[obj2yaml] - Fix BB after r373315.
[llvm-complete.git] / lib / Target / PowerPC / PPCMIPeephole.cpp
blobac8ac060f4602a30b40a86b027f93dd9b3373178
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
19 //===---------------------------------------------------------------------===//
21 #include "PPC.h"
22 #include "PPCInstrBuilder.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachinePostDominators.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Support/Debug.h"
34 #include "MCTargetDesc/PPCPredicates.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "ppc-mi-peepholes"
40 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
41 STATISTIC(MultiTOCSaves,
42 "Number of functions with multiple TOC saves that must be kept");
43 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
44 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
45 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
46 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
47 STATISTIC(NumConvertedToImmediateForm,
48 "Number of instructions converted to their immediate form");
49 STATISTIC(NumFunctionsEnteredInMIPeephole,
50 "Number of functions entered in PPC MI Peepholes");
51 STATISTIC(NumFixedPointIterations,
52 "Number of fixed-point iterations converting reg-reg instructions "
53 "to reg-imm ones");
54 STATISTIC(NumRotatesCollapsed,
55 "Number of pairs of rotate left, clear left/right collapsed");
56 STATISTIC(NumEXTSWAndSLDICombined,
57 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
59 static cl::opt<bool>
60 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
61 cl::desc("Iterate to a fixed point when attempting to "
62 "convert reg-reg instructions to reg-imm"));
64 static cl::opt<bool>
65 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
66 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
68 static cl::opt<bool>
69 EnableSExtElimination("ppc-eliminate-signext",
70 cl::desc("enable elimination of sign-extensions"),
71 cl::init(false), cl::Hidden);
73 static cl::opt<bool>
74 EnableZExtElimination("ppc-eliminate-zeroext",
75 cl::desc("enable elimination of zero-extensions"),
76 cl::init(false), cl::Hidden);
78 namespace {
80 struct PPCMIPeephole : public MachineFunctionPass {
82 static char ID;
83 const PPCInstrInfo *TII;
84 MachineFunction *MF;
85 MachineRegisterInfo *MRI;
87 PPCMIPeephole() : MachineFunctionPass(ID) {
88 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91 private:
92 MachineDominatorTree *MDT;
93 MachinePostDominatorTree *MPDT;
94 MachineBlockFrequencyInfo *MBFI;
95 uint64_t EntryFreq;
97 // Initialize class variables.
98 void initialize(MachineFunction &MFParm);
100 // Perform peepholes.
101 bool simplifyCode(void);
103 // Perform peepholes.
104 bool eliminateRedundantCompare(void);
105 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
106 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
107 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
108 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
109 MachineInstr *MI);
111 public:
113 void getAnalysisUsage(AnalysisUsage &AU) const override {
114 AU.addRequired<MachineDominatorTree>();
115 AU.addRequired<MachinePostDominatorTree>();
116 AU.addRequired<MachineBlockFrequencyInfo>();
117 AU.addPreserved<MachineDominatorTree>();
118 AU.addPreserved<MachinePostDominatorTree>();
119 AU.addPreserved<MachineBlockFrequencyInfo>();
120 MachineFunctionPass::getAnalysisUsage(AU);
123 // Main entry point for this pass.
124 bool runOnMachineFunction(MachineFunction &MF) override {
125 if (skipFunction(MF.getFunction()))
126 return false;
127 initialize(MF);
128 return simplifyCode();
132 // Initialize class variables.
133 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
134 MF = &MFParm;
135 MRI = &MF->getRegInfo();
136 MDT = &getAnalysis<MachineDominatorTree>();
137 MPDT = &getAnalysis<MachinePostDominatorTree>();
138 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
139 EntryFreq = MBFI->getEntryFreq();
140 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
141 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
142 LLVM_DEBUG(MF->dump());
145 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
146 MachineRegisterInfo *MRI) {
147 assert(Op && "Invalid Operand!");
148 if (!Op->isReg())
149 return nullptr;
151 Register Reg = Op->getReg();
152 if (!Register::isVirtualRegister(Reg))
153 return nullptr;
155 return MRI->getVRegDef(Reg);
158 // This function returns number of known zero bits in output of MI
159 // starting from the most significant bit.
160 static unsigned
161 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
162 unsigned Opcode = MI->getOpcode();
163 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
164 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo)
165 return MI->getOperand(3).getImm();
167 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
168 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
169 return MI->getOperand(3).getImm();
171 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
172 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
173 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
174 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
175 return 32 + MI->getOperand(3).getImm();
177 if (Opcode == PPC::ANDIo) {
178 uint16_t Imm = MI->getOperand(2).getImm();
179 return 48 + countLeadingZeros(Imm);
182 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
183 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
184 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
185 // The result ranges from 0 to 32.
