {
3412 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3414 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3415 const TargetMachine
&TM
= getTargetMachine();
3416 bool IsRO
= isReadOnly(GV
);
3418 // promoteToConstantPool only if not generating XO text section
3419 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3420 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3423 if (isPositionIndependent()) {
3424 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3425 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3426 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3427 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3430 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3431 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3433 } else if (Subtarget
->isROPI() && IsRO
) {
3435 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3436 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3438 } else if (Subtarget
->isRWPI() && !IsRO
) {
3441 if (Subtarget
->useMovt()) {
3443 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3444 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3445 } else { // use literal pool for address constant
3446 ARMConstantPoolValue
*CPV
=
3447 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3448 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3449 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3450 RelAddr
= DAG
.getLoad(
3451 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3452 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3454 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3455 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3459 // If we have T2 ops, we can materialize the address directly via movt/movw
3460 // pair. This is always cheaper.
3461 if (Subtarget
->useMovt()) {
3463 // FIXME: Once remat is capable of dealing with instructions with register
3464 // operands, expand this into two nodes.
3465 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3466 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3468 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3469 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3471 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3472 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3476 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3477 SelectionDAG
&DAG
) const {
3478 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3479 "ROPI/RWPI not currently supported for Darwin");
3480 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3482 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3484 if (Subtarget
->useMovt())
3487 // FIXME: Once remat is capable of dealing with instructions with register
3488 // operands, expand this into multiple nodes
3490 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3492 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3493 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3495 if (Subtarget
->isGVIndirectSymbol(GV
))
3496 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3497 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3501 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3502 SelectionDAG
&DAG
) const {
3503 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3504 assert(Subtarget
->useMovt() &&
3505 "Windows on ARM expects to use movw/movt");
3506 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3507 "ROPI/RWPI not currently supported for Windows");
3509 const TargetMachine
&TM
= getTargetMachine();
3510 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3511 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3512 if (GV
->hasDLLImportStorageClass())
3513 TargetFlags
= ARMII::MO_DLLIMPORT
;
3514 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3515 TargetFlags
= ARMII::MO_COFFSTUB
;
3516 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3522 // FIXME: Once remat is capable of dealing with instructions with register
3523 // operands, expand this into two nodes.
3524 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3525 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3527 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3528 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3529 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3534 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3536 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3537 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3538 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3539 Op
.getOperand(1), Val
);
3543 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3545 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3546 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3549 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3550 SelectionDAG
&DAG
) const {
3552 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3556 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3557 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3559 cast
<ConstantSDNode
>(
3560 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3564 return SDValue(); // Don't custom lower most intrinsics.
3565 case Intrinsic::arm_gnu_eabi_mcount
: {
3566 MachineFunction
&MF
= DAG
.getMachineFunction();
3567 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3569 SDValue Chain
= Op
.getOperand(0);
3570 // call "\01__gnu_mcount_nc"
3571 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3572 const uint32_t *Mask
=
3573 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3574 assert(Mask
&& "Missing call preserved mask for calling convention");
3575 // Mark LR an implicit live-in.
3576 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3577 SDValue ReturnAddress
=
3578 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3579 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3581 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3582 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3583 if (Subtarget
->isThumb())
3586 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3587 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3588 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3591 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3592 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3599 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3600 const ARMSubtarget
*Subtarget
) const {
3601 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3604 default: return SDValue(); // Don't custom lower most intrinsics.
3605 case Intrinsic::thread_pointer
: {
3606 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3607 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3609 case Intrinsic::eh_sjlj_lsda
: {
3610 MachineFunction
&MF
= DAG
.getMachineFunction();
3611 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3612 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3613 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3615 bool IsPositionIndependent
= isPositionIndependent();
3616 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3617 ARMConstantPoolValue
*CPV
=
3618 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3619 ARMCP::CPLSDA
, PCAdj
);
3620 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3621 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3622 SDValue Result
= DAG
.getLoad(
3623 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3624 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3626 if (IsPositionIndependent
) {
3627 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3628 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3632 case Intrinsic::arm_neon_vabs
:
3633 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3635 case Intrinsic::arm_neon_vmulls
:
3636 case Intrinsic::arm_neon_vmullu
: {
3637 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3638 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3639 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3640 Op
.getOperand(1), Op
.getOperand(2));
3642 case Intrinsic::arm_neon_vminnm
:
3643 case Intrinsic::arm_neon_vmaxnm
: {
3644 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3645 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3646 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3647 Op
.getOperand(1), Op
.getOperand(2));
3649 case Intrinsic::arm_neon_vminu
:
3650 case Intrinsic::arm_neon_vmaxu
: {
3651 if (Op
.getValueType().isFloatingPoint())
3653 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3654 ? ISD::UMIN
: ISD::UMAX
;
3655 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3656 Op
.getOperand(1), Op
.getOperand(2));
3658 case Intrinsic::arm_neon_vmins
:
3659 case Intrinsic::arm_neon_vmaxs
: {
3660 // v{min,max}s is overloaded between signed integers and floats.
3661 if (!Op
.getValueType().isFloatingPoint()) {
3662 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3663 ? ISD::SMIN
: ISD::SMAX
;
3664 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3665 Op
.getOperand(1), Op
.getOperand(2));
3667 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3668 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3669 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3670 Op
.getOperand(1), Op
.getOperand(2));
3672 case Intrinsic::arm_neon_vtbl1
:
3673 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3674 Op
.getOperand(1), Op
.getOperand(2));
3675 case Intrinsic::arm_neon_vtbl2
:
3676 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3677 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3681 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3682 const ARMSubtarget
*Subtarget
) {
3684 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3685 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3686 if (SSID
== SyncScope::SingleThread
)
3689 if (!Subtarget
->hasDataBarrier()) {
3690 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3691 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3693 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3694 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3695 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3696 DAG
.getConstant(0, dl
, MVT::i32
));
3699 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3700 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3701 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3702 if (Subtarget
->isMClass()) {
3703 // Only a full system barrier exists in the M-class architectures.
3704 Domain
= ARM_MB::SY
;
3705 } else if (Subtarget
->preferISHSTBarriers() &&
3706 Ord
== AtomicOrdering::Release
) {
3707 // Swift happens to implement ISHST barriers in a way that's compatible with
3708 // Release semantics but weaker than ISH so we'd be fools not to use
3709 // it. Beware: other processors probably don't!
3710 Domain
= ARM_MB::ISHST
;
3713 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3714 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3715 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3718 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3719 const ARMSubtarget
*Subtarget
) {
3720 // ARM pre v5TE and Thumb1 does not have preload instructions.
3721 if (!(Subtarget
->isThumb2() ||
3722 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3723 // Just preserve the chain.
3724 return Op
.getOperand(0);
3727 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3729 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3730 // ARMv7 with MP extension has PLDW.
3731 return Op
.getOperand(0);
3733 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3734 if (Subtarget
->isThumb()) {
3736 isRead
= ~isRead
& 1;
3737 isData
= ~isData
& 1;
3740 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3741 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3742 DAG
.getConstant(isData
, dl
, MVT::i32
));
3745 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3746 MachineFunction
&MF
= DAG
.getMachineFunction();
3747 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3749 // vastart just stores the address of the VarArgsFrameIndex slot into the
3750 // memory location argument.
3752 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3753 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3754 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3755 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3756 MachinePointerInfo(SV
));
3759 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3760 CCValAssign
&NextVA
,
3763 const SDLoc
&dl
) const {
3764 MachineFunction
&MF
= DAG
.getMachineFunction();
3765 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3767 const TargetRegisterClass
*RC
;
3768 if (AFI
->isThumb1OnlyFunction())
3769 RC
= &ARM::tGPRRegClass
;
3771 RC
= &ARM::GPRRegClass
;
3773 // Transform the arguments stored in physical registers into virtual ones.
3774 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3775 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3778 if (NextVA
.isMemLoc()) {
3779 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3780 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3782 // Create load node to retrieve arguments from the stack.
3783 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3784 ArgValue2
= DAG
.getLoad(
3785 MVT::i32
, dl
, Root
, FIN
,
3786 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3788 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3789 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3791 if (!Subtarget
->isLittle())
3792 std::swap (ArgValue
, ArgValue2
);
3793 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3796 // The remaining GPRs hold either the beginning of variable-argument
3797 // data, or the beginning of an aggregate passed by value (usually
3798 // byval). Either way, we allocate stack slots adjacent to the data
3799 // provided by our caller, and store the unallocated registers there.
3800 // If this is a variadic function, the va_list pointer will begin with
3801 // these values; otherwise, this reassembles a (byval) structure that
3802 // was split between registers and memory.
3803 // Return: The frame index registers were stored into.
3804 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3805 const SDLoc
&dl
, SDValue
&Chain
,
3806 const Value
*OrigArg
,
3807 unsigned InRegsParamRecordIdx
,
3808 int ArgOffset
, unsigned ArgSize
) const {
3809 // Currently, two use-cases possible:
3810 // Case #1. Non-var-args function, and we meet first byval parameter.
3811 // Setup first unallocated register as first byval register;
3812 // eat all remained registers
3813 // (these two actions are performed by HandleByVal method).
3814 // Then, here, we initialize stack frame with
3815 // "store-reg" instructions.
3816 // Case #2. Var-args function, that doesn't contain byval parameters.
3817 // The same: eat all remained unallocated registers,
3818 // initialize stack frame.
3820 MachineFunction
&MF
= DAG
.getMachineFunction();
3821 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3822 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3823 unsigned RBegin
, REnd
;
3824 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3825 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3827 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3828 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3833 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3835 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3836 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3837 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3839 SmallVector
<SDValue
, 4> MemOps
;
3840 const TargetRegisterClass
*RC
=
3841 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3843 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3844 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3845 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3846 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3847 MachinePointerInfo(OrigArg
, 4 * i
));
3848 MemOps
.push_back(Store
);
3849 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3852 if (!MemOps
.empty())
3853 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3857 // Setup stack frame, the va_list pointer will start from.
3858 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3859 const SDLoc
&dl
, SDValue
&Chain
,
3861 unsigned TotalArgRegsSaveSize
,
3862 bool ForceMutable
) const {
3863 MachineFunction
&MF
= DAG
.getMachineFunction();
3864 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3866 // Try to store any remaining integer argument regs
3867 // to their spots on the stack so that they may be loaded by dereferencing
3868 // the result of va_next.
3869 // If there is no regs to be stored, just point address after last
3870 // argument passed via stack.
3871 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3872 CCInfo
.getInRegsParamsCount(),
3873 CCInfo
.getNextStackOffset(),
3874 std::max(4U, TotalArgRegsSaveSize
));
3875 AFI
->setVarArgsFrameIndex(FrameIndex
);
3878 SDValue
ARMTargetLowering::LowerFormalArguments(
3879 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3880 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3881 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3882 MachineFunction
&MF
= DAG
.getMachineFunction();
3883 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3885 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3887 // Assign locations to all of the incoming arguments.
3888 SmallVector
<CCValAssign
, 16> ArgLocs
;
3889 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3891 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3893 SmallVector
<SDValue
, 16> ArgValues
;
3895 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3896 unsigned CurArgIdx
= 0;
3898 // Initially ArgRegsSaveSize is zero.
3899 // Then we increase this value each time we meet byval parameter.
3900 // We also increase this value in case of varargs function.
3901 AFI
->setArgRegsSaveSize(0);
3903 // Calculate the amount of stack space that we need to allocate to store
3904 // byval and variadic arguments that are passed in registers.
3905 // We need to know this before we allocate the first byval or variadic
3906 // argument, as they will be allocated a stack slot below the CFA (Canonical
3907 // Frame Address, the stack pointer at entry to the function).
3908 unsigned ArgRegBegin
= ARM::R4
;
3909 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3910 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3913 CCValAssign
&VA
= ArgLocs
[i
];
3914 unsigned Index
= VA
.getValNo();
3915 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3916 if (!Flags
.isByVal())
3919 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3920 unsigned RBegin
, REnd
;
3921 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3922 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3924 CCInfo
.nextInRegsParam();
3926 CCInfo
.rewindByValRegsInfo();
3928 int lastInsIndex
= -1;
3929 if (isVarArg
&& MFI
.hasVAStart()) {
3930 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3931 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3932 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3935 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3936 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3937 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3939 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3940 CCValAssign
&VA
= ArgLocs
[i
];
3941 if (Ins
[VA
.getValNo()].isOrigArg()) {
3942 std::advance(CurOrigArg
,
3943 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3944 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3946 // Arguments stored in registers.
3947 if (VA
.isRegLoc()) {
3948 EVT RegVT
= VA
.getLocVT();
3950 if (VA
.needsCustom()) {
3951 // f64 and vector types are split up into multiple registers or
3952 // combinations of registers and stack slots.
3953 if (VA
.getLocVT() == MVT::v2f64
) {
3954 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3956 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3958 if (VA
.isMemLoc()) {
3959 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3960 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3961 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3962 MachinePointerInfo::getFixedStack(
3963 DAG
.getMachineFunction(), FI
));
3965 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3968 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3969 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3970 ArgValue
, ArgValue1
,
3971 DAG
.getIntPtrConstant(0, dl
));
3972 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3973 ArgValue
, ArgValue2
,
3974 DAG
.getIntPtrConstant(1, dl
));
3976 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3978 const TargetRegisterClass
*RC
;
3981 if (RegVT
== MVT::f16
)
3982 RC
= &ARM::HPRRegClass
;
3983 else if (RegVT
== MVT::f32
)
3984 RC
= &ARM::SPRRegClass
;
3985 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3986 RC
= &ARM::DPRRegClass
;
3987 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3988 RC
= &ARM::QPRRegClass
;
3989 else if (RegVT
== MVT::i32
)
3990 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3991 : &ARM::GPRRegClass
;
3993 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3995 // Transform the arguments in physical registers into virtual ones.
3996 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3997 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3999 // If this value is passed in r0 and has the returned attribute (e.g.
4000 // C++ 'structors), record this fact for later use.
4001 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4002 AFI
->setPreservesR0();
4006 // If this is an 8 or 16-bit value, it is really passed promoted
4007 // to 32 bits. Insert an assert[sz]ext to capture this, then
4008 // truncate to the right size.
4009 switch (VA
.getLocInfo()) {
4010 default: llvm_unreachable("Unknown loc info!");
4011 case CCValAssign::Full
: break;
4012 case CCValAssign::BCvt
:
4013 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4015 case CCValAssign::SExt
:
4016 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4017 DAG
.getValueType(VA
.getValVT()));
4018 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4020 case CCValAssign::ZExt
:
4021 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4022 DAG
.getValueType(VA
.getValVT()));
4023 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4027 InVals
.push_back(ArgValue
);
4028 } else { // VA.isRegLoc()
4030 assert(VA
.isMemLoc());
4031 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4033 int index
= VA
.getValNo();
4035 // Some Ins[] entries become multiple ArgLoc[] entries.
4036 // Process them only once.
4037 if (index
!= lastInsIndex
)
4039 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4040 // FIXME: For now, all byval parameter objects are marked mutable.
4041 // This can be changed with more analysis.
4042 // In case of tail call optimization mark all arguments mutable.
4043 // Since they could be overwritten by lowering of arguments in case of
4045 if (Flags
.isByVal()) {
4046 assert(Ins
[index
].isOrigArg() &&
4047 "Byval arguments cannot be implicit");
4048 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4050 int FrameIndex
= StoreByValRegs(
4051 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4052 VA
.getLocMemOffset(), Flags
.getByValSize());
4053 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4054 CCInfo
.nextInRegsParam();
4056 unsigned FIOffset
= VA
.getLocMemOffset();
4057 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4060 // Create load nodes to retrieve arguments from the stack.
4061 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4062 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4063 MachinePointerInfo::getFixedStack(
4064 DAG
.getMachineFunction(), FI
)));
4066 lastInsIndex
= index
;
4072 if (isVarArg
&& MFI
.hasVAStart())
4073 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4074 CCInfo
.getNextStackOffset(),
4075 TotalArgRegsSaveSize
);
4077 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4082 /// isFloatingPointZero - Return true if this is +0.0.
4083 static bool isFloatingPointZero(SDValue Op
) {
4084 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4085 return CFP
->getValueAPF().isPosZero();
4086 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4087 // Maybe this has already been legalized into the constant pool?
4088 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4089 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4090 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4091 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4092 return CFP
->getValueAPF().isPosZero();
4094 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4095 Op
->getValueType(0) == MVT::f64
) {
4096 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4097 // created by LowerConstantFP().
4098 SDValue BitcastOp
= Op
->getOperand(0);
4099 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4100 isNullConstant(BitcastOp
->getOperand(0)))
4106 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4107 /// the given operands.
4108 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4109 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4110 const SDLoc
&dl
) const {
4111 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4112 unsigned C
= RHSC
->getZExtValue();
4113 if (!isLegalICmpImmediate((int32_t)C
)) {
4114 // Constant does not fit, try adjusting it by one.
4119 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4120 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4121 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4126 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4127 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4128 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4133 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4134 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4135 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4140 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4141 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4142 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4147 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4148 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4149 // In ARM and Thumb-2, the compare instructions can shift their second
4151 CC
= ISD::getSetCCSwappedOperands(CC
);
4152 std::swap(LHS
, RHS
);
4155 // Thumb1 has very limited immediate modes, so turning an "and" into a
4156 // shift can save multiple instructions.
4158 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4159 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4160 // own. If it's the operand to an unsigned comparison with an immediate,
4161 // we can eliminate one of the shifts: we transform
4162 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4164 // We avoid transforming cases which aren't profitable due to encoding
4167 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4168 // would not; in that case, we're essentially trading one immediate load for
4170 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4171 // 3. C2 is zero; we have other code for this special case.
4173 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4174 // instruction, since the AND is always one instruction anyway, but we could
4175 // use narrow instructions in some cases.
4176 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4177 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4178 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4179 !isSignedIntSetCC(CC
)) {
4180 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4181 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4182 uint64_t RHSV
= RHSC
->getZExtValue();
4183 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4184 unsigned ShiftBits
= countLeadingZeros(Mask
);
4185 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4186 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4187 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4188 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4193 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4194 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4196 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4197 // some tweaks to the heuristics for the previous and->shift transform.
4198 // FIXME: Optimize cases where the LHS isn't a shift.
4199 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4200 isa
<ConstantSDNode
>(RHS
) &&
4201 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4202 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4203 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4205 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4206 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4207 DAG
.getVTList(MVT::i32
, MVT::i32
),
4209 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4210 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4211 Shift
.getValue(1), SDValue());
4212 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4213 return Chain
.getValue(1);
4216 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4218 // If the RHS is a constant zero then the V (overflow) flag will never be
4219 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4220 // simpler for other passes (like the peephole optimiser) to deal with.
4221 if (isNullConstant(RHS
)) {
4225 CondCode
= ARMCC::PL
;
4228 CondCode
= ARMCC::MI
;
4233 ARMISD::NodeType CompareType
;
4236 CompareType
= ARMISD::CMP
;
4241 CompareType
= ARMISD::CMPZ
;
4244 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4245 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4248 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4249 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4250 SelectionDAG
&DAG
, const SDLoc
&dl
,
4251 bool InvalidOnQNaN
) const {
4252 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4254 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4255 if (!isFloatingPointZero(RHS
))
4256 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4258 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4259 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4262 /// duplicateCmp - Glue values can have only one use, so this function
4263 /// duplicates a comparison node.
4265 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4266 unsigned Opc
= Cmp
.getOpcode();
4268 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4269 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4271 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4272 Cmp
= Cmp
.getOperand(0);
4273 Opc
= Cmp
.getOpcode();
4274 if (Opc
== ARMISD::CMPFP
)
4275 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4276 Cmp
.getOperand(1), Cmp
.getOperand(2));
4278 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4279 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4282 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4285 // This function returns three things: the arithmetic computation itself
4286 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4287 // comparison and the condition code define the case in which the arithmetic
4288 // computation *does not* overflow.
4289 std::pair
<SDValue
, SDValue
>
4290 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4291 SDValue
&ARMcc
) const {
4292 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4294 SDValue Value
, OverflowCmp
;
4295 SDValue LHS
= Op
.getOperand(0);
4296 SDValue RHS
= Op
.getOperand(1);
4299 // FIXME: We are currently always generating CMPs because we don't support
4300 // generating CMN through the backend. This is not as good as the natural
4301 // CMP case because it causes a register dependency and cannot be folded
4304 switch (Op
.getOpcode()) {
4306 llvm_unreachable("Unknown overflow instruction!");
4308 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4309 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4310 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4313 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4314 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4315 // We do not use it in the USUBO case as Value may not be used.
4316 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4317 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4319 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4322 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4323 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4324 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4327 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4328 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4329 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4332 // We generate a UMUL_LOHI and then check if the high word is 0.
4333 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4334 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4335 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4337 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4338 DAG
.getConstant(0, dl
, MVT::i32
));
4339 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4342 // We generate a SMUL_LOHI and then check if all the bits of the high word
4343 // are the same as the sign bit of the low word.
4344 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4345 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4346 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4348 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4349 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4351 DAG
.getConstant(31, dl
, MVT::i32
)));
4352 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4356 return std::make_pair(Value
, OverflowCmp
);
4360 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4361 // Let legalize expand this if it isn't a legal type yet.
4362 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4365 SDValue Value
, OverflowCmp
;
4367 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4368 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4370 // We use 0 and 1 as false and true values.
4371 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4372 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4373 EVT VT
= Op
.getValueType();
4375 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4376 ARMcc
, CCR
, OverflowCmp
);
4378 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4379 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4382 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4383 SelectionDAG
&DAG
) {
4384 SDLoc
DL(BoolCarry
);
4385 EVT CarryVT
= BoolCarry
.getValueType();
4387 // This converts the boolean value carry into the carry flag by doing
4388 // ARMISD::SUBC Carry, 1
4389 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4390 DAG
.getVTList(CarryVT
, MVT::i32
),
4391 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4392 return Carry
.getValue(1);
4395 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4396 SelectionDAG
&DAG
) {
4399 // Now convert the carry flag into a boolean carry. We do this
4400 // using ARMISD:ADDE 0, 0, Carry
4401 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4402 DAG
.getConstant(0, DL
, MVT::i32
),
4403 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4406 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4407 SelectionDAG
&DAG
) const {
4408 // Let legalize expand this if it isn't a legal type yet.
4409 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4412 SDValue LHS
= Op
.getOperand(0);
4413 SDValue RHS
= Op
.getOperand(1);
4416 EVT VT
= Op
.getValueType();
4417 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4420 switch (Op
.getOpcode()) {
4422 llvm_unreachable("Unknown overflow instruction!");
4424 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4425 // Convert the carry flag into a boolean value.
4426 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4429 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4430 // Convert the carry flag into a boolean value.
4431 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4432 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4433 // value. So compute 1 - C.
4434 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4435 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4440 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4443 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4444 SDValue Cond
= Op
.getOperand(0);
4445 SDValue SelectTrue
= Op
.getOperand(1);
4446 SDValue SelectFalse
= Op
.getOperand(2);
4448 unsigned Opc
= Cond
.getOpcode();
4450 if (Cond
.getResNo() == 1 &&
4451 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4452 Opc
== ISD::USUBO
)) {
4453 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4456 SDValue Value
, OverflowCmp
;
4458 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4459 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4460 EVT VT
= Op
.getValueType();
4462 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4468 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4469 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4471 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4472 const ConstantSDNode
*CMOVTrue
=
4473 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4474 const ConstantSDNode
*CMOVFalse
=
4475 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4477 if (CMOVTrue
&& CMOVFalse
) {
4478 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4479 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4483 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4485 False
= SelectFalse
;
4486 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4491 if (True
.getNode() && False
.getNode()) {
4492 EVT VT
= Op
.getValueType();
4493 SDValue ARMcc
= Cond
.getOperand(2);
4494 SDValue CCR
= Cond
.getOperand(3);
4495 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4496 assert(True
.getValueType() == VT
);
4497 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4502 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4503 // undefined bits before doing a full-word comparison with zero.
4504 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4505 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4507 return DAG
.getSelectCC(dl
, Cond
,
4508 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4509 SelectTrue
, SelectFalse
, ISD::SETNE
);
4512 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4513 bool &swpCmpOps
, bool &swpVselOps
) {
4514 // Start by selecting the GE condition code for opcodes that return true for
4516 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4517 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4518 CondCode
= ARMCC::GE
;
4520 // and GT for opcodes that return false for 'equality'.
4521 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4522 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4523 CondCode
= ARMCC::GT
;
4525 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4526 // to swap the compare operands.
4527 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4528 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4531 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4532 // If we have an unordered opcode, we need to swap the operands to the VSEL
4533 // instruction (effectively negating the condition).
4535 // This also has the effect of swapping which one of 'less' or 'greater'
4536 // returns true, so we also swap the compare operands. It also switches
4537 // whether we return true for 'equality', so we compensate by picking the
4538 // opposite condition code to our original choice.
4539 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4540 CC
== ISD::SETUGT
) {
4541 swpCmpOps
= !swpCmpOps
;
4542 swpVselOps
= !swpVselOps
;
4543 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4546 // 'ordered' is 'anything but unordered', so use the VS condition code and
4547 // swap the VSEL operands.
4548 if (CC
== ISD::SETO
) {
4549 CondCode
= ARMCC::VS
;
4553 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4554 // code and swap the VSEL operands. Also do this if we don't care about the
4556 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4557 CondCode
= ARMCC::EQ
;
4562 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4563 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4564 SDValue Cmp
, SelectionDAG
&DAG
) const {
4565 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4566 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4567 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4568 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4569 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4571 SDValue TrueLow
= TrueVal
.getValue(0);
4572 SDValue TrueHigh
= TrueVal
.getValue(1);
4573 SDValue FalseLow
= FalseVal
.getValue(0);
4574 SDValue FalseHigh
= FalseVal
.getValue(1);
4576 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4578 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4579 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4581 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4583 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4588 static bool isGTorGE(ISD::CondCode CC
) {
4589 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4592 static bool isLTorLE(ISD::CondCode CC
) {
4593 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4596 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4597 // All of these conditions (and their <= and >= counterparts) will do:
4602 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4603 const SDValue TrueVal
, const SDValue FalseVal
,
4604 const ISD::CondCode CC
, const SDValue K
) {
4605 return (isGTorGE(CC
) &&
4606 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4608 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4611 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4612 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4613 const SDValue TrueVal
, const SDValue FalseVal
,
4614 const ISD::CondCode CC
, const SDValue K
) {
4615 return (isGTorGE(CC
) &&
4616 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4618 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4621 // Check if two chained conditionals could be converted into SSAT or USAT.
4623 // SSAT can replace a set of two conditional selectors that bound a number to an
4624 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4626 // x < -k ? -k : (x > k ? k : x)
4627 // x < -k ? -k : (x < k ? x : k)
4628 // x > -k ? (x > k ? k : x) : -k
4629 // x < k ? (x < -k ? -k : x) : k
4632 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4635 // It returns true if the conversion can be done, false otherwise.
4636 // Additionally, the variable is returned in parameter V, the constant in K and
4637 // usat is set to true if the conditional represents an unsigned saturation
4638 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4639 uint64_t &K
, bool &usat
) {
4640 SDValue LHS1
= Op
.getOperand(0);
4641 SDValue RHS1
= Op
.getOperand(1);
4642 SDValue TrueVal1
= Op
.getOperand(2);
4643 SDValue FalseVal1
= Op
.getOperand(3);
4644 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4646 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4647 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4650 SDValue LHS2
= Op2
.getOperand(0);
4651 SDValue RHS2
= Op2
.getOperand(1);
4652 SDValue TrueVal2
= Op2
.getOperand(2);
4653 SDValue FalseVal2
= Op2
.getOperand(3);
4654 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4656 // Find out which are the constants and which are the variables
4657 // in each conditional
4658 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4661 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4664 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4665 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4666 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4667 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4669 // We must detect cases where the original operations worked with 16- or
4670 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4671 // must work with sign-extended values but the select operations return
4672 // the original non-extended value.
4673 SDValue V2TmpReg
= V2Tmp
;
4674 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4675 V2TmpReg
= V2Tmp
->getOperand(0);
4677 // Check that the registers and the constants have the correct values
4678 // in both conditionals
4679 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4683 // Figure out which conditional is saturating the lower/upper bound.
4684 const SDValue
*LowerCheckOp
=
4685 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4687 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4690 const SDValue
*UpperCheckOp
=
4691 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4693 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4697 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4700 // Check that the constant in the lower-bound check is
4701 // the opposite of the constant in the upper-bound check
4702 // in 1's complement.
4703 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4704 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4705 int64_t PosVal
= std::max(Val1
, Val2
);
4706 int64_t NegVal
= std::min(Val1
, Val2
);
4708 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4709 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4710 isPowerOf2_64(PosVal
+ 1)) {
4712 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4715 else if (NegVal
== 0)
4721 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4729 // Check if a condition of the type x < k ? k : x can be converted into a
4730 // bit operation instead of conditional moves.
4731 // Currently this is allowed given:
4732 // - The conditions and values match up
4733 // - k is 0 or -1 (all ones)
4734 // This function will not check the last condition, thats up to the caller
4735 // It returns true if the transformation can be made, and in such case
4736 // returns x in V, and k in SatK.
4737 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4740 SDValue LHS
= Op
.getOperand(0);
4741 SDValue RHS
= Op
.getOperand(1);
4742 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4743 SDValue TrueVal
= Op
.getOperand(2);
4744 SDValue FalseVal
= Op
.getOperand(3);
4746 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4750 // No constant operation in comparison, early out
4754 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4755 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4756 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4758 // If the constant on left and right side, or variable on left and right,
4759 // does not match, early out
4760 if (*K
!= KTmp
|| V
!= VTmp
)
4763 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4771 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4773 return !Subtarget
->hasVFP2Base();
4775 return !Subtarget
->hasFP64();
4777 return !Subtarget
->hasFullFP16();
4781 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4782 EVT VT
= Op
.getValueType();
4785 // Try to convert two saturating conditional selects into a single SSAT
4787 uint64_t SatConstant
;
4789 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4790 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4792 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4793 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4795 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4796 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4799 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4800 // into more efficient bit operations, which is possible when k is 0 or -1
4801 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4802 // single instructions. On Thumb the shift and the bit operation will be two
4804 // Only allow this transformation on full-width (32-bit) operations
4805 SDValue LowerSatConstant
;
4806 if (VT
== MVT::i32
&&
4807 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4808 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4809 DAG
.getConstant(31, dl
, VT
));
4810 if (isNullConstant(LowerSatConstant
)) {
4811 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4812 DAG
.getAllOnesConstant(dl
, VT
));
4813 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4814 } else if (isAllOnesConstant(LowerSatConstant
))
4815 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4818 SDValue LHS
= Op
.getOperand(0);
4819 SDValue RHS
= Op
.getOperand(1);
4820 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4821 SDValue TrueVal
= Op
.getOperand(2);
4822 SDValue FalseVal
= Op
.getOperand(3);
4823 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4824 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4826 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4827 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4828 unsigned TVal
= CTVal
->getZExtValue();
4829 unsigned FVal
= CFVal
->getZExtValue();
4830 unsigned Opcode
= 0;
4832 if (TVal
== ~FVal
) {
4833 Opcode
= ARMISD::CSINV
;
4834 } else if (TVal
== ~FVal
+ 1) {
4835 Opcode
= ARMISD::CSNEG
;
4836 } else if (TVal
+ 1 == FVal
) {
4837 Opcode
= ARMISD::CSINC
;
4838 } else if (TVal
== FVal
+ 1) {
4839 Opcode
= ARMISD::CSINC
;
4840 std::swap(TrueVal
, FalseVal
);
4841 std::swap(TVal
, FVal
);
4842 CC
= ISD::getSetCCInverse(CC
, true);
4846 // If one of the constants is cheaper than another, materialise the
4847 // cheaper one and let the csel generate the other.
4848 if (Opcode
!= ARMISD::CSINC
&&
4849 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4850 std::swap(TrueVal
, FalseVal
);
4851 std::swap(TVal
, FVal
);
4852 CC
= ISD::getSetCCInverse(CC
, true);
4855 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4856 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4857 // -(-a) == a, but (a+1)+1 != a).
4858 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4859 std::swap(TrueVal
, FalseVal
);
4860 std::swap(TVal
, FVal
);
4861 CC
= ISD::getSetCCInverse(CC
, true);
4864 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4866 // Drops F's value because we can get it by inverting/negating TVal.
4870 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4871 EVT VT
= TrueVal
.getValueType();
4872 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4876 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4877 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4878 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4880 // If softenSetCCOperands only returned one value, we should compare it to
4882 if (!RHS
.getNode()) {
4883 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4888 if (LHS
.getValueType() == MVT::i32
) {
4889 // Try to generate VSEL on ARMv8.
4890 // The VSEL instruction can't use all the usual ARM condition
4891 // codes: it only has two bits to select the condition code, so it's
4892 // constrained to use only GE, GT, VS and EQ.
4894 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4895 // swap the operands of the previous compare instruction (effectively
4896 // inverting the compare condition, swapping 'less' and 'greater') and
4897 // sometimes need to swap the operands to the VSEL (which inverts the
4898 // condition in the sense of firing whenever the previous condition didn't)
4899 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4900 TrueVal
.getValueType() == MVT::f32
||
4901 TrueVal
.getValueType() == MVT::f64
)) {
4902 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4903 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4904 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4905 CC
= ISD::getSetCCInverse(CC
, true);
4906 std::swap(TrueVal
, FalseVal
);
4911 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4912 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4913 // Choose GE over PL, which vsel does now support
4914 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4915 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4916 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4919 ARMCC::CondCodes CondCode
, CondCode2
;
4921 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4923 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4924 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4925 // must use VSEL (limited condition codes), due to not having conditional f16
4927 if (Subtarget
->hasFPARMv8Base() &&
4928 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4929 (TrueVal
.getValueType() == MVT::f16
||
4930 TrueVal
.getValueType() == MVT::f32
||
4931 TrueVal
.getValueType() == MVT::f64
)) {
4932 bool swpCmpOps
= false;
4933 bool swpVselOps
= false;
4934 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4936 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4937 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4939 std::swap(LHS
, RHS
);
4941 std::swap(TrueVal
, FalseVal
);
4945 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4946 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4947 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4948 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4949 if (CondCode2
!= ARMCC::AL
) {
4950 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4951 // FIXME: Needs another CMP because flag can have but one use.
4952 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4953 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4958 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4959 /// to morph to an integer compare sequence.
4960 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4961 const ARMSubtarget
*Subtarget
) {
4962 SDNode
*N
= Op
.getNode();
4963 if (!N
->hasOneUse())
4964 // Otherwise it requires moving the value from fp to integer registers.
4966 if (!N
->getNumValues())
4968 EVT VT
= Op
.getValueType();
4969 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4970 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4971 // vmrs are very slow, e.g. cortex-a8.
4974 if (isFloatingPointZero(Op
)) {
4978 return ISD::isNormalLoad(N
);
4981 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4982 if (isFloatingPointZero(Op
))
4983 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4985 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4986 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4987 Ld
->getPointerInfo(), Ld
->getAlignment(),
4988 Ld
->getMemOperand()->getFlags());
4990 llvm_unreachable("Unknown VFP cmp argument!");
4993 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4994 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4997 if (isFloatingPointZero(Op
)) {
4998 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4999 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5003 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5004 SDValue Ptr
= Ld
->getBasePtr();
5006 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5007 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5009 EVT PtrType
= Ptr
.getValueType();
5010 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5011 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5012 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5013 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5014 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5015 Ld
->getMemOperand()->getFlags());
5019 llvm_unreachable("Unknown VFP cmp argument!");
5022 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5023 /// f32 and even f64 comparisons to integer ones.
5025 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5026 SDValue Chain
= Op
.getOperand(0);
5027 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5028 SDValue LHS
= Op
.getOperand(2);
5029 SDValue RHS
= Op
.getOperand(3);
5030 SDValue Dest
= Op
.getOperand(4);
5033 bool LHSSeenZero
= false;
5034 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5035 bool RHSSeenZero
= false;
5036 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5037 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5038 // If unsafe fp math optimization is enabled and there are no other uses of
5039 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5040 // to an integer comparison.
5041 if (CC
== ISD::SETOEQ
)
5043 else if (CC
== ISD::SETUNE
)
5046 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5048 if (LHS
.getValueType() == MVT::f32
) {
5049 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5050 bitcastf32Toi32(LHS
, DAG
), Mask
);
5051 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5052 bitcastf32Toi32(RHS
, DAG
), Mask
);
5053 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5054 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5055 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5056 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5061 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5062 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5063 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5064 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5065 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5066 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5067 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5068 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5069 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5075 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5076 SDValue Chain
= Op
.getOperand(0);
5077 SDValue Cond
= Op
.getOperand(1);
5078 SDValue Dest
= Op
.getOperand(2);
5081 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5083 unsigned Opc
= Cond
.getOpcode();
5084 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5085 !Subtarget
->isThumb1Only();
5086 if (Cond
.getResNo() == 1 &&
5087 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5088 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5089 // Only lower legal XALUO ops.
5090 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5093 // The actual operation with overflow check.
5094 SDValue Value
, OverflowCmp
;
5096 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5098 // Reverse the condition code.
5099 ARMCC::CondCodes CondCode
=
5100 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5101 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5102 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5103 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5105 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5112 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5113 SDValue Chain
= Op
.getOperand(0);
5114 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5115 SDValue LHS
= Op
.getOperand(2);
5116 SDValue RHS
= Op
.getOperand(3);
5117 SDValue Dest
= Op
.getOperand(4);
5120 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5121 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5122 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5124 // If softenSetCCOperands only returned one value, we should compare it to
5126 if (!RHS
.getNode()) {
5127 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5132 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5134 unsigned Opc
= LHS
.getOpcode();
5135 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5136 !Subtarget
->isThumb1Only();
5137 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5138 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5139 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5140 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5141 // Only lower legal XALUO ops.
