[obj2yaml] - Fix BB after r373315.
[llvm-complete.git] / lib / Target / AMDGPU / SIISelLowering.cpp
blob88dec95177c7e9945da7dcd477be825a62d7aa5b
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
12 //===----------------------------------------------------------------------===//
14 #if defined(_MSC_VER) || defined(__MINGW32__)
15 // Provide M_PI.
16 #define _USE_MATH_DEFINES
17 #endif
19 #include "SIISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUSubtarget.h"
22 #include "AMDGPUTargetMachine.h"
23 #include "SIDefines.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/CallingConvLower.h"
40 #include "llvm/CodeGen/DAGCombine.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetCallingConv.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/DiagnosticInfo.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalValue.h"
63 #include "llvm/IR/InstrTypes.h"
64 #include "llvm/IR/Instruction.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MachineValueType.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <cassert>
78 #include <cmath>
79 #include <cstdint>
80 #include <iterator>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
85 using namespace llvm;
87 #define DEBUG_TYPE "si-lower"
89 STATISTIC(NumTailCalls, "Number of tail calls");
91 static cl::opt<bool> EnableVGPRIndexMode(
92 "amdgpu-vgpr-index-mode",
93 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
94 cl::init(false));
96 static cl::opt<bool> DisableLoopAlignment(
97 "amdgpu-disable-loop-alignment",
98 cl::desc("Do not align and prefetch loops"),
99 cl::init(false));
101 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
102 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
103 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
104 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
105 return AMDGPU::SGPR0 + Reg;
108 llvm_unreachable("Cannot allocate sgpr");
111 SITargetLowering::SITargetLowering(const TargetMachine &TM,
112 const GCNSubtarget &STI)
113 : AMDGPUTargetLowering(TM, STI),
114 Subtarget(&STI) {
115 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
116 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
118 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
119 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
121 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
122 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
123 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
125 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
126 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
128 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
129 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
131 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
132 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
134 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
135 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
137 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
138 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
140 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
141 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
143 if (Subtarget->has16BitInsts()) {
144 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
145 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
147 // Unless there are also VOP3P operations, not operations are really legal.
148 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
149 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
150 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
151 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
154 if (Subtarget->hasMAIInsts()) {
155 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
156 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
159 computeRegisterProperties(Subtarget->getRegisterInfo());
161 // We need to custom lower vector stores from local memory
162 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
163 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
164 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
165 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
166 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
167 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
168 setOperationAction(ISD::LOAD, MVT::i1, Custom);
169 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
171 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
172 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
173 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
174 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
175 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
176 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
177 setOperationAction(ISD::STORE, MVT::i1, Custom);
178 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
180 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
181 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
182 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
183 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
184 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
185 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
186 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
187 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
188 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
189 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
190 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
192 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
193 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
195 setOperationAction(ISD::SELECT, MVT::i1, Promote);
196 setOperationAction(ISD::SELECT, MVT::i64, Custom);
197 setOperationAction(ISD::SELECT, MVT::f64, Promote);
198 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
200 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
201 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
202 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
203 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
204 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
206 setOperationAction(ISD::SETCC, MVT::i1, Promote);
207 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
208 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
209 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
211 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
212 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
220 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
223 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
224 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
225 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
226 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
227 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
228 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
230 setOperationAction(ISD::UADDO, MVT::i32, Legal);
231 setOperationAction(ISD::USUBO, MVT::i32, Legal);
233 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
234 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
236 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
237 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
238 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
240 #if 0
241 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
242 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
243 #endif
245 // We only support LOAD/STORE and vector manipulation ops for vectors
246 // with > 4 elements.
247 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
248 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
249 MVT::v32i32, MVT::v32f32 }) {
250 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
251 switch (Op) {
252 case ISD::LOAD:
253 case ISD::STORE:
254 case ISD::BUILD_VECTOR:
255 case ISD::BITCAST:
256 case ISD::EXTRACT_VECTOR_ELT:
257 case ISD::INSERT_VECTOR_ELT:
258 case ISD::INSERT_SUBVECTOR:
259 case ISD::EXTRACT_SUBVECTOR:
260 case ISD::SCALAR_TO_VECTOR:
261 break;
262 case ISD::CONCAT_VECTORS:
263 setOperationAction(Op, VT, Custom);
264 break;
265 default:
266 setOperationAction(Op, VT, Expand);
267 break;
272 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
274 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
275 // is expanded to avoid having two separate loops in case the index is a VGPR.
277 // Most operations are naturally 32-bit vector operations. We only support
278 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
279 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
280 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
281 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
283 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
284 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
286 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
287 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
289 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
290 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
293 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
295 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
298 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
299 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
301 // Avoid stack access for these.
302 // TODO: Generalize to more vector types.
303 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
304 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
305 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
306 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
311 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
312 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
314 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
315 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
316 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
318 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
320 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
321 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
323 // Deal with vec3 vector operations when widened to vec4.
324 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
325 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
326 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
327 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
329 // Deal with vec5 vector operations when widened to vec8.
330 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
331 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
332 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
333 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
335 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
336 // and output demarshalling
337 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
338 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
340 // We can't return success/failure, only the old value,
341 // let LLVM add the comparison
342 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
343 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
345 if (Subtarget->hasFlatAddressSpace()) {
346 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
347 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
350 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
351 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
353 // On SI this is s_memtime and s_memrealtime on VI.
354 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
355 setOperationAction(ISD::TRAP, MVT::Other, Custom);
356 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
358 if (Subtarget->has16BitInsts()) {
359 setOperationAction(ISD::FLOG, MVT::f16, Custom);
360 setOperationAction(ISD::FEXP, MVT::f16, Custom);
361 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
364 // v_mad_f32 does not support denormals according to some sources.
365 if (!Subtarget->hasFP32Denormals())
366 setOperationAction(ISD::FMAD, MVT::f32, Legal);
368 if (!Subtarget->hasBFI()) {
369 // fcopysign can be done in a single instruction with BFI.
370 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
371 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
374 if (!Subtarget->hasBCNT(32))
375 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
377 if (!Subtarget->hasBCNT(64))
378 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
380 if (Subtarget->hasFFBH())
381 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
383 if (Subtarget->hasFFBL())
384 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
386 // We only really have 32-bit BFE instructions (and 16-bit on VI).
388 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
389 // effort to match them now. We want this to be false for i64 cases when the
390 // extraction isn't restricted to the upper or lower half. Ideally we would
391 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
392 // span the midpoint are probably relatively rare, so don't worry about them
393 // for now.
394 if (Subtarget->hasBFE())
395 setHasExtractBitsInsn(true);
397 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
398 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
399 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
400 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
403 // These are really only legal for ieee_mode functions. We should be avoiding
404 // them for functions that don't have ieee_mode enabled, so just say they are
405 // legal.
406 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
407 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
408 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
409 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
412 if (Subtarget->haveRoundOpsF64()) {
413 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
414 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
415 setOperationAction(ISD::FRINT, MVT::f64, Legal);
416 } else {
417 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
418 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
419 setOperationAction(ISD::FRINT, MVT::f64, Custom);
420 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
423 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
425 setOperationAction(ISD::FSIN, MVT::f32, Custom);
426 setOperationAction(ISD::FCOS, MVT::f32, Custom);
427 setOperationAction(ISD::FDIV, MVT::f32, Custom);
428 setOperationAction(ISD::FDIV, MVT::f64, Custom);
430 if (Subtarget->has16BitInsts()) {
431 setOperationAction(ISD::Constant, MVT::i16, Legal);
433 setOperationAction(ISD::SMIN, MVT::i16, Legal);
434 setOperationAction(ISD::SMAX, MVT::i16, Legal);
436 setOperationAction(ISD::UMIN, MVT::i16, Legal);
437 setOperationAction(ISD::UMAX, MVT::i16, Legal);
439 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
440 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
442 setOperationAction(ISD::ROTR, MVT::i16, Promote);
443 setOperationAction(ISD::ROTL, MVT::i16, Promote);
445 setOperationAction(ISD::SDIV, MVT::i16, Promote);
446 setOperationAction(ISD::UDIV, MVT::i16, Promote);
447 setOperationAction(ISD::SREM, MVT::i16, Promote);
448 setOperationAction(ISD::UREM, MVT::i16, Promote);
450 setOperationAction(ISD::BSWAP, MVT::i16, Promote);
451 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
453 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
454 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
455 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
456 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
457 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
459 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
461 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
463 setOperationAction(ISD::LOAD, MVT::i16, Custom);
465 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
467 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
468 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
469 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
470 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
472 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
473 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
474 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
475 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
477 // F16 - Constant Actions.
478 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
480 // F16 - Load/Store Actions.
481 setOperationAction(ISD::LOAD, MVT::f16, Promote);
482 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
483 setOperationAction(ISD::STORE, MVT::f16, Promote);
484 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
486 // F16 - VOP1 Actions.
487 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
488 setOperationAction(ISD::FCOS, MVT::f16, Promote);
489 setOperationAction(ISD::FSIN, MVT::f16, Promote);
490 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
491 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
492 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
493 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
494 setOperationAction(ISD::FROUND, MVT::f16, Custom);
496 // F16 - VOP2 Actions.
497 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
498 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
500 setOperationAction(ISD::FDIV, MVT::f16, Custom);
502 // F16 - VOP3 Actions.
503 setOperationAction(ISD::FMA, MVT::f16, Legal);
504 if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
505 setOperationAction(ISD::FMAD, MVT::f16, Legal);
507 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
508 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
509 switch (Op) {
510 case ISD::LOAD:
511 case ISD::STORE:
512 case ISD::BUILD_VECTOR:
513 case ISD::BITCAST:
514 case ISD::EXTRACT_VECTOR_ELT:
515 case ISD::INSERT_VECTOR_ELT:
516 case ISD::INSERT_SUBVECTOR:
517 case ISD::EXTRACT_SUBVECTOR:
518 case ISD::SCALAR_TO_VECTOR:
519 break;
520 case ISD::CONCAT_VECTORS:
521 setOperationAction(Op, VT, Custom);
522 break;
523 default:
524 setOperationAction(Op, VT, Expand);
525 break;
530 // XXX - Do these do anything? Vector constants turn into build_vector.
531 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
532 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
534 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
535 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
537 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
538 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
539 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
540 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
542 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
543 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
544 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
545 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
547 setOperationAction(ISD::AND, MVT::v2i16, Promote);
548 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
549 setOperationAction(ISD::OR, MVT::v2i16, Promote);
550 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
551 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
552 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
554 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
555 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
556 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
557 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
559 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
560 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
561 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
562 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
564 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
565 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
566 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
567 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
569 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
570 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
571 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
573 if (!Subtarget->hasVOP3PInsts()) {
574 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
578 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
579 // This isn't really legal, but this avoids the legalizer unrolling it (and
580 // allows matching fneg (fabs x) patterns)
581 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
583 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
584 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
585 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
586 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
588 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
589 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
591 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
592 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
595 if (Subtarget->hasVOP3PInsts()) {
596 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
597 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
598 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
599 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
600 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
601 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
602 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
603 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
604 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
605 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
607 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
608 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
609 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
611 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
612 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
614 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
616 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
619 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
622 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
623 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
624 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
625 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
626 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
627 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
629 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
630 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
631 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
632 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
634 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
635 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
636 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
638 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
639 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
641 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
642 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
643 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
645 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
646 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
647 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
650 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
651 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
653 if (Subtarget->has16BitInsts()) {
654 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
655 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
656 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
657 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
658 } else {
659 // Legalization hack.
660 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
661 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
663 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
664 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
667 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
668 setOperationAction(ISD::SELECT, VT, Custom);
671 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
672 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
673 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
674 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
675 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
676 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
677 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
679 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
680 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
681 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
682 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
683 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
684 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
685 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
686 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
687 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
689 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
690 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
691 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
692 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
693 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
694 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
695 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
696 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
698 setTargetDAGCombine(ISD::ADD);
699 setTargetDAGCombine(ISD::ADDCARRY);
700 setTargetDAGCombine(ISD::SUB);
701 setTargetDAGCombine(ISD::SUBCARRY);
702 setTargetDAGCombine(ISD::FADD);
703 setTargetDAGCombine(ISD::FSUB);
704 setTargetDAGCombine(ISD::FMINNUM);
705 setTargetDAGCombine(ISD::FMAXNUM);
706 setTargetDAGCombine(ISD::FMINNUM_IEEE);
707 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
708 setTargetDAGCombine(ISD::FMA);
709 setTargetDAGCombine(ISD::SMIN);
710 setTargetDAGCombine(ISD::SMAX);
711 setTargetDAGCombine(ISD::UMIN);
712 setTargetDAGCombine(ISD::UMAX);
713 setTargetDAGCombine(ISD::SETCC);
714 setTargetDAGCombine(ISD::AND);
715 setTargetDAGCombine(ISD::OR);
716 setTargetDAGCombine(ISD::XOR);
717 setTargetDAGCombine(ISD::SINT_TO_FP);
718 setTargetDAGCombine(ISD::UINT_TO_FP);
719 setTargetDAGCombine(ISD::FCANONICALIZE);
720 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
721 setTargetDAGCombine(ISD::ZERO_EXTEND);
722 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
723 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
724 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
726 // All memory operations. Some folding on the pointer operand is done to help
727 // matching the constant offsets in the addressing modes.
728 setTargetDAGCombine(ISD::LOAD);
729 setTargetDAGCombine(ISD::STORE);
730 setTargetDAGCombine(ISD::ATOMIC_LOAD);
731 setTargetDAGCombine(ISD::ATOMIC_STORE);
732 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
733 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
734 setTargetDAGCombine(ISD::ATOMIC_SWAP);
735 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
736 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
737 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
738 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
739 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
740 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
741 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
742 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
743 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
744 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
745 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
747 setSchedulingPreference(Sched::RegPressure);
750 const GCNSubtarget *SITargetLowering::getSubtarget() const {
751 return Subtarget;
754 //===----------------------------------------------------------------------===//
755 // TargetLowering queries
756 //===----------------------------------------------------------------------===//
758 // v_mad_mix* support a conversion from f16 to f32.
760 // There is only one special case when denormals are enabled we don't currently,
761 // where this is OK to use.
762 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
763 EVT DestVT, EVT SrcVT) const {
764 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
765 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
766 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
767 SrcVT.getScalarType() == MVT::f16;
770 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
771 // SI has some legal vector types, but no legal vector operations. Say no
772 // shuffles are legal in order to prefer scalarizing some vector operations.
773 return false;
776 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
777 CallingConv::ID CC,
778 EVT VT) const {
779 if (CC == CallingConv::AMDGPU_KERNEL)
780 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
782 if (VT.isVector()) {
783 EVT ScalarVT = VT.getScalarType();
784 unsigned Size = ScalarVT.getSizeInBits();
785 if (Size == 32)
786 return ScalarVT.getSimpleVT();
788 if (Size > 32)
789 return MVT::i32;
791 if (Size == 16 && Subtarget->has16BitInsts())
792 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
793 } else if (VT.getSizeInBits() > 32)
794 return MVT::i32;
796 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
799 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
800 CallingConv::ID CC,
801 EVT VT) const {
802 if (CC == CallingConv::AMDGPU_KERNEL)
803 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
805 if (VT.isVector()) {
806 unsigned NumElts = VT.getVectorNumElements();
807 EVT ScalarVT = VT.getScalarType();
808 unsigned Size = ScalarVT.getSizeInBits();
810 if (Size == 32)
811 return NumElts;
813 if (Size > 32)
814 return NumElts * ((Size + 31) / 32);
816 if (Size == 16 && Subtarget->has16BitInsts())
817 return (NumElts + 1) / 2;
818 } else if (VT.getSizeInBits() > 32)
819 return (VT.getSizeInBits() + 31) / 32;
821 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
824 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
825 LLVMContext &Context, CallingConv::ID CC,
826 EVT VT, EVT &IntermediateVT,
827 unsigned &NumIntermediates, MVT &RegisterVT) const {
828 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
829 unsigned NumElts = VT.getVectorNumElements();
830 EVT ScalarVT = VT.getScalarType();
831 unsigned Size = ScalarVT.getSizeInBits();
832 if (Size == 32) {
833 RegisterVT = ScalarVT.getSimpleVT();
834 IntermediateVT = RegisterVT;
835 NumIntermediates = NumElts;
836 return NumIntermediates;
839 if (Size > 32) {
840 RegisterVT = MVT::i32;
841 IntermediateVT = RegisterVT;
842 NumIntermediates = NumElts * ((Size + 31) / 32);
843 return NumIntermediates;
846 // FIXME: We should fix the ABI to be the same on targets without 16-bit
847 // support, but unless we can properly handle 3-vectors, it will be still be
848 // inconsistent.
849 if (Size == 16 && Subtarget->has16BitInsts()) {
850 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
851 IntermediateVT = RegisterVT;
852 NumIntermediates = (NumElts + 1) / 2;
853 return NumIntermediates;
857 return TargetLowering::getVectorTypeBreakdownForCallingConv(
858 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
861 static MVT memVTFromAggregate(Type *Ty) {
862 // Only limited forms of aggregate type currently expected.
863 assert(Ty->isStructTy() && "Expected struct type");
866 Type *ElementType = nullptr;
867 unsigned NumElts;
868 if (Ty->getContainedType(0)->isVectorTy()) {
869 VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
870 ElementType = VecComponent->getElementType();
871 NumElts = VecComponent->getNumElements();
872 } else {
873 ElementType = Ty->getContainedType(0);
874 NumElts = 1;
877 assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
879 // Calculate the size of the memVT type from the aggregate
880 unsigned Pow2Elts = 0;
881 unsigned ElementSize;
882 switch (ElementType->getTypeID()) {
883 default:
884 llvm_unreachable("Unknown type!");
885 case Type::IntegerTyID:
886 ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
887 break;
888 case Type::HalfTyID:
889 ElementSize = 16;
890 break;
891 case Type::FloatTyID:
892 ElementSize = 32;
893 break;
895 unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
896 Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
898 return MVT::getVectorVT(MVT::getVT(ElementType, false),
899 Pow2Elts);
902 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
903 const CallInst &CI,
904 MachineFunction &MF,
905 unsigned IntrID) const {
906 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
907 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
908 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
909 (Intrinsic::ID)IntrID);
910 if (Attr.hasFnAttribute(Attribute::ReadNone))
911 return false;
913 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
915 if (RsrcIntr->IsImage) {
916 Info.ptrVal = MFI->getImagePSV(
917 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
918 CI.getArgOperand(RsrcIntr->RsrcArg));
919 Info.align.reset();
920 } else {
921 Info.ptrVal = MFI->getBufferPSV(
922 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
923 CI.getArgOperand(RsrcIntr->RsrcArg));
926 Info.flags = MachineMemOperand::MODereferenceable;
927 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
928 Info.opc = ISD::INTRINSIC_W_CHAIN;
929 Info.memVT = MVT::getVT(CI.getType(), true);
930 if (Info.memVT == MVT::Other) {
931 // Some intrinsics return an aggregate type - special case to work out
932 // the correct memVT
933 Info.memVT = memVTFromAggregate(CI.getType());
935 Info.flags |= MachineMemOperand::MOLoad;
936 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
937 Info.opc = ISD::INTRINSIC_VOID;
938 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
939 Info.flags |= MachineMemOperand::MOStore;
940 } else {
941 // Atomic
942 Info.opc = ISD::INTRINSIC_W_CHAIN;
943 Info.memVT = MVT::getVT(CI.getType());
944 Info.flags = MachineMemOperand::MOLoad |
945 MachineMemOperand::MOStore |
946 MachineMemOperand::MODereferenceable;
948 // XXX - Should this be volatile without known ordering?
949 Info.flags |= MachineMemOperand::MOVolatile;
951 return true;
954 switch (IntrID) {
955 case Intrinsic::amdgcn_atomic_inc:
956 case Intrinsic::amdgcn_atomic_dec:
957 case Intrinsic::amdgcn_ds_ordered_add:
958 case Intrinsic::amdgcn_ds_ordered_swap:
959 case Intrinsic::amdgcn_ds_fadd:
960 case Intrinsic::amdgcn_ds_fmin:
961 case Intrinsic::amdgcn_ds_fmax: {
962 Info.opc = ISD::INTRINSIC_W_CHAIN;
963 Info.memVT = MVT::getVT(CI.getType());
964 Info.ptrVal = CI.getOperand(0);
965 Info.align.reset();
966 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
968 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
969 if (!Vol->isZero())
970 Info.flags |= MachineMemOperand::MOVolatile;
972 return true;
974 case Intrinsic::amdgcn_buffer_atomic_fadd: {
975 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
977 Info.opc = ISD::INTRINSIC_VOID;
978 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
979 Info.ptrVal = MFI->getBufferPSV(
980 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
981 CI.getArgOperand(1));
982 Info.align.reset();
983 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
985 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
986 if (!Vol || !Vol->isZero())
987 Info.flags |= MachineMemOperand::MOVolatile;
989 return true;
991 case Intrinsic::amdgcn_global_atomic_fadd: {
992 Info.opc = ISD::INTRINSIC_VOID;
993 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
994 ->getPointerElementType());
995 Info.ptrVal = CI.getOperand(0);
996 Info.align.reset();
997 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
999 return true;
1001 case Intrinsic::amdgcn_ds_append:
1002 case Intrinsic::amdgcn_ds_consume: {
1003 Info.opc = ISD::INTRINSIC_W_CHAIN;
1004 Info.memVT = MVT::getVT(CI.getType());
1005 Info.ptrVal = CI.getOperand(0);
1006 Info.align.reset();
1007 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1009 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1010 if (!Vol->isZero())
1011 Info.flags |= MachineMemOperand::MOVolatile;
1013 return true;
1015 case Intrinsic::amdgcn_ds_gws_init:
1016 case Intrinsic::amdgcn_ds_gws_barrier:
1017 case Intrinsic::amdgcn_ds_gws_sema_v:
1018 case Intrinsic::amdgcn_ds_gws_sema_br:
1019 case Intrinsic::amdgcn_ds_gws_sema_p:
1020 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1021 Info.opc = ISD::INTRINSIC_VOID;
1023 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1024 Info.ptrVal =
1025 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1027 // This is an abstract access, but we need to specify a type and size.
1028 Info.memVT = MVT::i32;
1029 Info.size = 4;
1030 Info.align = Align(4);
1032 Info.flags = MachineMemOperand::MOStore;
1033 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1034 Info.flags = MachineMemOperand::MOLoad;
1035 return true;
1037 default:
1038 return false;
1042 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1043 SmallVectorImpl<Value*> &Ops,
1044 Type *&AccessTy) const {
1045 switch (II->getIntrinsicID()) {
1046 case Intrinsic::amdgcn_atomic_inc:
1047 case Intrinsic::amdgcn_atomic_dec:
1048 case Intrinsic::amdgcn_ds_ordered_add:
1049 case Intrinsic::amdgcn_ds_ordered_swap:
1050 case Intrinsic::amdgcn_ds_fadd:
1051 case Intrinsic::amdgcn_ds_fmin:
1052 case Intrinsic::amdgcn_ds_fmax: {
1053 Value *Ptr = II->getArgOperand(0);
1054 AccessTy = II->getType();
1055 Ops.push_back(Ptr);
1056 return true;
1058 default:
1059 return false;
1063 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1064 if (!Subtarget->hasFlatInstOffsets()) {
1065 // Flat instructions do not have offsets, and only have the register
1066 // address.
1067 return AM.BaseOffs == 0 && AM.Scale == 0;
1070 // GFX9 added a 13-bit signed offset. When using regular flat instructions,
1071 // the sign bit is ignored and is treated as a 12-bit unsigned offset.
1073 // GFX10 shrinked signed offset to 12 bits. When using regular flat
1074 // instructions, the sign bit is also ignored and is treated as 11-bit
1075 // unsigned offset.
1077 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
1078 return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
1080 // Just r + i
1081 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
1084 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1085 if (Subtarget->hasFlatGlobalInsts())
1086 return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
1088 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1089 // Assume the we will use FLAT for all global memory accesses
1090 // on VI.
1091 // FIXME: This assumption is currently wrong. On VI we still use
1092 // MUBUF instructions for the r + i addressing mode. As currently
1093 // implemented, the MUBUF instructions only work on buffer < 4GB.
1094 // It may be possible to support > 4GB buffers with MUBUF instructions,
1095 // by setting the stride value in the resource descriptor which would
1096 // increase the size limit to (stride * 4GB). However, this is risky,
1097 // because it has never been validated.
1098 return isLegalFlatAddressingMode(AM);
1101 return isLegalMUBUFAddressingMode(AM);
1104 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1105 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1106 // additionally can do r + r + i with addr64. 32-bit has more addressing
1107 // mode options. Depending on the resource constant, it can also do
1108 // (i64 r0) + (i32 r1) * (i14 i).
1110 // Private arrays end up using a scratch buffer most of the time, so also
1111 // assume those use MUBUF instructions. Scratch loads / stores are currently
1112 // implemented as mubuf instructions with offen bit set, so slightly
1113 // different than the normal addr64.
1114 if (!isUInt<12>(AM.BaseOffs))
1115 return false;
1117 // FIXME: Since we can split immediate into soffset and immediate offset,
1118 // would it make sense to allow any immediate?
1120 switch (AM.Scale) {
1121 case 0: // r + i or just i, depending on HasBaseReg.
1122 return true;
1123 case 1:
1124 return true; // We have r + r or r + i.
1125 case 2:
1126 if (AM.HasBaseReg) {
1127 // Reject 2 * r + r.
1128 return false;
1131 // Allow 2 * r as r + r
1132 // Or 2 * r + i is allowed as r + r + i.
1133 return true;
1134 default: // Don't allow n * r
1135 return false;
1139 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1140 const AddrMode &AM, Type *Ty,
1141 unsigned AS, Instruction *I) const {
1142 // No global is ever allowed as a base.
1143 if (AM.BaseGV)
1144 return false;
1146 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1147 return isLegalGlobalAddressingMode(AM);
1149 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1150 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1151 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1152 // If the offset isn't a multiple of 4, it probably isn't going to be
1153 // correctly aligned.
1154 // FIXME: Can we get the real alignment here?
1155 if (AM.BaseOffs % 4 != 0)
1156 return isLegalMUBUFAddressingMode(AM);
1158 // There are no SMRD extloads, so if we have to do a small type access we
1159 // will use a MUBUF load.
1160 // FIXME?: We also need to do this if unaligned, but we don't know the
1161 // alignment here.
1162 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1163 return isLegalGlobalAddressingMode(AM);
1165 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1166 // SMRD instructions have an 8-bit, dword offset on SI.
1167 if (!isUInt<8>(AM.BaseOffs / 4))
1168 return false;
1169 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1170 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1171 // in 8-bits, it can use a smaller encoding.
1172 if (!isUInt<32>(AM.BaseOffs / 4))
1173 return false;
1174 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1175 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1176 if (!isUInt<20>(AM.BaseOffs))
1177 return false;
1178 } else
1179 llvm_unreachable("unhandled generation");
1181 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1182 return true;
1184 if (AM.Scale == 1 && AM.HasBaseReg)
1185 return true;
1187 return false;
1189 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1190 return isLegalMUBUFAddressingMode(AM);
1191 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1192 AS == AMDGPUAS::REGION_ADDRESS) {
1193 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1194 // field.
1195 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1196 // an 8-bit dword offset but we don't know the alignment here.
1197 if (!isUInt<16>(AM.BaseOffs))
1198 return false;
1200 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1201 return true;
1203 if (AM.Scale == 1 && AM.HasBaseReg)
1204 return true;
1206 return false;
1207 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1208 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1209 // For an unknown address space, this usually means that this is for some
1210 // reason being used for pure arithmetic, and not based on some addressing
1211 // computation. We don't have instructions that compute pointers with any
1212 // addressing modes, so treat them as having no offset like flat
1213 // instructions.
1214 return isLegalFlatAddressingMode(AM);
1215 } else {
1216 llvm_unreachable("unhandled address space");
1220 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1221 const SelectionDAG &DAG) const {
1222 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1223 return (MemVT.getSizeInBits() <= 4 * 32);
1224 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1225 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1226 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1227 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1228 return (MemVT.getSizeInBits() <= 2 * 32);
1230 return true;
1233 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1234 unsigned Size, unsigned AddrSpace, unsigned Align,
1235 MachineMemOperand::Flags Flags, bool *IsFast) const {
1236 if (IsFast)
1237 *IsFast = false;
1239 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1240 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1241 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1242 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1243 // with adjacent offsets.
1244 bool AlignedBy4 = (Align % 4 == 0);
1245 if (IsFast)
1246 *IsFast = AlignedBy4;
1248 return AlignedBy4;
1251 // FIXME: We have to be conservative here and assume that flat operations
1252 // will access scratch. If we had access to the IR function, then we
1253 // could determine if any private memory was used in the function.
1254 if (!Subtarget->hasUnalignedScratchAccess() &&
1255 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1256 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1257 bool AlignedBy4 = Align >= 4;
1258 if (IsFast)
1259 *IsFast = AlignedBy4;
1261 return AlignedBy4;
1264 if (Subtarget->hasUnalignedBufferAccess()) {
1265 // If we have an uniform constant load, it still requires using a slow
1266 // buffer instruction if unaligned.
1267 if (IsFast) {
1268 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1269 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1270 (Align % 4 == 0) : true;
1273 return true;
1276 // Smaller than dword value must be aligned.
1277 if (Size < 32)
1278 return false;
1280 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1281 // byte-address are ignored, thus forcing Dword alignment.
1282 // This applies to private, global, and constant memory.
1283 if (IsFast)
1284 *IsFast = true;
1286 return Size >= 32 && Align >= 4;
1289 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1290 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1291 bool *IsFast) const {
1292 if (IsFast)
1293 *IsFast = false;
1295 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1296 // which isn't a simple VT.
1297 // Until MVT is extended to handle this, simply check for the size and
1298 // rely on the condition below: allow accesses if the size is a multiple of 4.
1299 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1300 VT.getStoreSize() > 16)) {
1301 return false;
1304 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1305 Align, Flags, IsFast);
1308 EVT SITargetLowering::getOptimalMemOpType(
1309 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1310 bool ZeroMemset, bool MemcpyStrSrc,
1311 const AttributeList &FuncAttributes) const {
1312 // FIXME: Should account for address space here.
1314 // The default fallback uses the private pointer size as a guess for a type to
1315 // use. Make sure we switch these to 64-bit accesses.
1317 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1318 return MVT::v4i32;
1320 if (Size >= 8 && DstAlign >= 4)
1321 return MVT::v2i32;
1323 // Use the default.
1324 return MVT::Other;
1327 static bool isFlatGlobalAddrSpace(unsigned AS) {
1328 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
1329 AS == AMDGPUAS::FLAT_ADDRESS ||
1330 AS == AMDGPUAS::CONSTANT_ADDRESS ||
1331 AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
1334 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1335 unsigned DestAS) const {
1336 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1339 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1340 const MemSDNode *MemNode = cast<MemSDNode>(N);
1341 const Value *Ptr = MemNode->getMemOperand()->getValue();
1342 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1343 return I && I->getMetadata("amdgpu.noclobber");
1346 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1347 unsigned DestAS) const {
1348 // Flat -> private/local is a simple truncate.
1349 // Flat -> global is no-op
1350 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1351 return true;
1353 return isNoopAddrSpaceCast(SrcAS, DestAS);
1356 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1357 const MemSDNode *MemNode = cast<MemSDNode>(N);
1359 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1362 TargetLoweringBase::LegalizeTypeAction
1363 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1364 int NumElts = VT.getVectorNumElements();
1365 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1366 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1367 return TargetLoweringBase::getPreferredVectorAction(VT);
1370 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1371 Type *Ty) const {
1372 // FIXME: Could be smarter if called for vector constants.
1373 return true;
1376 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1377 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1378 switch (Op) {
1379 case ISD::LOAD:
1380 case ISD::STORE:
1382 // These operations are done with 32-bit instructions anyway.
1383 case ISD::AND:
1384 case ISD::OR:
1385 case ISD::XOR:
1386 case ISD::SELECT:
1387 // TODO: Extensions?
1388 return true;
1389 default:
1390 return false;
1394 // SimplifySetCC uses this function to determine whether or not it should
1395 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1396 if (VT == MVT::i1 && Op == ISD::SETCC)
1397 return false;
1399 return TargetLowering::isTypeDesirableForOp(Op, VT);
1402 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1403 const SDLoc &SL,
1404 SDValue Chain,
1405 uint64_t Offset) const {
1406 const DataLayout &DL = DAG.getDataLayout();
1407 MachineFunction &MF = DAG.getMachineFunction();
1408 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1410 const ArgDescriptor *InputPtrReg;
1411 const TargetRegisterClass *RC;
1413 std::tie(InputPtrReg, RC)
1414 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1416 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1417 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1418 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1419 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1421 return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1424 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1425 const SDLoc &SL) const {
1426 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1427 FIRST_IMPLICIT);
1428 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1431 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1432 const SDLoc &SL, SDValue Val,
1433 bool Signed,
1434 const ISD::InputArg *Arg) const {
1435 // First, if it is a widened vector, narrow it.
1436 if (VT.isVector() &&
1437 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1438 EVT NarrowedVT =
1439 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1440 VT.getVectorNumElements());
1441 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1442 DAG.getConstant(0, SL, MVT::i32));
1445 // Then convert the vector elements or scalar value.
1446 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1447 VT.bitsLT(MemVT)) {
1448 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1449 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1452 if (MemVT.isFloatingPoint())
1453 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1454 else if (Signed)
1455 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1456 else
1457 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1459 return Val;
1462 SDValue SITargetLowering::lowerKernargMemParameter(
1463 SelectionDAG &DAG, EVT VT, EVT MemVT,
1464 const SDLoc &SL, SDValue Chain,
1465 uint64_t Offset, unsigned Align, bool Signed,
1466 const ISD::InputArg *Arg) const {
1467 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1468 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1469 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1471 // Try to avoid using an extload by loading earlier than the argument address,
1472 // and extracting the relevant bits. The load should hopefully be merged with
1473 // the previous argument.
1474 if (MemVT.getStoreSize() < 4 && Align < 4) {
1475 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1476 int64_t AlignDownOffset = alignDown(Offset, 4);
1477 int64_t OffsetDiff = Offset - AlignDownOffset;
1479 EVT IntVT = MemVT.changeTypeToInteger();
1481 // TODO: If we passed in the base kernel offset we could have a better
1482 // alignment than 4, but we don't really need it.
1483 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1484 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1485 MachineMemOperand::MODereferenceable |
1486 MachineMemOperand::MOInvariant);
1488 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1489 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1491 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1492 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1493 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1496 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1499 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1500 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1501 MachineMemOperand::MODereferenceable |
1502 MachineMemOperand::MOInvariant);
1504 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1505 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1508 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1509 const SDLoc &SL, SDValue Chain,
1510 const ISD::InputArg &Arg) const {
1511 MachineFunction &MF = DAG.getMachineFunction();
1512 MachineFrameInfo &MFI = MF.getFrameInfo();
1514 if (Arg.Flags.isByVal()) {
1515 unsigned Size = Arg.Flags.getByValSize();
1516 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1517 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1520 unsigned ArgOffset = VA.getLocMemOffset();
1521 unsigned ArgSize = VA.getValVT().getStoreSize();
1523 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1525 // Create load nodes to retrieve arguments from the stack.
1526 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1527 SDValue ArgValue;
1529 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1530 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1531 MVT MemVT = VA.getValVT();
1533 switch (VA.getLocInfo()) {
1534 default:
1535 break;
1536 case CCValAssign::BCvt:
1537 MemVT = VA.getLocVT();
1538 break;
1539 case CCValAssign::SExt:
1540 ExtType = ISD::SEXTLOAD;
1541 break;
1542 case CCValAssign::ZExt:
1543 ExtType = ISD::ZEXTLOAD;
1544 break;
1545 case CCValAssign::AExt:
1546 ExtType = ISD::EXTLOAD;
1547 break;
1550 ArgValue = DAG.getExtLoad(
1551 ExtType, SL, VA.getLocVT(), Chain, FIN,
1552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1553 MemVT);
1554 return ArgValue;
1557 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1558 const SIMachineFunctionInfo &MFI,
1559 EVT VT,
1560 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1561 const ArgDescriptor *Reg;
1562 const TargetRegisterClass *RC;
1564 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1565 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1568 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1569 CallingConv::ID CallConv,
1570 ArrayRef<ISD::InputArg> Ins,
1571 BitVector &Skipped,
1572 FunctionType *FType,
1573 SIMachineFunctionInfo *Info) {
1574 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1575 const ISD::InputArg *Arg = &Ins[I];
1577 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1578 "vector type argument should have been split");
1580 // First check if it's a PS input addr.