186 return 58;
188 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
189 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo)
190 // The result ranges from 0 to 64.
191 return 57;
193 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
194 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
195 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
196 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
197 return 48;
199 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
200 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
201 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
202 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
203 return 56;
205 if (TII->isZeroExtended(*MI))
206 return 32;
208 return 0;
211 // This function maintains a map for the pairs <TOC Save Instr, Keep>
212 // Each time a new TOC save is encountered, it checks if any of the existing
213 // ones are dominated by the new one. If so, it marks the existing one as
214 // redundant by setting it's entry in the map as false. It then adds the new
215 // instruction to the map with either true or false depending on if any
216 // existing instructions dominated the new one.
217 void PPCMIPeephole::UpdateTOCSaves(
218 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
219 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
220 assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
221 "TOC-save removal only supported on ELFv2");
222 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
224 MachineBasicBlock *Entry = &MF->front();
225 uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
227 // If the block in which the TOC save resides is in a block that
228 // post-dominates Entry, or a block that is hotter than entry (keep in mind
229 // that early MachineLICM has already run so the TOC save won't be hoisted)
230 // we can just do the save in the prologue.
231 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
232 FI->setMustSaveTOC(true);
234 // If we are saving the TOC in the prologue, all the TOC saves can be removed
235 // from the code.
236 if (FI->mustSaveTOC()) {
237 for (auto &TOCSave : TOCSaves)
238 TOCSave.second = false;
239 // Add new instruction to map.
240 TOCSaves[MI] = false;
241 return;
244 bool Keep = true;
245 for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
246 MachineInstr *CurrInst = It->first;
247 // If new instruction dominates an existing one, mark existing one as
248 // redundant.
249 if (It->second && MDT->dominates(MI, CurrInst))
250 It->second = false;
251 // Check if the new instruction is redundant.
252 if (MDT->dominates(CurrInst, MI)) {
253 Keep = false;
254 break;
257 // Add new instruction to map.
258 TOCSaves[MI] = Keep;
261 // Perform peephole optimizations.
262 bool PPCMIPeephole::simplifyCode(void) {
263 bool Simplified = false;
264 MachineInstr* ToErase = nullptr;
265 std::map<MachineInstr *, bool> TOCSaves;
266 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
267 NumFunctionsEnteredInMIPeephole++;
268 if (ConvertRegReg) {
269 // Fixed-point conversion of reg/reg instructions fed by load-immediate
270 // into reg/imm instructions. FIXME: This is expensive, control it with
271 // an option.
272 bool SomethingChanged = false;
273 do {
274 NumFixedPointIterations++;
275 SomethingChanged = false;
276 for (MachineBasicBlock &MBB : *MF) {
277 for (MachineInstr &MI : MBB) {
278 if (MI.isDebugInstr())
279 continue;
281 if (TII->convertToImmediateForm(MI)) {
282 // We don't erase anything in case the def has other uses. Let DCE
283 // remove it if it can be removed.
284 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
285 LLVM_DEBUG(MI.dump());
286 NumConvertedToImmediateForm++;
287 SomethingChanged = true;
288 Simplified = true;
289 continue;
293 } while (SomethingChanged && FixedPointRegToImm);
296 for (MachineBasicBlock &MBB : *MF) {
297 for (MachineInstr &MI : MBB) {
299 // If the previous instruction was marked for elimination,
300 // remove it now.
301 if (ToErase) {
302 ToErase->eraseFromParent();
303 ToErase = nullptr;
306 // Ignore debug instructions.
307 if (MI.isDebugInstr())
308 continue;
310 // Per-opcode peepholes.
311 switch (MI.getOpcode()) {
313 default:
314 break;
316 case PPC::STD: {
317 MachineFrameInfo &MFI = MF->getFrameInfo();
318 if (MFI.hasVarSizedObjects() ||
319 !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
320 break;
321 // When encountering a TOC save instruction, call UpdateTOCSaves
322 // to add it to the TOCSaves map and mark any existing TOC saves
323 // it dominates as redundant.
324 if (TII->isTOCSaveMI(MI))
325 UpdateTOCSaves(TOCSaves, &MI);
326 break;
328 case PPC::XXPERMDI: {
329 // Perform simplifications of 2x64 vector swaps and splats.