5142 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5145 // The actual operation with overflow check.
5146 SDValue Value
, OverflowCmp
;
5148 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5150 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5151 // Reverse the condition code.
5152 ARMCC::CondCodes CondCode
=
5153 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5154 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5155 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5157 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5159 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5163 if (LHS
.getValueType() == MVT::i32
) {
5165 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5166 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5167 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5168 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5171 if (getTargetMachine().Options
.UnsafeFPMath
&&
5172 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5173 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5174 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5178 ARMCC::CondCodes CondCode
, CondCode2
;
5180 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5182 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5183 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5184 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5185 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5186 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5187 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5188 if (CondCode2
!= ARMCC::AL
) {
5189 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5190 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5191 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5196 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5197 SDValue Chain
= Op
.getOperand(0);
5198 SDValue Table
= Op
.getOperand(1);
5199 SDValue Index
= Op
.getOperand(2);
5202 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5203 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5204 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5205 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5206 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5207 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5208 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5209 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5210 // which does another jump to the destination. This also makes it easier
5211 // to translate it to TBB / TBH later (Thumb2 only).
5212 // FIXME: This might not work if the function is extremely large.
5213 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5214 Addr
, Op
.getOperand(2), JTI
);
5216 if (isPositionIndependent() || Subtarget
->isROPI()) {
5218 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5219 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5220 Chain
= Addr
.getValue(1);
5221 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5222 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5225 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5226 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5227 Chain
= Addr
.getValue(1);
5228 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5232 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5233 EVT VT
= Op
.getValueType();
5236 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5237 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5239 return DAG
.UnrollVectorOp(Op
.getNode());
5242 const bool HasFullFP16
=
5243 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5246 const EVT OpTy
= Op
.getOperand(0).getValueType();
5247 if (OpTy
== MVT::v4f32
)
5249 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5251 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5254 llvm_unreachable("Invalid type for custom lowering!");
5256 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5257 return DAG
.UnrollVectorOp(Op
.getNode());
5259 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5260 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5263 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5264 EVT VT
= Op
.getValueType();
5266 return LowerVectorFP_TO_INT(Op
, DAG
);
5267 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5269 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5270 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5273 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5275 MakeLibCallOptions CallOptions
;
5276 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5277 CallOptions
, SDLoc(Op
)).first
;
5283 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5284 EVT VT
= Op
.getValueType();
5287 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5288 if (VT
.getVectorElementType() == MVT::f32
)
5290 return DAG
.UnrollVectorOp(Op
.getNode());
5293 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5294 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5295 "Invalid type for custom lowering!");
5297 const bool HasFullFP16
=
5298 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5301 if (VT
== MVT::v4f32
)
5302 DestVecType
= MVT::v4i32
;
5303 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5304 DestVecType
= MVT::v4i16
;
5305 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5306 DestVecType
= MVT::v8i16
;
5308 return DAG
.UnrollVectorOp(Op
.getNode());
5312 switch (Op
.getOpcode()) {
5313 default: llvm_unreachable("Invalid opcode!");
5314 case ISD::SINT_TO_FP
:
5315 CastOpc
= ISD::SIGN_EXTEND
;
5316 Opc
= ISD::SINT_TO_FP
;
5318 case ISD::UINT_TO_FP
:
5319 CastOpc
= ISD::ZERO_EXTEND
;
5320 Opc
= ISD::UINT_TO_FP
;
5324 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5325 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5328 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5329 EVT VT
= Op
.getValueType();
5331 return LowerVectorINT_TO_FP(Op
, DAG
);
5332 if (isUnsupportedFloatingType(VT
)) {
5334 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5335 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5338 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5340 MakeLibCallOptions CallOptions
;
5341 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5342 CallOptions
, SDLoc(Op
)).first
;
5348 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5349 // Implement fcopysign with a fabs and a conditional fneg.
5350 SDValue Tmp0
= Op
.getOperand(0);
5351 SDValue Tmp1
= Op
.getOperand(1);
5353 EVT VT
= Op
.getValueType();
5354 EVT SrcVT
= Tmp1
.getValueType();
5355 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5356 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5357 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5360 // Use VBSL to copy the sign bit.
5361 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5362 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5363 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5364 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5366 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5367 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5368 DAG
.getConstant(32, dl
, MVT::i32
));
5369 else /*if (VT == MVT::f32)*/
5370 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5371 if (SrcVT
== MVT::f32
) {
5372 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5374 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5375 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5376 DAG
.getConstant(32, dl
, MVT::i32
));
5377 } else if (VT
== MVT::f32
)
5378 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5379 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5380 DAG
.getConstant(32, dl
, MVT::i32
));
5381 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5382 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5384 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5386 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5387 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5388 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5390 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5391 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5392 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5393 if (VT
== MVT::f32
) {
5394 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5395 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5396 DAG
.getConstant(0, dl
, MVT::i32
));
5398 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5404 // Bitcast operand 1 to i32.
5405 if (SrcVT
== MVT::f64
)
5406 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5408 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5410 // Or in the signbit with integer operations.
5411 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5412 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5413 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5414 if (VT
== MVT::f32
) {
5415 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5416 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5417 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5418 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5421 // f64: Or the high part with signbit and then combine two parts.
5422 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5424 SDValue Lo
= Tmp0
.getValue(0);
5425 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5426 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5427 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5430 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5431 MachineFunction
&MF
= DAG
.getMachineFunction();
5432 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5433 MFI
.setReturnAddressIsTaken(true);
5435 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5438 EVT VT
= Op
.getValueType();
5440 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5442 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5443 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5444 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5445 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5446 MachinePointerInfo());
5449 // Return LR, which contains the return address. Mark it an implicit live-in.
5450 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5451 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5454 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5455 const ARMBaseRegisterInfo
&ARI
=
5456 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5457 MachineFunction
&MF
= DAG
.getMachineFunction();
5458 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5459 MFI
.setFrameAddressIsTaken(true);
5461 EVT VT
= Op
.getValueType();
5462 SDLoc
dl(Op
); // FIXME probably not meaningful
5463 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5464 Register FrameReg
= ARI
.getFrameRegister(MF
);
5465 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5467 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5468 MachinePointerInfo());
5472 // FIXME? Maybe this could be a TableGen attribute on some registers and
5473 // this table could be generated automatically from RegInfo.
5474 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5475 SelectionDAG
&DAG
) const {
5476 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5477 .Case("sp", ARM::SP
)
5481 report_fatal_error(Twine("Invalid register name \""
5482 + StringRef(RegName
) + "\"."));
5485 // Result is 64 bit value so split into two 32 bit values and return as a
5487 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5488 SelectionDAG
&DAG
) {
5491 // This function is only supposed to be called for i64 type destination.
5492 assert(N
->getValueType(0) == MVT::i64
5493 && "ExpandREAD_REGISTER called for non-i64 type result.");
5495 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5496 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5500 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5502 Results
.push_back(Read
.getOperand(0));
5505 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5506 /// When \p DstVT, the destination type of \p BC, is on the vector
5507 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5508 /// it might be possible to combine them, such that everything stays on the
5509 /// vector register bank.
5510 /// \p return The node that would replace \p BT, if the combine
5512 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5513 SelectionDAG
&DAG
) {
5514 SDValue Op
= BC
->getOperand(0);
5515 EVT DstVT
= BC
->getValueType(0);
5517 // The only vector instruction that can produce a scalar (remember,
5518 // since the bitcast was about to be turned into VMOVDRR, the source
5519 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5520 // Moreover, we can do this combine only if there is one use.
5521 // Finally, if the destination type is not a vector, there is not
5522 // much point on forcing everything on the vector bank.
5523 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5527 // If the index is not constant, we will introduce an additional
5528 // multiply that will stick.
5529 // Give up in that case.
5530 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5533 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5535 // Compute the new index.
5536 const APInt
&APIntIndex
= Index
->getAPIntValue();
5537 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5538 NewIndex
*= APIntIndex
;
5539 // Check if the new constant index fits into i32.
5540 if (NewIndex
.getBitWidth() > 32)
5543 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5544 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5546 SDValue ExtractSrc
= Op
.getOperand(0);
5547 EVT VecVT
= EVT::getVectorVT(
5548 *DAG
.getContext(), DstVT
.getScalarType(),
5549 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5550 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5551 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5552 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5555 /// ExpandBITCAST - If the target supports VFP, this function is called to
5556 /// expand a bit convert where either the source or destination type is i64 to
5557 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5558 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5559 /// vectors), since the legalizer won't know what to do with that.
5560 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5561 const ARMSubtarget
*Subtarget
) {
5562 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5564 SDValue Op
= N
->getOperand(0);
5566 // This function is only supposed to be called for i64 types, either as the
5567 // source or destination of the bit convert.
5568 EVT SrcVT
= Op
.getValueType();
5569 EVT DstVT
= N
->getValueType(0);
5570 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5572 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5573 // FullFP16: half values are passed in S-registers, and we don't
5574 // need any of the bitcast and moves:
5576 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5577 // t5: i32 = bitcast t2
5578 // t18: f16 = ARMISD::VMOVhr t5
5579 if (Op
.getOpcode() != ISD::CopyFromReg
||
5580 Op
.getValueType() != MVT::f32
)
5583 auto Move
= N
->use_begin();
5584 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5587 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5588 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5589 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5593 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5596 // SoftFP: read half-precision arguments:
5599 // t7: i16 = truncate t2 <~~~~ Op
5600 // t8: f16 = bitcast t7 <~~~~ N
5602 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5603 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5604 MVT::f16
, Op
.getOperand(0));
5609 // Half-precision return values
5610 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5614 // t11: f16 = fadd t8, t10
5615 // t12: i16 = bitcast t11 <~~~ SDNode N
5616 // t13: i32 = zero_extend t12
5617 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5618 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5620 // transform this into:
5622 // t20: i32 = ARMISD::VMOVrh t11
5623 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5625 auto ZeroExtend
= N
->use_begin();
5626 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5627 ZeroExtend
->getValueType(0) != MVT::i32
)
5630 auto Copy
= ZeroExtend
->use_begin();
5631 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5632 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5633 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5634 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5640 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5643 // Turn i64->f64 into VMOVDRR.
5644 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5645 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5646 // if we can combine the bitcast with its source.
5647 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5650 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5651 DAG
.getConstant(0, dl
, MVT::i32
));
5652 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5653 DAG
.getConstant(1, dl
, MVT::i32
));
5654 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5655 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5658 // Turn f64->i64 into VMOVRRD.
5659 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5661 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5662 SrcVT
.getVectorNumElements() > 1)
5663 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5664 DAG
.getVTList(MVT::i32
, MVT::i32
),
5665 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5667 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5668 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5669 // Merge the pieces into a single i64 value.
5670 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5676 /// getZeroVector - Returns a vector of specified type with all zero elements.
5677 /// Zero vectors are used to represent vector negation and in those cases
5678 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5679 /// not support i64 elements, so sometimes the zero vectors will need to be
5680 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5682 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5683 assert(VT
.isVector() && "Expected a vector type");
5684 // The canonical modified immediate encoding of a zero vector is....0!
5685 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5686 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5687 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5688 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5691 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5692 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5693 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5694 SelectionDAG
&DAG
) const {
5695 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5696 EVT VT
= Op
.getValueType();
5697 unsigned VTBits
= VT
.getSizeInBits();
5699 SDValue ShOpLo
= Op
.getOperand(0);
5700 SDValue ShOpHi
= Op
.getOperand(1);
5701 SDValue ShAmt
= Op
.getOperand(2);
5703 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5704 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5706 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5708 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5709 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5710 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5711 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5712 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5713 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5714 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5715 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5716 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5717 ISD::SETGE
, ARMcc
, DAG
, dl
);
5718 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5721 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5722 SDValue HiBigShift
= Opc
== ISD::SRA
5723 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5724 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5725 : DAG
.getConstant(0, dl
, VT
);
5726 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5727 ISD::SETGE
, ARMcc
, DAG
, dl
);
5728 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5731 SDValue Ops
[2] = { Lo
, Hi
};
5732 return DAG
.getMergeValues(Ops
, dl
);
5735 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5736 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5737 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5738 SelectionDAG
&DAG
) const {
5739 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5740 EVT VT
= Op
.getValueType();
5741 unsigned VTBits
= VT
.getSizeInBits();
5743 SDValue ShOpLo
= Op
.getOperand(0);
5744 SDValue ShOpHi
= Op
.getOperand(1);
5745 SDValue ShAmt
= Op
.getOperand(2);
5747 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5749 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5750 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5751 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5752 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5753 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5754 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5756 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5757 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5758 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5759 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5760 ISD::SETGE
, ARMcc
, DAG
, dl
);
5761 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5764 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5765 ISD::SETGE
, ARMcc
, DAG
, dl
);
5766 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5767 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5768 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5770 SDValue Ops
[2] = { Lo
, Hi
};
5771 return DAG
.getMergeValues(Ops
, dl
);
5774 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5775 SelectionDAG
&DAG
) const {
5776 // The rounding mode is in bits 23:22 of the FPSCR.
5777 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5778 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5779 // so that the shift + and get folded into a bitfield extract.
5781 SDValue Ops
[] = { DAG
.getEntryNode(),
5782 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5784 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5785 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5786 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5787 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5788 DAG
.getConstant(22, dl
, MVT::i32
));
5789 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5790 DAG
.getConstant(3, dl
, MVT::i32
));
5793 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5794 const ARMSubtarget
*ST
) {
5796 EVT VT
= N
->getValueType(0);
5797 if (VT
.isVector()) {
5798 assert(ST
->hasNEON());
5800 // Compute the least significant set bit: LSB = X & -X
5801 SDValue X
= N
->getOperand(0);
5802 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5803 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5805 EVT ElemTy
= VT
.getVectorElementType();
5807 if (ElemTy
== MVT::i8
) {
5808 // Compute with: cttz(x) = ctpop(lsb - 1)
5809 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5810 DAG
.getTargetConstant(1, dl
, ElemTy
));
5811 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5812 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5815 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5816 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5817 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5818 unsigned NumBits
= ElemTy
.getSizeInBits();
5819 SDValue WidthMinus1
=
5820 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5821 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5822 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5823 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5826 // Compute with: cttz(x) = ctpop(lsb - 1)
5830 if (ElemTy
== MVT::i64
) {
5831 // Load constant 0xffff'ffff'ffff'ffff to register.
5832 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5833 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5834 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5836 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5837 DAG
.getTargetConstant(1, dl
, ElemTy
));
5838 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5840 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5843 if (!ST
->hasV6T2Ops())
5846 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5847 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5850 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5851 const ARMSubtarget
*ST
) {
5852 EVT VT
= N
->getValueType(0);
5855 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5856 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5857 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5858 "Unexpected type for custom ctpop lowering");
5860 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5861 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5862 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5863 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5865 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5866 unsigned EltSize
= 8;
5867 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5868 while (EltSize
!= VT
.getScalarSizeInBits()) {
5869 SmallVector
<SDValue
, 8> Ops
;
5870 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5871 TLI
.getPointerTy(DAG
.getDataLayout())));
5876 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5877 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5883 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5884 /// operand of a vector shift operation, where all the elements of the
5885 /// build_vector must have the same constant integer value.
5886 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5887 // Ignore bit_converts.
5888 while (Op
.getOpcode() == ISD::BITCAST
)
5889 Op
= Op
.getOperand(0);
5890 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5891 APInt SplatBits
, SplatUndef
;
5892 unsigned SplatBitSize
;
5895 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5897 SplatBitSize
> ElementBits
)
5899 Cnt
= SplatBits
.getSExtValue();
5903 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5904 /// operand of a vector shift left operation. That value must be in the range:
5905 /// 0 <= Value < ElementBits for a left shift; or
5906 /// 0 <= Value <= ElementBits for a long left shift.
5907 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5908 assert(VT
.isVector() && "vector shift count is not a vector type");
5909 int64_t ElementBits
= VT
.getScalarSizeInBits();
5910 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5912 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5915 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5916 /// operand of a vector shift right operation. For a shift opcode, the value
5917 /// is positive, but for an intrinsic the value count must be negative. The
5918 /// absolute value must be in the range:
5919 /// 1 <= |Value| <= ElementBits for a right shift; or
5920 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5921 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5923 assert(VT
.isVector() && "vector shift count is not a vector type");
5924 int64_t ElementBits
= VT
.getScalarSizeInBits();
5925 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5928 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5929 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5936 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5937 const ARMSubtarget
*ST
) {
5938 EVT VT
= N
->getValueType(0);
5945 // We essentially have two forms here. Shift by an immediate and shift by a
5946 // vector register (there are also shift by a gpr, but that is just handled
5947 // with a tablegen pattern). We cannot easily match shift by an immediate in
5948 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5949 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5950 // signed or unsigned, and a negative shift indicates a shift right).
5951 if (N
->getOpcode() == ISD::SHL
) {
5952 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5953 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5954 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5955 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5959 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5960 "unexpected vector shift opcode");
5962 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5963 unsigned VShiftOpc
=
5964 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5965 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5966 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5969 // Other right shifts we don't have operations for (we use a shift left by a
5970 // negative number).
5971 EVT ShiftVT
= N
->getOperand(1).getValueType();
5972 SDValue NegatedCount
= DAG
.getNode(
5973 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5974 unsigned VShiftOpc
=
5975 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5976 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5979 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5980 const ARMSubtarget
*ST
) {
5981 EVT VT
= N
->getValueType(0);
5984 // We can get here for a node like i32 = ISD::SHL i32, i64
5988 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5989 N
->getOpcode() == ISD::SHL
) &&
5990 "Unknown shift to lower!");
5992 unsigned ShOpc
= N
->getOpcode();
5993 if (ST
->hasMVEIntegerOps()) {
5994 SDValue ShAmt
= N
->getOperand(1);
5995 unsigned ShPartsOpc
= ARMISD::LSLL
;
5996 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5998 // If the shift amount is greater than 32 or has a greater bitwidth than 64
5999 // then do the default optimisation
6000 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6001 (Con
&& Con
->getZExtValue() >= 32))
6004 // Extract the lower 32 bits of the shift amount if it's not an i32
6005 if (ShAmt
->getValueType(0) != MVT::i32
)
6006 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6008 if (ShOpc
== ISD::SRL
) {
6010 // There is no t2LSRLr instruction so negate and perform an lsll if the
6011 // shift amount is in a register, emulating a right shift.
6012 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6013 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6015 // Else generate an lsrl on the immediate shift amount
6016 ShPartsOpc
= ARMISD::LSRL
;
6017 } else if (ShOpc
== ISD::SRA
)
6018 ShPartsOpc
= ARMISD::ASRL
;
6020 // Lower 32 bits of the destination/source
6021 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6022 DAG
.getConstant(0, dl
, MVT::i32
));
6023 // Upper 32 bits of the destination/source
6024 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6025 DAG
.getConstant(1, dl
, MVT::i32
));
6027 // Generate the shift operation as computed above
6028 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6030 // The upper 32 bits come from the second return value of lsll
6031 Hi
= SDValue(Lo
.getNode(), 1);
6032 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6035 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6036 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6039 // If we are in thumb mode, we don't have RRX.
6040 if (ST
->isThumb1Only())
6043 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6044 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6045 DAG
.getConstant(0, dl
, MVT::i32
));
6046 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6047 DAG
.getConstant(1, dl
, MVT::i32
));
6049 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6050 // captures the result into a carry flag.
6051 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6052 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6054 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6055 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6057 // Merge the pieces into a single i64 value.
6058 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6061 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6062 const ARMSubtarget
*ST
) {
6063 bool Invert
= false;
6065 unsigned Opc
= ARMCC::AL
;
6067 SDValue Op0
= Op
.getOperand(0);
6068 SDValue Op1
= Op
.getOperand(1);
6069 SDValue CC
= Op
.getOperand(2);
6070 EVT VT
= Op
.getValueType();
6071 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6076 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6078 assert(ST
->hasMVEIntegerOps() &&
6079 "No hardware support for integer vector comparison!");
6081 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6084 // Make sure we expand floating point setcc to scalar if we do not have
6085 // mve.fp, so that we can handle them from there.
6086 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6092 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6093 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6094 // Special-case integer 64-bit equality comparisons. They aren't legal,
6095 // but they can be lowered with a few vector instructions.
6096 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6097 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6098 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6099 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6100 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6101 DAG
.getCondCode(ISD::SETEQ
));
6102 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6103 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6104 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6105 if (SetCCOpcode
== ISD::SETNE
)
6106 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6107 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6111 if (CmpVT
.getVectorElementType() == MVT::i64
)
6112 // 64-bit comparisons are not legal in general.
6115 if (Op1
.getValueType().isFloatingPoint()) {
6116 switch (SetCCOpcode
) {
6117 default: llvm_unreachable("Illegal FP comparison");
6120 if (ST
->hasMVEFloatOps()) {
6121 Opc
= ARMCC::NE
; break;
6123 Invert
= true; LLVM_FALLTHROUGH
;
6126 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6128 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6130 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6132 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6134 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6135 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6136 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6137 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6138 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6139 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6141 // Expand this to (OLT | OGT).
6142 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6143 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6144 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6145 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6146 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6148 Result
= DAG
.getNOT(dl
, Result
, VT
);
6151 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6153 // Expand this to (OLT | OGE).
6154 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6155 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6156 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6157 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6158 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6160 Result
= DAG
.getNOT(dl
, Result
, VT
);
6165 // Integer comparisons.
6166 switch (SetCCOpcode
) {
6167 default: llvm_unreachable("Illegal integer comparison");
6169 if (ST
->hasMVEIntegerOps()) {
6170 Opc
= ARMCC::NE
; break;
6172 Invert
= true; LLVM_FALLTHROUGH
;
6174 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6175 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6176 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6177 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6178 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6179 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6180 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6181 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6182 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6185 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6186 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6188 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6190 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6193 // Ignore bitconvert.
6194 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6195 AndOp
= AndOp
.getOperand(0);
6197 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6198 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6199 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6200 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6202 Result
= DAG
.getNOT(dl
, Result
, VT
);
6209 std::swap(Op0
, Op1
);
6211 // If one of the operands is a constant vector zero, attempt to fold the
6212 // comparison to a specialized compare-against-zero form.
6214 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6216 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6217 if (Opc
== ARMCC::GE
)
6219 else if (Opc
== ARMCC::GT
)
6225 if (SingleOp
.getNode()) {
6226 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6227 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6229 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6230 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6233 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6236 Result
= DAG
.getNOT(dl
, Result
, VT
);
6241 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6242 SDValue LHS
= Op
.getOperand(0);
6243 SDValue RHS
= Op
.getOperand(1);
6244 SDValue Carry
= Op
.getOperand(2);
6245 SDValue Cond
= Op
.getOperand(3);
6248 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6250 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6251 // have to invert the carry first.
6252 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6253 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6254 // This converts the boolean value carry into the carry flag.
6255 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6257 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6258 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6260 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6261 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6262 SDValue ARMcc
= DAG
.getConstant(
6263 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6264 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6265 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6266 Cmp
.getValue(1), SDValue());
6267 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6268 CCR
, Chain
.getValue(1));
6271 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6272 /// valid vector constant for a NEON or MVE instruction with a "modified
6273 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6274 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6275 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6276 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6277 VMOVModImmType type
) {
6278 unsigned OpCmode
, Imm
;
6280 // SplatBitSize is set to the smallest size that splats the vector, so a
6281 // zero vector will always have SplatBitSize == 8. However, NEON modified
6282 // immediate instructions others than VMOV do not support the 8-bit encoding
6283 // of a zero vector, and the default encoding of zero is supposed to be the
6288 switch (SplatBitSize
) {
6290 if (type
!= VMOVModImm
)
6292 // Any 1-byte value is OK. Op=0, Cmode=1110.
6293 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6296 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6300 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6301 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6302 if ((SplatBits
& ~0xff) == 0) {
6303 // Value = 0x00nn: Op=x, Cmode=100x.
6308 if ((SplatBits
& ~0xff00) == 0) {
6309 // Value = 0xnn00: Op=x, Cmode=101x.
6311 Imm
= SplatBits
>> 8;
6317 // NEON's 32-bit VMOV supports splat values where:
6318 // * only one byte is nonzero, or
6319 // * the least significant byte is 0xff and the second byte is nonzero, or
6320 // * the least significant 2 bytes are 0xff and the third is nonzero.
6321 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6322 if ((SplatBits
& ~0xff) == 0) {
6323 // Value = 0x000000nn: Op=x, Cmode=000x.
6328 if ((SplatBits
& ~0xff00) == 0) {
6329 // Value = 0x0000nn00: Op=x, Cmode=001x.
6331 Imm
= SplatBits
>> 8;
6334 if ((SplatBits
& ~0xff0000) == 0) {
6335 // Value = 0x00nn0000: Op=x, Cmode=010x.
6337 Imm
= SplatBits
>> 16;
6340 if ((SplatBits
& ~0xff000000) == 0) {
6341 // Value = 0xnn000000: Op=x, Cmode=011x.
6343 Imm
= SplatBits
>> 24;
6347 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6348 if (type
== OtherModImm
) return SDValue();
6350 if ((SplatBits
& ~0xffff) == 0 &&
6351 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6352 // Value = 0x0000nnff: Op=x, Cmode=1100.
6354 Imm
= SplatBits
>> 8;
6358 // cmode == 0b1101 is not supported for MVE VMVN
6359 if (type
== MVEVMVNModImm
)
6362 if ((SplatBits
& ~0xffffff) == 0 &&
6363 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6364 // Value = 0x00nnffff: Op=x, Cmode=1101.
6366 Imm
= SplatBits
>> 16;
6370 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6371 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6372 // VMOV.I32. A (very) minor optimization would be to replicate the value
6373 // and fall through here to test for a valid 64-bit splat. But, then the
6374 // caller would also need to check and handle the change in size.
6378 if (type
!= VMOVModImm
)
6380 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6381 uint64_t BitMask
= 0xff;
6383 unsigned ImmMask
= 1;
6385 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6386 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6389 } else if ((SplatBits
& BitMask
) != 0) {
6396 if (DAG
.getDataLayout().isBigEndian())
6397 // swap higher and lower 32 bit word
6398 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6400 // Op=1, Cmode=1110.
6402 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6407 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6410 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6411 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6414 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6415 const ARMSubtarget
*ST
) const {
6416 EVT VT
= Op
.getValueType();
6417 bool IsDouble
= (VT
== MVT::f64
);
6418 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6419 const APFloat
&FPVal
= CFP
->getValueAPF();
6421 // Prevent floating-point constants from using literal loads
6422 // when execute-only is enabled.
6423 if (ST
->genExecuteOnly()) {
6424 // If we can represent the constant as an immediate, don't lower it
6425 if (isFPImmLegal(FPVal
, VT
))
6427 // Otherwise, construct as integer, and move to float register
6428 APInt INTVal
= FPVal
.bitcastToAPInt();
6430 switch (VT
.getSimpleVT().SimpleTy
) {
6432 llvm_unreachable("Unknown floating point type!");
6435 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6436 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6437 if (!ST
->isLittle())
6439 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6442 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6443 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6447 if (!ST
->hasVFP3Base())
6450 // Use the default (constant pool) lowering for double constants when we have
6452 if (IsDouble
&& !Subtarget
->hasFP64())
6455 // Try splatting with a VMOV.f32...
6456 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6459 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6460 // We have code in place to select a valid ConstantFP already, no need to
6465 // It's a float and we are trying to use NEON operations where
6466 // possible. Lower it to a splat followed by an extract.
6468 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6469 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6471 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6472 DAG
.getConstant(0, DL
, MVT::i32
));
6475 // The rest of our options are NEON only, make sure that's allowed before
6477 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6481 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6483 // It wouldn't really be worth bothering for doubles except for one very
6484 // important value, which does happen to match: 0.0. So make sure we don't do
6486 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6489 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6490 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6491 VMovVT
, false, VMOVModImm
);
6492 if (NewVal
!= SDValue()) {
6494 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6497 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6499 // It's a float: cast and extract a vector element.
6500 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6502 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6503 DAG
.getConstant(0, DL
, MVT::i32
));
6506 // Finally, try a VMVN.i32
6507 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6509 if (NewVal
!= SDValue()) {
6511 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6514 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6516 // It's a float: cast and extract a vector element.
6517 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6519 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6520 DAG
.getConstant(0, DL
, MVT::i32
));
6526 // check if an VEXT instruction can handle the shuffle mask when the
6527 // vector sources of the shuffle are the same.
6528 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6529 unsigned NumElts
= VT
.getVectorNumElements();
6531 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6537 // If this is a VEXT shuffle, the immediate value is the index of the first
6538 // element. The other shuffle indices must be the successive elements after
6540 unsigned ExpectedElt
= Imm
;
6541 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6542 // Increment the expected index. If it wraps around, just follow it
6543 // back to index zero and keep going.
6545 if (ExpectedElt
== NumElts
)
6548 if (M
[i
] < 0) continue; // ignore UNDEF indices
6549 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6556 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6557 bool &ReverseVEXT
, unsigned &Imm
) {
6558 unsigned NumElts
= VT
.getVectorNumElements();
6559 ReverseVEXT
= false;
6561 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6567 // If this is a VEXT shuffle, the immediate value is the index of the first
6568 // element. The other shuffle indices must be the successive elements after
6570 unsigned ExpectedElt
= Imm
;
6571 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6572 // Increment the expected index. If it wraps around, it may still be
6573 // a VEXT but the source vectors must be swapped.
6575 if (ExpectedElt
== NumElts
* 2) {
6580 if (M
[i
] < 0) continue; // ignore UNDEF indices
6581 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6585 // Adjust the index value if the source operands will be swapped.
6592 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6593 /// instruction with the specified blocksize. (The order of the elements
6594 /// within each block of the vector is reversed.)
6595 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6596 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6597 "Only possible block sizes for VREV are: 16, 32, 64");
6599 unsigned EltSz
= VT
.getScalarSizeInBits();
6603 unsigned NumElts
= VT
.getVectorNumElements();
6604 unsigned BlockElts
= M
[0] + 1;
6605 // If the first shuffle index is UNDEF, be optimistic.
6607 BlockElts
= BlockSize
/ EltSz
;
6609 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6612 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6613 if (M
[i
] < 0) continue; // ignore UNDEF indices
6614 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6621 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6622 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6623 // range, then 0 is placed into the resulting vector. So pretty much any mask
6624 // of 8 elements can work here.
6625 return VT
== MVT::v8i8
&& M
.size() == 8;
6628 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6630 if (Mask
.size() == Elements
* 2)
6631 return Index
/ Elements
;
6632 return Mask
[Index
] == 0 ? 0 : 1;
6635 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6636 // checking that pairs of elements in the shuffle mask represent the same index
6637 // in each vector, incrementing the expected index by 2 at each step.
6638 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6639 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6641 // WhichResult gives the offset for each element in the mask based on which
6642 // of the two results it belongs to.
6644 // The transpose can be represented either as:
6645 // result1 = shufflevector v1, v2, result1_shuffle_mask
6646 // result2 = shufflevector v1, v2, result2_shuffle_mask
6647 // where v1/v2 and the shuffle masks have the same number of elements
6648 // (here WhichResult (see below) indicates which result is being checked)
6651 // results = shufflevector v1, v2, shuffle_mask
6652 // where both results are returned in one vector and the shuffle mask has twice
6653 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6654 // want to check the low half and high half of the shuffle mask as if it were
6656 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6657 unsigned EltSz
= VT
.getScalarSizeInBits();
6661 unsigned NumElts
= VT
.getVectorNumElements();
6662 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6665 // If the mask is twice as long as the input vector then we need to check the
6666 // upper and lower parts of the mask with a matching value for WhichResult
6667 // FIXME: A mask with only even values will be rejected in case the first
6668 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6669 // M[0] is used to determine WhichResult
6670 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6671 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6672 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6673 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6674 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6679 if (M
.size() == NumElts
*2)
6685 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6686 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6687 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6688 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6689 unsigned EltSz
= VT
.getScalarSizeInBits();
6693 unsigned NumElts
= VT
.getVectorNumElements();
6694 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6697 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6698 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6699 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6700 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6701 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6706 if (M
.size() == NumElts
*2)
6712 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6713 // that the mask elements are either all even and in steps of size 2 or all odd
6714 // and in steps of size 2.
6715 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6716 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6718 // Requires similar checks to that of isVTRNMask with
6719 // respect the how results are returned.
6720 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6721 unsigned EltSz
= VT
.getScalarSizeInBits();
6725 unsigned NumElts
= VT
.getVectorNumElements();
6726 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6729 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6730 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6731 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6732 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6737 if (M
.size() == NumElts
*2)
6740 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6741 if (VT
.is64BitVector() && EltSz
== 32)
6747 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6748 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6749 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6750 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6751 unsigned EltSz
= VT
.getScalarSizeInBits();
6755 unsigned NumElts
= VT
.getVectorNumElements();
6756 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6759 unsigned Half
= NumElts
/ 2;
6760 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6761 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6762 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6763 unsigned Idx
= WhichResult
;
6764 for (unsigned k
= 0; k
< Half
; ++k
) {
6765 int MIdx
= M
[i
+ j
+ k
];
6766 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6773 if (M
.size() == NumElts
*2)
6776 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6777 if (VT
.is64BitVector() && EltSz
== 32)
6783 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6784 // that pairs of elements of the shufflemask represent the same index in each
6785 // vector incrementing sequentially through the vectors.
6786 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6787 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6789 // Requires similar checks to that of isVTRNMask with respect the how results
6791 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6792 unsigned EltSz
= VT
.getScalarSizeInBits();
6796 unsigned NumElts
= VT
.getVectorNumElements();
6797 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6800 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6801 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6802 unsigned Idx
= WhichResult
* NumElts
/ 2;
6803 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6804 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6805 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6811 if (M
.size() == NumElts
*2)
6814 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6815 if (VT
.is64BitVector() && EltSz
== 32)
6821 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6822 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6823 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6824 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6825 unsigned EltSz
= VT
.getScalarSizeInBits();
6829 unsigned NumElts
= VT
.getVectorNumElements();
6830 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6833 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6834 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6835 unsigned Idx
= WhichResult
* NumElts
/ 2;
6836 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6837 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6838 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6844 if (M
.size() == NumElts
*2)
6847 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6848 if (VT
.is64BitVector() && EltSz
== 32)
6854 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6855 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6856 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6857 unsigned &WhichResult
,
6860 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6861 return ARMISD::VTRN
;
6862 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6863 return ARMISD::VUZP
;
6864 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6865 return ARMISD::VZIP
;
6868 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6869 return ARMISD::VTRN
;
6870 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6871 return ARMISD::VUZP
;
6872 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6873 return ARMISD::VZIP
;
6878 /// \return true if this is a reverse operation on an vector.
6879 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6880 unsigned NumElts
= VT
.getVectorNumElements();
6881 // Make sure the mask has the right size.
6882 if (NumElts
!= M
.size())
6885 // Look for <15, ..., 3, -1, 1, 0>.
6886 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6887 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6893 // If N is an integer constant that can be moved into a register in one
6894 // instruction, return an SDValue of such a constant (will become a MOV
6895 // instruction). Otherwise return null.
6896 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6897 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6899 if (!isa
<ConstantSDNode
>(N
))
6901 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6903 if (ST
->isThumb1Only()) {
6904 if (Val
<= 255 || ~Val
<= 255)
6905 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6907 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6908 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6913 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6914 const ARMSubtarget
*ST
) {
6916 EVT VT
= Op
.getValueType();
6918 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6920 unsigned NumElts
= VT
.getVectorNumElements();
6922 unsigned BitsPerBool
;
6926 } else if (NumElts
== 8) {
6929 } else if (NumElts
== 16) {
6935 // First create base with bits set where known
6936 unsigned Bits32
= 0;
6937 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6938 SDValue V
= Op
.getOperand(i
);
6939 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6941 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6943 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6946 // Add in unknown nodes
6947 // FIXME: Handle splats of the same value better.
6948 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6949 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6950 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6951 SDValue V
= Op
.getOperand(i
);
6952 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6954 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6955 DAG
.getConstant(i
, dl
, MVT::i32
));
6961 // If this is a case we can't handle, return null and let the default
6962 // expansion code take care of it.
6963 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6964 const ARMSubtarget
*ST
) const {
6965 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6967 EVT VT
= Op
.getValueType();
6969 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6970 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6972 APInt SplatBits
, SplatUndef
;
6973 unsigned SplatBitSize
;
6975 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6976 if (SplatUndef
.isAllOnesValue())
6977 return DAG
.getUNDEF(VT
);
6979 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6980 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6981 // Check if an immediate VMOV works.
6983 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6984 SplatUndef
.getZExtValue(), SplatBitSize
,
6985 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6988 if (Val
.getNode()) {
6989 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6990 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6993 // Try an immediate VMVN.
6994 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6995 Val
= isVMOVModifiedImm(
6996 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6997 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6998 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6999 if (Val
.getNode()) {
7000 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7001 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7004 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7005 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7006 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7008 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7009 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7015 // Scan through the operands to see if only one value is used.
7017 // As an optimisation, even if more than one value is used it may be more
7018 // profitable to splat with one value then change some lanes.
7020 // Heuristically we decide to do this if the vector has a "dominant" value,
7021 // defined as splatted to more than half of the lanes.
7022 unsigned NumElts
= VT
.getVectorNumElements();
7023 bool isOnlyLowElement
= true;
7024 bool usesOnlyOneValue
= true;
7025 bool hasDominantValue
= false;
7026 bool isConstant
= true;
7028 // Map of the number of times a particular SDValue appears in the
7030 DenseMap
<SDValue
, unsigned> ValueCounts
;
7032 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7033 SDValue V
= Op
.getOperand(i
);
7037 isOnlyLowElement
= false;
7038 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7041 ValueCounts
.insert(std::make_pair(V
, 0));
7042 unsigned &Count
= ValueCounts
[V
];
7044 // Is this value dominant? (takes up more than half of the lanes)
7045 if (++Count
> (NumElts
/ 2)) {
7046 hasDominantValue
= true;
7050 if (ValueCounts
.size() != 1)
7051 usesOnlyOneValue
= false;
7052 if (!Value
.getNode() && !ValueCounts
.empty())
7053 Value
= ValueCounts
.begin()->first
;
7055 if (ValueCounts
.empty())
7056 return DAG
.getUNDEF(VT
);
7058 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7059 // Keep going if we are hitting this case.
