[obj2yaml] - Fix BB after r373315.
[llvm-complete.git] / lib / Target / AMDGPU / GCNSchedStrategy.cpp
blob4e02f517f32a8111aacc6612e0f733bf0333e7ce
1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This contains a MachineSchedStrategy implementation for maximizing wave
11 /// occupancy on GCN hardware.
12 //===----------------------------------------------------------------------===//
14 #include "GCNSchedStrategy.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "SIMachineFunctionInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterClassInfo.h"
20 #include "llvm/Support/MathExtras.h"
22 #define DEBUG_TYPE "machine-scheduler"
24 using namespace llvm;
26 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
27 const MachineSchedContext *C) :
28 GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
30 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
31 GenericScheduler::initialize(DAG);
33 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
35 MF = &DAG->MF;
37 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
39 // FIXME: This is also necessary, because some passes that run after
40 // scheduling and before regalloc increase register pressure.
41 const int ErrorMargin = 3;
43 SGPRExcessLimit = Context->RegClassInfo
44 ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
45 VGPRExcessLimit = Context->RegClassInfo
46 ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
47 if (TargetOccupancy) {
48 SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
49 VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
50 } else {
51 SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
52 SRI->getSGPRPressureSet());
53 VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
54 SRI->getVGPRPressureSet());
57 SGPRCriticalLimit -= ErrorMargin;
58 VGPRCriticalLimit -= ErrorMargin;
61 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
62 bool AtTop, const RegPressureTracker &RPTracker,
63 const SIRegisterInfo *SRI,
64 unsigned SGPRPressure,
65 unsigned VGPRPressure) {
67 Cand.SU = SU;
68 Cand.AtTop = AtTop;
70 // getDownwardPressure() and getUpwardPressure() make temporary changes to
71 // the tracker, so we need to pass those function a non-const copy.
72 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
74 Pressure.clear();
75 MaxPressure.clear();
77 if (AtTop)
78 TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
79 else {
80 // FIXME: I think for bottom up scheduling, the register pressure is cached
81 // and can be retrieved by DAG->getPressureDif(SU).
82 TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
85 unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
86 unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
88 // If two instructions increase the pressure of different register sets
89 // by the same amount, the generic scheduler will prefer to schedule the
90 // instruction that increases the set with the least amount of registers,
91 // which in our case would be SGPRs. This is rarely what we want, so
92 // when we report excess/critical register pressure, we do it either
93 // only for VGPRs or only for SGPRs.
95 // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
96 const unsigned MaxVGPRPressureInc = 16;
97 bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
98 bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
101 // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
102 // to increase the likelihood we don't go over the limits. We should improve
103 // the analysis to look through dependencies to find the path with the least
104 // register pressure.
106 // We only need to update the RPDelta for instructions that increase register
107 // pressure. Instructions that decrease or keep reg pressure the same will be
108 // marked as RegExcess in tryCandidate() when they are compared with
109 // instructions that increase the register pressure.
110 if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
111 Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
112 Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
115 if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
116 Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
117 Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
120 // Register pressure is considered 'CRITICAL' if it is approaching a value
121 // that would reduce the wave occupancy for the execution unit. When
122 // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
123 // has the same cost, so we don't need to prefer one over the other.
125 int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
126 int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
128 if (SGPRDelta >= 0 || VGPRDelta >= 0) {
129 if (SGPRDelta > VGPRDelta) {
130 Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
131 Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
132 } else {
133 Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
134 Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
139 // This function is mostly cut and pasted from
140 // GenericScheduler::pickNodeFromQueue()
141 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
142 const CandPolicy &ZonePolicy,
143 const RegPressureTracker &RPTracker,
144 SchedCandidate &Cand) {
145 const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
146 ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
147 unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
148 unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
149 ReadyQueue &Q = Zone.Available;
150 for (SUnit *SU : Q) {
152 SchedCandidate TryCand(ZonePolicy);
153 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
154 SGPRPressure, VGPRPressure);
155 // Pass SchedBoundary only when comparing nodes from the same boundary.
