1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
16 #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
17 #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
19 #include "AMDGPUISelLowering.h"
21 #include "AMDGPUCallLowering.h"
22 #include "AMDGPUFrameLowering.h"
23 #include "AMDGPURegisterInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "AMDGPUTargetMachine.h"
26 #include "Utils/AMDGPUBaseInfo.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "SIInstrInfo.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/CallingConvLower.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/Support/KnownBits.h"
42 #include "AMDGPUGenCallingConv.inc"
44 // Find a larger type to do a load / store of a vector with.
45 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
46 unsigned StoreSize
= VT
.getStoreSizeInBits();
48 return EVT::getIntegerVT(Ctx
, StoreSize
);
50 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
51 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
54 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
55 EVT VT
= Op
.getValueType();
56 KnownBits Known
= DAG
.computeKnownBits(Op
);
57 return VT
.getSizeInBits() - Known
.countMinLeadingZeros();
60 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
61 EVT VT
= Op
.getValueType();
63 // In order for this to be a signed 24-bit value, bit 23, must
65 return VT
.getSizeInBits() - DAG
.ComputeNumSignBits(Op
);
68 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
69 const AMDGPUSubtarget
&STI
)
70 : TargetLowering(TM
), Subtarget(&STI
) {
71 // Lower floating point store/load to integer store/load to reduce the number
72 // of patterns in tablegen.
73 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
74 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
76 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
77 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
79 setOperationAction(ISD::LOAD
, MVT::v3f32
, Promote
);
80 AddPromotedToType(ISD::LOAD
, MVT::v3f32
, MVT::v3i32
);
82 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
83 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
85 setOperationAction(ISD::LOAD
, MVT::v5f32
, Promote
);
86 AddPromotedToType(ISD::LOAD
, MVT::v5f32
, MVT::v5i32
);
88 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
89 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
91 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
92 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
94 setOperationAction(ISD::LOAD
, MVT::v32f32
, Promote
);
95 AddPromotedToType(ISD::LOAD
, MVT::v32f32
, MVT::v32i32
);
97 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
98 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
100 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
101 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
103 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
104 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
106 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
107 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
109 // There are no 64-bit extloads. These should be done as a 32-bit extload and
110 // an extension to 64-bit.
111 for (MVT VT
: MVT::integer_valuetypes()) {
112 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, VT
, Expand
);
113 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, VT
, Expand
);
114 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, VT
, Expand
);
117 for (MVT VT
: MVT::integer_valuetypes()) {
121 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
122 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Legal
);
123 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Legal
);
124 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i32
, Expand
);
126 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
127 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Legal
);
128 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Legal
);
129 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i32
, Expand
);
131 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
132 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Legal
);
133 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Legal
);
134 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i32
, Expand
);
137 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
138 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i8
, Expand
);
139 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i8
, Expand
);
140 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i8
, Expand
);
141 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i8
, Expand
);
142 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i8
, Expand
);
143 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i8
, Expand
);
144 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v2i16
, Expand
);
145 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v2i16
, Expand
);
146 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v2i16
, Expand
);
147 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v3i16
, Expand
);
148 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v3i16
, Expand
);
149 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v3i16
, Expand
);
150 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::v4i16
, Expand
);
151 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::v4i16
, Expand
);
152 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::v4i16
, Expand
);
155 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
156 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
157 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f32
, MVT::v3f16
, Expand
);
158 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
159 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
160 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f32
, MVT::v16f16
, Expand
);
161 setLoadExtAction(ISD::EXTLOAD
, MVT::v32f32
, MVT::v32f16
, Expand
);
163 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
164 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
165 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
166 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
168 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
169 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
170 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
171 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
173 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
174 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
176 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
177 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
179 setOperationAction(ISD::STORE
, MVT::v3f32
, Promote
);
180 AddPromotedToType(ISD::STORE
, MVT::v3f32
, MVT::v3i32
);
182 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
183 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
185 setOperationAction(ISD::STORE
, MVT::v5f32
, Promote
);
186 AddPromotedToType(ISD::STORE
, MVT::v5f32
, MVT::v5i32
);
188 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
189 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
191 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
192 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
194 setOperationAction(ISD::STORE
, MVT::v32f32
, Promote
);
195 AddPromotedToType(ISD::STORE
, MVT::v32f32
, MVT::v32i32
);
197 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
198 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
200 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
201 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
203 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
204 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
206 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
207 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
209 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
210 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
211 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
212 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
214 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
215 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
216 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
217 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
219 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
220 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
221 setTruncStoreAction(MVT::v3f32
, MVT::v3f16
, Expand
);
222 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
223 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
224 setTruncStoreAction(MVT::v16f32
, MVT::v16f16
, Expand
);
225 setTruncStoreAction(MVT::v32f32
, MVT::v32f16
, Expand
);
227 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
228 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
230 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
231 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
233 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
234 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
236 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
237 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
240 setOperationAction(ISD::Constant
, MVT::i32
, Legal
);
241 setOperationAction(ISD::Constant
, MVT::i64
, Legal
);
242 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
243 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
245 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
246 setOperationAction(ISD::BRIND
, MVT::Other
, Expand
);
248 // This is totally unsupported, just custom lower to produce an error.
249 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
251 // Library functions. These default to Expand, but we have instructions
253 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
254 setOperationAction(ISD::FEXP2
, MVT::f32
, Legal
);
255 setOperationAction(ISD::FPOW
, MVT::f32
, Legal
);
256 setOperationAction(ISD::FLOG2
, MVT::f32
, Legal
);
257 setOperationAction(ISD::FABS
, MVT::f32
, Legal
);
258 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
259 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
260 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
261 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
262 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
264 setOperationAction(ISD::FROUND
, MVT::f32
, Custom
);
265 setOperationAction(ISD::FROUND
, MVT::f64
, Custom
);
267 setOperationAction(ISD::FLOG
, MVT::f32
, Custom
);
268 setOperationAction(ISD::FLOG10
, MVT::f32
, Custom
);
269 setOperationAction(ISD::FEXP
, MVT::f32
, Custom
);
272 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Custom
);
273 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Custom
);
275 setOperationAction(ISD::FREM
, MVT::f32
, Custom
);
276 setOperationAction(ISD::FREM
, MVT::f64
, Custom
);
278 // Expand to fneg + fadd.
279 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
281 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3i32
, Custom
);
282 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v3f32
, Custom
);
283 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i32
, Custom
);
284 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Custom
);
285 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5i32
, Custom
);
286 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v5f32
, Custom
);
287 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8i32
, Custom
);
288 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v8f32
, Custom
);
289 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2f32
, Custom
);
290 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v2i32
, Custom
);
291 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3f32
, Custom
);
292 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v3i32
, Custom
);
293 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Custom
);
294 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i32
, Custom
);
295 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5f32
, Custom
);
296 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v5i32
, Custom
);
297 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8f32
, Custom
);
298 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v8i32
, Custom
);
299 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16f32
, Custom
);
300 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v16i32
, Custom
);
301 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32f32
, Custom
);
302 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v32i32
, Custom
);
304 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
305 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Custom
);
306 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Custom
);
308 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
309 for (MVT VT
: ScalarIntVTs
) {
310 // These should use [SU]DIVREM, so set them to expand
311 setOperationAction(ISD::SDIV
, VT
, Expand
);
312 setOperationAction(ISD::UDIV
, VT
, Expand
);
313 setOperationAction(ISD::SREM
, VT
, Expand
);
314 setOperationAction(ISD::UREM
, VT
, Expand
);
316 // GPU does not have divrem function for signed or unsigned.
317 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
318 setOperationAction(ISD::UDIVREM
, VT
, Custom
);
320 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
321 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
322 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
324 setOperationAction(ISD::BSWAP
, VT
, Expand
);
325 setOperationAction(ISD::CTTZ
, VT
, Expand
);
326 setOperationAction(ISD::CTLZ
, VT
, Expand
);
328 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
329 setOperationAction(ISD::ADDC
, VT
, Legal
);
330 setOperationAction(ISD::SUBC
, VT
, Legal
);
331 setOperationAction(ISD::ADDE
, VT
, Legal
);
332 setOperationAction(ISD::SUBE
, VT
, Legal
);
335 // The hardware supports 32-bit ROTR, but not ROTL.
336 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
337 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
338 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
340 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
341 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
342 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
343 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
344 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
345 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
346 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
347 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
349 setOperationAction(ISD::SMIN
, MVT::i32
, Legal
);
350 setOperationAction(ISD::UMIN
, MVT::i32
, Legal
);
351 setOperationAction(ISD::SMAX
, MVT::i32
, Legal
);
352 setOperationAction(ISD::UMAX
, MVT::i32
, Legal
);
354 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
355 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i64
, Custom
);
356 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
357 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i64
, Custom
);
359 static const MVT::SimpleValueType VectorIntTypes
[] = {
360 MVT::v2i32
, MVT::v3i32
, MVT::v4i32
, MVT::v5i32
363 for (MVT VT
: VectorIntTypes
) {
364 // Expand the following operations for the current type by default.
365 setOperationAction(ISD::ADD
, VT
, Expand
);
366 setOperationAction(ISD::AND
, VT
, Expand
);
367 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
368 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
369 setOperationAction(ISD::MUL
, VT
, Expand
);
370 setOperationAction(ISD::MULHU
, VT
, Expand
);
371 setOperationAction(ISD::MULHS
, VT
, Expand
);
372 setOperationAction(ISD::OR
, VT
, Expand
);
373 setOperationAction(ISD::SHL
, VT
, Expand
);
374 setOperationAction(ISD::SRA
, VT
, Expand
);
375 setOperationAction(ISD::SRL
, VT
, Expand
);
376 setOperationAction(ISD::ROTL
, VT
, Expand
);
377 setOperationAction(ISD::ROTR
, VT
, Expand
);
378 setOperationAction(ISD::SUB
, VT
, Expand
);
379 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
380 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
381 setOperationAction(ISD::SDIV
, VT
, Expand
);
382 setOperationAction(ISD::UDIV
, VT
, Expand
);
383 setOperationAction(ISD::SREM
, VT
, Expand
);
384 setOperationAction(ISD::UREM
, VT
, Expand
);
385 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
386 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
387 setOperationAction(ISD::SDIVREM
, VT
, Custom
);
388 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
389 setOperationAction(ISD::SELECT
, VT
, Expand
);
390 setOperationAction(ISD::VSELECT
, VT
, Expand
);
391 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
392 setOperationAction(ISD::XOR
, VT
, Expand
);
393 setOperationAction(ISD::BSWAP
, VT
, Expand
);
394 setOperationAction(ISD::CTPOP
, VT
, Expand
);
395 setOperationAction(ISD::CTTZ
, VT
, Expand
);
396 setOperationAction(ISD::CTLZ
, VT
, Expand
);
397 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
398 setOperationAction(ISD::SETCC
, VT
, Expand
);
401 static const MVT::SimpleValueType FloatVectorTypes
[] = {
402 MVT::v2f32
, MVT::v3f32
, MVT::v4f32
, MVT::v5f32
405 for (MVT VT
: FloatVectorTypes
) {
406 setOperationAction(ISD::FABS
, VT
, Expand
);
407 setOperationAction(ISD::FMINNUM
, VT
, Expand
);
408 setOperationAction(ISD::FMAXNUM
, VT
, Expand
);
409 setOperationAction(ISD::FADD
, VT
, Expand
);
410 setOperationAction(ISD::FCEIL
, VT
, Expand
);
411 setOperationAction(ISD::FCOS
, VT
, Expand
);
412 setOperationAction(ISD::FDIV
, VT
, Expand
);
413 setOperationAction(ISD::FEXP2
, VT
, Expand
);
414 setOperationAction(ISD::FEXP
, VT
, Expand
);
415 setOperationAction(ISD::FLOG2
, VT
, Expand
);
416 setOperationAction(ISD::FREM
, VT
, Expand
);
417 setOperationAction(ISD::FLOG
, VT
, Expand
);
418 setOperationAction(ISD::FLOG10
, VT
, Expand
);
419 setOperationAction(ISD::FPOW
, VT
, Expand
);
420 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
421 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
422 setOperationAction(ISD::FMUL
, VT
, Expand
);
423 setOperationAction(ISD::FMA
, VT
, Expand
);
424 setOperationAction(ISD::FRINT
, VT
, Expand
);
425 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
426 setOperationAction(ISD::FSQRT
, VT
, Expand
);
427 setOperationAction(ISD::FSIN
, VT
, Expand
);
428 setOperationAction(ISD::FSUB
, VT
, Expand
);
429 setOperationAction(ISD::FNEG
, VT
, Expand
);
430 setOperationAction(ISD::VSELECT
, VT
, Expand
);
431 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
432 setOperationAction(ISD::FCOPYSIGN
, VT
, Expand
);
433 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Expand
);
434 setOperationAction(ISD::SETCC
, VT
, Expand
);
435 setOperationAction(ISD::FCANONICALIZE
, VT
, Expand
);
438 // This causes using an unrolled select operation rather than expansion with
439 // bit operations. This is in general better, but the alternative using BFI
440 // instructions may be better if the select sources are SGPRs.
441 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
442 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
444 setOperationAction(ISD::SELECT
, MVT::v3f32
, Promote
);
445 AddPromotedToType(ISD::SELECT
, MVT::v3f32
, MVT::v3i32
);
447 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
448 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
450 setOperationAction(ISD::SELECT
, MVT::v5f32
, Promote
);
451 AddPromotedToType(ISD::SELECT
, MVT::v5f32
, MVT::v5i32
);
453 // There are no libcalls of any kind.
454 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
455 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
457 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
458 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
460 setSchedulingPreference(Sched::RegPressure
);
461 setJumpIsExpensive(true);
463 // FIXME: This is only partially true. If we have to do vector compares, any
464 // SGPR pair can be a condition register. If we have a uniform condition, we
465 // are better off doing SALU operations, where there is only one SCC. For now,
466 // we don't have a way of knowing during instruction selection if a condition
467 // will be uniform and we always use vector compares. Assume we are using
468 // vector compares until that is fixed.
469 setHasMultipleConditionRegisters(true);
471 setMinCmpXchgSizeInBits(32);
472 setSupportsUnalignedAtomics(false);
474 PredictableSelectIsExpensive
= false;
476 // We want to find all load dependencies for long chains of stores to enable
477 // merging into very wide vectors. The problem is with vectors with > 4
478 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
479 // vectors are a legal type, even though we have to split the loads
480 // usually. When we can more precisely specify load legality per address
481 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
482 // smarter so that they can figure out what to do in 2 iterations without all
483 // N > 4 stores on the same chain.
484 GatherAllAliasesMaxDepth
= 16;
486 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
487 // about these during lowering.