7060 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7061 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7063 unsigned EltSize
= VT
.getScalarSizeInBits();
7065 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7066 // i32 and try again.
7067 if (hasDominantValue
&& EltSize
<= 32) {
7071 // If we are VDUPing a value that comes directly from a vector, that will
7072 // cause an unnecessary move to and from a GPR, where instead we could
7073 // just use VDUPLANE. We can only do this if the lane being extracted
7074 // is at a constant index, as the VDUP from lane instructions only have
7075 // constant-index forms.
7076 ConstantSDNode
*constIndex
;
7077 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7078 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7079 // We need to create a new undef vector to use for the VDUPLANE if the
7080 // size of the vector from which we get the value is different than the
7081 // size of the vector that we need to create. We will insert the element
7082 // such that the register coalescer will remove unnecessary copies.
7083 if (VT
!= Value
->getOperand(0).getValueType()) {
7084 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7085 VT
.getVectorNumElements();
7086 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7087 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7088 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7089 DAG
.getConstant(index
, dl
, MVT::i32
));
7091 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7092 Value
->getOperand(0), Value
->getOperand(1));
7094 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7096 if (!usesOnlyOneValue
) {
7097 // The dominant value was splatted as 'N', but we now have to insert
7098 // all differing elements.
7099 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7100 if (Op
.getOperand(I
) == Value
)
7102 SmallVector
<SDValue
, 3> Ops
;
7104 Ops
.push_back(Op
.getOperand(I
));
7105 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7106 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7111 if (VT
.getVectorElementType().isFloatingPoint()) {
7112 SmallVector
<SDValue
, 8> Ops
;
7113 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7114 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7115 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7116 for (unsigned i
= 0; i
< NumElts
; ++i
)
7117 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7119 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7120 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7121 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7123 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7125 if (usesOnlyOneValue
) {
7126 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7127 if (isConstant
&& Val
.getNode())
7128 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7132 // If all elements are constants and the case above didn't get hit, fall back
7133 // to the default expansion, which will generate a load from the constant
7138 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7140 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7141 if (shuffle
!= SDValue())
7145 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7146 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7147 // into two 64-bit vectors; we might discover a better way to lower it.
7148 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7149 EVT ExtVT
= VT
.getVectorElementType();
7150 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7152 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7153 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7154 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7155 SDValue Upper
= DAG
.getBuildVector(
7156 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7157 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7158 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7160 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7163 // Vectors with 32- or 64-bit elements can be built by directly assigning
7164 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7165 // will be legalized.
7166 if (EltSize
>= 32) {
7167 // Do the expansion with floating-point types, since that is what the VFP
7168 // registers are defined to use, and since i64 is not legal.
7169 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7170 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7171 SmallVector
<SDValue
, 8> Ops
;
7172 for (unsigned i
= 0; i
< NumElts
; ++i
)
7173 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7174 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7175 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7178 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7179 // know the default expansion would otherwise fall back on something even
7180 // worse. For a vector with one or two non-undef values, that's
7181 // scalar_to_vector for the elements followed by a shuffle (provided the
7182 // shuffle is valid for the target) and materialization element by element
7183 // on the stack followed by a load for everything else.
7184 if (!isConstant
&& !usesOnlyOneValue
) {
7185 SDValue Vec
= DAG
.getUNDEF(VT
);
7186 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7187 SDValue V
= Op
.getOperand(i
);
7190 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7191 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7199 // Gather data to see if the operation can be modelled as a
7200 // shuffle in combination with VEXTs.
7201 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7202 SelectionDAG
&DAG
) const {
7203 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7205 EVT VT
= Op
.getValueType();
7206 unsigned NumElts
= VT
.getVectorNumElements();
7208 struct ShuffleSourceInfo
{
7210 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7211 unsigned MaxElt
= 0;
7213 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7214 // be compatible with the shuffle we intend to construct. As a result
7215 // ShuffleVec will be some sliding window into the original Vec.
7218 // Code should guarantee that element i in Vec starts at element "WindowBase
7219 // + i * WindowScale in ShuffleVec".
7221 int WindowScale
= 1;
7223 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7225 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7228 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7230 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7231 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7232 SDValue V
= Op
.getOperand(i
);
7235 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7236 // A shuffle can only come from building a vector from various
7237 // elements of other vectors.
7239 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7240 // Furthermore, shuffles require a constant mask, whereas extractelts
7241 // accept variable indices.
7245 // Add this element source to the list if it's not already there.
7246 SDValue SourceVec
= V
.getOperand(0);
7247 auto Source
= llvm::find(Sources
, SourceVec
);
7248 if (Source
== Sources
.end())
7249 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7251 // Update the minimum and maximum lane number seen.
7252 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7253 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7254 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7257 // Currently only do something sane when at most two source vectors
7259 if (Sources
.size() > 2)
7262 // Find out the smallest element size among result and two sources, and use
7263 // it as element size to build the shuffle_vector.
7264 EVT SmallestEltTy
= VT
.getVectorElementType();
7265 for (auto &Source
: Sources
) {
7266 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7267 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7268 SmallestEltTy
= SrcEltTy
;
7270 unsigned ResMultiplier
=
7271 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7272 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7273 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7275 // If the source vector is too wide or too narrow, we may nevertheless be able
7276 // to construct a compatible shuffle either by concatenating it with UNDEF or
7277 // extracting a suitable range of elements.
7278 for (auto &Src
: Sources
) {
7279 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7281 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7284 // This stage of the search produces a source with the same element type as
7285 // the original, but with a total width matching the BUILD_VECTOR output.
7286 EVT EltVT
= SrcVT
.getVectorElementType();
7287 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7288 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7290 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7291 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7293 // We can pad out the smaller vector for free, so if it's part of a
7296 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7297 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7301 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7304 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7305 // Span too large for a VEXT to cope
7309 if (Src
.MinElt
>= NumSrcElts
) {
7310 // The extraction can just take the second half
7312 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7313 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7314 Src
.WindowBase
= -NumSrcElts
;
7315 } else if (Src
.MaxElt
< NumSrcElts
) {
7316 // The extraction can just take the first half
7318 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7319 DAG
.getConstant(0, dl
, MVT::i32
));
7321 // An actual VEXT is needed
7323 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7324 DAG
.getConstant(0, dl
, MVT::i32
));
7326 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7327 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7329 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7331 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7332 Src
.WindowBase
= -Src
.MinElt
;
7336 // Another possible incompatibility occurs from the vector element types. We
7337 // can fix this by bitcasting the source vectors to the same type we intend
7339 for (auto &Src
: Sources
) {
7340 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7341 if (SrcEltTy
== SmallestEltTy
)
7343 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7344 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7345 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7346 Src
.WindowBase
*= Src
.WindowScale
;
7349 // Final sanity check before we try to actually produce a shuffle.
7350 LLVM_DEBUG(for (auto Src
7352 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7354 // The stars all align, our next step is to produce the mask for the shuffle.
7355 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7356 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7357 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7358 SDValue Entry
= Op
.getOperand(i
);
7359 if (Entry
.isUndef())
7362 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7363 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7365 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7366 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7368 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7369 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7370 VT
.getScalarSizeInBits());
7371 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7373 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7374 // starting at the appropriate offset.
7375 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7377 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7378 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7379 for (int j
= 0; j
< LanesDefined
; ++j
)
7380 LaneMask
[j
] = ExtractBase
+ j
;
7384 // We can't handle more than two sources. This should have already
7385 // been checked before this point.
7386 assert(Sources
.size() <= 2 && "Too many sources!");
7388 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7389 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7390 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7392 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7393 ShuffleOps
[1], Mask
, DAG
);
7396 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7399 enum ShuffleOpCodes
{
7400 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7409 OP_VUZPL
, // VUZP, left result
7410 OP_VUZPR
, // VUZP, right result
7411 OP_VZIPL
, // VZIP, left result
7412 OP_VZIPR
, // VZIP, right result
7413 OP_VTRNL
, // VTRN, left result
7414 OP_VTRNR
// VTRN, right result
7417 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7418 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7431 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7432 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7433 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7434 /// are assumed to be legal.
7435 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7436 if (VT
.getVectorNumElements() == 4 &&
7437 (VT
.is128BitVector() || VT
.is64BitVector())) {
7438 unsigned PFIndexes
[4];
7439 for (unsigned i
= 0; i
!= 4; ++i
) {
7443 PFIndexes
[i
] = M
[i
];
7446 // Compute the index in the perfect shuffle table.
7447 unsigned PFTableIndex
=
7448 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7449 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7450 unsigned Cost
= (PFEntry
>> 30);
7452 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7456 bool ReverseVEXT
, isV_UNDEF
;
7457 unsigned Imm
, WhichResult
;
7459 unsigned EltSize
= VT
.getScalarSizeInBits();
7460 if (EltSize
>= 32 ||
7461 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7462 isVREVMask(M
, VT
, 64) ||
7463 isVREVMask(M
, VT
, 32) ||
7464 isVREVMask(M
, VT
, 16))
7466 else if (Subtarget
->hasNEON() &&
7467 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7468 isVTBLMask(M
, VT
) ||
7469 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7471 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7472 isReverseMask(M
, VT
))
7478 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7479 /// the specified operations to build the shuffle.
7480 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7481 SDValue RHS
, SelectionDAG
&DAG
,
7483 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7484 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7485 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7487 if (OpNum
== OP_COPY
) {
7488 if (LHSID
== (1*9+2)*9+3) return LHS
;
7489 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7493 SDValue OpLHS
, OpRHS
;
7494 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7495 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7496 EVT VT
= OpLHS
.getValueType();
7499 default: llvm_unreachable("Unknown shuffle opcode!");
7501 // VREV divides the vector in half and swaps within the half.
7502 if (VT
.getVectorElementType() == MVT::i32
||
7503 VT
.getVectorElementType() == MVT::f32
)
7504 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7505 // vrev <4 x i16> -> VREV32
7506 if (VT
.getVectorElementType() == MVT::i16
)
7507 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7508 // vrev <4 x i8> -> VREV16
7509 assert(VT
.getVectorElementType() == MVT::i8
);
7510 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7515 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7516 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7520 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7522 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7525 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7526 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7529 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7530 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7533 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7534 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7538 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7539 ArrayRef
<int> ShuffleMask
,
7540 SelectionDAG
&DAG
) {
7541 // Check to see if we can use the VTBL instruction.
7542 SDValue V1
= Op
.getOperand(0);
7543 SDValue V2
= Op
.getOperand(1);
7546 SmallVector
<SDValue
, 8> VTBLMask
;
7547 for (ArrayRef
<int>::iterator
7548 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7549 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7551 if (V2
.getNode()->isUndef())
7552 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7553 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7555 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7556 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7559 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7560 SelectionDAG
&DAG
) {
7562 SDValue OpLHS
= Op
.getOperand(0);
7563 EVT VT
= OpLHS
.getValueType();
7565 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7566 "Expect an v8i16/v16i8 type");
7567 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7568 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7569 // extract the first 8 bytes into the top double word and the last 8 bytes
7570 // into the bottom double word. The v8i16 case is similar.
7571 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7572 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7573 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7576 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7577 switch (VT
.getSimpleVT().SimpleTy
) {
7585 llvm_unreachable("Unexpected vector predicate type");
7589 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7590 SelectionDAG
&DAG
) {
7591 // Converting from boolean predicates to integers involves creating a vector
7592 // of all ones or all zeroes and selecting the lanes based upon the real
7595 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7596 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7599 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7600 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7602 // Get full vector type from predicate type
7603 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7606 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7607 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7608 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7609 // since we know in hardware the sizes are really the same.
7610 if (VT
!= MVT::v16i1
)
7611 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7615 // Select either all ones or zeroes depending upon the real predicate bits.
7616 SDValue PredAsVector
=
7617 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7619 // Recast our new predicate-as-integer v16i8 vector into something
7620 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7621 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7624 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7625 const ARMSubtarget
*ST
) {
7626 EVT VT
= Op
.getValueType();
7627 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7628 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7630 assert(ST
->hasMVEIntegerOps() &&
7631 "No support for vector shuffle of boolean predicates");
7633 SDValue V1
= Op
.getOperand(0);
7635 if (isReverseMask(ShuffleMask
, VT
)) {
7636 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7637 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7638 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7639 DAG
.getConstant(16, dl
, MVT::i32
));
7640 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7643 // Until we can come up with optimised cases for every single vector
7644 // shuffle in existence we have chosen the least painful strategy. This is
7645 // to essentially promote the boolean predicate to a 8-bit integer, where
7646 // each predicate represents a byte. Then we fall back on a normal integer
7647 // vector shuffle and convert the result back into a predicate vector. In
7648 // many cases the generated code might be even better than scalar code
7649 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7650 // fields in a register into 8 other arbitrary 2-bit fields!
7651 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7652 EVT NewVT
= PredAsVector
.getValueType();
7655 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7656 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7658 // Now return the result of comparing the shuffled vector with zero,
7659 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7660 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7661 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7664 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7665 const ARMSubtarget
*ST
) {
7666 SDValue V1
= Op
.getOperand(0);
7667 SDValue V2
= Op
.getOperand(1);
7669 EVT VT
= Op
.getValueType();
7670 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7671 unsigned EltSize
= VT
.getScalarSizeInBits();
7673 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7674 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7676 // Convert shuffles that are directly supported on NEON to target-specific
7677 // DAG nodes, instead of keeping them as shuffles and matching them again
7678 // during code selection. This is more efficient and avoids the possibility
7679 // of inconsistencies between legalization and selection.
7680 // FIXME: floating-point vectors should be canonicalized to integer vectors
7681 // of the same time so that they get CSEd properly.
7682 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7684 if (EltSize
<= 32) {
7685 if (SVN
->isSplat()) {
7686 int Lane
= SVN
->getSplatIndex();
7687 // If this is undef splat, generate it via "just" vdup, if possible.
7688 if (Lane
== -1) Lane
= 0;
7690 // Test if V1 is a SCALAR_TO_VECTOR.
7691 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7692 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7694 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7695 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7697 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7698 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7699 bool IsScalarToVector
= true;
7700 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7701 if (!V1
.getOperand(i
).isUndef()) {
7702 IsScalarToVector
= false;
7705 if (IsScalarToVector
)
7706 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7708 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7709 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7712 bool ReverseVEXT
= false;
7714 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7717 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7718 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7721 if (isVREVMask(ShuffleMask
, VT
, 64))
7722 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7723 if (isVREVMask(ShuffleMask
, VT
, 32))
7724 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7725 if (isVREVMask(ShuffleMask
, VT
, 16))
7726 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7728 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7729 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7730 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7733 // Check for Neon shuffles that modify both input vectors in place.
7734 // If both results are used, i.e., if there are two shuffles with the same
7735 // source operands and with masks corresponding to both results of one of
7736 // these operations, DAG memoization will ensure that a single node is
7737 // used for both shuffles.
7738 unsigned WhichResult
= 0;
7739 bool isV_UNDEF
= false;
7740 if (ST
->hasNEON()) {
7741 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7742 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7745 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7746 .getValue(WhichResult
);
7750 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7751 // shuffles that produce a result larger than their operands with:
7752 // shuffle(concat(v1, undef), concat(v2, undef))
7754 // shuffle(concat(v1, v2), undef)
7755 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7757 // This is useful in the general case, but there are special cases where
7758 // native shuffles produce larger results: the two-result ops.
7760 // Look through the concat when lowering them:
7761 // shuffle(concat(v1, v2), undef)
7763 // concat(VZIP(v1, v2):0, :1)
7765 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7766 SDValue SubV1
= V1
->getOperand(0);
7767 SDValue SubV2
= V1
->getOperand(1);
7768 EVT SubVT
= SubV1
.getValueType();
7770 // We expect these to have been canonicalized to -1.
7771 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7772 return i
< (int)VT
.getVectorNumElements();
7773 }) && "Unexpected shuffle index into UNDEF operand!");
7775 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7776 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7779 assert((WhichResult
== 0) &&
7780 "In-place shuffle of concat can only have one result!");
7781 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7783 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7789 // If the shuffle is not directly supported and it has 4 elements, use
7790 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7791 unsigned NumElts
= VT
.getVectorNumElements();
7793 unsigned PFIndexes
[4];
7794 for (unsigned i
= 0; i
!= 4; ++i
) {
7795 if (ShuffleMask
[i
] < 0)
7798 PFIndexes
[i
] = ShuffleMask
[i
];
7801 // Compute the index in the perfect shuffle table.
7802 unsigned PFTableIndex
=
7803 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7804 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7805 unsigned Cost
= (PFEntry
>> 30);
7809 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7810 else if (isLegalMVEShuffleOp(PFEntry
)) {
7811 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7812 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7813 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7814 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7815 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7816 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7821 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7822 if (EltSize
>= 32) {
7823 // Do the expansion with floating-point types, since that is what the VFP
7824 // registers are defined to use, and since i64 is not legal.
7825 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7826 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7827 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7828 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7829 SmallVector
<SDValue
, 8> Ops
;
7830 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7831 if (ShuffleMask
[i
] < 0)
7832 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7834 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7835 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7836 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7839 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7840 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7843 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7844 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7846 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7847 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7853 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7854 const ARMSubtarget
*ST
) {
7855 EVT VecVT
= Op
.getOperand(0).getValueType();
7858 assert(ST
->hasMVEIntegerOps() &&
7859 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7862 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7863 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7864 unsigned LaneWidth
=
7865 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7866 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7867 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7868 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7869 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7870 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7871 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7874 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7875 SelectionDAG
&DAG
) const {
7876 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7877 SDValue Lane
= Op
.getOperand(2);
7878 if (!isa
<ConstantSDNode
>(Lane
))
7881 SDValue Elt
= Op
.getOperand(1);
7882 EVT EltVT
= Elt
.getValueType();
7884 if (Subtarget
->hasMVEIntegerOps() &&
7885 Op
.getValueType().getScalarSizeInBits() == 1)
7886 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7888 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7889 TargetLowering::TypePromoteFloat
) {
7890 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7891 // but the type system will try to do that if we don't intervene.
7892 // Reinterpret any such vector-element insertion as one with the
7893 // corresponding integer types.
7897 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7898 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7899 TargetLowering::TypePromoteFloat
);
7901 SDValue VecIn
= Op
.getOperand(0);
7902 EVT VecVT
= VecIn
.getValueType();
7903 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7904 VecVT
.getVectorNumElements());
7906 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7907 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7908 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7909 IVecIn
, IElt
, Lane
);
7910 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7916 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7917 const ARMSubtarget
*ST
) {
7918 EVT VecVT
= Op
.getOperand(0).getValueType();
7921 assert(ST
->hasMVEIntegerOps() &&
7922 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7925 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7926 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7927 unsigned LaneWidth
=
7928 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7929 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7930 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7934 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7935 const ARMSubtarget
*ST
) {
7936 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7937 SDValue Lane
= Op
.getOperand(1);
7938 if (!isa
<ConstantSDNode
>(Lane
))
7941 SDValue Vec
= Op
.getOperand(0);
7942 EVT VT
= Vec
.getValueType();
7944 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7945 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7947 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7949 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7955 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7956 const ARMSubtarget
*ST
) {
7957 SDValue V1
= Op
.getOperand(0);
7958 SDValue V2
= Op
.getOperand(1);
7960 EVT VT
= Op
.getValueType();
7961 EVT Op1VT
= V1
.getValueType();
7962 EVT Op2VT
= V2
.getValueType();
7963 unsigned NumElts
= VT
.getVectorNumElements();
7965 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7966 assert(VT
.getScalarSizeInBits() == 1 &&
7967 "Unexpected custom CONCAT_VECTORS lowering");
7968 assert(ST
->hasMVEIntegerOps() &&
7969 "CONCAT_VECTORS lowering only supported for MVE");
7971 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7972 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7974 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7975 // promoted to v8i16, etc.
7977 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7979 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7980 // to be the right size for the destination. For example, if Op1 is v4i1 then
7981 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7982 // which when promoted is v8i16. That means each i32 element from Op1 needs
7983 // truncating to i16 and inserting in the result.
7984 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7985 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7986 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7987 EVT NewVT
= NewV
.getValueType();
7988 EVT ConcatVT
= ConVec
.getValueType();
7989 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7990 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7991 DAG
.getIntPtrConstant(i
, dl
));
7992 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7993 DAG
.getConstant(j
, dl
, MVT::i32
));
7998 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7999 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8001 // Now return the result of comparing the subvector with zero,
8002 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8003 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8004 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8007 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8008 const ARMSubtarget
*ST
) {
8009 EVT VT
= Op
->getValueType(0);
8010 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8011 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8013 // The only time a CONCAT_VECTORS operation can have legal types is when
8014 // two 64-bit vectors are concatenated to a 128-bit vector.
8015 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8016 "unexpected CONCAT_VECTORS");
8018 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8019 SDValue Op0
= Op
.getOperand(0);
8020 SDValue Op1
= Op
.getOperand(1);
8022 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8023 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8024 DAG
.getIntPtrConstant(0, dl
));
8026 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8027 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8028 DAG
.getIntPtrConstant(1, dl
));
8029 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8032 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8033 const ARMSubtarget
*ST
) {
8034 SDValue V1
= Op
.getOperand(0);
8035 SDValue V2
= Op
.getOperand(1);
8037 EVT VT
= Op
.getValueType();
8038 EVT Op1VT
= V1
.getValueType();
8039 unsigned NumElts
= VT
.getVectorNumElements();
8040 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8042 assert(VT
.getScalarSizeInBits() == 1 &&
8043 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8044 assert(ST
->hasMVEIntegerOps() &&
8045 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8047 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8049 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8050 // promoted to v8i16, etc.
8052 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8054 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8055 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8056 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8057 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8058 DAG
.getIntPtrConstant(i
, dl
));
8059 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8060 DAG
.getConstant(j
, dl
, MVT::i32
));
8063 // Now return the result of comparing the subvector with zero,
8064 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8065 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8066 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8069 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8070 /// element has been zero/sign-extended, depending on the isSigned parameter,
8071 /// from an integer type half its size.
8072 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8074 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8075 EVT VT
= N
->getValueType(0);
8076 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8077 SDNode
*BVN
= N
->getOperand(0).getNode();
8078 if (BVN
->getValueType(0) != MVT::v4i32
||
8079 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8081 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8082 unsigned HiElt
= 1 - LoElt
;
8083 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8084 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8085 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8086 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8087 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8090 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8091 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8094 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8100 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8103 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8104 SDNode
*Elt
= N
->getOperand(i
).getNode();
8105 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8106 unsigned EltSize
= VT
.getScalarSizeInBits();
8107 unsigned HalfSize
= EltSize
/ 2;
8109 if (!isIntN(HalfSize
, C
->getSExtValue()))
8112 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8123 /// isSignExtended - Check if a node is a vector value that is sign-extended
8124 /// or a constant BUILD_VECTOR with sign-extended elements.
8125 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8126 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8128 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8133 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8134 /// or a constant BUILD_VECTOR with zero-extended elements.
8135 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8136 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8138 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8143 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8144 if (OrigVT
.getSizeInBits() >= 64)
8147 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8149 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8150 switch (OrigSimpleTy
) {
8151 default: llvm_unreachable("Unexpected Vector Type");
8160 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8161 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8162 /// We insert the required extension here to get the vector to fill a D register.
8163 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8166 unsigned ExtOpcode
) {
8167 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8168 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8169 // 64-bits we need to insert a new extension so that it will be 64-bits.
8170 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8171 if (OrigTy
.getSizeInBits() >= 64)
8174 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8175 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8177 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8180 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8181 /// does not do any sign/zero extension. If the original vector is less
8182 /// than 64 bits, an appropriate extension will be added after the load to
8183 /// reach a total size of 64 bits. We have to add the extension separately
8184 /// because ARM does not have a sign/zero extending load for vectors.
8185 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8186 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8188 // The load already has the right type.
8189 if (ExtendedTy
== LD
->getMemoryVT())
8190 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8191 LD
->getBasePtr(), LD
->getPointerInfo(),
8192 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8194 // We need to create a zextload/sextload. We cannot just create a load
8195 // followed by a zext/zext node because LowerMUL is also run during normal
8196 // operation legalization where we can't create illegal types.
8197 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8198 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8199 LD
->getMemoryVT(), LD
->getAlignment(),
8200 LD
->getMemOperand()->getFlags());
8203 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8204 /// extending load, or BUILD_VECTOR with extended elements, return the
8205 /// unextended value. The unextended vector should be 64 bits so that it can
8206 /// be used as an operand to a VMULL instruction. If the original vector size
8207 /// before extension is less than 64 bits we add a an extension to resize
8208 /// the vector to 64 bits.
8209 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8210 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8211 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8212 N
->getOperand(0)->getValueType(0),
8216 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8217 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8218 "Expected extending load");
8220 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8221 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8222 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8224 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8225 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8230 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8231 // have been legalized as a BITCAST from v4i32.
8232 if (N
->getOpcode() == ISD::BITCAST
) {
8233 SDNode
*BVN
= N
->getOperand(0).getNode();
8234 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8235 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8236 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8237 return DAG
.getBuildVector(
8238 MVT::v2i32
, SDLoc(N
),
8239 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8241 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8242 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8243 EVT VT
= N
->getValueType(0);
8244 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8245 unsigned NumElts
= VT
.getVectorNumElements();
8246 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8247 SmallVector
<SDValue
, 8> Ops
;
8249 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8250 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8251 const APInt
&CInt
= C
->getAPIntValue();
8252 // Element types smaller than 32 bits are not legal, so use i32 elements.
8253 // The values are implicitly truncated so sext vs. zext doesn't matter.
8254 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8256 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8259 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8260 unsigned Opcode
= N
->getOpcode();
8261 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8262 SDNode
*N0
= N
->getOperand(0).getNode();
8263 SDNode
*N1
= N
->getOperand(1).getNode();
8264 return N0
->hasOneUse() && N1
->hasOneUse() &&
8265 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8270 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8271 unsigned Opcode
= N
->getOpcode();
8272 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8273 SDNode
*N0
= N
->getOperand(0).getNode();
8274 SDNode
*N1
= N
->getOperand(1).getNode();
8275 return N0
->hasOneUse() && N1
->hasOneUse() &&
8276 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8281 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8282 // Multiplications are only custom-lowered for 128-bit vectors so that
8283 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8284 EVT VT
= Op
.getValueType();
8285 assert(VT
.is128BitVector() && VT
.isInteger() &&
8286 "unexpected type for custom-lowering ISD::MUL");
8287 SDNode
*N0
= Op
.getOperand(0).getNode();
8288 SDNode
*N1
= Op
.getOperand(1).getNode();
8289 unsigned NewOpc
= 0;
8291 bool isN0SExt
= isSignExtended(N0
, DAG
);
8292 bool isN1SExt
= isSignExtended(N1
, DAG
);
8293 if (isN0SExt
&& isN1SExt
)
8294 NewOpc
= ARMISD::VMULLs
;
8296 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8297 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8298 if (isN0ZExt
&& isN1ZExt
)
8299 NewOpc
= ARMISD::VMULLu
;
8300 else if (isN1SExt
|| isN1ZExt
) {
8301 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8302 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8303 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8304 NewOpc
= ARMISD::VMULLs
;
8306 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8307 NewOpc
= ARMISD::VMULLu
;
8309 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8311 NewOpc
= ARMISD::VMULLu
;
8317 if (VT
== MVT::v2i64
)
8318 // Fall through to expand this. It is not legal.
8321 // Other vector multiplications are legal.
8326 // Legalize to a VMULL instruction.
8329 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8331 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8332 assert(Op0
.getValueType().is64BitVector() &&
8333 Op1
.getValueType().is64BitVector() &&
8334 "unexpected types for extended operands to VMULL");
8335 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8338 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8339 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8346 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8347 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8348 EVT Op1VT
= Op1
.getValueType();
8349 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8350 DAG
.getNode(NewOpc
, DL
, VT
,
8351 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8352 DAG
.getNode(NewOpc
, DL
, VT
,
8353 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8356 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8357 SelectionDAG
&DAG
) {
8358 // TODO: Should this propagate fast-math-flags?
8361 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8362 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8363 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8364 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8365 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8366 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8367 // Get reciprocal estimate.
8368 // float4 recip = vrecpeq_f32(yf);
8369 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8370 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8372 // Because char has a smaller range than uchar, we can actually get away
8373 // without any newton steps. This requires that we use a weird bias
8374 // of 0xb000, however (again, this has been exhaustively tested).
8375 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8376 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8377 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8378 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8379 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8380 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8381 // Convert back to short.
8382 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8383 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8387 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8388 SelectionDAG
&DAG
) {
8389 // TODO: Should this propagate fast-math-flags?
8392 // Convert to float.
8393 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8394 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8395 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8396 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8397 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8398 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8400 // Use reciprocal estimate and one refinement step.
8401 // float4 recip = vrecpeq_f32(yf);
8402 // recip *= vrecpsq_f32(yf, recip);
8403 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8404 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8406 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8407 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8409 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8410 // Because short has a smaller range than ushort, we can actually get away
8411 // with only a single newton step. This requires that we use a weird bias
8412 // of 89, however (again, this has been exhaustively tested).
8413 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8414 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8415 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8416 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8417 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8418 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8419 // Convert back to integer and return.
8420 // return vmovn_s32(vcvt_s32_f32(result));
8421 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8422 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8426 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8427 const ARMSubtarget
*ST
) {
8428 EVT VT
= Op
.getValueType();
8429 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8430 "unexpected type for custom-lowering ISD::SDIV");
8433 SDValue N0
= Op
.getOperand(0);
8434 SDValue N1
= Op
.getOperand(1);
8437 if (VT
== MVT::v8i8
) {
8438 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8439 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8441 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8442 DAG
.getIntPtrConstant(4, dl
));
8443 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8444 DAG
.getIntPtrConstant(4, dl
));
8445 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8446 DAG
.getIntPtrConstant(0, dl
));
8447 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8448 DAG
.getIntPtrConstant(0, dl
));
8450 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8451 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8453 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8454 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8456 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8459 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8462 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8463 const ARMSubtarget
*ST
) {
8464 // TODO: Should this propagate fast-math-flags?
8465 EVT VT
= Op
.getValueType();
8466 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8467 "unexpected type for custom-lowering ISD::UDIV");
8470 SDValue N0
= Op
.getOperand(0);
8471 SDValue N1
= Op
.getOperand(1);
8474 if (VT
== MVT::v8i8
) {
8475 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8476 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8478 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8479 DAG
.getIntPtrConstant(4, dl
));
8480 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8481 DAG
.getIntPtrConstant(4, dl
));
8482 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8483 DAG
.getIntPtrConstant(0, dl
));
8484 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8485 DAG
.getIntPtrConstant(0, dl
));
8487 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8488 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8490 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8491 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8493 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8494 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8500 // v4i16 sdiv ... Convert to float.
8501 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8502 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8503 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8504 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8505 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8506 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8508 // Use reciprocal estimate and two refinement steps.
8509 // float4 recip = vrecpeq_f32(yf);
8510 // recip *= vrecpsq_f32(yf, recip);
8511 // recip *= vrecpsq_f32(yf, recip);
8512 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8513 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8515 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8516 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8518 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8519 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8520 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8522 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8523 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8524 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8525 // and that it will never cause us to return an answer too large).
8526 // float4 result = as_float4(as_int4(xf*recip) + 2);
8527 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8528 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8529 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8530 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8531 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8532 // Convert back to integer and return.
8533 // return vmovn_u32(vcvt_s32_f32(result));
8534 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8535 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8539 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8540 SDNode
*N
= Op
.getNode();
8541 EVT VT
= N
->getValueType(0);
8542 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8544 SDValue Carry
= Op
.getOperand(2);
8549 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8550 // This converts the boolean value carry into the carry flag.
8551 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8553 // Do the addition proper using the carry flag we wanted.
8554 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8555 Op
.getOperand(1), Carry
);
8557 // Now convert the carry flag into a boolean value.
8558 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8560 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8561 // have to invert the carry first.
8562 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8563 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8564 // This converts the boolean value carry into the carry flag.
8565 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8567 // Do the subtraction proper using the carry flag we wanted.
8568 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8569 Op
.getOperand(1), Carry
);
8571 // Now convert the carry flag into a boolean value.
8572 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8573 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8574 // by ISD::SUBCARRY, so compute 1 - C.
8575 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8576 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8579 // Return both values.
8580 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8583 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8584 assert(Subtarget
->isTargetDarwin());
8586 // For iOS, we want to call an alternative entry point: __sincos_stret,
8587 // return values are passed via sret.
8589 SDValue Arg
= Op
.getOperand(0);
8590 EVT ArgVT
= Arg
.getValueType();
8591 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8592 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8594 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8595 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8597 // Pair of floats / doubles used to pass the result.
8598 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8599 auto &DL
= DAG
.getDataLayout();
8602 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8604 if (ShouldUseSRet
) {
8605 // Create stack object for sret.
8606 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8607 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8608 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8609 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8613 Entry
.Ty
= RetTy
->getPointerTo();
8614 Entry
.IsSExt
= false;
8615 Entry
.IsZExt
= false;
8616 Entry
.IsSRet
= true;
8617 Args
.push_back(Entry
);
8618 RetTy
= Type::getVoidTy(*DAG
.getContext());
8624 Entry
.IsSExt
= false;
8625 Entry
.IsZExt
= false;
8626 Args
.push_back(Entry
);
8629 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8630 const char *LibcallName
= getLibcallName(LC
);
8631 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8632 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8634 TargetLowering::CallLoweringInfo
CLI(DAG
);
8636 .setChain(DAG
.getEntryNode())
8637 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8638 .setDiscardResult(ShouldUseSRet
);
8639 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8642 return CallResult
.first
;
8645 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8647 // Address of cos field.
8648 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8649 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8651 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8653 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8654 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8655 LoadSin
.getValue(0), LoadCos
.getValue(0));
8658 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8660 SDValue
&Chain
) const {
8661 EVT VT
= Op
.getValueType();
8662 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8663 "unexpected type for custom lowering DIV");
8666 const auto &DL
= DAG
.getDataLayout();
8667 const auto &TLI
= DAG
.getTargetLoweringInfo();
8669 const char *Name
= nullptr;
8671 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8673 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8675 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8677 ARMTargetLowering::ArgListTy Args
;
8679 for (auto AI
: {1, 0}) {
8681 Arg
.Node
= Op
.getOperand(AI
);
8682 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8683 Args
.push_back(Arg
);
8686 CallLoweringInfo
CLI(DAG
);
8689 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8690 ES
, std::move(Args
));
8692 return LowerCallTo(CLI
).first
;
8695 // This is a code size optimisation: return the original SDIV node to
8696 // DAGCombiner when we don't want to expand SDIV into a sequence of
8697 // instructions, and an empty node otherwise which will cause the
8698 // SDIV to be expanded in DAGCombine.
8700 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8702 SmallVectorImpl
<SDNode
*> &Created
) const {
8703 // TODO: Support SREM
8704 if (N
->getOpcode() != ISD::SDIV
)
8707 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8708 const bool MinSize
= ST
.hasMinSize();
8709 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8710 : ST
.hasDivideInARMMode();
8712 // Don't touch vector types; rewriting this may lead to scalarizing
8714 if (N
->getOperand(0).getValueType().isVector())
8717 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8718 // hwdiv support for this to be really profitable.
8719 if (!(MinSize
&& HasDivide
))
8722 // ARM mode is a bit simpler than Thumb: we can handle large power
8723 // of 2 immediates with 1 mov instruction; no further checks required,
8724 // just return the sdiv node.
8726 return SDValue(N
, 0);
8728 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8729 // and thus lose the code size benefits of a MOVS that requires only 2.
8730 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8731 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8732 if (Divisor
.sgt(128))
8735 return SDValue(N
, 0);
8738 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8739 bool Signed
) const {
8740 assert(Op
.getValueType() == MVT::i32
&&
8741 "unexpected type for custom lowering DIV");
8744 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8745 DAG
.getEntryNode(), Op
.getOperand(1));
8747 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8750 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8752 SDValue Op
= N
->getOperand(1);
8753 if (N
->getValueType(0) == MVT::i32
)
8754 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8755 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8756 DAG
.getConstant(0, DL
, MVT::i32
));
8757 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8758 DAG
.getConstant(1, DL
, MVT::i32
));
8759 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8760 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8763 void ARMTargetLowering::ExpandDIV_Windows(
8764 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8765 SmallVectorImpl
<SDValue
> &Results
) const {
8766 const auto &DL
= DAG
.getDataLayout();
8767 const auto &TLI
= DAG
.getTargetLoweringInfo();
8769 assert(Op
.getValueType() == MVT::i64
&&
8770 "unexpected type for custom lowering DIV");
8773 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8775 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8777 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8778 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8779 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8780 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8782 Results
.push_back(Lower
);
8783 Results
.push_back(Upper
);
8786 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8787 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8788 // Acquire/Release load/store is not legal for targets without a dmb or
8789 // equivalent available.
8792 // Monotonic load/store is legal for all targets.