330 // A swap is identified by an immediate value of 2, and a splat
331 // is identified by an immediate value of 0 or 3.
332 int Immed = MI.getOperand(3).getImm();
334 if (Immed != 1) {
336 // For each of these simplifications, we need the two source
337 // regs to match. Unfortunately, MachineCSE ignores COPY and
338 // SUBREG_TO_REG, so for example we can see
339 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
340 // We have to look through chains of COPY and SUBREG_TO_REG
341 // to find the real source values for comparison.
342 unsigned TrueReg1 =
343 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
344 unsigned TrueReg2 =
345 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
347 if (TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)) {
348 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
349 unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
351 // If this is a splat fed by a splatting load, the splat is
352 // redundant. Replace with a copy. This doesn't happen directly due
353 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
354 // a load of a double to a vector of 64-bit integers.
355 auto isConversionOfLoadAndSplat = [=]() -> bool {
356 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
357 return false;
358 unsigned DefReg =
359 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
360 if (Register::isVirtualRegister(DefReg)) {
361 MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
362 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
363 return true;
365 return false;
367 if (DefMI && (Immed == 0 || Immed == 3)) {
368 if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
369 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
370 "to load-and-splat/copy: ");
371 LLVM_DEBUG(MI.dump());
372 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
373 MI.getOperand(0).getReg())
374 .add(MI.getOperand(1));
375 ToErase = &MI;
376 Simplified = true;
380 // If this is a splat or a swap fed by another splat, we
381 // can replace it with a copy.
382 if (DefOpc == PPC::XXPERMDI) {
383 unsigned FeedImmed = DefMI->getOperand(3).getImm();
384 unsigned FeedReg1 =
385 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
386 unsigned FeedReg2 =
387 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
389 if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
390 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
391 "to splat/copy: ");
392 LLVM_DEBUG(MI.dump());
393 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
394 MI.getOperand(0).getReg())
395 .add(MI.getOperand(1));
396 ToErase = &MI;
397 Simplified = true;
400 // If this is a splat fed by a swap, we can simplify modify
401 // the splat to splat the other value from the swap's input
402 // parameter.
403 else if ((Immed == 0 || Immed == 3)
404 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
405 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
406 LLVM_DEBUG(MI.dump());
407 MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
408 MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
409 MI.getOperand(3).setImm(3 - Immed);
410 Simplified = true;
413 // If this is a swap fed by a swap, we can replace it
414 // with a copy from the first swap's input.
415 else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
416 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
417 LLVM_DEBUG(MI.dump());
418 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
419 MI.getOperand(0).getReg())
420 .add(DefMI->getOperand(1));
421 ToErase = &MI;
422 Simplified = true;
424 } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
425 (DefMI->getOperand(2).getImm() == 0 ||
426 DefMI->getOperand(2).getImm() == 3)) {
427 // Splat fed by another splat - switch the output of the first
428 // and remove the second.
429 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
430 ToErase = &MI;
431 Simplified = true;
432 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
433 LLVM_DEBUG(MI.dump());
437 break;
439 case PPC::VSPLTB:
440 case PPC::VSPLTH:
441 case PPC::XXSPLTW: {
442 unsigned MyOpcode = MI.getOpcode();
443 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
444 unsigned TrueReg =
445 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
446 if (!Register::isVirtualRegister(TrueReg))
447 break;
448 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
449 if (!DefMI)
450 break;
451 unsigned DefOpcode = DefMI->getOpcode();
452 auto isConvertOfSplat = [=]() -> bool {
453 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
454 return false;
455 Register ConvReg = DefMI->getOperand(1).getReg();
456 if (!Register::isVirtualRegister(ConvReg))
457 return false;
458 MachineInstr *Splt = MRI->getVRegDef(ConvReg);
459 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
460 Splt->getOpcode() == PPC::XXSPLTW);
462 bool AlreadySplat = (MyOpcode == DefOpcode) ||
463 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
464 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
465 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
466 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
467 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
468 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
469 // If the instruction[s] that feed this splat have already splat
470 // the value, this splat is redundant.
471 if (AlreadySplat) {
472 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
473 LLVM_DEBUG(MI.dump());
474 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
475 MI.getOperand(0).getReg())
476 .add(MI.getOperand(OpNo));
477 ToErase = &MI;
478 Simplified = true;
480 // Splat fed by a shift. Usually when we align value to splat into
481 // vector element zero.