488 MaxStoresPerMemcpy
= 0xffffffff;
489 MaxStoresPerMemmove
= 0xffffffff;
490 MaxStoresPerMemset
= 0xffffffff;
492 setTargetDAGCombine(ISD::BITCAST
);
493 setTargetDAGCombine(ISD::SHL
);
494 setTargetDAGCombine(ISD::SRA
);
495 setTargetDAGCombine(ISD::SRL
);
496 setTargetDAGCombine(ISD::TRUNCATE
);
497 setTargetDAGCombine(ISD::MUL
);
498 setTargetDAGCombine(ISD::MULHU
);
499 setTargetDAGCombine(ISD::MULHS
);
500 setTargetDAGCombine(ISD::SELECT
);
501 setTargetDAGCombine(ISD::SELECT_CC
);
502 setTargetDAGCombine(ISD::STORE
);
503 setTargetDAGCombine(ISD::FADD
);
504 setTargetDAGCombine(ISD::FSUB
);
505 setTargetDAGCombine(ISD::FNEG
);
506 setTargetDAGCombine(ISD::FABS
);
507 setTargetDAGCombine(ISD::AssertZext
);
508 setTargetDAGCombine(ISD::AssertSext
);
509 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
512 //===----------------------------------------------------------------------===//
513 // Target Information
514 //===----------------------------------------------------------------------===//
517 static bool fnegFoldsIntoOp(unsigned Opc
) {
526 case ISD::FMINNUM_IEEE
:
527 case ISD::FMAXNUM_IEEE
:
531 case ISD::FNEARBYINT
:
532 case ISD::FCANONICALIZE
:
534 case AMDGPUISD::RCP_LEGACY
:
535 case AMDGPUISD::RCP_IFLAG
:
536 case AMDGPUISD::SIN_HW
:
537 case AMDGPUISD::FMUL_LEGACY
:
538 case AMDGPUISD::FMIN_LEGACY
:
539 case AMDGPUISD::FMAX_LEGACY
:
540 case AMDGPUISD::FMED3
:
547 /// \p returns true if the operation will definitely need to use a 64-bit
548 /// encoding, and thus will use a VOP3 encoding regardless of the source
551 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
552 return N
->getNumOperands() > 2 || VT
== MVT::f64
;
555 // Most FP instructions support source modifiers, but this could be refined
558 static bool hasSourceMods(const SDNode
*N
) {
559 if (isa
<MemSDNode
>(N
))
562 switch (N
->getOpcode()) {
568 case ISD::INLINEASM_BR
:
569 case AMDGPUISD::INTERP_P1
:
570 case AMDGPUISD::INTERP_P2
:
571 case AMDGPUISD::DIV_SCALE
:
573 // TODO: Should really be looking at the users of the bitcast. These are
574 // problematic because bitcasts are used to legalize all stores to integer
583 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
584 unsigned CostThreshold
) {
585 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
586 // it is truly free to use a source modifier in all cases. If there are
587 // multiple users but for each one will necessitate using VOP3, there will be
588 // a code size increase. Try to avoid increasing code size unless we know it
589 // will save on the instruction count.
590 unsigned NumMayIncreaseSize
= 0;
591 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
593 // XXX - Should this limit number of uses to check?
594 for (const SDNode
*U
: N
->uses()) {
595 if (!hasSourceMods(U
))
598 if (!opMustUseVOP3Encoding(U
, VT
)) {
599 if (++NumMayIncreaseSize
> CostThreshold
)
607 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
611 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
615 // The backend supports 32 and 64 bit floating point immediates.
616 // FIXME: Why are we reporting vectors of FP immediates as legal?
617 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
618 bool ForCodeSize
) const {
619 EVT ScalarVT
= VT
.getScalarType();
620 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
621 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
624 // We don't want to shrink f64 / f32 constants.
625 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
626 EVT ScalarVT
= VT
.getScalarType();
627 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
630 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
631 ISD::LoadExtType ExtTy
,
633 // TODO: This may be worth removing. Check regression tests for diffs.
634 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
637 unsigned NewSize
= NewVT
.getStoreSizeInBits();
639 // If we are reducing to a 32-bit load, this is always better.
643 EVT OldVT
= N
->getValueType(0);
644 unsigned OldSize
= OldVT
.getStoreSizeInBits();
646 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
647 unsigned AS
= MN
->getAddressSpace();
648 // Do not shrink an aligned scalar load to sub-dword.
649 // Scalar engine cannot do sub-dword loads.
650 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlignment() >= 4 &&
651 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
652 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
653 (isa
<LoadSDNode
>(N
) &&
654 AS
== AMDGPUAS::GLOBAL_ADDRESS
&& MN
->isInvariant())) &&
655 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
658 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
659 // extloads, so doing one requires using a buffer_load. In cases where we
660 // still couldn't use a scalar load, using the wider load shouldn't really
663 // If the old size already had to be an extload, there's no harm in continuing
664 // to reduce the width.
665 return (OldSize
< 32);
668 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
, EVT CastTy
,
669 const SelectionDAG
&DAG
,
670 const MachineMemOperand
&MMO
) const {
672 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
674 if (LoadTy
.getScalarType() == MVT::i32
)
677 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
678 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
680 if ((LScalarSize
>= CastScalarSize
) && (CastScalarSize
< 32))
684 return allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
685 CastTy
, MMO
, &Fast
) &&
689 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
690 // profitable with the expansion for 64-bit since it's generally good to
692 // FIXME: These should really have the size as a parameter.
693 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
697 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
701 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
* N
) const {
702 switch (N
->getOpcode()) {
705 case ISD::EntryToken
:
706 case ISD::TokenFactor
:
708 case ISD::INTRINSIC_WO_CHAIN
:
710 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
714 case Intrinsic::amdgcn_readfirstlane
:
715 case Intrinsic::amdgcn_readlane
:
722 if (cast
<LoadSDNode
>(N
)->getMemOperand()->getAddrSpace() ==
723 AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
731 //===---------------------------------------------------------------------===//
733 //===---------------------------------------------------------------------===//
735 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
736 assert(VT
.isFloatingPoint());
738 // Packed operations do not have a fabs modifier.
739 return VT
== MVT::f32
|| VT
== MVT::f64
||
740 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
743 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
744 assert(VT
.isFloatingPoint());
745 return VT
== MVT::f32
|| VT
== MVT::f64
||
746 (Subtarget
->has16BitInsts() && VT
== MVT::f16
) ||
747 (Subtarget
->hasVOP3PInsts() && VT
== MVT::v2f16
);
750 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT
,
756 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
757 // There are few operations which truly have vector input operands. Any vector
758 // operation is going to involve operations on each component, and a
759 // build_vector will be a copy per element, so it always makes sense to use a
760 // build_vector input in place of the extracted element to avoid a copy into a
763 // We should probably only do this if all users are extracts only, but this
764 // should be the common case.
768 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
769 // Truncate is just accessing a subregister.
771 unsigned SrcSize
= Source
.getSizeInBits();
772 unsigned DestSize
= Dest
.getSizeInBits();
774 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
777 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
778 // Truncate is just accessing a subregister.
780 unsigned SrcSize
= Source
->getScalarSizeInBits();
781 unsigned DestSize
= Dest
->getScalarSizeInBits();
783 if (DestSize
== 16 && Subtarget
->has16BitInsts())
784 return SrcSize
>= 32;
786 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
789 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
790 unsigned SrcSize
= Src
->getScalarSizeInBits();
791 unsigned DestSize
= Dest
->getScalarSizeInBits();
793 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
794 return DestSize
>= 32;
796 return SrcSize
== 32 && DestSize
== 64;
799 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
800 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
801 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
802 // this will enable reducing 64-bit operations the 32-bit, which is always
806 return Dest
== MVT::i32
||Dest
== MVT::i64
;
808 return Src
== MVT::i32
&& Dest
== MVT::i64
;
811 bool AMDGPUTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
812 return isZExtFree(Val
.getValueType(), VT2
);
815 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
816 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
817 // limited number of native 64-bit operations. Shrinking an operation to fit
818 // in a single 32-bit register should always be helpful. As currently used,
819 // this is much less general than the name suggests, and is only used in
820 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
821 // not profitable, and may actually be harmful.
822 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
825 //===---------------------------------------------------------------------===//
826 // TargetLowering Callbacks
827 //===---------------------------------------------------------------------===//
829 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
832 case CallingConv::AMDGPU_VS
:
833 case CallingConv::AMDGPU_GS
:
834 case CallingConv::AMDGPU_PS
:
835 case CallingConv::AMDGPU_CS
:
836 case CallingConv::AMDGPU_HS
:
837 case CallingConv::AMDGPU_ES
:
838 case CallingConv::AMDGPU_LS
:
841 case CallingConv::Fast
:
842 case CallingConv::Cold
:
843 return CC_AMDGPU_Func
;
844 case CallingConv::AMDGPU_KERNEL
:
845 case CallingConv::SPIR_KERNEL
:
847 report_fatal_error("Unsupported calling convention for call");
851 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
854 case CallingConv::AMDGPU_KERNEL
:
855 case CallingConv::SPIR_KERNEL
:
856 llvm_unreachable("kernels should not be handled here");
857 case CallingConv::AMDGPU_VS
:
858 case CallingConv::AMDGPU_GS
:
859 case CallingConv::AMDGPU_PS
:
860 case CallingConv::AMDGPU_CS
:
861 case CallingConv::AMDGPU_HS
:
862 case CallingConv::AMDGPU_ES
:
863 case CallingConv::AMDGPU_LS
:
864 return RetCC_SI_Shader
;
866 case CallingConv::Fast
:
867 case CallingConv::Cold
:
868 return RetCC_AMDGPU_Func
;
870 report_fatal_error("Unsupported calling convention.");
874 /// The SelectionDAGBuilder will automatically promote function arguments
875 /// with illegal types. However, this does not work for the AMDGPU targets
876 /// since the function arguments are stored in memory as these illegal types.
877 /// In order to handle this properly we need to get the original types sizes
878 /// from the LLVM IR Function and fixup the ISD:InputArg values before
879 /// passing them to AnalyzeFormalArguments()
881 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
882 /// input values across multiple registers. Each item in the Ins array
883 /// represents a single value that will be stored in registers. Ins[x].VT is
884 /// the value type of the value that will be stored in the register, so
885 /// whatever SDNode we lower the argument to needs to be this type.
887 /// In order to correctly lower the arguments we need to know the size of each
888 /// argument. Since Ins[x].VT gives us the size of the register that will
889 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
890 /// for the orignal function argument so that we can deduce the correct memory
891 /// type to use for Ins[x]. In most cases the correct memory type will be
892 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
893 /// we have a kernel argument of type v8i8, this argument will be split into
894 /// 8 parts and each part will be represented by its own item in the Ins array.
895 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
896 /// the argument before it was split. From this, we deduce that the memory type
897 /// for each individual part is i8. We pass the memory type as LocVT to the
898 /// calling convention analysis function and the register type (Ins[x].VT) as
900 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
902 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
903 const MachineFunction
&MF
= State
.getMachineFunction();
904 const Function
&Fn
= MF
.getFunction();
905 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
906 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
907 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset(Fn
);
908 CallingConv::ID CC
= Fn
.getCallingConv();
910 unsigned MaxAlign
= 1;
911 uint64_t ExplicitArgOffset
= 0;
912 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
914 unsigned InIndex
= 0;
916 for (const Argument
&Arg
: Fn
.args()) {
917 Type
*BaseArgTy
= Arg
.getType();
918 unsigned Align
= DL
.getABITypeAlignment(BaseArgTy
);
919 MaxAlign
= std::max(Align
, MaxAlign
);
920 unsigned AllocSize
= DL
.getTypeAllocSize(BaseArgTy
);
922 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Align
) + ExplicitOffset
;
923 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Align
) + AllocSize
;
925 // We're basically throwing away everything passed into us and starting over
926 // to get accurate in-memory offsets. The "PartOffset" is completely useless
927 // to us as computed in Ins.
929 // We also need to figure out what type legalization is trying to do to get
930 // the correct memory offsets.
932 SmallVector
<EVT
, 16> ValueVTs
;
933 SmallVector
<uint64_t, 16> Offsets
;
934 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
936 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
937 Value
!= NumValues
; ++Value
) {
938 uint64_t BasePartOffset
= Offsets
[Value
];
940 EVT ArgVT
= ValueVTs
[Value
];
942 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
943 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
946 // This argument is not split, so the IR type is the memory type.
947 if (ArgVT
.isExtended()) {
948 // We have an extended type, like i24, so we should just use the
954 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
955 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
956 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
957 // We have a vector value which has been split into a vector with
958 // the same scalar type, but fewer elements. This should handle
959 // all the floating-point vector types.
961 } else if (ArgVT
.isVector() &&
962 ArgVT
.getVectorNumElements() == NumRegs
) {
963 // This arg has been split so that each element is stored in a separate
965 MemVT
= ArgVT
.getScalarType();
966 } else if (ArgVT
.isExtended()) {
967 // We have an extended type, like i65.
970 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
971 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
972 if (RegisterVT
.isInteger()) {
973 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
974 } else if (RegisterVT
.isVector()) {
975 assert(!RegisterVT
.getScalarType().isFloatingPoint());
976 unsigned NumElements
= RegisterVT
.getVectorNumElements();
977 assert(MemoryBits
% NumElements
== 0);
978 // This vector type has been split into another vector type with
979 // a different elements size.
980 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
981 MemoryBits
/ NumElements
);
982 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
984 llvm_unreachable("cannot deduce memory type.");
988 // Convert one element vectors to scalar.
989 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
990 MemVT
= MemVT
.getScalarType();
992 // Round up vec3/vec5 argument.
993 if (MemVT
.isVector() && !MemVT
.isPow2VectorType()) {
994 assert(MemVT
.getVectorNumElements() == 3 ||
995 MemVT
.getVectorNumElements() == 5);
996 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
999 unsigned PartOffset
= 0;
1000 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1001 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1002 BasePartOffset
+ PartOffset
,
1003 MemVT
.getSimpleVT(),
1004 CCValAssign::Full
));
1005 PartOffset
+= MemVT
.getStoreSize();
1011 SDValue
AMDGPUTargetLowering::LowerReturn(
1012 SDValue Chain
, CallingConv::ID CallConv
,
1014 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1015 const SmallVectorImpl
<SDValue
> &OutVals
,
1016 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1017 // FIXME: Fails for r600 tests
1018 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1019 // "wave terminate should not have return values");
1020 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1023 //===---------------------------------------------------------------------===//
1024 // Target specific lowering
1025 //===---------------------------------------------------------------------===//
1027 /// Selects the correct CCAssignFn for a given CallingConvention value.
1028 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1030 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1033 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1035 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1038 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1040 MachineFrameInfo
&MFI
,
1041 int ClobberedFI
) const {
1042 SmallVector
<SDValue
, 8> ArgChains
;
1043 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1044 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1046 // Include the original chain at the beginning of the list. When this is
1047 // used by target LowerCall hooks, this helps legalize find the
1048 // CALLSEQ_BEGIN node.
1049 ArgChains
.push_back(Chain
);
1051 // Add a chain value for each stack argument corresponding
1052 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
1053 UE
= DAG
.getEntryNode().getNode()->use_end();
1055 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
)) {
1056 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1057 if (FI
->getIndex() < 0) {
1058 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1059 int64_t InLastByte
= InFirstByte
;
1060 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1062 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1063 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1064 ArgChains
.push_back(SDValue(L
, 1));
1070 // Build a tokenfactor for all the chains.