8796 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8797 SmallVectorImpl
<SDValue
> &Results
,
8799 const ARMSubtarget
*Subtarget
) {
8801 // Under Power Management extensions, the cycle-count is:
8802 // mrc p15, #0, <Rt>, c9, c13, #0
8803 SDValue Ops
[] = { N
->getOperand(0), // Chain
8804 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8805 DAG
.getConstant(15, DL
, MVT::i32
),
8806 DAG
.getConstant(0, DL
, MVT::i32
),
8807 DAG
.getConstant(9, DL
, MVT::i32
),
8808 DAG
.getConstant(13, DL
, MVT::i32
),
8809 DAG
.getConstant(0, DL
, MVT::i32
)
8812 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8813 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8814 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8815 DAG
.getConstant(0, DL
, MVT::i32
)));
8816 Results
.push_back(Cycles32
.getValue(1));
8819 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8820 SDLoc
dl(V
.getNode());
8821 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8822 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8823 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8825 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8827 std::swap (VLo
, VHi
);
8829 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8830 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8831 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8832 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8834 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8837 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8838 SmallVectorImpl
<SDValue
> & Results
,
8839 SelectionDAG
&DAG
) {
8840 assert(N
->getValueType(0) == MVT::i64
&&
8841 "AtomicCmpSwap on types less than 64 should be legal");
8842 SDValue Ops
[] = {N
->getOperand(1),
8843 createGPRPairNode(DAG
, N
->getOperand(2)),
8844 createGPRPairNode(DAG
, N
->getOperand(3)),
8846 SDNode
*CmpSwap
= DAG
.getMachineNode(
8847 ARM::CMP_SWAP_64
, SDLoc(N
),
8848 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8850 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8851 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8853 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8856 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8857 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8859 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8860 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8861 Results
.push_back(SDValue(CmpSwap
, 2));
8864 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8865 SelectionDAG
&DAG
) {
8866 const auto &TLI
= DAG
.getTargetLoweringInfo();
8868 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8869 "Custom lowering is MSVCRT specific!");
8872 SDValue Val
= Op
.getOperand(0);
8873 MVT Ty
= Val
->getSimpleValueType(0);
8874 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8875 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8876 TLI
.getPointerTy(DAG
.getDataLayout()));
8878 TargetLowering::ArgListTy Args
;
8879 TargetLowering::ArgListEntry Entry
;
8882 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8883 Entry
.IsZExt
= true;
8884 Args
.push_back(Entry
);
8886 Entry
.Node
= Exponent
;
8887 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8888 Entry
.IsZExt
= true;
8889 Args
.push_back(Entry
);
8891 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8893 // In the in-chain to the call is the entry node If we are emitting a
8894 // tailcall, the chain will be mutated if the node has a non-entry input
8896 SDValue InChain
= DAG
.getEntryNode();
8897 SDValue TCChain
= InChain
;
8899 const Function
&F
= DAG
.getMachineFunction().getFunction();
8900 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8901 F
.getReturnType() == LCRTy
;
8905 TargetLowering::CallLoweringInfo
CLI(DAG
);
8908 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8910 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8912 // Return the chain (the DAG root) if it is a tail call
8913 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8916 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8917 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8918 switch (Op
.getOpcode()) {
8919 default: llvm_unreachable("Don't know how to custom lower this!");
8920 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8921 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8922 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8923 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8924 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8925 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8926 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8927 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8928 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8929 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8930 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8931 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8932 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8933 case ISD::SINT_TO_FP
:
8934 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8935 case ISD::FP_TO_SINT
:
8936 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8937 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8938 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8939 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8940 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8941 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8942 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8943 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
8944 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8946 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8949 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8950 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8951 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8952 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8953 case ISD::SRL_PARTS
:
8954 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8956 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8957 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8958 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8959 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8960 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8961 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8962 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8963 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8964 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8965 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8966 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8967 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8968 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8970 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8971 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8972 return LowerSDIV(Op
, DAG
, Subtarget
);
8974 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8975 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8976 return LowerUDIV(Op
, DAG
, Subtarget
);
8978 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8981 return LowerSignedALUO(Op
, DAG
);
8984 return LowerUnsignedALUO(Op
, DAG
);
8985 case ISD::ATOMIC_LOAD
:
8986 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8987 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8989 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8990 case ISD::DYNAMIC_STACKALLOC
:
8991 if (Subtarget
->isTargetWindows())
8992 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8993 llvm_unreachable("Don't know how to custom lower this!");
8994 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8995 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8996 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8997 case ARMISD::WIN__DBZCHK
: return SDValue();
9001 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9002 SelectionDAG
&DAG
) {
9003 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9005 if (IntNo
== Intrinsic::arm_smlald
)
9006 Opc
= ARMISD::SMLALD
;
9007 else if (IntNo
== Intrinsic::arm_smlaldx
)
9008 Opc
= ARMISD::SMLALDX
;
9009 else if (IntNo
== Intrinsic::arm_smlsld
)
9010 Opc
= ARMISD::SMLSLD
;
9011 else if (IntNo
== Intrinsic::arm_smlsldx
)
9012 Opc
= ARMISD::SMLSLDX
;
9017 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9019 DAG
.getConstant(0, dl
, MVT::i32
));
9020 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9022 DAG
.getConstant(1, dl
, MVT::i32
));
9024 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9025 DAG
.getVTList(MVT::i32
, MVT::i32
),
9026 N
->getOperand(1), N
->getOperand(2),
9028 Results
.push_back(LongMul
.getValue(0));
9029 Results
.push_back(LongMul
.getValue(1));
9032 /// ReplaceNodeResults - Replace the results of node with an illegal result
9033 /// type with new values built out of custom code.
9034 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9035 SmallVectorImpl
<SDValue
> &Results
,
9036 SelectionDAG
&DAG
) const {
9038 switch (N
->getOpcode()) {
9040 llvm_unreachable("Don't know how to custom expand this!");
9041 case ISD::READ_REGISTER
:
9042 ExpandREAD_REGISTER(N
, Results
, DAG
);
9045 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9050 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9054 Res
= LowerREM(N
, DAG
);
9058 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9059 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9060 Results
.push_back(Res
.getValue(0));
9061 Results
.push_back(Res
.getValue(1));
9063 case ISD::READCYCLECOUNTER
:
9064 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9068 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9069 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9071 case ISD::ATOMIC_CMP_SWAP
:
9072 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9074 case ISD::INTRINSIC_WO_CHAIN
:
9075 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9077 lowerABS(N
, Results
, DAG
);
9082 Results
.push_back(Res
);
9085 //===----------------------------------------------------------------------===//
9086 // ARM Scheduler Hooks
9087 //===----------------------------------------------------------------------===//
9089 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9090 /// registers the function context.
9091 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9092 MachineBasicBlock
*MBB
,
9093 MachineBasicBlock
*DispatchBB
,
9095 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9096 "ROPI/RWPI not currently supported with SjLj");
9097 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9098 DebugLoc dl
= MI
.getDebugLoc();
9099 MachineFunction
*MF
= MBB
->getParent();
9100 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9101 MachineConstantPool
*MCP
= MF
->getConstantPool();
9102 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9103 const Function
&F
= MF
->getFunction();
9105 bool isThumb
= Subtarget
->isThumb();
9106 bool isThumb2
= Subtarget
->isThumb2();
9108 unsigned PCLabelId
= AFI
->createPICLabelUId();
9109 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9110 ARMConstantPoolValue
*CPV
=
9111 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9112 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9114 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9115 : &ARM::GPRRegClass
;
9117 // Grab constant pool and fixed stack memory operands.
9118 MachineMemOperand
*CPMMO
=
9119 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9120 MachineMemOperand::MOLoad
, 4, 4);
9122 MachineMemOperand
*FIMMOSt
=
9123 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9124 MachineMemOperand::MOStore
, 4, 4);
9126 // Load the address of the dispatch MBB into the jump buffer.
9128 // Incoming value: jbuf
9129 // ldr.n r5, LCPI1_1
9132 // str r5, [$jbuf, #+4] ; &jbuf[1]
9133 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9134 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9135 .addConstantPoolIndex(CPI
)
9136 .addMemOperand(CPMMO
)
9137 .add(predOps(ARMCC::AL
));
9138 // Set the low bit because of thumb mode.
9139 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9140 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9141 .addReg(NewVReg1
, RegState::Kill
)
9143 .add(predOps(ARMCC::AL
))
9145 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9146 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9147 .addReg(NewVReg2
, RegState::Kill
)
9149 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9150 .addReg(NewVReg3
, RegState::Kill
)
9152 .addImm(36) // &jbuf[1] :: pc
9153 .addMemOperand(FIMMOSt
)
9154 .add(predOps(ARMCC::AL
));
9155 } else if (isThumb
) {
9156 // Incoming value: jbuf
9157 // ldr.n r1, LCPI1_4
9161 // add r2, $jbuf, #+4 ; &jbuf[1]
9163 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9164 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9165 .addConstantPoolIndex(CPI
)
9166 .addMemOperand(CPMMO
)
9167 .add(predOps(ARMCC::AL
));
9168 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9169 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9170 .addReg(NewVReg1
, RegState::Kill
)
9172 // Set the low bit because of thumb mode.
9173 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9174 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9175 .addReg(ARM::CPSR
, RegState::Define
)
9177 .add(predOps(ARMCC::AL
));
9178 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9179 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9180 .addReg(ARM::CPSR
, RegState::Define
)
9181 .addReg(NewVReg2
, RegState::Kill
)
9182 .addReg(NewVReg3
, RegState::Kill
)
9183 .add(predOps(ARMCC::AL
));
9184 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9185 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9187 .addImm(36); // &jbuf[1] :: pc
9188 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9189 .addReg(NewVReg4
, RegState::Kill
)
9190 .addReg(NewVReg5
, RegState::Kill
)
9192 .addMemOperand(FIMMOSt
)
9193 .add(predOps(ARMCC::AL
));
9195 // Incoming value: jbuf
9198 // str r1, [$jbuf, #+4] ; &jbuf[1]
9199 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9200 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9201 .addConstantPoolIndex(CPI
)
9203 .addMemOperand(CPMMO
)
9204 .add(predOps(ARMCC::AL
));
9205 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9206 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9207 .addReg(NewVReg1
, RegState::Kill
)
9209 .add(predOps(ARMCC::AL
));
9210 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9211 .addReg(NewVReg2
, RegState::Kill
)
9213 .addImm(36) // &jbuf[1] :: pc
9214 .addMemOperand(FIMMOSt
)
9215 .add(predOps(ARMCC::AL
));
9219 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9220 MachineBasicBlock
*MBB
) const {
9221 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9222 DebugLoc dl
= MI
.getDebugLoc();
9223 MachineFunction
*MF
= MBB
->getParent();
9224 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9225 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9226 int FI
= MFI
.getFunctionContextIndex();
9228 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9229 : &ARM::GPRnopcRegClass
;
9231 // Get a mapping of the call site numbers to all of the landing pads they're
9233 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9234 unsigned MaxCSNum
= 0;
9235 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9237 if (!BB
->isEHPad()) continue;
9239 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9241 for (MachineBasicBlock::iterator
9242 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9243 if (!II
->isEHLabel()) continue;
9245 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9246 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9248 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9249 for (SmallVectorImpl
<unsigned>::iterator
9250 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9251 CSI
!= CSE
; ++CSI
) {
9252 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9253 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9259 // Get an ordered list of the machine basic blocks for the jump table.
9260 std::vector
<MachineBasicBlock
*> LPadList
;
9261 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9262 LPadList
.reserve(CallSiteNumToLPad
.size());
9263 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9264 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9265 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9266 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9267 LPadList
.push_back(*II
);
9268 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9272 assert(!LPadList
.empty() &&
9273 "No landing pad destinations for the dispatch jump table!");
9275 // Create the jump table and associated information.
9276 MachineJumpTableInfo
*JTI
=
9277 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9278 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9280 // Create the MBBs for the dispatch code.
9282 // Shove the dispatch's address into the return slot in the function context.
9283 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9284 DispatchBB
->setIsEHPad();
9286 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9287 unsigned trap_opcode
;
9288 if (Subtarget
->isThumb())
9289 trap_opcode
= ARM::tTRAP
;
9291 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9293 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9294 DispatchBB
->addSuccessor(TrapBB
);
9296 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9297 DispatchBB
->addSuccessor(DispContBB
);
9300 MF
->insert(MF
->end(), DispatchBB
);
9301 MF
->insert(MF
->end(), DispContBB
);
9302 MF
->insert(MF
->end(), TrapBB
);
9304 // Insert code into the entry block that creates and registers the function
9306 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9308 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9309 MachinePointerInfo::getFixedStack(*MF
, FI
),
9310 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9312 MachineInstrBuilder MIB
;
9313 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9315 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9316 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9318 // Add a register mask with no preserved registers. This results in all
9319 // registers being marked as clobbered. This can't work if the dispatch block
9320 // is in a Thumb1 function and is linked with ARM code which uses the FP
9321 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9322 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9324 bool IsPositionIndependent
= isPositionIndependent();
9325 unsigned NumLPads
= LPadList
.size();
9326 if (Subtarget
->isThumb2()) {
9327 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9328 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9331 .addMemOperand(FIMMOLd
)
9332 .add(predOps(ARMCC::AL
));
9334 if (NumLPads
< 256) {
9335 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9337 .addImm(LPadList
.size())
9338 .add(predOps(ARMCC::AL
));
9340 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9341 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9342 .addImm(NumLPads
& 0xFFFF)
9343 .add(predOps(ARMCC::AL
));
9345 unsigned VReg2
= VReg1
;
9346 if ((NumLPads
& 0xFFFF0000) != 0) {
9347 VReg2
= MRI
->createVirtualRegister(TRC
);
9348 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9350 .addImm(NumLPads
>> 16)
9351 .add(predOps(ARMCC::AL
));
9354 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9357 .add(predOps(ARMCC::AL
));
9360 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9365 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9366 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9367 .addJumpTableIndex(MJTI
)
9368 .add(predOps(ARMCC::AL
));
9370 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9371 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9372 .addReg(NewVReg3
, RegState::Kill
)
9374 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9375 .add(predOps(ARMCC::AL
))
9378 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9379 .addReg(NewVReg4
, RegState::Kill
)
9381 .addJumpTableIndex(MJTI
);
9382 } else if (Subtarget
->isThumb()) {
9383 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9384 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9387 .addMemOperand(FIMMOLd
)
9388 .add(predOps(ARMCC::AL
));
9390 if (NumLPads
< 256) {
9391 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9394 .add(predOps(ARMCC::AL
));
9396 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9397 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9398 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9400 // MachineConstantPool wants an explicit alignment.
9401 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9403 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9404 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9406 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9407 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9408 .addReg(VReg1
, RegState::Define
)
9409 .addConstantPoolIndex(Idx
)
9410 .add(predOps(ARMCC::AL
));
9411 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9414 .add(predOps(ARMCC::AL
));
9417 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9422 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9423 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9424 .addReg(ARM::CPSR
, RegState::Define
)
9427 .add(predOps(ARMCC::AL
));
9429 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9430 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9431 .addJumpTableIndex(MJTI
)
9432 .add(predOps(ARMCC::AL
));
9434 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9435 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9436 .addReg(ARM::CPSR
, RegState::Define
)
9437 .addReg(NewVReg2
, RegState::Kill
)
9439 .add(predOps(ARMCC::AL
));
9441 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9442 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9444 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9445 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9446 .addReg(NewVReg4
, RegState::Kill
)
9448 .addMemOperand(JTMMOLd
)
9449 .add(predOps(ARMCC::AL
));
9451 unsigned NewVReg6
= NewVReg5
;
9452 if (IsPositionIndependent
) {
9453 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9454 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9455 .addReg(ARM::CPSR
, RegState::Define
)
9456 .addReg(NewVReg5
, RegState::Kill
)
9458 .add(predOps(ARMCC::AL
));
9461 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9462 .addReg(NewVReg6
, RegState::Kill
)
9463 .addJumpTableIndex(MJTI
);
9465 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9466 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9469 .addMemOperand(FIMMOLd
)
9470 .add(predOps(ARMCC::AL
));
9472 if (NumLPads
< 256) {
9473 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9476 .add(predOps(ARMCC::AL
));
9477 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9478 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9479 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9480 .addImm(NumLPads
& 0xFFFF)
9481 .add(predOps(ARMCC::AL
));
9483 unsigned VReg2
= VReg1
;
9484 if ((NumLPads
& 0xFFFF0000) != 0) {
9485 VReg2
= MRI
->createVirtualRegister(TRC
);
9486 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9488 .addImm(NumLPads
>> 16)
9489 .add(predOps(ARMCC::AL
));
9492 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9495 .add(predOps(ARMCC::AL
));
9497 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9498 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9499 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9501 // MachineConstantPool wants an explicit alignment.
9502 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9504 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9505 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9507 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9508 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9509 .addReg(VReg1
, RegState::Define
)
9510 .addConstantPoolIndex(Idx
)
9512 .add(predOps(ARMCC::AL
));
9513 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9515 .addReg(VReg1
, RegState::Kill
)
9516 .add(predOps(ARMCC::AL
));
9519 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9524 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9525 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9527 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9528 .add(predOps(ARMCC::AL
))
9530 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9531 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9532 .addJumpTableIndex(MJTI
)
9533 .add(predOps(ARMCC::AL
));
9535 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9536 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9537 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9538 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9539 .addReg(NewVReg3
, RegState::Kill
)
9542 .addMemOperand(JTMMOLd
)
9543 .add(predOps(ARMCC::AL
));
9545 if (IsPositionIndependent
) {
9546 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9547 .addReg(NewVReg5
, RegState::Kill
)
9549 .addJumpTableIndex(MJTI
);
9551 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9552 .addReg(NewVReg5
, RegState::Kill
)
9553 .addJumpTableIndex(MJTI
);
9557 // Add the jump table entries as successors to the MBB.
9558 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9559 for (std::vector
<MachineBasicBlock
*>::iterator
9560 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9561 MachineBasicBlock
*CurMBB
= *I
;
9562 if (SeenMBBs
.insert(CurMBB
).second
)
9563 DispContBB
->addSuccessor(CurMBB
);
9566 // N.B. the order the invoke BBs are processed in doesn't matter here.
9567 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9568 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9569 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9571 // Remove the landing pad successor from the invoke block and replace it
9572 // with the new dispatch block.
9573 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9575 while (!Successors
.empty()) {
9576 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9577 if (SMBB
->isEHPad()) {
9578 BB
->removeSuccessor(SMBB
);
9579 MBBLPads
.push_back(SMBB
);
9583 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9584 BB
->normalizeSuccProbs();
9586 // Find the invoke call and mark all of the callee-saved registers as
9587 // 'implicit defined' so that they're spilled. This prevents code from
9588 // moving instructions to before the EH block, where they will never be
9590 for (MachineBasicBlock::reverse_iterator
9591 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9592 if (!II
->isCall()) continue;
9594 DenseMap
<unsigned, bool> DefRegs
;
9595 for (MachineInstr::mop_iterator
9596 OI
= II
->operands_begin(), OE
= II
->operands_end();
9598 if (!OI
->isReg()) continue;
9599 DefRegs
[OI
->getReg()] = true;
9602 MachineInstrBuilder
MIB(*MF
, &*II
);
9604 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9605 unsigned Reg
= SavedRegs
[i
];
9606 if (Subtarget
->isThumb2() &&
9607 !ARM::tGPRRegClass
.contains(Reg
) &&
9608 !ARM::hGPRRegClass
.contains(Reg
))
9610 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9612 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9615 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9622 // Mark all former landing pads as non-landing pads. The dispatch is the only
9624 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9625 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9626 (*I
)->setIsEHPad(false);
9628 // The instruction is gone now.
9629 MI
.eraseFromParent();
9633 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9634 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9635 E
= MBB
->succ_end(); I
!= E
; ++I
)
9638 llvm_unreachable("Expecting a BB with two successors!");
9641 /// Return the load opcode for a given load size. If load size >= 8,
9642 /// neon opcode will be returned.
9643 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9645 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9646 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9648 return LdSize
== 4 ? ARM::tLDRi
9649 : LdSize
== 2 ? ARM::tLDRHi
9650 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9652 return LdSize
== 4 ? ARM::t2LDR_POST
9653 : LdSize
== 2 ? ARM::t2LDRH_POST
9654 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9655 return LdSize
== 4 ? ARM::LDR_POST_IMM
9656 : LdSize
== 2 ? ARM::LDRH_POST
9657 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9660 /// Return the store opcode for a given store size. If store size >= 8,
9661 /// neon opcode will be returned.
9662 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9664 return StSize
== 16 ? ARM::VST1q32wb_fixed
9665 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9667 return StSize
== 4 ? ARM::tSTRi
9668 : StSize
== 2 ? ARM::tSTRHi
9669 : StSize
== 1 ? ARM::tSTRBi
: 0;
9671 return StSize
== 4 ? ARM::t2STR_POST
9672 : StSize
== 2 ? ARM::t2STRH_POST
9673 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9674 return StSize
== 4 ? ARM::STR_POST_IMM
9675 : StSize
== 2 ? ARM::STRH_POST
9676 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9679 /// Emit a post-increment load operation with given size. The instructions
9680 /// will be added to BB at Pos.
9681 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9682 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9683 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9684 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9685 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9686 assert(LdOpc
!= 0 && "Should have a load opcode");
9688 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9689 .addReg(AddrOut
, RegState::Define
)
9692 .add(predOps(ARMCC::AL
));
9693 } else if (IsThumb1
) {
9694 // load + update AddrIn
9695 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9698 .add(predOps(ARMCC::AL
));
9699 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9700 .add(t1CondCodeOp())
9703 .add(predOps(ARMCC::AL
));
9704 } else if (IsThumb2
) {
9705 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9706 .addReg(AddrOut
, RegState::Define
)
9709 .add(predOps(ARMCC::AL
));
9711 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9712 .addReg(AddrOut
, RegState::Define
)
9716 .add(predOps(ARMCC::AL
));
9720 /// Emit a post-increment store operation with given size. The instructions
9721 /// will be added to BB at Pos.
9722 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9723 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9724 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9725 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9726 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9727 assert(StOpc
!= 0 && "Should have a store opcode");
9729 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9733 .add(predOps(ARMCC::AL
));
9734 } else if (IsThumb1
) {
9735 // store + update AddrIn
9736 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9740 .add(predOps(ARMCC::AL
));
9741 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9742 .add(t1CondCodeOp())
9745 .add(predOps(ARMCC::AL
));
9746 } else if (IsThumb2
) {
9747 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9751 .add(predOps(ARMCC::AL
));
9753 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9758 .add(predOps(ARMCC::AL
));
9763 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9764 MachineBasicBlock
*BB
) const {
9765 // This pseudo instruction has 3 operands: dst, src, size
9766 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9767 // Otherwise, we will generate unrolled scalar copies.
9768 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9769 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9770 MachineFunction::iterator It
= ++BB
->getIterator();
9772 Register dest
= MI
.getOperand(0).getReg();
9773 Register src
= MI
.getOperand(1).getReg();
9774 unsigned SizeVal
= MI
.getOperand(2).getImm();
9775 unsigned Align
= MI
.getOperand(3).getImm();
9776 DebugLoc dl
= MI
.getDebugLoc();
9778 MachineFunction
*MF
= BB
->getParent();
9779 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9780 unsigned UnitSize
= 0;
9781 const TargetRegisterClass
*TRC
= nullptr;
9782 const TargetRegisterClass
*VecTRC
= nullptr;
9784 bool IsThumb1
= Subtarget
->isThumb1Only();
9785 bool IsThumb2
= Subtarget
->isThumb2();
9786 bool IsThumb
= Subtarget
->isThumb();
9790 } else if (Align
& 2) {
9793 // Check whether we can use NEON instructions.
9794 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9795 Subtarget
->hasNEON()) {
9796 if ((Align
% 16 == 0) && SizeVal
>= 16)
9798 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9801 // Can't use NEON instructions.
9806 // Select the correct opcode and register class for unit size load/store
9807 bool IsNeon
= UnitSize
>= 8;
9808 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9810 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9811 : UnitSize
== 8 ? &ARM::DPRRegClass
9814 unsigned BytesLeft
= SizeVal
% UnitSize
;
9815 unsigned LoopSize
= SizeVal
- BytesLeft
;
9817 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9818 // Use LDR and STR to copy.
9819 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9820 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9821 unsigned srcIn
= src
;
9822 unsigned destIn
= dest
;
9823 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9824 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9825 Register destOut
= MRI
.createVirtualRegister(TRC
);
9826 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9827 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9828 IsThumb1
, IsThumb2
);
9829 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9830 IsThumb1
, IsThumb2
);
9835 // Handle the leftover bytes with LDRB and STRB.
9836 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9837 // [destOut] = STRB_POST(scratch, destIn, 1)
9838 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9839 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9840 Register destOut
= MRI
.createVirtualRegister(TRC
);
9841 Register scratch
= MRI
.createVirtualRegister(TRC
);
9842 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9843 IsThumb1
, IsThumb2
);
9844 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9845 IsThumb1
, IsThumb2
);
9849 MI
.eraseFromParent(); // The instruction is gone now.
9853 // Expand the pseudo op to a loop.
9856 // movw varEnd, # --> with thumb2
9858 // ldrcp varEnd, idx --> without thumb2
9859 // fallthrough --> loopMBB
9861 // PHI varPhi, varEnd, varLoop
9862 // PHI srcPhi, src, srcLoop
9863 // PHI destPhi, dst, destLoop
9864 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9865 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9866 // subs varLoop, varPhi, #UnitSize
9868 // fallthrough --> exitMBB
9870 // epilogue to handle left-over bytes
9871 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9872 // [destOut] = STRB_POST(scratch, destLoop, 1)
9873 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9874 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9875 MF
->insert(It
, loopMBB
);
9876 MF
->insert(It
, exitMBB
);
9878 // Transfer the remainder of BB and its successor edges to exitMBB.
9879 exitMBB
->splice(exitMBB
->begin(), BB
,
9880 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9881 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9883 // Load an immediate to varEnd.
9884 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9885 if (Subtarget
->useMovt()) {
9886 unsigned Vtmp
= varEnd
;
9887 if ((LoopSize
& 0xFFFF0000) != 0)
9888 Vtmp
= MRI
.createVirtualRegister(TRC
);
9889 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9890 .addImm(LoopSize
& 0xFFFF)
9891 .add(predOps(ARMCC::AL
));
9893 if ((LoopSize
& 0xFFFF0000) != 0)
9894 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9896 .addImm(LoopSize
>> 16)
9897 .add(predOps(ARMCC::AL
));
9899 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9900 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9901 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9903 // MachineConstantPool wants an explicit alignment.
9904 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9906 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9907 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9908 MachineMemOperand
*CPMMO
=
9909 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9910 MachineMemOperand::MOLoad
, 4, 4);
9913 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9914 .addReg(varEnd
, RegState::Define
)
9915 .addConstantPoolIndex(Idx
)
9916 .add(predOps(ARMCC::AL
))
9917 .addMemOperand(CPMMO
);
9919 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9920 .addReg(varEnd
, RegState::Define
)
9921 .addConstantPoolIndex(Idx
)
9923 .add(predOps(ARMCC::AL
))
9924 .addMemOperand(CPMMO
);
9926 BB
->addSuccessor(loopMBB
);
9928 // Generate the loop body:
9929 // varPhi = PHI(varLoop, varEnd)
9930 // srcPhi = PHI(srcLoop, src)
9931 // destPhi = PHI(destLoop, dst)
9932 MachineBasicBlock
*entryBB
= BB
;
9934 Register varLoop
= MRI
.createVirtualRegister(TRC
);
9935 Register varPhi
= MRI
.createVirtualRegister(TRC
);
9936 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
9937 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
9938 Register destLoop
= MRI
.createVirtualRegister(TRC
);
9939 Register destPhi
= MRI
.createVirtualRegister(TRC
);
9941 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9942 .addReg(varLoop
).addMBB(loopMBB
)
9943 .addReg(varEnd
).addMBB(entryBB
);
9944 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9945 .addReg(srcLoop
).addMBB(loopMBB
)
9946 .addReg(src
).addMBB(entryBB
);
9947 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9948 .addReg(destLoop
).addMBB(loopMBB
)
9949 .addReg(dest
).addMBB(entryBB
);
9951 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9952 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9953 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9954 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9955 IsThumb1
, IsThumb2
);
9956 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9957 IsThumb1
, IsThumb2
);
9959 // Decrement loop variable by UnitSize.
9961 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9962 .add(t1CondCodeOp())
9965 .add(predOps(ARMCC::AL
));
9967 MachineInstrBuilder MIB
=
9968 BuildMI(*BB
, BB
->end(), dl
,
9969 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9972 .add(predOps(ARMCC::AL
))
9974 MIB
->getOperand(5).setReg(ARM::CPSR
);
9975 MIB
->getOperand(5).setIsDef(true);
9977 BuildMI(*BB
, BB
->end(), dl
,
9978 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9979 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9981 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9982 BB
->addSuccessor(loopMBB
);
9983 BB
->addSuccessor(exitMBB
);
9985 // Add epilogue to handle BytesLeft.
9987 auto StartOfExit
= exitMBB
->begin();
9989 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9990 // [destOut] = STRB_POST(scratch, destLoop, 1)
9991 unsigned srcIn
= srcLoop
;
9992 unsigned destIn
= destLoop
;
9993 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9994 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9995 Register destOut
= MRI
.createVirtualRegister(TRC
);
9996 Register scratch
= MRI
.createVirtualRegister(TRC
);
9997 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9998 IsThumb1
, IsThumb2
);
9999 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
10000 IsThumb1
, IsThumb2
);
10005 MI
.eraseFromParent(); // The instruction is gone now.
10009 MachineBasicBlock
*
10010 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10011 MachineBasicBlock
*MBB
) const {
10012 const TargetMachine
&TM
= getTargetMachine();
10013 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10014 DebugLoc DL
= MI
.getDebugLoc();
10016 assert(Subtarget
->isTargetWindows() &&
10017 "__chkstk is only supported on Windows");
10018 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10020 // __chkstk takes the number of words to allocate on the stack in R4, and
10021 // returns the stack adjustment in number of bytes in R4. This will not
10022 // clober any other registers (other than the obvious lr).
10024 // Although, technically, IP should be considered a register which may be
10025 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10026 // thumb-2 environment, so there is no interworking required. As a result, we
10027 // do not expect a veneer to be emitted by the linker, clobbering IP.
10029 // Each module receives its own copy of __chkstk, so no import thunk is
10030 // required, again, ensuring that IP is not clobbered.
10032 // Finally, although some linkers may theoretically provide a trampoline for
10033 // out of range calls (which is quite common due to a 32M range limitation of
10034 // branches for Thumb), we can generate the long-call version via
10035 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10038 switch (TM
.getCodeModel()) {
10039 case CodeModel::Tiny
:
10040 llvm_unreachable("Tiny code model not available on ARM.");
10041 case CodeModel::Small
:
10042 case CodeModel::Medium
:
10043 case CodeModel::Kernel
:
10044 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10045 .add(predOps(ARMCC::AL
))
10046 .addExternalSymbol("__chkstk")
10047 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10048 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10050 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10052 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10054 case CodeModel::Large
: {
10055 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10056 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10058 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10059 .addExternalSymbol("__chkstk");
10060 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10061 .add(predOps(ARMCC::AL
))
10062 .addReg(Reg
, RegState::Kill
)
10063 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10064 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10066 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10068 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10073 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10074 .addReg(ARM::SP
, RegState::Kill
)
10075 .addReg(ARM::R4
, RegState::Kill
)
10076 .setMIFlags(MachineInstr::FrameSetup
)
10077 .add(predOps(ARMCC::AL
))
10078 .add(condCodeOp());
10080 MI
.eraseFromParent();
10084 MachineBasicBlock
*
10085 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10086 MachineBasicBlock
*MBB
) const {
10087 DebugLoc DL
= MI
.getDebugLoc();
10088 MachineFunction
*MF
= MBB
->getParent();
10089 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10091 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10092 MF
->insert(++MBB
->getIterator(), ContBB
);
10093 ContBB
->splice(ContBB
->begin(), MBB
,
10094 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10095 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10096 MBB
->addSuccessor(ContBB
);
10098 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10099 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10100 MF
->push_back(TrapBB
);
10101 MBB
->addSuccessor(TrapBB
);
10103 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10104 .addReg(MI
.getOperand(0).getReg())
10106 .add(predOps(ARMCC::AL
));
10107 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10110 .addReg(ARM::CPSR
);
10112 MI
.eraseFromParent();
10116 // The CPSR operand of SelectItr might be missing a kill marker
10117 // because there were multiple uses of CPSR, and ISel didn't know
10118 // which to mark. Figure out whether SelectItr should have had a
10119 // kill marker, and set it if it should. Returns the correct kill
10121 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10122 MachineBasicBlock
* BB
,
10123 const TargetRegisterInfo
* TRI
) {
10124 // Scan forward through BB for a use/def of CPSR.
10125 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10126 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10127 const MachineInstr
& mi
= *miI
;
10128 if (mi
.readsRegister(ARM::CPSR
))
10130 if (mi
.definesRegister(ARM::CPSR
))
10131 break; // Should have kill-flag - update below.
10134 // If we hit the end of the block, check whether CPSR is live into a
10136 if (miI
== BB
->end()) {
10137 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10138 sEnd
= BB
->succ_end();
10139 sItr
!= sEnd
; ++sItr
) {
10140 MachineBasicBlock
* succ
= *sItr
;
10141 if (succ
->isLiveIn(ARM::CPSR
))
10146 // We found a def, or hit the end of the basic block and CPSR wasn't live
10147 // out. SelectMI should have a kill flag on CPSR.
10148 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10152 MachineBasicBlock
*
10153 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10154 MachineBasicBlock
*BB
) const {
10155 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10156 DebugLoc dl
= MI
.getDebugLoc();
10157 bool isThumb2
= Subtarget
->isThumb2();
10158 switch (MI
.getOpcode()) {
10161 llvm_unreachable("Unexpected instr type to insert");
10164 // Thumb1 post-indexed loads are really just single-register LDMs.
10165 case ARM::tLDR_postidx
: {
10166 MachineOperand
Def(MI
.getOperand(1));
10167 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10169 .add(MI
.getOperand(2)) // Rn
10170 .add(MI
.getOperand(3)) // PredImm
10171 .add(MI
.getOperand(4)) // PredReg
10172 .add(MI
.getOperand(0)) // Rt
10174 MI
.eraseFromParent();
10178 // The Thumb2 pre-indexed stores have the same MI operands, they just
10179 // define them differently in the .td files from the isel patterns, so
10180 // they need pseudos.
10181 case ARM::t2STR_preidx
:
10182 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10184 case ARM::t2STRB_preidx
:
10185 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10187 case ARM::t2STRH_preidx
:
10188 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10191 case ARM::STRi_preidx
:
10192 case ARM::STRBi_preidx
: {
10193 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10194 : ARM::STRB_PRE_IMM
;
10195 // Decode the offset.
10196 unsigned Offset
= MI
.getOperand(4).getImm();
10197 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10198 Offset
= ARM_AM::getAM2Offset(Offset
);
10202 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10203 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10204 .add(MI
.getOperand(0)) // Rn_wb
10205 .add(MI
.getOperand(1)) // Rt
10206 .add(MI
.getOperand(2)) // Rn
10207 .addImm(Offset
) // offset (skip GPR==zero_reg)
10208 .add(MI
.getOperand(5)) // pred
10209 .add(MI
.getOperand(6))
10210 .addMemOperand(MMO
);
10211 MI
.eraseFromParent();
10214 case ARM::STRr_preidx
:
10215 case ARM::STRBr_preidx
:
10216 case ARM::STRH_preidx
: {
10218 switch (MI
.getOpcode()) {
10219 default: llvm_unreachable("unexpected opcode!");
10220 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10221 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10222 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10224 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10225 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10226 MIB
.add(MI
.getOperand(i
));
10227 MI
.eraseFromParent();
10231 case ARM::tMOVCCr_pseudo
: {
10232 // To "insert" a SELECT_CC instruction, we actually have to insert the
10233 // diamond control-flow pattern. The incoming instruction knows the
10234 // destination vreg to set, the condition code register to branch on, the
10235 // true/false values to select between, and a branch opcode to use.
10236 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10237 MachineFunction::iterator It
= ++BB
->getIterator();
10242 // cmpTY ccX, r1, r2
10244 // fallthrough --> copy0MBB
10245 MachineBasicBlock
*thisMBB
= BB
;
10246 MachineFunction
*F
= BB
->getParent();
10247 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10248 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10249 F
->insert(It
, copy0MBB
);
10250 F
->insert(It
, sinkMBB
);
10252 // Check whether CPSR is live past the tMOVCCr_pseudo.
10253 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10254 if (!MI
.killsRegister(ARM::CPSR
) &&
10255 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10256 copy0MBB
->addLiveIn(ARM::CPSR
);
10257 sinkMBB
->addLiveIn(ARM::CPSR
);
10260 // Transfer the remainder of BB and its successor edges to sinkMBB.
10261 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10262 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10263 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10265 BB
->addSuccessor(copy0MBB
);
10266 BB
->addSuccessor(sinkMBB
);
10268 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10270 .addImm(MI
.getOperand(3).getImm())
10271 .addReg(MI
.getOperand(4).getReg());
10274 // %FalseValue = ...
10275 // # fallthrough to sinkMBB
10278 // Update machine-CFG edges
10279 BB
->addSuccessor(sinkMBB
);
10282 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10285 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10286 .addReg(MI
.getOperand(1).getReg())
10288 .addReg(MI
.getOperand(2).getReg())
10291 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10296 case ARM::BCCZi64
: {
10297 // If there is an unconditional branch to the other successor, remove it.