482 if (DefOpcode == PPC::XXSLDWI) {
483 Register ShiftRes = DefMI->getOperand(0).getReg();
484 Register ShiftOp1 = DefMI->getOperand(1).getReg();
485 Register ShiftOp2 = DefMI->getOperand(2).getReg();
486 unsigned ShiftImm = DefMI->getOperand(3).getImm();
487 unsigned SplatImm = MI.getOperand(2).getImm();
488 if (ShiftOp1 == ShiftOp2) {
489 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
490 if (MRI->hasOneNonDBGUse(ShiftRes)) {
491 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
492 LLVM_DEBUG(DefMI->dump());
493 ToErase = DefMI;
495 Simplified = true;
496 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
497 << " to " << NewElem << " in instruction: ");
498 LLVM_DEBUG(MI.dump());
499 MI.getOperand(1).setReg(ShiftOp1);
500 MI.getOperand(2).setImm(NewElem);
503 break;
505 case PPC::XVCVDPSP: {
506 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
507 unsigned TrueReg =
508 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
509 if (!Register::isVirtualRegister(TrueReg))
510 break;
511 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
513 // This can occur when building a vector of single precision or integer
514 // values.
515 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
516 unsigned DefsReg1 =
517 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
518 unsigned DefsReg2 =
519 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
520 if (!Register::isVirtualRegister(DefsReg1) ||
521 !Register::isVirtualRegister(DefsReg2))
522 break;
523 MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
524 MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
526 if (!P1 || !P2)
527 break;
529 // Remove the passed FRSP instruction if it only feeds this MI and
530 // set any uses of that FRSP (in this MI) to the source of the FRSP.
531 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
532 if (RoundInstr->getOpcode() == PPC::FRSP &&
533 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
534 Simplified = true;
535 Register ConvReg1 = RoundInstr->getOperand(1).getReg();
536 Register FRSPDefines = RoundInstr->getOperand(0).getReg();
537 MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
538 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
539 if (Use.getOperand(i).isReg() &&
540 Use.getOperand(i).getReg() == FRSPDefines)
541 Use.getOperand(i).setReg(ConvReg1);
542 LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
543 LLVM_DEBUG(RoundInstr->dump());
544 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
545 LLVM_DEBUG(MI.dump());
546 LLVM_DEBUG(dbgs() << "Through instruction:\n");
547 LLVM_DEBUG(DefMI->dump());
548 RoundInstr->eraseFromParent();
552 // If the input to XVCVDPSP is a vector that was built (even
553 // partially) out of FRSP's, the FRSP(s) can safely be removed
554 // since this instruction performs the same operation.
555 if (P1 != P2) {
556 removeFRSPIfPossible(P1);
557 removeFRSPIfPossible(P2);
558 break;
560 removeFRSPIfPossible(P1);
562 break;
564 case PPC::EXTSH:
565 case PPC::EXTSH8:
566 case PPC::EXTSH8_32_64: {
567 if (!EnableSExtElimination) break;
568 Register NarrowReg = MI.getOperand(1).getReg();
569 if (!Register::isVirtualRegister(NarrowReg))
570 break;
572 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
573 // If we've used a zero-extending load that we will sign-extend,
574 // just do a sign-extending load.
575 if (SrcMI->getOpcode() == PPC::LHZ ||
576 SrcMI->getOpcode() == PPC::LHZX) {
577 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
578 break;
579 auto is64Bit = [] (unsigned Opcode) {
580 return Opcode == PPC::EXTSH8;
582 auto isXForm = [] (unsigned Opcode) {
583 return Opcode == PPC::LHZX;
585 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
586 if (is64Bit)
587 if (isXForm) return PPC::LHAX8;
588 else return PPC::LHA8;
589 else
590 if (isXForm) return PPC::LHAX;
591 else return PPC::LHA;
593 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
594 isXForm(SrcMI->getOpcode()));
595 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
596 LLVM_DEBUG(SrcMI->dump());
597 LLVM_DEBUG(dbgs() << "and sign-extension\n");
598 LLVM_DEBUG(MI.dump());
599 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
600 SrcMI->setDesc(TII->get(Opc));
601 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
602 ToErase = &MI;
603 Simplified = true;
604 NumEliminatedSExt++;
606 break;
608 case PPC::EXTSW:
609 case PPC::EXTSW_32:
610 case PPC::EXTSW_32_64: {
611 if (!EnableSExtElimination) break;
612 Register NarrowReg = MI.getOperand(1).getReg();
613 if (!Register::isVirtualRegister(NarrowReg))
614 break;
616 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
617 // If we've used a zero-extending load that we will sign-extend,
618 // just do a sign-extending load.