1071 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1074 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1075 SmallVectorImpl
<SDValue
> &InVals
,
1076 StringRef Reason
) const {
1077 SDValue Callee
= CLI
.Callee
;
1078 SelectionDAG
&DAG
= CLI
.DAG
;
1080 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1082 StringRef
FuncName("<unknown>");
1084 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1085 FuncName
= G
->getSymbol();
1086 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1087 FuncName
= G
->getGlobal()->getName();
1089 DiagnosticInfoUnsupported
NoCalls(
1090 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1091 DAG
.getContext()->diagnose(NoCalls
);
1093 if (!CLI
.IsTailCall
) {
1094 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1095 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1098 return DAG
.getEntryNode();
1101 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1102 SmallVectorImpl
<SDValue
> &InVals
) const {
1103 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1106 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1107 SelectionDAG
&DAG
) const {
1108 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1110 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1111 SDLoc(Op
).getDebugLoc());
1112 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1113 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1114 return DAG
.getMergeValues(Ops
, SDLoc());
1117 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1118 SelectionDAG
&DAG
) const {
1119 switch (Op
.getOpcode()) {
1121 Op
->print(errs(), &DAG
);
1122 llvm_unreachable("Custom lowering code for this"
1123 "instruction is not implemented yet!");
1125 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1126 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1127 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1128 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1129 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1130 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1131 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1132 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1133 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1134 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1135 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1136 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1138 return LowerFLOG(Op
, DAG
, 1 / AMDGPU_LOG2E_F
);
1140 return LowerFLOG(Op
, DAG
, AMDGPU_LN2_F
/ AMDGPU_LN10_F
);
1142 return lowerFEXP(Op
, DAG
);
1143 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1144 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1145 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1146 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
1147 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
1149 case ISD::CTTZ_ZERO_UNDEF
:
1151 case ISD::CTLZ_ZERO_UNDEF
:
1152 return LowerCTLZ_CTTZ(Op
, DAG
);
1153 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1158 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1159 SmallVectorImpl
<SDValue
> &Results
,
1160 SelectionDAG
&DAG
) const {
1161 switch (N
->getOpcode()) {
1162 case ISD::SIGN_EXTEND_INREG
:
1163 // Different parts of legalization seem to interpret which type of
1164 // sign_extend_inreg is the one to check for custom lowering. The extended
1165 // from type is what really matters, but some places check for custom
1166 // lowering of the result type. This results in trying to use
1167 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1168 // nothing here and let the illegal result integer be handled normally.
1175 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue
*GV
) {
1176 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1177 if (!GVar
|| !GVar
->hasInitializer())
1180 return !isa
<UndefValue
>(GVar
->getInitializer());
1183 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1185 SelectionDAG
&DAG
) const {
1187 const DataLayout
&DL
= DAG
.getDataLayout();
1188 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1189 const GlobalValue
*GV
= G
->getGlobal();
1191 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1192 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1193 if (!MFI
->isEntryFunction()) {
1194 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1195 DiagnosticInfoUnsupported
BadLDSDecl(
1196 Fn
, "local memory global used by non-kernel function", SDLoc(Op
).getDebugLoc());
1197 DAG
.getContext()->diagnose(BadLDSDecl
);
1200 // XXX: What does the value of G->getOffset() mean?
1201 assert(G
->getOffset() == 0 &&
1202 "Do not know what to do with an non-zero offset");
1204 // TODO: We could emit code to handle the initialization somewhere.
1205 if (!hasDefinedInitializer(GV
)) {
1206 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *GV
);
1207 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1211 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1212 DiagnosticInfoUnsupported
BadInit(
1213 Fn
, "unsupported initializer for address space", SDLoc(Op
).getDebugLoc());
1214 DAG
.getContext()->diagnose(BadInit
);
1218 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1219 SelectionDAG
&DAG
) const {
1220 SmallVector
<SDValue
, 8> Args
;
1222 EVT VT
= Op
.getValueType();
1223 if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
1225 SDValue Lo
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(0));
1226 SDValue Hi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Op
.getOperand(1));
1228 SDValue BV
= DAG
.getBuildVector(MVT::v2i32
, SL
, { Lo
, Hi
});
1229 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1232 for (const SDUse
&U
: Op
->ops())
1233 DAG
.ExtractVectorElements(U
.get(), Args
);
1235 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1238 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1239 SelectionDAG
&DAG
) const {
1241 SmallVector
<SDValue
, 8> Args
;
1242 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1243 EVT VT
= Op
.getValueType();
1244 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1245 VT
.getVectorNumElements());
1247 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Args
);
1250 /// Generate Min/Max node
1251 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1252 SDValue LHS
, SDValue RHS
,
1253 SDValue True
, SDValue False
,
1255 DAGCombinerInfo
&DCI
) const {
1256 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
1259 SelectionDAG
&DAG
= DCI
.DAG
;
1260 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1269 case ISD::SETFALSE2
:
1278 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1279 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1285 // Ordered. Assume ordered for undefined.
1287 // Only do this after legalization to avoid interfering with other combines
1288 // which might occur.
1289 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1290 !DCI
.isCalledByLegalizer())
1293 // We need to permute the operands to get the correct NaN behavior. The
1294 // selected operand is the second one based on the failing compare with NaN,
1295 // so permute it based on the compare type the hardware uses.
1297 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1298 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1303 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1304 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1310 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1311 !DCI
.isCalledByLegalizer())
1315 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1316 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1318 case ISD::SETCC_INVALID
:
1319 llvm_unreachable("Invalid setcc condcode!");
1324 std::pair
<SDValue
, SDValue
>
1325 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1328 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1330 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1331 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1333 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1334 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1336 return std::make_pair(Lo
, Hi
);
1339 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1342 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1343 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1344 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1347 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1350 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1351 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1352 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1355 // Split a vector type into two parts. The first part is a power of two vector.
1356 // The second part is whatever is left over, and is a scalar if it would
1357 // otherwise be a 1-vector.
1359 AMDGPUTargetLowering::getSplitDestVTs(const EVT
&VT
, SelectionDAG
&DAG
) const {
1361 EVT EltVT
= VT
.getVectorElementType();
1362 unsigned NumElts
= VT
.getVectorNumElements();
1363 unsigned LoNumElts
= PowerOf2Ceil((NumElts
+ 1) / 2);
1364 LoVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, LoNumElts
);
1365 HiVT
= NumElts
- LoNumElts
== 1
1367 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
- LoNumElts
);
1368 return std::make_pair(LoVT
, HiVT
);
1371 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1373 std::pair
<SDValue
, SDValue
>
1374 AMDGPUTargetLowering::splitVector(const SDValue
&N
, const SDLoc
&DL
,
1375 const EVT
&LoVT
, const EVT
&HiVT
,
1376 SelectionDAG
&DAG
) const {
1377 assert(LoVT
.getVectorNumElements() +
1378 (HiVT
.isVector() ? HiVT
.getVectorNumElements() : 1) <=
1379 N
.getValueType().getVectorNumElements() &&
1380 "More vector elements requested than available!");
1381 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1382 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
1383 DAG
.getConstant(0, DL
, IdxTy
));
1384 SDValue Hi
= DAG
.getNode(
1385 HiVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT
, DL
,
1386 HiVT
, N
, DAG
.getConstant(LoVT
.getVectorNumElements(), DL
, IdxTy
));
1387 return std::make_pair(Lo
, Hi
);
1390 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1391 SelectionDAG
&DAG
) const {
1392 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1393 EVT VT
= Op
.getValueType();
1396 // If this is a 2 element vector, we really want to scalarize and not create
1397 // weird 1 element vectors.
1398 if (VT
.getVectorNumElements() == 2)
1399 return scalarizeVectorLoad(Load
, DAG
);
1401 SDValue BasePtr
= Load
->getBasePtr();
1402 EVT MemVT
= Load
->getMemoryVT();
1405 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1408 EVT LoMemVT
, HiMemVT
;
1411 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1412 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1413 std::tie(Lo
, Hi
) = splitVector(Op
, SL
, LoVT
, HiVT
, DAG
);
1415 unsigned Size
= LoMemVT
.getStoreSize();
1416 unsigned BaseAlign
= Load
->getAlignment();
1417 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1419 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1420 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1421 BaseAlign
, Load
->getMemOperand()->getFlags());
1422 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Size
);
1424 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1425 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1426 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1428 auto IdxTy
= getVectorIdxTy(DAG
.getDataLayout());
1431 // This is the case that the vector is power of two so was evenly split.
1432 Join
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
);
1434 Join
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SL
, VT
, DAG
.getUNDEF(VT
), LoLoad
,
1435 DAG
.getConstant(0, SL
, IdxTy
));
1436 Join
= DAG
.getNode(HiVT
.isVector() ? ISD::INSERT_SUBVECTOR
1437 : ISD::INSERT_VECTOR_ELT
,
1438 SL
, VT
, Join
, HiLoad
,
1439 DAG
.getConstant(LoVT
.getVectorNumElements(), SL
, IdxTy
));
1442 SDValue Ops
[] = {Join
, DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1443 LoLoad
.getValue(1), HiLoad
.getValue(1))};
1445 return DAG
.getMergeValues(Ops
, SL
);
1448 // Widen a vector load from vec3 to vec4.
1449 SDValue
AMDGPUTargetLowering::WidenVectorLoad(SDValue Op
,
1450 SelectionDAG
&DAG
) const {
1451 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1452 EVT VT
= Op
.getValueType();
1453 assert(VT
.getVectorNumElements() == 3);
1454 SDValue BasePtr
= Load
->getBasePtr();
1455 EVT MemVT
= Load
->getMemoryVT();
1457 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1458 unsigned BaseAlign
= Load
->getAlignment();
1461 EVT::getVectorVT(*DAG
.getContext(), VT
.getVectorElementType(), 4);
1463 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getVectorElementType(), 4);
1464 SDValue WideLoad
= DAG
.getExtLoad(
1465 Load
->getExtensionType(), SL
, WideVT
, Load
->getChain(), BasePtr
, SrcValue
,
1466 WideMemVT
, BaseAlign
, Load
->getMemOperand()->getFlags());
1467 return DAG
.getMergeValues(
1468 {DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SL
, VT
, WideLoad
,
1469 DAG
.getConstant(0, SL
, getVectorIdxTy(DAG
.getDataLayout()))),
1470 WideLoad
.getValue(1)},
1474 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1475 SelectionDAG
&DAG
) const {
1476 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1477 SDValue Val
= Store
->getValue();
1478 EVT VT
= Val
.getValueType();
1480 // If this is a 2 element vector, we really want to scalarize and not create
1481 // weird 1 element vectors.
1482 if (VT
.getVectorNumElements() == 2)
1483 return scalarizeVectorStore(Store
, DAG
);
1485 EVT MemVT
= Store
->getMemoryVT();
1486 SDValue Chain
= Store
->getChain();
1487 SDValue BasePtr
= Store
->getBasePtr();
1491 EVT LoMemVT
, HiMemVT
;
1494 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1495 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1496 std::tie(Lo
, Hi
) = splitVector(Val
, SL
, LoVT
, HiVT
, DAG
);
1498 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1500 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1501 unsigned BaseAlign
= Store
->getAlignment();
1502 unsigned Size
= LoMemVT
.getStoreSize();
1503 unsigned HiAlign
= MinAlign(BaseAlign
, Size
);
1506 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1507 Store
->getMemOperand()->getFlags());
1509 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1510 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1512 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1515 // This is a shortcut for integer division because we have fast i32<->f32
1516 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1517 // float is enough to accurately represent up to a 24-bit signed integer.
1518 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1521 EVT VT
= Op
.getValueType();
1522 SDValue LHS
= Op
.getOperand(0);
1523 SDValue RHS
= Op
.getOperand(1);
1524 MVT IntVT
= MVT::i32
;
1525 MVT FltVT
= MVT::f32
;
1527 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1528 if (LHSSignBits
< 9)
1531 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1532 if (RHSSignBits
< 9)
1535 unsigned BitSize
= VT
.getSizeInBits();
1536 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1537 unsigned DivBits
= BitSize
- SignBits
;
1541 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1542 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1544 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1547 // char|short jq = ia ^ ib;
1548 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1550 // jq = jq >> (bitsize - 2)
1551 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1552 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1555 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1558 // int ia = (int)LHS;
1561 // int ib, (int)RHS;
1564 // float fa = (float)ia;
1565 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1567 // float fb = (float)ib;
1568 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1570 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1571 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1574 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1576 // float fqneg = -fq;
1577 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1579 // float fr = mad(fqneg, fb, fa);
1580 unsigned OpCode
= Subtarget
->hasFP32Denormals() ?
1581 (unsigned)AMDGPUISD::FMAD_FTZ
:
1582 (unsigned)ISD::FMAD
;
1583 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1585 // int iq = (int)fq;
1586 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1589 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1592 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1594 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1596 // int cv = fr >= fb;
1597 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1599 // jq = (cv ? jq : 0);
1600 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1603 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1605 // Rem needs compensation, it's easier to recompute it
1606 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1607 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1609 // Truncate to number of bits this divide really is.
1612 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1613 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1614 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1616 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1617 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1618 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1621 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1624 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1626 SmallVectorImpl
<SDValue
> &Results
) const {
1628 EVT VT
= Op
.getValueType();
1630 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1632 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1634 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1635 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1638 SDValue LHS
= Op
.getOperand(0);
1639 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1640 SDValue LHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, One
);
1642 SDValue RHS
= Op
.getOperand(1);
1643 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1644 SDValue RHS_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, One
);
1646 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1647 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1649 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1652 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1653 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1655 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1656 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1660 if (isTypeLegal(MVT::i64
)) {
1661 // Compute denominator reciprocal.
1662 unsigned FMAD
= Subtarget
->hasFP32Denormals() ?
1663 (unsigned)AMDGPUISD::FMAD_FTZ
:
1664 (unsigned)ISD::FMAD
;
1666 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1667 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1668 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1669 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1671 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1672 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1673 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1674 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1675 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1676 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1677 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1678 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1680 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1681 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1682 SDValue Rcp64
= DAG
.getBitcast(VT
,
1683 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1685 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1686 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1687 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1688 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1690 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1691 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1692 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1693 SDValue Mulhi1_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1695 SDValue Mulhi1_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi1
,
1698 SDValue Add1_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1700 SDValue Add1_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1701 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1702 SDValue Add1_HiNc
= DAG
.getNode(ISD::ADD
, DL
, HalfVT
, Rcp_Hi
, Mulhi1_Hi
);
1703 SDValue Add1
= DAG
.getBitcast(VT
,
1704 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1706 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1707 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1708 SDValue Mulhi2_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1710 SDValue Mulhi2_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mulhi2
,
1713 SDValue Add2_Lo
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_Lo
,
1715 SDValue Add2_HiC
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add1_HiNc
,
1716 Mulhi2_Hi
, Add1_Lo
.getValue(1));
1717 SDValue Add2_Hi
= DAG
.getNode(ISD::ADDCARRY
, DL
, HalfCarryVT
, Add2_HiC
,
1718 Zero
, Add2_Lo
.getValue(1));
1719 SDValue Add2
= DAG
.getBitcast(VT
,
1720 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
1721 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
1723 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
1725 SDValue Mul3_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, Zero
);
1726 SDValue Mul3_Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, Mul3
, One
);
1727 SDValue Sub1_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Lo
,
1729 SDValue Sub1_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, LHS_Hi
,
1730 Mul3_Hi
, Sub1_Lo
.getValue(1));
1731 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
1732 SDValue Sub1
= DAG
.getBitcast(VT
,
1733 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
1735 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
1736 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
1738 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
1740 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
1742 // TODO: Here and below portions of the code can be enclosed into if/endif.
1743 // Currently control flow is unconditional and we have 4 selects after
1744 // potential endif to substitute PHIs.