10298 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10300 // Compare both parts that make up the double comparison separately for
10302 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10304 Register LHS1
= MI
.getOperand(1).getReg();
10305 Register LHS2
= MI
.getOperand(2).getReg();
10307 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10310 .add(predOps(ARMCC::AL
));
10311 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10312 .addReg(LHS2
).addImm(0)
10313 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10315 Register RHS1
= MI
.getOperand(3).getReg();
10316 Register RHS2
= MI
.getOperand(4).getReg();
10317 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10320 .add(predOps(ARMCC::AL
));
10321 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10322 .addReg(LHS2
).addReg(RHS2
)
10323 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10326 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10327 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10328 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10329 std::swap(destMBB
, exitMBB
);
10331 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10332 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10334 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10336 .add(predOps(ARMCC::AL
));
10338 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10340 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10344 case ARM::Int_eh_sjlj_setjmp
:
10345 case ARM::Int_eh_sjlj_setjmp_nofp
:
10346 case ARM::tInt_eh_sjlj_setjmp
:
10347 case ARM::t2Int_eh_sjlj_setjmp
:
10348 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10351 case ARM::Int_eh_sjlj_setup_dispatch
:
10352 EmitSjLjDispatchBlock(MI
, BB
);
10357 // To insert an ABS instruction, we have to insert the
10358 // diamond control-flow pattern. The incoming instruction knows the
10359 // source vreg to test against 0, the destination vreg to set,
10360 // the condition code register to branch on, the
10361 // true/false values to select between, and a branch opcode to use.
10366 // BCC (branch to SinkBB if V0 >= 0)
10367 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10368 // SinkBB: V1 = PHI(V2, V3)
10369 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10370 MachineFunction::iterator BBI
= ++BB
->getIterator();
10371 MachineFunction
*Fn
= BB
->getParent();
10372 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10373 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10374 Fn
->insert(BBI
, RSBBB
);
10375 Fn
->insert(BBI
, SinkBB
);
10377 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10378 Register ABSDstReg
= MI
.getOperand(0).getReg();
10379 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10380 bool isThumb2
= Subtarget
->isThumb2();
10381 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10382 // In Thumb mode S must not be specified if source register is the SP or
10383 // PC and if destination register is the SP, so restrict register class
10384 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10385 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10387 // Transfer the remainder of BB and its successor edges to sinkMBB.
10388 SinkBB
->splice(SinkBB
->begin(), BB
,
10389 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10390 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10392 BB
->addSuccessor(RSBBB
);
10393 BB
->addSuccessor(SinkBB
);
10395 // fall through to SinkMBB
10396 RSBBB
->addSuccessor(SinkBB
);
10398 // insert a cmp at the end of BB
10399 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10402 .add(predOps(ARMCC::AL
));
10404 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10406 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10407 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10409 // insert rsbri in RSBBB
10410 // Note: BCC and rsbri will be converted into predicated rsbmi
10411 // by if-conversion pass
10412 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10413 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10414 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10416 .add(predOps(ARMCC::AL
))
10417 .add(condCodeOp());
10419 // insert PHI in SinkBB,
10420 // reuse ABSDstReg to not change uses of ABS instruction
10421 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10422 TII
->get(ARM::PHI
), ABSDstReg
)
10423 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10424 .addReg(ABSSrcReg
).addMBB(BB
);
10426 // remove ABS instruction
10427 MI
.eraseFromParent();
10429 // return last added BB
10432 case ARM::COPY_STRUCT_BYVAL_I32
:
10434 return EmitStructByval(MI
, BB
);
10435 case ARM::WIN__CHKSTK
:
10436 return EmitLowered__chkstk(MI
, BB
);
10437 case ARM::WIN__DBZCHK
:
10438 return EmitLowered__dbzchk(MI
, BB
);
10442 /// Attaches vregs to MEMCPY that it will use as scratch registers
10443 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10444 /// instead of as a custom inserter because we need the use list from the SDNode.
10445 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10446 MachineInstr
&MI
, const SDNode
*Node
) {
10447 bool isThumb1
= Subtarget
->isThumb1Only();
10449 DebugLoc DL
= MI
.getDebugLoc();
10450 MachineFunction
*MF
= MI
.getParent()->getParent();
10451 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10452 MachineInstrBuilder
MIB(*MF
, MI
);
10454 // If the new dst/src is unused mark it as dead.
10455 if (!Node
->hasAnyUseOfValue(0)) {
10456 MI
.getOperand(0).setIsDead(true);
10458 if (!Node
->hasAnyUseOfValue(1)) {
10459 MI
.getOperand(1).setIsDead(true);
10462 // The MEMCPY both defines and kills the scratch registers.
10463 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10464 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10465 : &ARM::GPRRegClass
);
10466 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10470 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10471 SDNode
*Node
) const {
10472 if (MI
.getOpcode() == ARM::MEMCPY
) {
10473 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10477 const MCInstrDesc
*MCID
= &MI
.getDesc();
10478 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10479 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10480 // operand is still set to noreg. If needed, set the optional operand's
10481 // register to CPSR, and remove the redundant implicit def.
10483 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10485 // Rename pseudo opcodes.
10486 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10489 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10490 MCID
= &TII
->get(NewOpc
);
10492 assert(MCID
->getNumOperands() ==
10493 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10494 && "converted opcode should be the same except for cc_out"
10495 " (and, on Thumb1, pred)");
10499 // Add the optional cc_out operand
10500 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10502 // On Thumb1, move all input operands to the end, then add the predicate
10503 if (Subtarget
->isThumb1Only()) {
10504 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10505 MI
.addOperand(MI
.getOperand(1));
10506 MI
.RemoveOperand(1);
10509 // Restore the ties
10510 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10511 const MachineOperand
& op
= MI
.getOperand(i
);
10512 if (op
.isReg() && op
.isUse()) {
10513 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10515 MI
.tieOperands(DefIdx
, i
);
10519 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10520 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10523 ccOutIdx
= MCID
->getNumOperands() - 1;
10525 ccOutIdx
= MCID
->getNumOperands() - 1;
10527 // Any ARM instruction that sets the 's' bit should specify an optional
10528 // "cc_out" operand in the last operand position.
10529 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10530 assert(!NewOpc
&& "Optional cc_out operand required");
10533 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10534 // since we already have an optional CPSR def.
10535 bool definesCPSR
= false;
10536 bool deadCPSR
= false;
10537 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10539 const MachineOperand
&MO
= MI
.getOperand(i
);
10540 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10541 definesCPSR
= true;
10544 MI
.RemoveOperand(i
);
10548 if (!definesCPSR
) {
10549 assert(!NewOpc
&& "Optional cc_out operand required");
10552 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10554 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10555 "expect uninitialized optional cc_out operand");
10556 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10557 if (!Subtarget
->isThumb1Only())
10561 // If this instruction was defined with an optional CPSR def and its dag node
10562 // had a live implicit CPSR def, then activate the optional CPSR def.
10563 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10564 MO
.setReg(ARM::CPSR
);
10568 //===----------------------------------------------------------------------===//
10569 // ARM Optimization Hooks
10570 //===----------------------------------------------------------------------===//
10572 // Helper function that checks if N is a null or all ones constant.
10573 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10574 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10577 // Return true if N is conditionally 0 or all ones.
10578 // Detects these expressions where cc is an i1 value:
10580 // (select cc 0, y) [AllOnes=0]
10581 // (select cc y, 0) [AllOnes=0]
10582 // (zext cc) [AllOnes=0]
10583 // (sext cc) [AllOnes=0/1]
10584 // (select cc -1, y) [AllOnes=1]
10585 // (select cc y, -1) [AllOnes=1]
10587 // Invert is set when N is the null/all ones constant when CC is false.
10588 // OtherOp is set to the alternative value of N.
10589 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10590 SDValue
&CC
, bool &Invert
,
10592 SelectionDAG
&DAG
) {
10593 switch (N
->getOpcode()) {
10594 default: return false;
10595 case ISD::SELECT
: {
10596 CC
= N
->getOperand(0);
10597 SDValue N1
= N
->getOperand(1);
10598 SDValue N2
= N
->getOperand(2);
10599 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10604 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10611 case ISD::ZERO_EXTEND
:
10612 // (zext cc) can never be the all ones value.
10616 case ISD::SIGN_EXTEND
: {
10618 EVT VT
= N
->getValueType(0);
10619 CC
= N
->getOperand(0);
10620 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10624 // When looking for an AllOnes constant, N is an sext, and the 'other'
10626 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10627 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10628 // When looking for a 0 constant, N can be zext or sext.
10629 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10631 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10638 // Combine a constant select operand into its use:
10640 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10641 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10642 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10643 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10644 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10646 // The transform is rejected if the select doesn't have a constant operand that
10647 // is null, or all ones when AllOnes is set.
10649 // Also recognize sext/zext from i1:
10651 // (add (zext cc), x) -> (select cc (add x, 1), x)
10652 // (add (sext cc), x) -> (select cc (add x, -1), x)
10654 // These transformations eventually create predicated instructions.
10656 // @param N The node to transform.
10657 // @param Slct The N operand that is a select.
10658 // @param OtherOp The other N operand (x above).
10659 // @param DCI Context.
10660 // @param AllOnes Require the select constant to be all ones instead of null.
10661 // @returns The new node, or SDValue() on failure.
10663 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10664 TargetLowering::DAGCombinerInfo
&DCI
,
10665 bool AllOnes
= false) {
10666 SelectionDAG
&DAG
= DCI
.DAG
;
10667 EVT VT
= N
->getValueType(0);
10668 SDValue NonConstantVal
;
10670 bool SwapSelectOps
;
10671 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10672 NonConstantVal
, DAG
))
10675 // Slct is now know to be the desired identity constant when CC is true.
10676 SDValue TrueVal
= OtherOp
;
10677 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10678 OtherOp
, NonConstantVal
);
10679 // Unless SwapSelectOps says CC should be false.
10681 std::swap(TrueVal
, FalseVal
);
10683 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10684 CCOp
, TrueVal
, FalseVal
);
10687 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10689 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10690 TargetLowering::DAGCombinerInfo
&DCI
) {
10691 SDValue N0
= N
->getOperand(0);
10692 SDValue N1
= N
->getOperand(1);
10693 if (N0
.getNode()->hasOneUse())
10694 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10696 if (N1
.getNode()->hasOneUse())
10697 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10702 static bool IsVUZPShuffleNode(SDNode
*N
) {
10703 // VUZP shuffle node.
10704 if (N
->getOpcode() == ARMISD::VUZP
)
10707 // "VUZP" on i32 is an alias for VTRN.
10708 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10714 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10715 TargetLowering::DAGCombinerInfo
&DCI
,
10716 const ARMSubtarget
*Subtarget
) {
10717 // Look for ADD(VUZP.0, VUZP.1).
10718 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10722 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10723 if (!N
->getValueType(0).is64BitVector())
10727 SelectionDAG
&DAG
= DCI
.DAG
;
10728 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10730 SDNode
*Unzip
= N0
.getNode();
10731 EVT VT
= N
->getValueType(0);
10733 SmallVector
<SDValue
, 8> Ops
;
10734 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10735 TLI
.getPointerTy(DAG
.getDataLayout())));
10736 Ops
.push_back(Unzip
->getOperand(0));
10737 Ops
.push_back(Unzip
->getOperand(1));
10739 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10742 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10743 TargetLowering::DAGCombinerInfo
&DCI
,
10744 const ARMSubtarget
*Subtarget
) {
10745 // Check for two extended operands.
10746 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10747 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10748 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10749 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10752 SDValue N00
= N0
.getOperand(0);
10753 SDValue N10
= N1
.getOperand(0);
10755 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10756 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10760 // We only recognize Q register paddl here; this can't be reached until
10761 // after type legalization.
10762 if (!N00
.getValueType().is64BitVector() ||
10763 !N0
.getValueType().is128BitVector())
10766 // Generate vpaddl.
10767 SelectionDAG
&DAG
= DCI
.DAG
;
10768 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10770 EVT VT
= N
->getValueType(0);
10772 SmallVector
<SDValue
, 8> Ops
;
10773 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10775 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10776 Opcode
= Intrinsic::arm_neon_vpaddls
;
10778 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10779 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10780 TLI
.getPointerTy(DAG
.getDataLayout())));
10781 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10782 unsigned NumElts
= VT
.getVectorNumElements();
10783 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10784 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10785 N00
.getOperand(0), N00
.getOperand(1));
10786 Ops
.push_back(Concat
);
10788 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10791 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10792 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10793 // much easier to match.
10795 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10796 TargetLowering::DAGCombinerInfo
&DCI
,
10797 const ARMSubtarget
*Subtarget
) {
10798 // Only perform optimization if after legalize, and if NEON is available. We
10799 // also expected both operands to be BUILD_VECTORs.
10800 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10801 || N0
.getOpcode() != ISD::BUILD_VECTOR
10802 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10805 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10806 EVT VT
= N
->getValueType(0);
10807 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10810 // Check that the vector operands are of the right form.
10811 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10812 // operands, where N is the size of the formed vector.
10813 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10814 // index such that we have a pair wise add pattern.
10816 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10817 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10819 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10820 SDNode
*V
= Vec
.getNode();
10821 unsigned nextIndex
= 0;
10823 // For each operands to the ADD which are BUILD_VECTORs,
10824 // check to see if each of their operands are an EXTRACT_VECTOR with
10825 // the same vector and appropriate index.
10826 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10827 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10828 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10830 SDValue ExtVec0
= N0
->getOperand(i
);
10831 SDValue ExtVec1
= N1
->getOperand(i
);
10833 // First operand is the vector, verify its the same.
10834 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10835 V
!= ExtVec1
->getOperand(0).getNode())
10838 // Second is the constant, verify its correct.
10839 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10840 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10842 // For the constant, we want to see all the even or all the odd.
10843 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10844 || C1
->getZExtValue() != nextIndex
+1)
10847 // Increment index.
10853 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10854 // we're using the entire input vector, otherwise there's a size/legality
10855 // mismatch somewhere.
10856 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10857 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10860 // Create VPADDL node.
10861 SelectionDAG
&DAG
= DCI
.DAG
;
10862 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10866 // Build operand list.
10867 SmallVector
<SDValue
, 8> Ops
;
10868 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10869 TLI
.getPointerTy(DAG
.getDataLayout())));
10871 // Input is the vector.
10872 Ops
.push_back(Vec
);
10874 // Get widened type and narrowed type.
10876 unsigned numElem
= VT
.getVectorNumElements();
10878 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10879 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10880 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10881 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10882 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10884 llvm_unreachable("Invalid vector element type for padd optimization.");
10887 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10888 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10889 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10892 static SDValue
findMUL_LOHI(SDValue V
) {
10893 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10894 V
->getOpcode() == ISD::SMUL_LOHI
)
10899 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10900 TargetLowering::DAGCombinerInfo
&DCI
,
10901 const ARMSubtarget
*Subtarget
) {
10902 if (Subtarget
->isThumb()) {
10903 if (!Subtarget
->hasDSP())
10905 } else if (!Subtarget
->hasV5TEOps())
10908 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10909 // accumulates the product into a 64-bit value. The 16-bit values will
10910 // be sign extended somehow or SRA'd into 32-bit values
10911 // (addc (adde (mul 16bit, 16bit), lo), hi)
10912 SDValue Mul
= AddcNode
->getOperand(0);
10913 SDValue Lo
= AddcNode
->getOperand(1);
10914 if (Mul
.getOpcode() != ISD::MUL
) {
10915 Lo
= AddcNode
->getOperand(0);
10916 Mul
= AddcNode
->getOperand(1);
10917 if (Mul
.getOpcode() != ISD::MUL
)
10921 SDValue SRA
= AddeNode
->getOperand(0);
10922 SDValue Hi
= AddeNode
->getOperand(1);
10923 if (SRA
.getOpcode() != ISD::SRA
) {
10924 SRA
= AddeNode
->getOperand(1);
10925 Hi
= AddeNode
->getOperand(0);
10926 if (SRA
.getOpcode() != ISD::SRA
)
10929 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10930 if (Const
->getZExtValue() != 31)
10935 if (SRA
.getOperand(0) != Mul
)
10938 SelectionDAG
&DAG
= DCI
.DAG
;
10939 SDLoc
dl(AddcNode
);
10940 unsigned Opcode
= 0;
10944 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10945 Opcode
= ARMISD::SMLALBB
;
10946 Op0
= Mul
.getOperand(0);
10947 Op1
= Mul
.getOperand(1);
10948 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10949 Opcode
= ARMISD::SMLALBT
;
10950 Op0
= Mul
.getOperand(0);
10951 Op1
= Mul
.getOperand(1).getOperand(0);
10952 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10953 Opcode
= ARMISD::SMLALTB
;
10954 Op0
= Mul
.getOperand(0).getOperand(0);
10955 Op1
= Mul
.getOperand(1);
10956 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10957 Opcode
= ARMISD::SMLALTT
;
10958 Op0
= Mul
->getOperand(0).getOperand(0);
10959 Op1
= Mul
->getOperand(1).getOperand(0);
10965 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10967 // Replace the ADDs' nodes uses by the MLA node's values.
10968 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10969 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10971 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10972 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10974 // Return original node to notify the driver to stop replacing.
10975 SDValue
resNode(AddcNode
, 0);
10979 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10980 TargetLowering::DAGCombinerInfo
&DCI
,
10981 const ARMSubtarget
*Subtarget
) {
10982 // Look for multiply add opportunities.
10983 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10984 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10985 // a glue link from the first add to the second add.
10986 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10987 // a S/UMLAL instruction.
10990 // V \ [no multiline comment]
10996 // In the special case where only the higher part of a signed result is used
10997 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10998 // a constant with the exact value of 0x80000000, we recognize we are dealing
10999 // with a "rounded multiply and add" (or subtract) and transform it into
11000 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11002 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11003 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11004 "Expect an ADDE or SUBE");
11006 assert(AddeSubeNode
->getNumOperands() == 3 &&
11007 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11008 "ADDE node has the wrong inputs");
11010 // Check that we are chained to the right ADDC or SUBC node.
11011 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11012 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11013 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11014 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11015 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11018 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11019 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11021 // Check if the two operands are from the same mul_lohi node.
11022 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11025 assert(AddcSubcNode
->getNumValues() == 2 &&
11026 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11027 "Expect ADDC with two result values. First: i32");
11029 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11030 // maybe a SMLAL which multiplies two 16-bit values.
11031 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11032 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11033 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11034 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11035 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11036 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11038 // Check for the triangle shape.
11039 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11040 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11042 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11043 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11046 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11047 bool IsLeftOperandMUL
= false;
11048 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11049 if (MULOp
== SDValue())
11050 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11052 IsLeftOperandMUL
= true;
11053 if (MULOp
== SDValue())
11056 // Figure out the right opcode.
11057 unsigned Opc
= MULOp
->getOpcode();
11058 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11060 // Figure out the high and low input values to the MLAL node.
11061 SDValue
*HiAddSub
= nullptr;
11062 SDValue
*LoMul
= nullptr;
11063 SDValue
*LowAddSub
= nullptr;
11065 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11066 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11069 if (IsLeftOperandMUL
)
11070 HiAddSub
= &AddeSubeOp1
;
11072 HiAddSub
= &AddeSubeOp0
;
11074 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11075 // whose low result is fed to the ADDC/SUBC we are checking.
11077 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11078 LoMul
= &AddcSubcOp0
;
11079 LowAddSub
= &AddcSubcOp1
;
11081 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11082 LoMul
= &AddcSubcOp1
;
11083 LowAddSub
= &AddcSubcOp0
;
11089 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11090 // the replacement below will create a cycle.
11091 if (AddcSubcNode
== HiAddSub
->getNode() ||
11092 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11095 // Create the merged node.
11096 SelectionDAG
&DAG
= DCI
.DAG
;
11098 // Start building operand list.
11099 SmallVector
<SDValue
, 8> Ops
;
11100 Ops
.push_back(LoMul
->getOperand(0));
11101 Ops
.push_back(LoMul
->getOperand(1));
11103 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11104 // the case, we must be doing signed multiplication and only use the higher
11105 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11106 // addition or subtraction with the value of 0x800000.
11107 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11108 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11109 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11110 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11112 Ops
.push_back(*HiAddSub
);
11113 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11114 FinalOpc
= ARMISD::SMMLSR
;
11116 FinalOpc
= ARMISD::SMMLAR
;
11118 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11119 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11121 return SDValue(AddeSubeNode
, 0);
11122 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11123 // SMMLS is generated during instruction selection and the rest of this
11124 // function can not handle the case where AddcSubcNode is a SUBC.
11127 // Finish building the operand list for {U/S}MLAL
11128 Ops
.push_back(*LowAddSub
);
11129 Ops
.push_back(*HiAddSub
);
11131 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11132 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11134 // Replace the ADDs' nodes uses by the MLA node's values.
11135 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11136 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11138 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11139 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11141 // Return original node to notify the driver to stop replacing.
11142 return SDValue(AddeSubeNode
, 0);
11145 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11146 TargetLowering::DAGCombinerInfo
&DCI
,
11147 const ARMSubtarget
*Subtarget
) {
11148 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11149 // While trying to combine for the other MLAL nodes, first search for the
11150 // chance to use UMAAL. Check if Addc uses a node which has already
11151 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11152 // as the addend, and it's handled in PerformUMLALCombine.
11154 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11155 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11157 // Check that we have a glued ADDC node.
11158 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11159 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11162 // Find the converted UMAAL or quit if it doesn't exist.
11163 SDNode
*UmlalNode
= nullptr;
11165 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11166 UmlalNode
= AddcNode
->getOperand(0).getNode();
11167 AddHi
= AddcNode
->getOperand(1);
11168 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11169 UmlalNode
= AddcNode
->getOperand(1).getNode();
11170 AddHi
= AddcNode
->getOperand(0);
11172 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11175 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11176 // the ADDC as well as Zero.
11177 if (!isNullConstant(UmlalNode
->getOperand(3)))
11180 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11181 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11182 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11183 isNullConstant(AddeNode
->getOperand(1)))) {
11184 SelectionDAG
&DAG
= DCI
.DAG
;
11185 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11186 UmlalNode
->getOperand(2), AddHi
};
11187 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11188 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11190 // Replace the ADDs' nodes uses by the UMAAL node's values.
11191 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11192 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11194 // Return original node to notify the driver to stop replacing.
11195 return SDValue(AddeNode
, 0);
11200 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11201 const ARMSubtarget
*Subtarget
) {
11202 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11205 // Check that we have a pair of ADDC and ADDE as operands.
11206 // Both addends of the ADDE must be zero.
11207 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11208 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11209 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11210 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11211 isNullConstant(AddeNode
->getOperand(0)) &&
11212 isNullConstant(AddeNode
->getOperand(1)) &&
11213 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11214 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11215 DAG
.getVTList(MVT::i32
, MVT::i32
),
11216 {N
->getOperand(0), N
->getOperand(1),
11217 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11222 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11223 TargetLowering::DAGCombinerInfo
&DCI
,
11224 const ARMSubtarget
*Subtarget
) {
11225 SelectionDAG
&DAG(DCI
.DAG
);
11227 if (N
->getOpcode() == ARMISD::SUBC
) {
11228 // (SUBC (ADDE 0, 0, C), 1) -> C
11229 SDValue LHS
= N
->getOperand(0);
11230 SDValue RHS
= N
->getOperand(1);
11231 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11232 isNullConstant(LHS
->getOperand(0)) &&
11233 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11234 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11238 if (Subtarget
->isThumb1Only()) {
11239 SDValue RHS
= N
->getOperand(1);
11240 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11241 int32_t imm
= C
->getSExtValue();
11242 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11244 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11245 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11247 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11255 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11256 TargetLowering::DAGCombinerInfo
&DCI
,
11257 const ARMSubtarget
*Subtarget
) {
11258 if (Subtarget
->isThumb1Only()) {
11259 SelectionDAG
&DAG
= DCI
.DAG
;
11260 SDValue RHS
= N
->getOperand(1);
11261 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11262 int64_t imm
= C
->getSExtValue();
11266 // The with-carry-in form matches bitwise not instead of the negation.
11267 // Effectively, the inverse interpretation of the carry flag already
11268 // accounts for part of the negation.
11269 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11271 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11273 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11274 N
->getOperand(0), RHS
, N
->getOperand(2));
11277 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11278 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11283 static SDValue
PerformABSCombine(SDNode
*N
,
11284 TargetLowering::DAGCombinerInfo
&DCI
,
11285 const ARMSubtarget
*Subtarget
) {
11287 SelectionDAG
&DAG
= DCI
.DAG
;
11288 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11290 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11293 if (!TLI
.expandABS(N
, res
, DAG
))
11299 /// PerformADDECombine - Target-specific dag combine transform from
11300 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11301 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11302 static SDValue
PerformADDECombine(SDNode
*N
,
11303 TargetLowering::DAGCombinerInfo
&DCI
,
11304 const ARMSubtarget
*Subtarget
) {
11305 // Only ARM and Thumb2 support UMLAL/SMLAL.
11306 if (Subtarget
->isThumb1Only())
11307 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11309 // Only perform the checks after legalize when the pattern is available.
11310 if (DCI
.isBeforeLegalize()) return SDValue();
11312 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11315 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11316 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11317 /// called with the default operands, and if that fails, with commuted
11319 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11320 TargetLowering::DAGCombinerInfo
&DCI
,
11321 const ARMSubtarget
*Subtarget
){
11322 // Attempt to create vpadd for this add.
11323 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11326 // Attempt to create vpaddl for this add.
11327 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11329 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11333 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11334 if (N0
.getNode()->hasOneUse())
11335 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11341 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11342 CombineLevel Level
) const {
11343 if (Level
== BeforeLegalizeTypes
)
11346 if (N
->getOpcode() != ISD::SHL
)
11349 if (Subtarget
->isThumb1Only()) {
11350 // Avoid making expensive immediates by commuting shifts. (This logic
11351 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11353 if (N
->getOpcode() != ISD::SHL
)
11355 SDValue N1
= N
->getOperand(0);
11356 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11357 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11359 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11360 if (Const
->getAPIntValue().ult(256))
11362 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11363 Const
->getAPIntValue().sgt(-256))
11369 // Turn off commute-with-shift transform after legalization, so it doesn't
11370 // conflict with PerformSHLSimplify. (We could try to detect when
11371 // PerformSHLSimplify would trigger more precisely, but it isn't
11372 // really necessary.)
11376 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11377 const SDNode
*N
, CombineLevel Level
) const {
11378 if (!Subtarget
->isThumb1Only())
11381 if (Level
== BeforeLegalizeTypes
)
11387 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11388 if (!Subtarget
->hasNEON()) {
11389 if (Subtarget
->isThumb1Only())
11390 return VT
.getScalarSizeInBits() <= 32;
11393 return VT
.isScalarInteger();
11396 static SDValue
PerformSHLSimplify(SDNode
*N
,
11397 TargetLowering::DAGCombinerInfo
&DCI
,
11398 const ARMSubtarget
*ST
) {
11399 // Allow the generic combiner to identify potential bswaps.
11400 if (DCI
.isBeforeLegalize())
11403 // DAG combiner will fold:
11404 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11405 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11406 // Other code patterns that can be also be modified have the following form:
11407 // b + ((a << 1) | 510)
11408 // b + ((a << 1) & 510)
11409 // b + ((a << 1) ^ 510)
11410 // b + ((a << 1) + 510)
11412 // Many instructions can perform the shift for free, but it requires both
11413 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11414 // instruction will needed. So, unfold back to the original pattern if:
11415 // - if c1 and c2 are small enough that they don't require mov imms.
11416 // - the user(s) of the node can perform an shl
11418 // No shifted operands for 16-bit instructions.
11419 if (ST
->isThumb() && ST
->isThumb1Only())
11422 // Check that all the users could perform the shl themselves.
11423 for (auto U
: N
->uses()) {
11424 switch(U
->getOpcode()) {
11434 // Check that the user isn't already using a constant because there
11435 // aren't any instructions that support an immediate operand and a
11436 // shifted operand.
11437 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11438 isa
<ConstantSDNode
>(U
->getOperand(1)))
11441 // Check that it's not already using a shift.
11442 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11443 U
->getOperand(1).getOpcode() == ISD::SHL
)
11449 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11450 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11453 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11456 SDValue SHL
= N
->getOperand(0);
11458 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11459 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11460 if (!C1ShlC2
|| !C2
)
11463 APInt C2Int
= C2
->getAPIntValue();
11464 APInt C1Int
= C1ShlC2
->getAPIntValue();
11466 // Check that performing a lshr will not lose any information.
11467 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11468 C2Int
.getBitWidth() - C2
->getZExtValue());
11469 if ((C1Int
& Mask
) != C1Int
)
11472 // Shift the first constant.
11473 C1Int
.lshrInPlace(C2Int
);
11475 // The immediates are encoded as an 8-bit value that can be rotated.
11476 auto LargeImm
= [](const APInt
&Imm
) {
11477 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11478 return Imm
.getBitWidth() - Zeros
> 8;
11481 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11484 SelectionDAG
&DAG
= DCI
.DAG
;
11486 SDValue X
= SHL
.getOperand(0);
11487 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11488 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11489 // Shift left to compensate for the lshr of C1Int.
11490 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11492 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11493 SHL
.dump(); N
->dump());
11494 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11499 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11501 static SDValue
PerformADDCombine(SDNode
*N
,
11502 TargetLowering::DAGCombinerInfo
&DCI
,
11503 const ARMSubtarget
*Subtarget
) {
11504 SDValue N0
= N
->getOperand(0);
11505 SDValue N1
= N
->getOperand(1);
11507 // Only works one way, because it needs an immediate operand.
11508 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11511 // First try with the default operand order.
11512 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11515 // If that didn't work, try again with the operands commuted.
11516 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11519 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11521 static SDValue
PerformSUBCombine(SDNode
*N
,
11522 TargetLowering::DAGCombinerInfo
&DCI
) {
11523 SDValue N0
= N
->getOperand(0);
11524 SDValue N1
= N
->getOperand(1);
11526 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11527 if (N1
.getNode()->hasOneUse())
11528 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11534 /// PerformVMULCombine
11535 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11536 /// special multiplier accumulator forwarding.
11537 /// vmul d3, d0, d2
11538 /// vmla d3, d1, d2
11540 /// vadd d3, d0, d1
11541 /// vmul d3, d3, d2
11542 // However, for (A + B) * (A + B),
11549 static SDValue
PerformVMULCombine(SDNode
*N
,
11550 TargetLowering::DAGCombinerInfo
&DCI
,
11551 const ARMSubtarget
*Subtarget
) {
11552 if (!Subtarget
->hasVMLxForwarding())
11555 SelectionDAG
&DAG
= DCI
.DAG
;
11556 SDValue N0
= N
->getOperand(0);
11557 SDValue N1
= N
->getOperand(1);
11558 unsigned Opcode
= N0
.getOpcode();
11559 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11560 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11561 Opcode
= N1
.getOpcode();
11562 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11563 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11571 EVT VT
= N
->getValueType(0);
11573 SDValue N00
= N0
->getOperand(0);
11574 SDValue N01
= N0
->getOperand(1);
11575 return DAG
.getNode(Opcode
, DL
, VT
,
11576 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11577 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11580 static SDValue
PerformMULCombine(SDNode
*N
,
11581 TargetLowering::DAGCombinerInfo
&DCI
,
11582 const ARMSubtarget
*Subtarget
) {
11583 SelectionDAG
&DAG
= DCI
.DAG
;
11585 if (Subtarget
->isThumb1Only())
11588 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11591 EVT VT
= N
->getValueType(0);
11592 if (VT
.is64BitVector() || VT
.is128BitVector())
11593 return PerformVMULCombine(N
, DCI
, Subtarget
);
11594 if (VT
!= MVT::i32
)
11597 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11601 int64_t MulAmt
= C
->getSExtValue();
11602 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11604 ShiftAmt
= ShiftAmt
& (32 - 1);
11605 SDValue V
= N
->getOperand(0);
11609 MulAmt
>>= ShiftAmt
;
11612 if (isPowerOf2_32(MulAmt
- 1)) {
11613 // (mul x, 2^N + 1) => (add (shl x, N), x)
11614 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11616 DAG
.getNode(ISD::SHL
, DL
, VT
,
11618 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11620 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11621 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11622 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11623 DAG
.getNode(ISD::SHL
, DL
, VT
,
11625 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11631 uint64_t MulAmtAbs
= -MulAmt
;
11632 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11633 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11634 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11636 DAG
.getNode(ISD::SHL
, DL
, VT
,
11638 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11640 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11641 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11642 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11644 DAG
.getNode(ISD::SHL
, DL
, VT
,
11646 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11648 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11649 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11655 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11656 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11658 // Do not add new nodes to DAG combiner worklist.
11659 DCI
.CombineTo(N
, Res
, false);
11663 static SDValue
CombineANDShift(SDNode
*N
,
11664 TargetLowering::DAGCombinerInfo
&DCI
,
11665 const ARMSubtarget
*Subtarget
) {
11666 // Allow DAGCombine to pattern-match before we touch the canonical form.
11667 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11670 if (N
->getValueType(0) != MVT::i32
)
11673 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11677 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11678 // Don't transform uxtb/uxth.
11679 if (C1
== 255 || C1
== 65535)
11682 SDNode
*N0
= N
->getOperand(0).getNode();
11683 if (!N0
->hasOneUse())
11686 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11689 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11691 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11695 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11696 if (!C2
|| C2
>= 32)
11699 // Clear irrelevant bits in the mask.
11705 SelectionDAG
&DAG
= DCI
.DAG
;
11708 // We have a pattern of the form "(and (shl x, c2) c1)" or
11709 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11710 // transform to a pair of shifts, to save materializing c1.
11712 // First pattern: right shift, then mask off leading bits.
11713 // FIXME: Use demanded bits?
11714 if (!LeftShift
&& isMask_32(C1
)) {
11715 uint32_t C3
= countLeadingZeros(C1
);
11717 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11718 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11719 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11720 DAG
.getConstant(C3
, DL
, MVT::i32
));
11724 // First pattern, reversed: left shift, then mask off trailing bits.
11725 if (LeftShift
&& isMask_32(~C1
)) {
11726 uint32_t C3
= countTrailingZeros(C1
);
11728 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11729 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11730 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11731 DAG
.getConstant(C3
, DL
, MVT::i32
));
11735 // Second pattern: left shift, then mask off leading bits.
11736 // FIXME: Use demanded bits?
11737 if (LeftShift
&& isShiftedMask_32(C1
)) {
11738 uint32_t Trailing
= countTrailingZeros(C1
);
11739 uint32_t C3
= countLeadingZeros(C1
);
11740 if (Trailing
== C2
&& C2
+ C3
< 32) {
11741 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11742 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11743 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11744 DAG
.getConstant(C3
, DL
, MVT::i32
));
11748 // Second pattern, reversed: right shift, then mask off trailing bits.
11749 // FIXME: Handle other patterns of known/demanded bits.
11750 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11751 uint32_t Leading
= countLeadingZeros(C1
);
11752 uint32_t C3
= countTrailingZeros(C1
);
11753 if (Leading
== C2
&& C2
+ C3
< 32) {
11754 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11755 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11756 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11757 DAG
.getConstant(C3
, DL
, MVT::i32
));
11761 // FIXME: Transform "(and (shl x, c2) c1)" ->
11762 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11767 static SDValue
PerformANDCombine(SDNode
*N
,
11768 TargetLowering::DAGCombinerInfo
&DCI
,
11769 const ARMSubtarget
*Subtarget
) {
11770 // Attempt to use immediate-form VBIC
11771 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11773 EVT VT
= N
->getValueType(0);
11774 SelectionDAG
&DAG
= DCI
.DAG
;
11776 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11779 APInt SplatBits
, SplatUndef
;
11780 unsigned SplatBitSize
;
11782 if (BVN
&& Subtarget
->hasNEON() &&
11783 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11784 if (SplatBitSize
<= 64) {
11786 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11787 SplatUndef
.getZExtValue(), SplatBitSize
,
11788 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11790 if (Val
.getNode()) {
11792 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11793 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11794 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11799 if (!Subtarget
->isThumb1Only()) {
11800 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11801 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11804 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11808 if (Subtarget
->isThumb1Only())
11809 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11815 // Try combining OR nodes to SMULWB, SMULWT.
11816 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11817 TargetLowering::DAGCombinerInfo
&DCI
,
11818 const ARMSubtarget
*Subtarget
) {
11819 if (!Subtarget
->hasV6Ops() ||
11820 (Subtarget
->isThumb() &&
11821 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11824 SDValue SRL
= OR
->getOperand(0);
11825 SDValue SHL
= OR
->getOperand(1);
11827 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11828 SRL
= OR
->getOperand(1);
11829 SHL
= OR
->getOperand(0);
11831 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11834 // The first operands to the shifts need to be the two results from the
11835 // same smul_lohi node.
11836 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11837 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11840 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11841 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11842 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11846 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11847 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11848 // For SMUWB the 16-bit value will signed extended somehow.
11849 // For SMULWT only the SRA is required.
11850 // Check both sides of SMUL_LOHI
11851 SDValue OpS16
= SMULLOHI
->getOperand(0);
11852 SDValue OpS32
= SMULLOHI
->getOperand(1);
11854 SelectionDAG
&DAG
= DCI
.DAG
;
11855 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11857 OpS32
= SMULLOHI
->getOperand(0);
11861 unsigned Opcode
= 0;
11862 if (isS16(OpS16
, DAG
))
11863 Opcode
= ARMISD::SMULWB
;
11864 else if (isSRA16(OpS16
)) {
11865 Opcode
= ARMISD::SMULWT
;
11866 OpS16
= OpS16
->getOperand(0);
11871 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11872 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11873 return SDValue(OR
, 0);
11876 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11877 TargetLowering::DAGCombinerInfo
&DCI
,
11878 const ARMSubtarget
*Subtarget
) {
11879 // BFI is only available on V6T2+
11880 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11883 EVT VT
= N
->getValueType(0);
11884 SDValue N0
= N
->getOperand(0);
11885 SDValue N1
= N
->getOperand(1);
11886 SelectionDAG
&DAG
= DCI
.DAG
;
11888 // 1) or (and A, mask), val => ARMbfi A, val, mask
11889 // iff (val & mask) == val
11891 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11892 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11893 // && mask == ~mask2
11894 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11895 // && ~mask == mask2
11896 // (i.e., copy a bitfield value into another bitfield of the same width)
11898 if (VT
!= MVT::i32
)
11901 SDValue N00
= N0
.getOperand(0);
11903 // The value and the mask need to be constants so we can verify this is
11904 // actually a bitfield set. If the mask is 0xffff, we can do better
11905 // via a movt instruction, so don't use BFI in that case.