1581 if (CallConv == CallingConv::AMDGPU_PS &&
1582 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1583 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1585 // Inconveniently only the first part of the split is marked as isSplit,
1586 // so skip to the end. We only want to increment PSInputNum once for the
1587 // entire split argument.
1588 if (Arg->Flags.isSplit()) {
1589 while (!Arg->Flags.isSplitEnd()) {
1590 assert((!Arg->VT.isVector() ||
1591 Arg->VT.getScalarSizeInBits() == 16) &&
1592 "unexpected vector split in ps argument type");
1593 if (!SkipArg)
1594 Splits.push_back(*Arg);
1595 Arg = &Ins[++I];
1599 if (SkipArg) {
1600 // We can safely skip PS inputs.
1601 Skipped.set(Arg->getOrigArgIndex());
1602 ++PSInputNum;
1603 continue;
1606 Info->markPSInputAllocated(PSInputNum);
1607 if (Arg->Used)
1608 Info->markPSInputEnabled(PSInputNum);
1610 ++PSInputNum;
1613 Splits.push_back(*Arg);
1617 // Allocate special inputs passed in VGPRs.
1618 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1619 MachineFunction &MF,
1620 const SIRegisterInfo &TRI,
1621 SIMachineFunctionInfo &Info) const {
1622 const LLT S32 = LLT::scalar(32);
1623 MachineRegisterInfo &MRI = MF.getRegInfo();
1625 if (Info.hasWorkItemIDX()) {
1626 Register Reg = AMDGPU::VGPR0;
1627 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1629 CCInfo.AllocateReg(Reg);
1630 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1633 if (Info.hasWorkItemIDY()) {
1634 Register Reg = AMDGPU::VGPR1;
1635 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1637 CCInfo.AllocateReg(Reg);
1638 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1641 if (Info.hasWorkItemIDZ()) {
1642 Register Reg = AMDGPU::VGPR2;
1643 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1645 CCInfo.AllocateReg(Reg);
1646 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1650 // Try to allocate a VGPR at the end of the argument list, or if no argument
1651 // VGPRs are left allocating a stack slot.
1652 // If \p Mask is is given it indicates bitfield position in the register.
1653 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1654 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1655 ArgDescriptor Arg = ArgDescriptor()) {
1656 if (Arg.isSet())
1657 return ArgDescriptor::createArg(Arg, Mask);
1659 ArrayRef<MCPhysReg> ArgVGPRs
1660 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1661 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1662 if (RegIdx == ArgVGPRs.size()) {
1663 // Spill to stack required.
1664 int64_t Offset = CCInfo.AllocateStack(4, 4);
1666 return ArgDescriptor::createStack(Offset, Mask);
1669 unsigned Reg = ArgVGPRs[RegIdx];
1670 Reg = CCInfo.AllocateReg(Reg);
1671 assert(Reg != AMDGPU::NoRegister);
1673 MachineFunction &MF = CCInfo.getMachineFunction();
1674 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1675 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1676 return ArgDescriptor::createRegister(Reg, Mask);
1679 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1680 const TargetRegisterClass *RC,
1681 unsigned NumArgRegs) {
1682 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1683 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1684 if (RegIdx == ArgSGPRs.size())
1685 report_fatal_error("ran out of SGPRs for arguments");
1687 unsigned Reg = ArgSGPRs[RegIdx];
1688 Reg = CCInfo.AllocateReg(Reg);
1689 assert(Reg != AMDGPU::NoRegister);
1691 MachineFunction &MF = CCInfo.getMachineFunction();
1692 MF.addLiveIn(Reg, RC);
1693 return ArgDescriptor::createRegister(Reg);
1696 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1697 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1700 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1701 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1704 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1705 MachineFunction &MF,
1706 const SIRegisterInfo &TRI,
1707 SIMachineFunctionInfo &Info) const {
1708 const unsigned Mask = 0x3ff;
1709 ArgDescriptor Arg;
1711 if (Info.hasWorkItemIDX()) {
1712 Arg = allocateVGPR32Input(CCInfo, Mask);
1713 Info.setWorkItemIDX(Arg);
1716 if (Info.hasWorkItemIDY()) {
1717 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1718 Info.setWorkItemIDY(Arg);
1721 if (Info.hasWorkItemIDZ())
1722 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1725 void SITargetLowering::allocateSpecialInputSGPRs(
1726 CCState &CCInfo,
1727 MachineFunction &MF,
1728 const SIRegisterInfo &TRI,
1729 SIMachineFunctionInfo &Info) const {
1730 auto &ArgInfo = Info.getArgInfo();
1732 // TODO: Unify handling with private memory pointers.
1734 if (Info.hasDispatchPtr())
1735 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1737 if (Info.hasQueuePtr())
1738 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1740 if (Info.hasKernargSegmentPtr())
1741 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1743 if (Info.hasDispatchID())
1744 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1746 // flat_scratch_init is not applicable for non-kernel functions.
1748 if (Info.hasWorkGroupIDX())
1749 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1751 if (Info.hasWorkGroupIDY())
1752 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1754 if (Info.hasWorkGroupIDZ())
1755 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1757 if (Info.hasImplicitArgPtr())
1758 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1761 // Allocate special inputs passed in user SGPRs.
1762 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1763 MachineFunction &MF,
1764 const SIRegisterInfo &TRI,
1765 SIMachineFunctionInfo &Info) const {
1766 if (Info.hasImplicitBufferPtr()) {
1767 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1768 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1769 CCInfo.AllocateReg(ImplicitBufferPtrReg);
1772 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1773 if (Info.hasPrivateSegmentBuffer()) {
1774 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1775 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1776 CCInfo.AllocateReg(PrivateSegmentBufferReg);
1779 if (Info.hasDispatchPtr()) {
1780 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1781 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1782 CCInfo.AllocateReg(DispatchPtrReg);
1785 if (Info.hasQueuePtr()) {
1786 unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1787 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1788 CCInfo.AllocateReg(QueuePtrReg);
1791 if (Info.hasKernargSegmentPtr()) {
1792 MachineRegisterInfo &MRI = MF.getRegInfo();
1793 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1794 CCInfo.AllocateReg(InputPtrReg);
1796 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1797 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1800 if (Info.hasDispatchID()) {
1801 unsigned DispatchIDReg = Info.addDispatchID(TRI);
1802 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1803 CCInfo.AllocateReg(DispatchIDReg);
1806 if (Info.hasFlatScratchInit()) {
1807 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1808 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1809 CCInfo.AllocateReg(FlatScratchInitReg);
1812 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1813 // these from the dispatch pointer.
1816 // Allocate special input registers that are initialized per-wave.
1817 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1818 MachineFunction &MF,
1819 SIMachineFunctionInfo &Info,
1820 CallingConv::ID CallConv,
1821 bool IsShader) const {
1822 if (Info.hasWorkGroupIDX()) {
1823 unsigned Reg = Info.addWorkGroupIDX();
1824 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1825 CCInfo.AllocateReg(Reg);
1828 if (Info.hasWorkGroupIDY()) {
1829 unsigned Reg = Info.addWorkGroupIDY();
1830 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1831 CCInfo.AllocateReg(Reg);
1834 if (Info.hasWorkGroupIDZ()) {
1835 unsigned Reg = Info.addWorkGroupIDZ();
1836 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1837 CCInfo.AllocateReg(Reg);
1840 if (Info.hasWorkGroupInfo()) {
1841 unsigned Reg = Info.addWorkGroupInfo();
1842 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1843 CCInfo.AllocateReg(Reg);
1846 if (Info.hasPrivateSegmentWaveByteOffset()) {
1847 // Scratch wave offset passed in system SGPR.
1848 unsigned PrivateSegmentWaveByteOffsetReg;
1850 if (IsShader) {
1851 PrivateSegmentWaveByteOffsetReg =
1852 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1854 // This is true if the scratch wave byte offset doesn't have a fixed
1855 // location.
1856 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1857 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1858 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1860 } else
1861 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1863 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1864 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1868 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1869 MachineFunction &MF,
1870 const SIRegisterInfo &TRI,
1871 SIMachineFunctionInfo &Info) {
1872 // Now that we've figured out where the scratch register inputs are, see if
1873 // should reserve the arguments and use them directly.
1874 MachineFrameInfo &MFI = MF.getFrameInfo();
1875 bool HasStackObjects = MFI.hasStackObjects();
1876 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1878 // Record that we know we have non-spill stack objects so we don't need to
1879 // check all stack objects later.
1880 if (HasStackObjects)
1881 Info.setHasNonSpillStackObjects(true);
1883 // Everything live out of a block is spilled with fast regalloc, so it's
1884 // almost certain that spilling will be required.
1885 if (TM.getOptLevel() == CodeGenOpt::None)
1886 HasStackObjects = true;
1888 // For now assume stack access is needed in any callee functions, so we need
1889 // the scratch registers to pass in.
1890 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1892 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1893 // If we have stack objects, we unquestionably need the private buffer
1894 // resource. For the Code Object V2 ABI, this will be the first 4 user
1895 // SGPR inputs. We can reserve those and use them directly.
1897 Register PrivateSegmentBufferReg =
1898 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1899 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1900 } else {
1901 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1902 // We tentatively reserve the last registers (skipping the last registers
1903 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1904 // we'll replace these with the ones immediately after those which were
1905 // really allocated. In the prologue copies will be inserted from the
1906 // argument to these reserved registers.
1908 // Without HSA, relocations are used for the scratch pointer and the
1909 // buffer resource setup is always inserted in the prologue. Scratch wave
1910 // offset is still in an input SGPR.
1911 Info.setScratchRSrcReg(ReservedBufferReg);
1914 // hasFP should be accurate for kernels even before the frame is finalized.
1915 if (ST.getFrameLowering()->hasFP(MF)) {
1916 MachineRegisterInfo &MRI = MF.getRegInfo();
1918 // Try to use s32 as the SP, but move it if it would interfere with input
1919 // arguments. This won't work with calls though.
1921 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1922 // registers.
1923 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1924 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1925 } else {
1926 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1928 if (MFI.hasCalls())
1929 report_fatal_error("call in graphics shader with too many input SGPRs");
1931 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1932 if (!MRI.isLiveIn(Reg)) {
1933 Info.setStackPtrOffsetReg(Reg);
1934 break;
1938 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1939 report_fatal_error("failed to find register for SP");
1942 if (MFI.hasCalls()) {
1943 Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1944 Info.setFrameOffsetReg(AMDGPU::SGPR33);
1945 } else {
1946 unsigned ReservedOffsetReg =
1947 TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1948 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1949 Info.setFrameOffsetReg(ReservedOffsetReg);
1951 } else if (RequiresStackAccess) {
1952 assert(!MFI.hasCalls());
1953 // We know there are accesses and they will be done relative to SP, so just
1954 // pin it to the input.
1956 // FIXME: Should not do this if inline asm is reading/writing these
1957 // registers.
1958 Register PreloadedSP = Info.getPreloadedReg(
1959 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1961 Info.setStackPtrOffsetReg(PreloadedSP);
1962 Info.setScratchWaveOffsetReg(PreloadedSP);
1963 Info.setFrameOffsetReg(PreloadedSP);
1964 } else {
1965 assert(!MFI.hasCalls());
1967 // There may not be stack access at all. There may still be spills, or
1968 // access of a constant pointer (in which cases an extra copy will be
1969 // emitted in the prolog).
1970 unsigned ReservedOffsetReg
1971 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1972 Info.setStackPtrOffsetReg(ReservedOffsetReg);
1973 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1974 Info.setFrameOffsetReg(ReservedOffsetReg);
1978 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1979 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1980 return !Info->isEntryFunction();
1983 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1987 void SITargetLowering::insertCopiesSplitCSR(
1988 MachineBasicBlock *Entry,
1989 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1990 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1992 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1993 if (!IStart)
1994 return;
1996 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1997 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1998 MachineBasicBlock::iterator MBBI = Entry->begin();
1999 for (const MCPhysReg *I = IStart; *I; ++I) {
2000 const TargetRegisterClass *RC = nullptr;
2001 if (AMDGPU::SReg_64RegClass.contains(*I))
2002 RC = &AMDGPU::SGPR_64RegClass;
2003 else if (AMDGPU::SReg_32RegClass.contains(*I))
2004 RC = &AMDGPU::SGPR_32RegClass;
2005 else
2006 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2008 Register NewVR = MRI->createVirtualRegister(RC);
2009 // Create copy from CSR to a virtual register.
2010 Entry->addLiveIn(*I);
2011 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2012 .addReg(*I);
2014 // Insert the copy-back instructions right before the terminator.
2015 for (auto *Exit : Exits)
2016 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2017 TII->get(TargetOpcode::COPY), *I)
2018 .addReg(NewVR);
2022 SDValue SITargetLowering::LowerFormalArguments(
2023 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2024 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2025 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2026 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2028 MachineFunction &MF = DAG.getMachineFunction();
2029 const Function &Fn = MF.getFunction();
2030 FunctionType *FType = MF.getFunction().getFunctionType();
2031 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2033 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2034 DiagnosticInfoUnsupported NoGraphicsHSA(
2035 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2036 DAG.getContext()->diagnose(NoGraphicsHSA);
2037 return DAG.getEntryNode();
2040 SmallVector<ISD::InputArg, 16> Splits;
2041 SmallVector<CCValAssign, 16> ArgLocs;
2042 BitVector Skipped(Ins.size());
2043 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2044 *DAG.getContext());
2046 bool IsShader = AMDGPU::isShader(CallConv);
2047 bool IsKernel = AMDGPU::isKernel(CallConv);
2048 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2050 if (IsShader) {
2051 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2053 // At least one interpolation mode must be enabled or else the GPU will
2054 // hang.
2056 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2057 // set PSInputAddr, the user wants to enable some bits after the compilation
2058 // based on run-time states. Since we can't know what the final PSInputEna
2059 // will look like, so we shouldn't do anything here and the user should take
2060 // responsibility for the correct programming.
2062 // Otherwise, the following restrictions apply:
2063 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2064 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2065 // enabled too.
2066 if (CallConv == CallingConv::AMDGPU_PS) {
2067 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2068 ((Info->getPSInputAddr() & 0xF) == 0 &&
2069 Info->isPSInputAllocated(11))) {
2070 CCInfo.AllocateReg(AMDGPU::VGPR0);
2071 CCInfo.AllocateReg(AMDGPU::VGPR1);
2072 Info->markPSInputAllocated(0);
2073 Info->markPSInputEnabled(0);
2075 if (Subtarget->isAmdPalOS()) {
2076 // For isAmdPalOS, the user does not enable some bits after compilation
2077 // based on run-time states; the register values being generated here are
2078 // the final ones set in hardware. Therefore we need to apply the
2079 // workaround to PSInputAddr and PSInputEnable together. (The case where
2080 // a bit is set in PSInputAddr but not PSInputEnable is where the
2081 // frontend set up an input arg for a particular interpolation mode, but
2082 // nothing uses that input arg. Really we should have an earlier pass
2083 // that removes such an arg.)
2084 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2085 if ((PsInputBits & 0x7F) == 0 ||
2086 ((PsInputBits & 0xF) == 0 &&
2087 (PsInputBits >> 11 & 1)))
2088 Info->markPSInputEnabled(
2089 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2093 assert(!Info->hasDispatchPtr() &&
2094 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2095 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2096 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2097 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2098 !Info->hasWorkItemIDZ());
2099 } else if (IsKernel) {
2100 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2101 } else {
2102 Splits.append(Ins.begin(), Ins.end());
2105 if (IsEntryFunc) {
2106 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2107 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2110 if (IsKernel) {
2111 analyzeFormalArgumentsCompute(CCInfo, Ins);
2112 } else {
2113 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2114 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2117 SmallVector<SDValue, 16> Chains;
2119 // FIXME: This is the minimum kernel argument alignment. We should improve
2120 // this to the maximum alignment of the arguments.
2122 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2123 // kern arg offset.
2124 const unsigned KernelArgBaseAlign = 16;
2126 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2127 const ISD::InputArg &Arg = Ins[i];
2128 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2129 InVals.push_back(DAG.getUNDEF(Arg.VT));
2130 continue;
2133 CCValAssign &VA = ArgLocs[ArgIdx++];
2134 MVT VT = VA.getLocVT();
2136 if (IsEntryFunc && VA.isMemLoc()) {
2137 VT = Ins[i].VT;
2138 EVT MemVT = VA.getLocVT();
2140 const uint64_t Offset = VA.getLocMemOffset();
2141 unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2143 SDValue Arg = lowerKernargMemParameter(
2144 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2145 Chains.push_back(Arg.getValue(1));
2147 auto *ParamTy =
2148 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2149 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2150 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2151 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2152 // On SI local pointers are just offsets into LDS, so they are always
2153 // less than 16-bits. On CI and newer they could potentially be
2154 // real pointers, so we can't guarantee their size.
2155 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2156 DAG.getValueType(MVT::i16));
2159 InVals.push_back(Arg);
2160 continue;
2161 } else if (!IsEntryFunc && VA.isMemLoc()) {
2162 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2163 InVals.push_back(Val);
2164 if (!Arg.Flags.isByVal())
2165 Chains.push_back(Val.getValue(1));
2166 continue;
2169 assert(VA.isRegLoc() && "Parameter must be in a register!");
2171 Register Reg = VA.getLocReg();
2172 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2173 EVT ValVT = VA.getValVT();
2175 Reg = MF.addLiveIn(Reg, RC);
2176 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2178 if (Arg.Flags.isSRet()) {
2179 // The return object should be reasonably addressable.
2181 // FIXME: This helps when the return is a real sret. If it is a
2182 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2183 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2184 unsigned NumBits
2185 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2186 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2187 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2190 // If this is an 8 or 16-bit value, it is really passed promoted
2191 // to 32 bits. Insert an assert[sz]ext to capture this, then
2192 // truncate to the right size.
2193 switch (VA.getLocInfo()) {
2194 case CCValAssign::Full:
2195 break;
2196 case CCValAssign::BCvt:
2197 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2198 break;
2199 case CCValAssign::SExt:
2200 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2201 DAG.getValueType(ValVT));
2202 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2203 break;
2204 case CCValAssign::ZExt:
2205 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2206 DAG.getValueType(ValVT));
2207 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2208 break;
2209 case CCValAssign::AExt:
2210 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2211 break;
2212 default:
2213 llvm_unreachable("Unknown loc info!");
2216 InVals.push_back(Val);
2219 if (!IsEntryFunc) {
2220 // Special inputs come after user arguments.
2221 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2224 // Start adding system SGPRs.
2225 if (IsEntryFunc) {
2226 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2227 } else {
2228 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2229 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2230 CCInfo.AllocateReg(Info->getFrameOffsetReg());
2231 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2234 auto &ArgUsageInfo =
2235 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2236 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2238 unsigned StackArgSize = CCInfo.getNextStackOffset();
2239 Info->setBytesInStackArgArea(StackArgSize);
2241 return Chains.empty() ? Chain :
2242 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2245 // TODO: If return values can't fit in registers, we should return as many as
2246 // possible in registers before passing on stack.
2247 bool SITargetLowering::CanLowerReturn(
2248 CallingConv::ID CallConv,
2249 MachineFunction &MF, bool IsVarArg,
2250 const SmallVectorImpl<ISD::OutputArg> &Outs,
2251 LLVMContext &Context) const {
2252 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2253 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2254 // for shaders. Vector types should be explicitly handled by CC.
2255 if (AMDGPU::isEntryFunctionCC(CallConv))
2256 return true;
2258 SmallVector<CCValAssign, 16> RVLocs;
2259 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2260 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2263 SDValue
2264 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2265 bool isVarArg,
2266 const SmallVectorImpl<ISD::OutputArg> &Outs,
2267 const SmallVectorImpl<SDValue> &OutVals,
2268 const SDLoc &DL, SelectionDAG &DAG) const {
2269 MachineFunction &MF = DAG.getMachineFunction();
2270 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2272 if (AMDGPU::isKernel(CallConv)) {
2273 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2274 OutVals, DL, DAG);
2277 bool IsShader = AMDGPU::isShader(CallConv);
2279 Info->setIfReturnsVoid(Outs.empty());
2280 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2282 // CCValAssign - represent the assignment of the return value to a location.
2283 SmallVector<CCValAssign, 48> RVLocs;
2284 SmallVector<ISD::OutputArg, 48> Splits;
2286 // CCState - Info about the registers and stack slots.
2287 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2288 *DAG.getContext());
2290 // Analyze outgoing return values.
2291 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2293 SDValue Flag;
2294 SmallVector<SDValue, 48> RetOps;
2295 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2297 // Add return address for callable functions.
2298 if (!Info->isEntryFunction()) {
2299 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2300 SDValue ReturnAddrReg = CreateLiveInRegister(
2301 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2303 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2304 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2305 MVT::i64);
2306 Chain =
2307 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2308 Flag = Chain.getValue(1);
2309 RetOps.push_back(ReturnAddrVirtualReg);
2312 // Copy the result values into the output registers.
2313 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2314 ++I, ++RealRVLocIdx) {
2315 CCValAssign &VA = RVLocs[I];
2316 assert(VA.isRegLoc() && "Can only return in registers!");
2317 // TODO: Partially return in registers if return values don't fit.
2318 SDValue Arg = OutVals[RealRVLocIdx];
2320 // Copied from other backends.
2321 switch (VA.getLocInfo()) {
2322 case CCValAssign::Full:
2323 break;
2324 case CCValAssign::BCvt:
2325 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2326 break;
2327 case CCValAssign::SExt:
2328 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2329 break;
2330 case CCValAssign::ZExt:
2331 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2332 break;
2333 case CCValAssign::AExt:
2334 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2335 break;
2336 default:
2337 llvm_unreachable("Unknown loc info!");
2340 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2341 Flag = Chain.getValue(1);
2342 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2345 // FIXME: Does sret work properly?
2346 if (!Info->isEntryFunction()) {
2347 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2348 const MCPhysReg *I =
2349 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2350 if (I) {
2351 for (; *I; ++I) {
2352 if (AMDGPU::SReg_64RegClass.contains(*I))
2353 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2354 else if (AMDGPU::SReg_32RegClass.contains(*I))
2355 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2356 else
2357 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2362 // Update chain and glue.
2363 RetOps[0] = Chain;
2364 if (Flag.getNode())
2365 RetOps.push_back(Flag);
2367 unsigned Opc = AMDGPUISD::ENDPGM;
2368 if (!IsWaveEnd)
2369 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2370 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2373 SDValue SITargetLowering::LowerCallResult(
2374 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2375 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2376 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2377 SDValue ThisVal) const {
2378 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2380 // Assign locations to each value returned by this call.
2381 SmallVector<CCValAssign, 16> RVLocs;
2382 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2383 *DAG.getContext());
2384 CCInfo.AnalyzeCallResult(Ins, RetCC);
2386 // Copy all of the result registers out of their specified physreg.
2387 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2388 CCValAssign VA = RVLocs[i];
2389 SDValue Val;
2391 if (VA.isRegLoc()) {
2392 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2393 Chain = Val.getValue(1);
2394 InFlag = Val.getValue(2);
2395 } else if (VA.isMemLoc()) {
2396 report_fatal_error("TODO: return values in memory");
2397 } else
2398 llvm_unreachable("unknown argument location type");
2400 switch (VA.getLocInfo()) {
2401 case CCValAssign::Full:
2402 break;
2403 case CCValAssign::BCvt:
2404 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2405 break;
2406 case CCValAssign::ZExt:
2407 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2408 DAG.getValueType(VA.getValVT()));
2409 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2410 break;
2411 case CCValAssign::SExt:
2412 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2413 DAG.getValueType(VA.getValVT()));
2414 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2415 break;
2416 case CCValAssign::AExt:
2417 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2418 break;
2419 default:
2420 llvm_unreachable("Unknown loc info!");
2423 InVals.push_back(Val);
2426 return Chain;
2429 // Add code to pass special inputs required depending on used features separate
2430 // from the explicit user arguments present in the IR.
2431 void SITargetLowering::passSpecialInputs(
2432 CallLoweringInfo &CLI,
2433 CCState &CCInfo,
2434 const SIMachineFunctionInfo &Info,
2435 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2436 SmallVectorImpl<SDValue> &MemOpChains,
2437 SDValue Chain) const {
2438 // If we don't have a call site, this was a call inserted by
2439 // legalization. These can never use special inputs.
2440 if (!CLI.CS)
2441 return;
2443 const Function *CalleeFunc = CLI.CS.getCalledFunction();
2444 assert(CalleeFunc);
2446 SelectionDAG &DAG = CLI.DAG;
2447 const SDLoc &DL = CLI.DL;
2449 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2451 auto &ArgUsageInfo =
2452 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2453 const AMDGPUFunctionArgInfo &CalleeArgInfo
2454 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2456 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2458 // TODO: Unify with private memory register handling. This is complicated by
2459 // the fact that at least in kernels, the input argument is not necessarily
2460 // in the same location as the input.
2461 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2462 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2463 AMDGPUFunctionArgInfo::QUEUE_PTR,
2464 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2465 AMDGPUFunctionArgInfo::DISPATCH_ID,
2466 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2467 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2468 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2469 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2472 for (auto InputID : InputRegs) {
2473 const ArgDescriptor *OutgoingArg;
2474 const TargetRegisterClass *ArgRC;
2476 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2477 if (!OutgoingArg)
2478 continue;
2480 const ArgDescriptor *IncomingArg;
2481 const TargetRegisterClass *IncomingArgRC;
2482 std::tie(IncomingArg, IncomingArgRC)
2483 = CallerArgInfo.getPreloadedValue(InputID);
2484 assert(IncomingArgRC == ArgRC);
2486 // All special arguments are ints for now.
2487 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2488 SDValue InputReg;
2490 if (IncomingArg) {
2491 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2492 } else {
2493 // The implicit arg ptr is special because it doesn't have a corresponding
2494 // input for kernels, and is computed from the kernarg segment pointer.
2495 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2496 InputReg = getImplicitArgPtr(DAG, DL);
2499 if (OutgoingArg->isRegister()) {
2500 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2501 } else {
2502 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2503 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2504 SpecialArgOffset);
2505 MemOpChains.push_back(ArgStore);
2509 // Pack workitem IDs into a single register or pass it as is if already
2510 // packed.
2511 const ArgDescriptor *OutgoingArg;
2512 const TargetRegisterClass *ArgRC;
2514 std::tie(OutgoingArg, ArgRC) =
2515 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2516 if (!OutgoingArg)
2517 std::tie(OutgoingArg, ArgRC) =
2518 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2519 if (!OutgoingArg)
2520 std::tie(OutgoingArg, ArgRC) =
2521 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2522 if (!OutgoingArg)
2523 return;
2525 const ArgDescriptor *IncomingArgX
2526 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2527 const ArgDescriptor *IncomingArgY
2528 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2529 const ArgDescriptor *IncomingArgZ
2530 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2532 SDValue InputReg;
2533 SDLoc SL;
2535 // If incoming ids are not packed we need to pack them.
2536 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2537 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2539 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2540 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2541 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2542 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2543 InputReg = InputReg.getNode() ?
2544 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2547 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2548 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2549 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2550 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2551 InputReg = InputReg.getNode() ?
2552 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2555 if (!InputReg.getNode()) {
2556 // Workitem ids are already packed, any of present incoming arguments
2557 // will carry all required fields.
2558 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2559 IncomingArgX ? *IncomingArgX :
2560 IncomingArgY ? *IncomingArgY :
2561 *IncomingArgZ, ~0u);
2562 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2565 if (OutgoingArg->isRegister()) {
2566 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2567 } else {
2568 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2569 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2570 SpecialArgOffset);
2571 MemOpChains.push_back(ArgStore);
2575 static bool canGuaranteeTCO(CallingConv::ID CC) {
2576 return CC == CallingConv::Fast;
2579 /// Return true if we might ever do TCO for calls with this calling convention.
2580 static bool mayTailCallThisCC(CallingConv::ID CC) {
2581 switch (CC) {
2582 case CallingConv::C:
2583 return true;
2584 default:
2585 return canGuaranteeTCO(CC);
2589 bool SITargetLowering::isEligibleForTailCallOptimization(
2590 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2591 const SmallVectorImpl<ISD::OutputArg> &Outs,
2592 const SmallVectorImpl<SDValue> &OutVals,
2593 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2594 if (!mayTailCallThisCC(CalleeCC))
2595 return false;
2597 MachineFunction &MF = DAG.getMachineFunction();
2598 const Function &CallerF = MF.getFunction();
2599 CallingConv::ID CallerCC = CallerF.getCallingConv();
2600 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2601 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2603 // Kernels aren't callable, and don't have a live in return address so it
2604 // doesn't make sense to do a tail call with entry functions.
2605 if (!CallerPreserved)
2606 return false;
2608 bool CCMatch = CallerCC == CalleeCC;
2610 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2611 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2612 return true;
2613 return false;
2616 // TODO: Can we handle var args?
2617 if (IsVarArg)
2618 return false;
2620 for (const Argument &Arg : CallerF.args()) {
2621 if (Arg.hasByValAttr())
2622 return false;
2625 LLVMContext &Ctx = *DAG.getContext();
2627 // Check that the call results are passed in the same way.
2628 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2629 CCAssignFnForCall(CalleeCC, IsVarArg),
2630 CCAssignFnForCall(CallerCC, IsVarArg)))
2631 return false;
2633 // The callee has to preserve all registers the caller needs to preserve.
2634 if (!CCMatch) {
2635 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2636 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2637 return false;
2640 // Nothing more to check if the callee is taking no arguments.
2641 if (Outs.empty())
2642 return true;
2644 SmallVector<CCValAssign, 16> ArgLocs;
2645 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2647 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2649 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2650 // If the stack arguments for this call do not fit into our own save area then
2651 // the call cannot be made tail.
2652 // TODO: Is this really necessary?
2653 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2654 return false;
2656 const MachineRegisterInfo &MRI = MF.getRegInfo();
2657 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2660 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2661 if (!CI->isTailCall())
2662 return false;
2664 const Function *ParentFn = CI->getParent()->getParent();
2665 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2666 return false;
2668 auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2669 return (Attr.getValueAsString() != "true");
2672 // The wave scratch offset register is used as the global base pointer.
2673 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2674 SmallVectorImpl<SDValue> &InVals) const {
2675 SelectionDAG &DAG = CLI.DAG;
2676 const SDLoc &DL = CLI.DL;
2677 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2678 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2679 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2680 SDValue Chain = CLI.Chain;
2681 SDValue Callee = CLI.Callee;
2682 bool &IsTailCall = CLI.IsTailCall;
2683 CallingConv::ID CallConv = CLI.CallConv;
2684 bool IsVarArg = CLI.IsVarArg;
2685 bool IsSibCall = false;
2686 bool IsThisReturn = false;
2687 MachineFunction &MF = DAG.getMachineFunction();
2689 if (IsVarArg) {
2690 return lowerUnhandledCall(CLI, InVals,
2691 "unsupported call to variadic function ");
2694 if (!CLI.CS.getInstruction())
2695 report_fatal_error("unsupported libcall legalization");
2697 if (!CLI.CS.getCalledFunction()) {
2698 return lowerUnhandledCall(CLI, InVals,
2699 "unsupported indirect call to function ");
2702 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2703 return lowerUnhandledCall(CLI, InVals,
2704 "unsupported required tail call to function ");
2707 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2708 // Note the issue is with the CC of the calling function, not of the call
2709 // itself.
2710 return lowerUnhandledCall(CLI, InVals,
2711 "unsupported call from graphics shader of function ");
2714 if (IsTailCall) {
2715 IsTailCall = isEligibleForTailCallOptimization(
2716 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2717 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2718 report_fatal_error("failed to perform tail call elimination on a call "
2719 "site marked musttail");
2722 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2724 // A sibling call is one where we're under the usual C ABI and not planning
2725 // to change that but can still do a tail call:
2726 if (!TailCallOpt && IsTailCall)
2727 IsSibCall = true;
2729 if (IsTailCall)
2730 ++NumTailCalls;
2733 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2735 // Analyze operands of the call, assigning locations to each operand.
2736 SmallVector<CCValAssign, 16> ArgLocs;
2737 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2738 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2740 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2742 // Get a count of how many bytes are to be pushed on the stack.
2743 unsigned NumBytes = CCInfo.getNextStackOffset();
2745 if (IsSibCall) {
2746 // Since we're not changing the ABI to make this a tail call, the memory
2747 // operands are already available in the caller's incoming argument space.
2748 NumBytes = 0;
2751 // FPDiff is the byte offset of the call's argument area from the callee's.
2752 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2753 // by this amount for a tail call. In a sibling call it must be 0 because the
2754 // caller will deallocate the entire stack and the callee still expects its
2755 // arguments to begin at SP+0. Completely unused for non-tail calls.
2756 int32_t FPDiff = 0;
2757 MachineFrameInfo &MFI = MF.getFrameInfo();
2758 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2760 // Adjust the stack pointer for the new arguments...
2761 // These operations are automatically eliminated by the prolog/epilog pass
2762 if (!IsSibCall) {
2763 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2765 SmallVector<SDValue, 4> CopyFromChains;
2767 // In the HSA case, this should be an identity copy.
2768 SDValue ScratchRSrcReg
2769 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2770 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2771 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2772 Chain = DAG.getTokenFactor(DL, CopyFromChains);
2775 SmallVector<SDValue, 8> MemOpChains;
2776 MVT PtrVT = MVT::i32;
2778 // Walk the register/memloc assignments, inserting copies/loads.
2779 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2780 ++i, ++realArgIdx) {
2781 CCValAssign &VA = ArgLocs[i];
2782 SDValue Arg = OutVals[realArgIdx];
2784 // Promote the value if needed.
2785 switch (VA.getLocInfo()) {
2786 case CCValAssign::Full:
2787 break;
2788 case CCValAssign::BCvt:
2789 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2790 break;
2791 case CCValAssign::ZExt:
2792 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2793 break;
2794 case CCValAssign::SExt:
2795 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2796 break;
2797 case CCValAssign::AExt:
2798 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2799 break;
2800 case CCValAssign::FPExt:
2801 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2802 break;
2803 default:
2804 llvm_unreachable("Unknown loc info!");
2807 if (VA.isRegLoc()) {
2808 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2809 } else {
2810 assert(VA.isMemLoc());
2812 SDValue DstAddr;
2813 MachinePointerInfo DstInfo;
2815 unsigned LocMemOffset = VA.getLocMemOffset();
2816 int32_t Offset = LocMemOffset;
2818 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2819 unsigned Align = 0;
2821 if (IsTailCall) {
2822 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2823 unsigned OpSize = Flags.isByVal() ?
2824 Flags.getByValSize() : VA.getValVT().getStoreSize();
2826 // FIXME: We can have better than the minimum byval required alignment.
2827 Align = Flags.isByVal() ? Flags.getByValAlign() :
2828 MinAlign(Subtarget->getStackAlignment(), Offset);
2830 Offset = Offset + FPDiff;
2831 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2833 DstAddr = DAG.getFrameIndex(FI, PtrVT);
2834 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2836 // Make sure any stack arguments overlapping with where we're storing
2837 // are loaded before this eventual operation. Otherwise they'll be
2838 // clobbered.
2840 // FIXME: Why is this really necessary? This seems to just result in a
2841 // lot of code to copy the stack and write them back to the same
2842 // locations, which are supposed to be immutable?
2843 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2844 } else {
2845 DstAddr = PtrOff;
2846 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2847 Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
2850 if (Outs[i].Flags.isByVal()) {
2851 SDValue SizeNode =
2852 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2853 SDValue Cpy = DAG.getMemcpy(
2854 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2855 /*isVol = */ false, /*AlwaysInline = */ true,
2856 /*isTailCall = */ false, DstInfo,
2857 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2858 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2860 MemOpChains.push_back(Cpy);
2861 } else {
2862 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
2863 MemOpChains.push_back(Store);
2868 // Copy special input registers after user input arguments.
2869 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2871 if (!MemOpChains.empty())
2872 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2874 // Build a sequence of copy-to-reg nodes chained together with token chain
2875 // and flag operands which copy the outgoing args into the appropriate regs.
2876 SDValue InFlag;
2877 for (auto &RegToPass : RegsToPass) {
2878 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2879 RegToPass.second, InFlag);
2880 InFlag = Chain.getValue(1);
2884 SDValue PhysReturnAddrReg;
2885 if (IsTailCall) {
2886 // Since the return is being combined with the call, we need to pass on the
2887 // return address.