1747 SDValue Sub2_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
1749 SDValue Sub2_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
1750 RHS_Hi
, Sub1_Lo
.getValue(1));
1751 SDValue Sub2_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1752 Zero
, Sub2_Lo
.getValue(1));
1753 SDValue Sub2
= DAG
.getBitcast(VT
,
1754 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
1756 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
1758 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
1760 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
1762 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
1765 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
1767 SDValue Sub3_Lo
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
1769 SDValue Sub3_Mi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
1770 RHS_Hi
, Sub2_Lo
.getValue(1));
1771 SDValue Sub3_Hi
= DAG
.getNode(ISD::SUBCARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
1772 Zero
, Sub3_Lo
.getValue(1));
1773 SDValue Sub3
= DAG
.getBitcast(VT
,
1774 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
1779 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
1780 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
1782 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
1783 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
1785 Results
.push_back(Div
);
1786 Results
.push_back(Rem
);
1792 // Get Speculative values
1793 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1794 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
1796 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
1797 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
1798 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
1800 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
1801 SDValue DIV_Lo
= Zero
;
1803 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
1805 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
1806 const unsigned bitPos
= halfBitWidth
- i
- 1;
1807 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
1808 // Get value of high bit
1809 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
1810 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
1811 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
1814 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
1816 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
1818 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
1819 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
1821 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
1824 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
1825 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
1828 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
1829 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
1830 Results
.push_back(DIV
);
1831 Results
.push_back(REM
);
1834 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
1835 SelectionDAG
&DAG
) const {
1837 EVT VT
= Op
.getValueType();
1839 if (VT
== MVT::i64
) {
1840 SmallVector
<SDValue
, 2> Results
;
1841 LowerUDIVREM64(Op
, DAG
, Results
);
1842 return DAG
.getMergeValues(Results
, DL
);
1845 if (VT
== MVT::i32
) {
1846 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
1850 SDValue Num
= Op
.getOperand(0);
1851 SDValue Den
= Op
.getOperand(1);
1853 // RCP = URECIP(Den) = 2^32 / Den + e
1854 // e is rounding error.
1855 SDValue RCP
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Den
);
1857 // RCP_LO = mul(RCP, Den) */
1858 SDValue RCP_LO
= DAG
.getNode(ISD::MUL
, DL
, VT
, RCP
, Den
);
1860 // RCP_HI = mulhu (RCP, Den) */
1861 SDValue RCP_HI
= DAG
.getNode(ISD::MULHU
, DL
, VT
, RCP
, Den
);
1863 // NEG_RCP_LO = -RCP_LO
1864 SDValue NEG_RCP_LO
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
1867 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1868 SDValue ABS_RCP_LO
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1871 // Calculate the rounding error from the URECIP instruction
1872 // E = mulhu(ABS_RCP_LO, RCP)
1873 SDValue E
= DAG
.getNode(ISD::MULHU
, DL
, VT
, ABS_RCP_LO
, RCP
);
1875 // RCP_A_E = RCP + E
1876 SDValue RCP_A_E
= DAG
.getNode(ISD::ADD
, DL
, VT
, RCP
, E
);
1878 // RCP_S_E = RCP - E
1879 SDValue RCP_S_E
= DAG
.getNode(ISD::SUB
, DL
, VT
, RCP
, E
);
1881 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1882 SDValue Tmp0
= DAG
.getSelectCC(DL
, RCP_HI
, DAG
.getConstant(0, DL
, VT
),
1885 // Quotient = mulhu(Tmp0, Num)
1886 SDValue Quotient
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Tmp0
, Num
);
1888 // Num_S_Remainder = Quotient * Den
1889 SDValue Num_S_Remainder
= DAG
.getNode(ISD::MUL
, DL
, VT
, Quotient
, Den
);
1891 // Remainder = Num - Num_S_Remainder
1892 SDValue Remainder
= DAG
.getNode(ISD::SUB
, DL
, VT
, Num
, Num_S_Remainder
);
1894 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1895 SDValue Remainder_GE_Den
= DAG
.getSelectCC(DL
, Remainder
, Den
,
1896 DAG
.getConstant(-1, DL
, VT
),
1897 DAG
.getConstant(0, DL
, VT
),
1899 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1900 SDValue Remainder_GE_Zero
= DAG
.getSelectCC(DL
, Num
,
1902 DAG
.getConstant(-1, DL
, VT
),
1903 DAG
.getConstant(0, DL
, VT
),
1905 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1906 SDValue Tmp1
= DAG
.getNode(ISD::AND
, DL
, VT
, Remainder_GE_Den
,
1909 // Calculate Division result:
1911 // Quotient_A_One = Quotient + 1
1912 SDValue Quotient_A_One
= DAG
.getNode(ISD::ADD
, DL
, VT
, Quotient
,
1913 DAG
.getConstant(1, DL
, VT
));
1915 // Quotient_S_One = Quotient - 1
1916 SDValue Quotient_S_One
= DAG
.getNode(ISD::SUB
, DL
, VT
, Quotient
,
1917 DAG
.getConstant(1, DL
, VT
));
1919 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1920 SDValue Div
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1921 Quotient
, Quotient_A_One
, ISD::SETEQ
);
1923 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1924 Div
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1925 Quotient_S_One
, Div
, ISD::SETEQ
);
1927 // Calculate Rem result:
1929 // Remainder_S_Den = Remainder - Den
1930 SDValue Remainder_S_Den
= DAG
.getNode(ISD::SUB
, DL
, VT
, Remainder
, Den
);
1932 // Remainder_A_Den = Remainder + Den
1933 SDValue Remainder_A_Den
= DAG
.getNode(ISD::ADD
, DL
, VT
, Remainder
, Den
);
1935 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1936 SDValue Rem
= DAG
.getSelectCC(DL
, Tmp1
, DAG
.getConstant(0, DL
, VT
),
1937 Remainder
, Remainder_S_Den
, ISD::SETEQ
);
1939 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1940 Rem
= DAG
.getSelectCC(DL
, Remainder_GE_Zero
, DAG
.getConstant(0, DL
, VT
),
1941 Remainder_A_Den
, Rem
, ISD::SETEQ
);
1946 return DAG
.getMergeValues(Ops
, DL
);
1949 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
1950 SelectionDAG
&DAG
) const {
1952 EVT VT
= Op
.getValueType();
1954 SDValue LHS
= Op
.getOperand(0);
1955 SDValue RHS
= Op
.getOperand(1);
1957 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
1958 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
1960 if (VT
== MVT::i32
) {
1961 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
1965 if (VT
== MVT::i64
&&
1966 DAG
.ComputeNumSignBits(LHS
) > 32 &&
1967 DAG
.ComputeNumSignBits(RHS
) > 32) {
1968 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1971 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
1972 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
1973 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1976 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
1977 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
1979 return DAG
.getMergeValues(Res
, DL
);
1982 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1983 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
1984 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
1985 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
1987 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
1988 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
1990 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
1991 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
1993 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
1994 SDValue Rem
= Div
.getValue(1);
1996 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
1997 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
1999 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
2000 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
2006 return DAG
.getMergeValues(Res
, DL
);
2009 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
2010 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
2012 EVT VT
= Op
.getValueType();
2013 SDValue X
= Op
.getOperand(0);
2014 SDValue Y
= Op
.getOperand(1);
2016 // TODO: Should this propagate fast-math-flags?
2018 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
);
2019 SDValue Floor
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
);
2020 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Floor
, Y
);
2022 return DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, Mul
);
2025 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
2027 SDValue Src
= Op
.getOperand(0);
2029 // result = trunc(src)
2030 // if (src > 0.0 && src != result)
2033 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2035 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2036 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
2039 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2041 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
2042 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2043 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2045 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
2046 // TODO: Should this propagate fast-math-flags?
2047 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2050 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
2051 SelectionDAG
&DAG
) {
2052 const unsigned FractBits
= 52;
2053 const unsigned ExpBits
= 11;
2055 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2057 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2058 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2059 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2060 DAG
.getConstant(1023, SL
, MVT::i32
));
2065 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2067 SDValue Src
= Op
.getOperand(0);
2069 assert(Op
.getValueType() == MVT::f64
);
2071 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2072 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2074 SDValue VecSrc
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2076 // Extract the upper half, since this is where we will find the sign and
2078 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecSrc
, One
);
2080 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2082 const unsigned FractBits
= 52;
2084 // Extract the sign bit.
2085 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2086 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2088 // Extend back to 64-bits.
2089 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2090 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2092 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2093 const SDValue FractMask
2094 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2096 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2097 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2098 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2101 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2103 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2105 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2106 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2108 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2109 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2111 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2114 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2116 SDValue Src
= Op
.getOperand(0);
2118 assert(Op
.getValueType() == MVT::f64
);
2120 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2121 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2122 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2124 // TODO: Should this propagate fast-math-flags?
2126 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2127 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2129 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2131 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2132 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2135 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2136 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2138 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2141 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2142 // FNEARBYINT and FRINT are the same, except in their handling of FP
2143 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2144 // rint, so just treat them as equivalent.
2145 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2148 // XXX - May require not supporting f32 denormals?
2150 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2151 // compare and vselect end up producing worse code than scalarizing the whole
2153 SDValue
AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op
, SelectionDAG
&DAG
) const {
2155 SDValue X
= Op
.getOperand(0);
2156 EVT VT
= Op
.getValueType();
2158 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2160 // TODO: Should this propagate fast-math-flags?
2162 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2164 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2166 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2167 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2168 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2170 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2173 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2175 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2177 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2179 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2182 SDValue
AMDGPUTargetLowering::LowerFROUND64(SDValue Op
, SelectionDAG
&DAG
) const {
2184 SDValue X
= Op
.getOperand(0);
2186 SDValue L
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, X
);
2188 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2189 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2190 const SDValue NegOne
= DAG
.getConstant(-1, SL
, MVT::i32
);
2191 const SDValue FiftyOne
= DAG
.getConstant(51, SL
, MVT::i32
);
2193 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2195 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, X
);
2197 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
, One
);
2199 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2201 const SDValue Mask
= DAG
.getConstant(INT64_C(0x000fffffffffffff), SL
,
2204 SDValue M
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Mask
, Exp
);
2205 SDValue D
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
,
2206 DAG
.getConstant(INT64_C(0x0008000000000000), SL
,
2210 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, L
, M
);
2211 SDValue Tmp1
= DAG
.getSetCC(SL
, SetCCVT
,
2212 DAG
.getConstant(0, SL
, MVT::i64
), Tmp0
,
2215 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, Tmp1
,
2216 D
, DAG
.getConstant(0, SL
, MVT::i64
));
2217 SDValue K
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, Tmp2
);
2219 K
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, K
, DAG
.getNOT(SL
, M
, MVT::i64
));
2220 K
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, K
);
2222 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2223 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2224 SDValue ExpEqNegOne
= DAG
.getSetCC(SL
, SetCCVT
, NegOne
, Exp
, ISD::SETEQ
);
2226 SDValue Mag
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
,
2228 DAG
.getConstantFP(1.0, SL
, MVT::f64
),
2229 DAG
.getConstantFP(0.0, SL
, MVT::f64
));
2231 SDValue S
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, Mag
, X
);
2233 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpLt0
, S
, K
);
2234 K
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, ExpGt51
, X
, K
);
2239 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2240 EVT VT
= Op
.getValueType();
2242 if (VT
== MVT::f32
|| VT
== MVT::f16
)
2243 return LowerFROUND32_16(Op
, DAG
);
2246 return LowerFROUND64(Op
, DAG
);
2248 llvm_unreachable("unhandled type");
2251 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2253 SDValue Src
= Op
.getOperand(0);
2255 // result = trunc(src);
2256 // if (src < 0.0 && src != result)
2259 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2261 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2262 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2265 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2267 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2268 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2269 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2271 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2272 // TODO: Should this propagate fast-math-flags?
2273 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2276 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2277 double Log2BaseInverted
) const {
2278 EVT VT
= Op
.getValueType();
2281 SDValue Operand
= Op
.getOperand(0);
2282 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2283 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2285 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2288 // Return M_LOG2E of appropriate type
2289 static SDValue
getLog2EVal(SelectionDAG
&DAG
, const SDLoc
&SL
, EVT VT
) {
2290 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
2292 return DAG
.getConstantFP(1.44269504088896340735992468100189214f
, SL
, VT
);
2294 return DAG
.getConstantFP(
2295 APFloat(APFloat::IEEEhalf(), "1.44269504088896340735992468100189214"),
2298 return DAG
.getConstantFP(
2299 APFloat(APFloat::IEEEdouble(), "0x1.71547652b82fep+0"), SL
, VT
);
2301 llvm_unreachable("unsupported fp type");
2305 // exp2(M_LOG2E_F * f);
2306 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2307 EVT VT
= Op
.getValueType();
2309 SDValue Src
= Op
.getOperand(0);
2311 const SDValue K
= getLog2EVal(DAG
, SL
, VT
);
2312 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2313 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2316 static bool isCtlzOpc(unsigned Opc
) {
2317 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2320 static bool isCttzOpc(unsigned Opc
) {
2321 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2324 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2326 SDValue Src
= Op
.getOperand(0);
2327 bool ZeroUndef
= Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
||
2328 Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
;
2330 unsigned ISDOpc
, NewOpc
;
2331 if (isCtlzOpc(Op
.getOpcode())) {
2332 ISDOpc
= ISD::CTLZ_ZERO_UNDEF
;
2333 NewOpc
= AMDGPUISD::FFBH_U32
;
2334 } else if (isCttzOpc(Op
.getOpcode())) {
2335 ISDOpc
= ISD::CTTZ_ZERO_UNDEF
;
2336 NewOpc
= AMDGPUISD::FFBL_B32
;
2338 llvm_unreachable("Unexpected OPCode!!!");
2341 if (ZeroUndef
&& Src
.getValueType() == MVT::i32
)
2342 return DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2344 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2346 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2347 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2349 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
2350 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
2352 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2353 *DAG
.getContext(), MVT::i32
);
2355 SDValue HiOrLo
= isCtlzOpc(Op
.getOpcode()) ? Hi
: Lo
;
2356 SDValue Hi0orLo0
= DAG
.getSetCC(SL
, SetCCVT
, HiOrLo
, Zero
, ISD::SETEQ
);
2358 SDValue OprLo
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Lo
);
2359 SDValue OprHi
= DAG
.getNode(ISDOpc
, SL
, MVT::i32
, Hi
);
2361 const SDValue Bits32
= DAG
.getConstant(32, SL
, MVT::i32
);
2362 SDValue Add
, NewOpr
;
2363 if (isCtlzOpc(Op
.getOpcode())) {
2364 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprLo
, Bits32
);
2365 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2366 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprHi
);
2368 Add
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, OprHi
, Bits32
);
2369 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2370 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
, Hi0orLo0
, Add
, OprLo
);
2374 // Test if the full 64-bit input is zero.
2376 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2377 // which we probably don't want.
2378 SDValue LoOrHi
= isCtlzOpc(Op
.getOpcode()) ? Lo
: Hi
;
2379 SDValue Lo0OrHi0
= DAG
.getSetCC(SL
, SetCCVT
, LoOrHi
, Zero
, ISD::SETEQ
);
2380 SDValue SrcIsZero
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lo0OrHi0
, Hi0orLo0
);
2382 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2383 // with the same cycles, otherwise it is slower.
2384 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2385 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2387 const SDValue Bits32
= DAG
.getConstant(64, SL
, MVT::i32
);
2389 // The instruction returns -1 for 0 input, but the defined intrinsic
2390 // behavior is to return the number of bits.