11906 SDValue MaskOp
= N0
.getOperand(1);
11907 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11910 unsigned Mask
= MaskC
->getZExtValue();
11911 if (Mask
== 0xffff)
11914 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11915 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11917 unsigned Val
= N1C
->getZExtValue();
11918 if ((Val
& ~Mask
) != Val
)
11921 if (ARM::isBitFieldInvertedMask(Mask
)) {
11922 Val
>>= countTrailingZeros(~Mask
);
11924 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11925 DAG
.getConstant(Val
, DL
, MVT::i32
),
11926 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11928 DCI
.CombineTo(N
, Res
, false);
11929 // Return value from the original node to inform the combiner than N is
11931 return SDValue(N
, 0);
11933 } else if (N1
.getOpcode() == ISD::AND
) {
11934 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11935 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11938 unsigned Mask2
= N11C
->getZExtValue();
11940 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11942 if (ARM::isBitFieldInvertedMask(Mask
) &&
11943 (Mask
== ~Mask2
)) {
11944 // The pack halfword instruction works better for masks that fit it,
11945 // so use that when it's available.
11946 if (Subtarget
->hasDSP() &&
11947 (Mask
== 0xffff || Mask
== 0xffff0000))
11950 unsigned amt
= countTrailingZeros(Mask2
);
11951 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11952 DAG
.getConstant(amt
, DL
, MVT::i32
));
11953 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11954 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11955 DCI
.CombineTo(N
, Res
, false);
11956 // Return value from the original node to inform the combiner than N is
11958 return SDValue(N
, 0);
11959 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11960 (~Mask
== Mask2
)) {
11961 // The pack halfword instruction works better for masks that fit it,
11962 // so use that when it's available.
11963 if (Subtarget
->hasDSP() &&
11964 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11967 unsigned lsb
= countTrailingZeros(Mask
);
11968 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11969 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11970 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11971 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11972 DCI
.CombineTo(N
, Res
, false);
11973 // Return value from the original node to inform the combiner than N is
11975 return SDValue(N
, 0);
11979 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11980 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11981 ARM::isBitFieldInvertedMask(~Mask
)) {
11982 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11983 // where lsb(mask) == #shamt and masked bits of B are known zero.
11984 SDValue ShAmt
= N00
.getOperand(1);
11985 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11986 unsigned LSB
= countTrailingZeros(Mask
);
11990 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11991 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11993 DCI
.CombineTo(N
, Res
, false);
11994 // Return value from the original node to inform the combiner than N is
11996 return SDValue(N
, 0);
12002 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12019 static SDValue
PerformORCombine_i1(SDNode
*N
,
12020 TargetLowering::DAGCombinerInfo
&DCI
,
12021 const ARMSubtarget
*Subtarget
) {
12022 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12023 // together with predicates
12024 EVT VT
= N
->getValueType(0);
12025 SDValue N0
= N
->getOperand(0);
12026 SDValue N1
= N
->getOperand(1);
12028 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12029 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12030 if (N0
->getOpcode() == ARMISD::VCMP
)
12031 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12033 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12034 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12036 if (N1
->getOpcode() == ARMISD::VCMP
)
12037 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12039 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12040 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12043 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12046 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12047 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12049 if (!isValidMVECond(Opposite0
,
12050 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12051 !isValidMVECond(Opposite1
,
12052 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12055 SmallVector
<SDValue
, 4> Ops0
;
12056 Ops0
.push_back(N0
->getOperand(0));
12057 if (N0
->getOpcode() == ARMISD::VCMP
)
12058 Ops0
.push_back(N0
->getOperand(1));
12059 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12060 SmallVector
<SDValue
, 4> Ops1
;
12061 Ops1
.push_back(N1
->getOperand(0));
12062 if (N1
->getOpcode() == ARMISD::VCMP
)
12063 Ops1
.push_back(N1
->getOperand(1));
12064 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12066 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12067 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12068 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12069 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12070 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12073 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12074 static SDValue
PerformORCombine(SDNode
*N
,
12075 TargetLowering::DAGCombinerInfo
&DCI
,
12076 const ARMSubtarget
*Subtarget
) {
12077 // Attempt to use immediate-form VORR
12078 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12080 EVT VT
= N
->getValueType(0);
12081 SelectionDAG
&DAG
= DCI
.DAG
;
12083 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12086 APInt SplatBits
, SplatUndef
;
12087 unsigned SplatBitSize
;
12089 if (BVN
&& Subtarget
->hasNEON() &&
12090 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12091 if (SplatBitSize
<= 64) {
12093 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12094 SplatUndef
.getZExtValue(), SplatBitSize
,
12095 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12097 if (Val
.getNode()) {
12099 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12100 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12101 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12106 if (!Subtarget
->isThumb1Only()) {
12107 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12108 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12110 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12114 SDValue N0
= N
->getOperand(0);
12115 SDValue N1
= N
->getOperand(1);
12117 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12118 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12119 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12121 // The code below optimizes (or (and X, Y), Z).
12122 // The AND operand needs to have a single user to make these optimizations
12124 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12128 unsigned SplatBitSize
;
12131 APInt SplatBits0
, SplatBits1
;
12132 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12133 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12134 // Ensure that the second operand of both ands are constants
12135 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12136 HasAnyUndefs
) && !HasAnyUndefs
) {
12137 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12138 HasAnyUndefs
) && !HasAnyUndefs
) {
12139 // Ensure that the bit width of the constants are the same and that
12140 // the splat arguments are logical inverses as per the pattern we
12141 // are trying to simplify.
12142 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12143 SplatBits0
== ~SplatBits1
) {
12144 // Canonicalize the vector type to make instruction selection
12146 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12147 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12150 N1
->getOperand(0));
12151 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12157 if (Subtarget
->hasMVEIntegerOps() &&
12158 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12159 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12161 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12163 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12164 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12168 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12174 static SDValue
PerformXORCombine(SDNode
*N
,
12175 TargetLowering::DAGCombinerInfo
&DCI
,
12176 const ARMSubtarget
*Subtarget
) {
12177 EVT VT
= N
->getValueType(0);
12178 SelectionDAG
&DAG
= DCI
.DAG
;
12180 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12183 if (!Subtarget
->isThumb1Only()) {
12184 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12185 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12188 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12195 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12196 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12197 // their position in "to" (Rd).
12198 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12199 assert(N
->getOpcode() == ARMISD::BFI
);
12201 SDValue From
= N
->getOperand(1);
12202 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12203 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12205 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12206 // #C in the base of the SHR.
12207 if (From
->getOpcode() == ISD::SRL
&&
12208 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12209 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12210 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12211 FromMask
<<= Shift
.getLimitedValue(31);
12212 From
= From
->getOperand(0);
12218 // If A and B contain one contiguous set of bits, does A | B == A . B?
12220 // Neither A nor B must be zero.
12221 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12222 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12223 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12224 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12227 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12228 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12230 APInt ToMask
, FromMask
;
12231 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12232 SDValue To
= N
->getOperand(0);
12234 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12235 // aren't compatible, but not if they set the same bit in their destination as
12236 // we do (or that of any BFI we're going to combine with).
12238 APInt CombinedToMask
= ToMask
;
12239 while (V
.getOpcode() == ARMISD::BFI
) {
12240 APInt NewToMask
, NewFromMask
;
12241 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12242 if (NewFrom
!= From
) {
12243 // This BFI has a different base. Keep going.
12244 CombinedToMask
|= NewToMask
;
12245 V
= V
.getOperand(0);
12249 // Do the written bits conflict with any we've seen so far?
12250 if ((NewToMask
& CombinedToMask
).getBoolValue())
12251 // Conflicting bits - bail out because going further is unsafe.
12254 // Are the new bits contiguous when combined with the old bits?
12255 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12256 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12258 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12259 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12262 // We've seen a write to some bits, so track it.
12263 CombinedToMask
|= NewToMask
;
12265 V
= V
.getOperand(0);
12271 static SDValue
PerformBFICombine(SDNode
*N
,
12272 TargetLowering::DAGCombinerInfo
&DCI
) {
12273 SDValue N1
= N
->getOperand(1);
12274 if (N1
.getOpcode() == ISD::AND
) {
12275 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12276 // the bits being cleared by the AND are not demanded by the BFI.
12277 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12280 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12281 unsigned LSB
= countTrailingZeros(~InvMask
);
12282 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12284 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12285 "undefined behavior");
12286 unsigned Mask
= (1u << Width
) - 1;
12287 unsigned Mask2
= N11C
->getZExtValue();
12288 if ((Mask
& (~Mask2
)) == 0)
12289 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12290 N
->getOperand(0), N1
.getOperand(0),
12292 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12293 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12294 // Keep track of any consecutive bits set that all come from the same base
12295 // value. We can combine these together into a single BFI.
12296 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12297 if (CombineBFI
== SDValue())
12300 // We've found a BFI.
12301 APInt ToMask1
, FromMask1
;
12302 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12304 APInt ToMask2
, FromMask2
;
12305 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12306 assert(From1
== From2
);
12309 // First, unlink CombineBFI.
12310 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12311 // Then create a new BFI, combining the two together.
12312 APInt NewFromMask
= FromMask1
| FromMask2
;
12313 APInt NewToMask
= ToMask1
| ToMask2
;
12315 EVT VT
= N
->getValueType(0);
12318 if (NewFromMask
[0] == 0)
12319 From1
= DCI
.DAG
.getNode(
12320 ISD::SRL
, dl
, VT
, From1
,
12321 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12322 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12323 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12328 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12329 /// ARMISD::VMOVRRD.
12330 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12331 TargetLowering::DAGCombinerInfo
&DCI
,
12332 const ARMSubtarget
*Subtarget
) {
12333 // vmovrrd(vmovdrr x, y) -> x,y
12334 SDValue InDouble
= N
->getOperand(0);
12335 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12336 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12338 // vmovrrd(load f64) -> (load i32), (load i32)
12339 SDNode
*InNode
= InDouble
.getNode();
12340 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12341 InNode
->getValueType(0) == MVT::f64
&&
12342 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12343 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12344 // TODO: Should this be done for non-FrameIndex operands?
12345 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12347 SelectionDAG
&DAG
= DCI
.DAG
;
12349 SDValue BasePtr
= LD
->getBasePtr();
12351 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12352 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12354 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12355 DAG
.getConstant(4, DL
, MVT::i32
));
12357 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12358 LD
->getPointerInfo().getWithOffset(4),
12359 std::min(4U, LD
->getAlignment()),
12360 LD
->getMemOperand()->getFlags());
12362 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12363 if (DCI
.DAG
.getDataLayout().isBigEndian())
12364 std::swap (NewLD1
, NewLD2
);
12365 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12372 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12373 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12374 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12375 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12376 SDValue Op0
= N
->getOperand(0);
12377 SDValue Op1
= N
->getOperand(1);
12378 if (Op0
.getOpcode() == ISD::BITCAST
)
12379 Op0
= Op0
.getOperand(0);
12380 if (Op1
.getOpcode() == ISD::BITCAST
)
12381 Op1
= Op1
.getOperand(0);
12382 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12383 Op0
.getNode() == Op1
.getNode() &&
12384 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12385 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12386 N
->getValueType(0), Op0
.getOperand(0));
12390 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12391 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12392 /// i64 vector to have f64 elements, since the value can then be loaded
12393 /// directly into a VFP register.
12394 static bool hasNormalLoadOperand(SDNode
*N
) {
12395 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12396 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12397 SDNode
*Elt
= N
->getOperand(i
).getNode();
12398 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12404 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12405 /// ISD::BUILD_VECTOR.
12406 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12407 TargetLowering::DAGCombinerInfo
&DCI
,
12408 const ARMSubtarget
*Subtarget
) {
12409 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12410 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12411 // into a pair of GPRs, which is fine when the value is used as a scalar,
12412 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12413 SelectionDAG
&DAG
= DCI
.DAG
;
12414 if (N
->getNumOperands() == 2)
12415 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12418 // Load i64 elements as f64 values so that type legalization does not split
12419 // them up into i32 values.
12420 EVT VT
= N
->getValueType(0);
12421 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12424 SmallVector
<SDValue
, 8> Ops
;
12425 unsigned NumElts
= VT
.getVectorNumElements();
12426 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12427 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12429 // Make the DAGCombiner fold the bitcast.
12430 DCI
.AddToWorklist(V
.getNode());
12432 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12433 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12434 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12437 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12439 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12440 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12441 // At that time, we may have inserted bitcasts from integer to float.
12442 // If these bitcasts have survived DAGCombine, change the lowering of this
12443 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12444 // force to use floating point types.
12446 // Make sure we can change the type of the vector.
12447 // This is possible iff:
12448 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12449 // 1.1. Vector is used only once.
12450 // 1.2. Use is a bit convert to an integer type.
12451 // 2. The size of its operands are 32-bits (64-bits are not legal).
12452 EVT VT
= N
->getValueType(0);
12453 EVT EltVT
= VT
.getVectorElementType();
12455 // Check 1.1. and 2.
12456 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12459 // By construction, the input type must be float.
12460 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12463 SDNode
*Use
= *N
->use_begin();
12464 if (Use
->getOpcode() != ISD::BITCAST
||
12465 Use
->getValueType(0).isFloatingPoint())
12468 // Check profitability.
12469 // Model is, if more than half of the relevant operands are bitcast from
12470 // i32, turn the build_vector into a sequence of insert_vector_elt.
12471 // Relevant operands are everything that is not statically
12472 // (i.e., at compile time) bitcasted.
12473 unsigned NumOfBitCastedElts
= 0;
12474 unsigned NumElts
= VT
.getVectorNumElements();
12475 unsigned NumOfRelevantElts
= NumElts
;
12476 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12477 SDValue Elt
= N
->getOperand(Idx
);
12478 if (Elt
->getOpcode() == ISD::BITCAST
) {
12479 // Assume only bit cast to i32 will go away.
12480 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12481 ++NumOfBitCastedElts
;
12482 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12483 // Constants are statically casted, thus do not count them as
12484 // relevant operands.
12485 --NumOfRelevantElts
;
12488 // Check if more than half of the elements require a non-free bitcast.
12489 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12492 SelectionDAG
&DAG
= DCI
.DAG
;
12493 // Create the new vector type.
12494 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12495 // Check if the type is legal.
12496 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12497 if (!TLI
.isTypeLegal(VecVT
))
12501 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12502 // => BITCAST INSERT_VECTOR_ELT
12503 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12504 // (BITCAST EN), N.
12505 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12507 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12508 SDValue V
= N
->getOperand(Idx
);
12511 if (V
.getOpcode() == ISD::BITCAST
&&
12512 V
->getOperand(0).getValueType() == MVT::i32
)
12513 // Fold obvious case.
12514 V
= V
.getOperand(0);
12516 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12517 // Make the DAGCombiner fold the bitcasts.
12518 DCI
.AddToWorklist(V
.getNode());
12520 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12521 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12523 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12524 // Make the DAGCombiner fold the bitcasts.
12525 DCI
.AddToWorklist(Vec
.getNode());
12529 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12530 /// ISD::INSERT_VECTOR_ELT.
12531 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12532 TargetLowering::DAGCombinerInfo
&DCI
) {
12533 // Bitcast an i64 load inserted into a vector to f64.
12534 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12535 EVT VT
= N
->getValueType(0);
12536 SDNode
*Elt
= N
->getOperand(1).getNode();
12537 if (VT
.getVectorElementType() != MVT::i64
||
12538 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12541 SelectionDAG
&DAG
= DCI
.DAG
;
12543 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12544 VT
.getVectorNumElements());
12545 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12546 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12547 // Make the DAGCombiner fold the bitcasts.
12548 DCI
.AddToWorklist(Vec
.getNode());
12549 DCI
.AddToWorklist(V
.getNode());
12550 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12551 Vec
, V
, N
->getOperand(2));
12552 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12555 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12556 /// ISD::VECTOR_SHUFFLE.
12557 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12558 // The LLVM shufflevector instruction does not require the shuffle mask
12559 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12560 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12561 // operands do not match the mask length, they are extended by concatenating
12562 // them with undef vectors. That is probably the right thing for other
12563 // targets, but for NEON it is better to concatenate two double-register
12564 // size vector operands into a single quad-register size vector. Do that
12565 // transformation here:
12566 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12567 // shuffle(concat(v1, v2), undef)
12568 SDValue Op0
= N
->getOperand(0);
12569 SDValue Op1
= N
->getOperand(1);
12570 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12571 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12572 Op0
.getNumOperands() != 2 ||
12573 Op1
.getNumOperands() != 2)
12575 SDValue Concat0Op1
= Op0
.getOperand(1);
12576 SDValue Concat1Op1
= Op1
.getOperand(1);
12577 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12579 // Skip the transformation if any of the types are illegal.
12580 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12581 EVT VT
= N
->getValueType(0);
12582 if (!TLI
.isTypeLegal(VT
) ||
12583 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12584 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12587 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12588 Op0
.getOperand(0), Op1
.getOperand(0));
12589 // Translate the shuffle mask.
12590 SmallVector
<int, 16> NewMask
;
12591 unsigned NumElts
= VT
.getVectorNumElements();
12592 unsigned HalfElts
= NumElts
/2;
12593 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12594 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12595 int MaskElt
= SVN
->getMaskElt(n
);
12597 if (MaskElt
< (int)HalfElts
)
12599 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12600 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12601 NewMask
.push_back(NewElt
);
12603 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12604 DAG
.getUNDEF(VT
), NewMask
);
12607 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12608 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12609 /// base address updates.
12610 /// For generic load/stores, the memory type is assumed to be a vector.
12611 /// The caller is assumed to have checked legality.
12612 static SDValue
CombineBaseUpdate(SDNode
*N
,
12613 TargetLowering::DAGCombinerInfo
&DCI
) {
12614 SelectionDAG
&DAG
= DCI
.DAG
;
12615 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12616 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12617 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12618 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12619 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12620 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12623 // Search for a use of the address operand that is an increment.
12624 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12625 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12626 SDNode
*User
= *UI
;
12627 if (User
->getOpcode() != ISD::ADD
||
12628 UI
.getUse().getResNo() != Addr
.getResNo())
12631 // Check that the add is independent of the load/store. Otherwise, folding
12632 // it would create a cycle. We can avoid searching through Addr as it's a
12633 // predecessor to both.
12634 SmallPtrSet
<const SDNode
*, 32> Visited
;
12635 SmallVector
<const SDNode
*, 16> Worklist
;
12636 Visited
.insert(Addr
.getNode());
12637 Worklist
.push_back(N
);
12638 Worklist
.push_back(User
);
12639 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12640 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12643 // Find the new opcode for the updating load/store.
12644 bool isLoadOp
= true;
12645 bool isLaneOp
= false;
12646 unsigned NewOpc
= 0;
12647 unsigned NumVecs
= 0;
12649 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12651 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12652 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12653 NumVecs
= 1; break;
12654 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12655 NumVecs
= 2; break;
12656 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12657 NumVecs
= 3; break;
12658 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12659 NumVecs
= 4; break;
12660 case Intrinsic::arm_neon_vld2dup
:
12661 case Intrinsic::arm_neon_vld3dup
:
12662 case Intrinsic::arm_neon_vld4dup
:
12663 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12664 // combining base updates for such intrinsics.
12666 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12667 NumVecs
= 2; isLaneOp
= true; break;
12668 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12669 NumVecs
= 3; isLaneOp
= true; break;
12670 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12671 NumVecs
= 4; isLaneOp
= true; break;
12672 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12673 NumVecs
= 1; isLoadOp
= false; break;
12674 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12675 NumVecs
= 2; isLoadOp
= false; break;
12676 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12677 NumVecs
= 3; isLoadOp
= false; break;
12678 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12679 NumVecs
= 4; isLoadOp
= false; break;
12680 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12681 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12682 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12683 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12684 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12685 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12689 switch (N
->getOpcode()) {
12690 default: llvm_unreachable("unexpected opcode for Neon base update");
12691 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12692 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12693 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12694 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12695 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12696 NumVecs
= 1; isLaneOp
= false; break;
12697 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12698 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12702 // Find the size of memory referenced by the load/store.
12705 VecTy
= N
->getValueType(0);
12706 } else if (isIntrinsic
) {
12707 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12709 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12710 VecTy
= N
->getOperand(1).getValueType();
12713 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12715 NumBytes
/= VecTy
.getVectorNumElements();
12717 // If the increment is a constant, it must match the memory ref size.
12718 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12719 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12720 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12721 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12722 // separate instructions that make it harder to use a non-constant update.
12726 // OK, we found an ADD we can fold into the base update.
12727 // Now, create a _UPD node, taking care of not breaking alignment.
12729 EVT AlignedVecTy
= VecTy
;
12730 unsigned Alignment
= MemN
->getAlignment();
12732 // If this is a less-than-standard-aligned load/store, change the type to
12733 // match the standard alignment.
12734 // The alignment is overlooked when selecting _UPD variants; and it's
12735 // easier to introduce bitcasts here than fix that.
12736 // There are 3 ways to get to this base-update combine:
12737 // - intrinsics: they are assumed to be properly aligned (to the standard
12738 // alignment of the memory type), so we don't need to do anything.
12739 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12740 // intrinsics, so, likewise, there's nothing to do.
12741 // - generic load/store instructions: the alignment is specified as an
12742 // explicit operand, rather than implicitly as the standard alignment
12743 // of the memory type (like the intrisics). We need to change the
12744 // memory type to match the explicit alignment. That way, we don't
12745 // generate non-standard-aligned ARMISD::VLDx nodes.
12746 if (isa
<LSBaseSDNode
>(N
)) {
12747 if (Alignment
== 0)
12749 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12750 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12751 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12752 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12753 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12754 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12756 // Don't set an explicit alignment on regular load/stores that we want
12757 // to transform to VLD/VST 1_UPD nodes.
12758 // This matches the behavior of regular load/stores, which only get an
12759 // explicit alignment if the MMO alignment is larger than the standard
12760 // alignment of the memory type.
12761 // Intrinsics, however, always get an explicit alignment, set to the
12762 // alignment of the MMO.
12766 // Create the new updating load/store node.
12767 // First, create an SDVTList for the new updating node's results.
12769 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12771 for (n
= 0; n
< NumResultVecs
; ++n
)
12772 Tys
[n
] = AlignedVecTy
;
12773 Tys
[n
++] = MVT::i32
;
12774 Tys
[n
] = MVT::Other
;
12775 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12777 // Then, gather the new node's operands.
12778 SmallVector
<SDValue
, 8> Ops
;
12779 Ops
.push_back(N
->getOperand(0)); // incoming chain
12780 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12781 Ops
.push_back(Inc
);
12783 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12784 // Try to match the intrinsic's signature
12785 Ops
.push_back(StN
->getValue());
12787 // Loads (and of course intrinsics) match the intrinsics' signature,
12788 // so just add all but the alignment operand.
12789 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12790 Ops
.push_back(N
->getOperand(i
));
12793 // For all node types, the alignment operand is always the last one.
12794 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12796 // If this is a non-standard-aligned STORE, the penultimate operand is the
12797 // stored value. Bitcast it to the aligned type.
12798 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12799 SDValue
&StVal
= Ops
[Ops
.size()-2];
12800 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12803 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12804 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12805 MemN
->getMemOperand());
12807 // Update the uses.
12808 SmallVector
<SDValue
, 5> NewResults
;
12809 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12810 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12812 // If this is an non-standard-aligned LOAD, the first result is the loaded
12813 // value. Bitcast it to the expected result type.
12814 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12815 SDValue
&LdVal
= NewResults
[0];
12816 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12819 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12820 DCI
.CombineTo(N
, NewResults
);
12821 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12828 static SDValue
PerformVLDCombine(SDNode
*N
,
12829 TargetLowering::DAGCombinerInfo
&DCI
) {
12830 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12833 return CombineBaseUpdate(N
, DCI
);
12836 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12837 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12838 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12840 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12841 SelectionDAG
&DAG
= DCI
.DAG
;
12842 EVT VT
= N
->getValueType(0);
12843 // vldN-dup instructions only support 64-bit vectors for N > 1.
12844 if (!VT
.is64BitVector())
12847 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12848 SDNode
*VLD
= N
->getOperand(0).getNode();
12849 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12851 unsigned NumVecs
= 0;
12852 unsigned NewOpc
= 0;
12853 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12854 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12856 NewOpc
= ARMISD::VLD2DUP
;
12857 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12859 NewOpc
= ARMISD::VLD3DUP
;
12860 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12862 NewOpc
= ARMISD::VLD4DUP
;
12867 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12868 // numbers match the load.
12869 unsigned VLDLaneNo
=
12870 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12871 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12873 // Ignore uses of the chain result.
12874 if (UI
.getUse().getResNo() == NumVecs
)
12876 SDNode
*User
= *UI
;
12877 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12878 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12882 // Create the vldN-dup node.
12885 for (n
= 0; n
< NumVecs
; ++n
)
12887 Tys
[n
] = MVT::Other
;
12888 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12889 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12890 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12891 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12892 Ops
, VLDMemInt
->getMemoryVT(),
12893 VLDMemInt
->getMemOperand());
12895 // Update the uses.
12896 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12898 unsigned ResNo
= UI
.getUse().getResNo();
12899 // Ignore uses of the chain result.
12900 if (ResNo
== NumVecs
)
12902 SDNode
*User
= *UI
;
12903 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12906 // Now the vldN-lane intrinsic is dead except for its chain result.
12907 // Update uses of the chain.
12908 std::vector
<SDValue
> VLDDupResults
;
12909 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12910 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12911 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12912 DCI
.CombineTo(VLD
, VLDDupResults
);
12917 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12918 /// ARMISD::VDUPLANE.
12919 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12920 TargetLowering::DAGCombinerInfo
&DCI
) {
12921 SDValue Op
= N
->getOperand(0);
12923 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12924 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12925 if (CombineVLDDUP(N
, DCI
))
12926 return SDValue(N
, 0);
12928 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12929 // redundant. Ignore bit_converts for now; element sizes are checked below.
12930 while (Op
.getOpcode() == ISD::BITCAST
)
12931 Op
= Op
.getOperand(0);
12932 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12935 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12936 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12937 // The canonical VMOV for a zero vector uses a 32-bit element size.
12938 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12940 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12942 EVT VT
= N
->getValueType(0);
12943 if (EltSize
> VT
.getScalarSizeInBits())
12946 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12949 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12950 static SDValue
PerformVDUPCombine(SDNode
*N
,
12951 TargetLowering::DAGCombinerInfo
&DCI
,
12952 const ARMSubtarget
*Subtarget
) {
12953 SelectionDAG
&DAG
= DCI
.DAG
;
12954 SDValue Op
= N
->getOperand(0);
12956 if (!Subtarget
->hasNEON())
12959 // Match VDUP(LOAD) -> VLD1DUP.
12960 // We match this pattern here rather than waiting for isel because the
12961 // transform is only legal for unindexed loads.
12962 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12963 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12964 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12965 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12966 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12967 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12968 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12969 Ops
, LD
->getMemoryVT(),
12970 LD
->getMemOperand());
12971 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12978 static SDValue
PerformLOADCombine(SDNode
*N
,
12979 TargetLowering::DAGCombinerInfo
&DCI
) {
12980 EVT VT
= N
->getValueType(0);
12982 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12983 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12984 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12985 return CombineBaseUpdate(N
, DCI
);
12990 /// PerformSTORECombine - Target-specific dag combine xforms for
12992 static SDValue
PerformSTORECombine(SDNode
*N
,
12993 TargetLowering::DAGCombinerInfo
&DCI
) {
12994 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12995 if (St
->isVolatile())
12998 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12999 // pack all of the elements in one place. Next, store to memory in fewer
13001 SDValue StVal
= St
->getValue();
13002 EVT VT
= StVal
.getValueType();
13003 if (St
->isTruncatingStore() && VT
.isVector()) {
13004 SelectionDAG
&DAG
= DCI
.DAG
;
13005 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13006 EVT StVT
= St
->getMemoryVT();
13007 unsigned NumElems
= VT
.getVectorNumElements();
13008 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13009 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13010 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13012 // From, To sizes and ElemCount must be pow of two
13013 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
13015 // We are going to use the original vector elt for storing.
13016 // Accumulated smaller vector elements must be a multiple of the store size.
13017 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
13019 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13020 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13022 // Create a type on which we perform the shuffle.
13023 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13024 NumElems
*SizeRatio
);
13025 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13028 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13029 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13030 for (unsigned i
= 0; i
< NumElems
; ++i
)
13031 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
13032 ? (i
+ 1) * SizeRatio
- 1
13035 // Can't shuffle using an illegal type.
13036 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
13038 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
13039 DAG
.getUNDEF(WideVec
.getValueType()),
13041 // At this point all of the data is stored at the bottom of the
13042 // register. We now need to save it to mem.
13044 // Find the largest store unit
13045 MVT StoreType
= MVT::i8
;
13046 for (MVT Tp
: MVT::integer_valuetypes()) {
13047 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13050 // Didn't find a legal store type.
13051 if (!TLI
.isTypeLegal(StoreType
))
13054 // Bitcast the original vector into a vector of store-size units
13055 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
13056 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
13057 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13058 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13059 SmallVector
<SDValue
, 8> Chains
;
13060 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13061 TLI
.getPointerTy(DAG
.getDataLayout()));
13062 SDValue BasePtr
= St
->getBasePtr();
13064 // Perform one or more big stores into memory.
13065 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
13066 for (unsigned I
= 0; I
< E
; I
++) {
13067 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
13068 StoreType
, ShuffWide
,
13069 DAG
.getIntPtrConstant(I
, DL
));
13070 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
13071 St
->getPointerInfo(), St
->getAlignment(),
13072 St
->getMemOperand()->getFlags());
13073 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
13075 Chains
.push_back(Ch
);
13077 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13080 if (!ISD::isNormalStore(St
))
13083 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13084 // ARM stores of arguments in the same cache line.
13085 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13086 StVal
.getNode()->hasOneUse()) {
13087 SelectionDAG
&DAG
= DCI
.DAG
;
13088 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13090 SDValue BasePtr
= St
->getBasePtr();
13091 SDValue NewST1
= DAG
.getStore(
13092 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13093 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13094 St
->getMemOperand()->getFlags());
13096 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13097 DAG
.getConstant(4, DL
, MVT::i32
));
13098 return DAG
.getStore(NewST1
.getValue(0), DL
,
13099 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13100 OffsetPtr
, St
->getPointerInfo(),
13101 std::min(4U, St
->getAlignment() / 2),
13102 St
->getMemOperand()->getFlags());
13105 if (StVal
.getValueType() == MVT::i64
&&
13106 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13108 // Bitcast an i64 store extracted from a vector to f64.
13109 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13110 SelectionDAG
&DAG
= DCI
.DAG
;
13112 SDValue IntVec
= StVal
.getOperand(0);
13113 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13114 IntVec
.getValueType().getVectorNumElements());
13115 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13116 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13117 Vec
, StVal
.getOperand(1));
13119 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13120 // Make the DAGCombiner fold the bitcasts.
13121 DCI
.AddToWorklist(Vec
.getNode());
13122 DCI
.AddToWorklist(ExtElt
.getNode());
13123 DCI
.AddToWorklist(V
.getNode());
13124 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13125 St
->getPointerInfo(), St
->getAlignment(),
13126 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13129 // If this is a legal vector store, try to combine it into a VST1_UPD.
13130 if (ISD::isNormalStore(N
) && VT
.isVector() &&
13131 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13132 return CombineBaseUpdate(N
, DCI
);
13137 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13138 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13139 /// when the VMUL has a constant operand that is a power of 2.
13141 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13142 /// vmul.f32 d16, d17, d16
13143 /// vcvt.s32.f32 d16, d16
13145 /// vcvt.s32.f32 d16, d16, #3
13146 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13147 const ARMSubtarget
*Subtarget
) {
13148 if (!Subtarget
->hasNEON())
13151 SDValue Op
= N
->getOperand(0);
13152 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13153 Op
.getOpcode() != ISD::FMUL
)
13156 SDValue ConstVec
= Op
->getOperand(1);
13157 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13160 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13161 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13162 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13163 uint32_t IntBits
= IntTy
.getSizeInBits();
13164 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13165 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13166 // These instructions only exist converting from f32 to i32. We can handle
13167 // smaller integers by generating an extra truncate, but larger ones would
13168 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13169 // these intructions only support v2i32/v4i32 types.
13173 BitVector UndefElements
;
13174 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13175 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13176 if (C
== -1 || C
== 0 || C
> 32)
13180 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13181 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13182 Intrinsic::arm_neon_vcvtfp2fxu
;
13183 SDValue FixConv
= DAG
.getNode(
13184 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13185 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13186 DAG
.getConstant(C
, dl
, MVT::i32
));
13188 if (IntBits
< FloatBits
)
13189 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13194 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13195 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13196 /// when the VDIV has a constant operand that is a power of 2.
13198 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13199 /// vcvt.f32.s32 d16, d16
13200 /// vdiv.f32 d16, d17, d16
13202 /// vcvt.f32.s32 d16, d16, #3
13203 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13204 const ARMSubtarget
*Subtarget
) {
13205 if (!Subtarget
->hasNEON())
13208 SDValue Op
= N
->getOperand(0);
13209 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13210 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13211 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13214 SDValue ConstVec
= N
->getOperand(1);
13215 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13218 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13219 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13220 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13221 uint32_t IntBits
= IntTy
.getSizeInBits();
13222 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13223 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13224 // These instructions only exist converting from i32 to f32. We can handle
13225 // smaller integers by generating an extra extend, but larger ones would
13226 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13227 // these intructions only support v2i32/v4i32 types.
13231 BitVector UndefElements
;
13232 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13233 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13234 if (C
== -1 || C
== 0 || C
> 32)
13238 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13239 SDValue ConvInput
= Op
.getOperand(0);
13240 if (IntBits
< FloatBits
)
13241 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13242 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13245 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13246 Intrinsic::arm_neon_vcvtfxu2fp
;
13247 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13249 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13250 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13253 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13254 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13255 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13258 // Don't do anything for most intrinsics.
13261 // Vector shifts: check for immediate versions and lower them.
13262 // Note: This is done during DAG combining instead of DAG legalizing because
13263 // the build_vectors for 64-bit vector element shift counts are generally
13264 // not legal, and it is hard to see their values after they get legalized to
13265 // loads from a constant pool.
13266 case Intrinsic::arm_neon_vshifts
:
13267 case Intrinsic::arm_neon_vshiftu
:
13268 case Intrinsic::arm_neon_vrshifts
:
13269 case Intrinsic::arm_neon_vrshiftu
:
13270 case Intrinsic::arm_neon_vrshiftn
:
13271 case Intrinsic::arm_neon_vqshifts
:
13272 case Intrinsic::arm_neon_vqshiftu
:
13273 case Intrinsic::arm_neon_vqshiftsu
:
13274 case Intrinsic::arm_neon_vqshiftns
:
13275 case Intrinsic::arm_neon_vqshiftnu
:
13276 case Intrinsic::arm_neon_vqshiftnsu
:
13277 case Intrinsic::arm_neon_vqrshiftns
:
13278 case Intrinsic::arm_neon_vqrshiftnu
:
13279 case Intrinsic::arm_neon_vqrshiftnsu
: {
13280 EVT VT
= N
->getOperand(1).getValueType();
13282 unsigned VShiftOpc
= 0;
13285 case Intrinsic::arm_neon_vshifts
:
13286 case Intrinsic::arm_neon_vshiftu
:
13287 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13288 VShiftOpc
= ARMISD::VSHLIMM
;
13291 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13292 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13293 : ARMISD::VSHRuIMM
);
13298 case Intrinsic::arm_neon_vrshifts
:
13299 case Intrinsic::arm_neon_vrshiftu
:
13300 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13304 case Intrinsic::arm_neon_vqshifts
:
13305 case Intrinsic::arm_neon_vqshiftu
:
13306 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13310 case Intrinsic::arm_neon_vqshiftsu
:
13311 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13313 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13315 case Intrinsic::arm_neon_vrshiftn
:
13316 case Intrinsic::arm_neon_vqshiftns
:
13317 case Intrinsic::arm_neon_vqshiftnu
:
13318 case Intrinsic::arm_neon_vqshiftnsu
:
13319 case Intrinsic::arm_neon_vqrshiftns
:
13320 case Intrinsic::arm_neon_vqrshiftnu
:
13321 case Intrinsic::arm_neon_vqrshiftnsu
:
13322 // Narrowing shifts require an immediate right shift.
13323 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13325 llvm_unreachable("invalid shift count for narrowing vector shift "
13329 llvm_unreachable("unhandled vector shift");
13333 case Intrinsic::arm_neon_vshifts
:
13334 case Intrinsic::arm_neon_vshiftu
:
13335 // Opcode already set above.