156 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
157 GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
158 if (TryCand.Reason != NoCand) {
159 // Initialize resource delta if needed in case future heuristics query it.
160 if (TryCand.ResDelta == SchedResourceDelta())
161 TryCand.initResourceDelta(Zone.DAG, SchedModel);
162 Cand.setBest(TryCand);
163 LLVM_DEBUG(traceCandidate(Cand));
168 // This function is mostly cut and pasted from
169 // GenericScheduler::pickNodeBidirectional()
170 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
171 // Schedule as far as possible in the direction of no choice. This is most
172 // efficient, but also provides the best heuristics for CriticalPSets.
173 if (SUnit *SU = Bot.pickOnlyChoice()) {
174 IsTopNode = false;
175 return SU;
177 if (SUnit *SU = Top.pickOnlyChoice()) {
178 IsTopNode = true;
179 return SU;
181 // Set the bottom-up policy based on the state of the current bottom zone and
182 // the instructions outside the zone, including the top zone.
183 CandPolicy BotPolicy;
184 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
185 // Set the top-down policy based on the state of the current top zone and
186 // the instructions outside the zone, including the bottom zone.
187 CandPolicy TopPolicy;
188 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
190 // See if BotCand is still valid (because we previously scheduled from Top).
191 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
192 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
193 BotCand.Policy != BotPolicy) {
194 BotCand.reset(CandPolicy());
195 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
196 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
197 } else {
198 LLVM_DEBUG(traceCandidate(BotCand));
201 // Check if the top Q has a better candidate.
202 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
203 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
204 TopCand.Policy != TopPolicy) {
205 TopCand.reset(CandPolicy());
206 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
207 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
208 } else {
209 LLVM_DEBUG(traceCandidate(TopCand));
212 // Pick best from BotCand and TopCand.
213 LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
214 dbgs() << "Bot Cand: "; traceCandidate(BotCand););
215 SchedCandidate Cand;
216 if (TopCand.Reason == BotCand.Reason) {
217 Cand = BotCand;
218 GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
219 TopCand.Reason = NoCand;
220 GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
221 if (TopCand.Reason != NoCand) {
222 Cand.setBest(TopCand);
223 } else {
224 TopCand.Reason = TopReason;
226 } else {
227 if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
228 Cand = TopCand;
229 } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
230 Cand = BotCand;
231 } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
232 Cand = TopCand;
233 } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
234 Cand = BotCand;
235 } else {
236 if (BotCand.Reason > TopCand.Reason) {
237 Cand = TopCand;
238 } else {
239 Cand = BotCand;
243 LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
245 IsTopNode = Cand.AtTop;
246 return Cand.SU;
249 // This function is mostly cut and pasted from
250 // GenericScheduler::pickNode()
251 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
252 if (DAG->top() == DAG->bottom()) {
253 assert(Top.Available.empty() && Top.Pending.empty() &&
254 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
255 return nullptr;
257 SUnit *SU;
258 do {
259 if (RegionPolicy.OnlyTopDown) {
260 SU = Top.pickOnlyChoice();
261 if (!SU) {
262 CandPolicy NoPolicy;
263 TopCand.reset(NoPolicy);
264 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
265 assert(TopCand.Reason != NoCand && "failed to find a candidate");
266 SU = TopCand.SU;
268 IsTopNode = true;
269 } else if (RegionPolicy.OnlyBottomUp) {
270 SU = Bot.pickOnlyChoice();
271 if (!SU) {
272 CandPolicy NoPolicy;
273 BotCand.reset(NoPolicy);
274 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
275 assert(BotCand.Reason != NoCand && "failed to find a candidate");
276 SU = BotCand.SU;
278 IsTopNode = false;
279 } else {
280 SU = pickNodeBidirectional(IsTopNode);
282 } while (SU->isScheduled);
284 if (SU->isTopReady())
285 Top.removeReady(SU);
286 if (SU->isBottomReady())
287 Bot.removeReady(SU);
289 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
290 << *SU->getInstr());
291 return SU;
294 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
295 std::unique_ptr<MachineSchedStrategy> S) :
296 ScheduleDAGMILive(C, std::move(S)),
297 ST(MF.getSubtarget<GCNSubtarget>()),
298 MFI(*MF.getInfo<SIMachineFunctionInfo>()),
299 StartingOccupancy(MFI.getOccupancy()),
300 MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
302 LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
305 void GCNScheduleDAGMILive::schedule() {
306 if (Stage == 0) {
307 // Just record regions at the first pass.