2391 NewOpr
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i32
,
2392 SrcIsZero
, Bits32
, NewOpr
);
2395 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2398 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2399 bool Signed
) const {
2403 // uint lz = clz(u);
2404 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2405 // u = (u << lz) & 0x7fffffffffffffffUL;
2406 // ulong t = u & 0xffffffffffUL;
2407 // uint v = (e << 23) | (uint)(u >> 40);
2408 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2409 // return as_float(v + r);
2414 // long s = l >> 63;
2415 // float r = cul2f((l + s) ^ s);
2416 // return s ? -r : r;
2420 SDValue Src
= Op
.getOperand(0);
2425 const SDValue SignBit
= DAG
.getConstant(63, SL
, MVT::i64
);
2426 S
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, L
, SignBit
);
2428 SDValue LPlusS
= DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, L
, S
);
2429 L
= DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, LPlusS
, S
);
2432 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(),
2433 *DAG
.getContext(), MVT::f32
);
2436 SDValue ZeroI32
= DAG
.getConstant(0, SL
, MVT::i32
);
2437 SDValue ZeroI64
= DAG
.getConstant(0, SL
, MVT::i64
);
2438 SDValue LZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SL
, MVT::i64
, L
);
2439 LZ
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LZ
);
2441 SDValue K
= DAG
.getConstant(127U + 63U, SL
, MVT::i32
);
2442 SDValue E
= DAG
.getSelect(SL
, MVT::i32
,
2443 DAG
.getSetCC(SL
, SetCCVT
, L
, ZeroI64
, ISD::SETNE
),
2444 DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, K
, LZ
),
2447 SDValue U
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
,
2448 DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, L
, LZ
),
2449 DAG
.getConstant((-1ULL) >> 1, SL
, MVT::i64
));
2451 SDValue T
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, U
,
2452 DAG
.getConstant(0xffffffffffULL
, SL
, MVT::i64
));
2454 SDValue UShl
= DAG
.getNode(ISD::SRL
, SL
, MVT::i64
,
2455 U
, DAG
.getConstant(40, SL
, MVT::i64
));
2457 SDValue V
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
,
2458 DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, E
, DAG
.getConstant(23, SL
, MVT::i32
)),
2459 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, UShl
));
2461 SDValue C
= DAG
.getConstant(0x8000000000ULL
, SL
, MVT::i64
);
2462 SDValue RCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETUGT
);
2463 SDValue TCmp
= DAG
.getSetCC(SL
, SetCCVT
, T
, C
, ISD::SETEQ
);
2465 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
2467 SDValue VTrunc1
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, V
, One
);
2469 SDValue R
= DAG
.getSelect(SL
, MVT::i32
,
2472 DAG
.getSelect(SL
, MVT::i32
, TCmp
, VTrunc1
, ZeroI32
));
2473 R
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, V
, R
);
2474 R
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, R
);
2479 SDValue RNeg
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, R
);
2480 return DAG
.getSelect(SL
, MVT::f32
, DAG
.getSExtOrTrunc(S
, SL
, SetCCVT
), RNeg
, R
);
2483 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2484 bool Signed
) const {
2486 SDValue Src
= Op
.getOperand(0);
2488 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Src
);
2490 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2491 DAG
.getConstant(0, SL
, MVT::i32
));
2492 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, BC
,
2493 DAG
.getConstant(1, SL
, MVT::i32
));
2495 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2498 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2500 SDValue LdExp
= DAG
.getNode(AMDGPUISD::LDEXP
, SL
, MVT::f64
, CvtHi
,
2501 DAG
.getConstant(32, SL
, MVT::i32
));
2502 // TODO: Should this propagate fast-math-flags?
2503 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2506 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2507 SelectionDAG
&DAG
) const {
2508 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2509 "operation should be legal");
2511 // TODO: Factor out code common with LowerSINT_TO_FP.
2513 EVT DestVT
= Op
.getValueType();
2514 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2516 SDValue Src
= Op
.getOperand(0);
2518 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2519 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2521 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2526 if (DestVT
== MVT::f32
)
2527 return LowerINT_TO_FP32(Op
, DAG
, false);
2529 assert(DestVT
== MVT::f64
);
2530 return LowerINT_TO_FP64(Op
, DAG
, false);
2533 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2534 SelectionDAG
&DAG
) const {
2535 assert(Op
.getOperand(0).getValueType() == MVT::i64
&&
2536 "operation should be legal");
2538 // TODO: Factor out code common with LowerUINT_TO_FP.
2540 EVT DestVT
= Op
.getValueType();
2541 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2543 SDValue Src
= Op
.getOperand(0);
2545 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2546 SDValue FPRoundFlag
= DAG
.getIntPtrConstant(0, SDLoc(Op
));
2548 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2553 if (DestVT
== MVT::f32
)
2554 return LowerINT_TO_FP32(Op
, DAG
, true);
2556 assert(DestVT
== MVT::f64
);
2557 return LowerINT_TO_FP64(Op
, DAG
, true);
2560 SDValue
AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
2561 bool Signed
) const {
2564 SDValue Src
= Op
.getOperand(0);
2566 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2568 SDValue K0
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL
,
2570 SDValue K1
= DAG
.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL
,
2572 // TODO: Should this propagate fast-math-flags?
2573 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, MVT::f64
, Trunc
, K0
);
2575 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, MVT::f64
, Mul
);
2578 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, MVT::f64
, FloorMul
, K1
, Trunc
);
2580 SDValue Hi
= DAG
.getNode(Signed
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
, SL
,
2581 MVT::i32
, FloorMul
);
2582 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2584 SDValue Result
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
});
2586 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Result
);
2589 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2591 SDValue N0
= Op
.getOperand(0);
2593 // Convert to target node to get known bits
2594 if (N0
.getValueType() == MVT::f32
)
2595 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2597 if (getTargetMachine().Options
.UnsafeFPMath
) {
2598 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2602 assert(N0
.getSimpleValueType() == MVT::f64
);
2604 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2605 const unsigned ExpMask
= 0x7ff;
2606 const unsigned ExpBiasf64
= 1023;
2607 const unsigned ExpBiasf16
= 15;
2608 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2609 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2610 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2611 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2612 DAG
.getConstant(32, DL
, MVT::i64
));
2613 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2614 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2615 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2616 DAG
.getConstant(20, DL
, MVT::i64
));
2617 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2618 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2619 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2620 // add the f16 bias (15) to get the biased exponent for the f16 format.
2621 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2622 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2624 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2625 DAG
.getConstant(8, DL
, MVT::i32
));
2626 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2627 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2629 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2630 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2631 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2633 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2634 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2636 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2637 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2638 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2639 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2641 // N = M | (E << 12);
2642 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2643 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2644 DAG
.getConstant(12, DL
, MVT::i32
)));
2646 // B = clamp(1-E, 0, 13);
2647 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2649 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2650 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2651 DAG
.getConstant(13, DL
, MVT::i32
));
2653 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2654 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2656 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2657 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2658 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2659 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2661 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2662 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2663 DAG
.getConstant(0x7, DL
, MVT::i32
));
2664 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2665 DAG
.getConstant(2, DL
, MVT::i32
));
2666 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2667 One
, Zero
, ISD::SETEQ
);
2668 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2669 One
, Zero
, ISD::SETGT
);
2670 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2671 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2673 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2674 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2675 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2678 // Extract the sign bit.
2679 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2680 DAG
.getConstant(16, DL
, MVT::i32
));
2681 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2682 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2684 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2685 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2688 SDValue
AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op
,
2689 SelectionDAG
&DAG
) const {
2690 SDValue Src
= Op
.getOperand(0);
2692 // TODO: Factor out code common with LowerFP_TO_UINT.
2694 EVT SrcVT
= Src
.getValueType();
2695 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2698 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2700 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2705 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2706 return LowerFP64_TO_INT(Op
, DAG
, true);
2711 SDValue
AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op
,
2712 SelectionDAG
&DAG
) const {
2713 SDValue Src
= Op
.getOperand(0);
2715 // TODO: Factor out code common with LowerFP_TO_SINT.
2717 EVT SrcVT
= Src
.getValueType();
2718 if (Subtarget
->has16BitInsts() && SrcVT
== MVT::f16
) {
2721 SDValue FPExtend
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, Src
);
2723 DAG
.getNode(Op
.getOpcode(), DL
, MVT::i64
, FPExtend
);
2728 if (Op
.getValueType() == MVT::i64
&& Src
.getValueType() == MVT::f64
)
2729 return LowerFP64_TO_INT(Op
, DAG
, false);
2734 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
2735 SelectionDAG
&DAG
) const {
2736 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2737 MVT VT
= Op
.getSimpleValueType();
2738 MVT ScalarVT
= VT
.getScalarType();
2740 assert(VT
.isVector());
2742 SDValue Src
= Op
.getOperand(0);
2745 // TODO: Don't scalarize on Evergreen?
2746 unsigned NElts
= VT
.getVectorNumElements();
2747 SmallVector
<SDValue
, 8> Args
;
2748 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
2750 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
2751 for (unsigned I
= 0; I
< NElts
; ++I
)
2752 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
2754 return DAG
.getBuildVector(VT
, DL
, Args
);
2757 //===----------------------------------------------------------------------===//
2758 // Custom DAG optimizations
2759 //===----------------------------------------------------------------------===//
2761 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
2762 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
2765 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
2766 EVT VT
= Op
.getValueType();
2767 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2768 // as unsigned 24-bit values.
2769 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) < 24;
2772 static SDValue
simplifyI24(SDNode
*Node24
,
2773 TargetLowering::DAGCombinerInfo
&DCI
) {
2774 SelectionDAG
&DAG
= DCI
.DAG
;
2775 bool IsIntrin
= Node24
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
;
2777 SDValue LHS
= IsIntrin
? Node24
->getOperand(1) : Node24
->getOperand(0);
2778 SDValue RHS
= IsIntrin
? Node24
->getOperand(2) : Node24
->getOperand(1);
2779 unsigned NewOpcode
= Node24
->getOpcode();
2781 unsigned IID
= cast
<ConstantSDNode
>(Node24
->getOperand(0))->getZExtValue();
2782 NewOpcode
= IID
== Intrinsic::amdgcn_mul_i24
?
2783 AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
2786 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
2788 // First try to simplify using GetDemandedBits which allows the operands to
2789 // have other uses, but will only perform simplifications that involve
2790 // bypassing some nodes for this user.
2791 SDValue DemandedLHS
= DAG
.GetDemandedBits(LHS
, Demanded
);
2792 SDValue DemandedRHS
= DAG
.GetDemandedBits(RHS
, Demanded
);
2793 if (DemandedLHS
|| DemandedRHS
)
2794 return DAG
.getNode(NewOpcode
, SDLoc(Node24
), Node24
->getVTList(),
2795 DemandedLHS
? DemandedLHS
: LHS
,
2796 DemandedRHS
? DemandedRHS
: RHS
);
2798 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2799 // operands if this node is the only user.
2800 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2801 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
2802 return SDValue(Node24
, 0);
2803 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
2804 return SDValue(Node24
, 0);
2809 template <typename IntTy
>
2810 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
2811 uint32_t Width
, const SDLoc
&DL
) {
2812 if (Width
+ Offset
< 32) {
2813 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
2814 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
2815 return DAG
.getConstant(Result
, DL
, MVT::i32
);
2818 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
2821 static bool hasVolatileUser(SDNode
*Val
) {
2822 for (SDNode
*U
: Val
->uses()) {
2823 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
2824 if (M
->isVolatile())
2832 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
2833 // i32 vectors are the canonical memory type.
2834 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
2837 if (!VT
.isByteSized())
2840 unsigned Size
= VT
.getStoreSize();
2842 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
2845 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
2851 // Find a load or store from corresponding pattern root.
2852 // Roots may be build_vector, bitconvert or their combinations.
2853 static MemSDNode
* findMemSDNode(SDNode
*N
) {
2854 N
= AMDGPUTargetLowering::stripBitcast(SDValue(N
,0)).getNode();
2855 if (MemSDNode
*MN
= dyn_cast
<MemSDNode
>(N
))
2857 assert(isa
<BuildVectorSDNode
>(N
));
2858 for (SDValue V
: N
->op_values())
2860 dyn_cast
<MemSDNode
>(AMDGPUTargetLowering::stripBitcast(V
)))
2862 llvm_unreachable("cannot find MemSDNode in the pattern!");
2865 bool AMDGPUTargetLowering::SelectFlatOffset(bool IsSigned
,
2871 SDValue
&SLC
) const {
2872 const GCNSubtarget
&ST
=
2873 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
2874 int64_t OffsetVal
= 0;
2876 if (ST
.hasFlatInstOffsets() &&
2877 (!ST
.hasFlatSegmentOffsetBug() ||
2878 findMemSDNode(N
)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS
) &&
2879 DAG
.isBaseWithConstantOffset(Addr
)) {
2880 SDValue N0
= Addr
.getOperand(0);
2881 SDValue N1
= Addr
.getOperand(1);
2882 int64_t COffsetVal
= cast
<ConstantSDNode
>(N1
)->getSExtValue();
2884 const SIInstrInfo
*TII
= ST
.getInstrInfo();
2885 if (TII
->isLegalFLATOffset(COffsetVal
, findMemSDNode(N
)->getAddressSpace(),
2888 OffsetVal
= COffsetVal
;
2893 Offset
= DAG
.getTargetConstant(OffsetVal
, SDLoc(), MVT::i16
);
2894 SLC
= DAG
.getTargetConstant(0, SDLoc(), MVT::i1
);
2899 // Replace load of an illegal type with a store of a bitcast to a friendlier
2901 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
2902 DAGCombinerInfo
&DCI
) const {
2903 if (!DCI
.isBeforeLegalize())
2906 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
2907 if (LN
->isVolatile() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
2911 SelectionDAG
&DAG
= DCI
.DAG
;
2912 EVT VT
= LN
->getMemoryVT();
2914 unsigned Size
= VT
.getStoreSize();
2915 unsigned Align
= LN
->getAlignment();
2916 if (Align
< Size
&& isTypeLegal(VT
)) {
2918 unsigned AS
= LN
->getAddressSpace();
2920 // Expand unaligned loads earlier than legalization. Due to visitation order
2921 // problems during legalization, the emitted instructions to pack and unpack
2922 // the bytes again are not eliminated in the case of an unaligned copy.
2923 if (!allowsMisalignedMemoryAccesses(
2924 VT
, AS
, Align
, LN
->getMemOperand()->getFlags(), &IsFast
)) {
2926 return scalarizeVectorLoad(LN
, DAG
);
2929 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
2930 return DAG
.getMergeValues(Ops
, SDLoc(N
));
2937 if (!shouldCombineMemoryType(VT
))
2940 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2943 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
2944 LN
->getBasePtr(), LN
->getMemOperand());
2946 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
2947 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
2948 return SDValue(N
, 0);
2951 // Replace store of an illegal type with a store of a bitcast to a friendlier
2953 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
2954 DAGCombinerInfo
&DCI
) const {
2955 if (!DCI
.isBeforeLegalize())
2958 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
2959 if (SN
->isVolatile() || !ISD::isNormalStore(SN
))
2962 EVT VT
= SN
->getMemoryVT();
2963 unsigned Size
= VT
.getStoreSize();
2966 SelectionDAG
&DAG
= DCI
.DAG
;
2967 unsigned Align
= SN
->getAlignment();
2968 if (Align
< Size
&& isTypeLegal(VT
)) {
2970 unsigned AS
= SN
->getAddressSpace();
2972 // Expand unaligned stores earlier than legalization. Due to visitation
2973 // order problems during legalization, the emitted instructions to pack and
2974 // unpack the bytes again are not eliminated in the case of an unaligned
2976 if (!allowsMisalignedMemoryAccesses(
2977 VT
, AS
, Align
, SN
->getMemOperand()->getFlags(), &IsFast
)) {
2979 return scalarizeVectorStore(SN
, DAG
);
2981 return expandUnalignedStore(SN
, DAG
);
2988 if (!shouldCombineMemoryType(VT
))
2991 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
2992 SDValue Val
= SN
->getValue();
2994 //DCI.AddToWorklist(Val.getNode());
2996 bool OtherUses
= !Val
.hasOneUse();
2997 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
2999 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
3000 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
3003 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
3004 SN
->getBasePtr(), SN
->getMemOperand());
3007 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3008 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3010 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
3011 DAGCombinerInfo
&DCI
) const {
3012 SelectionDAG
&DAG
= DCI
.DAG
;
3013 SDValue N0
= N
->getOperand(0);
3015 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3016 // (vt2 (truncate (assertzext vt0:x, vt1)))
3017 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3018 SDValue N1
= N
->getOperand(1);
3019 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
3022 SDValue Src
= N0
.getOperand(0);
3023 EVT SrcVT
= Src
.getValueType();
3024 if (SrcVT
.bitsGE(ExtVT
)) {
3025 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
3026 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
3033 SDValue
AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3034 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3035 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
3037 case Intrinsic::amdgcn_mul_i24
:
3038 case Intrinsic::amdgcn_mul_u24
:
3039 return simplifyI24(N
, DCI
);
3045 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3046 /// binary operation \p Opc to it with the corresponding constant operands.