13337 case Intrinsic::arm_neon_vrshifts
:
13338 VShiftOpc
= ARMISD::VRSHRsIMM
;
13340 case Intrinsic::arm_neon_vrshiftu
:
13341 VShiftOpc
= ARMISD::VRSHRuIMM
;
13343 case Intrinsic::arm_neon_vrshiftn
:
13344 VShiftOpc
= ARMISD::VRSHRNIMM
;
13346 case Intrinsic::arm_neon_vqshifts
:
13347 VShiftOpc
= ARMISD::VQSHLsIMM
;
13349 case Intrinsic::arm_neon_vqshiftu
:
13350 VShiftOpc
= ARMISD::VQSHLuIMM
;
13352 case Intrinsic::arm_neon_vqshiftsu
:
13353 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13355 case Intrinsic::arm_neon_vqshiftns
:
13356 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13358 case Intrinsic::arm_neon_vqshiftnu
:
13359 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13361 case Intrinsic::arm_neon_vqshiftnsu
:
13362 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13364 case Intrinsic::arm_neon_vqrshiftns
:
13365 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13367 case Intrinsic::arm_neon_vqrshiftnu
:
13368 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13370 case Intrinsic::arm_neon_vqrshiftnsu
:
13371 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13376 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13377 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13380 case Intrinsic::arm_neon_vshiftins
: {
13381 EVT VT
= N
->getOperand(1).getValueType();
13383 unsigned VShiftOpc
= 0;
13385 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13386 VShiftOpc
= ARMISD::VSLIIMM
;
13387 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13388 VShiftOpc
= ARMISD::VSRIIMM
;
13390 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13394 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13395 N
->getOperand(1), N
->getOperand(2),
13396 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13399 case Intrinsic::arm_neon_vqrshifts
:
13400 case Intrinsic::arm_neon_vqrshiftu
:
13401 // No immediate versions of these to check for.
13408 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13409 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13410 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13411 /// vector element shift counts are generally not legal, and it is hard to see
13412 /// their values after they get legalized to loads from a constant pool.
13413 static SDValue
PerformShiftCombine(SDNode
*N
,
13414 TargetLowering::DAGCombinerInfo
&DCI
,
13415 const ARMSubtarget
*ST
) {
13416 SelectionDAG
&DAG
= DCI
.DAG
;
13417 EVT VT
= N
->getValueType(0);
13418 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13419 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13420 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13421 SDValue N1
= N
->getOperand(1);
13422 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13423 SDValue N0
= N
->getOperand(0);
13424 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13425 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13426 APInt::getHighBitsSet(32, 16)))
13427 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13431 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13432 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13433 N
->getOperand(0)->hasOneUse()) {
13434 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13436 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13437 // usually show up because instcombine prefers to canonicalize it to
13438 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13439 // out of GEP lowering in some cases.
13440 SDValue N0
= N
->getOperand(0);
13441 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13444 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13445 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13448 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13449 // Don't transform uxtb/uxth.
13450 if (AndMask
== 255 || AndMask
== 65535)
13452 if (isMask_32(AndMask
)) {
13453 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13454 if (MaskedBits
> ShiftAmt
) {
13456 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13457 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13458 return DAG
.getNode(
13459 ISD::SRL
, DL
, MVT::i32
, SHL
,
13460 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13465 // Nothing to be done for scalar shifts.
13466 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13467 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13469 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13474 switch (N
->getOpcode()) {
13475 default: llvm_unreachable("unexpected shift opcode");
13478 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13480 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13481 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13487 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13488 unsigned VShiftOpc
=
13489 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13491 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13492 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13498 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13499 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13500 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13501 const ARMSubtarget
*ST
) {
13502 SDValue N0
= N
->getOperand(0);
13504 // Check for sign- and zero-extensions of vector extract operations of 8-
13505 // and 16-bit vector elements. NEON supports these directly. They are
13506 // handled during DAG combining because type legalization will promote them
13507 // to 32-bit types and it is messy to recognize the operations after that.
13508 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13509 SDValue Vec
= N0
.getOperand(0);
13510 SDValue Lane
= N0
.getOperand(1);
13511 EVT VT
= N
->getValueType(0);
13512 EVT EltVT
= N0
.getValueType();
13513 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13515 if (VT
== MVT::i32
&&
13516 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13517 TLI
.isTypeLegal(Vec
.getValueType()) &&
13518 isa
<ConstantSDNode
>(Lane
)) {
13521 switch (N
->getOpcode()) {
13522 default: llvm_unreachable("unexpected opcode");
13523 case ISD::SIGN_EXTEND
:
13524 Opc
= ARMISD::VGETLANEs
;
13526 case ISD::ZERO_EXTEND
:
13527 case ISD::ANY_EXTEND
:
13528 Opc
= ARMISD::VGETLANEu
;
13531 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13538 static const APInt
*isPowerOf2Constant(SDValue V
) {
13539 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13542 const APInt
*CV
= &C
->getAPIntValue();
13543 return CV
->isPowerOf2() ? CV
: nullptr;
13546 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13547 // If we have a CMOV, OR and AND combination such as:
13552 // * CN is a single bit;
13553 // * All bits covered by CM are known zero in y
13555 // Then we can convert this into a sequence of BFI instructions. This will
13556 // always be a win if CM is a single bit, will always be no worse than the
13557 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13558 // three bits (due to the extra IT instruction).
13560 SDValue Op0
= CMOV
->getOperand(0);
13561 SDValue Op1
= CMOV
->getOperand(1);
13562 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13563 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13564 SDValue CmpZ
= CMOV
->getOperand(4);
13566 // The compare must be against zero.
13567 if (!isNullConstant(CmpZ
->getOperand(1)))
13570 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13571 SDValue And
= CmpZ
->getOperand(0);
13572 if (And
->getOpcode() != ISD::AND
)
13574 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13577 SDValue X
= And
->getOperand(0);
13579 if (CC
== ARMCC::EQ
) {
13580 // We're performing an "equal to zero" compare. Swap the operands so we
13581 // canonicalize on a "not equal to zero" compare.
13582 std::swap(Op0
, Op1
);
13584 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13587 if (Op1
->getOpcode() != ISD::OR
)
13590 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13593 SDValue Y
= Op1
->getOperand(0);
13598 // Now, is it profitable to continue?
13599 APInt OrCI
= OrC
->getAPIntValue();
13600 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13601 if (OrCI
.countPopulation() > Heuristic
)
13604 // Lastly, can we determine that the bits defined by OrCI
13606 KnownBits Known
= DAG
.computeKnownBits(Y
);
13607 if ((OrCI
& Known
.Zero
) != OrCI
)
13610 // OK, we can do the combine.
13613 EVT VT
= X
.getValueType();
13614 unsigned BitInX
= AndC
->logBase2();
13617 // We must shift X first.
13618 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13619 DAG
.getConstant(BitInX
, dl
, VT
));
13622 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13623 BitInY
< NumActiveBits
; ++BitInY
) {
13624 if (OrCI
[BitInY
] == 0)
13626 APInt
Mask(VT
.getSizeInBits(), 0);
13627 Mask
.setBit(BitInY
);
13628 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13629 // Confusingly, the operand is an *inverted* mask.
13630 DAG
.getConstant(~Mask
, dl
, VT
));
13636 // Given N, the value controlling the conditional branch, search for the loop
13637 // intrinsic, returning it, along with how the value is used. We need to handle
13638 // patterns such as the following:
13639 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13640 // (brcond (setcc (loop.decrement), 0, eq), exit)
13641 // (brcond (setcc (loop.decrement), 0, ne), header)
13642 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13644 switch (N
->getOpcode()) {
13648 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13650 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13653 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13656 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13659 if (Const
->isNullValue())
13661 else if (Const
->isOne())
13665 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13666 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13668 case ISD::INTRINSIC_W_CHAIN
: {
13669 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13670 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13671 IntOp
!= Intrinsic::loop_decrement_reg
)
13679 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13680 TargetLowering::DAGCombinerInfo
&DCI
,
13681 const ARMSubtarget
*ST
) {
13683 // The hwloop intrinsics that we're interested are used for control-flow,
13684 // either for entering or exiting the loop:
13685 // - test.set.loop.iterations will test whether its operand is zero. If it
13686 // is zero, the proceeding branch should not enter the loop.
13687 // - loop.decrement.reg also tests whether its operand is zero. If it is
13688 // zero, the proceeding branch should not branch back to the beginning of
13690 // So here, we need to check that how the brcond is using the result of each
13691 // of the intrinsics to ensure that we're branching to the right place at the
13697 bool Negate
= false;
13698 SDValue Chain
= N
->getOperand(0);
13701 if (N
->getOpcode() == ISD::BRCOND
) {
13703 Cond
= N
->getOperand(1);
13704 Dest
= N
->getOperand(2);
13706 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13707 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13708 Cond
= N
->getOperand(2);
13709 Dest
= N
->getOperand(4);
13710 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13711 if (!Const
->isOne() && !Const
->isNullValue())
13713 Imm
= Const
->getZExtValue();
13718 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13723 CC
= ISD::getSetCCInverse(CC
, true);
13725 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13726 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13727 (CC
== ISD::SETNE
&& Imm
== 1) ||
13728 (CC
== ISD::SETLT
&& Imm
== 1) ||
13729 (CC
== ISD::SETULT
&& Imm
== 1);
13732 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13733 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13734 (CC
== ISD::SETNE
&& Imm
== 0) ||
13735 (CC
== ISD::SETGT
&& Imm
== 0) ||
13736 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13737 (CC
== ISD::SETGE
&& Imm
== 1) ||
13738 (CC
== ISD::SETUGE
&& Imm
== 1);
13741 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13742 "unsupported condition");
13745 SelectionDAG
&DAG
= DCI
.DAG
;
13746 SDValue Elements
= Int
.getOperand(2);
13747 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13748 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13749 && "expected single br user");
13750 SDNode
*Br
= *N
->use_begin();
13751 SDValue OtherTarget
= Br
->getOperand(1);
13753 // Update the unconditional branch to branch to the given Dest.
13754 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13755 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13756 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13757 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13760 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13762 // We expect this 'instruction' to branch when the counter is zero.
13763 if (IsTrueIfZero(CC
, Imm
)) {
13764 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13765 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13767 // The logic is the reverse of what we need for WLS, so find the other
13768 // basic block target: the target of the proceeding br.
13769 UpdateUncondBr(Br
, Dest
, DAG
);
13771 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13772 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13774 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13777 SDValue Size
= DAG
.getTargetConstant(
13778 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13779 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13780 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13781 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13782 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13784 // We expect this instruction to branch when the count is not zero.
13785 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13787 // Update the unconditional branch to target the loop preheader if we've
13788 // found the condition has been reversed.
13789 if (Target
== OtherTarget
)
13790 UpdateUncondBr(Br
, Dest
, DAG
);
13792 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13793 SDValue(LoopDec
.getNode(), 1), Chain
);
13795 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13796 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13801 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13803 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13804 SDValue Cmp
= N
->getOperand(4);
13805 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13806 // Only looking at NE cases.
13809 EVT VT
= N
->getValueType(0);
13811 SDValue LHS
= Cmp
.getOperand(0);
13812 SDValue RHS
= Cmp
.getOperand(1);
13813 SDValue Chain
= N
->getOperand(0);
13814 SDValue BB
= N
->getOperand(1);
13815 SDValue ARMcc
= N
->getOperand(2);
13816 ARMCC::CondCodes CC
=
13817 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13819 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13820 // -> (brcond Chain BB CC CPSR Cmp)
13821 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13822 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13823 LHS
->getOperand(0)->hasOneUse()) {
13824 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13825 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13826 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13827 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13828 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13829 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13830 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13831 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13832 return DAG
.getNode(
13833 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13834 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13841 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13843 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13844 SDValue Cmp
= N
->getOperand(4);
13845 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13846 // Only looking at EQ and NE cases.
13849 EVT VT
= N
->getValueType(0);
13851 SDValue LHS
= Cmp
.getOperand(0);
13852 SDValue RHS
= Cmp
.getOperand(1);
13853 SDValue FalseVal
= N
->getOperand(0);
13854 SDValue TrueVal
= N
->getOperand(1);
13855 SDValue ARMcc
= N
->getOperand(2);
13856 ARMCC::CondCodes CC
=
13857 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13859 // BFI is only available on V6T2+.
13860 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13861 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13882 /// FIXME: Turn this into a target neutral optimization?
13884 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13885 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13886 N
->getOperand(3), Cmp
);
13887 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13889 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13890 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13891 N
->getOperand(3), NewCmp
);
13894 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13895 // -> (cmov F T CC CPSR Cmp)
13896 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13897 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13898 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13899 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13900 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13901 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13902 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13903 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13904 LHS
->getOperand(2), LHS
->getOperand(3),
13905 LHS
->getOperand(4));
13909 if (!VT
.isInteger())
13912 // Materialize a boolean comparison for integers so we can avoid branching.
13913 if (isNullConstant(FalseVal
)) {
13914 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13915 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13916 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13917 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13918 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13919 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13920 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13921 DAG
.getConstant(5, dl
, MVT::i32
));
13923 // CMOV 0, 1, ==, (CMPZ x, y) ->
13924 // (ADDCARRY (SUB x, y), t:0, t:1)
13925 // where t = (SUBCARRY 0, (SUB x, y), 0)
13927 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13928 // x != y. In other words, a carry C == 1 when x == y, C == 0
13930 // The final ADDCARRY computes
13931 // x - y + (0 - (x - y)) + C == C
13932 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13933 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13934 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13935 // ISD::SUBCARRY returns a borrow but we want the carry here
13938 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13939 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13940 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13942 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13943 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13944 // This seems pointless but will allow us to combine it further below.
13945 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13947 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13948 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13949 Sub
.getValue(1), SDValue());
13950 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13951 N
->getOperand(3), CPSRGlue
.getValue(1));
13954 } else if (isNullConstant(TrueVal
)) {
13955 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13956 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13957 // This seems pointless but will allow us to combine it further below
13958 // Note that we change == for != as this is the dual for the case above.
13959 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13961 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13962 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13963 Sub
.getValue(1), SDValue());
13964 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13965 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13966 N
->getOperand(3), CPSRGlue
.getValue(1));
13971 // On Thumb1, the DAG above may be further combined if z is a power of 2
13973 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13974 // t1 = (USUBO (SUB x, y), 1)
13975 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13976 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13978 // This also handles the special case of comparing against zero; it's
13979 // essentially, the same pattern, except there's no SUBS:
13980 // CMOV x, z, !=, (CMPZ x, 0) ->
13981 // t1 = (USUBO x, 1)
13982 // t2 = (SUBCARRY x, t1:0, t1:1)
13983 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13984 const APInt
*TrueConst
;
13985 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13986 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13987 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13988 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13989 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13990 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13991 unsigned ShiftAmount
= TrueConst
->logBase2();
13993 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13994 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13995 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13998 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13999 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14002 if (Res
.getNode()) {
14003 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14004 // Capture demanded bits information that would be otherwise lost.
14005 if (Known
.Zero
== 0xfffffffe)
14006 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14007 DAG
.getValueType(MVT::i1
));
14008 else if (Known
.Zero
== 0xffffff00)
14009 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14010 DAG
.getValueType(MVT::i8
));
14011 else if (Known
.Zero
== 0xffff0000)
14012 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14013 DAG
.getValueType(MVT::i16
));
14019 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14020 DAGCombinerInfo
&DCI
) const {
14021 switch (N
->getOpcode()) {
14023 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14024 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14025 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14026 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14027 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14028 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14029 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14030 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14031 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14033 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14035 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14036 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14037 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14038 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14039 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14040 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
14041 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14042 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14043 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14044 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14045 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14046 case ISD::FP_TO_SINT
:
14047 case ISD::FP_TO_UINT
:
14048 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14050 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14051 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14055 return PerformShiftCombine(N
, DCI
, Subtarget
);
14056 case ISD::SIGN_EXTEND
:
14057 case ISD::ZERO_EXTEND
:
14058 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14059 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14060 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14061 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14062 case ARMISD::VLD1DUP
:
14063 case ARMISD::VLD2DUP
:
14064 case ARMISD::VLD3DUP
:
14065 case ARMISD::VLD4DUP
:
14066 return PerformVLDCombine(N
, DCI
);
14067 case ARMISD::BUILD_VECTOR
:
14068 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14069 case ARMISD::SMULWB
: {
14070 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14071 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14072 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14076 case ARMISD::SMULWT
: {
14077 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14078 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14079 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14083 case ARMISD::SMLALBB
: {
14084 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14085 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14086 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14087 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14091 case ARMISD::SMLALBT
: {
14092 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14093 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14094 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14095 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14096 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14097 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14101 case ARMISD::SMLALTB
: {
14102 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14103 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14104 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14105 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14106 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14107 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14111 case ARMISD::SMLALTT
: {
14112 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14113 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14114 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14115 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14119 case ISD::INTRINSIC_VOID
:
14120 case ISD::INTRINSIC_W_CHAIN
:
14121 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14122 case Intrinsic::arm_neon_vld1
:
14123 case Intrinsic::arm_neon_vld1x2
:
14124 case Intrinsic::arm_neon_vld1x3
:
14125 case Intrinsic::arm_neon_vld1x4
:
14126 case Intrinsic::arm_neon_vld2
:
14127 case Intrinsic::arm_neon_vld3
:
14128 case Intrinsic::arm_neon_vld4
:
14129 case Intrinsic::arm_neon_vld2lane
:
14130 case Intrinsic::arm_neon_vld3lane
:
14131 case Intrinsic::arm_neon_vld4lane
:
14132 case Intrinsic::arm_neon_vld2dup
:
14133 case Intrinsic::arm_neon_vld3dup
:
14134 case Intrinsic::arm_neon_vld4dup
:
14135 case Intrinsic::arm_neon_vst1
:
14136 case Intrinsic::arm_neon_vst1x2
:
14137 case Intrinsic::arm_neon_vst1x3
:
14138 case Intrinsic::arm_neon_vst1x4
:
14139 case Intrinsic::arm_neon_vst2
:
14140 case Intrinsic::arm_neon_vst3
:
14141 case Intrinsic::arm_neon_vst4
:
14142 case Intrinsic::arm_neon_vst2lane
:
14143 case Intrinsic::arm_neon_vst3lane
:
14144 case Intrinsic::arm_neon_vst4lane
:
14145 return PerformVLDCombine(N
, DCI
);
14153 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14155 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14158 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14159 unsigned Alignment
,
14160 MachineMemOperand::Flags
,
14161 bool *Fast
) const {
14162 // Depends what it gets converted into if the type is weird.
14163 if (!VT
.isSimple())
14166 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14167 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14168 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14170 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14171 // Unaligned access can use (for example) LRDB, LRDH, LDR
14172 if (AllowsUnaligned
) {
14174 *Fast
= Subtarget
->hasV7Ops();
14179 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14180 // For any little-endian targets with neon, we can support unaligned ld/st
14181 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14182 // A big-endian target may also explicitly support unaligned accesses
14183 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14190 if (!Subtarget
->hasMVEIntegerOps())
14193 // These are for predicates
14194 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14200 // These are for truncated stores/narrowing loads. They are fine so long as
14201 // the alignment is at least the size of the item being loaded
14202 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14203 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14209 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14210 // VSTRW.U32 all store the vector register in exactly the same format, and
14211 // differ only in the range of their immediate offset field and the required
14212 // alignment. So there is always a store that can be used, regardless of
14215 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14216 // VREV64.8) pair and get the same effect. This will likely be better than
14217 // aligning the vector through the stack.
14218 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14219 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14220 Ty
== MVT::v2f64
) {
14229 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14230 unsigned AlignCheck
) {
14231 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14232 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14235 EVT
ARMTargetLowering::getOptimalMemOpType(
14236 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14237 bool ZeroMemset
, bool MemcpyStrSrc
,
14238 const AttributeList
&FuncAttributes
) const {
14239 // See if we can use NEON instructions for this...
14240 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14241 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14244 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14245 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14246 MachineMemOperand::MONone
, &Fast
) &&
14249 } else if (Size
>= 8 &&
14250 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14251 (allowsMisalignedMemoryAccesses(
14252 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14258 // Let the target-independent logic figure it out.
14262 // 64-bit integers are split into their high and low parts and held in two
14263 // different registers, so the trunc is free since the low register can just
14265 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14266 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14268 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14269 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14270 return (SrcBits
== 64 && DestBits
== 32);
14273 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14274 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14275 !DstVT
.isInteger())
14277 unsigned SrcBits
= SrcVT
.getSizeInBits();
14278 unsigned DestBits
= DstVT
.getSizeInBits();
14279 return (SrcBits
== 64 && DestBits
== 32);
14282 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14283 if (Val
.getOpcode() != ISD::LOAD
)
14286 EVT VT1
= Val
.getValueType();
14287 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14288 !VT2
.isSimple() || !VT2
.isInteger())
14291 switch (VT1
.getSimpleVT().SimpleTy
) {
14296 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14303 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14304 if (!VT
.isSimple())
14307 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14308 // negate values directly (fneg is free). So, we don't want to let the DAG
14309 // combiner rewrite fneg into xors and some other instructions. For f16 and
14310 // FullFP16 argument passing, some bitcast nodes may be introduced,
14311 // triggering this DAG combine rewrite, so we are avoiding that with this.
14312 switch (VT
.getSimpleVT().SimpleTy
) {
14315 return Subtarget
->hasFullFP16();
14321 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14322 /// of the vector elements.
14323 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14324 auto areExtDoubled
= [](Instruction
*Ext
) {
14325 return Ext
->getType()->getScalarSizeInBits() ==
14326 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14329 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14330 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14331 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14332 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14338 /// Check if sinking \p I's operands to I's basic block is profitable, because
14339 /// the operands can be folded into a target instruction, e.g.
14340 /// sext/zext can be folded into vsubl.
14341 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14342 SmallVectorImpl
<Use
*> &Ops
) const {
14343 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14346 switch (I
->getOpcode()) {
14347 case Instruction::Sub
:
14348 case Instruction::Add
: {
14349 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14351 Ops
.push_back(&I
->getOperandUse(0));
14352 Ops
.push_back(&I
->getOperandUse(1));
14361 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14362 EVT VT
= ExtVal
.getValueType();
14364 if (!isTypeLegal(VT
))
14367 // Don't create a loadext if we can fold the extension into a wide/long
14369 // If there's more than one user instruction, the loadext is desirable no
14370 // matter what. There can be two uses by the same instruction.
14371 if (ExtVal
->use_empty() ||
14372 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14375 SDNode
*U
= *ExtVal
->use_begin();
14376 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14377 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14383 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14384 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14387 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14390 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14392 // Assuming the caller doesn't have a zeroext or signext return parameter,
14393 // truncation all the way down to i1 is valid.
14397 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14398 const AddrMode
&AM
, Type
*Ty
,
14399 unsigned AS
) const {
14400 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14401 if (Subtarget
->hasFPAO())
14402 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14408 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14412 unsigned Scale
= 1;
14413 switch (VT
.getSimpleVT().SimpleTy
) {
14423 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14429 if ((V
& (Scale
- 1)) != 0)
14431 return isUInt
<5>(V
/ Scale
);
14434 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14435 const ARMSubtarget
*Subtarget
) {
14436 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14438 if (VT
.isVector() && Subtarget
->hasNEON())
14440 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14441 !Subtarget
->hasMVEFloatOps())
14444 bool IsNeg
= false;
14450 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14452 // MVE: size * imm7
14453 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14454 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14457 return isShiftedUInt
<7,2>(V
);
14460 return isShiftedUInt
<7,1>(V
);
14462 return isUInt
<7>(V
);
14468 // half VLDR: 2 * imm8
14469 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14470 return isShiftedUInt
<8, 1>(V
);
14471 // VLDR and LDRD: 4 * imm8
14472 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14473 return isShiftedUInt
<8, 2>(V
);
14475 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14476 // + imm12 or - imm8
14478 return isUInt
<8>(V
);
14479 return isUInt
<12>(V
);
14485 /// isLegalAddressImmediate - Return true if the integer value can be used
14486 /// as the offset of the target addressing mode for load / store of the
14488 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14489 const ARMSubtarget
*Subtarget
) {
14493 if (!VT
.isSimple())
14496 if (Subtarget
->isThumb1Only())
14497 return isLegalT1AddressImmediate(V
, VT
);
14498 else if (Subtarget
->isThumb2())
14499 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14504 switch (VT
.getSimpleVT().SimpleTy
) {
14505 default: return false;
14510 return isUInt
<12>(V
);
14513 return isUInt
<8>(V
);
14516 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14518 return isShiftedUInt
<8, 2>(V
);
14522 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14524 int Scale
= AM
.Scale
;
14528 switch (VT
.getSimpleVT().SimpleTy
) {
14529 default: return false;
14537 Scale
= Scale
& ~1;
14538 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14540 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14541 // version in Thumb mode.
14545 // r * 2 (this can be lowered to r + r).
14546 if (!AM
.HasBaseReg
&& Scale
== 2)
14550 // Note, we allow "void" uses (basically, uses that aren't loads or
14551 // stores), because arm allows folding a scale into many arithmetic
14552 // operations. This should be made more precise and revisited later.
14554 // Allow r << imm, but the imm has to be a multiple of two.
14555 if (Scale
& 1) return false;
14556 return isPowerOf2_32(Scale
);
14560 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14562 const int Scale
= AM
.Scale
;
14564 // Negative scales are not supported in Thumb1.
14568 // Thumb1 addressing modes do not support register scaling excepting the
14569 // following cases:
14570 // 1. Scale == 1 means no scaling.
14571 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14572 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14575 /// isLegalAddressingMode - Return true if the addressing mode represented
14576 /// by AM is legal for this target, for a load/store of the specified type.
14577 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14578 const AddrMode
&AM
, Type
*Ty
,
14579 unsigned AS
, Instruction
*I
) const {
14580 EVT VT
= getValueType(DL
, Ty
, true);
14581 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14584 // Can never fold addr of global into load/store.
14588 switch (AM
.Scale
) {
14589 case 0: // no scale reg, must be "r+i" or "r", or "i".
14592 // ARM doesn't support any R+R*scale+imm addr modes.
14596 if (!VT
.isSimple())
14599 if (Subtarget
->isThumb1Only())
14600 return isLegalT1ScaledAddressingMode(AM
, VT
);
14602 if (Subtarget
->isThumb2())
14603 return isLegalT2ScaledAddressingMode(AM
, VT
);
14605 int Scale
= AM
.Scale
;
14606 switch (VT
.getSimpleVT().SimpleTy
) {
14607 default: return false;
14611 if (Scale
< 0) Scale
= -Scale
;
14615 return isPowerOf2_32(Scale
& ~1);
14619 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14621 // r * 2 (this can be lowered to r + r).
14622 if (!AM
.HasBaseReg
&& Scale
== 2)
14627 // Note, we allow "void" uses (basically, uses that aren't loads or
14628 // stores), because arm allows folding a scale into many arithmetic
14629 // operations. This should be made more precise and revisited later.
14631 // Allow r << imm, but the imm has to be a multiple of two.
14632 if (Scale
& 1) return false;
14633 return isPowerOf2_32(Scale
);
14639 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14640 /// icmp immediate, that is the target has icmp instructions which can compare
14641 /// a register against the immediate without having to materialize the
14642 /// immediate into a register.
14643 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14644 // Thumb2 and ARM modes can use cmn for negative immediates.
14645 if (!Subtarget
->isThumb())
14646 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14647 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14648 if (Subtarget
->isThumb2())
14649 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14650 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14651 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14652 return Imm
>= 0 && Imm
<= 255;
14655 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14656 /// *or sub* immediate, that is the target has add or sub instructions which can
14657 /// add a register with the immediate without having to materialize the
14658 /// immediate into a register.
14659 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14660 // Same encoding for add/sub, just flip the sign.
14661 int64_t AbsImm
= std::abs(Imm
);
14662 if (!Subtarget
->isThumb())
14663 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14664 if (Subtarget
->isThumb2())
14665 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14666 // Thumb1 only has 8-bit unsigned immediate.
14667 return AbsImm
>= 0 && AbsImm
<= 255;
14670 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14671 bool isSEXTLoad
, SDValue
&Base
,
14672 SDValue
&Offset
, bool &isInc
,
14673 SelectionDAG
&DAG
) {
14674 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14677 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14678 // AddressingMode 3
14679 Base
= Ptr
->getOperand(0);
14680 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14681 int RHSC
= (int)RHS
->getZExtValue();
14682 if (RHSC
< 0 && RHSC
> -256) {
14683 assert(Ptr
->getOpcode() == ISD::ADD
);
14685 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14689 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14690 Offset
= Ptr
->getOperand(1);
14692 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14693 // AddressingMode 2
14694 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14695 int RHSC
= (int)RHS
->getZExtValue();
14696 if (RHSC
< 0 && RHSC
> -0x1000) {
14697 assert(Ptr
->getOpcode() == ISD::ADD
);
14699 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14700 Base
= Ptr
->getOperand(0);
14705 if (Ptr
->getOpcode() == ISD::ADD
) {
14707 ARM_AM::ShiftOpc ShOpcVal
=
14708 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14709 if (ShOpcVal
!= ARM_AM::no_shift
) {
14710 Base
= Ptr
->getOperand(1);
14711 Offset
= Ptr
->getOperand(0);
14713 Base
= Ptr
->getOperand(0);
14714 Offset
= Ptr
->getOperand(1);
14719 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14720 Base
= Ptr
->getOperand(0);
14721 Offset
= Ptr
->getOperand(1);
14725 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14729 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14730 bool isSEXTLoad
, SDValue
&Base
,
14731 SDValue
&Offset
, bool &isInc
,
14732 SelectionDAG
&DAG
) {
14733 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14736 Base
= Ptr
->getOperand(0);
14737 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14738 int RHSC
= (int)RHS
->getZExtValue();
14739 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14740 assert(Ptr
->getOpcode() == ISD::ADD
);
14742 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14744 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14745 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14746 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14754 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
14755 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
14756 SDValue
&Offset
, bool &isInc
,
14757 SelectionDAG
&DAG
) {
14758 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14760 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
14763 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
14764 int RHSC
= (int)RHS
->getZExtValue();
14766 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
14767 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
14768 assert(Ptr
->getOpcode() == ISD::ADD
);
14770 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14772 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
14773 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14774 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14780 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14782 Base
= Ptr
->getOperand(0);
14783 if (VT
== MVT::v4i16
) {
14784 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
14786 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
14787 if (IsInRange(RHSC
, 0x80, 1))
14789 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
14790 IsInRange(RHSC
, 0x80, 4))
14792 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
14793 IsInRange(RHSC
, 0x80, 2))
14795 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
14800 /// getPreIndexedAddressParts - returns true by value, base pointer and
14801 /// offset pointer and addressing mode by reference if the node's address
14802 /// can be legally represented as pre-indexed load / store address.
14804 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14806 ISD::MemIndexedMode
&AM
,
14807 SelectionDAG
&DAG
) const {
14808 if (Subtarget
->isThumb1Only())
14814 bool isSEXTLoad
= false;
14815 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14816 Ptr
= LD
->getBasePtr();
14817 VT
= LD
->getMemoryVT();
14818 Align
= LD
->getAlignment();
14819 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14820 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14821 Ptr
= ST
->getBasePtr();
14822 VT
= ST
->getMemoryVT();
14823 Align
= ST
->getAlignment();
14828 bool isLegal
= false;
14830 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14831 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
14832 Subtarget
->isLittle(), Base
, Offset
,
14835 if (Subtarget
->isThumb2())
14836 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14837 Offset
, isInc
, DAG
);
14839 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14840 Offset
, isInc
, DAG
);
14845 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14849 /// getPostIndexedAddressParts - returns true by value, base pointer and
14850 /// offset pointer and addressing mode by reference if this node can be
14851 /// combined with a load / store to form a post-indexed load / store.
14852 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14855 ISD::MemIndexedMode
&AM
,
14856 SelectionDAG
&DAG
) const {
14860 bool isSEXTLoad
= false, isNonExt
;
14861 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14862 VT
= LD
->getMemoryVT();
14863 Ptr
= LD
->getBasePtr();
14864 Align
= LD
->getAlignment();
14865 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14866 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14867 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14868 VT
= ST
->getMemoryVT();
14869 Ptr
= ST
->getBasePtr();
14870 Align
= ST
->getAlignment();
14871 isNonExt
= !ST
->isTruncatingStore();
14875 if (Subtarget
->isThumb1Only()) {
14876 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14877 // must be non-extending/truncating, i32, with an offset of 4.
14878 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14879 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14881 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14882 if (!RHS
|| RHS
->getZExtValue() != 4)
14885 Offset
= Op
->getOperand(1);
14886 Base
= Op
->getOperand(0);
14887 AM
= ISD::POST_INC
;
14892 bool isLegal
= false;
14894 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14895 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
14896 Subtarget
->isLittle(), Base
, Offset
,
14899 if (Subtarget
->isThumb2())
14900 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14903 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14910 // Swap base ptr and offset to catch more post-index load / store when
14911 // it's legal. In Thumb2 mode, offset must be an immediate.
14912 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14913 !Subtarget
->isThumb2())
14914 std::swap(Base
, Offset
);
14916 // Post-indexed load / store update the base pointer.
14921 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14925 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14927 const APInt
&DemandedElts
,
14928 const SelectionDAG
&DAG
,
14929 unsigned Depth
) const {
14930 unsigned BitWidth
= Known
.getBitWidth();
14932 switch (Op
.getOpcode()) {
14938 // Special cases when we convert a carry to a boolean.
14939 if (Op
.getResNo() == 0) {
14940 SDValue LHS
= Op
.getOperand(0);
14941 SDValue RHS
= Op
.getOperand(1);
14942 // (ADDE 0, 0, C) will give us a single bit.
14943 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14944 isNullConstant(RHS
)) {
14945 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14950 case ARMISD::CMOV
: {
14951 // Bits are known zero/one if known on the LHS and RHS.
14952 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14953 if (Known
.isUnknown())
14956 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14957 Known
.Zero
&= KnownRHS
.Zero
;
14958 Known
.One
&= KnownRHS
.One
;
14961 case ISD::INTRINSIC_W_CHAIN
: {
14962 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14963 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14966 case Intrinsic::arm_ldaex
:
14967 case Intrinsic::arm_ldrex
: {
14968 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14969 unsigned MemBits
= VT
.getScalarSizeInBits();
14970 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14975 case ARMISD::BFI
: {
14976 // Conservatively, we can recurse down the first operand
14977 // and just mask out all affected bits.
14978 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14980 // The operand to BFI is already a mask suitable for removing the bits it
14982 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14983 const APInt
&Mask
= CI
->getAPIntValue();
14984 Known
.Zero
&= Mask
;
14988 case ARMISD::VGETLANEs
:
14989 case ARMISD::VGETLANEu
: {
14990 const SDValue
&SrcSV
= Op
.getOperand(0);
14991 EVT VecVT
= SrcSV
.getValueType();
14992 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14993 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14994 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14995 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14996 "VGETLANE index out of bounds");
14997 unsigned Idx
= Pos
->getZExtValue();
14998 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14999 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15001 EVT VT
= Op
.getValueType();
15002 const unsigned DstSz
= VT
.getScalarSizeInBits();
15003 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15005 assert(SrcSz
== Known
.getBitWidth());
15006 assert(DstSz
> SrcSz
);
15007 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15008 Known
= Known
.sext(DstSz
);
15010 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15012 assert(DstSz
== Known
.getBitWidth());
15019 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15020 const APInt
&DemandedAPInt
,
15021 TargetLoweringOpt
&TLO
) const {
15022 // Delay optimization, so we don't have to deal with illegal types, or block
15027 // Only optimize AND for now.
15028 if (Op
.getOpcode() != ISD::AND
)
15031 EVT VT
= Op
.getValueType();
15037 assert(VT
== MVT::i32
&& "Unexpected integer type");
15039 // Make sure the RHS really is a constant.
15040 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15044 unsigned Mask
= C
->getZExtValue();
15046 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15047 unsigned ShrunkMask
= Mask
& Demanded
;
15048 unsigned ExpandedMask
= Mask
| ~Demanded
;
15050 // If the mask is all zeros, let the target-independent code replace the
15051 // result with zero.
15052 if (ShrunkMask
== 0)
15055 // If the mask is all ones, erase the AND. (Currently, the target-independent
15056 // code won't do this, so we have to do it explicitly to avoid an infinite
15057 // loop in obscure cases.)
15058 if (ExpandedMask
== ~0U)
15059 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15061 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15062 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15064 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15065 if (NewMask
== Mask
)
15068 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15069 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15070 return TLO
.CombineTo(Op
, NewOp
);
15073 // Prefer uxtb mask.
15074 if (IsLegalMask(0xFF))
15075 return UseMask(0xFF);
15077 // Prefer uxth mask.
15078 if (IsLegalMask(0xFFFF))
15079 return UseMask(0xFFFF);
15081 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15082 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15083 if (ShrunkMask
< 256)
15084 return UseMask(ShrunkMask
);
15086 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15087 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15088 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15089 return UseMask(ExpandedMask
);
15091 // Potential improvements:
15093 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15094 // We could try to prefer Thumb1 immediates which can be lowered to a
15095 // two-instruction sequence.
15096 // We could try to recognize more legal ARM/Thumb2 immediates here.
15102 //===----------------------------------------------------------------------===//
15103 // ARM Inline Assembly Support
15104 //===----------------------------------------------------------------------===//
15106 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15107 // Looking for "rev" which is V6+.
15108 if (!Subtarget
->hasV6Ops())
15111 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15112 std::string AsmStr
= IA
->getAsmString();
15113 SmallVector
<StringRef
, 4> AsmPieces
;
15114 SplitString(AsmStr
, AsmPieces
, ";\n");
15116 switch (AsmPieces
.size()) {
15117 default: return false;
15119 AsmStr
= AsmPieces
[0];
15121 SplitString(AsmStr
, AsmPieces
, " \t,");
15124 if (AsmPieces
.size() == 3 &&
15125 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15126 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15127 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15128 if (Ty
&& Ty
->getBitWidth() == 32)
15129 return IntrinsicLowering::LowerToByteSwap(CI
);
15137 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15138 // At this point, we have to lower this constraint to something else, so we
15139 // lower it to an "r" or "w". However, by doing this we will force the result
15140 // to be in register, while the X constraint is much more permissive.
15142 // Although we are correct (we are free to emit anything, without
15143 // constraints), we might break use cases that would expect us to be more
15144 // efficient and emit something else.
15145 if (!Subtarget
->hasVFP2Base())
15147 if (ConstraintVT
.isFloatingPoint())
15149 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15150 (ConstraintVT
.getSizeInBits() == 64 ||
15151 ConstraintVT
.getSizeInBits() == 128))
15157 /// getConstraintType - Given a constraint letter, return the type of
15158 /// constraint it is for this target.