308 Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
309 return;
312 std::vector<MachineInstr*> Unsched;
313 Unsched.reserve(NumRegionInstrs);
314 for (auto &I : *this) {
315 Unsched.push_back(&I);
318 GCNRegPressure PressureBefore;
319 if (LIS) {
320 PressureBefore = Pressure[RegionIdx];
322 LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
323 GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
324 dbgs() << "Region live-in pressure: ";
325 llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
326 dbgs() << "Region register pressure: ";
327 PressureBefore.print(dbgs()));
330 ScheduleDAGMILive::schedule();
331 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
333 if (!LIS)
334 return;
336 // Check the results of scheduling.
337 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
338 auto PressureAfter = getRealRegPressure();
340 LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
341 PressureAfter.print(dbgs()));
343 if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
344 PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
345 Pressure[RegionIdx] = PressureAfter;
346 LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
347 return;
349 unsigned Occ = MFI.getOccupancy();
350 unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
351 unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
352 LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
353 << ", after " << WavesAfter << ".\n");
355 // We could not keep current target occupancy because of the just scheduled
356 // region. Record new occupancy for next scheduling cycle.
357 unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
358 // Allow memory bound functions to drop to 4 waves if not limited by an
359 // attribute.
360 if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
361 WavesAfter >= MFI.getMinAllowedOccupancy()) {
362 LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
363 << MFI.getMinAllowedOccupancy() << " waves\n");
364 NewOccupancy = WavesAfter;
366 if (NewOccupancy < MinOccupancy) {
367 MinOccupancy = NewOccupancy;
368 MFI.limitOccupancy(MinOccupancy);
369 LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
370 << MinOccupancy << ".\n");
373 if (WavesAfter >= MinOccupancy) {
374 Pressure[RegionIdx] = PressureAfter;
375 return;
378 LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
379 RegionEnd = RegionBegin;
380 for (MachineInstr *MI : Unsched) {
381 if (MI->isDebugInstr())
382 continue;
384 if (MI->getIterator() != RegionEnd) {
385 BB->remove(MI);
386 BB->insert(RegionEnd, MI);
387 if (!MI->isDebugInstr())
388 LIS->handleMove(*MI, true);
390 // Reset read-undef flags and update them later.
391 for (auto &Op : MI->operands())
392 if (Op.isReg() && Op.isDef())
393 Op.setIsUndef(false);
394 RegisterOperands RegOpers;
395 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
396 if (!MI->isDebugInstr()) {
397 if (ShouldTrackLaneMasks) {
398 // Adjust liveness and add missing dead+read-undef flags.
399 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
400 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
401 } else {
402 // Adjust for missing dead-def flags.
403 RegOpers.detectDeadDefs(*MI, *LIS);
406 RegionEnd = MI->getIterator();
407 ++RegionEnd;
408 LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
410 RegionBegin = Unsched.front()->getIterator();
411 Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
413 placeDebugValues();
416 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
417 GCNDownwardRPTracker RPTracker(*LIS);
418 RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
419 return RPTracker.moveMaxPressure();
422 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
423 GCNDownwardRPTracker RPTracker(*LIS);
425 // If the block has the only successor then live-ins of that successor are
426 // live-outs of the current block. We can reuse calculated live set if the
427 // successor will be sent to scheduling past current block.
428 const MachineBasicBlock *OnlySucc = nullptr;
429 if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
430 SlotIndexes *Ind = LIS->getSlotIndexes();
431 if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
432 OnlySucc = *MBB->succ_begin();
435 // Scheduler sends regions from the end of the block upwards.