2889 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2890 SDValue ReturnAddrReg = CreateLiveInRegister(
2891 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2893 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2894 MVT::i64);
2895 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2896 InFlag = Chain.getValue(1);
2899 // We don't usually want to end the call-sequence here because we would tidy
2900 // the frame up *after* the call, however in the ABI-changing tail-call case
2901 // we've carefully laid out the parameters so that when sp is reset they'll be
2902 // in the correct location.
2903 if (IsTailCall && !IsSibCall) {
2904 Chain = DAG.getCALLSEQ_END(Chain,
2905 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2906 DAG.getTargetConstant(0, DL, MVT::i32),
2907 InFlag, DL);
2908 InFlag = Chain.getValue(1);
2911 std::vector<SDValue> Ops;
2912 Ops.push_back(Chain);
2913 Ops.push_back(Callee);
2914 // Add a redundant copy of the callee global which will not be legalized, as
2915 // we need direct access to the callee later.
2916 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2917 const GlobalValue *GV = GSD->getGlobal();
2918 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2920 if (IsTailCall) {
2921 // Each tail call may have to adjust the stack by a different amount, so
2922 // this information must travel along with the operation for eventual
2923 // consumption by emitEpilogue.
2924 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2926 Ops.push_back(PhysReturnAddrReg);
2929 // Add argument registers to the end of the list so that they are known live
2930 // into the call.
2931 for (auto &RegToPass : RegsToPass) {
2932 Ops.push_back(DAG.getRegister(RegToPass.first,
2933 RegToPass.second.getValueType()));
2936 // Add a register mask operand representing the call-preserved registers.
2938 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2939 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2940 assert(Mask && "Missing call preserved mask for calling convention");
2941 Ops.push_back(DAG.getRegisterMask(Mask));
2943 if (InFlag.getNode())
2944 Ops.push_back(InFlag);
2946 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2948 // If we're doing a tall call, use a TC_RETURN here rather than an
2949 // actual call instruction.
2950 if (IsTailCall) {
2951 MFI.setHasTailCall();
2952 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2955 // Returns a chain and a flag for retval copy to use.
2956 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2957 Chain = Call.getValue(0);
2958 InFlag = Call.getValue(1);
2960 uint64_t CalleePopBytes = NumBytes;
2961 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2962 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2963 InFlag, DL);
2964 if (!Ins.empty())
2965 InFlag = Chain.getValue(1);
2967 // Handle result values, copying them out of physregs into vregs that we
2968 // return.
2969 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2970 InVals, IsThisReturn,
2971 IsThisReturn ? OutVals[0] : SDValue());
2974 Register SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2975 const MachineFunction &MF) const {
2976 Register Reg = StringSwitch<Register>(RegName)
2977 .Case("m0", AMDGPU::M0)
2978 .Case("exec", AMDGPU::EXEC)
2979 .Case("exec_lo", AMDGPU::EXEC_LO)
2980 .Case("exec_hi", AMDGPU::EXEC_HI)
2981 .Case("flat_scratch", AMDGPU::FLAT_SCR)
2982 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2983 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2984 .Default(Register());
2986 if (Reg == AMDGPU::NoRegister) {
2987 report_fatal_error(Twine("invalid register name \""
2988 + StringRef(RegName) + "\"."));
2992 if (!Subtarget->hasFlatScrRegister() &&
2993 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2994 report_fatal_error(Twine("invalid register \""
2995 + StringRef(RegName) + "\" for subtarget."));
2998 switch (Reg) {
2999 case AMDGPU::M0:
3000 case AMDGPU::EXEC_LO:
3001 case AMDGPU::EXEC_HI:
3002 case AMDGPU::FLAT_SCR_LO:
3003 case AMDGPU::FLAT_SCR_HI:
3004 if (VT.getSizeInBits() == 32)
3005 return Reg;
3006 break;
3007 case AMDGPU::EXEC:
3008 case AMDGPU::FLAT_SCR:
3009 if (VT.getSizeInBits() == 64)
3010 return Reg;
3011 break;
3012 default:
3013 llvm_unreachable("missing register type checking");
3016 report_fatal_error(Twine("invalid type for register \""
3017 + StringRef(RegName) + "\"."));
3020 // If kill is not the last instruction, split the block so kill is always a
3021 // proper terminator.
3022 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3023 MachineBasicBlock *BB) const {
3024 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3026 MachineBasicBlock::iterator SplitPoint(&MI);
3027 ++SplitPoint;
3029 if (SplitPoint == BB->end()) {
3030 // Don't bother with a new block.
3031 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3032 return BB;
3035 MachineFunction *MF = BB->getParent();
3036 MachineBasicBlock *SplitBB
3037 = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3039 MF->insert(++MachineFunction::iterator(BB), SplitBB);
3040 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3042 SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3043 BB->addSuccessor(SplitBB);
3045 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3046 return SplitBB;
3049 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3050 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3051 // be the first instruction in the remainder block.
3053 /// \returns { LoopBody, Remainder }
3054 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3055 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3056 MachineFunction *MF = MBB.getParent();
3057 MachineBasicBlock::iterator I(&MI);
3059 // To insert the loop we need to split the block. Move everything after this
3060 // point to a new block, and insert a new empty block between the two.
3061 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3062 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3063 MachineFunction::iterator MBBI(MBB);
3064 ++MBBI;
3066 MF->insert(MBBI, LoopBB);
3067 MF->insert(MBBI, RemainderBB);
3069 LoopBB->addSuccessor(LoopBB);
3070 LoopBB->addSuccessor(RemainderBB);
3072 // Move the rest of the block into a new block.
3073 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3075 if (InstInLoop) {
3076 auto Next = std::next(I);
3078 // Move instruction to loop body.
3079 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3081 // Move the rest of the block.
3082 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3083 } else {
3084 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3087 MBB.addSuccessor(LoopBB);
3089 return std::make_pair(LoopBB, RemainderBB);
3092 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3093 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3094 MachineBasicBlock *MBB = MI.getParent();
3095 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3096 auto I = MI.getIterator();
3097 auto E = std::next(I);
3099 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3100 .addImm(0);
3102 MIBundleBuilder Bundler(*MBB, I, E);
3103 finalizeBundle(*MBB, Bundler.begin());
3106 MachineBasicBlock *
3107 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3108 MachineBasicBlock *BB) const {
3109 const DebugLoc &DL = MI.getDebugLoc();
3111 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3113 MachineBasicBlock *LoopBB;
3114 MachineBasicBlock *RemainderBB;
3115 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3117 // Apparently kill flags are only valid if the def is in the same block?
3118 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3119 Src->setIsKill(false);
3121 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3123 MachineBasicBlock::iterator I = LoopBB->end();
3125 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3126 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3128 // Clear TRAP_STS.MEM_VIOL
3129 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3130 .addImm(0)
3131 .addImm(EncodedReg);
3133 bundleInstWithWaitcnt(MI);
3135 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3137 // Load and check TRAP_STS.MEM_VIOL
3138 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3139 .addImm(EncodedReg);
3141 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3142 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3143 .addReg(Reg, RegState::Kill)
3144 .addImm(0);
3145 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3146 .addMBB(LoopBB);
3148 return RemainderBB;
3151 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3152 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3153 // will only do one iteration. In the worst case, this will loop 64 times.
3155 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3156 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3157 const SIInstrInfo *TII,
3158 MachineRegisterInfo &MRI,
3159 MachineBasicBlock &OrigBB,
3160 MachineBasicBlock &LoopBB,
3161 const DebugLoc &DL,
3162 const MachineOperand &IdxReg,
3163 unsigned InitReg,
3164 unsigned ResultReg,
3165 unsigned PhiReg,
3166 unsigned InitSaveExecReg,
3167 int Offset,
3168 bool UseGPRIdxMode,
3169 bool IsIndirectSrc) {
3170 MachineFunction *MF = OrigBB.getParent();
3171 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3172 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3173 MachineBasicBlock::iterator I = LoopBB.begin();
3175 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3176 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3177 Register NewExec = MRI.createVirtualRegister(BoolRC);
3178 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3179 Register CondReg = MRI.createVirtualRegister(BoolRC);
3181 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3182 .addReg(InitReg)
3183 .addMBB(&OrigBB)
3184 .addReg(ResultReg)
3185 .addMBB(&LoopBB);
3187 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3188 .addReg(InitSaveExecReg)
3189 .addMBB(&OrigBB)
3190 .addReg(NewExec)
3191 .addMBB(&LoopBB);
3193 // Read the next variant <- also loop target.
3194 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3195 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3197 // Compare the just read M0 value to all possible Idx values.
3198 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3199 .addReg(CurrentIdxReg)
3200 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3202 // Update EXEC, save the original EXEC value to VCC.
3203 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3204 : AMDGPU::S_AND_SAVEEXEC_B64),
3205 NewExec)
3206 .addReg(CondReg, RegState::Kill);
3208 MRI.setSimpleHint(NewExec, CondReg);
3210 if (UseGPRIdxMode) {
3211 unsigned IdxReg;
3212 if (Offset == 0) {
3213 IdxReg = CurrentIdxReg;
3214 } else {
3215 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3216 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3217 .addReg(CurrentIdxReg, RegState::Kill)
3218 .addImm(Offset);
3220 unsigned IdxMode = IsIndirectSrc ?
3221 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3222 MachineInstr *SetOn =
3223 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3224 .addReg(IdxReg, RegState::Kill)
3225 .addImm(IdxMode);
3226 SetOn->getOperand(3).setIsUndef();
3227 } else {
3228 // Move index from VCC into M0
3229 if (Offset == 0) {
3230 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3231 .addReg(CurrentIdxReg, RegState::Kill);
3232 } else {
3233 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3234 .addReg(CurrentIdxReg, RegState::Kill)
3235 .addImm(Offset);
3239 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3240 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3241 MachineInstr *InsertPt =
3242 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3243 : AMDGPU::S_XOR_B64_term), Exec)
3244 .addReg(Exec)
3245 .addReg(NewExec);
3247 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3248 // s_cbranch_scc0?
3250 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3251 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3252 .addMBB(&LoopBB);
3254 return InsertPt->getIterator();
3257 // This has slightly sub-optimal regalloc when the source vector is killed by
3258 // the read. The register allocator does not understand that the kill is
3259 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3260 // subregister from it, using 1 more VGPR than necessary. This was saved when
3261 // this was expanded after register allocation.
3262 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3263 MachineBasicBlock &MBB,
3264 MachineInstr &MI,
3265 unsigned InitResultReg,
3266 unsigned PhiReg,
3267 int Offset,
3268 bool UseGPRIdxMode,
3269 bool IsIndirectSrc) {
3270 MachineFunction *MF = MBB.getParent();
3271 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3272 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3273 MachineRegisterInfo &MRI = MF->getRegInfo();
3274 const DebugLoc &DL = MI.getDebugLoc();
3275 MachineBasicBlock::iterator I(&MI);
3277 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3278 Register DstReg = MI.getOperand(0).getReg();
3279 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3280 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3281 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3282 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3284 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3286 // Save the EXEC mask
3287 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3288 .addReg(Exec);
3290 MachineBasicBlock *LoopBB;
3291 MachineBasicBlock *RemainderBB;
3292 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3294 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3296 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3297 InitResultReg, DstReg, PhiReg, TmpExec,
3298 Offset, UseGPRIdxMode, IsIndirectSrc);
3300 MachineBasicBlock::iterator First = RemainderBB->begin();
3301 BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3302 .addReg(SaveExec);
3304 return InsPt;
3307 // Returns subreg index, offset
3308 static std::pair<unsigned, int>
3309 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3310 const TargetRegisterClass *SuperRC,
3311 unsigned VecReg,
3312 int Offset) {
3313 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3315 // Skip out of bounds offsets, or else we would end up using an undefined
3316 // register.
3317 if (Offset >= NumElts || Offset < 0)
3318 return std::make_pair(AMDGPU::sub0, Offset);
3320 return std::make_pair(AMDGPU::sub0 + Offset, 0);
3323 // Return true if the index is an SGPR and was set.
3324 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3325 MachineRegisterInfo &MRI,
3326 MachineInstr &MI,
3327 int Offset,
3328 bool UseGPRIdxMode,
3329 bool IsIndirectSrc) {
3330 MachineBasicBlock *MBB = MI.getParent();
3331 const DebugLoc &DL = MI.getDebugLoc();
3332 MachineBasicBlock::iterator I(&MI);
3334 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3335 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3337 assert(Idx->getReg() != AMDGPU::NoRegister);
3339 if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3340 return false;
3342 if (UseGPRIdxMode) {
3343 unsigned IdxMode = IsIndirectSrc ?
3344 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3345 if (Offset == 0) {
3346 MachineInstr *SetOn =
3347 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3348 .add(*Idx)
3349 .addImm(IdxMode);
3351 SetOn->getOperand(3).setIsUndef();
3352 } else {
3353 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3354 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3355 .add(*Idx)
3356 .addImm(Offset);
3357 MachineInstr *SetOn =
3358 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3359 .addReg(Tmp, RegState::Kill)
3360 .addImm(IdxMode);
3362 SetOn->getOperand(3).setIsUndef();
3365 return true;
3368 if (Offset == 0) {
3369 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3370 .add(*Idx);
3371 } else {
3372 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3373 .add(*Idx)
3374 .addImm(Offset);
3377 return true;
3380 // Control flow needs to be inserted if indexing with a VGPR.
3381 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3382 MachineBasicBlock &MBB,
3383 const GCNSubtarget &ST) {
3384 const SIInstrInfo *TII = ST.getInstrInfo();
3385 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3386 MachineFunction *MF = MBB.getParent();
3387 MachineRegisterInfo &MRI = MF->getRegInfo();
3389 Register Dst = MI.getOperand(0).getReg();
3390 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3391 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3393 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3395 unsigned SubReg;
3396 std::tie(SubReg, Offset)
3397 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3399 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3401 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3402 MachineBasicBlock::iterator I(&MI);
3403 const DebugLoc &DL = MI.getDebugLoc();
3405 if (UseGPRIdxMode) {
3406 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3407 // to avoid interfering with other uses, so probably requires a new
3408 // optimization pass.
3409 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3410 .addReg(SrcReg, RegState::Undef, SubReg)
3411 .addReg(SrcReg, RegState::Implicit)
3412 .addReg(AMDGPU::M0, RegState::Implicit);
3413 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3414 } else {
3415 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3416 .addReg(SrcReg, RegState::Undef, SubReg)
3417 .addReg(SrcReg, RegState::Implicit);
3420 MI.eraseFromParent();
3422 return &MBB;
3425 const DebugLoc &DL = MI.getDebugLoc();
3426 MachineBasicBlock::iterator I(&MI);
3428 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3429 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3431 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3433 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3434 Offset, UseGPRIdxMode, true);
3435 MachineBasicBlock *LoopBB = InsPt->getParent();
3437 if (UseGPRIdxMode) {
3438 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3439 .addReg(SrcReg, RegState::Undef, SubReg)
3440 .addReg(SrcReg, RegState::Implicit)
3441 .addReg(AMDGPU::M0, RegState::Implicit);
3442 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3443 } else {
3444 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3445 .addReg(SrcReg, RegState::Undef, SubReg)
3446 .addReg(SrcReg, RegState::Implicit);
3449 MI.eraseFromParent();
3451 return LoopBB;
3454 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3455 const TargetRegisterClass *VecRC) {
3456 switch (TRI.getRegSizeInBits(*VecRC)) {
3457 case 32: // 4 bytes
3458 return AMDGPU::V_MOVRELD_B32_V1;
3459 case 64: // 8 bytes
3460 return AMDGPU::V_MOVRELD_B32_V2;
3461 case 128: // 16 bytes
3462 return AMDGPU::V_MOVRELD_B32_V4;
3463 case 256: // 32 bytes
3464 return AMDGPU::V_MOVRELD_B32_V8;
3465 case 512: // 64 bytes
3466 return AMDGPU::V_MOVRELD_B32_V16;
3467 default:
3468 llvm_unreachable("unsupported size for MOVRELD pseudos");
3472 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3473 MachineBasicBlock &MBB,
3474 const GCNSubtarget &ST) {
3475 const SIInstrInfo *TII = ST.getInstrInfo();
3476 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3477 MachineFunction *MF = MBB.getParent();
3478 MachineRegisterInfo &MRI = MF->getRegInfo();
3480 Register Dst = MI.getOperand(0).getReg();
3481 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3482 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3483 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3484 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3485 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3487 // This can be an immediate, but will be folded later.
3488 assert(Val->getReg());
3490 unsigned SubReg;
3491 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3492 SrcVec->getReg(),
3493 Offset);
3494 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3496 if (Idx->getReg() == AMDGPU::NoRegister) {
3497 MachineBasicBlock::iterator I(&MI);
3498 const DebugLoc &DL = MI.getDebugLoc();
3500 assert(Offset == 0);
3502 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3503 .add(*SrcVec)
3504 .add(*Val)
3505 .addImm(SubReg);
3507 MI.eraseFromParent();
3508 return &MBB;
3511 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3512 MachineBasicBlock::iterator I(&MI);
3513 const DebugLoc &DL = MI.getDebugLoc();
3515 if (UseGPRIdxMode) {
3516 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3517 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3518 .add(*Val)
3519 .addReg(Dst, RegState::ImplicitDefine)
3520 .addReg(SrcVec->getReg(), RegState::Implicit)
3521 .addReg(AMDGPU::M0, RegState::Implicit);
3523 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3524 } else {
3525 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3527 BuildMI(MBB, I, DL, MovRelDesc)
3528 .addReg(Dst, RegState::Define)
3529 .addReg(SrcVec->getReg())
3530 .add(*Val)
3531 .addImm(SubReg - AMDGPU::sub0);
3534 MI.eraseFromParent();
3535 return &MBB;
3538 if (Val->isReg())
3539 MRI.clearKillFlags(Val->getReg());
3541 const DebugLoc &DL = MI.getDebugLoc();
3543 Register PhiReg = MRI.createVirtualRegister(VecRC);
3545 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3546 Offset, UseGPRIdxMode, false);
3547 MachineBasicBlock *LoopBB = InsPt->getParent();
3549 if (UseGPRIdxMode) {
3550 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3551 .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3552 .add(*Val) // src0
3553 .addReg(Dst, RegState::ImplicitDefine)
3554 .addReg(PhiReg, RegState::Implicit)
3555 .addReg(AMDGPU::M0, RegState::Implicit);
3556 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3557 } else {
3558 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3560 BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3561 .addReg(Dst, RegState::Define)
3562 .addReg(PhiReg)
3563 .add(*Val)
3564 .addImm(SubReg - AMDGPU::sub0);
3567 MI.eraseFromParent();
3569 return LoopBB;
3572 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3573 MachineInstr &MI, MachineBasicBlock *BB) const {
3575 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3576 MachineFunction *MF = BB->getParent();
3577 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3579 if (TII->isMIMG(MI)) {
3580 if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3581 report_fatal_error("missing mem operand from MIMG instruction");
3583 // Add a memoperand for mimg instructions so that they aren't assumed to
3584 // be ordered memory instuctions.
3586 return BB;
3589 switch (MI.getOpcode()) {
3590 case AMDGPU::S_ADD_U64_PSEUDO:
3591 case AMDGPU::S_SUB_U64_PSEUDO: {
3592 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3593 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3594 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3595 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3596 const DebugLoc &DL = MI.getDebugLoc();
3598 MachineOperand &Dest = MI.getOperand(0);
3599 MachineOperand &Src0 = MI.getOperand(1);
3600 MachineOperand &Src1 = MI.getOperand(2);
3602 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3603 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3605 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3606 Src0, BoolRC, AMDGPU::sub0,
3607 &AMDGPU::SReg_32_XM0RegClass);
3608 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3609 Src0, BoolRC, AMDGPU::sub1,
3610 &AMDGPU::SReg_32_XM0RegClass);
3612 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3613 Src1, BoolRC, AMDGPU::sub0,
3614 &AMDGPU::SReg_32_XM0RegClass);
3615 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3616 Src1, BoolRC, AMDGPU::sub1,
3617 &AMDGPU::SReg_32_XM0RegClass);
3619 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3621 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3622 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3623 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3624 .add(Src0Sub0)
3625 .add(Src1Sub0);
3626 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3627 .add(Src0Sub1)
3628 .add(Src1Sub1);
3629 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3630 .addReg(DestSub0)
3631 .addImm(AMDGPU::sub0)
3632 .addReg(DestSub1)
3633 .addImm(AMDGPU::sub1);
3634 MI.eraseFromParent();
3635 return BB;
3637 case AMDGPU::SI_INIT_M0: {
3638 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3639 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3640 .add(MI.getOperand(0));
3641 MI.eraseFromParent();
3642 return BB;
3644 case AMDGPU::SI_INIT_EXEC:
3645 // This should be before all vector instructions.
3646 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3647 AMDGPU::EXEC)
3648 .addImm(MI.getOperand(0).getImm());
3649 MI.eraseFromParent();
3650 return BB;
3652 case AMDGPU::SI_INIT_EXEC_LO:
3653 // This should be before all vector instructions.
3654 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3655 AMDGPU::EXEC_LO)
3656 .addImm(MI.getOperand(0).getImm());
3657 MI.eraseFromParent();
3658 return BB;
3660 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3661 // Extract the thread count from an SGPR input and set EXEC accordingly.
3662 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3664 // S_BFE_U32 count, input, {shift, 7}
3665 // S_BFM_B64 exec, count, 0
3666 // S_CMP_EQ_U32 count, 64
3667 // S_CMOV_B64 exec, -1
3668 MachineInstr *FirstMI = &*BB->begin();
3669 MachineRegisterInfo &MRI = MF->getRegInfo();
3670 Register InputReg = MI.getOperand(0).getReg();
3671 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3672 bool Found = false;
3674 // Move the COPY of the input reg to the beginning, so that we can use it.
3675 for (auto I = BB->begin(); I != &MI; I++) {
3676 if (I->getOpcode() != TargetOpcode::COPY ||
3677 I->getOperand(0).getReg() != InputReg)
3678 continue;
3680 if (I == FirstMI) {
3681 FirstMI = &*++BB->begin();
3682 } else {
3683 I->removeFromParent();
3684 BB->insert(FirstMI, &*I);
3686 Found = true;
3687 break;
3689 assert(Found);
3690 (void)Found;
3692 // This should be before all vector instructions.
3693 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3694 bool isWave32 = getSubtarget()->isWave32();
3695 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3696 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3697 .addReg(InputReg)
3698 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3699 BuildMI(*BB, FirstMI, DebugLoc(),
3700 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3701 Exec)
3702 .addReg(CountReg)
3703 .addImm(0);
3704 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3705 .addReg(CountReg, RegState::Kill)
3706 .addImm(getSubtarget()->getWavefrontSize());
3707 BuildMI(*BB, FirstMI, DebugLoc(),
3708 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3709 Exec)
3710 .addImm(-1);
3711 MI.eraseFromParent();
3712 return BB;
3715 case AMDGPU::GET_GROUPSTATICSIZE: {
3716 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3717 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3718 DebugLoc DL = MI.getDebugLoc();
3719 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3720 .add(MI.getOperand(0))
3721 .addImm(MFI->getLDSSize());
3722 MI.eraseFromParent();
3723 return BB;
3725 case AMDGPU::SI_INDIRECT_SRC_V1:
3726 case AMDGPU::SI_INDIRECT_SRC_V2:
3727 case AMDGPU::SI_INDIRECT_SRC_V4:
3728 case AMDGPU::SI_INDIRECT_SRC_V8:
3729 case AMDGPU::SI_INDIRECT_SRC_V16:
3730 return emitIndirectSrc(MI, *BB, *getSubtarget());
3731 case AMDGPU::SI_INDIRECT_DST_V1:
3732 case AMDGPU::SI_INDIRECT_DST_V2:
3733 case AMDGPU::SI_INDIRECT_DST_V4:
3734 case AMDGPU::SI_INDIRECT_DST_V8:
3735 case AMDGPU::SI_INDIRECT_DST_V16:
3736 return emitIndirectDst(MI, *BB, *getSubtarget());
3737 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3738 case AMDGPU::SI_KILL_I1_PSEUDO:
3739 return splitKillBlock(MI, BB);
3740 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3741 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3742 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3743 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3745 Register Dst = MI.getOperand(0).getReg();
3746 Register Src0 = MI.getOperand(1).getReg();
3747 Register Src1 = MI.getOperand(2).getReg();
3748 const DebugLoc &DL = MI.getDebugLoc();
3749 Register SrcCond = MI.getOperand(3).getReg();
3751 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3752 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3753 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3754 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3756 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3757 .addReg(SrcCond);
3758 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3759 .addImm(0)
3760 .addReg(Src0, 0, AMDGPU::sub0)
3761 .addImm(0)
3762 .addReg(Src1, 0, AMDGPU::sub0)
3763 .addReg(SrcCondCopy);
3764 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3765 .addImm(0)
3766 .addReg(Src0, 0, AMDGPU::sub1)
3767 .addImm(0)
3768 .addReg(Src1, 0, AMDGPU::sub1)
3769 .addReg(SrcCondCopy);
3771 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3772 .addReg(DstLo)
3773 .addImm(AMDGPU::sub0)
3774 .addReg(DstHi)
3775 .addImm(AMDGPU::sub1);
3776 MI.eraseFromParent();
3777 return BB;
3779 case AMDGPU::SI_BR_UNDEF: {
3780 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3781 const DebugLoc &DL = MI.getDebugLoc();
3782 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3783 .add(MI.getOperand(0));
3784 Br->getOperand(1).setIsUndef(true); // read undef SCC
3785 MI.eraseFromParent();
3786 return BB;
3788 case AMDGPU::ADJCALLSTACKUP:
3789 case AMDGPU::ADJCALLSTACKDOWN: {
3790 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3791 MachineInstrBuilder MIB(*MF, &MI);
3793 // Add an implicit use of the frame offset reg to prevent the restore copy
3794 // inserted after the call from being reorderd after stack operations in the
3795 // the caller's frame.
3796 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3797 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3798 .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3799 return BB;
3801 case AMDGPU::SI_CALL_ISEL: {
3802 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3803 const DebugLoc &DL = MI.getDebugLoc();
3805 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3807 MachineInstrBuilder MIB;
3808 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3810 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3811 MIB.add(MI.getOperand(I));
3813 MIB.cloneMemRefs(MI);
3814 MI.eraseFromParent();
3815 return BB;
3817 case AMDGPU::V_ADD_I32_e32:
3818 case AMDGPU::V_SUB_I32_e32:
3819 case AMDGPU::V_SUBREV_I32_e32: {
3820 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3821 const DebugLoc &DL = MI.getDebugLoc();
3822 unsigned Opc = MI.getOpcode();
3824 bool NeedClampOperand = false;
3825 if (TII->pseudoToMCOpcode(Opc) == -1) {
3826 Opc = AMDGPU::getVOPe64(Opc);
3827 NeedClampOperand = true;
3830 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3831 if (TII->isVOP3(*I)) {
3832 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3833 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3834 I.addReg(TRI->getVCC(), RegState::Define);
3836 I.add(MI.getOperand(1))
3837 .add(MI.getOperand(2));
3838 if (NeedClampOperand)
3839 I.addImm(0); // clamp bit for e64 encoding
3841 TII->legalizeOperands(*I);
3843 MI.eraseFromParent();
3844 return BB;
3846 case AMDGPU::DS_GWS_INIT:
3847 case AMDGPU::DS_GWS_SEMA_V:
3848 case AMDGPU::DS_GWS_SEMA_BR:
3849 case AMDGPU::DS_GWS_SEMA_P:
3850 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3851 case AMDGPU::DS_GWS_BARRIER:
3852 // A s_waitcnt 0 is required to be the instruction immediately following.
3853 if (getSubtarget()->hasGWSAutoReplay()) {
3854 bundleInstWithWaitcnt(MI);
3855 return BB;
3858 return emitGWSMemViolTestLoop(MI, BB);
3859 default:
3860 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3864 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3865 return isTypeLegal(VT.getScalarType());
3868 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3869 // This currently forces unfolding various combinations of fsub into fma with
3870 // free fneg'd operands. As long as we have fast FMA (controlled by
3871 // isFMAFasterThanFMulAndFAdd), we should perform these.
3873 // When fma is quarter rate, for f64 where add / sub are at best half rate,
3874 // most of these combines appear to be cycle neutral but save on instruction
3875 // count / code size.
3876 return true;
3879 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3880 EVT VT) const {
3881 if (!VT.isVector()) {
3882 return MVT::i1;
3884 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3887 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3888 // TODO: Should i16 be used always if legal? For now it would force VALU
3889 // shifts.
3890 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3893 // Answering this is somewhat tricky and depends on the specific device which
3894 // have different rates for fma or all f64 operations.
3896 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3897 // regardless of which device (although the number of cycles differs between
3898 // devices), so it is always profitable for f64.
3900 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3901 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3902 // which we can always do even without fused FP ops since it returns the same
3903 // result as the separate operations and since it is always full
3904 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3905 // however does not support denormals, so we do report fma as faster if we have
3906 // a fast fma device and require denormals.
3908 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3909 VT = VT.getScalarType();
3911 switch (VT.getSimpleVT().SimpleTy) {
3912 case MVT::f32: {
3913 // This is as fast on some subtargets. However, we always have full rate f32
3914 // mad available which returns the same result as the separate operations
3915 // which we should prefer over fma. We can't use this if we want to support
3916 // denormals, so only report this in these cases.
3917 if (Subtarget->hasFP32Denormals())
3918 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3920 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3921 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3923 case MVT::f64:
3924 return true;
3925 case MVT::f16:
3926 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3927 default:
3928 break;
3931 return false;
3934 //===----------------------------------------------------------------------===//
3935 // Custom DAG Lowering Operations
3936 //===----------------------------------------------------------------------===//
3938 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3939 // wider vector type is legal.
3940 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3941 SelectionDAG &DAG) const {
3942 unsigned Opc = Op.getOpcode();
3943 EVT VT = Op.getValueType();
3944 assert(VT == MVT::v4f16);
3946 SDValue Lo, Hi;
3947 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3949 SDLoc SL(Op);
3950 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3951 Op->getFlags());
3952 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3953 Op->getFlags());
3955 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3958 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3959 // wider vector type is legal.
3960 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3961 SelectionDAG &DAG) const {
3962 unsigned Opc = Op.getOpcode();
3963 EVT VT = Op.getValueType();
3964 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3966 SDValue Lo0, Hi0;
3967 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3968 SDValue Lo1, Hi1;
3969 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3971 SDLoc SL(Op);
3973 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3974 Op->getFlags());
3975 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3976 Op->getFlags());
3978 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3981 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
3982 SelectionDAG &DAG) const {
3983 unsigned Opc = Op.getOpcode();
3984 EVT VT = Op.getValueType();
3985 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3987 SDValue Lo0, Hi0;
3988 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3989 SDValue Lo1, Hi1;
3990 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3991 SDValue Lo2, Hi2;
3992 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
3994 SDLoc SL(Op);
3996 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
3997 Op->getFlags());
3998 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
3999 Op->getFlags());
4001 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4005 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4006 switch (Op.getOpcode()) {
4007 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4008 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4009 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4010 case ISD::LOAD: {
4011 SDValue Result = LowerLOAD(Op, DAG);
4012 assert((!Result.getNode() ||
4013 Result.getNode()->getNumValues() == 2) &&
4014 "Load should return a value and a chain");
4015 return Result;
4018 case ISD::FSIN:
4019 case ISD::FCOS:
4020 return LowerTrig(Op, DAG);
4021 case ISD::SELECT: return LowerSELECT(Op, DAG);
4022 case ISD::FDIV: return LowerFDIV(Op, DAG);
4023 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4024 case ISD::STORE: return LowerSTORE(Op, DAG);
4025 case ISD::GlobalAddress: {
4026 MachineFunction &MF = DAG.getMachineFunction();
4027 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4028 return LowerGlobalAddress(MFI, Op, DAG);
4030 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4031 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4032 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4033 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4034 case ISD::INSERT_SUBVECTOR:
4035 return lowerINSERT_SUBVECTOR(Op, DAG);
4036 case ISD::INSERT_VECTOR_ELT:
4037 return lowerINSERT_VECTOR_ELT(Op, DAG);
4038 case ISD::EXTRACT_VECTOR_ELT:
4039 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4040 case ISD::VECTOR_SHUFFLE:
4041 return lowerVECTOR_SHUFFLE(Op, DAG);
4042 case ISD::BUILD_VECTOR:
4043 return lowerBUILD_VECTOR(Op, DAG);
4044 case ISD::FP_ROUND:
4045 return lowerFP_ROUND(Op, DAG);
4046 case ISD::TRAP:
4047 return lowerTRAP(Op, DAG);
4048 case ISD::DEBUGTRAP:
4049 return lowerDEBUGTRAP(Op, DAG);
4050 case ISD::FABS:
4051 case ISD::FNEG:
4052 case ISD::FCANONICALIZE:
4053 return splitUnaryVectorOp(Op, DAG);
4054 case ISD::FMINNUM:
4055 case ISD::FMAXNUM:
4056 return lowerFMINNUM_FMAXNUM(Op, DAG);
4057 case ISD::FMA:
4058 return splitTernaryVectorOp(Op, DAG);
4059 case ISD::SHL:
4060 case ISD::SRA:
4061 case ISD::SRL:
4062 case ISD::ADD:
4063 case ISD::SUB:
4064 case ISD::MUL:
4065 case ISD::SMIN:
4066 case ISD::SMAX:
4067 case ISD::UMIN:
4068 case ISD::UMAX:
4069 case ISD::FADD:
4070 case ISD::FMUL:
4071 case ISD::FMINNUM_IEEE:
4072 case ISD::FMAXNUM_IEEE:
4073 return splitBinaryVectorOp(Op, DAG);
4075 return SDValue();
4078 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4079 const SDLoc &DL,
4080 SelectionDAG &DAG, bool Unpacked) {
4081 if (!LoadVT.isVector())
4082 return Result;
4084 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4085 // Truncate to v2i16/v4i16.
4086 EVT IntLoadVT = LoadVT.changeTypeToInteger();
4088 // Workaround legalizer not scalarizing truncate after vector op
4089 // legalization byt not creating intermediate vector trunc.
4090 SmallVector<SDValue, 4> Elts;
4091 DAG.ExtractVectorElements(Result, Elts);
4092 for (SDValue &Elt : Elts)
4093 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4095 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4097 // Bitcast to original type (v2f16/v4f16).
4098 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4101 // Cast back to the original packed type.
4102 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4105 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4106 MemSDNode *M,
4107 SelectionDAG &DAG,
4108 ArrayRef<SDValue> Ops,
4109 bool IsIntrinsic) const {
4110 SDLoc DL(M);
4112 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4113 EVT LoadVT = M->getValueType(0);
4115 EVT EquivLoadVT = LoadVT;
4116 if (Unpacked && LoadVT.isVector()) {
4117 EquivLoadVT = LoadVT.isVector() ?
4118 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4119 LoadVT.getVectorNumElements()) : LoadVT;
4122 // Change from v4f16/v2f16 to EquivLoadVT.
4123 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4125 SDValue Load
4126 = DAG.getMemIntrinsicNode(
4127 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4128 VTList, Ops, M->getMemoryVT(),
4129 M->getMemOperand());
4130 if (!Unpacked) // Just adjusted the opcode.