15159 ARMTargetLowering::ConstraintType
15160 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15161 unsigned S
= Constraint
.size();
15163 switch (Constraint
[0]) {
15165 case 'l': return C_RegisterClass
;
15166 case 'w': return C_RegisterClass
;
15167 case 'h': return C_RegisterClass
;
15168 case 'x': return C_RegisterClass
;
15169 case 't': return C_RegisterClass
;
15170 case 'j': return C_Immediate
; // Constant for movw.
15171 // An address with a single base register. Due to the way we
15172 // currently handle addresses it is the same as an 'r' memory constraint.
15173 case 'Q': return C_Memory
;
15175 } else if (S
== 2) {
15176 switch (Constraint
[0]) {
15178 case 'T': return C_RegisterClass
;
15179 // All 'U+' constraints are addresses.
15180 case 'U': return C_Memory
;
15183 return TargetLowering::getConstraintType(Constraint
);
15186 /// Examine constraint type and operand type and determine a weight value.
15187 /// This object must already have been set up with the operand type
15188 /// and the current alternative constraint selected.
15189 TargetLowering::ConstraintWeight
15190 ARMTargetLowering::getSingleConstraintMatchWeight(
15191 AsmOperandInfo
&info
, const char *constraint
) const {
15192 ConstraintWeight weight
= CW_Invalid
;
15193 Value
*CallOperandVal
= info
.CallOperandVal
;
15194 // If we don't have a value, we can't do a match,
15195 // but allow it at the lowest weight.
15196 if (!CallOperandVal
)
15198 Type
*type
= CallOperandVal
->getType();
15199 // Look at the constraint type.
15200 switch (*constraint
) {
15202 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15205 if (type
->isIntegerTy()) {
15206 if (Subtarget
->isThumb())
15207 weight
= CW_SpecificReg
;
15209 weight
= CW_Register
;
15213 if (type
->isFloatingPointTy())
15214 weight
= CW_Register
;
15220 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15222 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15223 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15224 switch (Constraint
.size()) {
15226 // GCC ARM Constraint Letters
15227 switch (Constraint
[0]) {
15228 case 'l': // Low regs or general regs.
15229 if (Subtarget
->isThumb())
15230 return RCPair(0U, &ARM::tGPRRegClass
);
15231 return RCPair(0U, &ARM::GPRRegClass
);
15232 case 'h': // High regs or no regs.
15233 if (Subtarget
->isThumb())
15234 return RCPair(0U, &ARM::hGPRRegClass
);
15237 if (Subtarget
->isThumb1Only())
15238 return RCPair(0U, &ARM::tGPRRegClass
);
15239 return RCPair(0U, &ARM::GPRRegClass
);
15241 if (VT
== MVT::Other
)
15243 if (VT
== MVT::f32
)
15244 return RCPair(0U, &ARM::SPRRegClass
);
15245 if (VT
.getSizeInBits() == 64)
15246 return RCPair(0U, &ARM::DPRRegClass
);
15247 if (VT
.getSizeInBits() == 128)
15248 return RCPair(0U, &ARM::QPRRegClass
);
15251 if (VT
== MVT::Other
)
15253 if (VT
== MVT::f32
)
15254 return RCPair(0U, &ARM::SPR_8RegClass
);
15255 if (VT
.getSizeInBits() == 64)
15256 return RCPair(0U, &ARM::DPR_8RegClass
);
15257 if (VT
.getSizeInBits() == 128)
15258 return RCPair(0U, &ARM::QPR_8RegClass
);
15261 if (VT
== MVT::Other
)
15263 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15264 return RCPair(0U, &ARM::SPRRegClass
);
15265 if (VT
.getSizeInBits() == 64)
15266 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15267 if (VT
.getSizeInBits() == 128)
15268 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15274 if (Constraint
[0] == 'T') {
15275 switch (Constraint
[1]) {
15279 return RCPair(0U, &ARM::tGPREvenRegClass
);
15281 return RCPair(0U, &ARM::tGPROddRegClass
);
15290 if (StringRef("{cc}").equals_lower(Constraint
))
15291 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15293 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15296 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15297 /// vector. If it is invalid, don't add anything to Ops.
15298 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15299 std::string
&Constraint
,
15300 std::vector
<SDValue
>&Ops
,
15301 SelectionDAG
&DAG
) const {
15304 // Currently only support length 1 constraints.
15305 if (Constraint
.length() != 1) return;
15307 char ConstraintLetter
= Constraint
[0];
15308 switch (ConstraintLetter
) {
15311 case 'I': case 'J': case 'K': case 'L':
15312 case 'M': case 'N': case 'O':
15313 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15317 int64_t CVal64
= C
->getSExtValue();
15318 int CVal
= (int) CVal64
;
15319 // None of these constraints allow values larger than 32 bits. Check
15320 // that the value fits in an int.
15321 if (CVal
!= CVal64
)
15324 switch (ConstraintLetter
) {
15326 // Constant suitable for movw, must be between 0 and
15328 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15329 if (CVal
>= 0 && CVal
<= 65535)
15333 if (Subtarget
->isThumb1Only()) {
15334 // This must be a constant between 0 and 255, for ADD
15336 if (CVal
>= 0 && CVal
<= 255)
15338 } else if (Subtarget
->isThumb2()) {
15339 // A constant that can be used as an immediate value in a
15340 // data-processing instruction.
15341 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15344 // A constant that can be used as an immediate value in a
15345 // data-processing instruction.
15346 if (ARM_AM::getSOImmVal(CVal
) != -1)
15352 if (Subtarget
->isThumb1Only()) {
15353 // This must be a constant between -255 and -1, for negated ADD
15354 // immediates. This can be used in GCC with an "n" modifier that
15355 // prints the negated value, for use with SUB instructions. It is
15356 // not useful otherwise but is implemented for compatibility.
15357 if (CVal
>= -255 && CVal
<= -1)
15360 // This must be a constant between -4095 and 4095. It is not clear
15361 // what this constraint is intended for. Implemented for
15362 // compatibility with GCC.
15363 if (CVal
>= -4095 && CVal
<= 4095)
15369 if (Subtarget
->isThumb1Only()) {
15370 // A 32-bit value where only one byte has a nonzero value. Exclude
15371 // zero to match GCC. This constraint is used by GCC internally for
15372 // constants that can be loaded with a move/shift combination.
15373 // It is not useful otherwise but is implemented for compatibility.
15374 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15376 } else if (Subtarget
->isThumb2()) {
15377 // A constant whose bitwise inverse can be used as an immediate
15378 // value in a data-processing instruction. This can be used in GCC
15379 // with a "B" modifier that prints the inverted value, for use with
15380 // BIC and MVN instructions. It is not useful otherwise but is
15381 // implemented for compatibility.
15382 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15385 // A constant whose bitwise inverse can be used as an immediate
15386 // value in a data-processing instruction. This can be used in GCC
15387 // with a "B" modifier that prints the inverted value, for use with
15388 // BIC and MVN instructions. It is not useful otherwise but is
15389 // implemented for compatibility.
15390 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15396 if (Subtarget
->isThumb1Only()) {
15397 // This must be a constant between -7 and 7,
15398 // for 3-operand ADD/SUB immediate instructions.
15399 if (CVal
>= -7 && CVal
< 7)
15401 } else if (Subtarget
->isThumb2()) {
15402 // A constant whose negation can be used as an immediate value in a
15403 // data-processing instruction. This can be used in GCC with an "n"
15404 // modifier that prints the negated value, for use with SUB
15405 // instructions. It is not useful otherwise but is implemented for
15407 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15410 // A constant whose negation can be used as an immediate value in a
15411 // data-processing instruction. This can be used in GCC with an "n"
15412 // modifier that prints the negated value, for use with SUB
15413 // instructions. It is not useful otherwise but is implemented for
15415 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15421 if (Subtarget
->isThumb1Only()) {
15422 // This must be a multiple of 4 between 0 and 1020, for
15423 // ADD sp + immediate.
15424 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15427 // A power of two or a constant between 0 and 32. This is used in
15428 // GCC for the shift amount on shifted register operands, but it is
15429 // useful in general for any shift amounts.
15430 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15436 if (Subtarget
->isThumb1Only()) {
15437 // This must be a constant between 0 and 31, for shift amounts.
15438 if (CVal
>= 0 && CVal
<= 31)
15444 if (Subtarget
->isThumb1Only()) {
15445 // This must be a multiple of 4 between -508 and 508, for
15446 // ADD/SUB sp = sp + immediate.
15447 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15452 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15456 if (Result
.getNode()) {
15457 Ops
.push_back(Result
);
15460 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15463 static RTLIB::Libcall
getDivRemLibcall(
15464 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15465 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15466 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15467 "Unhandled Opcode in getDivRemLibcall");
15468 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15469 N
->getOpcode() == ISD::SREM
;
15472 default: llvm_unreachable("Unexpected request for libcall!");
15473 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15474 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15475 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15476 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15481 static TargetLowering::ArgListTy
getDivRemArgList(
15482 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15483 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15484 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15485 "Unhandled Opcode in getDivRemArgList");
15486 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15487 N
->getOpcode() == ISD::SREM
;
15488 TargetLowering::ArgListTy Args
;
15489 TargetLowering::ArgListEntry Entry
;
15490 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15491 EVT ArgVT
= N
->getOperand(i
).getValueType();
15492 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15493 Entry
.Node
= N
->getOperand(i
);
15495 Entry
.IsSExt
= isSigned
;
15496 Entry
.IsZExt
= !isSigned
;
15497 Args
.push_back(Entry
);
15499 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15500 std::swap(Args
[0], Args
[1]);
15504 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15505 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15506 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15507 Subtarget
->isTargetWindows()) &&
15508 "Register-based DivRem lowering only");
15509 unsigned Opcode
= Op
->getOpcode();
15510 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15511 "Invalid opcode for Div/Rem lowering");
15512 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15513 EVT VT
= Op
->getValueType(0);
15514 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15517 // If the target has hardware divide, use divide + multiply + subtract:
15519 // rem = a - b * div
15520 // return {div, rem}
15521 // This should be lowered into UDIV/SDIV + MLS later on.
15522 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15523 : Subtarget
->hasDivideInARMMode();
15524 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15525 Op
->getSimpleValueType(0) == MVT::i32
) {
15526 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15527 const SDValue Dividend
= Op
->getOperand(0);
15528 const SDValue Divisor
= Op
->getOperand(1);
15529 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15530 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15531 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15533 SDValue Values
[2] = {Div
, Rem
};
15534 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15537 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15538 VT
.getSimpleVT().SimpleTy
);
15539 SDValue InChain
= DAG
.getEntryNode();
15541 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15545 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15546 getPointerTy(DAG
.getDataLayout()));
15548 Type
*RetTy
= StructType::get(Ty
, Ty
);
15550 if (Subtarget
->isTargetWindows())
15551 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15553 TargetLowering::CallLoweringInfo
CLI(DAG
);
15554 CLI
.setDebugLoc(dl
).setChain(InChain
)
15555 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15556 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15558 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15559 return CallInfo
.first
;
15562 // Lowers REM using divmod helpers
15563 // see RTABI section 4.2/4.3
15564 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15565 // Build return types (div and rem)
15566 std::vector
<Type
*> RetTyParams
;
15567 Type
*RetTyElement
;
15569 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15570 default: llvm_unreachable("Unexpected request for libcall!");
15571 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15572 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15573 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15574 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15577 RetTyParams
.push_back(RetTyElement
);
15578 RetTyParams
.push_back(RetTyElement
);
15579 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15580 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15582 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15584 SDValue InChain
= DAG
.getEntryNode();
15585 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15587 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15588 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15589 getPointerTy(DAG
.getDataLayout()));
15591 if (Subtarget
->isTargetWindows())
15592 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15595 CallLoweringInfo
CLI(DAG
);
15596 CLI
.setChain(InChain
)
15597 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15598 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15599 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15601 // Return second (rem) result operand (first contains div)
15602 SDNode
*ResNode
= CallResult
.first
.getNode();
15603 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15604 return ResNode
->getOperand(1);
15608 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15609 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15613 SDValue Chain
= Op
.getOperand(0);
15614 SDValue Size
= Op
.getOperand(1);
15616 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15617 "no-stack-arg-probe")) {
15618 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15619 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15620 Chain
= SP
.getValue(1);
15621 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15623 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15624 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15625 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15626 SDValue Ops
[2] = { SP
, Chain
};
15627 return DAG
.getMergeValues(Ops
, DL
);
15630 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15631 DAG
.getConstant(2, DL
, MVT::i32
));
15634 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15635 Flag
= Chain
.getValue(1);
15637 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15638 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15640 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15641 Chain
= NewSP
.getValue(1);
15643 SDValue Ops
[2] = { NewSP
, Chain
};
15644 return DAG
.getMergeValues(Ops
, DL
);
15647 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15648 SDValue SrcVal
= Op
.getOperand(0);
15649 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15650 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15651 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15652 "Unexpected type for custom-lowering FP_EXTEND");
15654 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15655 "With both FP DP and 16, any FP conversion is legal!");
15657 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15658 "With FP16, 16 to 32 conversion is legal!");
15660 // Either we are converting from 16 -> 64, without FP16 and/or
15661 // FP.double-precision or without Armv8-fp. So we must do it in two
15663 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15664 // without FP16. So we must do a function call.
15667 MakeLibCallOptions CallOptions
;
15669 // Instruction from 16 -> 32
15670 if (Subtarget
->hasFP16())
15671 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15672 // Lib call from 16 -> 32
15674 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15675 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15676 "Unexpected type for custom-lowering FP_EXTEND");
15678 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15684 // For sure now SrcVal is 32 bits
15685 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15686 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15688 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15689 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15690 "Unexpected type for custom-lowering FP_EXTEND");
15691 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
15694 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15695 SDValue SrcVal
= Op
.getOperand(0);
15696 EVT SrcVT
= SrcVal
.getValueType();
15697 EVT DstVT
= Op
.getValueType();
15698 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15699 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15701 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15702 "Unexpected type for custom-lowering FP_ROUND");
15704 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15705 "With both FP DP and 16, any FP conversion is legal!");
15709 // Instruction from 32 -> 16 if hasFP16 is valid
15710 if (SrcSz
== 32 && Subtarget
->hasFP16())
15713 // Lib call from 32 -> 16 / 64 -> [32, 16]
15714 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15715 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15716 "Unexpected type for custom-lowering FP_ROUND");
15717 MakeLibCallOptions CallOptions
;
15718 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
15721 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15722 SelectionDAG
&DAG
) const {
15723 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15724 MVT HalfT
= MVT::i32
;
15726 SDValue Hi
, Lo
, Tmp
;
15728 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15729 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15732 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15733 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15735 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15736 DAG
.getConstant(0, dl
, HalfT
));
15737 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15738 DAG
.getConstant(1, dl
, HalfT
));
15740 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15741 DAG
.getConstant(OpTypeBits
- 1, dl
,
15742 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15743 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15744 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15745 SDValue(Lo
.getNode(), 1));
15746 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15747 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15749 Results
.push_back(Lo
);
15750 Results
.push_back(Hi
);
15754 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15755 // The ARM target isn't yet aware of offsets.
15759 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15760 if (v
== 0xffffffff)
15763 // there can be 1's on either or both "outsides", all the "inside"
15764 // bits must be 0's
15765 return isShiftedMask_32(~v
);
15768 /// isFPImmLegal - Returns true if the target can instruction select the
15769 /// specified FP immediate natively. If false, the legalizer will
15770 /// materialize the FP immediate as a load from a constant pool.
15771 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15772 bool ForCodeSize
) const {
15773 if (!Subtarget
->hasVFP3Base())
15775 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15776 return ARM_AM::getFP16Imm(Imm
) != -1;
15777 if (VT
== MVT::f32
)
15778 return ARM_AM::getFP32Imm(Imm
) != -1;
15779 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15780 return ARM_AM::getFP64Imm(Imm
) != -1;
15784 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15785 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15786 /// specified in the intrinsic calls.
15787 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15789 MachineFunction
&MF
,
15790 unsigned Intrinsic
) const {
15791 switch (Intrinsic
) {
15792 case Intrinsic::arm_neon_vld1
:
15793 case Intrinsic::arm_neon_vld2
:
15794 case Intrinsic::arm_neon_vld3
:
15795 case Intrinsic::arm_neon_vld4
:
15796 case Intrinsic::arm_neon_vld2lane
:
15797 case Intrinsic::arm_neon_vld3lane
:
15798 case Intrinsic::arm_neon_vld4lane
:
15799 case Intrinsic::arm_neon_vld2dup
:
15800 case Intrinsic::arm_neon_vld3dup
:
15801 case Intrinsic::arm_neon_vld4dup
: {
15802 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15803 // Conservatively set memVT to the entire set of vectors loaded.
15804 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15805 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15806 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15807 Info
.ptrVal
= I
.getArgOperand(0);
15809 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15810 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15811 // volatile loads with NEON intrinsics not supported
15812 Info
.flags
= MachineMemOperand::MOLoad
;
15815 case Intrinsic::arm_neon_vld1x2
:
15816 case Intrinsic::arm_neon_vld1x3
:
15817 case Intrinsic::arm_neon_vld1x4
: {
15818 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15819 // Conservatively set memVT to the entire set of vectors loaded.
15820 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15821 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15822 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15823 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15825 Info
.align
.reset();
15826 // volatile loads with NEON intrinsics not supported
15827 Info
.flags
= MachineMemOperand::MOLoad
;
15830 case Intrinsic::arm_neon_vst1
:
15831 case Intrinsic::arm_neon_vst2
:
15832 case Intrinsic::arm_neon_vst3
:
15833 case Intrinsic::arm_neon_vst4
:
15834 case Intrinsic::arm_neon_vst2lane
:
15835 case Intrinsic::arm_neon_vst3lane
:
15836 case Intrinsic::arm_neon_vst4lane
: {
15837 Info
.opc
= ISD::INTRINSIC_VOID
;
15838 // Conservatively set memVT to the entire set of vectors stored.
15839 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15840 unsigned NumElts
= 0;
15841 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15842 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15843 if (!ArgTy
->isVectorTy())
15845 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15847 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15848 Info
.ptrVal
= I
.getArgOperand(0);
15850 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15851 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15852 // volatile stores with NEON intrinsics not supported
15853 Info
.flags
= MachineMemOperand::MOStore
;
15856 case Intrinsic::arm_neon_vst1x2
:
15857 case Intrinsic::arm_neon_vst1x3
:
15858 case Intrinsic::arm_neon_vst1x4
: {
15859 Info
.opc
= ISD::INTRINSIC_VOID
;
15860 // Conservatively set memVT to the entire set of vectors stored.
15861 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15862 unsigned NumElts
= 0;
15863 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15864 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15865 if (!ArgTy
->isVectorTy())
15867 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15869 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15870 Info
.ptrVal
= I
.getArgOperand(0);
15872 Info
.align
.reset();
15873 // volatile stores with NEON intrinsics not supported
15874 Info
.flags
= MachineMemOperand::MOStore
;
15877 case Intrinsic::arm_ldaex
:
15878 case Intrinsic::arm_ldrex
: {
15879 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15880 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15881 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15882 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15883 Info
.ptrVal
= I
.getArgOperand(0);
15885 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15886 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15889 case Intrinsic::arm_stlex
:
15890 case Intrinsic::arm_strex
: {
15891 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15892 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15893 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15894 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15895 Info
.ptrVal
= I
.getArgOperand(1);
15897 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15898 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15901 case Intrinsic::arm_stlexd
:
15902 case Intrinsic::arm_strexd
:
15903 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15904 Info
.memVT
= MVT::i64
;
15905 Info
.ptrVal
= I
.getArgOperand(2);
15907 Info
.align
= Align(8);
15908 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15911 case Intrinsic::arm_ldaexd
:
15912 case Intrinsic::arm_ldrexd
:
15913 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15914 Info
.memVT
= MVT::i64
;
15915 Info
.ptrVal
= I
.getArgOperand(0);
15917 Info
.align
= Align(8);
15918 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15928 /// Returns true if it is beneficial to convert a load of a constant
15929 /// to just the constant itself.
15930 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15932 assert(Ty
->isIntegerTy());
15934 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15935 if (Bits
== 0 || Bits
> 32)
15940 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15941 unsigned Index
) const {
15942 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15945 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15948 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15949 ARM_MB::MemBOpt Domain
) const {
15950 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15952 // First, if the target has no DMB, see what fallback we can use.
15953 if (!Subtarget
->hasDataBarrier()) {
15954 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15955 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15957 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15958 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15959 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15960 Builder
.getInt32(0), Builder
.getInt32(7),
15961 Builder
.getInt32(10), Builder
.getInt32(5)};
15962 return Builder
.CreateCall(MCR
, args
);
15964 // Instead of using barriers, atomic accesses on these subtargets use
15966 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15969 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15970 // Only a full system barrier exists in the M-class architectures.
15971 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15972 Constant
*CDomain
= Builder
.getInt32(Domain
);
15973 return Builder
.CreateCall(DMB
, CDomain
);
15977 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15978 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15980 AtomicOrdering Ord
) const {
15982 case AtomicOrdering::NotAtomic
:
15983 case AtomicOrdering::Unordered
:
15984 llvm_unreachable("Invalid fence: unordered/non-atomic");
15985 case AtomicOrdering::Monotonic
:
15986 case AtomicOrdering::Acquire
:
15987 return nullptr; // Nothing to do
15988 case AtomicOrdering::SequentiallyConsistent
:
15989 if (!Inst
->hasAtomicStore())
15990 return nullptr; // Nothing to do
15992 case AtomicOrdering::Release
:
15993 case AtomicOrdering::AcquireRelease
:
15994 if (Subtarget
->preferISHSTBarriers())
15995 return makeDMB(Builder
, ARM_MB::ISHST
);
15996 // FIXME: add a comment with a link to documentation justifying this.
15998 return makeDMB(Builder
, ARM_MB::ISH
);
16000 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16003 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16005 AtomicOrdering Ord
) const {
16007 case AtomicOrdering::NotAtomic
:
16008 case AtomicOrdering::Unordered
:
16009 llvm_unreachable("Invalid fence: unordered/not-atomic");
16010 case AtomicOrdering::Monotonic
:
16011 case AtomicOrdering::Release
:
16012 return nullptr; // Nothing to do
16013 case AtomicOrdering::Acquire
:
16014 case AtomicOrdering::AcquireRelease
:
16015 case AtomicOrdering::SequentiallyConsistent
:
16016 return makeDMB(Builder
, ARM_MB::ISH
);
16018 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16021 // Loads and stores less than 64-bits are already atomic; ones above that
16022 // are doomed anyway, so defer to the default libcall and blame the OS when
16023 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16024 // anything for those.
16025 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16026 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16027 return (Size
== 64) && !Subtarget
->isMClass();
16030 // Loads and stores less than 64-bits are already atomic; ones above that
16031 // are doomed anyway, so defer to the default libcall and blame the OS when
16032 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16033 // anything for those.
16034 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16035 // guarantee, see DDI0406C ARM architecture reference manual,
16036 // sections A8.8.72-74 LDRD)
16037 TargetLowering::AtomicExpansionKind
16038 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16039 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16040 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16041 : AtomicExpansionKind::None
;
16044 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16045 // and up to 64 bits on the non-M profiles
16046 TargetLowering::AtomicExpansionKind
16047 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16048 if (AI
->isFloatingPointOperation())
16049 return AtomicExpansionKind::CmpXChg
;
16051 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16052 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16053 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16054 ? AtomicExpansionKind::LLSC
16055 : AtomicExpansionKind::None
;
16058 TargetLowering::AtomicExpansionKind
16059 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16060 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16061 // implement cmpxchg without spilling. If the address being exchanged is also
16062 // on the stack and close enough to the spill slot, this can lead to a
16063 // situation where the monitor always gets cleared and the atomic operation
16064 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16065 bool HasAtomicCmpXchg
=
16066 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16067 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16068 return AtomicExpansionKind::LLSC
;
16069 return AtomicExpansionKind::None
;
16072 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16073 const Instruction
*I
) const {
16074 return InsertFencesForAtomic
;
16077 // This has so far only been implemented for MachO.
16078 bool ARMTargetLowering::useLoadStackGuardNode() const {
16079 return Subtarget
->isTargetMachO();
16082 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16083 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16084 return TargetLowering::insertSSPDeclarations(M
);
16086 // MSVC CRT has a global variable holding security cookie.
16087 M
.getOrInsertGlobal("__security_cookie",
16088 Type::getInt8PtrTy(M
.getContext()));
16090 // MSVC CRT has a function to validate security cookie.
16091 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16092 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16093 Type::getInt8PtrTy(M
.getContext()));
16094 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16095 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16098 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16099 // MSVC CRT has a global variable holding security cookie.
16100 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16101 return M
.getGlobalVariable("__security_cookie");
16102 return TargetLowering::getSDagStackGuard(M
);
16105 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16106 // MSVC CRT has a function to validate security cookie.
16107 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16108 return M
.getFunction("__security_check_cookie");
16109 return TargetLowering::getSSPStackGuardCheck(M
);
16112 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16113 unsigned &Cost
) const {
16114 // If we do not have NEON, vector types are not natively supported.
16115 if (!Subtarget
->hasNEON())
16118 // Floating point values and vector values map to the same register file.
16119 // Therefore, although we could do a store extract of a vector type, this is
16120 // better to leave at float as we have more freedom in the addressing mode for
16122 if (VectorTy
->isFPOrFPVectorTy())
16125 // If the index is unknown at compile time, this is very expensive to lower
16126 // and it is not possible to combine the store with the extract.
16127 if (!isa
<ConstantInt
>(Idx
))
16130 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16131 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16132 // We can do a store + vector extract on any vector that fits perfectly in a D
16134 if (BitWidth
== 64 || BitWidth
== 128) {
16141 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16142 return Subtarget
->hasV6T2Ops();
16145 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16146 return Subtarget
->hasV6T2Ops();
16149 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16150 return !Subtarget
->hasMinSize();
16153 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16154 AtomicOrdering Ord
) const {
16155 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16156 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16157 bool IsAcquire
= isAcquireOrStronger(Ord
);
16159 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16160 // intrinsic must return {i32, i32} and we have to recombine them into a
16161 // single i64 here.
16162 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16163 Intrinsic::ID Int
=
16164 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16165 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16167 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16168 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16170 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16171 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16172 if (!Subtarget
->isLittle())
16173 std::swap (Lo
, Hi
);
16174 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16175 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16176 return Builder
.CreateOr(
16177 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16180 Type
*Tys
[] = { Addr
->getType() };
16181 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16182 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16184 return Builder
.CreateTruncOrBitCast(
16185 Builder
.CreateCall(Ldrex
, Addr
),
16186 cast
<PointerType
>(Addr
->getType())->getElementType());
16189 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16190 IRBuilder
<> &Builder
) const {
16191 if (!Subtarget
->hasV7Ops())
16193 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16194 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16197 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16199 AtomicOrdering Ord
) const {
16200 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16201 bool IsRelease
= isReleaseOrStronger(Ord
);
16203 // Since the intrinsics must have legal type, the i64 intrinsics take two
16204 // parameters: "i32, i32". We must marshal Val into the appropriate form
16205 // before the call.
16206 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16207 Intrinsic::ID Int
=
16208 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16209 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16210 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16212 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16213 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16214 if (!Subtarget
->isLittle())
16216 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16217 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16220 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16221 Type
*Tys
[] = { Addr
->getType() };
16222 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16224 return Builder
.CreateCall(
16225 Strex
, {Builder
.CreateZExtOrBitCast(
16226 Val
, Strex
->getFunctionType()->getParamType(0)),
16231 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16232 return Subtarget
->isMClass();
16235 /// A helper function for determining the number of interleaved accesses we
16236 /// will generate when lowering accesses of the given type.
16238 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16239 const DataLayout
&DL
) const {
16240 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16243 bool ARMTargetLowering::isLegalInterleavedAccessType(
16244 VectorType
*VecTy
, const DataLayout
&DL
) const {
16246 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16247 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16249 // Ensure the vector doesn't have f16 elements. Even though we could do an
16250 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16252 if (VecTy
->getElementType()->isHalfTy())
16255 // Ensure the number of vector elements is greater than 1.
16256 if (VecTy
->getNumElements() < 2)
16259 // Ensure the element type is legal.
16260 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16263 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16264 // 128 will be split into multiple interleaved accesses.
16265 return VecSize
== 64 || VecSize
% 128 == 0;
16268 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16269 if (Subtarget
->hasNEON())
16271 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16274 /// Lower an interleaved load into a vldN intrinsic.
16276 /// E.g. Lower an interleaved load (Factor = 2):
16277 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16278 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16279 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16282 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16283 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16284 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16285 bool ARMTargetLowering::lowerInterleavedLoad(
16286 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16287 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16288 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16289 "Invalid interleave factor");
16290 assert(!Shuffles
.empty() && "Empty shufflevector input");
16291 assert(Shuffles
.size() == Indices
.size() &&
16292 "Unmatched number of shufflevectors and indices");
16294 VectorType
*VecTy
= Shuffles
[0]->getType();
16295 Type
*EltTy
= VecTy
->getVectorElementType();
16297 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16299 // Skip if we do not have NEON and skip illegal vector types. We can
16300 // "legalize" wide vector types into multiple interleaved accesses as long as
16301 // the vector types are divisible by 128.
16302 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16305 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16307 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16308 // load integer vectors first and then convert to pointer vectors.
16309 if (EltTy
->isPointerTy())
16311 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16313 IRBuilder
<> Builder(LI
);
16315 // The base address of the load.
16316 Value
*BaseAddr
= LI
->getPointerOperand();
16318 if (NumLoads
> 1) {
16319 // If we're going to generate more than one load, reset the sub-vector type
16320 // to something legal.
16321 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16322 VecTy
->getVectorNumElements() / NumLoads
);
16324 // We will compute the pointer operand of each load from the original base
16325 // address using GEPs. Cast the base address to a pointer to the scalar
16327 BaseAddr
= Builder
.CreateBitCast(
16328 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16329 LI
->getPointerAddressSpace()));
16332 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16334 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16335 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16336 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16337 Intrinsic::arm_neon_vld3
,
16338 Intrinsic::arm_neon_vld4
};
16339 Function
*VldnFunc
=
16340 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16342 // Holds sub-vectors extracted from the load intrinsic return values. The
16343 // sub-vectors are associated with the shufflevector instructions they will
16345 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16347 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16348 // If we're generating more than one load, compute the base address of
16349 // subsequent loads as an offset from the previous.
16352 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16353 VecTy
->getVectorNumElements() * Factor
);
16355 SmallVector
<Value
*, 2> Ops
;
16356 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16357 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16359 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16361 // Replace uses of each shufflevector with the corresponding vector loaded
16363 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16364 ShuffleVectorInst
*SV
= Shuffles
[i
];
16365 unsigned Index
= Indices
[i
];
16367 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16369 // Convert the integer vector to pointer vector if the element is pointer.
16370 if (EltTy
->isPointerTy())
16371 SubVec
= Builder
.CreateIntToPtr(
16372 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16373 VecTy
->getVectorNumElements()));
16375 SubVecs
[SV
].push_back(SubVec
);
16379 // Replace uses of the shufflevector instructions with the sub-vectors
16380 // returned by the load intrinsic. If a shufflevector instruction is
16381 // associated with more than one sub-vector, those sub-vectors will be
16382 // concatenated into a single wide vector.
16383 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16384 auto &SubVec
= SubVecs
[SVI
];
16386 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16387 SVI
->replaceAllUsesWith(WideVec
);
16393 /// Lower an interleaved store into a vstN intrinsic.
16395 /// E.g. Lower an interleaved store (Factor = 3):
16396 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16397 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16398 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16401 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16402 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16403 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16404 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16406 /// Note that the new shufflevectors will be removed and we'll only generate one
16407 /// vst3 instruction in CodeGen.
16409 /// Example for a more general valid mask (Factor 3). Lower:
16410 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16411 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16412 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16415 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16416 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16417 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16418 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16419 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16420 ShuffleVectorInst
*SVI
,
16421 unsigned Factor
) const {
16422 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16423 "Invalid interleave factor");
16425 VectorType
*VecTy
= SVI
->getType();
16426 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16427 "Invalid interleaved store");
16429 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16430 Type
*EltTy
= VecTy
->getVectorElementType();
16431 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16433 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16435 // Skip if we do not have NEON and skip illegal vector types. We can
16436 // "legalize" wide vector types into multiple interleaved accesses as long as
16437 // the vector types are divisible by 128.
16438 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16441 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16443 Value
*Op0
= SVI
->getOperand(0);
16444 Value
*Op1
= SVI
->getOperand(1);
16445 IRBuilder
<> Builder(SI
);
16447 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16448 // vectors to integer vectors.
16449 if (EltTy
->isPointerTy()) {
16450 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16452 // Convert to the corresponding integer vector.
16454 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16455 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16456 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16458 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16461 // The base address of the store.
16462 Value
*BaseAddr
= SI
->getPointerOperand();
16464 if (NumStores
> 1) {
16465 // If we're going to generate more than one store, reset the lane length
16466 // and sub-vector type to something legal.
16467 LaneLen
/= NumStores
;
16468 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16470 // We will compute the pointer operand of each store from the original base
16471 // address using GEPs. Cast the base address to a pointer to the scalar
16473 BaseAddr
= Builder
.CreateBitCast(
16474 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16475 SI
->getPointerAddressSpace()));
16478 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16480 auto Mask
= SVI
->getShuffleMask();
16482 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16483 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16484 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16485 Intrinsic::arm_neon_vst3
,
16486 Intrinsic::arm_neon_vst4
};
16488 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16489 // If we generating more than one store, we compute the base address of
16490 // subsequent stores as an offset from the previous.
16491 if (StoreCount
> 0)
16492 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16493 BaseAddr
, LaneLen
* Factor
);
16495 SmallVector
<Value
*, 6> Ops
;
16496 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16498 Function
*VstNFunc
=
16499 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16501 // Split the shufflevector operands into sub vectors for the new vstN call.
16502 for (unsigned i
= 0; i
< Factor
; i
++) {
16503 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16504 if (Mask
[IdxI
] >= 0) {
16505 Ops
.push_back(Builder
.CreateShuffleVector(
16506 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16508 unsigned StartMask
= 0;
16509 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16510 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16511 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16512 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16516 // Note: If all elements in a chunk are undefs, StartMask=0!
16517 // Note: Filling undef gaps with random elements is ok, since
16518 // those elements were being written anyway (with undefs).
16519 // In the case of all undefs we're defaulting to using elems from 0
16520 // Note: StartMask cannot be negative, it's checked in
16521 // isReInterleaveMask
16522 Ops
.push_back(Builder
.CreateShuffleVector(
16523 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16527 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16528 Builder
.CreateCall(VstNFunc
, Ops
);
16541 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16542 uint64_t &Members
) {
16543 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16544 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16545 uint64_t SubMembers
= 0;
16546 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16548 Members
+= SubMembers
;
16550 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16551 uint64_t SubMembers
= 0;
16552 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16554 Members
+= SubMembers
* AT
->getNumElements();
16555 } else if (Ty
->isFloatTy()) {
16556 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16560 } else if (Ty
->isDoubleTy()) {
16561 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16565 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16572 return VT
->getBitWidth() == 64;
16574 return VT
->getBitWidth() == 128;
16576 switch (VT
->getBitWidth()) {
16589 return (Members
> 0 && Members
<= 4);
16592 /// Return the correct alignment for the current calling convention.
16594 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16595 DataLayout DL
) const {
16596 if (!ArgTy
->isVectorTy())
16597 return DL
.getABITypeAlignment(ArgTy
);
16599 // Avoid over-aligning vector parameters. It would require realigning the
16600 // stack and waste space for no real benefit.
16601 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16604 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16605 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16606 /// passing according to AAPCS rules.
16607 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16608 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16609 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16610 CallingConv::ARM_AAPCS_VFP
)
16613 HABaseType Base
= HA_UNKNOWN
;
16614 uint64_t Members
= 0;
16615 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16616 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16618 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16619 return IsHA
|| IsIntArray
;
16622 unsigned ARMTargetLowering::getExceptionPointerRegister(
16623 const Constant
*PersonalityFn
) const {
16624 // Platforms which do not use SjLj EH may return values in these registers
16625 // via the personality function.
16626 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16629 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16630 const Constant
*PersonalityFn
) const {
16631 // Platforms which do not use SjLj EH may return values in these registers
16632 // via the personality function.
16633 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16636 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16637 // Update IsSplitCSR in ARMFunctionInfo.
16638 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16639 AFI
->setIsSplitCSR(true);
16642 void ARMTargetLowering::insertCopiesSplitCSR(
16643 MachineBasicBlock
*Entry
,
16644 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16645 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16646 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16650 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16651 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16652 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16653 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16654 const TargetRegisterClass
*RC
= nullptr;
16655 if (ARM::GPRRegClass
.contains(*I
))
16656 RC
= &ARM::GPRRegClass
;
16657 else if (ARM::DPRRegClass
.contains(*I
))
16658 RC
= &ARM::DPRRegClass
;
16660 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16662 Register NewVR
= MRI
->createVirtualRegister(RC
);
16663 // Create copy from CSR to a virtual register.
16664 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16665 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16666 // nounwind. If we want to generalize this later, we may need to emit
16667 // CFI pseudo-instructions.
16668 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16669 Attribute::NoUnwind
) &&
16670 "Function should be nounwind in insertCopiesSplitCSR!");
16671 Entry
->addLiveIn(*I
);
16672 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16675 // Insert the copy-back instructions right before the terminator.
16676 for (auto *Exit
: Exits
)
16677 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16678 TII
->get(TargetOpcode::COPY
), *I
)
16683 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16684 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16685 TargetLoweringBase::finalizeLowering(MF
);