3047 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3048 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
3049 unsigned Opc
, SDValue LHS
,
3050 uint32_t ValLo
, uint32_t ValHi
) const {
3051 SelectionDAG
&DAG
= DCI
.DAG
;
3053 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
3055 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
3056 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
3058 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
3059 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
3061 // Re-visit the ands. It's possible we eliminated one of them and it could
3062 // simplify the vector.
3063 DCI
.AddToWorklist(Lo
.getNode());
3064 DCI
.AddToWorklist(Hi
.getNode());
3066 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
3067 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3070 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
3071 DAGCombinerInfo
&DCI
) const {
3072 EVT VT
= N
->getValueType(0);
3074 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3078 SDValue LHS
= N
->getOperand(0);
3079 unsigned RHSVal
= RHS
->getZExtValue();
3084 SelectionDAG
&DAG
= DCI
.DAG
;
3086 switch (LHS
->getOpcode()) {
3089 case ISD::ZERO_EXTEND
:
3090 case ISD::SIGN_EXTEND
:
3091 case ISD::ANY_EXTEND
: {
3092 SDValue X
= LHS
->getOperand(0);
3094 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
3095 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
3096 // Prefer build_vector as the canonical form if packed types are legal.
3097 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3098 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
3099 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
3100 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
3103 // shl (ext x) => zext (shl x), if shift does not overflow int
3106 KnownBits Known
= DAG
.computeKnownBits(X
);
3107 unsigned LZ
= Known
.countMinLeadingZeros();
3110 EVT XVT
= X
.getValueType();
3111 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
3112 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
3119 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3121 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3122 // common case, splitting this into a move and a 32-bit shift is faster and
3123 // the same code size.
3127 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3129 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3130 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3132 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3134 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3135 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3138 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3139 DAGCombinerInfo
&DCI
) const {
3140 if (N
->getValueType(0) != MVT::i64
)
3143 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3147 SelectionDAG
&DAG
= DCI
.DAG
;
3149 unsigned RHSVal
= RHS
->getZExtValue();
3151 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3153 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3154 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3155 DAG
.getConstant(31, SL
, MVT::i32
));
3157 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3158 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3161 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3163 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3164 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3165 DAG
.getConstant(31, SL
, MVT::i32
));
3166 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3167 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3173 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3174 DAGCombinerInfo
&DCI
) const {
3175 auto *RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3179 EVT VT
= N
->getValueType(0);
3180 SDValue LHS
= N
->getOperand(0);
3181 unsigned ShiftAmt
= RHS
->getZExtValue();
3182 SelectionDAG
&DAG
= DCI
.DAG
;
3185 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3186 // this improves the ability to match BFE patterns in isel.
3187 if (LHS
.getOpcode() == ISD::AND
) {
3188 if (auto *Mask
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1))) {
3189 if (Mask
->getAPIntValue().isShiftedMask() &&
3190 Mask
->getAPIntValue().countTrailingZeros() == ShiftAmt
) {
3193 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(0), N
->getOperand(1)),
3194 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(1), N
->getOperand(1)));
3205 // srl i64:x, C for C >= 32
3207 // build_pair (srl hi_32(x), C - 32), 0
3208 SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
3209 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3211 SDValue VecOp
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, LHS
);
3212 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, VecOp
, One
);
3214 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3215 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3217 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3219 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3222 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3223 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3225 SelectionDAG
&DAG
= DCI
.DAG
;
3226 EVT VT
= N
->getValueType(0);
3227 SDValue Src
= N
->getOperand(0);
3229 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3230 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3231 SDValue Vec
= Src
.getOperand(0);
3232 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3233 SDValue Elt0
= Vec
.getOperand(0);
3234 EVT EltVT
= Elt0
.getValueType();
3235 if (VT
.getSizeInBits() <= EltVT
.getSizeInBits()) {
3236 if (EltVT
.isFloatingPoint()) {
3237 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3238 EltVT
.changeTypeToInteger(), Elt0
);
3241 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3246 // Equivalent of above for accessing the high element of a vector as an
3247 // integer operation.
3248 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3249 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3250 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3251 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3252 SDValue BV
= stripBitcast(Src
.getOperand(0));
3253 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3254 BV
.getValueType().getVectorNumElements() == 2) {
3255 SDValue SrcElt
= BV
.getOperand(1);
3256 EVT SrcEltVT
= SrcElt
.getValueType();
3257 if (SrcEltVT
.isFloatingPoint()) {
3258 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3259 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3262 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3268 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3270 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3271 // i16 (trunc (srl (i32 (trunc x), K)))
3272 if (VT
.getScalarSizeInBits() < 32) {
3273 EVT SrcVT
= Src
.getValueType();
3274 if (SrcVT
.getScalarSizeInBits() > 32 &&
3275 (Src
.getOpcode() == ISD::SRL
||
3276 Src
.getOpcode() == ISD::SRA
||
3277 Src
.getOpcode() == ISD::SHL
)) {
3278 SDValue Amt
= Src
.getOperand(1);
3279 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3280 unsigned Size
= VT
.getScalarSizeInBits();
3281 if ((Known
.isConstant() && Known
.getConstant().ule(Size
)) ||
3282 (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
))) {
3283 EVT MidVT
= VT
.isVector() ?
3284 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3285 VT
.getVectorNumElements()) : MVT::i32
;
3287 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3288 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3290 DCI
.AddToWorklist(Trunc
.getNode());
3292 if (Amt
.getValueType() != NewShiftVT
) {
3293 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3294 DCI
.AddToWorklist(Amt
.getNode());
3297 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3299 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3307 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3308 // instructions. If we only match on the legalized i64 mul expansion,
3309 // SimplifyDemandedBits will be unable to remove them because there will be
3310 // multiple uses due to the separate mul + mulh[su].
3311 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3312 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3314 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3315 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3318 // Because we want to eliminate extension instructions before the
3319 // operation, we need to create a single user here (i.e. not the separate
3320 // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
3322 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_LOHI_I24
: AMDGPUISD::MUL_LOHI_U24
;
3324 SDValue Mul
= DAG
.getNode(MulOpc
, SL
,
3325 DAG
.getVTList(MVT::i32
, MVT::i32
), N0
, N1
);
3327 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
,
3328 Mul
.getValue(0), Mul
.getValue(1));
3331 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3332 DAGCombinerInfo
&DCI
) const {
3333 EVT VT
= N
->getValueType(0);
3335 unsigned Size
= VT
.getSizeInBits();
3336 if (VT
.isVector() || Size
> 64)
3339 // There are i16 integer mul/mad.
3340 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3343 SelectionDAG
&DAG
= DCI
.DAG
;
3346 SDValue N0
= N
->getOperand(0);
3347 SDValue N1
= N
->getOperand(1);
3349 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3350 // in the source into any_extends if the result of the mul is truncated. Since
3351 // we can assume the high bits are whatever we want, use the underlying value
3352 // to avoid the unknown high bits from interfering.
3353 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3354 N0
= N0
.getOperand(0);
3356 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3357 N1
= N1
.getOperand(0);
3361 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3362 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3363 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3364 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3365 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3366 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3367 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3368 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3373 // We need to use sext even for MUL_U24, because MUL_U24 is used
3374 // for signed multiply of 8 and 16-bit types.
3375 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3378 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3379 DAGCombinerInfo
&DCI
) const {
3380 EVT VT
= N
->getValueType(0);
3382 if (!Subtarget
->hasMulI24() || VT
.isVector())
3385 SelectionDAG
&DAG
= DCI
.DAG
;
3388 SDValue N0
= N
->getOperand(0);
3389 SDValue N1
= N
->getOperand(1);
3391 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3394 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3395 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3397 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3398 DCI
.AddToWorklist(Mulhi
.getNode());
3399 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3402 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3403 DAGCombinerInfo
&DCI
) const {
3404 EVT VT
= N
->getValueType(0);
3406 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3409 SelectionDAG
&DAG
= DCI
.DAG
;
3412 SDValue N0
= N
->getOperand(0);
3413 SDValue N1
= N
->getOperand(1);
3415 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3418 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3419 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3421 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3422 DCI
.AddToWorklist(Mulhi
.getNode());
3423 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3426 SDValue
AMDGPUTargetLowering::performMulLoHi24Combine(
3427 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3428 SelectionDAG
&DAG
= DCI
.DAG
;
3430 // Simplify demanded bits before splitting into multiple users.
3431 if (SDValue V
= simplifyI24(N
, DCI
))
3434 SDValue N0
= N
->getOperand(0);
3435 SDValue N1
= N
->getOperand(1);
3437 bool Signed
= (N
->getOpcode() == AMDGPUISD::MUL_LOHI_I24
);
3439 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3440 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3444 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3445 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3446 return DAG
.getMergeValues({ MulLo
, MulHi
}, SL
);
3449 static bool isNegativeOne(SDValue Val
) {
3450 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
))
3451 return C
->isAllOnesValue();
3455 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3458 unsigned Opc
) const {
3459 EVT VT
= Op
.getValueType();
3460 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3461 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3462 LegalVT
!= MVT::i16
))
3466 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3468 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3470 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3475 // The native instructions return -1 on 0 input. Optimize out a select that
3476 // produces -1 on 0.
3478 // TODO: If zero is not undef, we could also do this if the output is compared
3479 // against the bitwidth.
3481 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3482 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3483 SDValue LHS
, SDValue RHS
,
3484 DAGCombinerInfo
&DCI
) const {
3485 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3486 if (!CmpRhs
|| !CmpRhs
->isNullValue())
3489 SelectionDAG
&DAG
= DCI
.DAG
;
3490 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3491 SDValue CmpLHS
= Cond
.getOperand(0);
3493 unsigned Opc
= isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
:
3494 AMDGPUISD::FFBH_U32
;
3496 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3497 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3498 if (CCOpcode
== ISD::SETEQ
&&
3499 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3500 RHS
.getOperand(0) == CmpLHS
&&
3501 isNegativeOne(LHS
)) {
3502 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3505 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3506 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3507 if (CCOpcode
== ISD::SETNE
&&
3508 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3509 LHS
.getOperand(0) == CmpLHS
&&
3510 isNegativeOne(RHS
)) {
3511 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3517 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3523 SelectionDAG
&DAG
= DCI
.DAG
;
3524 EVT VT
= N1
.getValueType();
3526 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3527 N1
.getOperand(0), N2
.getOperand(0));
3528 DCI
.AddToWorklist(NewSelect
.getNode());
3529 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3532 // Pull a free FP operation out of a select so it may fold into uses.
3534 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3535 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3537 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3538 // select c, (fabs x), +k -> fabs (select c, x, k)
3539 static SDValue
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3541 SelectionDAG
&DAG
= DCI
.DAG
;
3542 SDValue Cond
= N
.getOperand(0);
3543 SDValue LHS
= N
.getOperand(1);
3544 SDValue RHS
= N
.getOperand(2);
3546 EVT VT
= N
.getValueType();
3547 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3548 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3549 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3550 SDLoc(N
), Cond
, LHS
, RHS
);
3554 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3555 std::swap(LHS
, RHS
);
3559 // TODO: Support vector constants.
3560 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3561 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
) {
3563 // If one side is an fneg/fabs and the other is a constant, we can push the
3564 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3565 SDValue NewLHS
= LHS
.getOperand(0);
3566 SDValue NewRHS
= RHS
;
3568 // Careful: if the neg can be folded up, don't try to pull it back down.
3569 bool ShouldFoldNeg
= true;
3571 if (NewLHS
.hasOneUse()) {
3572 unsigned Opc
= NewLHS
.getOpcode();
3573 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(Opc
))
3574 ShouldFoldNeg
= false;
3575 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3576 ShouldFoldNeg
= false;
3579 if (ShouldFoldNeg
) {
3580 if (LHS
.getOpcode() == ISD::FNEG
)
3581 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3582 else if (CRHS
->isNegative())
3586 std::swap(NewLHS
, NewRHS
);
3588 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3589 Cond
, NewLHS
, NewRHS
);
3590 DCI
.AddToWorklist(NewSelect
.getNode());
3591 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3599 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3600 DAGCombinerInfo
&DCI
) const {
3601 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3604 SDValue Cond
= N
->getOperand(0);
3605 if (Cond
.getOpcode() != ISD::SETCC
)
3608 EVT VT
= N
->getValueType(0);
3609 SDValue LHS
= Cond
.getOperand(0);
3610 SDValue RHS
= Cond
.getOperand(1);
3611 SDValue CC
= Cond
.getOperand(2);
3613 SDValue True
= N
->getOperand(1);
3614 SDValue False
= N
->getOperand(2);
3616 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3617 SelectionDAG
&DAG
= DCI
.DAG
;
3618 if (DAG
.isConstantValueOfAnyType(True
) &&
3619 !DAG
.isConstantValueOfAnyType(False
)) {
3620 // Swap cmp + select pair to move constant to false input.
3621 // This will allow using VOPC cndmasks more often.
3622 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3625 ISD::CondCode NewCC
= getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
3626 LHS
.getValueType().isInteger());
3628 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3629 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
3632 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
3634 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
3635 // Revisit this node so we can catch min3/max3/med3 patterns.
3636 //DCI.AddToWorklist(MinMax.getNode());
3641 // There's no reason to not do this if the condition has other uses.
3642 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
3645 static bool isInv2Pi(const APFloat
&APF
) {
3646 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3647 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3648 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3650 return APF
.bitwiseIsEqual(KF16
) ||
3651 APF
.bitwiseIsEqual(KF32
) ||
3652 APF
.bitwiseIsEqual(KF64
);
3655 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3656 // additional cost to negate them.