4131 return Load;
4133 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4135 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4138 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4139 SelectionDAG &DAG,
4140 ArrayRef<SDValue> Ops) const {
4141 SDLoc DL(M);
4142 EVT LoadVT = M->getValueType(0);
4143 EVT EltType = LoadVT.getScalarType();
4144 EVT IntVT = LoadVT.changeTypeToInteger();
4146 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4148 unsigned Opc =
4149 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4151 if (IsD16) {
4152 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4155 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4156 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4157 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4159 if (isTypeLegal(LoadVT)) {
4160 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4161 M->getMemOperand(), DAG);
4164 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4165 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4166 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4167 M->getMemOperand(), DAG);
4168 return DAG.getMergeValues(
4169 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4170 DL);
4173 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4174 SDNode *N, SelectionDAG &DAG) {
4175 EVT VT = N->getValueType(0);
4176 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4177 int CondCode = CD->getSExtValue();
4178 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4179 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4180 return DAG.getUNDEF(VT);
4182 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4184 SDValue LHS = N->getOperand(1);
4185 SDValue RHS = N->getOperand(2);
4187 SDLoc DL(N);
4189 EVT CmpVT = LHS.getValueType();
4190 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4191 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4192 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4193 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4194 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4197 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4199 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4200 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4202 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4203 DAG.getCondCode(CCOpcode));
4204 if (VT.bitsEq(CCVT))
4205 return SetCC;
4206 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4209 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4210 SDNode *N, SelectionDAG &DAG) {
4211 EVT VT = N->getValueType(0);
4212 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4214 int CondCode = CD->getSExtValue();
4215 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4216 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4217 return DAG.getUNDEF(VT);
4220 SDValue Src0 = N->getOperand(1);
4221 SDValue Src1 = N->getOperand(2);
4222 EVT CmpVT = Src0.getValueType();
4223 SDLoc SL(N);
4225 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4226 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4227 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4230 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4231 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4232 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4233 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4234 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4235 Src1, DAG.getCondCode(CCOpcode));
4236 if (VT.bitsEq(CCVT))
4237 return SetCC;
4238 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4241 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4242 SmallVectorImpl<SDValue> &Results,
4243 SelectionDAG &DAG) const {
4244 switch (N->getOpcode()) {
4245 case ISD::INSERT_VECTOR_ELT: {
4246 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4247 Results.push_back(Res);
4248 return;
4250 case ISD::EXTRACT_VECTOR_ELT: {
4251 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4252 Results.push_back(Res);
4253 return;
4255 case ISD::INTRINSIC_WO_CHAIN: {
4256 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4257 switch (IID) {
4258 case Intrinsic::amdgcn_cvt_pkrtz: {
4259 SDValue Src0 = N->getOperand(1);
4260 SDValue Src1 = N->getOperand(2);
4261 SDLoc SL(N);
4262 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4263 Src0, Src1);
4264 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4265 return;
4267 case Intrinsic::amdgcn_cvt_pknorm_i16:
4268 case Intrinsic::amdgcn_cvt_pknorm_u16:
4269 case Intrinsic::amdgcn_cvt_pk_i16:
4270 case Intrinsic::amdgcn_cvt_pk_u16: {
4271 SDValue Src0 = N->getOperand(1);
4272 SDValue Src1 = N->getOperand(2);
4273 SDLoc SL(N);
4274 unsigned Opcode;
4276 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4277 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4278 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4279 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4280 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4281 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4282 else
4283 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4285 EVT VT = N->getValueType(0);
4286 if (isTypeLegal(VT))
4287 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4288 else {
4289 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4290 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4292 return;
4295 break;
4297 case ISD::INTRINSIC_W_CHAIN: {
4298 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4299 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4300 // FIXME: Hacky
4301 Results.push_back(Res.getOperand(0));
4302 Results.push_back(Res.getOperand(1));
4303 } else {
4304 Results.push_back(Res);
4305 Results.push_back(Res.getValue(1));
4307 return;
4310 break;
4312 case ISD::SELECT: {
4313 SDLoc SL(N);
4314 EVT VT = N->getValueType(0);
4315 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4316 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4317 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4319 EVT SelectVT = NewVT;
4320 if (NewVT.bitsLT(MVT::i32)) {
4321 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4322 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4323 SelectVT = MVT::i32;
4326 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4327 N->getOperand(0), LHS, RHS);
4329 if (NewVT != SelectVT)
4330 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4331 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4332 return;
4334 case ISD::FNEG: {
4335 if (N->getValueType(0) != MVT::v2f16)
4336 break;
4338 SDLoc SL(N);
4339 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4341 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4343 DAG.getConstant(0x80008000, SL, MVT::i32));
4344 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4345 return;
4347 case ISD::FABS: {
4348 if (N->getValueType(0) != MVT::v2f16)
4349 break;
4351 SDLoc SL(N);
4352 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4354 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4356 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4357 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4358 return;
4360 default:
4361 break;
4365 /// Helper function for LowerBRCOND
4366 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4368 SDNode *Parent = Value.getNode();
4369 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4370 I != E; ++I) {
4372 if (I.getUse().get() != Value)
4373 continue;
4375 if (I->getOpcode() == Opcode)
4376 return *I;
4378 return nullptr;
4381 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4382 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4383 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4384 case Intrinsic::amdgcn_if:
4385 return AMDGPUISD::IF;
4386 case Intrinsic::amdgcn_else:
4387 return AMDGPUISD::ELSE;
4388 case Intrinsic::amdgcn_loop:
4389 return AMDGPUISD::LOOP;
4390 case Intrinsic::amdgcn_end_cf:
4391 llvm_unreachable("should not occur");
4392 default:
4393 return 0;
4397 // break, if_break, else_break are all only used as inputs to loop, not
4398 // directly as branch conditions.
4399 return 0;
4402 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4403 const Triple &TT = getTargetMachine().getTargetTriple();
4404 return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4405 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4406 AMDGPU::shouldEmitConstantsToTextSection(TT);
4409 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4410 // FIXME: Either avoid relying on address space here or change the default
4411 // address space for functions to avoid the explicit check.
4412 return (GV->getValueType()->isFunctionTy() ||
4413 GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4414 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4415 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4416 !shouldEmitFixup(GV) &&
4417 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4420 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4421 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4424 /// This transforms the control flow intrinsics to get the branch destination as
4425 /// last parameter, also switches branch target with BR if the need arise
4426 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4427 SelectionDAG &DAG) const {
4428 SDLoc DL(BRCOND);
4430 SDNode *Intr = BRCOND.getOperand(1).getNode();
4431 SDValue Target = BRCOND.getOperand(2);
4432 SDNode *BR = nullptr;
4433 SDNode *SetCC = nullptr;
4435 if (Intr->getOpcode() == ISD::SETCC) {
4436 // As long as we negate the condition everything is fine
4437 SetCC = Intr;
4438 Intr = SetCC->getOperand(0).getNode();
4440 } else {
4441 // Get the target from BR if we don't negate the condition
4442 BR = findUser(BRCOND, ISD::BR);
4443 Target = BR->getOperand(1);
4446 // FIXME: This changes the types of the intrinsics instead of introducing new
4447 // nodes with the correct types.
4448 // e.g. llvm.amdgcn.loop
4450 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4451 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4453 unsigned CFNode = isCFIntrinsic(Intr);
4454 if (CFNode == 0) {
4455 // This is a uniform branch so we don't need to legalize.
4456 return BRCOND;
4459 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4460 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4462 assert(!SetCC ||
4463 (SetCC->getConstantOperandVal(1) == 1 &&
4464 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4465 ISD::SETNE));
4467 // operands of the new intrinsic call
4468 SmallVector<SDValue, 4> Ops;
4469 if (HaveChain)
4470 Ops.push_back(BRCOND.getOperand(0));
4472 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
4473 Ops.push_back(Target);
4475 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4477 // build the new intrinsic call
4478 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4480 if (!HaveChain) {
4481 SDValue Ops[] = {
4482 SDValue(Result, 0),
4483 BRCOND.getOperand(0)
4486 Result = DAG.getMergeValues(Ops, DL).getNode();
4489 if (BR) {
4490 // Give the branch instruction our target
4491 SDValue Ops[] = {
4492 BR->getOperand(0),
4493 BRCOND.getOperand(2)
4495 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4496 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4497 BR = NewBR.getNode();
4500 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4502 // Copy the intrinsic results to registers
4503 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4504 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4505 if (!CopyToReg)
4506 continue;
4508 Chain = DAG.getCopyToReg(
4509 Chain, DL,
4510 CopyToReg->getOperand(1),
4511 SDValue(Result, i - 1),
4512 SDValue());
4514 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4517 // Remove the old intrinsic from the chain
4518 DAG.ReplaceAllUsesOfValueWith(
4519 SDValue(Intr, Intr->getNumValues() - 1),
4520 Intr->getOperand(0));
4522 return Chain;
4525 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4526 SelectionDAG &DAG) const {
4527 MVT VT = Op.getSimpleValueType();
4528 SDLoc DL(Op);
4529 // Checking the depth
4530 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4531 return DAG.getConstant(0, DL, VT);
4533 MachineFunction &MF = DAG.getMachineFunction();
4534 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4535 // Check for kernel and shader functions
4536 if (Info->isEntryFunction())
4537 return DAG.getConstant(0, DL, VT);
4539 MachineFrameInfo &MFI = MF.getFrameInfo();
4540 // There is a call to @llvm.returnaddress in this function
4541 MFI.setReturnAddressIsTaken(true);
4543 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4544 // Get the return address reg and mark it as an implicit live-in
4545 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4547 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4550 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4551 SDValue Op,
4552 const SDLoc &DL,
4553 EVT VT) const {
4554 return Op.getValueType().bitsLE(VT) ?
4555 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4556 DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4559 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4560 assert(Op.getValueType() == MVT::f16 &&
4561 "Do not know how to custom lower FP_ROUND for non-f16 type");
4563 SDValue Src = Op.getOperand(0);
4564 EVT SrcVT = Src.getValueType();
4565 if (SrcVT != MVT::f64)
4566 return Op;
4568 SDLoc DL(Op);
4570 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4571 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4572 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4575 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4576 SelectionDAG &DAG) const {
4577 EVT VT = Op.getValueType();
4578 const MachineFunction &MF = DAG.getMachineFunction();
4579 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4580 bool IsIEEEMode = Info->getMode().IEEE;
4582 // FIXME: Assert during eslection that this is only selected for
4583 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4584 // mode functions, but this happens to be OK since it's only done in cases
4585 // where there is known no sNaN.
4586 if (IsIEEEMode)
4587 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4589 if (VT == MVT::v4f16)
4590 return splitBinaryVectorOp(Op, DAG);
4591 return Op;
4594 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4595 SDLoc SL(Op);
4596 SDValue Chain = Op.getOperand(0);
4598 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4599 !Subtarget->isTrapHandlerEnabled())
4600 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4602 MachineFunction &MF = DAG.getMachineFunction();
4603 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4604 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4605 assert(UserSGPR != AMDGPU::NoRegister);
4606 SDValue QueuePtr = CreateLiveInRegister(
4607 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4608 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4609 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4610 QueuePtr, SDValue());
4611 SDValue Ops[] = {
4612 ToReg,
4613 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4614 SGPR01,
4615 ToReg.getValue(1)
4617 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4620 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4621 SDLoc SL(Op);
4622 SDValue Chain = Op.getOperand(0);
4623 MachineFunction &MF = DAG.getMachineFunction();
4625 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4626 !Subtarget->isTrapHandlerEnabled()) {
4627 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4628 "debugtrap handler not supported",
4629 Op.getDebugLoc(),
4630 DS_Warning);
4631 LLVMContext &Ctx = MF.getFunction().getContext();
4632 Ctx.diagnose(NoTrap);
4633 return Chain;
4636 SDValue Ops[] = {
4637 Chain,
4638 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4640 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4643 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4644 SelectionDAG &DAG) const {
4645 // FIXME: Use inline constants (src_{shared, private}_base) instead.
4646 if (Subtarget->hasApertureRegs()) {
4647 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4648 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4649 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4650 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4651 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4652 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4653 unsigned Encoding =
4654 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4655 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4656 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4658 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4659 SDValue ApertureReg = SDValue(
4660 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4661 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4662 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4665 MachineFunction &MF = DAG.getMachineFunction();
4666 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4667 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4668 assert(UserSGPR != AMDGPU::NoRegister);
4670 SDValue QueuePtr = CreateLiveInRegister(
4671 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4673 // Offset into amd_queue_t for group_segment_aperture_base_hi /
4674 // private_segment_aperture_base_hi.
4675 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4677 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4679 // TODO: Use custom target PseudoSourceValue.
4680 // TODO: We should use the value from the IR intrinsic call, but it might not
4681 // be available and how do we get it?
4682 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4683 AMDGPUAS::CONSTANT_ADDRESS));
4685 MachinePointerInfo PtrInfo(V, StructOffset);
4686 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4687 MinAlign(64, StructOffset),
4688 MachineMemOperand::MODereferenceable |
4689 MachineMemOperand::MOInvariant);
4692 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4693 SelectionDAG &DAG) const {
4694 SDLoc SL(Op);
4695 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4697 SDValue Src = ASC->getOperand(0);
4698 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4700 const AMDGPUTargetMachine &TM =
4701 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4703 // flat -> local/private
4704 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4705 unsigned DestAS = ASC->getDestAddressSpace();
4707 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4708 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4709 unsigned NullVal = TM.getNullPointerValue(DestAS);
4710 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4711 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4712 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4714 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4715 NonNull, Ptr, SegmentNullPtr);
4719 // local/private -> flat
4720 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4721 unsigned SrcAS = ASC->getSrcAddressSpace();
4723 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4724 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4725 unsigned NullVal = TM.getNullPointerValue(SrcAS);
4726 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4728 SDValue NonNull
4729 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4731 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4732 SDValue CvtPtr
4733 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4735 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4736 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4737 FlatNullPtr);
4741 // global <-> flat are no-ops and never emitted.
4743 const MachineFunction &MF = DAG.getMachineFunction();
4744 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4745 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4746 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4748 return DAG.getUNDEF(ASC->getValueType(0));
4751 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4752 // the small vector and inserting them into the big vector. That is better than
4753 // the default expansion of doing it via a stack slot. Even though the use of
4754 // the stack slot would be optimized away afterwards, the stack slot itself
4755 // remains.
4756 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4757 SelectionDAG &DAG) const {
4758 SDValue Vec = Op.getOperand(0);
4759 SDValue Ins = Op.getOperand(1);
4760 SDValue Idx = Op.getOperand(2);
4761 EVT VecVT = Vec.getValueType();
4762 EVT InsVT = Ins.getValueType();
4763 EVT EltVT = VecVT.getVectorElementType();
4764 unsigned InsNumElts = InsVT.getVectorNumElements();
4765 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4766 SDLoc SL(Op);
4768 for (unsigned I = 0; I != InsNumElts; ++I) {
4769 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4770 DAG.getConstant(I, SL, MVT::i32));
4771 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4772 DAG.getConstant(IdxVal + I, SL, MVT::i32));
4774 return Vec;
4777 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4778 SelectionDAG &DAG) const {
4779 SDValue Vec = Op.getOperand(0);
4780 SDValue InsVal = Op.getOperand(1);
4781 SDValue Idx = Op.getOperand(2);
4782 EVT VecVT = Vec.getValueType();
4783 EVT EltVT = VecVT.getVectorElementType();
4784 unsigned VecSize = VecVT.getSizeInBits();
4785 unsigned EltSize = EltVT.getSizeInBits();
4788 assert(VecSize <= 64);
4790 unsigned NumElts = VecVT.getVectorNumElements();
4791 SDLoc SL(Op);
4792 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4794 if (NumElts == 4 && EltSize == 16 && KIdx) {
4795 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4797 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4798 DAG.getConstant(0, SL, MVT::i32));
4799 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4800 DAG.getConstant(1, SL, MVT::i32));
4802 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4803 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4805 unsigned Idx = KIdx->getZExtValue();
4806 bool InsertLo = Idx < 2;
4807 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4808 InsertLo ? LoVec : HiVec,
4809 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4810 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4812 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4814 SDValue Concat = InsertLo ?
4815 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4816 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4818 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4821 if (isa<ConstantSDNode>(Idx))
4822 return SDValue();
4824 MVT IntVT = MVT::getIntegerVT(VecSize);
4826 // Avoid stack access for dynamic indexing.
4827 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4829 // Create a congruent vector with the target value in each element so that
4830 // the required element can be masked and ORed into the target vector.
4831 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4832 DAG.getSplatBuildVector(VecVT, SL, InsVal));
4834 assert(isPowerOf2_32(EltSize));
4835 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4837 // Convert vector index to bit-index.
4838 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4840 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4841 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4842 DAG.getConstant(0xffff, SL, IntVT),
4843 ScaledIdx);
4845 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4846 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4847 DAG.getNOT(SL, BFM, IntVT), BCVec);
4849 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4850 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4853 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4854 SelectionDAG &DAG) const {
4855 SDLoc SL(Op);
4857 EVT ResultVT = Op.getValueType();
4858 SDValue Vec = Op.getOperand(0);
4859 SDValue Idx = Op.getOperand(1);
4860 EVT VecVT = Vec.getValueType();
4861 unsigned VecSize = VecVT.getSizeInBits();
4862 EVT EltVT = VecVT.getVectorElementType();
4863 assert(VecSize <= 64);
4865 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4867 // Make sure we do any optimizations that will make it easier to fold
4868 // source modifiers before obscuring it with bit operations.
4870 // XXX - Why doesn't this get called when vector_shuffle is expanded?
4871 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4872 return Combined;
4874 unsigned EltSize = EltVT.getSizeInBits();
4875 assert(isPowerOf2_32(EltSize));
4877 MVT IntVT = MVT::getIntegerVT(VecSize);
4878 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4880 // Convert vector index to bit-index (* EltSize)
4881 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4883 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4884 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4886 if (ResultVT == MVT::f16) {
4887 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4888 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4891 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4894 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4895 assert(Elt % 2 == 0);
4896 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4899 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4900 SelectionDAG &DAG) const {
4901 SDLoc SL(Op);
4902 EVT ResultVT = Op.getValueType();
4903 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4905 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4906 EVT EltVT = PackVT.getVectorElementType();
4907 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4909 // vector_shuffle <0,1,6,7> lhs, rhs
4910 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4912 // vector_shuffle <6,7,2,3> lhs, rhs
4913 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4915 // vector_shuffle <6,7,0,1> lhs, rhs
4916 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4918 // Avoid scalarizing when both halves are reading from consecutive elements.
4919 SmallVector<SDValue, 4> Pieces;
4920 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4921 if (elementPairIsContiguous(SVN->getMask(), I)) {
4922 const int Idx = SVN->getMaskElt(I);
4923 int VecIdx = Idx < SrcNumElts ? 0 : 1;
4924 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4925 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4926 PackVT, SVN->getOperand(VecIdx),
4927 DAG.getConstant(EltIdx, SL, MVT::i32));
4928 Pieces.push_back(SubVec);
4929 } else {
4930 const int Idx0 = SVN->getMaskElt(I);
4931 const int Idx1 = SVN->getMaskElt(I + 1);
4932 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4933 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4934 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4935 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4937 SDValue Vec0 = SVN->getOperand(VecIdx0);
4938 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4939 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4941 SDValue Vec1 = SVN->getOperand(VecIdx1);
4942 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4943 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4944 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4948 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4951 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4952 SelectionDAG &DAG) const {
4953 SDLoc SL(Op);
4954 EVT VT = Op.getValueType();
4956 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4957 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4959 // Turn into pair of packed build_vectors.
4960 // TODO: Special case for constants that can be materialized with s_mov_b64.
4961 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4962 { Op.getOperand(0), Op.getOperand(1) });
4963 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4964 { Op.getOperand(2), Op.getOperand(3) });
4966 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4967 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4969 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4970 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4973 assert(VT == MVT::v2f16 || VT == MVT::v2i16);
4974 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
4976 SDValue Lo = Op.getOperand(0);
4977 SDValue Hi = Op.getOperand(1);
4979 // Avoid adding defined bits with the zero_extend.
4980 if (Hi.isUndef()) {
4981 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4982 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4983 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
4986 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
4987 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
4989 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
4990 DAG.getConstant(16, SL, MVT::i32));
4991 if (Lo.isUndef())
4992 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
4994 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4995 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
4997 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
4998 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5001 bool
5002 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5003 // We can fold offsets for anything that doesn't require a GOT relocation.
5004 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5005 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5006 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5007 !shouldEmitGOTReloc(GA->getGlobal());
5010 static SDValue
5011 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5012 const SDLoc &DL, unsigned Offset, EVT PtrVT,
5013 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5014 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5015 // lowered to the following code sequence:
5017 // For constant address space:
5018 // s_getpc_b64 s[0:1]
5019 // s_add_u32 s0, s0, $symbol
5020 // s_addc_u32 s1, s1, 0
5022 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5023 // a fixup or relocation is emitted to replace $symbol with a literal
5024 // constant, which is a pc-relative offset from the encoding of the $symbol
5025 // operand to the global variable.
5027 // For global address space:
5028 // s_getpc_b64 s[0:1]
5029 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5030 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5032 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5033 // fixups or relocations are emitted to replace $symbol@*@lo and
5034 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5035 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5036 // operand to the global variable.
5038 // What we want here is an offset from the value returned by s_getpc
5039 // (which is the address of the s_add_u32 instruction) to the global
5040 // variable, but since the encoding of $symbol starts 4 bytes after the start
5041 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5042 // small. This requires us to add 4 to the global variable offset in order to
5043 // compute the correct address.
5044 SDValue PtrLo =
5045 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5046 SDValue PtrHi;
5047 if (GAFlags == SIInstrInfo::MO_NONE) {
5048 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5049 } else {
5050 PtrHi =
5051 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5053 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5056 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5057 SDValue Op,
5058 SelectionDAG &DAG) const {
5059 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5060 const GlobalValue *GV = GSD->getGlobal();
5061 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5062 (!GV->hasExternalLinkage() ||
5063 getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5064 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5065 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5066 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5067 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5069 SDLoc DL(GSD);
5070 EVT PtrVT = Op.getValueType();
5072 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5073 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5074 SIInstrInfo::MO_ABS32_LO);
5075 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5078 if (shouldEmitFixup(GV))
5079 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5080 else if (shouldEmitPCReloc(GV))
5081 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5082 SIInstrInfo::MO_REL32);
5084 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5085 SIInstrInfo::MO_GOTPCREL32);
5087 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5088 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5089 const DataLayout &DataLayout = DAG.getDataLayout();
5090 unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5091 MachinePointerInfo PtrInfo
5092 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5094 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5095 MachineMemOperand::MODereferenceable |
5096 MachineMemOperand::MOInvariant);
5099 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5100 const SDLoc &DL, SDValue V) const {
5101 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5102 // the destination register.
5104 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5105 // so we will end up with redundant moves to m0.
5107 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5109 // A Null SDValue creates a glue result.
5110 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5111 V, Chain);
5112 return SDValue(M0, 0);
5115 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5116 SDValue Op,
5117 MVT VT,
5118 unsigned Offset) const {
5119 SDLoc SL(Op);
5120 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5121 DAG.getEntryNode(), Offset, 4, false);
5122 // The local size values will have the hi 16-bits as zero.
5123 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5124 DAG.getValueType(VT));
5127 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5128 EVT VT) {
5129 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5130 "non-hsa intrinsic with hsa target",
5131 DL.getDebugLoc());
5132 DAG.getContext()->diagnose(BadIntrin);
5133 return DAG.getUNDEF(VT);
5136 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5137 EVT VT) {
5138 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5139 "intrinsic not supported on subtarget",
5140 DL.getDebugLoc());
5141 DAG.getContext()->diagnose(BadIntrin);
5142 return DAG.getUNDEF(VT);
5145 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5146 ArrayRef<SDValue> Elts) {
5147 assert(!Elts.empty());
5148 MVT Type;
5149 unsigned NumElts;
5151 if (Elts.size() == 1) {
5152 Type = MVT::f32;
5153 NumElts = 1;
5154 } else if (Elts.size() == 2) {
5155 Type = MVT::v2f32;
5156 NumElts = 2;
5157 } else if (Elts.size() <= 4) {
5158 Type = MVT::v4f32;
5159 NumElts = 4;
5160 } else if (Elts.size() <= 8) {
5161 Type = MVT::v8f32;
5162 NumElts = 8;
5163 } else {
5164 assert(Elts.size() <= 16);
5165 Type = MVT::v16f32;
5166 NumElts = 16;
5169 SmallVector<SDValue, 16> VecElts(NumElts);
5170 for (unsigned i = 0; i < Elts.size(); ++i) {
5171 SDValue Elt = Elts[i];
5172 if (Elt.getValueType() != MVT::f32)
5173 Elt = DAG.getBitcast(MVT::f32, Elt);
5174 VecElts[i] = Elt;
5176 for (unsigned i = Elts.size(); i < NumElts; ++i)
5177 VecElts[i] = DAG.getUNDEF(MVT::f32);
5179 if (NumElts == 1)
5180 return VecElts[0];
5181 return DAG.getBuildVector(Type, DL, VecElts);
5184 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5185 SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5186 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5188 uint64_t Value = CachePolicyConst->getZExtValue();
5189 SDLoc DL(CachePolicy);
5190 if (GLC) {
5191 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5192 Value &= ~(uint64_t)0x1;
5194 if (SLC) {
5195 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5196 Value &= ~(uint64_t)0x2;
5198 if (DLC) {
5199 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5200 Value &= ~(uint64_t)0x4;
5203 return Value == 0;
5206 // Re-construct the required return value for a image load intrinsic.
5207 // This is more complicated due to the optional use TexFailCtrl which means the required
5208 // return type is an aggregate
5209 static SDValue constructRetValue(SelectionDAG &DAG,
5210 MachineSDNode *Result,
5211 ArrayRef<EVT> ResultTypes,
5212 bool IsTexFail, bool Unpacked, bool IsD16,
5213 int DMaskPop, int NumVDataDwords,
5214 const SDLoc &DL, LLVMContext &Context) {
5215 // Determine the required return type. This is the same regardless of IsTexFail flag
5216 EVT ReqRetVT = ResultTypes[0];
5217 EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5218 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5219 EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5220 EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5221 : AdjEltVT
5222 : ReqRetVT;
5224 // Extract data part of the result
5225 // Bitcast the result to the same type as the required return type
5226 int NumElts;
5227 if (IsD16 && !Unpacked)
5228 NumElts = NumVDataDwords << 1;
5229 else
5230 NumElts = NumVDataDwords;
5232 EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5233 : AdjEltVT;
5235 // Special case for v6f16. Rather than add support for this, use v3i32 to
5236 // extract the data elements
5237 bool V6F16Special = false;
5238 if (NumElts == 6) {
5239 CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5240 DMaskPop >>= 1;
5241 ReqRetNumElts >>= 1;
5242 V6F16Special = true;
5243 AdjVT = MVT::v2i32;
5246 SDValue N = SDValue(Result, 0);
5247 SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5249 // Iterate over the result
5250 SmallVector<SDValue, 4> BVElts;
5252 if (CastVT.isVector()) {
5253 DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5254 } else {
5255 BVElts.push_back(CastRes);
5257 int ExtraElts = ReqRetNumElts - DMaskPop;
5258 while(ExtraElts--)
5259 BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5261 SDValue PreTFCRes;
5262 if (ReqRetNumElts > 1) {
5263 SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5264 if (IsD16 && Unpacked)
5265 PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5266 else
5267 PreTFCRes = NewVec;
5268 } else {
5269 PreTFCRes = BVElts[0];
5272 if (V6F16Special)
5273 PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5275 if (!IsTexFail) {
5276 if (Result->getNumValues() > 1)
5277 return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5278 else
5279 return PreTFCRes;
5282 // Extract the TexFail result and insert into aggregate return
5283 SmallVector<SDValue, 1> TFCElt;
5284 DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5285 SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5286 return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5289 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5290 SDValue *LWE, bool &IsTexFail) {
5291 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5293 uint64_t Value = TexFailCtrlConst->getZExtValue();
5294 if (Value) {
5295 IsTexFail = true;
5298 SDLoc DL(TexFailCtrlConst);
5299 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5300 Value &= ~(uint64_t)0x1;
5301 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5302 Value &= ~(uint64_t)0x2;
5304 return Value == 0;
5307 SDValue SITargetLowering::lowerImage(SDValue Op,
5308 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5309 SelectionDAG &DAG) const {
5310 SDLoc DL(Op);
5311 MachineFunction &MF = DAG.getMachineFunction();
5312 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5313 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5314 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5315 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5316 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5317 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5318 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5319 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5320 unsigned IntrOpcode = Intr->BaseOpcode;
5321 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5323 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5324 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5325 bool IsD16 = false;
5326 bool IsA16 = false;
5327 SDValue VData;
5328 int NumVDataDwords;
5329 bool AdjustRetType = false;
5331 unsigned AddrIdx; // Index of first address argument
5332 unsigned DMask;
5333 unsigned DMaskLanes = 0;
5335 if (BaseOpcode->Atomic) {
5336 VData = Op.getOperand(2);
5338 bool Is64Bit = VData.getValueType() == MVT::i64;
5339 if (BaseOpcode->AtomicX2) {
5340 SDValue VData2 = Op.getOperand(3);
5341 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5342 {VData, VData2});
5343 if (Is64Bit)
5344 VData = DAG.getBitcast(MVT::v4i32, VData);
5346 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5347 DMask = Is64Bit ? 0xf : 0x3;
5348 NumVDataDwords = Is64Bit ? 4 : 2;
5349 AddrIdx = 4;
5350 } else {
5351 DMask = Is64Bit ? 0x3 : 0x1;
5352 NumVDataDwords = Is64Bit ? 2 : 1;
5353 AddrIdx = 3;
5355 } else {
5356 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5357 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5358 DMask = DMaskConst->getZExtValue();
5359 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5361 if (BaseOpcode->Store) {
5362 VData = Op.getOperand(2);
5364 MVT StoreVT = VData.getSimpleValueType();
5365 if (StoreVT.getScalarType() == MVT::f16) {
5366 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5367 return Op; // D16 is unsupported for this instruction
5369 IsD16 = true;
5370 VData = handleD16VData(VData, DAG);
5373 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5374 } else {
5375 // Work out the num dwords based on the dmask popcount and underlying type
5376 // and whether packing is supported.
5377 MVT LoadVT = ResultTypes[0].getSimpleVT();
5378 if (LoadVT.getScalarType() == MVT::f16) {
5379 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5380 return Op; // D16 is unsupported for this instruction
5382 IsD16 = true;
5385 // Confirm that the return type is large enough for the dmask specified
5386 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5387 (!LoadVT.isVector() && DMaskLanes > 1))
5388 return Op;
5390 if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5391 NumVDataDwords = (DMaskLanes + 1) / 2;
5392 else
5393 NumVDataDwords = DMaskLanes;
5395 AdjustRetType = true;
5398 AddrIdx = DMaskIdx + 1;
5401 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5402 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5403 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5404 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5405 NumCoords + NumLCM;
5406 unsigned NumMIVAddrs = NumVAddrs;
5408 SmallVector<SDValue, 4> VAddrs;
5410 // Optimize _L to _LZ when _L is zero
5411 if (LZMappingInfo) {
5412 if (auto ConstantLod =
5413 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5414 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5415 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
5416 NumMIVAddrs--; // remove 'lod'
5421 // Optimize _mip away, when 'lod' is zero
5422 if (MIPMappingInfo) {
5423 if (auto ConstantLod =
5424 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5425 if (ConstantLod->isNullValue()) {
5426 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
5427 NumMIVAddrs--; // remove 'lod'
5432 // Check for 16 bit addresses and pack if true.
5433 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5434 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5435 const MVT VAddrScalarVT = VAddrVT.getScalarType();
5436 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5437 ST->hasFeature(AMDGPU::FeatureR128A16)) {
5438 IsA16 = true;
5439 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5440 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5441 SDValue AddrLo, AddrHi;
5442 // Push back extra arguments.
5443 if (i < DimIdx) {
5444 AddrLo = Op.getOperand(i);
5445 } else {
5446 AddrLo = Op.getOperand(i);
5447 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5448 // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5449 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5450 ((NumGradients / 2) % 2 == 1 &&
5451 (i == DimIdx + (NumGradients / 2) - 1 ||
5452 i == DimIdx + NumGradients - 1))) {
5453 AddrHi = DAG.getUNDEF(MVT::f16);
5454 } else {
5455 AddrHi = Op.getOperand(i + 1);
5456 i++;
5458 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5459 {AddrLo, AddrHi});
5460 AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5462 VAddrs.push_back(AddrLo);
5464 } else {
5465 for (unsigned i = 0; i < NumMIVAddrs; ++i)
5466 VAddrs.push_back(Op.getOperand(AddrIdx + i));
5469 // If the register allocator cannot place the address registers contiguously
5470 // without introducing moves, then using the non-sequential address encoding
5471 // is always preferable, since it saves VALU instructions and is usually a
5472 // wash in terms of code size or even better.
5474 // However, we currently have no way of hinting to the register allocator that
5475 // MIMG addresses should be placed contiguously when it is possible to do so,
5476 // so force non-NSA for the common 2-address case as a heuristic.
5478 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5479 // allocation when possible.
5480 bool UseNSA =
5481 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5482 SDValue VAddr;
5483 if (!UseNSA)
5484 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5486 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5487 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5488 unsigned CtrlIdx; // Index of texfailctrl argument
5489 SDValue Unorm;
5490 if (!BaseOpcode->Sampler) {
5491 Unorm = True;
5492 CtrlIdx = AddrIdx + NumVAddrs + 1;
5493 } else {
5494 auto UnormConst =
5495 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5497 Unorm = UnormConst->getZExtValue() ? True : False;
5498 CtrlIdx = AddrIdx + NumVAddrs + 3;
5501 SDValue TFE;
5502 SDValue LWE;
5503 SDValue TexFail = Op.getOperand(CtrlIdx);
5504 bool IsTexFail = false;
5505 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5506 return Op;
5508 if (IsTexFail) {
5509 if (!DMaskLanes) {
5510 // Expecting to get an error flag since TFC is on - and dmask is 0
5511 // Force dmask to be at least 1 otherwise the instruction will fail
5512 DMask = 0x1;
5513 DMaskLanes = 1;
5514 NumVDataDwords = 1;
5516 NumVDataDwords += 1;
5517 AdjustRetType = true;
5520 // Has something earlier tagged that the return type needs adjusting
5521 // This happens if the instruction is a load or has set TexFailCtrl flags
5522 if (AdjustRetType) {
5523 // NumVDataDwords reflects the true number of dwords required in the return type
5524 if (DMaskLanes == 0 && !BaseOpcode->Store) {
5525 // This is a no-op load. This can be eliminated
5526 SDValue Undef = DAG.getUNDEF(Op.getValueType());
5527 if (isa<MemSDNode>(Op))
5528 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5529 return Undef;
5532 EVT NewVT = NumVDataDwords > 1 ?
5533 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5534 : MVT::f32;
5536 ResultTypes[0] = NewVT;
5537 if (ResultTypes.size() == 3) {
5538 // Original result was aggregate type used for TexFailCtrl results
5539 // The actual instruction returns as a vector type which has now been
5540 // created. Remove the aggregate result.
5541 ResultTypes.erase(&ResultTypes[1]);
5545 SDValue GLC;
5546 SDValue SLC;
5547 SDValue DLC;
5548 if (BaseOpcode->Atomic) {
5549 GLC = True; // TODO no-return optimization
5550 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5551 IsGFX10 ? &DLC : nullptr))
5552 return Op;
5553 } else {
5554 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5555 IsGFX10 ? &DLC : nullptr))
5556 return Op;
5559 SmallVector<SDValue, 26> Ops;
5560 if (BaseOpcode->Store || BaseOpcode->Atomic)
5561 Ops.push_back(VData); // vdata
5562 if (UseNSA) {
5563 for (const SDValue &Addr : VAddrs)
5564 Ops.push_back(Addr);
5565 } else {
5566 Ops.push_back(VAddr);
5568 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5569 if (BaseOpcode->Sampler)
5570 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5571 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5572 if (IsGFX10)
5573 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5574 Ops.push_back(Unorm);
5575 if (IsGFX10)
5576 Ops.push_back(DLC);
5577 Ops.push_back(GLC);
5578 Ops.push_back(SLC);
5579 Ops.push_back(IsA16 && // a16 or r128
5580 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5581 Ops.push_back(TFE); // tfe
5582 Ops.push_back(LWE); // lwe
5583 if (!IsGFX10)
5584 Ops.push_back(DimInfo->DA ? True : False);
5585 if (BaseOpcode->HasD16)
5586 Ops.push_back(IsD16 ? True : False);
5587 if (isa<MemSDNode>(Op))
5588 Ops.push_back(Op.getOperand(0)); // chain
5590 int NumVAddrDwords =
5591 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5592 int Opcode = -1;
5594 if (IsGFX10) {
5595 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5596 UseNSA ? AMDGPU::MIMGEncGfx10NSA
5597 : AMDGPU::MIMGEncGfx10Default,
5598 NumVDataDwords, NumVAddrDwords);
5599 } else {
5600 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5601 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5602 NumVDataDwords, NumVAddrDwords);
5603 if (Opcode == -1)
5604 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5605 NumVDataDwords, NumVAddrDwords);
5607 assert(Opcode != -1);
5609 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5610 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5611 MachineMemOperand *MemRef = MemOp->getMemOperand();
5612 DAG.setNodeMemRefs(NewNode, {MemRef});
5615 if (BaseOpcode->AtomicX2) {
5616 SmallVector<SDValue, 1> Elt;
5617 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5618 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5619 } else if (!BaseOpcode->Store) {
5620 return constructRetValue(DAG, NewNode,
5621 OrigResultTypes, IsTexFail,
5622 Subtarget->hasUnpackedD16VMem(), IsD16,
5623 DMaskLanes, NumVDataDwords, DL,
5624 *DAG.getContext());
5627 return SDValue(NewNode, 0);
5630 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5631 SDValue Offset, SDValue GLC, SDValue DLC,
5632 SelectionDAG &DAG) const {
5633 MachineFunction &MF = DAG.getMachineFunction();
5634 MachineMemOperand *MMO = MF.getMachineMemOperand(
5635 MachinePointerInfo(),
5636 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5637 MachineMemOperand::MOInvariant,
5638 VT.getStoreSize(), VT.getStoreSize());
5640 if (!Offset->isDivergent()) {
5641 SDValue Ops[] = {
5642 Rsrc,
5643 Offset, // Offset
5644 GLC,
5645 DLC,
5647 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5648 DAG.getVTList(VT), Ops, VT, MMO);
5651 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5652 // assume that the buffer is unswizzled.