436 size_t CurRegion = RegionIdx;
437 for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
438 if (Regions[CurRegion].first->getParent() != MBB)
439 break;
440 --CurRegion;
442 auto I = MBB->begin();
443 auto LiveInIt = MBBLiveIns.find(MBB);
444 if (LiveInIt != MBBLiveIns.end()) {
445 auto LiveIn = std::move(LiveInIt->second);
446 RPTracker.reset(*MBB->begin(), &LiveIn);
447 MBBLiveIns.erase(LiveInIt);
448 } else {
449 auto &Rgn = Regions[CurRegion];
450 I = Rgn.first;
451 auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
452 auto LRS = BBLiveInMap.lookup(NonDbgMI);
453 assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
454 RPTracker.reset(*I, &LRS);
457 for ( ; ; ) {
458 I = RPTracker.getNext();
460 if (Regions[CurRegion].first == I) {
461 LiveIns[CurRegion] = RPTracker.getLiveRegs();
462 RPTracker.clearMaxPressure();
465 if (Regions[CurRegion].second == I) {
466 Pressure[CurRegion] = RPTracker.moveMaxPressure();
467 if (CurRegion-- == RegionIdx)
468 break;
470 RPTracker.advanceToNext();
471 RPTracker.advanceBeforeNext();
474 if (OnlySucc) {
475 if (I != MBB->end()) {
476 RPTracker.advanceToNext();
477 RPTracker.advance(MBB->end());
479 RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
480 RPTracker.advanceBeforeNext();
481 MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
485 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
486 GCNScheduleDAGMILive::getBBLiveInMap() const {
487 assert(!Regions.empty());
488 std::vector<MachineInstr *> BBStarters;
489 BBStarters.reserve(Regions.size());
490 auto I = Regions.rbegin(), E = Regions.rend();
491 auto *BB = I->first->getParent();
492 do {
493 auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
494 BBStarters.push_back(MI);
495 do {
496 ++I;
497 } while (I != E && I->first->getParent() == BB);
498 } while (I != E);
499 return getLiveRegMap(BBStarters, false /*After*/, *LIS);
502 void GCNScheduleDAGMILive::finalizeSchedule() {
503 GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
504 LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
506 LiveIns.resize(Regions.size());
507 Pressure.resize(Regions.size());
509 if (!Regions.empty())
510 BBLiveInMap = getBBLiveInMap();
512 do {
513 Stage++;
514 RegionIdx = 0;
515 MachineBasicBlock *MBB = nullptr;
517 if (Stage > 1) {
518 // Retry function scheduling if we found resulting occupancy and it is
519 // lower than used for first pass scheduling. This will give more freedom
520 // to schedule low register pressure blocks.
521 // Code is partially copied from MachineSchedulerBase::scheduleRegions().
523 if (!LIS || StartingOccupancy <= MinOccupancy)
524 break;
526 LLVM_DEBUG(
527 dbgs()
528 << "Retrying function scheduling with lowest recorded occupancy "
529 << MinOccupancy << ".\n");
531 S.setTargetOccupancy(MinOccupancy);
534 for (auto Region : Regions) {
535 RegionBegin = Region.first;
536 RegionEnd = Region.second;
538 if (RegionBegin->getParent() != MBB) {
539 if (MBB) finishBlock();
540 MBB = RegionBegin->getParent();
541 startBlock(MBB);
542 if (Stage == 1)
543 computeBlockPressure(MBB);
546 unsigned NumRegionInstrs = std::distance(begin(), end());
547 enterRegion(MBB, begin(), end(), NumRegionInstrs);
549 // Skip empty scheduling regions (0 or 1 schedulable instructions).
550 if (begin() == end() || begin() == std::prev(end())) {
551 exitRegion();
552 continue;
555 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
556 LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
557 << MBB->getName() << "\n From: " << *begin()
558 << " To: ";
559 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
560 else dbgs() << "End";
561 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
563 schedule();
565 exitRegion();
566 ++RegionIdx;
568 finishBlock();
570 } while (Stage < 2);