3657 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
3658 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
)) {
3659 if (C
->isZero() && !C
->isNegative())
3662 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
3669 static unsigned inverseMinMax(unsigned Opc
) {
3672 return ISD::FMINNUM
;
3674 return ISD::FMAXNUM
;
3675 case ISD::FMAXNUM_IEEE
:
3676 return ISD::FMINNUM_IEEE
;
3677 case ISD::FMINNUM_IEEE
:
3678 return ISD::FMAXNUM_IEEE
;
3679 case AMDGPUISD::FMAX_LEGACY
:
3680 return AMDGPUISD::FMIN_LEGACY
;
3681 case AMDGPUISD::FMIN_LEGACY
:
3682 return AMDGPUISD::FMAX_LEGACY
;
3684 llvm_unreachable("invalid min/max opcode");
3688 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
3689 DAGCombinerInfo
&DCI
) const {
3690 SelectionDAG
&DAG
= DCI
.DAG
;
3691 SDValue N0
= N
->getOperand(0);
3692 EVT VT
= N
->getValueType(0);
3694 unsigned Opc
= N0
.getOpcode();
3696 // If the input has multiple uses and we can either fold the negate down, or
3697 // the other uses cannot, give up. This both prevents unprofitable
3698 // transformations and infinite loops: we won't repeatedly try to fold around
3699 // a negate that has no 'good' form.
3700 if (N0
.hasOneUse()) {
3701 // This may be able to fold into the source, but at a code size cost. Don't
3702 // fold if the fold into the user is free.
3703 if (allUsesHaveSourceMods(N
, 0))
3706 if (fnegFoldsIntoOp(Opc
) &&
3707 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
3714 if (!mayIgnoreSignedZero(N0
))
3717 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3718 SDValue LHS
= N0
.getOperand(0);
3719 SDValue RHS
= N0
.getOperand(1);
3721 if (LHS
.getOpcode() != ISD::FNEG
)
3722 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3724 LHS
= LHS
.getOperand(0);
3726 if (RHS
.getOpcode() != ISD::FNEG
)
3727 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3729 RHS
= RHS
.getOperand(0);
3731 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3732 if (Res
.getOpcode() != ISD::FADD
)
3733 return SDValue(); // Op got folded away.
3734 if (!N0
.hasOneUse())
3735 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3739 case AMDGPUISD::FMUL_LEGACY
: {
3740 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3741 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3742 SDValue LHS
= N0
.getOperand(0);
3743 SDValue RHS
= N0
.getOperand(1);
3745 if (LHS
.getOpcode() == ISD::FNEG
)
3746 LHS
= LHS
.getOperand(0);
3747 else if (RHS
.getOpcode() == ISD::FNEG
)
3748 RHS
= RHS
.getOperand(0);
3750 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3752 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
3753 if (Res
.getOpcode() != Opc
)
3754 return SDValue(); // Op got folded away.
3755 if (!N0
.hasOneUse())
3756 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3761 if (!mayIgnoreSignedZero(N0
))
3764 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3765 SDValue LHS
= N0
.getOperand(0);
3766 SDValue MHS
= N0
.getOperand(1);
3767 SDValue RHS
= N0
.getOperand(2);
3769 if (LHS
.getOpcode() == ISD::FNEG
)
3770 LHS
= LHS
.getOperand(0);
3771 else if (MHS
.getOpcode() == ISD::FNEG
)
3772 MHS
= MHS
.getOperand(0);
3774 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
3776 if (RHS
.getOpcode() != ISD::FNEG
)
3777 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3779 RHS
= RHS
.getOperand(0);
3781 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
3782 if (Res
.getOpcode() != Opc
)
3783 return SDValue(); // Op got folded away.
3784 if (!N0
.hasOneUse())
3785 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3790 case ISD::FMAXNUM_IEEE
:
3791 case ISD::FMINNUM_IEEE
:
3792 case AMDGPUISD::FMAX_LEGACY
:
3793 case AMDGPUISD::FMIN_LEGACY
: {
3794 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3795 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3796 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3797 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3799 SDValue LHS
= N0
.getOperand(0);
3800 SDValue RHS
= N0
.getOperand(1);
3802 // 0 doesn't have a negated inline immediate.
3803 // TODO: This constant check should be generalized to other operations.
3804 if (isConstantCostlierToNegate(RHS
))
3807 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
3808 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3809 unsigned Opposite
= inverseMinMax(Opc
);
3811 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
3812 if (Res
.getOpcode() != Opposite
)
3813 return SDValue(); // Op got folded away.
3814 if (!N0
.hasOneUse())
3815 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3818 case AMDGPUISD::FMED3
: {
3820 for (unsigned I
= 0; I
< 3; ++I
)
3821 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
3823 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
3824 if (Res
.getOpcode() != AMDGPUISD::FMED3
)
3825 return SDValue(); // Op got folded away.
3826 if (!N0
.hasOneUse())
3827 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
3830 case ISD::FP_EXTEND
:
3833 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
3835 case ISD::FCANONICALIZE
:
3836 case AMDGPUISD::RCP
:
3837 case AMDGPUISD::RCP_LEGACY
:
3838 case AMDGPUISD::RCP_IFLAG
:
3839 case AMDGPUISD::SIN_HW
: {
3840 SDValue CvtSrc
= N0
.getOperand(0);
3841 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3842 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3843 // (fneg (rcp (fneg x))) -> (rcp x)
3844 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
3847 if (!N0
.hasOneUse())
3850 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3851 // (fneg (rcp x)) -> (rcp (fneg x))
3852 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3853 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
3855 case ISD::FP_ROUND
: {
3856 SDValue CvtSrc
= N0
.getOperand(0);
3858 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
3859 // (fneg (fp_round (fneg x))) -> (fp_round x)
3860 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
3861 CvtSrc
.getOperand(0), N0
.getOperand(1));
3864 if (!N0
.hasOneUse())
3867 // (fneg (fp_round x)) -> (fp_round (fneg x))
3868 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
3869 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
3871 case ISD::FP16_TO_FP
: {
3872 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3873 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3874 // Put the fneg back as a legal source operation that can be matched later.
3877 SDValue Src
= N0
.getOperand(0);
3878 EVT SrcVT
= Src
.getValueType();
3880 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3881 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
3882 DAG
.getConstant(0x8000, SL
, SrcVT
));
3883 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
3890 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
3891 DAGCombinerInfo
&DCI
) const {
3892 SelectionDAG
&DAG
= DCI
.DAG
;
3893 SDValue N0
= N
->getOperand(0);
3895 if (!N0
.hasOneUse())
3898 switch (N0
.getOpcode()) {
3899 case ISD::FP16_TO_FP
: {
3900 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
3902 SDValue Src
= N0
.getOperand(0);
3903 EVT SrcVT
= Src
.getValueType();
3905 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3906 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
3907 DAG
.getConstant(0x7fff, SL
, SrcVT
));
3908 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
3915 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
3916 DAGCombinerInfo
&DCI
) const {
3917 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
3921 // XXX - Should this flush denormals?
3922 const APFloat
&Val
= CFP
->getValueAPF();
3923 APFloat
One(Val
.getSemantics(), "1.0");
3924 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
3927 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
3928 DAGCombinerInfo
&DCI
) const {
3929 SelectionDAG
&DAG
= DCI
.DAG
;
3932 switch(N
->getOpcode()) {
3935 case ISD::BITCAST
: {
3936 EVT DestVT
= N
->getValueType(0);
3938 // Push casts through vector builds. This helps avoid emitting a large
3939 // number of copies when materializing floating point vector constants.
3941 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
3942 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
3943 if (DestVT
.isVector()) {
3944 SDValue Src
= N
->getOperand(0);
3945 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
3946 EVT SrcVT
= Src
.getValueType();
3947 unsigned NElts
= DestVT
.getVectorNumElements();
3949 if (SrcVT
.getVectorNumElements() == NElts
) {
3950 EVT DestEltVT
= DestVT
.getVectorElementType();
3952 SmallVector
<SDValue
, 8> CastedElts
;
3954 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
3955 SDValue Elt
= Src
.getOperand(I
);
3956 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
3959 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
3964 if (DestVT
.getSizeInBits() != 64 && !DestVT
.isVector())
3967 // Fold bitcasts of constants.
3969 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
3970 // TODO: Generalize and move to DAGCombiner
3971 SDValue Src
= N
->getOperand(0);
3972 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
3973 if (Src
.getValueType() == MVT::i64
) {
3975 uint64_t CVal
= C
->getZExtValue();
3976 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3977 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3978 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3979 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
3983 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
3984 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
3986 uint64_t CVal
= Val
.getZExtValue();
3987 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
3988 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
3989 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
3991 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
3997 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4000 return performShlCombine(N
, DCI
);
4003 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4006 return performSrlCombine(N
, DCI
);
4009 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4012 return performSraCombine(N
, DCI
);
4015 return performTruncateCombine(N
, DCI
);
4017 return performMulCombine(N
, DCI
);
4019 return performMulhsCombine(N
, DCI
);
4021 return performMulhuCombine(N
, DCI
);
4022 case AMDGPUISD::MUL_I24
:
4023 case AMDGPUISD::MUL_U24
:
4024 case AMDGPUISD::MULHI_I24
:
4025 case AMDGPUISD::MULHI_U24
: {
4026 if (SDValue V
= simplifyI24(N
, DCI
))
4030 case AMDGPUISD::MUL_LOHI_I24
:
4031 case AMDGPUISD::MUL_LOHI_U24
:
4032 return performMulLoHi24Combine(N
, DCI
);
4034 return performSelectCombine(N
, DCI
);
4036 return performFNegCombine(N
, DCI
);
4038 return performFAbsCombine(N
, DCI
);
4039 case AMDGPUISD::BFE_I32
:
4040 case AMDGPUISD::BFE_U32
: {
4041 assert(!N
->getValueType(0).isVector() &&
4042 "Vector handling of BFE not implemented");
4043 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
4047 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
4049 return DAG
.getConstant(0, DL
, MVT::i32
);
4051 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4055 SDValue BitsFrom
= N
->getOperand(0);
4056 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
4058 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
4060 if (OffsetVal
== 0) {
4061 // This is already sign / zero extended, so try to fold away extra BFEs.
4062 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
4064 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
4065 if (OpSignBits
>= SignBits
)
4068 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
4070 // This is a sign_extend_inreg. Replace it to take advantage of existing
4071 // DAG Combines. If not eliminated, we will match back to BFE during
4074 // TODO: The sext_inreg of extended types ends, although we can could
4075 // handle them in a single BFE.
4076 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
4077 DAG
.getValueType(SmallVT
));
4080 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
4083 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
4085 return constantFoldBFE
<int32_t>(DAG
,
4086 CVal
->getSExtValue(),
4092 return constantFoldBFE
<uint32_t>(DAG
,
4093 CVal
->getZExtValue(),
4099 if ((OffsetVal
+ WidthVal
) >= 32 &&
4100 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
4101 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
4102 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
4103 BitsFrom
, ShiftVal
);
4106 if (BitsFrom
.hasOneUse()) {
4107 APInt Demanded
= APInt::getBitsSet(32,
4109 OffsetVal
+ WidthVal
);
4112 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
4113 !DCI
.isBeforeLegalizeOps());
4114 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4115 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
4116 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
4117 DCI
.CommitTargetLoweringOpt(TLO
);
4124 return performLoadCombine(N
, DCI
);
4126 return performStoreCombine(N
, DCI
);
4127 case AMDGPUISD::RCP
:
4128 case AMDGPUISD::RCP_IFLAG
:
4129 return performRcpCombine(N
, DCI
);
4130 case ISD::AssertZext
:
4131 case ISD::AssertSext
:
4132 return performAssertSZExtCombine(N
, DCI
);
4133 case ISD::INTRINSIC_WO_CHAIN
:
4134 return performIntrinsicWOChainCombine(N
, DCI
);
4139 //===----------------------------------------------------------------------===//
4141 //===----------------------------------------------------------------------===//
4143 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
4144 const TargetRegisterClass
*RC
,
4145 unsigned Reg
, EVT VT
,
4147 bool RawReg
) const {
4148 MachineFunction
&MF
= DAG
.getMachineFunction();
4149 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4152 if (!MRI
.isLiveIn(Reg
)) {
4153 VReg
= MRI
.createVirtualRegister(RC
);
4154 MRI
.addLiveIn(Reg
, VReg
);
4156 VReg
= MRI
.getLiveInVirtReg(Reg
);
4160 return DAG
.getRegister(VReg
, VT
);
4162 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4165 // This may be called multiple times, and nothing prevents creating multiple
4166 // objects at the same offset. See if we already defined this object.
4167 static int getOrCreateFixedStackObject(MachineFrameInfo
&MFI
, unsigned Size
,
4169 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
4170 if (MFI
.getObjectOffset(I
) == Offset
) {
4171 assert(MFI
.getObjectSize(I
) == Size
);
4176 return MFI
.CreateFixedObject(Size
, Offset
, true);
4179 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4182 int64_t Offset
) const {
4183 MachineFunction
&MF
= DAG
.getMachineFunction();
4184 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4185 int FI
= getOrCreateFixedStackObject(MFI
, VT
.getStoreSize(), Offset
);
4187 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4188 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4190 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, 4,
4191 MachineMemOperand::MODereferenceable
|
4192 MachineMemOperand::MOInvariant
);
4195 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4199 int64_t Offset
) const {
4200 MachineFunction
&MF
= DAG
.getMachineFunction();
4201 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4203 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4204 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, 4,
4205 MachineMemOperand::MODereferenceable
);
4209 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4210 const TargetRegisterClass
*RC
,
4211 EVT VT
, const SDLoc
&SL
,
4212 const ArgDescriptor
&Arg
) const {
4213 assert(Arg
&& "Attempting to load missing argument");
4215 SDValue V
= Arg
.isRegister() ?