5653 SmallVector<SDValue, 4> Loads;
5654 unsigned NumLoads = 1;
5655 MVT LoadVT = VT.getSimpleVT();
5656 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5657 assert((LoadVT.getScalarType() == MVT::i32 ||
5658 LoadVT.getScalarType() == MVT::f32) &&
5659 isPowerOf2_32(NumElts));
5661 if (NumElts == 8 || NumElts == 16) {
5662 NumLoads = NumElts == 16 ? 4 : 2;
5663 LoadVT = MVT::v4i32;
5666 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5667 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5668 SDValue Ops[] = {
5669 DAG.getEntryNode(), // Chain
5670 Rsrc, // rsrc
5671 DAG.getConstant(0, DL, MVT::i32), // vindex
5672 {}, // voffset
5673 {}, // soffset
5674 {}, // offset
5675 DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5676 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
5679 // Use the alignment to ensure that the required offsets will fit into the
5680 // immediate offsets.
5681 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5683 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5684 for (unsigned i = 0; i < NumLoads; ++i) {
5685 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5686 Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
5687 Ops, LoadVT, MMO));
5690 if (VT == MVT::v8i32 || VT == MVT::v16i32)
5691 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5693 return Loads[0];
5696 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5697 SelectionDAG &DAG) const {
5698 MachineFunction &MF = DAG.getMachineFunction();
5699 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5701 EVT VT = Op.getValueType();
5702 SDLoc DL(Op);
5703 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5705 // TODO: Should this propagate fast-math-flags?
5707 switch (IntrinsicID) {
5708 case Intrinsic::amdgcn_implicit_buffer_ptr: {
5709 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5710 return emitNonHSAIntrinsicError(DAG, DL, VT);
5711 return getPreloadedValue(DAG, *MFI, VT,
5712 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5714 case Intrinsic::amdgcn_dispatch_ptr:
5715 case Intrinsic::amdgcn_queue_ptr: {
5716 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5717 DiagnosticInfoUnsupported BadIntrin(
5718 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5719 DL.getDebugLoc());
5720 DAG.getContext()->diagnose(BadIntrin);
5721 return DAG.getUNDEF(VT);
5724 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5725 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5726 return getPreloadedValue(DAG, *MFI, VT, RegID);
5728 case Intrinsic::amdgcn_implicitarg_ptr: {
5729 if (MFI->isEntryFunction())
5730 return getImplicitArgPtr(DAG, DL);
5731 return getPreloadedValue(DAG, *MFI, VT,
5732 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5734 case Intrinsic::amdgcn_kernarg_segment_ptr: {
5735 return getPreloadedValue(DAG, *MFI, VT,
5736 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5738 case Intrinsic::amdgcn_dispatch_id: {
5739 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5741 case Intrinsic::amdgcn_rcp:
5742 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5743 case Intrinsic::amdgcn_rsq:
5744 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5745 case Intrinsic::amdgcn_rsq_legacy:
5746 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5747 return emitRemovedIntrinsicError(DAG, DL, VT);
5749 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5750 case Intrinsic::amdgcn_rcp_legacy:
5751 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5752 return emitRemovedIntrinsicError(DAG, DL, VT);
5753 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5754 case Intrinsic::amdgcn_rsq_clamp: {
5755 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5756 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5758 Type *Type = VT.getTypeForEVT(*DAG.getContext());
5759 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5760 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5762 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5763 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5764 DAG.getConstantFP(Max, DL, VT));
5765 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5766 DAG.getConstantFP(Min, DL, VT));
5768 case Intrinsic::r600_read_ngroups_x:
5769 if (Subtarget->isAmdHsaOS())
5770 return emitNonHSAIntrinsicError(DAG, DL, VT);
5772 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5773 SI::KernelInputOffsets::NGROUPS_X, 4, false);
5774 case Intrinsic::r600_read_ngroups_y:
5775 if (Subtarget->isAmdHsaOS())
5776 return emitNonHSAIntrinsicError(DAG, DL, VT);
5778 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5779 SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5780 case Intrinsic::r600_read_ngroups_z:
5781 if (Subtarget->isAmdHsaOS())
5782 return emitNonHSAIntrinsicError(DAG, DL, VT);
5784 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5785 SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5786 case Intrinsic::r600_read_global_size_x:
5787 if (Subtarget->isAmdHsaOS())
5788 return emitNonHSAIntrinsicError(DAG, DL, VT);
5790 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5791 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5792 case Intrinsic::r600_read_global_size_y:
5793 if (Subtarget->isAmdHsaOS())
5794 return emitNonHSAIntrinsicError(DAG, DL, VT);
5796 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5797 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5798 case Intrinsic::r600_read_global_size_z:
5799 if (Subtarget->isAmdHsaOS())
5800 return emitNonHSAIntrinsicError(DAG, DL, VT);
5802 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5803 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5804 case Intrinsic::r600_read_local_size_x:
5805 if (Subtarget->isAmdHsaOS())
5806 return emitNonHSAIntrinsicError(DAG, DL, VT);
5808 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5809 SI::KernelInputOffsets::LOCAL_SIZE_X);
5810 case Intrinsic::r600_read_local_size_y:
5811 if (Subtarget->isAmdHsaOS())
5812 return emitNonHSAIntrinsicError(DAG, DL, VT);
5814 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5815 SI::KernelInputOffsets::LOCAL_SIZE_Y);
5816 case Intrinsic::r600_read_local_size_z:
5817 if (Subtarget->isAmdHsaOS())
5818 return emitNonHSAIntrinsicError(DAG, DL, VT);
5820 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5821 SI::KernelInputOffsets::LOCAL_SIZE_Z);
5822 case Intrinsic::amdgcn_workgroup_id_x:
5823 case Intrinsic::r600_read_tgid_x:
5824 return getPreloadedValue(DAG, *MFI, VT,
5825 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5826 case Intrinsic::amdgcn_workgroup_id_y:
5827 case Intrinsic::r600_read_tgid_y:
5828 return getPreloadedValue(DAG, *MFI, VT,
5829 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5830 case Intrinsic::amdgcn_workgroup_id_z:
5831 case Intrinsic::r600_read_tgid_z:
5832 return getPreloadedValue(DAG, *MFI, VT,
5833 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5834 case Intrinsic::amdgcn_workitem_id_x:
5835 case Intrinsic::r600_read_tidig_x:
5836 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5837 SDLoc(DAG.getEntryNode()),
5838 MFI->getArgInfo().WorkItemIDX);
5839 case Intrinsic::amdgcn_workitem_id_y:
5840 case Intrinsic::r600_read_tidig_y:
5841 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5842 SDLoc(DAG.getEntryNode()),
5843 MFI->getArgInfo().WorkItemIDY);
5844 case Intrinsic::amdgcn_workitem_id_z:
5845 case Intrinsic::r600_read_tidig_z:
5846 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5847 SDLoc(DAG.getEntryNode()),
5848 MFI->getArgInfo().WorkItemIDZ);
5849 case Intrinsic::amdgcn_wavefrontsize:
5850 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5851 SDLoc(Op), MVT::i32);
5852 case Intrinsic::amdgcn_s_buffer_load: {
5853 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5854 SDValue GLC;
5855 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5856 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5857 IsGFX10 ? &DLC : nullptr))
5858 return Op;
5859 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5860 DAG);
5862 case Intrinsic::amdgcn_fdiv_fast:
5863 return lowerFDIV_FAST(Op, DAG);
5864 case Intrinsic::amdgcn_interp_mov: {
5865 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5866 SDValue Glue = M0.getValue(1);
5867 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
5868 Op.getOperand(2), Op.getOperand(3), Glue);
5870 case Intrinsic::amdgcn_interp_p1: {
5871 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5872 SDValue Glue = M0.getValue(1);
5873 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
5874 Op.getOperand(2), Op.getOperand(3), Glue);
5876 case Intrinsic::amdgcn_interp_p2: {
5877 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5878 SDValue Glue = SDValue(M0.getNode(), 1);
5879 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
5880 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
5881 Glue);
5883 case Intrinsic::amdgcn_interp_p1_f16: {
5884 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5885 SDValue Glue = M0.getValue(1);
5886 if (getSubtarget()->getLDSBankCount() == 16) {
5887 // 16 bank LDS
5888 SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
5889 DAG.getConstant(2, DL, MVT::i32), // P0
5890 Op.getOperand(2), // Attrchan
5891 Op.getOperand(3), // Attr
5892 Glue);
5893 SDValue Ops[] = {
5894 Op.getOperand(1), // Src0
5895 Op.getOperand(2), // Attrchan
5896 Op.getOperand(3), // Attr
5897 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5898 S, // Src2 - holds two f16 values selected by high
5899 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5900 Op.getOperand(4), // high
5901 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5902 DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5904 return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5905 } else {
5906 // 32 bank LDS
5907 SDValue Ops[] = {
5908 Op.getOperand(1), // Src0
5909 Op.getOperand(2), // Attrchan
5910 Op.getOperand(3), // Attr
5911 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5912 Op.getOperand(4), // high
5913 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5914 DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5915 Glue
5917 return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5920 case Intrinsic::amdgcn_interp_p2_f16: {
5921 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6));
5922 SDValue Glue = SDValue(M0.getNode(), 1);
5923 SDValue Ops[] = {
5924 Op.getOperand(2), // Src0
5925 Op.getOperand(3), // Attrchan
5926 Op.getOperand(4), // Attr
5927 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5928 Op.getOperand(1), // Src2
5929 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5930 Op.getOperand(5), // high
5931 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5932 Glue
5934 return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
5936 case Intrinsic::amdgcn_sin:
5937 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5939 case Intrinsic::amdgcn_cos:
5940 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5942 case Intrinsic::amdgcn_mul_u24:
5943 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5944 case Intrinsic::amdgcn_mul_i24:
5945 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5947 case Intrinsic::amdgcn_log_clamp: {
5948 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5949 return SDValue();
5951 DiagnosticInfoUnsupported BadIntrin(
5952 MF.getFunction(), "intrinsic not supported on subtarget",
5953 DL.getDebugLoc());
5954 DAG.getContext()->diagnose(BadIntrin);
5955 return DAG.getUNDEF(VT);
5957 case Intrinsic::amdgcn_ldexp:
5958 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5959 Op.getOperand(1), Op.getOperand(2));
5961 case Intrinsic::amdgcn_fract:
5962 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5964 case Intrinsic::amdgcn_class:
5965 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5966 Op.getOperand(1), Op.getOperand(2));
5967 case Intrinsic::amdgcn_div_fmas:
5968 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5969 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5970 Op.getOperand(4));
5972 case Intrinsic::amdgcn_div_fixup:
5973 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5974 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5976 case Intrinsic::amdgcn_trig_preop:
5977 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5978 Op.getOperand(1), Op.getOperand(2));
5979 case Intrinsic::amdgcn_div_scale: {
5980 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5982 // Translate to the operands expected by the machine instruction. The
5983 // first parameter must be the same as the first instruction.
5984 SDValue Numerator = Op.getOperand(1);
5985 SDValue Denominator = Op.getOperand(2);
5987 // Note this order is opposite of the machine instruction's operations,
5988 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5989 // intrinsic has the numerator as the first operand to match a normal
5990 // division operation.
5992 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5994 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5995 Denominator, Numerator);
5997 case Intrinsic::amdgcn_icmp: {
5998 // There is a Pat that handles this variant, so return it as-is.
5999 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6000 Op.getConstantOperandVal(2) == 0 &&
6001 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6002 return Op;
6003 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6005 case Intrinsic::amdgcn_fcmp: {
6006 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6008 case Intrinsic::amdgcn_fmed3:
6009 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6010 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6011 case Intrinsic::amdgcn_fdot2:
6012 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6013 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6014 Op.getOperand(4));
6015 case Intrinsic::amdgcn_fmul_legacy:
6016 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6017 Op.getOperand(1), Op.getOperand(2));
6018 case Intrinsic::amdgcn_sffbh:
6019 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6020 case Intrinsic::amdgcn_sbfe:
6021 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6022 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6023 case Intrinsic::amdgcn_ubfe:
6024 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6025 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6026 case Intrinsic::amdgcn_cvt_pkrtz:
6027 case Intrinsic::amdgcn_cvt_pknorm_i16:
6028 case Intrinsic::amdgcn_cvt_pknorm_u16:
6029 case Intrinsic::amdgcn_cvt_pk_i16:
6030 case Intrinsic::amdgcn_cvt_pk_u16: {
6031 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6032 EVT VT = Op.getValueType();
6033 unsigned Opcode;
6035 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6036 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6037 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6038 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6039 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6040 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6041 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6042 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6043 else
6044 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6046 if (isTypeLegal(VT))
6047 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6049 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6050 Op.getOperand(1), Op.getOperand(2));
6051 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6053 case Intrinsic::amdgcn_fmad_ftz:
6054 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6055 Op.getOperand(2), Op.getOperand(3));
6057 case Intrinsic::amdgcn_if_break:
6058 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6059 Op->getOperand(1), Op->getOperand(2)), 0);
6061 case Intrinsic::amdgcn_groupstaticsize: {
6062 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6063 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6064 return Op;
6066 const Module *M = MF.getFunction().getParent();
6067 const GlobalValue *GV =
6068 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6069 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6070 SIInstrInfo::MO_ABS32_LO);
6071 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6073 case Intrinsic::amdgcn_is_shared:
6074 case Intrinsic::amdgcn_is_private: {
6075 SDLoc SL(Op);
6076 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6077 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6078 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6079 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6080 Op.getOperand(1));
6082 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6083 DAG.getConstant(1, SL, MVT::i32));
6084 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6086 default:
6087 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6088 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6089 return lowerImage(Op, ImageDimIntr, DAG);
6091 return Op;
6095 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6096 SelectionDAG &DAG) const {
6097 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6098 SDLoc DL(Op);
6100 switch (IntrID) {
6101 case Intrinsic::amdgcn_ds_ordered_add:
6102 case Intrinsic::amdgcn_ds_ordered_swap: {
6103 MemSDNode *M = cast<MemSDNode>(Op);
6104 SDValue Chain = M->getOperand(0);
6105 SDValue M0 = M->getOperand(2);
6106 SDValue Value = M->getOperand(3);
6107 unsigned IndexOperand = M->getConstantOperandVal(7);
6108 unsigned WaveRelease = M->getConstantOperandVal(8);
6109 unsigned WaveDone = M->getConstantOperandVal(9);
6110 unsigned ShaderType;
6111 unsigned Instruction;
6113 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6114 IndexOperand &= ~0x3f;
6115 unsigned CountDw = 0;
6117 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6118 CountDw = (IndexOperand >> 24) & 0xf;
6119 IndexOperand &= ~(0xf << 24);
6121 if (CountDw < 1 || CountDw > 4) {
6122 report_fatal_error(
6123 "ds_ordered_count: dword count must be between 1 and 4");
6127 if (IndexOperand)
6128 report_fatal_error("ds_ordered_count: bad index operand");
6130 switch (IntrID) {
6131 case Intrinsic::amdgcn_ds_ordered_add:
6132 Instruction = 0;
6133 break;
6134 case Intrinsic::amdgcn_ds_ordered_swap:
6135 Instruction = 1;
6136 break;
6139 if (WaveDone && !WaveRelease)
6140 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6142 switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6143 case CallingConv::AMDGPU_CS:
6144 case CallingConv::AMDGPU_KERNEL:
6145 ShaderType = 0;
6146 break;
6147 case CallingConv::AMDGPU_PS:
6148 ShaderType = 1;
6149 break;
6150 case CallingConv::AMDGPU_VS:
6151 ShaderType = 2;
6152 break;
6153 case CallingConv::AMDGPU_GS:
6154 ShaderType = 3;
6155 break;
6156 default:
6157 report_fatal_error("ds_ordered_count unsupported for this calling conv");
6160 unsigned Offset0 = OrderedCountIndex << 2;
6161 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6162 (Instruction << 4);
6164 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6165 Offset1 |= (CountDw - 1) << 6;
6167 unsigned Offset = Offset0 | (Offset1 << 8);
6169 SDValue Ops[] = {
6170 Chain,
6171 Value,
6172 DAG.getTargetConstant(Offset, DL, MVT::i16),
6173 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6175 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6176 M->getVTList(), Ops, M->getMemoryVT(),
6177 M->getMemOperand());
6179 case Intrinsic::amdgcn_ds_fadd: {
6180 MemSDNode *M = cast<MemSDNode>(Op);
6181 unsigned Opc;
6182 switch (IntrID) {
6183 case Intrinsic::amdgcn_ds_fadd:
6184 Opc = ISD::ATOMIC_LOAD_FADD;
6185 break;
6188 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6189 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6190 M->getMemOperand());
6192 case Intrinsic::amdgcn_atomic_inc:
6193 case Intrinsic::amdgcn_atomic_dec:
6194 case Intrinsic::amdgcn_ds_fmin:
6195 case Intrinsic::amdgcn_ds_fmax: {
6196 MemSDNode *M = cast<MemSDNode>(Op);
6197 unsigned Opc;
6198 switch (IntrID) {
6199 case Intrinsic::amdgcn_atomic_inc:
6200 Opc = AMDGPUISD::ATOMIC_INC;
6201 break;
6202 case Intrinsic::amdgcn_atomic_dec:
6203 Opc = AMDGPUISD::ATOMIC_DEC;
6204 break;
6205 case Intrinsic::amdgcn_ds_fmin:
6206 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6207 break;
6208 case Intrinsic::amdgcn_ds_fmax:
6209 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6210 break;
6211 default:
6212 llvm_unreachable("Unknown intrinsic!");
6214 SDValue Ops[] = {
6215 M->getOperand(0), // Chain
6216 M->getOperand(2), // Ptr
6217 M->getOperand(3) // Value
6220 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6221 M->getMemoryVT(), M->getMemOperand());
6223 case Intrinsic::amdgcn_buffer_load:
6224 case Intrinsic::amdgcn_buffer_load_format: {
6225 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6226 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6227 unsigned IdxEn = 1;
6228 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6229 IdxEn = Idx->getZExtValue() != 0;
6230 SDValue Ops[] = {
6231 Op.getOperand(0), // Chain
6232 Op.getOperand(2), // rsrc
6233 Op.getOperand(3), // vindex
6234 SDValue(), // voffset -- will be set by setBufferOffsets
6235 SDValue(), // soffset -- will be set by setBufferOffsets
6236 SDValue(), // offset -- will be set by setBufferOffsets
6237 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6238 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6241 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6242 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6243 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6245 EVT VT = Op.getValueType();
6246 EVT IntVT = VT.changeTypeToInteger();
6247 auto *M = cast<MemSDNode>(Op);
6248 EVT LoadVT = Op.getValueType();
6250 if (LoadVT.getScalarType() == MVT::f16)
6251 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6252 M, DAG, Ops);
6254 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6255 if (LoadVT.getScalarType() == MVT::i8 ||
6256 LoadVT.getScalarType() == MVT::i16)
6257 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6259 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6260 M->getMemOperand(), DAG);
6262 case Intrinsic::amdgcn_raw_buffer_load:
6263 case Intrinsic::amdgcn_raw_buffer_load_format: {
6264 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6266 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6267 SDValue Ops[] = {
6268 Op.getOperand(0), // Chain
6269 Op.getOperand(2), // rsrc
6270 DAG.getConstant(0, DL, MVT::i32), // vindex
6271 Offsets.first, // voffset
6272 Op.getOperand(4), // soffset
6273 Offsets.second, // offset
6274 Op.getOperand(5), // cachepolicy
6275 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6278 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6280 case Intrinsic::amdgcn_struct_buffer_load:
6281 case Intrinsic::amdgcn_struct_buffer_load_format: {
6282 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6284 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6285 SDValue Ops[] = {
6286 Op.getOperand(0), // Chain
6287 Op.getOperand(2), // rsrc
6288 Op.getOperand(3), // vindex
6289 Offsets.first, // voffset
6290 Op.getOperand(5), // soffset
6291 Offsets.second, // offset
6292 Op.getOperand(6), // cachepolicy
6293 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6296 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6298 case Intrinsic::amdgcn_tbuffer_load: {
6299 MemSDNode *M = cast<MemSDNode>(Op);
6300 EVT LoadVT = Op.getValueType();
6302 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6303 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6304 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6305 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6306 unsigned IdxEn = 1;
6307 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6308 IdxEn = Idx->getZExtValue() != 0;
6309 SDValue Ops[] = {
6310 Op.getOperand(0), // Chain
6311 Op.getOperand(2), // rsrc
6312 Op.getOperand(3), // vindex
6313 Op.getOperand(4), // voffset
6314 Op.getOperand(5), // soffset
6315 Op.getOperand(6), // offset
6316 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6317 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6318 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6321 if (LoadVT.getScalarType() == MVT::f16)
6322 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6323 M, DAG, Ops);
6324 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6325 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6326 DAG);
6328 case Intrinsic::amdgcn_raw_tbuffer_load: {
6329 MemSDNode *M = cast<MemSDNode>(Op);
6330 EVT LoadVT = Op.getValueType();
6331 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6333 SDValue Ops[] = {
6334 Op.getOperand(0), // Chain
6335 Op.getOperand(2), // rsrc
6336 DAG.getConstant(0, DL, MVT::i32), // vindex
6337 Offsets.first, // voffset
6338 Op.getOperand(4), // soffset
6339 Offsets.second, // offset
6340 Op.getOperand(5), // format
6341 Op.getOperand(6), // cachepolicy
6342 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6345 if (LoadVT.getScalarType() == MVT::f16)
6346 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6347 M, DAG, Ops);
6348 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6349 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6350 DAG);
6352 case Intrinsic::amdgcn_struct_tbuffer_load: {
6353 MemSDNode *M = cast<MemSDNode>(Op);
6354 EVT LoadVT = Op.getValueType();
6355 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6357 SDValue Ops[] = {
6358 Op.getOperand(0), // Chain
6359 Op.getOperand(2), // rsrc
6360 Op.getOperand(3), // vindex
6361 Offsets.first, // voffset
6362 Op.getOperand(5), // soffset
6363 Offsets.second, // offset
6364 Op.getOperand(6), // format
6365 Op.getOperand(7), // cachepolicy
6366 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6369 if (LoadVT.getScalarType() == MVT::f16)
6370 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6371 M, DAG, Ops);
6372 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6373 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6374 DAG);
6376 case Intrinsic::amdgcn_buffer_atomic_swap:
6377 case Intrinsic::amdgcn_buffer_atomic_add:
6378 case Intrinsic::amdgcn_buffer_atomic_sub:
6379 case Intrinsic::amdgcn_buffer_atomic_smin:
6380 case Intrinsic::amdgcn_buffer_atomic_umin:
6381 case Intrinsic::amdgcn_buffer_atomic_smax:
6382 case Intrinsic::amdgcn_buffer_atomic_umax:
6383 case Intrinsic::amdgcn_buffer_atomic_and:
6384 case Intrinsic::amdgcn_buffer_atomic_or:
6385 case Intrinsic::amdgcn_buffer_atomic_xor: {
6386 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6387 unsigned IdxEn = 1;
6388 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6389 IdxEn = Idx->getZExtValue() != 0;
6390 SDValue Ops[] = {
6391 Op.getOperand(0), // Chain
6392 Op.getOperand(2), // vdata
6393 Op.getOperand(3), // rsrc
6394 Op.getOperand(4), // vindex
6395 SDValue(), // voffset -- will be set by setBufferOffsets
6396 SDValue(), // soffset -- will be set by setBufferOffsets
6397 SDValue(), // offset -- will be set by setBufferOffsets
6398 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6399 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6401 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6402 EVT VT = Op.getValueType();
6404 auto *M = cast<MemSDNode>(Op);
6405 unsigned Opcode = 0;
6407 switch (IntrID) {
6408 case Intrinsic::amdgcn_buffer_atomic_swap:
6409 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6410 break;
6411 case Intrinsic::amdgcn_buffer_atomic_add:
6412 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6413 break;
6414 case Intrinsic::amdgcn_buffer_atomic_sub:
6415 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6416 break;
6417 case Intrinsic::amdgcn_buffer_atomic_smin:
6418 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6419 break;
6420 case Intrinsic::amdgcn_buffer_atomic_umin:
6421 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6422 break;
6423 case Intrinsic::amdgcn_buffer_atomic_smax:
6424 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6425 break;
6426 case Intrinsic::amdgcn_buffer_atomic_umax:
6427 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6428 break;
6429 case Intrinsic::amdgcn_buffer_atomic_and:
6430 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6431 break;
6432 case Intrinsic::amdgcn_buffer_atomic_or:
6433 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6434 break;
6435 case Intrinsic::amdgcn_buffer_atomic_xor:
6436 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6437 break;
6438 default:
6439 llvm_unreachable("unhandled atomic opcode");
6442 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6443 M->getMemOperand());
6445 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6446 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6447 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6448 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6449 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6450 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6451 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6452 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6453 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6454 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6455 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6456 case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6457 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6458 SDValue Ops[] = {
6459 Op.getOperand(0), // Chain
6460 Op.getOperand(2), // vdata
6461 Op.getOperand(3), // rsrc
6462 DAG.getConstant(0, DL, MVT::i32), // vindex
6463 Offsets.first, // voffset
6464 Op.getOperand(5), // soffset
6465 Offsets.second, // offset
6466 Op.getOperand(6), // cachepolicy
6467 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6469 EVT VT = Op.getValueType();
6471 auto *M = cast<MemSDNode>(Op);
6472 unsigned Opcode = 0;
6474 switch (IntrID) {
6475 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6476 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6477 break;
6478 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6479 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6480 break;
6481 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6482 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6483 break;
6484 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6485 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6486 break;
6487 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6488 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6489 break;
6490 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6491 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6492 break;
6493 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6494 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6495 break;
6496 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6497 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6498 break;
6499 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6500 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6501 break;
6502 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6503 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6504 break;
6505 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6506 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6507 break;
6508 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6509 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6510 break;
6511 default:
6512 llvm_unreachable("unhandled atomic opcode");
6515 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6516 M->getMemOperand());
6518 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6519 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6520 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6521 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6522 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6523 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6524 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6525 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6526 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6527 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6528 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6529 case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
6530 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6531 SDValue Ops[] = {
6532 Op.getOperand(0), // Chain
6533 Op.getOperand(2), // vdata
6534 Op.getOperand(3), // rsrc
6535 Op.getOperand(4), // vindex
6536 Offsets.first, // voffset
6537 Op.getOperand(6), // soffset
6538 Offsets.second, // offset
6539 Op.getOperand(7), // cachepolicy
6540 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6542 EVT VT = Op.getValueType();
6544 auto *M = cast<MemSDNode>(Op);
6545 unsigned Opcode = 0;
6547 switch (IntrID) {
6548 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6549 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6550 break;
6551 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6552 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6553 break;
6554 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6555 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6556 break;
6557 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6558 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6559 break;
6560 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6561 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6562 break;
6563 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6564 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6565 break;
6566 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6567 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6568 break;
6569 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6570 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6571 break;
6572 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6573 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6574 break;
6575 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6576 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6577 break;
6578 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6579 Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6580 break;
6581 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6582 Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6583 break;
6584 default:
6585 llvm_unreachable("unhandled atomic opcode");
6588 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6589 M->getMemOperand());
6591 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6592 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6593 unsigned IdxEn = 1;
6594 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6595 IdxEn = Idx->getZExtValue() != 0;
6596 SDValue Ops[] = {
6597 Op.getOperand(0), // Chain
6598 Op.getOperand(2), // src
6599 Op.getOperand(3), // cmp
6600 Op.getOperand(4), // rsrc
6601 Op.getOperand(5), // vindex
6602 SDValue(), // voffset -- will be set by setBufferOffsets
6603 SDValue(), // soffset -- will be set by setBufferOffsets
6604 SDValue(), // offset -- will be set by setBufferOffsets
6605 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6606 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6608 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6609 EVT VT = Op.getValueType();
6610 auto *M = cast<MemSDNode>(Op);
6612 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6613 Op->getVTList(), Ops, VT, M->getMemOperand());
6615 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6616 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6617 SDValue Ops[] = {
6618 Op.getOperand(0), // Chain
6619 Op.getOperand(2), // src
6620 Op.getOperand(3), // cmp
6621 Op.getOperand(4), // rsrc
6622 DAG.getConstant(0, DL, MVT::i32), // vindex
6623 Offsets.first, // voffset
6624 Op.getOperand(6), // soffset
6625 Offsets.second, // offset
6626 Op.getOperand(7), // cachepolicy
6627 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6629 EVT VT = Op.getValueType();
6630 auto *M = cast<MemSDNode>(Op);
6632 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6633 Op->getVTList(), Ops, VT, M->getMemOperand());
6635 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6636 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6637 SDValue Ops[] = {
6638 Op.getOperand(0), // Chain
6639 Op.getOperand(2), // src
6640 Op.getOperand(3), // cmp
6641 Op.getOperand(4), // rsrc
6642 Op.getOperand(5), // vindex
6643 Offsets.first, // voffset
6644 Op.getOperand(7), // soffset
6645 Offsets.second, // offset
6646 Op.getOperand(8), // cachepolicy
6647 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6649 EVT VT = Op.getValueType();
6650 auto *M = cast<MemSDNode>(Op);
6652 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6653 Op->getVTList(), Ops, VT, M->getMemOperand());
6656 default:
6657 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6658 AMDGPU::getImageDimIntrinsicInfo(IntrID))
6659 return lowerImage(Op, ImageDimIntr, DAG);
6661 return SDValue();
6665 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6666 // dwordx4 if on SI.
6667 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6668 SDVTList VTList,
6669 ArrayRef<SDValue> Ops, EVT MemVT,
6670 MachineMemOperand *MMO,
6671 SelectionDAG &DAG) const {
6672 EVT VT = VTList.VTs[0];
6673 EVT WidenedVT = VT;
6674 EVT WidenedMemVT = MemVT;
6675 if (!Subtarget->hasDwordx3LoadStores() &&
6676 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6677 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6678 WidenedVT.getVectorElementType(), 4);
6679 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6680 WidenedMemVT.getVectorElementType(), 4);
6681 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6684 assert(VTList.NumVTs == 2);
6685 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6687 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6688 WidenedMemVT, MMO);
6689 if (WidenedVT != VT) {
6690 auto Extract = DAG.getNode(
6691 ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6692 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6693 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6695 return NewOp;
6698 SDValue SITargetLowering::handleD16VData(SDValue VData,
6699 SelectionDAG &DAG) const {
6700 EVT StoreVT = VData.getValueType();
6702 // No change for f16 and legal vector D16 types.
6703 if (!StoreVT.isVector())
6704 return VData;
6706 SDLoc DL(VData);
6707 assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6709 if (Subtarget->hasUnpackedD16VMem()) {
6710 // We need to unpack the packed data to store.
6711 EVT IntStoreVT = StoreVT.changeTypeToInteger();
6712 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6714 EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6715 StoreVT.getVectorNumElements());
6716 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6717 return DAG.UnrollVectorOp(ZExt.getNode());
6720 assert(isTypeLegal(StoreVT));
6721 return VData;
6724 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6725 SelectionDAG &DAG) const {
6726 SDLoc DL(Op);
6727 SDValue Chain = Op.getOperand(0);
6728 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6729 MachineFunction &MF = DAG.getMachineFunction();
6731 switch (IntrinsicID) {
6732 case Intrinsic::amdgcn_exp: {
6733 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6734 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6735 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6736 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6738 const SDValue Ops[] = {
6739 Chain,
6740 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6741 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
6742 Op.getOperand(4), // src0
6743 Op.getOperand(5), // src1
6744 Op.getOperand(6), // src2
6745 Op.getOperand(7), // src3
6746 DAG.getTargetConstant(0, DL, MVT::i1), // compr
6747 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6750 unsigned Opc = Done->isNullValue() ?
6751 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6752 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6754 case Intrinsic::amdgcn_exp_compr: {
6755 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6756 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6757 SDValue Src0 = Op.getOperand(4);
6758 SDValue Src1 = Op.getOperand(5);
6759 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6760 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6762 SDValue Undef = DAG.getUNDEF(MVT::f32);
6763 const SDValue Ops[] = {
6764 Chain,
6765 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6766 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
6767 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6768 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6769 Undef, // src2
6770 Undef, // src3
6771 DAG.getTargetConstant(1, DL, MVT::i1), // compr
6772 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6775 unsigned Opc = Done->isNullValue() ?
6776 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6777 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6779 case Intrinsic::amdgcn_s_barrier: {
6780 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6781 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6782 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6783 if (WGSize <= ST.getWavefrontSize())
6784 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6785 Op.getOperand(0)), 0);
6787 return SDValue();
6789 case Intrinsic::amdgcn_tbuffer_store: {
6790 SDValue VData = Op.getOperand(2);
6791 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6792 if (IsD16)
6793 VData = handleD16VData(VData, DAG);
6794 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6795 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6796 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6797 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6798 unsigned IdxEn = 1;
6799 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6800 IdxEn = Idx->getZExtValue() != 0;
6801 SDValue Ops[] = {
6802 Chain,
6803 VData, // vdata
6804 Op.getOperand(3), // rsrc
6805 Op.getOperand(4), // vindex
6806 Op.getOperand(5), // voffset
6807 Op.getOperand(6), // soffset
6808 Op.getOperand(7), // offset
6809 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6810 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6811 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
6813 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6814 AMDGPUISD::TBUFFER_STORE_FORMAT;
6815 MemSDNode *M = cast<MemSDNode>(Op);
6816 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6817 M->getMemoryVT(), M->getMemOperand());
6820 case Intrinsic::amdgcn_struct_tbuffer_store: {
6821 SDValue VData = Op.getOperand(2);
6822 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6823 if (IsD16)
6824 VData = handleD16VData(VData, DAG);
6825 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6826 SDValue Ops[] = {
6827 Chain,
6828 VData, // vdata
6829 Op.getOperand(3), // rsrc
6830 Op.getOperand(4), // vindex
6831 Offsets.first, // voffset
6832 Op.getOperand(6), // soffset
6833 Offsets.second, // offset
6834 Op.getOperand(7), // format
6835 Op.getOperand(8), // cachepolicy
6836 DAG.getTargetConstant(1, DL, MVT::i1), // idexen
6838 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6839 AMDGPUISD::TBUFFER_STORE_FORMAT;
6840 MemSDNode *M = cast<MemSDNode>(Op);
6841 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6842 M->getMemoryVT(), M->getMemOperand());
6845 case Intrinsic::amdgcn_raw_tbuffer_store: {
6846 SDValue VData = Op.getOperand(2);
6847 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6848 if (IsD16)
6849 VData = handleD16VData(VData, DAG);
6850 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6851 SDValue Ops[] = {
6852 Chain,
6853 VData, // vdata
6854 Op.getOperand(3), // rsrc
6855 DAG.getConstant(0, DL, MVT::i32), // vindex
6856 Offsets.first, // voffset
6857 Op.getOperand(5), // soffset
6858 Offsets.second, // offset
6859 Op.getOperand(6), // format
6860 Op.getOperand(7), // cachepolicy
6861 DAG.getTargetConstant(0, DL, MVT::i1), // idexen
6863 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6864 AMDGPUISD::TBUFFER_STORE_FORMAT;
6865 MemSDNode *M = cast<MemSDNode>(Op);
6866 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6867 M->getMemoryVT(), M->getMemOperand());
6870 case Intrinsic::amdgcn_buffer_store:
6871 case Intrinsic::amdgcn_buffer_store_format: {
6872 SDValue VData = Op.getOperand(2);
6873 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6874 if (IsD16)
6875 VData = handleD16VData(VData, DAG);
6876 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6877 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6878 unsigned IdxEn = 1;
6879 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6880 IdxEn = Idx->getZExtValue() != 0;
6881 SDValue Ops[] = {
6882 Chain,
6883 VData,
6884 Op.getOperand(3), // rsrc
6885 Op.getOperand(4), // vindex
6886 SDValue(), // voffset -- will be set by setBufferOffsets
6887 SDValue(), // soffset -- will be set by setBufferOffsets
6888 SDValue(), // offset -- will be set by setBufferOffsets
6889 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6890 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6892 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6893 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6894 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6895 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6896 MemSDNode *M = cast<MemSDNode>(Op);
6898 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6899 EVT VDataType = VData.getValueType().getScalarType();
6900 if (VDataType == MVT::i8 || VDataType == MVT::i16)
6901 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6903 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6904 M->getMemoryVT(), M->getMemOperand());
6907 case Intrinsic::amdgcn_raw_buffer_store:
6908 case Intrinsic::amdgcn_raw_buffer_store_format: {
6909 const bool IsFormat =
6910 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
6912 SDValue VData = Op.getOperand(2);
6913 EVT VDataVT = VData.getValueType();
6914 EVT EltType = VDataVT.getScalarType();
6915 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6916 if (IsD16)
6917 VData = handleD16VData(VData, DAG);
6919 if (!isTypeLegal(VDataVT)) {
6920 VData =
6921 DAG.getNode(ISD::BITCAST, DL,
6922 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6925 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6926 SDValue Ops[] = {
6927 Chain,
6928 VData,
6929 Op.getOperand(3), // rsrc
6930 DAG.getConstant(0, DL, MVT::i32), // vindex
6931 Offsets.first, // voffset
6932 Op.getOperand(5), // soffset
6933 Offsets.second, // offset
6934 Op.getOperand(6), // cachepolicy
6935 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6937 unsigned Opc =
6938 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
6939 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6940 MemSDNode *M = cast<MemSDNode>(Op);
6942 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6943 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
6944 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
6946 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6947 M->getMemoryVT(), M->getMemOperand());
6950 case Intrinsic::amdgcn_struct_buffer_store:
6951 case Intrinsic::amdgcn_struct_buffer_store_format: {
6952 const bool IsFormat =
6953 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
6955 SDValue VData = Op.getOperand(2);
6956 EVT VDataVT = VData.getValueType();
6957 EVT EltType = VDataVT.getScalarType();
6958 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6960 if (IsD16)
6961 VData = handleD16VData(VData, DAG);
6963 if (!isTypeLegal(VDataVT)) {
6964 VData =
6965 DAG.getNode(ISD::BITCAST, DL,
6966 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6969 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6970 SDValue Ops[] = {
6971 Chain,
6972 VData,
6973 Op.getOperand(3), // rsrc
6974 Op.getOperand(4), // vindex
6975 Offsets.first, // voffset
6976 Op.getOperand(6), // soffset
6977 Offsets.second, // offset
6978 Op.getOperand(7), // cachepolicy
6979 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6981 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
6982 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6983 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6984 MemSDNode *M = cast<MemSDNode>(Op);
6986 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6987 EVT VDataType = VData.getValueType().getScalarType();
6988 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
6989 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6991 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6992 M->getMemoryVT(), M->getMemOperand());
6995 case Intrinsic::amdgcn_buffer_atomic_fadd: {
6996 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6997 unsigned IdxEn = 1;
6998 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6999 IdxEn = Idx->getZExtValue() != 0;
7000 SDValue Ops[] = {
7001 Chain,
7002 Op.getOperand(2), // vdata
7003 Op.getOperand(3), // rsrc
7004 Op.getOperand(4), // vindex
7005 SDValue(), // voffset -- will be set by setBufferOffsets
7006 SDValue(), // soffset -- will be set by setBufferOffsets
7007 SDValue(), // offset -- will be set by setBufferOffsets
7008 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7009 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7011 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7012 EVT VT = Op.getOperand(2).getValueType();
7014 auto *M = cast<MemSDNode>(Op);
7015 unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7016 : AMDGPUISD::BUFFER_ATOMIC_FADD;
7018 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7019 M->getMemOperand());
7022 case Intrinsic::amdgcn_global_atomic_fadd: {
7023 SDValue Ops[] = {
7024 Chain,
7025 Op.getOperand(2), // ptr
7026 Op.getOperand(3) // vdata
7028 EVT VT = Op.getOperand(3).getValueType();
7030 auto *M = cast<MemSDNode>(Op);
7031 unsigned Opcode = VT.isVector() ? AMDGPUISD::ATOMIC_PK_FADD
7032 : AMDGPUISD::ATOMIC_FADD;
7034 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7035 M->getMemOperand());
7038 case Intrinsic::amdgcn_end_cf:
7039 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7040 Op->getOperand(2), Chain), 0);
7042 default: {
7043 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7044 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7045 return lowerImage(Op, ImageDimIntr, DAG);
7047 return Op;
7052 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7053 // offset (the offset that is included in bounds checking and swizzling, to be
7054 // split between the instruction's voffset and immoffset fields) and soffset
7055 // (the offset that is excluded from bounds checking and swizzling, to go in
7056 // the instruction's soffset field). This function takes the first kind of
7057 // offset and figures out how to split it between voffset and immoffset.
7058 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7059 SDValue Offset, SelectionDAG &DAG) const {
7060 SDLoc DL(Offset);
7061 const unsigned MaxImm = 4095;
7062 SDValue N0 = Offset;
7063 ConstantSDNode *C1 = nullptr;
7065 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7066 N0 = SDValue();
7067 else if (DAG.isBaseWithConstantOffset(N0)) {
7068 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7069 N0 = N0.getOperand(0);
7072 if (C1) {
7073 unsigned ImmOffset = C1->getZExtValue();
7074 // If the immediate value is too big for the immoffset field, put the value
7075 // and -4096 into the immoffset field so that the value that is copied/added
7076 // for the voffset field is a multiple of 4096, and it stands more chance
7077 // of being CSEd with the copy/add for another similar load/store.
7078 // However, do not do that rounding down to a multiple of 4096 if that is a
7079 // negative number, as it appears to be illegal to have a negative offset
7080 // in the vgpr, even if adding the immediate offset makes it positive.
7081 unsigned Overflow = ImmOffset & ~MaxImm;
7082 ImmOffset -= Overflow;
7083 if ((int32_t)Overflow < 0) {
7084 Overflow += ImmOffset;
7085 ImmOffset = 0;
7087 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7088 if (Overflow) {
7089 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7090 if (!N0)
7091 N0 = OverflowVal;
7092 else {
7093 SDValue Ops[] = { N0, OverflowVal };
7094 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7098 if (!N0)
7099 N0 = DAG.getConstant(0, DL, MVT::i32);
7100 if (!C1)
7101 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7102 return {N0, SDValue(C1, 0)};
7105 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7106 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7107 // pointed to by Offsets.
7108 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7109 SelectionDAG &DAG, SDValue *Offsets,
7110 unsigned Align) const {
7111 SDLoc DL(CombinedOffset);
7112 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7113 uint32_t Imm = C->getZExtValue();
7114 uint32_t SOffset, ImmOffset;
7115 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
7116 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7117 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7118 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7119 return;
7122 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7123 SDValue N0 = CombinedOffset.getOperand(0);
7124 SDValue N1 = CombinedOffset.getOperand(1);
7125 uint32_t SOffset, ImmOffset;
7126 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7127 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7128 Subtarget, Align)) {
7129 Offsets[0] = N0;
7130 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7131 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7132 return;
7135 Offsets[0] = CombinedOffset;
7136 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7137 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7140 // Handle 8 bit and 16 bit buffer loads
7141 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7142 EVT LoadVT, SDLoc DL,
7143 ArrayRef<SDValue> Ops,
7144 MemSDNode *M) const {
7145 EVT IntVT = LoadVT.changeTypeToInteger();
7146 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7147 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7149 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7150 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7151 Ops, IntVT,
7152 M->getMemOperand());
7153 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7154 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7156 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7159 // Handle 8 bit and 16 bit buffer stores
7160 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7161 EVT VDataType, SDLoc DL,
7162 SDValue Ops[],
7163 MemSDNode *M) const {
7164 if (VDataType == MVT::f16)
7165 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7167 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7168 Ops[1] = BufferStoreExt;
7169 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7170 AMDGPUISD::BUFFER_STORE_SHORT;
7171 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7172 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7173 M->getMemOperand());
7176 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7177 ISD::LoadExtType ExtType, SDValue Op,
7178 const SDLoc &SL, EVT VT) {
7179 if (VT.bitsLT(Op.getValueType()))
7180 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7182 switch (ExtType) {
7183 case ISD::SEXTLOAD:
7184 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7185 case ISD::ZEXTLOAD:
7186 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7187 case ISD::EXTLOAD:
7188 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7189 case ISD::NON_EXTLOAD:
7190 return Op;
7193 llvm_unreachable("invalid ext type");
7196 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7197 SelectionDAG &DAG = DCI.DAG;
7198 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7199 return SDValue();
7201 // FIXME: Constant loads should all be marked invariant.
7202 unsigned AS = Ld->getAddressSpace();
7203 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7204 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7205 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7206 return SDValue();
7208 // Don't do this early, since it may interfere with adjacent load merging for
7209 // illegal types. We can avoid losing alignment information for exotic types
7210 // pre-legalize.
7211 EVT MemVT = Ld->getMemoryVT();
7212 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7213 MemVT.getSizeInBits() >= 32)
7214 return SDValue();
7216 SDLoc SL(Ld);
7218 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7219 "unexpected vector extload");
7221 // TODO: Drop only high part of range.
7222 SDValue Ptr = Ld->getBasePtr();
7223 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7224 MVT::i32, SL, Ld->getChain(), Ptr,
7225 Ld->getOffset(),
7226 Ld->getPointerInfo(), MVT::i32,
7227 Ld->getAlignment(),
7228 Ld->getMemOperand()->getFlags(),
7229 Ld->getAAInfo(),
7230 nullptr); // Drop ranges
7232 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7233 if (MemVT.isFloatingPoint()) {
7234 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7235 "unexpected fp extload");
7236 TruncVT = MemVT.changeTypeToInteger();
7239 SDValue Cvt = NewLoad;
7240 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7241 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7242 DAG.getValueType(TruncVT));
7243 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7244 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7245 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7246 } else {
7247 assert(Ld->getExtensionType() == ISD::EXTLOAD);
7250 EVT VT = Ld->getValueType(0);
7251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7253 DCI.AddToWorklist(Cvt.getNode());
7255 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7256 // the appropriate extension from the 32-bit load.
7257 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7258 DCI.AddToWorklist(Cvt.getNode());
7260 // Handle conversion back to floating point if necessary.
7261 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7263 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7266 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7267 SDLoc DL(Op);
7268 LoadSDNode *Load = cast<LoadSDNode>(Op);
7269 ISD::LoadExtType ExtType = Load->getExtensionType();
7270 EVT MemVT = Load->getMemoryVT();
7272 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7273 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7274 return SDValue();
7276 // FIXME: Copied from PPC
7277 // First, load into 32 bits, then truncate to 1 bit.
7279 SDValue Chain = Load->getChain();
7280 SDValue BasePtr = Load->getBasePtr();
7281 MachineMemOperand *MMO = Load->getMemOperand();
7283 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7285 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7286 BasePtr, RealMemVT, MMO);
7288 if (!MemVT.isVector()) {
7289 SDValue Ops[] = {
7290 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7291 NewLD.getValue(1)
7294 return DAG.getMergeValues(Ops, DL);
7297 SmallVector<SDValue, 3> Elts;
7298 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7299 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7300 DAG.getConstant(I, DL, MVT::i32));
7302 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7305 SDValue Ops[] = {
7306 DAG.getBuildVector(MemVT, DL, Elts),
7307 NewLD.getValue(1)
7310 return DAG.getMergeValues(Ops, DL);
7313 if (!MemVT.isVector())
7314 return SDValue();
7316 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7317 "Custom lowering for non-i32 vectors hasn't been implemented.");
7319 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7320 MemVT, *Load->getMemOperand())) {
7321 SDValue Ops[2];
7322 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7323 return DAG.getMergeValues(Ops, DL);
7326 unsigned Alignment = Load->getAlignment();
7327 unsigned AS = Load->getAddressSpace();
7328 if (Subtarget->hasLDSMisalignedBug() &&
7329 AS == AMDGPUAS::FLAT_ADDRESS &&
7330 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7331 return SplitVectorLoad(Op, DAG);
7334 MachineFunction &MF = DAG.getMachineFunction();
7335 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7336 // If there is a possibilty that flat instruction access scratch memory
7337 // then we need to use the same legalization rules we use for private.
7338 if (AS == AMDGPUAS::FLAT_ADDRESS)
7339 AS = MFI->hasFlatScratchInit() ?
7340 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7342 unsigned NumElements = MemVT.getVectorNumElements();
7344 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7345 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7346 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7347 if (MemVT.isPow2VectorType())
7348 return SDValue();
7349 if (NumElements == 3)
7350 return WidenVectorLoad(Op, DAG);
7351 return SplitVectorLoad(Op, DAG);
7353 // Non-uniform loads will be selected to MUBUF instructions, so they
7354 // have the same legalization requirements as global and private
7355 // loads.
7359 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7360 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7361 AS == AMDGPUAS::GLOBAL_ADDRESS) {
7362 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7363 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7364 Alignment >= 4 && NumElements < 32) {
7365 if (MemVT.isPow2VectorType())
7366 return SDValue();
7367 if (NumElements == 3)
7368 return WidenVectorLoad(Op, DAG);
7369 return SplitVectorLoad(Op, DAG);
7371 // Non-uniform loads will be selected to MUBUF instructions, so they
7372 // have the same legalization requirements as global and private
7373 // loads.
7376 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7377 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7378 AS == AMDGPUAS::GLOBAL_ADDRESS ||
7379 AS == AMDGPUAS::FLAT_ADDRESS) {
7380 if (NumElements > 4)
7381 return SplitVectorLoad(Op, DAG);
7382 // v3 loads not supported on SI.
7383 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7384 return WidenVectorLoad(Op, DAG);
7385 // v3 and v4 loads are supported for private and global memory.
7386 return SDValue();
7388 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7389 // Depending on the setting of the private_element_size field in the
7390 // resource descriptor, we can only make private accesses up to a certain
7391 // size.
7392 switch (Subtarget->getMaxPrivateElementSize()) {
7393 case 4:
7394 return scalarizeVectorLoad(Load, DAG);
7395 case 8:
7396 if (NumElements > 2)
7397 return SplitVectorLoad(Op, DAG);
7398 return SDValue();
7399 case 16:
7400 // Same as global/flat
7401 if (NumElements > 4)
7402 return SplitVectorLoad(Op, DAG);
7403 // v3 loads not supported on SI.
7404 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7405 return WidenVectorLoad(Op, DAG);
7406 return SDValue();
7407 default:
7408 llvm_unreachable("unsupported private_element_size");
7410 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7411 // Use ds_read_b128 if possible.
7412 if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7413 MemVT.getStoreSize() == 16)
7414 return SDValue();
7416 if (NumElements > 2)
7417 return SplitVectorLoad(Op, DAG);
7419 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7420 // address is negative, then the instruction is incorrectly treated as
7421 // out-of-bounds even if base + offsets is in bounds. Split vectorized
7422 // loads here to avoid emitting ds_read2_b32. We may re-combine the
7423 // load later in the SILoadStoreOptimizer.
7424 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7425 NumElements == 2 && MemVT.getStoreSize() == 8 &&
7426 Load->getAlignment() < 8) {
7427 return SplitVectorLoad(Op, DAG);
7430 return SDValue();
7433 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7434 EVT VT = Op.getValueType();
7435 assert(VT.getSizeInBits() == 64);
7437 SDLoc DL(Op);
7438 SDValue Cond = Op.getOperand(0);
7440 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7441 SDValue One = DAG.getConstant(1, DL, MVT::i32);
7443 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7444 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7446 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7447 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7449 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7451 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7452 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7454 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7456 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7457 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7460 // Catch division cases where we can use shortcuts with rcp and rsq
7461 // instructions.
7462 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7463 SelectionDAG &DAG) const {
7464 SDLoc SL(Op);
7465 SDValue LHS = Op.getOperand(0);
7466 SDValue RHS = Op.getOperand(1);
7467 EVT VT = Op.getValueType();
7468 const SDNodeFlags Flags = Op->getFlags();
7469 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7471 if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
7472 return SDValue();
7474 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7475 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7476 if (CLHS->isExactlyValue(1.0)) {
7477 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7478 // the CI documentation has a worst case error of 1 ulp.
7479 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7480 // use it as long as we aren't trying to use denormals.
7482 // v_rcp_f16 and v_rsq_f16 DO support denormals.
7484 // 1.0 / sqrt(x) -> rsq(x)
7486 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7487 // error seems really high at 2^29 ULP.
7488 if (RHS.getOpcode() == ISD::FSQRT)
7489 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7491 // 1.0 / x -> rcp(x)
7492 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7495 // Same as for 1.0, but expand the sign out of the constant.
7496 if (CLHS->isExactlyValue(-1.0)) {
7497 // -1.0 / x -> rcp (fneg x)
7498 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7499 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7504 if (Unsafe) {
7505 // Turn into multiply by the reciprocal.
7506 // x / y -> x * (1.0 / y)
7507 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7508 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7511 return SDValue();
7514 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7515 EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7516 if (GlueChain->getNumValues() <= 1) {
7517 return DAG.getNode(Opcode, SL, VT, A, B);
7520 assert(GlueChain->getNumValues() == 3);
7522 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7523 switch (Opcode) {
7524 default: llvm_unreachable("no chain equivalent for opcode");
7525 case ISD::FMUL:
7526 Opcode = AMDGPUISD::FMUL_W_CHAIN;
7527 break;
7530 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7531 GlueChain.getValue(2));
7534 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7535 EVT VT, SDValue A, SDValue B, SDValue C,
7536 SDValue GlueChain) {
7537 if (GlueChain->getNumValues() <= 1) {
7538 return DAG.getNode(Opcode, SL, VT, A, B, C);
7541 assert(GlueChain->getNumValues() == 3);
7543 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7544 switch (Opcode) {
7545 default: llvm_unreachable("no chain equivalent for opcode");
7546 case ISD::FMA:
7547 Opcode = AMDGPUISD::FMA_W_CHAIN;
7548 break;
7551 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7552 GlueChain.getValue(2));
7555 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7556 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7557 return FastLowered;
7559 SDLoc SL(Op);
7560 SDValue Src0 = Op.getOperand(0);
7561 SDValue Src1 = Op.getOperand(1);
7563 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7564 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7566 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7567 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7569 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7570 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7572 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7575 // Faster 2.5 ULP division that does not support denormals.
7576 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7577 SDLoc SL(Op);
7578 SDValue LHS = Op.getOperand(1);
7579 SDValue RHS = Op.getOperand(2);
7581 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7583 const APFloat K0Val(BitsToFloat(0x6f800000));
7584 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7586 const APFloat K1Val(BitsToFloat(0x2f800000));
7587 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7589 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7591 EVT SetCCVT =
7592 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7594 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7596 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7598 // TODO: Should this propagate fast-math-flags?
7599 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7601 // rcp does not support denormals.
7602 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7604 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7606 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7609 // Returns immediate value for setting the F32 denorm mode when using the
7610 // S_DENORM_MODE instruction.
7611 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
7612 const SDLoc &SL, const GCNSubtarget *ST) {
7613 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
7614 int DPDenormModeDefault = ST->hasFP64Denormals()
7615 ? FP_DENORM_FLUSH_NONE
7616 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
7618 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
7619 return DAG.getTargetConstant(Mode, SL, MVT::i32);
7622 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7623 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7624 return FastLowered;
7626 SDLoc SL(Op);
7627 SDValue LHS = Op.getOperand(0);
7628 SDValue RHS = Op.getOperand(1);
7630 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7632 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7634 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7635 RHS, RHS, LHS);
7636 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7637 LHS, RHS, LHS);
7639 // Denominator is scaled to not be denormal, so using rcp is ok.
7640 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7641 DenominatorScaled);
7642 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7643 DenominatorScaled);
7645 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7646 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7647 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7648 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7650 if (!Subtarget->hasFP32Denormals()) {
7651 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7653 SDValue EnableDenorm;
7654 if (Subtarget->hasDenormModeInst()) {
7655 const SDValue EnableDenormValue =
7656 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
7658 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
7659 DAG.getEntryNode(), EnableDenormValue);
7660 } else {
7661 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7662 SL, MVT::i32);
7663 EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7664 DAG.getEntryNode(), EnableDenormValue,
7665 BitField);
7668 SDValue Ops[3] = {
7669 NegDivScale0,
7670 EnableDenorm.getValue(0),
7671 EnableDenorm.getValue(1)
7674 NegDivScale0 = DAG.getMergeValues(Ops, SL);
7677 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7678 ApproxRcp, One, NegDivScale0);
7680 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7681 ApproxRcp, Fma0);
7683 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7684 Fma1, Fma1);
7686 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7687 NumeratorScaled, Mul);
7689 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7691 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7692 NumeratorScaled, Fma3);
7694 if (!Subtarget->hasFP32Denormals()) {
7696 SDValue DisableDenorm;
7697 if (Subtarget->hasDenormModeInst()) {
7698 const SDValue DisableDenormValue =
7699 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
7701 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
7702 Fma4.getValue(1), DisableDenormValue,
7703 Fma4.getValue(2));
7704 } else {
7705 const SDValue DisableDenormValue =
7706 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7708 DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7709 Fma4.getValue(1), DisableDenormValue,
7710 BitField, Fma4.getValue(2));
7713 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7714 DisableDenorm, DAG.getRoot());
7715 DAG.setRoot(OutputChain);
7718 SDValue Scale = NumeratorScaled.getValue(1);
7719 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7720 Fma4, Fma1, Fma3, Scale);
7722 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7725 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7726 if (DAG.getTarget().Options.UnsafeFPMath)
7727 return lowerFastUnsafeFDIV(Op, DAG);
7729 SDLoc SL(Op);
7730 SDValue X = Op.getOperand(0);
7731 SDValue Y = Op.getOperand(1);
7733 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7735 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7737 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7739 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7741 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7743 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7745 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7747 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7749 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7751 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7752 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7754 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7755 NegDivScale0, Mul, DivScale1);
7757 SDValue Scale;
7759 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7760 // Workaround a hardware bug on SI where the condition output from div_scale
7761 // is not usable.
7763 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7765 // Figure out if the scale to use for div_fmas.
7766 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7767 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7768 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7769 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7771 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7772 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7774 SDValue Scale0Hi
7775 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7776 SDValue Scale1Hi
7777 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7779 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7780 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7781 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7782 } else {
7783 Scale = DivScale1.getValue(1);
7786 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7787 Fma4, Fma3, Mul, Scale);
7789 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7792 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7793 EVT VT = Op.getValueType();
7795 if (VT == MVT::f32)
7796 return LowerFDIV32(Op, DAG);
7798 if (VT == MVT::f64)
7799 return LowerFDIV64(Op, DAG);
7801 if (VT == MVT::f16)
7802 return LowerFDIV16(Op, DAG);
7804 llvm_unreachable("Unexpected type for fdiv");
7807 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7808 SDLoc DL(Op);
7809 StoreSDNode *Store = cast<StoreSDNode>(Op);
7810 EVT VT = Store->getMemoryVT();
7812 if (VT == MVT::i1) {
7813 return DAG.getTruncStore(Store->getChain(), DL,
7814 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7815 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7818 assert(VT.isVector() &&
7819 Store->getValue().getValueType().getScalarType() == MVT::i32);
7821 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7822 VT, *Store->getMemOperand())) {
7823 return expandUnalignedStore(Store, DAG);
7826 unsigned AS = Store->getAddressSpace();
7827 if (Subtarget->hasLDSMisalignedBug() &&
7828 AS == AMDGPUAS::FLAT_ADDRESS &&
7829 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7830 return SplitVectorStore(Op, DAG);
7833 MachineFunction &MF = DAG.getMachineFunction();
7834 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7835 // If there is a possibilty that flat instruction access scratch memory
7836 // then we need to use the same legalization rules we use for private.
7837 if (AS == AMDGPUAS::FLAT_ADDRESS)
7838 AS = MFI->hasFlatScratchInit() ?
7839 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7841 unsigned NumElements = VT.getVectorNumElements();
7842 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7843 AS == AMDGPUAS::FLAT_ADDRESS) {
7844 if (NumElements > 4)
7845 return SplitVectorStore(Op, DAG);
7846 // v3 stores not supported on SI.
7847 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7848 return SplitVectorStore(Op, DAG);
7849 return SDValue();
7850 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7851 switch (Subtarget->getMaxPrivateElementSize()) {
7852 case 4:
7853 return scalarizeVectorStore(Store, DAG);
7854 case 8:
7855 if (NumElements > 2)
7856 return SplitVectorStore(Op, DAG);
7857 return SDValue();
7858 case 16:
7859 if (NumElements > 4 || NumElements == 3)
7860 return SplitVectorStore(Op, DAG);
7861 return SDValue();
7862 default:
7863 llvm_unreachable("unsupported private_element_size");
7865 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7866 // Use ds_write_b128 if possible.
7867 if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7868 VT.getStoreSize() == 16 && NumElements != 3)
7869 return SDValue();
7871 if (NumElements > 2)
7872 return SplitVectorStore(Op, DAG);
7874 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7875 // address is negative, then the instruction is incorrectly treated as
7876 // out-of-bounds even if base + offsets is in bounds. Split vectorized
7877 // stores here to avoid emitting ds_write2_b32. We may re-combine the
7878 // store later in the SILoadStoreOptimizer.
7879 if (!Subtarget->hasUsableDSOffset() &&
7880 NumElements == 2 && VT.getStoreSize() == 8 &&
7881 Store->getAlignment() < 8) {
7882 return SplitVectorStore(Op, DAG);
7885 return SDValue();
7886 } else {
7887 llvm_unreachable("unhandled address space");
7891 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7892 SDLoc DL(Op);
7893 EVT VT = Op.getValueType();
7894 SDValue Arg = Op.getOperand(0);
7895 SDValue TrigVal;
7897 // TODO: Should this propagate fast-math-flags?
7899 SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7901 if (Subtarget->hasTrigReducedRange()) {
7902 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7903 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7904 } else {
7905 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7908 switch (Op.getOpcode()) {
7909 case ISD::FCOS:
7910 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7911 case ISD::FSIN:
7912 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7913 default:
7914 llvm_unreachable("Wrong trig opcode");
7918 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7919 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
7920 assert(AtomicNode->isCompareAndSwap());
7921 unsigned AS = AtomicNode->getAddressSpace();
7923 // No custom lowering required for local address space
7924 if (!isFlatGlobalAddrSpace(AS))
7925 return Op;
7927 // Non-local address space requires custom lowering for atomic compare
7928 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
7929 SDLoc DL(Op);
7930 SDValue ChainIn = Op.getOperand(0);
7931 SDValue Addr = Op.getOperand(1);
7932 SDValue Old = Op.getOperand(2);
7933 SDValue New = Op.getOperand(3);
7934 EVT VT = Op.getValueType();
7935 MVT SimpleVT = VT.getSimpleVT();
7936 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
7938 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
7939 SDValue Ops[] = { ChainIn, Addr, NewOld };
7941 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
7942 Ops, VT, AtomicNode->getMemOperand());
7945 //===----------------------------------------------------------------------===//
7946 // Custom DAG optimizations
7947 //===----------------------------------------------------------------------===//
7949 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
7950 DAGCombinerInfo &DCI) const {
7951 EVT VT = N->getValueType(0);
7952 EVT ScalarVT = VT.getScalarType();
7953 if (ScalarVT != MVT::f32)
7954 return SDValue();
7956 SelectionDAG &DAG = DCI.DAG;
7957 SDLoc DL(N);
7959 SDValue Src = N->getOperand(0);
7960 EVT SrcVT = Src.getValueType();
7962 // TODO: We could try to match extracting the higher bytes, which would be
7963 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
7964 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
7965 // about in practice.
7966 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
7967 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
7968 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
7969 DCI.AddToWorklist(Cvt.getNode());
7970 return Cvt;
7974 return SDValue();
7977 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
7979 // This is a variant of
7980 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
7982 // The normal DAG combiner will do this, but only if the add has one use since
7983 // that would increase the number of instructions.
7985 // This prevents us from seeing a constant offset that can be folded into a
7986 // memory instruction's addressing mode. If we know the resulting add offset of
7987 // a pointer can be folded into an addressing offset, we can replace the pointer
7988 // operand with the add of new constant offset. This eliminates one of the uses,
7989 // and may allow the remaining use to also be simplified.
7991 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
7992 unsigned AddrSpace,
7993 EVT MemVT,
7994 DAGCombinerInfo &DCI) const {
7995 SDValue N0 = N->getOperand(0);
7996 SDValue N1 = N->getOperand(1);
7998 // We only do this to handle cases where it's profitable when there are
7999 // multiple uses of the add, so defer to the standard combine.
8000 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8001 N0->hasOneUse())
8002 return SDValue();
8004 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8005 if (!CN1)
8006 return SDValue();
8008 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8009 if (!CAdd)
8010 return SDValue();
8012 // If the resulting offset is too large, we can't fold it into the addressing
8013 // mode offset.
8014 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8015 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8017 AddrMode AM;
8018 AM.HasBaseReg = true;
8019 AM.BaseOffs = Offset.getSExtValue();
8020 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8021 return SDValue();
8023 SelectionDAG &DAG = DCI.DAG;
8024 SDLoc SL(N);
8025 EVT VT = N->getValueType(0);
8027 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8028 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8030 SDNodeFlags Flags;
8031 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8032 (N0.getOpcode() == ISD::OR ||
8033 N0->getFlags().hasNoUnsignedWrap()));
8035 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8038 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8039 DAGCombinerInfo &DCI) const {
8040 SDValue Ptr = N->getBasePtr();
8041 SelectionDAG &DAG = DCI.DAG;
8042 SDLoc SL(N);
8044 // TODO: We could also do this for multiplies.
8045 if (Ptr.getOpcode() == ISD::SHL) {
8046 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8047 N->getMemoryVT(), DCI);
8048 if (NewPtr) {
8049 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8051 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8052 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8056 return SDValue();
8059 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8060 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8061 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8062 (Opc == ISD::XOR && Val == 0);
8065 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8066 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8067 // integer combine opportunities since most 64-bit operations are decomposed
8068 // this way. TODO: We won't want this for SALU especially if it is an inline
8069 // immediate.
8070 SDValue SITargetLowering::splitBinaryBitConstantOp(
8071 DAGCombinerInfo &DCI,
8072 const SDLoc &SL,
8073 unsigned Opc, SDValue LHS,
8074 const ConstantSDNode *CRHS) const {
8075 uint64_t Val = CRHS->getZExtValue();
8076 uint32_t ValLo = Lo_32(Val);
8077 uint32_t ValHi = Hi_32(Val);
8078 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8080 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8081 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8082 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8083 // If we need to materialize a 64-bit immediate, it will be split up later
8084 // anyway. Avoid creating the harder to understand 64-bit immediate
8085 // materialization.
8086 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8089 return SDValue();
8092 // Returns true if argument is a boolean value which is not serialized into
8093 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8094 static bool isBoolSGPR(SDValue V) {
8095 if (V.getValueType() != MVT::i1)
8096 return false;
8097 switch (V.getOpcode()) {
8098 default: break;
8099 case ISD::SETCC:
8100 case ISD::AND:
8101 case ISD::OR:
8102 case ISD::XOR:
8103 case AMDGPUISD::FP_CLASS:
8104 return true;
8106 return false;
8109 // If a constant has all zeroes or all ones within each byte return it.
8110 // Otherwise return 0.
8111 static uint32_t getConstantPermuteMask(uint32_t C) {
8112 // 0xff for any zero byte in the mask
8113 uint32_t ZeroByteMask = 0;
8114 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8115 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8116 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8117 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8118 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8119 if ((NonZeroByteMask & C) != NonZeroByteMask)
8120 return 0; // Partial bytes selected.
8121 return C;
8124 // Check if a node selects whole bytes from its operand 0 starting at a byte
8125 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8126 // or -1 if not succeeded.
8127 // Note byte select encoding:
8128 // value 0-3 selects corresponding source byte;
8129 // value 0xc selects zero;
8130 // value 0xff selects 0xff.
8131 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8132 assert(V.getValueSizeInBits() == 32);
8134 if (V.getNumOperands() != 2)
8135 return ~0;
8137 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8138 if (!N1)
8139 return ~0;
8141 uint32_t C = N1->getZExtValue();
8143 switch (V.getOpcode()) {
8144 default:
8145 break;
8146 case ISD::AND:
8147 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8148 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8150 break;
8152 case ISD::OR:
8153 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8154 return (0x03020100 & ~ConstMask) | ConstMask;
8156 break;
8158 case ISD::SHL:
8159 if (C % 8)
8160 return ~0;
8162 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8164 case ISD::SRL:
8165 if (C % 8)
8166 return ~0;
8168 return uint32_t(0x0c0c0c0c03020100ull >> C);
8171 return ~0;
8174 SDValue SITargetLowering::performAndCombine(SDNode *N,
8175 DAGCombinerInfo &DCI) const {
8176 if (DCI.isBeforeLegalize())
8177 return SDValue();
8179 SelectionDAG &DAG = DCI.DAG;
8180 EVT VT = N->getValueType(0);
8181 SDValue LHS = N->getOperand(0);
8182 SDValue RHS = N->getOperand(1);
8185 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8186 if (VT == MVT::i64 && CRHS) {
8187 if (SDValue Split
8188 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8189 return Split;
8192 if (CRHS && VT == MVT::i32) {
8193 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8194 // nb = number of trailing zeroes in mask
8195 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8196 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8197 uint64_t Mask = CRHS->getZExtValue();
8198 unsigned Bits = countPopulation(Mask);
8199 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8200 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8201 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8202 unsigned Shift = CShift->getZExtValue();
8203 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8204 unsigned Offset = NB + Shift;
8205 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8206 SDLoc SL(N);
8207 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8208 LHS->getOperand(0),
8209 DAG.getConstant(Offset, SL, MVT::i32),
8210 DAG.getConstant(Bits, SL, MVT::i32));
8211 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8212 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8213 DAG.getValueType(NarrowVT));
8214 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8215 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8216 return Shl;
8221 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8222 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8223 isa<ConstantSDNode>(LHS.getOperand(2))) {
8224 uint32_t Sel = getConstantPermuteMask(Mask);
8225 if (!Sel)
8226 return SDValue();
8228 // Select 0xc for all zero bytes
8229 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8230 SDLoc DL(N);
8231 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8232 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8236 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8237 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8238 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8239 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8240 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8242 SDValue X = LHS.getOperand(0);
8243 SDValue Y = RHS.getOperand(0);
8244 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8245 return SDValue();
8247 if (LCC == ISD::SETO) {
8248 if (X != LHS.getOperand(1))
8249 return SDValue();
8251 if (RCC == ISD::SETUNE) {
8252 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8253 if (!C1 || !C1->isInfinity() || C1->isNegative())
8254 return SDValue();
8256 const uint32_t Mask = SIInstrFlags::N_NORMAL |
8257 SIInstrFlags::N_SUBNORMAL |
8258 SIInstrFlags::N_ZERO |
8259 SIInstrFlags::P_ZERO |
8260 SIInstrFlags::P_SUBNORMAL |
8261 SIInstrFlags::P_NORMAL;
8263 static_assert(((~(SIInstrFlags::S_NAN |
8264 SIInstrFlags::Q_NAN |
8265 SIInstrFlags::N_INFINITY |
8266 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8267 "mask not equal");
8269 SDLoc DL(N);
8270 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8271 X, DAG.getConstant(Mask, DL, MVT::i32));
8276 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8277 std::swap(LHS, RHS);
8279 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8280 RHS.hasOneUse()) {
8281 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8282 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8283 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8284 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8285 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8286 (RHS.getOperand(0) == LHS.getOperand(0) &&
8287 LHS.getOperand(0) == LHS.getOperand(1))) {
8288 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8289 unsigned NewMask = LCC == ISD::SETO ?
8290 Mask->getZExtValue() & ~OrdMask :
8291 Mask->getZExtValue() & OrdMask;
8293 SDLoc DL(N);
8294 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8295 DAG.getConstant(NewMask, DL, MVT::i32));
8299 if (VT == MVT::i32 &&
8300 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8301 // and x, (sext cc from i1) => select cc, x, 0
8302 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8303 std::swap(LHS, RHS);
8304 if (isBoolSGPR(RHS.getOperand(0)))
8305 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8306 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8309 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8310 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8311 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8312 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8313 uint32_t LHSMask = getPermuteMask(DAG, LHS);
8314 uint32_t RHSMask = getPermuteMask(DAG, RHS);
8315 if (LHSMask != ~0u && RHSMask != ~0u) {
8316 // Canonicalize the expression in an attempt to have fewer unique masks
8317 // and therefore fewer registers used to hold the masks.