4216 CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
) :
4217 loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4219 if (!Arg
.isMasked())
4222 unsigned Mask
= Arg
.getMask();
4223 unsigned Shift
= countTrailingZeros
<unsigned>(Mask
);
4224 V
= DAG
.getNode(ISD::SRL
, SL
, VT
, V
,
4225 DAG
.getShiftAmountConstant(Shift
, VT
, SL
));
4226 return DAG
.getNode(ISD::AND
, SL
, VT
, V
,
4227 DAG
.getConstant(Mask
>> Shift
, SL
, VT
));
4230 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4231 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4232 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4233 const AMDGPUSubtarget
&ST
=
4234 AMDGPUSubtarget::get(getTargetMachine(), MF
.getFunction());
4235 unsigned ExplicitArgOffset
= ST
.getExplicitKernelArgOffset(MF
.getFunction());
4236 unsigned Alignment
= ST
.getAlignmentForImplicitArgPtr();
4237 uint64_t ArgOffset
= alignTo(MFI
->getExplicitKernArgSize(), Alignment
) +
4243 return ArgOffset
+ 4;
4245 llvm_unreachable("unexpected implicit parameter type");
4248 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4250 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4251 switch ((AMDGPUISD::NodeType
)Opcode
) {
4252 case AMDGPUISD::FIRST_NUMBER
: break;
4254 NODE_NAME_CASE(UMUL
);
4255 NODE_NAME_CASE(BRANCH_COND
);
4259 NODE_NAME_CASE(ELSE
)
4260 NODE_NAME_CASE(LOOP
)
4261 NODE_NAME_CASE(CALL
)
4262 NODE_NAME_CASE(TC_RETURN
)
4263 NODE_NAME_CASE(TRAP
)
4264 NODE_NAME_CASE(RET_FLAG
)
4265 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4266 NODE_NAME_CASE(ENDPGM
)
4267 NODE_NAME_CASE(DWORDADDR
)
4268 NODE_NAME_CASE(FRACT
)
4269 NODE_NAME_CASE(SETCC
)
4270 NODE_NAME_CASE(SETREG
)
4271 NODE_NAME_CASE(DENORM_MODE
)
4272 NODE_NAME_CASE(FMA_W_CHAIN
)
4273 NODE_NAME_CASE(FMUL_W_CHAIN
)
4274 NODE_NAME_CASE(CLAMP
)
4275 NODE_NAME_CASE(COS_HW
)
4276 NODE_NAME_CASE(SIN_HW
)
4277 NODE_NAME_CASE(FMAX_LEGACY
)
4278 NODE_NAME_CASE(FMIN_LEGACY
)
4279 NODE_NAME_CASE(FMAX3
)
4280 NODE_NAME_CASE(SMAX3
)
4281 NODE_NAME_CASE(UMAX3
)
4282 NODE_NAME_CASE(FMIN3
)
4283 NODE_NAME_CASE(SMIN3
)
4284 NODE_NAME_CASE(UMIN3
)
4285 NODE_NAME_CASE(FMED3
)
4286 NODE_NAME_CASE(SMED3
)
4287 NODE_NAME_CASE(UMED3
)
4288 NODE_NAME_CASE(FDOT2
)
4289 NODE_NAME_CASE(URECIP
)
4290 NODE_NAME_CASE(DIV_SCALE
)
4291 NODE_NAME_CASE(DIV_FMAS
)
4292 NODE_NAME_CASE(DIV_FIXUP
)
4293 NODE_NAME_CASE(FMAD_FTZ
)
4294 NODE_NAME_CASE(TRIG_PREOP
)
4297 NODE_NAME_CASE(RCP_LEGACY
)
4298 NODE_NAME_CASE(RSQ_LEGACY
)
4299 NODE_NAME_CASE(RCP_IFLAG
)
4300 NODE_NAME_CASE(FMUL_LEGACY
)
4301 NODE_NAME_CASE(RSQ_CLAMP
)
4302 NODE_NAME_CASE(LDEXP
)
4303 NODE_NAME_CASE(FP_CLASS
)
4304 NODE_NAME_CASE(DOT4
)
4305 NODE_NAME_CASE(CARRY
)
4306 NODE_NAME_CASE(BORROW
)
4307 NODE_NAME_CASE(BFE_U32
)
4308 NODE_NAME_CASE(BFE_I32
)
4311 NODE_NAME_CASE(FFBH_U32
)
4312 NODE_NAME_CASE(FFBH_I32
)
4313 NODE_NAME_CASE(FFBL_B32
)
4314 NODE_NAME_CASE(MUL_U24
)
4315 NODE_NAME_CASE(MUL_I24
)
4316 NODE_NAME_CASE(MULHI_U24
)
4317 NODE_NAME_CASE(MULHI_I24
)
4318 NODE_NAME_CASE(MUL_LOHI_U24
)
4319 NODE_NAME_CASE(MUL_LOHI_I24
)
4320 NODE_NAME_CASE(MAD_U24
)
4321 NODE_NAME_CASE(MAD_I24
)
4322 NODE_NAME_CASE(MAD_I64_I32
)
4323 NODE_NAME_CASE(MAD_U64_U32
)
4324 NODE_NAME_CASE(PERM
)
4325 NODE_NAME_CASE(TEXTURE_FETCH
)
4326 NODE_NAME_CASE(EXPORT
)
4327 NODE_NAME_CASE(EXPORT_DONE
)
4328 NODE_NAME_CASE(R600_EXPORT
)
4329 NODE_NAME_CASE(CONST_ADDRESS
)
4330 NODE_NAME_CASE(REGISTER_LOAD
)
4331 NODE_NAME_CASE(REGISTER_STORE
)
4332 NODE_NAME_CASE(SAMPLE
)
4333 NODE_NAME_CASE(SAMPLEB
)
4334 NODE_NAME_CASE(SAMPLED
)
4335 NODE_NAME_CASE(SAMPLEL
)
4336 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4337 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4338 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4339 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4340 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4341 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4342 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4343 NODE_NAME_CASE(CVT_PK_I16_I32
)
4344 NODE_NAME_CASE(CVT_PK_U16_U32
)
4345 NODE_NAME_CASE(FP_TO_FP16
)
4346 NODE_NAME_CASE(FP16_ZEXT
)
4347 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4348 NODE_NAME_CASE(CONST_DATA_PTR
)
4349 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4351 NODE_NAME_CASE(KILL
)
4352 NODE_NAME_CASE(DUMMY_CHAIN
)
4353 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4354 NODE_NAME_CASE(INTERP_MOV
)
4355 NODE_NAME_CASE(INTERP_P1
)
4356 NODE_NAME_CASE(INTERP_P2
)
4357 NODE_NAME_CASE(INTERP_P1LL_F16
)
4358 NODE_NAME_CASE(INTERP_P1LV_F16
)
4359 NODE_NAME_CASE(INTERP_P2_F16
)
4360 NODE_NAME_CASE(LOAD_D16_HI
)
4361 NODE_NAME_CASE(LOAD_D16_LO
)
4362 NODE_NAME_CASE(LOAD_D16_HI_I8
)
4363 NODE_NAME_CASE(LOAD_D16_HI_U8
)
4364 NODE_NAME_CASE(LOAD_D16_LO_I8
)
4365 NODE_NAME_CASE(LOAD_D16_LO_U8
)
4366 NODE_NAME_CASE(STORE_MSKOR
)
4367 NODE_NAME_CASE(LOAD_CONSTANT
)
4368 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4369 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4370 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4371 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4372 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4373 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4374 NODE_NAME_CASE(ATOMIC_INC
)
4375 NODE_NAME_CASE(ATOMIC_DEC
)
4376 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4377 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4378 NODE_NAME_CASE(BUFFER_LOAD
)
4379 NODE_NAME_CASE(BUFFER_LOAD_UBYTE
)
4380 NODE_NAME_CASE(BUFFER_LOAD_USHORT
)
4381 NODE_NAME_CASE(BUFFER_LOAD_BYTE
)
4382 NODE_NAME_CASE(BUFFER_LOAD_SHORT
)
4383 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4384 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4385 NODE_NAME_CASE(SBUFFER_LOAD
)
4386 NODE_NAME_CASE(BUFFER_STORE
)
4387 NODE_NAME_CASE(BUFFER_STORE_BYTE
)
4388 NODE_NAME_CASE(BUFFER_STORE_SHORT
)
4389 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4390 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4391 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4392 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4393 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4394 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4395 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4396 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4397 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4398 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4399 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4400 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4401 NODE_NAME_CASE(BUFFER_ATOMIC_INC
)
4402 NODE_NAME_CASE(BUFFER_ATOMIC_DEC
)
4403 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4404 NODE_NAME_CASE(BUFFER_ATOMIC_FADD
)
4405 NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD
)
4406 NODE_NAME_CASE(ATOMIC_FADD
)
4407 NODE_NAME_CASE(ATOMIC_PK_FADD
)
4409 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4414 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4415 SelectionDAG
&DAG
, int Enabled
,
4416 int &RefinementSteps
,
4417 bool &UseOneConstNR
,
4418 bool Reciprocal
) const {
4419 EVT VT
= Operand
.getValueType();
4421 if (VT
== MVT::f32
) {
4422 RefinementSteps
= 0;
4423 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4426 // TODO: There is also f64 rsq instruction, but the documentation is less
4427 // clear on its precision.
4432 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4433 SelectionDAG
&DAG
, int Enabled
,
4434 int &RefinementSteps
) const {
4435 EVT VT
= Operand
.getValueType();
4437 if (VT
== MVT::f32
) {
4438 // Reciprocal, < 1 ulp error.
4440 // This reciprocal approximation converges to < 0.5 ulp error with one
4441 // newton rhapson performed with two fused multiple adds (FMAs).
4443 RefinementSteps
= 0;
4444 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4447 // TODO: There is also f64 rcp instruction, but the documentation is less
4448 // clear on its precision.
4453 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4454 const SDValue Op
, KnownBits
&Known
,
4455 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4457 Known
.resetAll(); // Don't know anything.
4459 unsigned Opc
= Op
.getOpcode();
4464 case AMDGPUISD::CARRY
:
4465 case AMDGPUISD::BORROW
: {
4466 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4470 case AMDGPUISD::BFE_I32
:
4471 case AMDGPUISD::BFE_U32
: {
4472 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4476 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4478 if (Opc
== AMDGPUISD::BFE_U32
)
4479 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4483 case AMDGPUISD::FP_TO_FP16
:
4484 case AMDGPUISD::FP16_ZEXT
: {
4485 unsigned BitWidth
= Known
.getBitWidth();
4487 // High bits are zero.
4488 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4491 case AMDGPUISD::MUL_U24
:
4492 case AMDGPUISD::MUL_I24
: {
4493 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4494 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4495 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4496 RHSKnown
.countMinTrailingZeros();
4497 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4499 // Truncate to 24 bits.
4500 LHSKnown
= LHSKnown
.trunc(24);
4501 RHSKnown
= RHSKnown
.trunc(24);
4503 bool Negative
= false;
4504 if (Opc
== AMDGPUISD::MUL_I24
) {
4505 unsigned LHSValBits
= 24 - LHSKnown
.countMinSignBits();
4506 unsigned RHSValBits
= 24 - RHSKnown
.countMinSignBits();
4507 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4508 if (MaxValBits
>= 32)
4510 bool LHSNegative
= LHSKnown
.isNegative();
4511 bool LHSPositive
= LHSKnown
.isNonNegative();
4512 bool RHSNegative
= RHSKnown
.isNegative();
4513 bool RHSPositive
= RHSKnown
.isNonNegative();
4514 if ((!LHSNegative
&& !LHSPositive
) || (!RHSNegative
&& !RHSPositive
))
4516 Negative
= (LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
);
4518 Known
.One
.setHighBits(32 - MaxValBits
);
4520 Known
.Zero
.setHighBits(32 - MaxValBits
);
4522 unsigned LHSValBits
= 24 - LHSKnown
.countMinLeadingZeros();
4523 unsigned RHSValBits
= 24 - RHSKnown
.countMinLeadingZeros();
4524 unsigned MaxValBits
= std::min(LHSValBits
+ RHSValBits
, 32u);
4525 if (MaxValBits
>= 32)
4527 Known
.Zero
.setHighBits(32 - MaxValBits
);
4531 case AMDGPUISD::PERM
: {
4532 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4536 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4537 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4538 unsigned Sel
= CMask
->getZExtValue();
4540 for (unsigned I
= 0; I
< 32; I
+= 8) {
4541 unsigned SelBits
= Sel
& 0xff;
4544 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4545 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4546 } else if (SelBits
< 7) {
4547 SelBits
= (SelBits
& 3) * 8;
4548 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
4549 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
4550 } else if (SelBits
== 0x0c) {
4551 Known
.Zero
|= 0xFFull
<< I
;
4552 } else if (SelBits
> 0x0c) {
4553 Known
.One
|= 0xFFull
<< I
;
4559 case AMDGPUISD::BUFFER_LOAD_UBYTE
: {
4560 Known
.Zero
.setHighBits(24);
4563 case AMDGPUISD::BUFFER_LOAD_USHORT
: {
4564 Known
.Zero
.setHighBits(16);
4567 case AMDGPUISD::LDS
: {
4568 auto GA
= cast
<GlobalAddressSDNode
>(Op
.getOperand(0).getNode());
4569 unsigned Align
= GA
->getGlobal()->getAlignment();
4571 Known
.Zero
.setHighBits(16);
4573 Known
.Zero
.setLowBits(Log2_32(Align
));
4576 case ISD::INTRINSIC_WO_CHAIN
: {
4577 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4579 case Intrinsic::amdgcn_mbcnt_lo
:
4580 case Intrinsic::amdgcn_mbcnt_hi
: {
4581 const GCNSubtarget
&ST
=
4582 DAG
.getMachineFunction().getSubtarget
<GCNSubtarget
>();
4583 // These return at most the wavefront size - 1.
4584 unsigned Size
= Op
.getValueType().getSizeInBits();
4585 Known
.Zero
.setHighBits(Size
- ST
.getWavefrontSizeLog2());
4595 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4596 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
4597 unsigned Depth
) const {
4598 switch (Op
.getOpcode()) {
4599 case AMDGPUISD::BFE_I32
: {
4600 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4604 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
4605 if (!isNullConstant(Op
.getOperand(1)))
4608 // TODO: Could probably figure something out with non-0 offsets.
4609 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
4610 return std::max(SignBits
, Op0SignBits
);
4613 case AMDGPUISD::BFE_U32
: {
4614 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4615 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
4618 case AMDGPUISD::CARRY
:
4619 case AMDGPUISD::BORROW
:
4621 case AMDGPUISD::BUFFER_LOAD_BYTE
:
4623 case AMDGPUISD::BUFFER_LOAD_SHORT
:
4625 case AMDGPUISD::BUFFER_LOAD_UBYTE
:
4627 case AMDGPUISD::BUFFER_LOAD_USHORT
:
4629 case AMDGPUISD::FP_TO_FP16
:
4630 case AMDGPUISD::FP16_ZEXT
:
4637 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
4638 const SelectionDAG
&DAG
,
4640 unsigned Depth
) const {
4641 unsigned Opcode
= Op
.getOpcode();
4643 case AMDGPUISD::FMIN_LEGACY
:
4644 case AMDGPUISD::FMAX_LEGACY
: {
4648 // TODO: Can check no nans on one of the operands for each one, but which
4652 case AMDGPUISD::FMUL_LEGACY
:
4653 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
4656 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4657 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4659 case AMDGPUISD::FMED3
:
4660 case AMDGPUISD::FMIN3
:
4661 case AMDGPUISD::FMAX3
:
4662 case AMDGPUISD::FMAD_FTZ
: {
4665 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
4666 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4667 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4669 case AMDGPUISD::CVT_F32_UBYTE0
:
4670 case AMDGPUISD::CVT_F32_UBYTE1
:
4671 case AMDGPUISD::CVT_F32_UBYTE2
:
4672 case AMDGPUISD::CVT_F32_UBYTE3
:
4675 case AMDGPUISD::RCP
:
4676 case AMDGPUISD::RSQ
:
4677 case AMDGPUISD::RCP_LEGACY
:
4678 case AMDGPUISD::RSQ_LEGACY
:
4679 case AMDGPUISD::RSQ_CLAMP
: {
4683 // TODO: Need is known positive check.
4686 case AMDGPUISD::LDEXP
:
4687 case AMDGPUISD::FRACT
: {
4690 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
4692 case AMDGPUISD::DIV_SCALE
:
4693 case AMDGPUISD::DIV_FMAS
:
4694 case AMDGPUISD::DIV_FIXUP
:
4695 case AMDGPUISD::TRIG_PREOP
:
4696 // TODO: Refine on operands.
4698 case AMDGPUISD::SIN_HW
:
4699 case AMDGPUISD::COS_HW
: {
4700 // TODO: Need check for infinity
4703 case ISD::INTRINSIC_WO_CHAIN
: {
4704 unsigned IntrinsicID
4705 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
4706 // TODO: Handle more intrinsics
4707 switch (IntrinsicID
) {
4708 case Intrinsic::amdgcn_cubeid
:
4711 case Intrinsic::amdgcn_frexp_mant
: {
4714 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
4716 case Intrinsic::amdgcn_cvt_pkrtz
: {
4719 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
4720 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
4722 case Intrinsic::amdgcn_fdot2
:
4723 // TODO: Refine on operand
4734 TargetLowering::AtomicExpansionKind
4735 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
4736 switch (RMW
->getOperation()) {
4737 case AtomicRMWInst::Nand
:
4738 case AtomicRMWInst::FAdd
:
4739 case AtomicRMWInst::FSub
:
4740 return AtomicExpansionKind::CmpXChg
;
4742 return AtomicExpansionKind::None
;