8318 if (LHSMask > RHSMask) {
8319 std::swap(LHSMask, RHSMask);
8320 std::swap(LHS, RHS);
8323 // Select 0xc for each lane used from source operand. Zero has 0xc mask
8324 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8325 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8326 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8328 // Check of we need to combine values from two sources within a byte.
8329 if (!(LHSUsedLanes & RHSUsedLanes) &&
8330 // If we select high and lower word keep it for SDWA.
8331 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8332 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8333 // Each byte in each mask is either selector mask 0-3, or has higher
8334 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8335 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8336 // mask which is not 0xff wins. By anding both masks we have a correct
8337 // result except that 0x0c shall be corrected to give 0x0c only.
8338 uint32_t Mask = LHSMask & RHSMask;
8339 for (unsigned I = 0; I < 32; I += 8) {
8340 uint32_t ByteSel = 0xff << I;
8341 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8342 Mask &= (0x0c << I) & 0xffffffff;
8345 // Add 4 to each active LHS lane. It will not affect any existing 0xff
8346 // or 0x0c.
8347 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8348 SDLoc DL(N);
8350 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8351 LHS.getOperand(0), RHS.getOperand(0),
8352 DAG.getConstant(Sel, DL, MVT::i32));
8357 return SDValue();
8360 SDValue SITargetLowering::performOrCombine(SDNode *N,
8361 DAGCombinerInfo &DCI) const {
8362 SelectionDAG &DAG = DCI.DAG;
8363 SDValue LHS = N->getOperand(0);
8364 SDValue RHS = N->getOperand(1);
8366 EVT VT = N->getValueType(0);
8367 if (VT == MVT::i1) {
8368 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8369 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8370 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8371 SDValue Src = LHS.getOperand(0);
8372 if (Src != RHS.getOperand(0))
8373 return SDValue();
8375 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8376 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8377 if (!CLHS || !CRHS)
8378 return SDValue();
8380 // Only 10 bits are used.
8381 static const uint32_t MaxMask = 0x3ff;
8383 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8384 SDLoc DL(N);
8385 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8386 Src, DAG.getConstant(NewMask, DL, MVT::i32));
8389 return SDValue();
8392 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8393 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8394 LHS.getOpcode() == AMDGPUISD::PERM &&
8395 isa<ConstantSDNode>(LHS.getOperand(2))) {
8396 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8397 if (!Sel)
8398 return SDValue();
8400 Sel |= LHS.getConstantOperandVal(2);
8401 SDLoc DL(N);
8402 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8403 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8406 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8407 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8408 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8409 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8410 uint32_t LHSMask = getPermuteMask(DAG, LHS);
8411 uint32_t RHSMask = getPermuteMask(DAG, RHS);
8412 if (LHSMask != ~0u && RHSMask != ~0u) {
8413 // Canonicalize the expression in an attempt to have fewer unique masks
8414 // and therefore fewer registers used to hold the masks.
8415 if (LHSMask > RHSMask) {
8416 std::swap(LHSMask, RHSMask);
8417 std::swap(LHS, RHS);
8420 // Select 0xc for each lane used from source operand. Zero has 0xc mask
8421 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8422 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8423 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8425 // Check of we need to combine values from two sources within a byte.
8426 if (!(LHSUsedLanes & RHSUsedLanes) &&
8427 // If we select high and lower word keep it for SDWA.
8428 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8429 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8430 // Kill zero bytes selected by other mask. Zero value is 0xc.
8431 LHSMask &= ~RHSUsedLanes;
8432 RHSMask &= ~LHSUsedLanes;
8433 // Add 4 to each active LHS lane
8434 LHSMask |= LHSUsedLanes & 0x04040404;
8435 // Combine masks
8436 uint32_t Sel = LHSMask | RHSMask;
8437 SDLoc DL(N);
8439 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8440 LHS.getOperand(0), RHS.getOperand(0),
8441 DAG.getConstant(Sel, DL, MVT::i32));
8446 if (VT != MVT::i64)
8447 return SDValue();
8449 // TODO: This could be a generic combine with a predicate for extracting the
8450 // high half of an integer being free.
8452 // (or i64:x, (zero_extend i32:y)) ->
8453 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8454 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8455 RHS.getOpcode() != ISD::ZERO_EXTEND)
8456 std::swap(LHS, RHS);
8458 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8459 SDValue ExtSrc = RHS.getOperand(0);
8460 EVT SrcVT = ExtSrc.getValueType();
8461 if (SrcVT == MVT::i32) {
8462 SDLoc SL(N);
8463 SDValue LowLHS, HiBits;
8464 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8465 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8467 DCI.AddToWorklist(LowOr.getNode());
8468 DCI.AddToWorklist(HiBits.getNode());
8470 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8471 LowOr, HiBits);
8472 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8476 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8477 if (CRHS) {
8478 if (SDValue Split
8479 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8480 return Split;
8483 return SDValue();
8486 SDValue SITargetLowering::performXorCombine(SDNode *N,
8487 DAGCombinerInfo &DCI) const {
8488 EVT VT = N->getValueType(0);
8489 if (VT != MVT::i64)
8490 return SDValue();
8492 SDValue LHS = N->getOperand(0);
8493 SDValue RHS = N->getOperand(1);
8495 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8496 if (CRHS) {
8497 if (SDValue Split
8498 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8499 return Split;
8502 return SDValue();
8505 // Instructions that will be lowered with a final instruction that zeros the
8506 // high result bits.
8507 // XXX - probably only need to list legal operations.
8508 static bool fp16SrcZerosHighBits(unsigned Opc) {
8509 switch (Opc) {
8510 case ISD::FADD:
8511 case ISD::FSUB:
8512 case ISD::FMUL:
8513 case ISD::FDIV:
8514 case ISD::FREM:
8515 case ISD::FMA:
8516 case ISD::FMAD:
8517 case ISD::FCANONICALIZE:
8518 case ISD::FP_ROUND:
8519 case ISD::UINT_TO_FP:
8520 case ISD::SINT_TO_FP:
8521 case ISD::FABS:
8522 // Fabs is lowered to a bit operation, but it's an and which will clear the
8523 // high bits anyway.
8524 case ISD::FSQRT:
8525 case ISD::FSIN:
8526 case ISD::FCOS:
8527 case ISD::FPOWI:
8528 case ISD::FPOW:
8529 case ISD::FLOG:
8530 case ISD::FLOG2:
8531 case ISD::FLOG10:
8532 case ISD::FEXP:
8533 case ISD::FEXP2:
8534 case ISD::FCEIL:
8535 case ISD::FTRUNC:
8536 case ISD::FRINT:
8537 case ISD::FNEARBYINT:
8538 case ISD::FROUND:
8539 case ISD::FFLOOR:
8540 case ISD::FMINNUM:
8541 case ISD::FMAXNUM:
8542 case AMDGPUISD::FRACT:
8543 case AMDGPUISD::CLAMP:
8544 case AMDGPUISD::COS_HW:
8545 case AMDGPUISD::SIN_HW:
8546 case AMDGPUISD::FMIN3:
8547 case AMDGPUISD::FMAX3:
8548 case AMDGPUISD::FMED3:
8549 case AMDGPUISD::FMAD_FTZ:
8550 case AMDGPUISD::RCP:
8551 case AMDGPUISD::RSQ:
8552 case AMDGPUISD::RCP_IFLAG:
8553 case AMDGPUISD::LDEXP:
8554 return true;
8555 default:
8556 // fcopysign, select and others may be lowered to 32-bit bit operations
8557 // which don't zero the high bits.
8558 return false;
8562 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8563 DAGCombinerInfo &DCI) const {
8564 if (!Subtarget->has16BitInsts() ||
8565 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8566 return SDValue();
8568 EVT VT = N->getValueType(0);
8569 if (VT != MVT::i32)
8570 return SDValue();
8572 SDValue Src = N->getOperand(0);
8573 if (Src.getValueType() != MVT::i16)
8574 return SDValue();
8576 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8577 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8578 if (Src.getOpcode() == ISD::BITCAST) {
8579 SDValue BCSrc = Src.getOperand(0);
8580 if (BCSrc.getValueType() == MVT::f16 &&
8581 fp16SrcZerosHighBits(BCSrc.getOpcode()))
8582 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8585 return SDValue();
8588 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8589 DAGCombinerInfo &DCI)
8590 const {
8591 SDValue Src = N->getOperand(0);
8592 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8594 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8595 VTSign->getVT() == MVT::i8) ||
8596 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8597 VTSign->getVT() == MVT::i16)) &&
8598 Src.hasOneUse()) {
8599 auto *M = cast<MemSDNode>(Src);
8600 SDValue Ops[] = {
8601 Src.getOperand(0), // Chain
8602 Src.getOperand(1), // rsrc
8603 Src.getOperand(2), // vindex
8604 Src.getOperand(3), // voffset
8605 Src.getOperand(4), // soffset
8606 Src.getOperand(5), // offset
8607 Src.getOperand(6),
8608 Src.getOperand(7)
8610 // replace with BUFFER_LOAD_BYTE/SHORT
8611 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8612 Src.getOperand(0).getValueType());
8613 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8614 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8615 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8616 ResList,
8617 Ops, M->getMemoryVT(),
8618 M->getMemOperand());
8619 return DCI.DAG.getMergeValues({BufferLoadSignExt,
8620 BufferLoadSignExt.getValue(1)}, SDLoc(N));
8622 return SDValue();
8625 SDValue SITargetLowering::performClassCombine(SDNode *N,
8626 DAGCombinerInfo &DCI) const {
8627 SelectionDAG &DAG = DCI.DAG;
8628 SDValue Mask = N->getOperand(1);
8630 // fp_class x, 0 -> false
8631 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8632 if (CMask->isNullValue())
8633 return DAG.getConstant(0, SDLoc(N), MVT::i1);
8636 if (N->getOperand(0).isUndef())
8637 return DAG.getUNDEF(MVT::i1);
8639 return SDValue();
8642 SDValue SITargetLowering::performRcpCombine(SDNode *N,
8643 DAGCombinerInfo &DCI) const {
8644 EVT VT = N->getValueType(0);
8645 SDValue N0 = N->getOperand(0);
8647 if (N0.isUndef())
8648 return N0;
8650 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8651 N0.getOpcode() == ISD::SINT_TO_FP)) {
8652 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8653 N->getFlags());
8656 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8659 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8660 unsigned MaxDepth) const {
8661 unsigned Opcode = Op.getOpcode();
8662 if (Opcode == ISD::FCANONICALIZE)
8663 return true;
8665 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8666 auto F = CFP->getValueAPF();
8667 if (F.isNaN() && F.isSignaling())
8668 return false;
8669 return !F.isDenormal() || denormalsEnabledForType(Op.getValueType());
8672 // If source is a result of another standard FP operation it is already in
8673 // canonical form.
8674 if (MaxDepth == 0)
8675 return false;
8677 switch (Opcode) {
8678 // These will flush denorms if required.
8679 case ISD::FADD:
8680 case ISD::FSUB:
8681 case ISD::FMUL:
8682 case ISD::FCEIL:
8683 case ISD::FFLOOR:
8684 case ISD::FMA:
8685 case ISD::FMAD:
8686 case ISD::FSQRT:
8687 case ISD::FDIV:
8688 case ISD::FREM:
8689 case ISD::FP_ROUND:
8690 case ISD::FP_EXTEND:
8691 case AMDGPUISD::FMUL_LEGACY:
8692 case AMDGPUISD::FMAD_FTZ:
8693 case AMDGPUISD::RCP:
8694 case AMDGPUISD::RSQ:
8695 case AMDGPUISD::RSQ_CLAMP:
8696 case AMDGPUISD::RCP_LEGACY:
8697 case AMDGPUISD::RSQ_LEGACY:
8698 case AMDGPUISD::RCP_IFLAG:
8699 case AMDGPUISD::TRIG_PREOP:
8700 case AMDGPUISD::DIV_SCALE:
8701 case AMDGPUISD::DIV_FMAS:
8702 case AMDGPUISD::DIV_FIXUP:
8703 case AMDGPUISD::FRACT:
8704 case AMDGPUISD::LDEXP:
8705 case AMDGPUISD::CVT_PKRTZ_F16_F32:
8706 case AMDGPUISD::CVT_F32_UBYTE0:
8707 case AMDGPUISD::CVT_F32_UBYTE1:
8708 case AMDGPUISD::CVT_F32_UBYTE2:
8709 case AMDGPUISD::CVT_F32_UBYTE3:
8710 return true;
8712 // It can/will be lowered or combined as a bit operation.
8713 // Need to check their input recursively to handle.
8714 case ISD::FNEG:
8715 case ISD::FABS:
8716 case ISD::FCOPYSIGN:
8717 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8719 case ISD::FSIN:
8720 case ISD::FCOS:
8721 case ISD::FSINCOS:
8722 return Op.getValueType().getScalarType() != MVT::f16;
8724 case ISD::FMINNUM:
8725 case ISD::FMAXNUM:
8726 case ISD::FMINNUM_IEEE:
8727 case ISD::FMAXNUM_IEEE:
8728 case AMDGPUISD::CLAMP:
8729 case AMDGPUISD::FMED3:
8730 case AMDGPUISD::FMAX3:
8731 case AMDGPUISD::FMIN3: {
8732 // FIXME: Shouldn't treat the generic operations different based these.
8733 // However, we aren't really required to flush the result from
8734 // minnum/maxnum..
8736 // snans will be quieted, so we only need to worry about denormals.
8737 if (Subtarget->supportsMinMaxDenormModes() ||
8738 denormalsEnabledForType(Op.getValueType()))
8739 return true;
8741 // Flushing may be required.
8742 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8743 // targets need to check their input recursively.
8745 // FIXME: Does this apply with clamp? It's implemented with max.
8746 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8747 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8748 return false;
8751 return true;
8753 case ISD::SELECT: {
8754 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8755 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8757 case ISD::BUILD_VECTOR: {
8758 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8759 SDValue SrcOp = Op.getOperand(i);
8760 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8761 return false;
8764 return true;
8766 case ISD::EXTRACT_VECTOR_ELT:
8767 case ISD::EXTRACT_SUBVECTOR: {
8768 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8770 case ISD::INSERT_VECTOR_ELT: {
8771 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8772 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8774 case ISD::UNDEF:
8775 // Could be anything.
8776 return false;
8778 case ISD::BITCAST: {
8779 // Hack round the mess we make when legalizing extract_vector_elt
8780 SDValue Src = Op.getOperand(0);
8781 if (Src.getValueType() == MVT::i16 &&
8782 Src.getOpcode() == ISD::TRUNCATE) {
8783 SDValue TruncSrc = Src.getOperand(0);
8784 if (TruncSrc.getValueType() == MVT::i32 &&
8785 TruncSrc.getOpcode() == ISD::BITCAST &&
8786 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8787 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8791 return false;
8793 case ISD::INTRINSIC_WO_CHAIN: {
8794 unsigned IntrinsicID
8795 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8796 // TODO: Handle more intrinsics
8797 switch (IntrinsicID) {
8798 case Intrinsic::amdgcn_cvt_pkrtz:
8799 case Intrinsic::amdgcn_cubeid:
8800 case Intrinsic::amdgcn_frexp_mant:
8801 case Intrinsic::amdgcn_fdot2:
8802 return true;
8803 default:
8804 break;
8807 LLVM_FALLTHROUGH;
8809 default:
8810 return denormalsEnabledForType(Op.getValueType()) &&
8811 DAG.isKnownNeverSNaN(Op);
8814 llvm_unreachable("invalid operation");
8817 // Constant fold canonicalize.
8818 SDValue SITargetLowering::getCanonicalConstantFP(
8819 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8820 // Flush denormals to 0 if not enabled.
8821 if (C.isDenormal() && !denormalsEnabledForType(VT))
8822 return DAG.getConstantFP(0.0, SL, VT);
8824 if (C.isNaN()) {
8825 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8826 if (C.isSignaling()) {
8827 // Quiet a signaling NaN.
8828 // FIXME: Is this supposed to preserve payload bits?
8829 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8832 // Make sure it is the canonical NaN bitpattern.
8834 // TODO: Can we use -1 as the canonical NaN value since it's an inline
8835 // immediate?
8836 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8837 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8840 // Already canonical.
8841 return DAG.getConstantFP(C, SL, VT);
8844 static bool vectorEltWillFoldAway(SDValue Op) {
8845 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8848 SDValue SITargetLowering::performFCanonicalizeCombine(
8849 SDNode *N,
8850 DAGCombinerInfo &DCI) const {
8851 SelectionDAG &DAG = DCI.DAG;
8852 SDValue N0 = N->getOperand(0);
8853 EVT VT = N->getValueType(0);
8855 // fcanonicalize undef -> qnan
8856 if (N0.isUndef()) {
8857 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8858 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8861 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8862 EVT VT = N->getValueType(0);
8863 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8866 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8867 // (fcanonicalize k)
8869 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8871 // TODO: This could be better with wider vectors that will be split to v2f16,
8872 // and to consider uses since there aren't that many packed operations.
8873 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8874 isTypeLegal(MVT::v2f16)) {
8875 SDLoc SL(N);
8876 SDValue NewElts[2];
8877 SDValue Lo = N0.getOperand(0);
8878 SDValue Hi = N0.getOperand(1);
8879 EVT EltVT = Lo.getValueType();
8881 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8882 for (unsigned I = 0; I != 2; ++I) {
8883 SDValue Op = N0.getOperand(I);
8884 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8885 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8886 CFP->getValueAPF());
8887 } else if (Op.isUndef()) {
8888 // Handled below based on what the other operand is.
8889 NewElts[I] = Op;
8890 } else {
8891 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8895 // If one half is undef, and one is constant, perfer a splat vector rather
8896 // than the normal qNaN. If it's a register, prefer 0.0 since that's
8897 // cheaper to use and may be free with a packed operation.
8898 if (NewElts[0].isUndef()) {
8899 if (isa<ConstantFPSDNode>(NewElts[1]))
8900 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8901 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8904 if (NewElts[1].isUndef()) {
8905 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8906 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8909 return DAG.getBuildVector(VT, SL, NewElts);
8913 unsigned SrcOpc = N0.getOpcode();
8915 // If it's free to do so, push canonicalizes further up the source, which may
8916 // find a canonical source.
8918 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
8919 // sNaNs.
8920 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
8921 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
8922 if (CRHS && N0.hasOneUse()) {
8923 SDLoc SL(N);
8924 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
8925 N0.getOperand(0));
8926 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
8927 DCI.AddToWorklist(Canon0.getNode());
8929 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
8933 return isCanonicalized(DAG, N0) ? N0 : SDValue();
8936 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
8937 switch (Opc) {
8938 case ISD::FMAXNUM:
8939 case ISD::FMAXNUM_IEEE:
8940 return AMDGPUISD::FMAX3;
8941 case ISD::SMAX:
8942 return AMDGPUISD::SMAX3;
8943 case ISD::UMAX:
8944 return AMDGPUISD::UMAX3;
8945 case ISD::FMINNUM:
8946 case ISD::FMINNUM_IEEE:
8947 return AMDGPUISD::FMIN3;
8948 case ISD::SMIN:
8949 return AMDGPUISD::SMIN3;
8950 case ISD::UMIN:
8951 return AMDGPUISD::UMIN3;
8952 default:
8953 llvm_unreachable("Not a min/max opcode");
8957 SDValue SITargetLowering::performIntMed3ImmCombine(
8958 SelectionDAG &DAG, const SDLoc &SL,
8959 SDValue Op0, SDValue Op1, bool Signed) const {
8960 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
8961 if (!K1)
8962 return SDValue();
8964 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
8965 if (!K0)
8966 return SDValue();
8968 if (Signed) {
8969 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
8970 return SDValue();
8971 } else {
8972 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
8973 return SDValue();
8976 EVT VT = K0->getValueType(0);
8977 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
8978 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
8979 return DAG.getNode(Med3Opc, SL, VT,
8980 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
8983 // If there isn't a 16-bit med3 operation, convert to 32-bit.
8984 MVT NVT = MVT::i32;
8985 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8987 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
8988 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
8989 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
8991 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
8992 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
8995 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
8996 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
8997 return C;
8999 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9000 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9001 return C;
9004 return nullptr;
9007 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9008 const SDLoc &SL,
9009 SDValue Op0,
9010 SDValue Op1) const {
9011 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9012 if (!K1)
9013 return SDValue();
9015 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9016 if (!K0)
9017 return SDValue();
9019 // Ordered >= (although NaN inputs should have folded away by now).
9020 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
9021 if (Cmp == APFloat::cmpGreaterThan)
9022 return SDValue();
9024 const MachineFunction &MF = DAG.getMachineFunction();
9025 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9027 // TODO: Check IEEE bit enabled?
9028 EVT VT = Op0.getValueType();
9029 if (Info->getMode().DX10Clamp) {
9030 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9031 // hardware fmed3 behavior converting to a min.
9032 // FIXME: Should this be allowing -0.0?
9033 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9034 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9037 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9038 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9039 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9040 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9041 // then give the other result, which is different from med3 with a NaN
9042 // input.
9043 SDValue Var = Op0.getOperand(0);
9044 if (!DAG.isKnownNeverSNaN(Var))
9045 return SDValue();
9047 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9049 if ((!K0->hasOneUse() ||
9050 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9051 (!K1->hasOneUse() ||
9052 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9053 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9054 Var, SDValue(K0, 0), SDValue(K1, 0));
9058 return SDValue();
9061 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9062 DAGCombinerInfo &DCI) const {
9063 SelectionDAG &DAG = DCI.DAG;
9065 EVT VT = N->getValueType(0);
9066 unsigned Opc = N->getOpcode();
9067 SDValue Op0 = N->getOperand(0);
9068 SDValue Op1 = N->getOperand(1);
9070 // Only do this if the inner op has one use since this will just increases
9071 // register pressure for no benefit.
9073 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9074 !VT.isVector() &&
9075 (VT == MVT::i32 || VT == MVT::f32 ||
9076 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9077 // max(max(a, b), c) -> max3(a, b, c)
9078 // min(min(a, b), c) -> min3(a, b, c)
9079 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9080 SDLoc DL(N);
9081 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9083 N->getValueType(0),
9084 Op0.getOperand(0),
9085 Op0.getOperand(1),
9086 Op1);
9089 // Try commuted.
9090 // max(a, max(b, c)) -> max3(a, b, c)
9091 // min(a, min(b, c)) -> min3(a, b, c)
9092 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9093 SDLoc DL(N);
9094 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9096 N->getValueType(0),
9097 Op0,
9098 Op1.getOperand(0),
9099 Op1.getOperand(1));
9103 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9104 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9105 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9106 return Med3;
9109 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9110 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9111 return Med3;
9114 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9115 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9116 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9117 (Opc == AMDGPUISD::FMIN_LEGACY &&
9118 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9119 (VT == MVT::f32 || VT == MVT::f64 ||
9120 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9121 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9122 Op0.hasOneUse()) {
9123 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9124 return Res;
9127 return SDValue();
9130 static bool isClampZeroToOne(SDValue A, SDValue B) {
9131 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9132 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9133 // FIXME: Should this be allowing -0.0?
9134 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9135 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9139 return false;
9142 // FIXME: Should only worry about snans for version with chain.
9143 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9144 DAGCombinerInfo &DCI) const {
9145 EVT VT = N->getValueType(0);
9146 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9147 // NaNs. With a NaN input, the order of the operands may change the result.
9149 SelectionDAG &DAG = DCI.DAG;
9150 SDLoc SL(N);
9152 SDValue Src0 = N->getOperand(0);
9153 SDValue Src1 = N->getOperand(1);
9154 SDValue Src2 = N->getOperand(2);
9156 if (isClampZeroToOne(Src0, Src1)) {
9157 // const_a, const_b, x -> clamp is safe in all cases including signaling
9158 // nans.
9159 // FIXME: Should this be allowing -0.0?
9160 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9163 const MachineFunction &MF = DAG.getMachineFunction();
9164 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9166 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9167 // handling no dx10-clamp?
9168 if (Info->getMode().DX10Clamp) {
9169 // If NaNs is clamped to 0, we are free to reorder the inputs.
9171 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9172 std::swap(Src0, Src1);
9174 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9175 std::swap(Src1, Src2);
9177 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9178 std::swap(Src0, Src1);
9180 if (isClampZeroToOne(Src1, Src2))
9181 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9184 return SDValue();
9187 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9188 DAGCombinerInfo &DCI) const {
9189 SDValue Src0 = N->getOperand(0);
9190 SDValue Src1 = N->getOperand(1);
9191 if (Src0.isUndef() && Src1.isUndef())
9192 return DCI.DAG.getUNDEF(N->getValueType(0));
9193 return SDValue();
9196 SDValue SITargetLowering::performExtractVectorEltCombine(
9197 SDNode *N, DAGCombinerInfo &DCI) const {
9198 SDValue Vec = N->getOperand(0);
9199 SelectionDAG &DAG = DCI.DAG;
9201 EVT VecVT = Vec.getValueType();
9202 EVT EltVT = VecVT.getVectorElementType();
9204 if ((Vec.getOpcode() == ISD::FNEG ||
9205 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9206 SDLoc SL(N);
9207 EVT EltVT = N->getValueType(0);
9208 SDValue Idx = N->getOperand(1);
9209 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9210 Vec.getOperand(0), Idx);
9211 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9214 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9215 // =>
9216 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9217 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9218 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9219 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9220 SDLoc SL(N);
9221 EVT EltVT = N->getValueType(0);
9222 SDValue Idx = N->getOperand(1);
9223 unsigned Opc = Vec.getOpcode();
9225 switch(Opc) {
9226 default:
9227 break;
9228 // TODO: Support other binary operations.
9229 case ISD::FADD:
9230 case ISD::FSUB:
9231 case ISD::FMUL:
9232 case ISD::ADD:
9233 case ISD::UMIN:
9234 case ISD::UMAX:
9235 case ISD::SMIN:
9236 case ISD::SMAX:
9237 case ISD::FMAXNUM:
9238 case ISD::FMINNUM:
9239 case ISD::FMAXNUM_IEEE:
9240 case ISD::FMINNUM_IEEE: {
9241 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9242 Vec.getOperand(0), Idx);
9243 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9244 Vec.getOperand(1), Idx);
9246 DCI.AddToWorklist(Elt0.getNode());
9247 DCI.AddToWorklist(Elt1.getNode());
9248 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9253 unsigned VecSize = VecVT.getSizeInBits();
9254 unsigned EltSize = EltVT.getSizeInBits();
9256 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9257 // This elminates non-constant index and subsequent movrel or scratch access.
9258 // Sub-dword vectors of size 2 dword or less have better implementation.
9259 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9260 // instructions.
9261 if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9262 !isa<ConstantSDNode>(N->getOperand(1))) {
9263 SDLoc SL(N);
9264 SDValue Idx = N->getOperand(1);
9265 EVT IdxVT = Idx.getValueType();
9266 SDValue V;
9267 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9268 SDValue IC = DAG.getConstant(I, SL, IdxVT);
9269 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9270 if (I == 0)
9271 V = Elt;
9272 else
9273 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9275 return V;
9278 if (!DCI.isBeforeLegalize())
9279 return SDValue();
9281 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9282 // elements. This exposes more load reduction opportunities by replacing
9283 // multiple small extract_vector_elements with a single 32-bit extract.
9284 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9285 if (isa<MemSDNode>(Vec) &&
9286 EltSize <= 16 &&
9287 EltVT.isByteSized() &&
9288 VecSize > 32 &&
9289 VecSize % 32 == 0 &&
9290 Idx) {
9291 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9293 unsigned BitIndex = Idx->getZExtValue() * EltSize;
9294 unsigned EltIdx = BitIndex / 32;
9295 unsigned LeftoverBitIdx = BitIndex % 32;
9296 SDLoc SL(N);
9298 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9299 DCI.AddToWorklist(Cast.getNode());
9301 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9302 DAG.getConstant(EltIdx, SL, MVT::i32));
9303 DCI.AddToWorklist(Elt.getNode());
9304 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9305 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9306 DCI.AddToWorklist(Srl.getNode());
9308 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9309 DCI.AddToWorklist(Trunc.getNode());
9310 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9313 return SDValue();
9316 SDValue
9317 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9318 DAGCombinerInfo &DCI) const {
9319 SDValue Vec = N->getOperand(0);
9320 SDValue Idx = N->getOperand(2);
9321 EVT VecVT = Vec.getValueType();
9322 EVT EltVT = VecVT.getVectorElementType();
9323 unsigned VecSize = VecVT.getSizeInBits();
9324 unsigned EltSize = EltVT.getSizeInBits();
9326 // INSERT_VECTOR_ELT (<n x e>, var-idx)
9327 // => BUILD_VECTOR n x select (e, const-idx)
9328 // This elminates non-constant index and subsequent movrel or scratch access.
9329 // Sub-dword vectors of size 2 dword or less have better implementation.
9330 // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9331 // instructions.
9332 if (isa<ConstantSDNode>(Idx) ||
9333 VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9334 return SDValue();
9336 SelectionDAG &DAG = DCI.DAG;
9337 SDLoc SL(N);
9338 SDValue Ins = N->getOperand(1);
9339 EVT IdxVT = Idx.getValueType();
9341 SmallVector<SDValue, 16> Ops;
9342 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9343 SDValue IC = DAG.getConstant(I, SL, IdxVT);
9344 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9345 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9346 Ops.push_back(V);
9349 return DAG.getBuildVector(VecVT, SL, Ops);
9352 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9353 const SDNode *N0,
9354 const SDNode *N1) const {
9355 EVT VT = N0->getValueType(0);
9357 // Only do this if we are not trying to support denormals. v_mad_f32 does not
9358 // support denormals ever.
9359 if (((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
9360 (VT == MVT::f16 && !Subtarget->hasFP16Denormals() &&
9361 getSubtarget()->hasMadF16())) &&
9362 isOperationLegal(ISD::FMAD, VT))
9363 return ISD::FMAD;
9365 const TargetOptions &Options = DAG.getTarget().Options;
9366 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9367 (N0->getFlags().hasAllowContract() &&
9368 N1->getFlags().hasAllowContract())) &&
9369 isFMAFasterThanFMulAndFAdd(VT)) {
9370 return ISD::FMA;
9373 return 0;
9376 // For a reassociatable opcode perform:
9377 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9378 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9379 SelectionDAG &DAG) const {
9380 EVT VT = N->getValueType(0);
9381 if (VT != MVT::i32 && VT != MVT::i64)
9382 return SDValue();
9384 unsigned Opc = N->getOpcode();
9385 SDValue Op0 = N->getOperand(0);
9386 SDValue Op1 = N->getOperand(1);
9388 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9389 return SDValue();
9391 if (Op0->isDivergent())
9392 std::swap(Op0, Op1);
9394 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9395 return SDValue();
9397 SDValue Op2 = Op1.getOperand(1);
9398 Op1 = Op1.getOperand(0);
9399 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9400 return SDValue();
9402 if (Op1->isDivergent())
9403 std::swap(Op1, Op2);
9405 // If either operand is constant this will conflict with
9406 // DAGCombiner::ReassociateOps().
9407 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9408 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9409 return SDValue();
9411 SDLoc SL(N);
9412 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9413 return DAG.getNode(Opc, SL, VT, Add1, Op2);
9416 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9417 EVT VT,
9418 SDValue N0, SDValue N1, SDValue N2,
9419 bool Signed) {
9420 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9421 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9422 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9423 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9426 SDValue SITargetLowering::performAddCombine(SDNode *N,
9427 DAGCombinerInfo &DCI) const {
9428 SelectionDAG &DAG = DCI.DAG;
9429 EVT VT = N->getValueType(0);
9430 SDLoc SL(N);
9431 SDValue LHS = N->getOperand(0);
9432 SDValue RHS = N->getOperand(1);
9434 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9435 && Subtarget->hasMad64_32() &&
9436 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9437 VT.getScalarSizeInBits() <= 64) {
9438 if (LHS.getOpcode() != ISD::MUL)
9439 std::swap(LHS, RHS);
9441 SDValue MulLHS = LHS.getOperand(0);
9442 SDValue MulRHS = LHS.getOperand(1);
9443 SDValue AddRHS = RHS;
9445 // TODO: Maybe restrict if SGPR inputs.
9446 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9447 numBitsUnsigned(MulRHS, DAG) <= 32) {
9448 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9449 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9450 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9451 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9454 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9455 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9456 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9457 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9458 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9461 return SDValue();
9464 if (SDValue V = reassociateScalarOps(N, DAG)) {
9465 return V;
9468 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9469 return SDValue();
9471 // add x, zext (setcc) => addcarry x, 0, setcc
9472 // add x, sext (setcc) => subcarry x, 0, setcc
9473 unsigned Opc = LHS.getOpcode();
9474 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9475 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9476 std::swap(RHS, LHS);
9478 Opc = RHS.getOpcode();
9479 switch (Opc) {
9480 default: break;
9481 case ISD::ZERO_EXTEND:
9482 case ISD::SIGN_EXTEND:
9483 case ISD::ANY_EXTEND: {
9484 auto Cond = RHS.getOperand(0);
9485 if (!isBoolSGPR(Cond))
9486 break;
9487 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9488 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9489 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9490 return DAG.getNode(Opc, SL, VTList, Args);
9492 case ISD::ADDCARRY: {
9493 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9494 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9495 if (!C || C->getZExtValue() != 0) break;
9496 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9497 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9500 return SDValue();
9503 SDValue SITargetLowering::performSubCombine(SDNode *N,
9504 DAGCombinerInfo &DCI) const {
9505 SelectionDAG &DAG = DCI.DAG;
9506 EVT VT = N->getValueType(0);
9508 if (VT != MVT::i32)
9509 return SDValue();
9511 SDLoc SL(N);
9512 SDValue LHS = N->getOperand(0);
9513 SDValue RHS = N->getOperand(1);
9515 if (LHS.getOpcode() == ISD::SUBCARRY) {
9516 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9517 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9518 if (!C || !C->isNullValue())
9519 return SDValue();
9520 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9521 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9523 return SDValue();
9526 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9527 DAGCombinerInfo &DCI) const {
9529 if (N->getValueType(0) != MVT::i32)
9530 return SDValue();
9532 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9533 if (!C || C->getZExtValue() != 0)
9534 return SDValue();
9536 SelectionDAG &DAG = DCI.DAG;
9537 SDValue LHS = N->getOperand(0);
9539 // addcarry (add x, y), 0, cc => addcarry x, y, cc
9540 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9541 unsigned LHSOpc = LHS.getOpcode();
9542 unsigned Opc = N->getOpcode();
9543 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9544 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9545 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9546 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9548 return SDValue();
9551 SDValue SITargetLowering::performFAddCombine(SDNode *N,
9552 DAGCombinerInfo &DCI) const {
9553 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9554 return SDValue();
9556 SelectionDAG &DAG = DCI.DAG;
9557 EVT VT = N->getValueType(0);
9559 SDLoc SL(N);
9560 SDValue LHS = N->getOperand(0);
9561 SDValue RHS = N->getOperand(1);
9563 // These should really be instruction patterns, but writing patterns with
9564 // source modiifiers is a pain.
9566 // fadd (fadd (a, a), b) -> mad 2.0, a, b
9567 if (LHS.getOpcode() == ISD::FADD) {
9568 SDValue A = LHS.getOperand(0);
9569 if (A == LHS.getOperand(1)) {
9570 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9571 if (FusedOp != 0) {
9572 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9573 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9578 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9579 if (RHS.getOpcode() == ISD::FADD) {
9580 SDValue A = RHS.getOperand(0);
9581 if (A == RHS.getOperand(1)) {
9582 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9583 if (FusedOp != 0) {
9584 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9585 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9590 return SDValue();
9593 SDValue SITargetLowering::performFSubCombine(SDNode *N,
9594 DAGCombinerInfo &DCI) const {
9595 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9596 return SDValue();
9598 SelectionDAG &DAG = DCI.DAG;
9599 SDLoc SL(N);
9600 EVT VT = N->getValueType(0);
9601 assert(!VT.isVector());
9603 // Try to get the fneg to fold into the source modifier. This undoes generic
9604 // DAG combines and folds them into the mad.
9606 // Only do this if we are not trying to support denormals. v_mad_f32 does
9607 // not support denormals ever.
9608 SDValue LHS = N->getOperand(0);
9609 SDValue RHS = N->getOperand(1);
9610 if (LHS.getOpcode() == ISD::FADD) {
9611 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9612 SDValue A = LHS.getOperand(0);
9613 if (A == LHS.getOperand(1)) {
9614 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9615 if (FusedOp != 0){
9616 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9617 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9619 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9624 if (RHS.getOpcode() == ISD::FADD) {
9625 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9627 SDValue A = RHS.getOperand(0);
9628 if (A == RHS.getOperand(1)) {
9629 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9630 if (FusedOp != 0){
9631 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9632 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9637 return SDValue();
9640 SDValue SITargetLowering::performFMACombine(SDNode *N,
9641 DAGCombinerInfo &DCI) const {
9642 SelectionDAG &DAG = DCI.DAG;
9643 EVT VT = N->getValueType(0);
9644 SDLoc SL(N);
9646 if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9647 return SDValue();
9649 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9650 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9651 SDValue Op1 = N->getOperand(0);
9652 SDValue Op2 = N->getOperand(1);
9653 SDValue FMA = N->getOperand(2);
9655 if (FMA.getOpcode() != ISD::FMA ||
9656 Op1.getOpcode() != ISD::FP_EXTEND ||
9657 Op2.getOpcode() != ISD::FP_EXTEND)
9658 return SDValue();
9660 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9661 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9662 // is sufficient to allow generaing fdot2.
9663 const TargetOptions &Options = DAG.getTarget().Options;
9664 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9665 (N->getFlags().hasAllowContract() &&
9666 FMA->getFlags().hasAllowContract())) {
9667 Op1 = Op1.getOperand(0);
9668 Op2 = Op2.getOperand(0);
9669 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9670 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9671 return SDValue();
9673 SDValue Vec1 = Op1.getOperand(0);
9674 SDValue Idx1 = Op1.getOperand(1);
9675 SDValue Vec2 = Op2.getOperand(0);
9677 SDValue FMAOp1 = FMA.getOperand(0);
9678 SDValue FMAOp2 = FMA.getOperand(1);
9679 SDValue FMAAcc = FMA.getOperand(2);
9681 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9682 FMAOp2.getOpcode() != ISD::FP_EXTEND)
9683 return SDValue();
9685 FMAOp1 = FMAOp1.getOperand(0);
9686 FMAOp2 = FMAOp2.getOperand(0);
9687 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9688 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9689 return SDValue();
9691 SDValue Vec3 = FMAOp1.getOperand(0);
9692 SDValue Vec4 = FMAOp2.getOperand(0);
9693 SDValue Idx2 = FMAOp1.getOperand(1);
9695 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9696 // Idx1 and Idx2 cannot be the same.
9697 Idx1 == Idx2)
9698 return SDValue();
9700 if (Vec1 == Vec2 || Vec3 == Vec4)
9701 return SDValue();
9703 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9704 return SDValue();
9706 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9707 (Vec1 == Vec4 && Vec2 == Vec3)) {
9708 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9709 DAG.getTargetConstant(0, SL, MVT::i1));
9712 return SDValue();
9715 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9716 DAGCombinerInfo &DCI) const {
9717 SelectionDAG &DAG = DCI.DAG;
9718 SDLoc SL(N);
9720 SDValue LHS = N->getOperand(0);
9721 SDValue RHS = N->getOperand(1);
9722 EVT VT = LHS.getValueType();
9723 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9725 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9726 if (!CRHS) {
9727 CRHS = dyn_cast<ConstantSDNode>(LHS);
9728 if (CRHS) {
9729 std::swap(LHS, RHS);
9730 CC = getSetCCSwappedOperands(CC);
9734 if (CRHS) {
9735 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9736 isBoolSGPR(LHS.getOperand(0))) {
9737 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9738 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9739 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
9740 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
9741 if ((CRHS->isAllOnesValue() &&
9742 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9743 (CRHS->isNullValue() &&
9744 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9745 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9746 DAG.getConstant(-1, SL, MVT::i1));
9747 if ((CRHS->isAllOnesValue() &&
9748 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9749 (CRHS->isNullValue() &&
9750 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9751 return LHS.getOperand(0);
9754 uint64_t CRHSVal = CRHS->getZExtValue();
9755 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9756 LHS.getOpcode() == ISD::SELECT &&
9757 isa<ConstantSDNode>(LHS.getOperand(1)) &&
9758 isa<ConstantSDNode>(LHS.getOperand(2)) &&
9759 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9760 isBoolSGPR(LHS.getOperand(0))) {
9761 // Given CT != FT:
9762 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9763 // setcc (select cc, CT, CF), CF, ne => cc
9764 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9765 // setcc (select cc, CT, CF), CT, eq => cc
9766 uint64_t CT = LHS.getConstantOperandVal(1);
9767 uint64_t CF = LHS.getConstantOperandVal(2);
9769 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9770 (CT == CRHSVal && CC == ISD::SETNE))
9771 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9772 DAG.getConstant(-1, SL, MVT::i1));
9773 if ((CF == CRHSVal && CC == ISD::SETNE) ||
9774 (CT == CRHSVal && CC == ISD::SETEQ))
9775 return LHS.getOperand(0);
9779 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9780 VT != MVT::f16))
9781 return SDValue();
9783 // Match isinf/isfinite pattern
9784 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9785 // (fcmp one (fabs x), inf) -> (fp_class x,
9786 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9787 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9788 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9789 if (!CRHS)
9790 return SDValue();
9792 const APFloat &APF = CRHS->getValueAPF();
9793 if (APF.isInfinity() && !APF.isNegative()) {
9794 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9795 SIInstrFlags::N_INFINITY;
9796 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9797 SIInstrFlags::P_ZERO |
9798 SIInstrFlags::N_NORMAL |
9799 SIInstrFlags::P_NORMAL |
9800 SIInstrFlags::N_SUBNORMAL |
9801 SIInstrFlags::P_SUBNORMAL;
9802 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9803 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9804 DAG.getConstant(Mask, SL, MVT::i32));
9808 return SDValue();
9811 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9812 DAGCombinerInfo &DCI) const {
9813 SelectionDAG &DAG = DCI.DAG;
9814 SDLoc SL(N);
9815 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9817 SDValue Src = N->getOperand(0);
9818 SDValue Srl = N->getOperand(0);
9819 if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9820 Srl = Srl.getOperand(0);
9822 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9823 if (Srl.getOpcode() == ISD::SRL) {
9824 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9825 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9826 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9828 if (const ConstantSDNode *C =
9829 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9830 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9831 EVT(MVT::i32));
9833 unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9834 if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9835 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9836 MVT::f32, Srl);
9841 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9843 KnownBits Known;
9844 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9845 !DCI.isBeforeLegalizeOps());
9846 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9847 if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9848 DCI.CommitTargetLoweringOpt(TLO);
9851 return SDValue();
9854 SDValue SITargetLowering::performClampCombine(SDNode *N,
9855 DAGCombinerInfo &DCI) const {
9856 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9857 if (!CSrc)
9858 return SDValue();
9860 const MachineFunction &MF = DCI.DAG.getMachineFunction();
9861 const APFloat &F = CSrc->getValueAPF();
9862 APFloat Zero = APFloat::getZero(F.getSemantics());
9863 APFloat::cmpResult Cmp0 = F.compare(Zero);
9864 if (Cmp0 == APFloat::cmpLessThan ||
9865 (Cmp0 == APFloat::cmpUnordered &&
9866 MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9867 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9870 APFloat One(F.getSemantics(), "1.0");
9871 APFloat::cmpResult Cmp1 = F.compare(One);
9872 if (Cmp1 == APFloat::cmpGreaterThan)
9873 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9875 return SDValue(CSrc, 0);
9879 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9880 DAGCombinerInfo &DCI) const {
9881 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9882 return SDValue();
9883 switch (N->getOpcode()) {
9884 default:
9885 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9886 case ISD::ADD:
9887 return performAddCombine(N, DCI);
9888 case ISD::SUB:
9889 return performSubCombine(N, DCI);
9890 case ISD::ADDCARRY:
9891 case ISD::SUBCARRY:
9892 return performAddCarrySubCarryCombine(N, DCI);
9893 case ISD::FADD:
9894 return performFAddCombine(N, DCI);
9895 case ISD::FSUB:
9896 return performFSubCombine(N, DCI);
9897 case ISD::SETCC:
9898 return performSetCCCombine(N, DCI);
9899 case ISD::FMAXNUM:
9900 case ISD::FMINNUM:
9901 case ISD::FMAXNUM_IEEE:
9902 case ISD::FMINNUM_IEEE:
9903 case ISD::SMAX:
9904 case ISD::SMIN:
9905 case ISD::UMAX:
9906 case ISD::UMIN:
9907 case AMDGPUISD::FMIN_LEGACY:
9908 case AMDGPUISD::FMAX_LEGACY:
9909 return performMinMaxCombine(N, DCI);
9910 case ISD::FMA:
9911 return performFMACombine(N, DCI);
9912 case ISD::LOAD: {
9913 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
9914 return Widended;
9915 LLVM_FALLTHROUGH;
9917 case ISD::STORE:
9918 case ISD::ATOMIC_LOAD:
9919 case ISD::ATOMIC_STORE:
9920 case ISD::ATOMIC_CMP_SWAP:
9921 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
9922 case ISD::ATOMIC_SWAP:
9923 case ISD::ATOMIC_LOAD_ADD:
9924 case ISD::ATOMIC_LOAD_SUB:
9925 case ISD::ATOMIC_LOAD_AND:
9926 case ISD::ATOMIC_LOAD_OR:
9927 case ISD::ATOMIC_LOAD_XOR:
9928 case ISD::ATOMIC_LOAD_NAND:
9929 case ISD::ATOMIC_LOAD_MIN:
9930 case ISD::ATOMIC_LOAD_MAX:
9931 case ISD::ATOMIC_LOAD_UMIN:
9932 case ISD::ATOMIC_LOAD_UMAX:
9933 case ISD::ATOMIC_LOAD_FADD:
9934 case AMDGPUISD::ATOMIC_INC:
9935 case AMDGPUISD::ATOMIC_DEC:
9936 case AMDGPUISD::ATOMIC_LOAD_FMIN:
9937 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
9938 if (DCI.isBeforeLegalize())
9939 break;
9940 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
9941 case ISD::AND:
9942 return performAndCombine(N, DCI);
9943 case ISD::OR:
9944 return performOrCombine(N, DCI);
9945 case ISD::XOR:
9946 return performXorCombine(N, DCI);
9947 case ISD::ZERO_EXTEND:
9948 return performZeroExtendCombine(N, DCI);
9949 case ISD::SIGN_EXTEND_INREG:
9950 return performSignExtendInRegCombine(N , DCI);
9951 case AMDGPUISD::FP_CLASS:
9952 return performClassCombine(N, DCI);
9953 case ISD::FCANONICALIZE:
9954 return performFCanonicalizeCombine(N, DCI);
9955 case AMDGPUISD::RCP:
9956 return performRcpCombine(N, DCI);
9957 case AMDGPUISD::FRACT:
9958 case AMDGPUISD::RSQ:
9959 case AMDGPUISD::RCP_LEGACY:
9960 case AMDGPUISD::RSQ_LEGACY:
9961 case AMDGPUISD::RCP_IFLAG:
9962 case AMDGPUISD::RSQ_CLAMP:
9963 case AMDGPUISD::LDEXP: {
9964 SDValue Src = N->getOperand(0);
9965 if (Src.isUndef())
9966 return Src;
9967 break;
9969 case ISD::SINT_TO_FP:
9970 case ISD::UINT_TO_FP:
9971 return performUCharToFloatCombine(N, DCI);
9972 case AMDGPUISD::CVT_F32_UBYTE0:
9973 case AMDGPUISD::CVT_F32_UBYTE1:
9974 case AMDGPUISD::CVT_F32_UBYTE2:
9975 case AMDGPUISD::CVT_F32_UBYTE3:
9976 return performCvtF32UByteNCombine(N, DCI);
9977 case AMDGPUISD::FMED3:
9978 return performFMed3Combine(N, DCI);
9979 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9980 return performCvtPkRTZCombine(N, DCI);
9981 case AMDGPUISD::CLAMP:
9982 return performClampCombine(N, DCI);
9983 case ISD::SCALAR_TO_VECTOR: {
9984 SelectionDAG &DAG = DCI.DAG;
9985 EVT VT = N->getValueType(0);
9987 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
9988 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
9989 SDLoc SL(N);
9990 SDValue Src = N->getOperand(0);
9991 EVT EltVT = Src.getValueType();
9992 if (EltVT == MVT::f16)
9993 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
9995 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
9996 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
9999 break;
10001 case ISD::EXTRACT_VECTOR_ELT:
10002 return performExtractVectorEltCombine(N, DCI);
10003 case ISD::INSERT_VECTOR_ELT:
10004 return performInsertVectorEltCombine(N, DCI);
10006 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10009 /// Helper function for adjustWritemask
10010 static unsigned SubIdx2Lane(unsigned Idx) {
10011 switch (Idx) {
10012 default: return 0;
10013 case AMDGPU::sub0: return 0;
10014 case AMDGPU::sub1: return 1;
10015 case AMDGPU::sub2: return 2;
10016 case AMDGPU::sub3: return 3;
10017 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10021 /// Adjust the writemask of MIMG instructions
10022 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10023 SelectionDAG &DAG) const {
10024 unsigned Opcode = Node->getMachineOpcode();
10026 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10027 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10028 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10029 return Node; // not implemented for D16
10031 SDNode *Users[5] = { nullptr };
10032 unsigned Lane = 0;
10033 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10034 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10035 unsigned NewDmask = 0;
10036 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10037 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10038 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10039 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10040 unsigned TFCLane = 0;
10041 bool HasChain = Node->getNumValues() > 1;
10043 if (OldDmask == 0) {
10044 // These are folded out, but on the chance it happens don't assert.
10045 return Node;
10048 unsigned OldBitsSet = countPopulation(OldDmask);
10049 // Work out which is the TFE/LWE lane if that is enabled.
10050 if (UsesTFC) {
10051 TFCLane = OldBitsSet;
10054 // Try to figure out the used register components
10055 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10056 I != E; ++I) {
10058 // Don't look at users of the chain.
10059 if (I.getUse().getResNo() != 0)
10060 continue;
10062 // Abort if we can't understand the usage
10063 if (!I->isMachineOpcode() ||
10064 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10065 return Node;
10067 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10068 // Note that subregs are packed, i.e. Lane==0 is the first bit set
10069 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10070 // set, etc.
10071 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10073 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10074 if (UsesTFC && Lane == TFCLane) {
10075 Users[Lane] = *I;
10076 } else {
10077 // Set which texture component corresponds to the lane.
10078 unsigned Comp;
10079 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10080 Comp = countTrailingZeros(Dmask);
10081 Dmask &= ~(1 << Comp);
10084 // Abort if we have more than one user per component.
10085 if (Users[Lane])
10086 return Node;
10088 Users[Lane] = *I;
10089 NewDmask |= 1 << Comp;
10093 // Don't allow 0 dmask, as hardware assumes one channel enabled.
10094 bool NoChannels = !NewDmask;
10095 if (NoChannels) {
10096 if (!UsesTFC) {
10097 // No uses of the result and not using TFC. Then do nothing.
10098 return Node;
10100 // If the original dmask has one channel - then nothing to do
10101 if (OldBitsSet == 1)
10102 return Node;
10103 // Use an arbitrary dmask - required for the instruction to work
10104 NewDmask = 1;
10106 // Abort if there's no change
10107 if (NewDmask == OldDmask)
10108 return Node;
10110 unsigned BitsSet = countPopulation(NewDmask);
10112 // Check for TFE or LWE - increase the number of channels by one to account
10113 // for the extra return value
10114 // This will need adjustment for D16 if this is also included in
10115 // adjustWriteMask (this function) but at present D16 are excluded.
10116 unsigned NewChannels = BitsSet + UsesTFC;
10118 int NewOpcode =
10119 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10120 assert(NewOpcode != -1 &&
10121 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10122 "failed to find equivalent MIMG op");
10124 // Adjust the writemask in the node
10125 SmallVector<SDValue, 12> Ops;
10126 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10127 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10128 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10130 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10132 MVT ResultVT = NewChannels == 1 ?
10133 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10134 NewChannels == 5 ? 8 : NewChannels);
10135 SDVTList NewVTList = HasChain ?
10136 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10139 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10140 NewVTList, Ops);
10142 if (HasChain) {
10143 // Update chain.
10144 DAG.setNodeMemRefs(NewNode, Node->memoperands());
10145 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10148 if (NewChannels == 1) {
10149 assert(Node->hasNUsesOfValue(1, 0));
10150 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10151 SDLoc(Node), Users[Lane]->getValueType(0),
10152 SDValue(NewNode, 0));
10153 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10154 return nullptr;
10157 // Update the users of the node with the new indices
10158 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10159 SDNode *User = Users[i];
10160 if (!User) {
10161 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10162 // Users[0] is still nullptr because channel 0 doesn't really have a use.
10163 if (i || !NoChannels)
10164 continue;
10165 } else {
10166 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10167 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10170 switch (Idx) {
10171 default: break;
10172 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10173 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10174 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10175 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10179 DAG.RemoveDeadNode(Node);
10180 return nullptr;
10183 static bool isFrameIndexOp(SDValue Op) {
10184 if (Op.getOpcode() == ISD::AssertZext)
10185 Op = Op.getOperand(0);
10187 return isa<FrameIndexSDNode>(Op);
10190 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10191 /// with frame index operands.
10192 /// LLVM assumes that inputs are to these instructions are registers.
10193 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10194 SelectionDAG &DAG) const {
10195 if (Node->getOpcode() == ISD::CopyToReg) {
10196 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10197 SDValue SrcVal = Node->getOperand(2);
10199 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10200 // to try understanding copies to physical registers.
10201 if (SrcVal.getValueType() == MVT::i1 &&
10202 Register::isPhysicalRegister(DestReg->getReg())) {
10203 SDLoc SL(Node);
10204 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10205 SDValue VReg = DAG.getRegister(
10206 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10208 SDNode *Glued = Node->getGluedNode();
10209 SDValue ToVReg
10210 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10211 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10212 SDValue ToResultReg
10213 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10214 VReg, ToVReg.getValue(1));
10215 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10216 DAG.RemoveDeadNode(Node);
10217 return ToResultReg.getNode();
10221 SmallVector<SDValue, 8> Ops;
10222 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10223 if (!isFrameIndexOp(Node->getOperand(i))) {
10224 Ops.push_back(Node->getOperand(i));
10225 continue;
10228 SDLoc DL(Node);
10229 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10230 Node->getOperand(i).getValueType(),
10231 Node->getOperand(i)), 0));
10234 return DAG.UpdateNodeOperands(Node, Ops);
10237 /// Fold the instructions after selecting them.
10238 /// Returns null if users were already updated.
10239 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10240 SelectionDAG &DAG) const {
10241 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10242 unsigned Opcode = Node->getMachineOpcode();
10244 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10245 !TII->isGather4(Opcode)) {
10246 return adjustWritemask(Node, DAG);
10249 if (Opcode == AMDGPU::INSERT_SUBREG ||
10250 Opcode == AMDGPU::REG_SEQUENCE) {
10251 legalizeTargetIndependentNode(Node, DAG);
10252 return Node;
10255 switch (Opcode) {
10256 case AMDGPU::V_DIV_SCALE_F32:
10257 case AMDGPU::V_DIV_SCALE_F64: {
10258 // Satisfy the operand register constraint when one of the inputs is
10259 // undefined. Ordinarily each undef value will have its own implicit_def of
10260 // a vreg, so force these to use a single register.
10261 SDValue Src0 = Node->getOperand(0);
10262 SDValue Src1 = Node->getOperand(1);
10263 SDValue Src2 = Node->getOperand(2);
10265 if ((Src0.isMachineOpcode() &&
10266 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10267 (Src0 == Src1 || Src0 == Src2))
10268 break;
10270 MVT VT = Src0.getValueType().getSimpleVT();
10271 const TargetRegisterClass *RC =
10272 getRegClassFor(VT, Src0.getNode()->isDivergent());
10274 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10275 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10277 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10278 UndefReg, Src0, SDValue());
10280 // src0 must be the same register as src1 or src2, even if the value is
10281 // undefined, so make sure we don't violate this constraint.
10282 if (Src0.isMachineOpcode() &&
10283 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10284 if (Src1.isMachineOpcode() &&
10285 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10286 Src0 = Src1;
10287 else if (Src2.isMachineOpcode() &&
10288 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10289 Src0 = Src2;
10290 else {
10291 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10292 Src0 = UndefReg;
10293 Src1 = UndefReg;
10295 } else
10296 break;
10298 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10299 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10300 Ops.push_back(Node->getOperand(I));
10302 Ops.push_back(ImpDef.getValue(1));
10303 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10305 case AMDGPU::V_PERMLANE16_B32:
10306 case AMDGPU::V_PERMLANEX16_B32: {
10307 ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10308 ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10309 if (!FI->getZExtValue() && !BC->getZExtValue())
10310 break;
10311 SDValue VDstIn = Node->getOperand(6);
10312 if (VDstIn.isMachineOpcode()
10313 && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10314 break;
10315 MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10316 SDLoc(Node), MVT::i32);
10317 SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10318 SDValue(BC, 0), Node->getOperand(3),
10319 Node->getOperand(4), Node->getOperand(5),
10320 SDValue(ImpDef, 0), Node->getOperand(7) };
10321 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10323 default:
10324 break;
10327 return Node;
10330 /// Assign the register class depending on the number of
10331 /// bits set in the writemask
10332 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10333 SDNode *Node) const {
10334 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10336 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10338 if (TII->isVOP3(MI.getOpcode())) {
10339 // Make sure constant bus requirements are respected.
10340 TII->legalizeOperandsVOP3(MRI, MI);
10342 // Prefer VGPRs over AGPRs in mAI instructions where possible.
10343 // This saves a chain-copy of registers and better ballance register
10344 // use between vgpr and agpr as agpr tuples tend to be big.
10345 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10346 unsigned Opc = MI.getOpcode();
10347 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10348 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10349 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10350 if (I == -1)
10351 break;
10352 MachineOperand &Op = MI.getOperand(I);
10353 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10354 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10355 !Register::isVirtualRegister(Op.getReg()) ||
10356 !TRI->isAGPR(MRI, Op.getReg()))
10357 continue;
10358 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10359 if (!Src || !Src->isCopy() ||
10360 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10361 continue;
10362 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10363 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10364 // All uses of agpr64 and agpr32 can also accept vgpr except for
10365 // v_accvgpr_read, but we do not produce agpr reads during selection,
10366 // so no use checks are needed.
10367 MRI.setRegClass(Op.getReg(), NewRC);
10371 return;
10374 // Replace unused atomics with the no return version.
10375 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10376 if (NoRetAtomicOp != -1) {
10377 if (!Node->hasAnyUseOfValue(0)) {
10378 MI.setDesc(TII->get(NoRetAtomicOp));
10379 MI.RemoveOperand(0);
10380 return;
10383 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10384 // instruction, because the return type of these instructions is a vec2 of
10385 // the memory type, so it can be tied to the input operand.
10386 // This means these instructions always have a use, so we need to add a
10387 // special case to check if the atomic has only one extract_subreg use,
10388 // which itself has no uses.
10389 if ((Node->hasNUsesOfValue(1, 0) &&
10390 Node->use_begin()->isMachineOpcode() &&
10391 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10392 !Node->use_begin()->hasAnyUseOfValue(0))) {
10393 Register Def = MI.getOperand(0).getReg();
10395 // Change this into a noret atomic.
10396 MI.setDesc(TII->get(NoRetAtomicOp));
10397 MI.RemoveOperand(0);
10399 // If we only remove the def operand from the atomic instruction, the
10400 // extract_subreg will be left with a use of a vreg without a def.
10401 // So we need to insert an implicit_def to avoid machine verifier
10402 // errors.
10403 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10404 TII->get(AMDGPU::IMPLICIT_DEF), Def);
10406 return;
10410 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10411 uint64_t Val) {
10412 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10413 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10416 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10417 const SDLoc &DL,
10418 SDValue Ptr) const {
10419 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10421 // Build the half of the subregister with the constants before building the
10422 // full 128-bit register. If we are building multiple resource descriptors,
10423 // this will allow CSEing of the 2-component register.
10424 const SDValue Ops0[] = {
10425 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10426 buildSMovImm32(DAG, DL, 0),
10427 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10428 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10429 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10432 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10433 MVT::v2i32, Ops0), 0);
10435 // Combine the constants and the pointer.
10436 const SDValue Ops1[] = {
10437 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
10438 Ptr,
10439 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10440 SubRegHi,
10441 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10444 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10447 /// Return a resource descriptor with the 'Add TID' bit enabled
10448 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10449 /// of the resource descriptor) to create an offset, which is added to
10450 /// the resource pointer.
10451 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10452 SDValue Ptr, uint32_t RsrcDword1,
10453 uint64_t RsrcDword2And3) const {
10454 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10455 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10456 if (RsrcDword1) {
10457 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10458 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10462 SDValue DataLo = buildSMovImm32(DAG, DL,
10463 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10464 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10466 const SDValue Ops[] = {
10467 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
10468 PtrLo,
10469 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10470 PtrHi,
10471 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10472 DataLo,
10473 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10474 DataHi,
10475 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10478 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10481 //===----------------------------------------------------------------------===//
10482 // SI Inline Assembly Support
10483 //===----------------------------------------------------------------------===//
10485 std::pair<unsigned, const TargetRegisterClass *>
10486 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10487 StringRef Constraint,
10488 MVT VT) const {
10489 const TargetRegisterClass *RC = nullptr;
10490 if (Constraint.size() == 1) {
10491 switch (Constraint[0]) {
10492 default:
10493 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10494 case 's':
10495 case 'r':
10496 switch (VT.getSizeInBits()) {
10497 default:
10498 return std::make_pair(0U, nullptr);
10499 case 32:
10500 case 16:
10501 RC = &AMDGPU::SReg_32_XM0RegClass;
10502 break;
10503 case 64:
10504 RC = &AMDGPU::SGPR_64RegClass;
10505 break;
10506 case 96:
10507 RC = &AMDGPU::SReg_96RegClass;
10508 break;
10509 case 128:
10510 RC = &AMDGPU::SReg_128RegClass;
10511 break;
10512 case 160:
10513 RC = &AMDGPU::SReg_160RegClass;
10514 break;
10515 case 256:
10516 RC = &AMDGPU::SReg_256RegClass;
10517 break;
10518 case 512:
10519 RC = &AMDGPU::SReg_512RegClass;
10520 break;
10522 break;
10523 case 'v':
10524 switch (VT.getSizeInBits()) {
10525 default:
10526 return std::make_pair(0U, nullptr);
10527 case 32:
10528 case 16:
10529 RC = &AMDGPU::VGPR_32RegClass;
10530 break;
10531 case 64:
10532 RC = &AMDGPU::VReg_64RegClass;
10533 break;
10534 case 96:
10535 RC = &AMDGPU::VReg_96RegClass;
10536 break;
10537 case 128:
10538 RC = &AMDGPU::VReg_128RegClass;
10539 break;
10540 case 160:
10541 RC = &AMDGPU::VReg_160RegClass;
10542 break;
10543 case 256:
10544 RC = &AMDGPU::VReg_256RegClass;
10545 break;
10546 case 512:
10547 RC = &AMDGPU::VReg_512RegClass;
10548 break;
10550 break;
10551 case 'a':
10552 if (!Subtarget->hasMAIInsts())
10553 break;
10554 switch (VT.getSizeInBits()) {
10555 default:
10556 return std::make_pair(0U, nullptr);
10557 case 32:
10558 case 16:
10559 RC = &AMDGPU::AGPR_32RegClass;
10560 break;
10561 case 64:
10562 RC = &AMDGPU::AReg_64RegClass;
10563 break;
10564 case 128:
10565 RC = &AMDGPU::AReg_128RegClass;
10566 break;
10567 case 512:
10568 RC = &AMDGPU::AReg_512RegClass;
10569 break;
10570 case 1024:
10571 RC = &AMDGPU::AReg_1024RegClass;
10572 // v32 types are not legal but we support them here.
10573 return std::make_pair(0U, RC);
10575 break;
10577 // We actually support i128, i16 and f16 as inline parameters
10578 // even if they are not reported as legal
10579 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10580 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10581 return std::make_pair(0U, RC);
10584 if (Constraint.size() > 1) {
10585 if (Constraint[1] == 'v') {
10586 RC = &AMDGPU::VGPR_32RegClass;
10587 } else if (Constraint[1] == 's') {
10588 RC = &AMDGPU::SGPR_32RegClass;
10589 } else if (Constraint[1] == 'a') {
10590 RC = &AMDGPU::AGPR_32RegClass;
10593 if (RC) {
10594 uint32_t Idx;
10595 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10596 if (!Failed && Idx < RC->getNumRegs())
10597 return std::make_pair(RC->getRegister(Idx), RC);
10600 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10603 SITargetLowering::ConstraintType
10604 SITargetLowering::getConstraintType(StringRef Constraint) const {
10605 if (Constraint.size() == 1) {
10606 switch (Constraint[0]) {
10607 default: break;
10608 case 's':
10609 case 'v':
10610 case 'a':
10611 return C_RegisterClass;
10614 return TargetLowering::getConstraintType(Constraint);
10617 // Figure out which registers should be reserved for stack access. Only after
10618 // the function is legalized do we know all of the non-spill stack objects or if
10619 // calls are present.
10620 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10621 MachineRegisterInfo &MRI = MF.getRegInfo();
10622 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10623 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10624 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10626 if (Info->isEntryFunction()) {
10627 // Callable functions have fixed registers used for stack access.
10628 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10631 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10632 Info->getStackPtrOffsetReg()));
10633 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10634 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10636 // We need to worry about replacing the default register with itself in case
10637 // of MIR testcases missing the MFI.
10638 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10639 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10641 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10642 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10644 if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10645 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10646 Info->getScratchWaveOffsetReg());
10649 Info->limitOccupancy(MF);
10651 if (ST.isWave32() && !MF.empty()) {
10652 // Add VCC_HI def because many instructions marked as imp-use VCC where
10653 // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10654 // having a use of undef.
10656 const SIInstrInfo *TII = ST.getInstrInfo();
10657 DebugLoc DL;
10659 MachineBasicBlock &MBB = MF.front();
10660 MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10661 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10663 for (auto &MBB : MF) {
10664 for (auto &MI : MBB) {
10665 TII->fixImplicitOperands(MI);
10670 TargetLoweringBase::finalizeLowering(MF);
10673 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10674 KnownBits &Known,
10675 const APInt &DemandedElts,
10676 const SelectionDAG &DAG,
10677 unsigned Depth) const {
10678 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10679 DAG, Depth);
10681 // Set the high bits to zero based on the maximum allowed scratch size per
10682 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10683 // calculation won't overflow, so assume the sign bit is never set.
10684 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10687 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10688 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10689 const Align CacheLineAlign = Align(64);
10691 // Pre-GFX10 target did not benefit from loop alignment
10692 if (!ML || DisableLoopAlignment ||
10693 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10694 getSubtarget()->hasInstFwdPrefetchBug())
10695 return PrefAlign;
10697 // On GFX10 I$ is 4 x 64 bytes cache lines.
10698 // By default prefetcher keeps one cache line behind and reads two ahead.
10699 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10700 // behind and one ahead.
10701 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10702 // If loop fits 64 bytes it always spans no more than two cache lines and
10703 // does not need an alignment.
10704 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10705 // Else if loop is less or equal 192 bytes we need two lines behind.
10707 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10708 const MachineBasicBlock *Header = ML->getHeader();
10709 if (Header->getAlignment() != PrefAlign)
10710 return Header->getAlignment(); // Already processed.
10712 unsigned LoopSize = 0;
10713 for (const MachineBasicBlock *MBB : ML->blocks()) {
10714 // If inner loop block is aligned assume in average half of the alignment
10715 // size to be added as nops.
10716 if (MBB != Header)
10717 LoopSize += MBB->getAlignment().value() / 2;
10719 for (const MachineInstr &MI : *MBB) {
10720 LoopSize += TII->getInstSizeInBytes(MI);
10721 if (LoopSize > 192)
10722 return PrefAlign;
10726 if (LoopSize <= 64)
10727 return PrefAlign;
10729 if (LoopSize <= 128)
10730 return CacheLineAlign;
10732 // If any of parent loops is surrounded by prefetch instructions do not
10733 // insert new for inner loop, which would reset parent's settings.
10734 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10735 if (MachineBasicBlock *Exit = P->getExitBlock()) {
10736 auto I = Exit->getFirstNonDebugInstr();
10737 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10738 return CacheLineAlign;
10742 MachineBasicBlock *Pre = ML->getLoopPreheader();
10743 MachineBasicBlock *Exit = ML->getExitBlock();
10745 if (Pre && Exit) {
10746 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10747 TII->get(AMDGPU::S_INST_PREFETCH))
10748 .addImm(1); // prefetch 2 lines behind PC
10750 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10751 TII->get(AMDGPU::S_INST_PREFETCH))
10752 .addImm(2); // prefetch 1 line behind PC
10755 return CacheLineAlign;
10758 LLVM_ATTRIBUTE_UNUSED
10759 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10760 assert(N->getOpcode() == ISD::CopyFromReg);
10761 do {
10762 // Follow the chain until we find an INLINEASM node.
10763 N = N->getOperand(0).getNode();
10764 if (N->getOpcode() == ISD::INLINEASM ||
10765 N->getOpcode() == ISD::INLINEASM_BR)
10766 return true;
10767 } while (N->getOpcode() == ISD::CopyFromReg);
10768 return false;
10771 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10772 FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10774 switch (N->getOpcode()) {
10775 case ISD::CopyFromReg:
10777 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10778 const MachineFunction * MF = FLI->MF;
10779 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10780 const MachineRegisterInfo &MRI = MF->getRegInfo();
10781 const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10782 unsigned Reg = R->getReg();
10783 if (Register::isPhysicalRegister(Reg))
10784 return !TRI.isSGPRReg(MRI, Reg);
10786 if (MRI.isLiveIn(Reg)) {
10787 // workitem.id.x workitem.id.y workitem.id.z
10788 // Any VGPR formal argument is also considered divergent
10789 if (!TRI.isSGPRReg(MRI, Reg))
10790 return true;
10791 // Formal arguments of non-entry functions
10792 // are conservatively considered divergent
10793 else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10794 return true;
10795 return false;
10797 const Value *V = FLI->getValueFromVirtualReg(Reg);
10798 if (V)
10799 return KDA->isDivergent(V);
10800 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10801 return !TRI.isSGPRReg(MRI, Reg);
10803 break;
10804 case ISD::LOAD: {
10805 const LoadSDNode *L = cast<LoadSDNode>(N);
10806 unsigned AS = L->getAddressSpace();
10807 // A flat load may access private memory.
10808 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10809 } break;
10810 case ISD::CALLSEQ_END:
10811 return true;
10812 break;
10813 case ISD::INTRINSIC_WO_CHAIN:
10817 return AMDGPU::isIntrinsicSourceOfDivergence(
10818 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10819 case ISD::INTRINSIC_W_CHAIN:
10820 return AMDGPU::isIntrinsicSourceOfDivergence(
10821 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10822 // In some cases intrinsics that are a source of divergence have been
10823 // lowered to AMDGPUISD so we also need to check those too.
10824 case AMDGPUISD::INTERP_MOV:
10825 case AMDGPUISD::INTERP_P1:
10826 case AMDGPUISD::INTERP_P2:
10827 return true;
10829 return false;
10832 bool SITargetLowering::denormalsEnabledForType(EVT VT) const {
10833 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10834 case MVT::f32:
10835 return Subtarget->hasFP32Denormals();
10836 case MVT::f64:
10837 return Subtarget->hasFP64Denormals();
10838 case MVT::f16:
10839 return Subtarget->hasFP16Denormals();
10840 default:
10841 return false;
10845 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10846 const SelectionDAG &DAG,
10847 bool SNaN,
10848 unsigned Depth) const {
10849 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10850 const MachineFunction &MF = DAG.getMachineFunction();
10851 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10853 if (Info->getMode().DX10Clamp)
10854 return true; // Clamped to 0.
10855 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10858 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10859 SNaN, Depth);
10862 TargetLowering::AtomicExpansionKind
10863 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10864 switch (RMW->getOperation()) {
10865 case AtomicRMWInst::FAdd: {
10866 Type *Ty = RMW->getType();
10868 // We don't have a way to support 16-bit atomics now, so just leave them
10869 // as-is.
10870 if (Ty->isHalfTy())
10871 return AtomicExpansionKind::None;
10873 if (!Ty->isFloatTy())
10874 return AtomicExpansionKind::CmpXChg;
10876 // TODO: Do have these for flat. Older targets also had them for buffers.
10877 unsigned AS = RMW->getPointerAddressSpace();
10878 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10879 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10881 default:
10882 break;
10885 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);