619 if (SrcMI->getOpcode() == PPC::LWZ ||
620 SrcMI->getOpcode() == PPC::LWZX) {
621 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
622 break;
623 auto is64Bit = [] (unsigned Opcode) {
624 return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
626 auto isXForm = [] (unsigned Opcode) {
627 return Opcode == PPC::LWZX;
629 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
630 if (is64Bit)
631 if (isXForm) return PPC::LWAX;
632 else return PPC::LWA;
633 else
634 if (isXForm) return PPC::LWAX_32;
635 else return PPC::LWA_32;
637 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
638 isXForm(SrcMI->getOpcode()));
639 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
640 LLVM_DEBUG(SrcMI->dump());
641 LLVM_DEBUG(dbgs() << "and sign-extension\n");
642 LLVM_DEBUG(MI.dump());
643 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
644 SrcMI->setDesc(TII->get(Opc));
645 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
646 ToErase = &MI;
647 Simplified = true;
648 NumEliminatedSExt++;
649 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
650 TII->isSignExtended(*SrcMI)) {
651 // We can eliminate EXTSW if the input is known to be already
652 // sign-extended.
653 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
654 Register TmpReg =
655 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
656 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
657 TmpReg);
658 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
659 MI.getOperand(0).getReg())
660 .addReg(TmpReg)
661 .addReg(NarrowReg)
662 .addImm(PPC::sub_32);
663 ToErase = &MI;
664 Simplified = true;
665 NumEliminatedSExt++;
667 break;
669 case PPC::RLDICL: {
670 // We can eliminate RLDICL (e.g. for zero-extension)
671 // if all bits to clear are already zero in the input.
672 // This code assume following code sequence for zero-extension.
673 // %6 = COPY %5:sub_32; (optional)
674 // %8 = IMPLICIT_DEF;
675 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
676 if (!EnableZExtElimination) break;
678 if (MI.getOperand(2).getImm() != 0)
679 break;
681 Register SrcReg = MI.getOperand(1).getReg();
682 if (!Register::isVirtualRegister(SrcReg))
683 break;
685 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
686 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
687 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
688 break;
690 MachineInstr *ImpDefMI, *SubRegMI;
691 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
692 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
693 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
695 SrcMI = SubRegMI;
696 if (SubRegMI->getOpcode() == PPC::COPY) {
697 Register CopyReg = SubRegMI->getOperand(1).getReg();
698 if (Register::isVirtualRegister(CopyReg))
699 SrcMI = MRI->getVRegDef(CopyReg);
702 unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
703 if (MI.getOperand(3).getImm() <= KnownZeroCount) {
704 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
705 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
706 MI.getOperand(0).getReg())
707 .addReg(SrcReg);
708 ToErase = &MI;
709 Simplified = true;
710 NumEliminatedZExt++;
712 break;
715 // TODO: Any instruction that has an immediate form fed only by a PHI
716 // whose operands are all load immediate can be folded away. We currently
717 // do this for ADD instructions, but should expand it to arithmetic and
718 // binary instructions with immediate forms in the future.
719 case PPC::ADD4:
720 case PPC::ADD8: {
721 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
722 assert(PhiOp && "Invalid Operand!");
723 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
725 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
726 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
729 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
730 MachineOperand *PhiOp) {
731 assert(PhiOp && "Invalid Operand!");
732 assert(DominatorOp && "Invalid Operand!");
733 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
734 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
736 // Note: the vregs only show up at odd indices position of PHI Node,
737 // the even indices position save the BB info.
738 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
739 MachineInstr *LiMI =
740 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
741 if (!LiMI ||
742 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
743 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
744 !MDT->dominates(DefDomMI, LiMI))
745 return false;
748 return true;
751 MachineOperand Op1 = MI.getOperand(1);
752 MachineOperand Op2 = MI.getOperand(2);
753 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
754 std::swap(Op1, Op2);
755 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
756 break; // We don't have an ADD fed by LI's that can be transformed
758 // Now we know that Op1 is the PHI node and Op2 is the dominator
759 Register DominatorReg = Op2.getReg();
761 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
762 ? &PPC::G8RC_and_G8RC_NOX0RegClass
763 : &PPC::GPRC_and_GPRC_NOR0RegClass;
764 MRI->setRegClass(DominatorReg, TRC);
766 // replace LIs with ADDIs
767 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
768 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
769 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
770 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
771 LLVM_DEBUG(LiMI->dump());
773 // There could be repeated registers in the PHI, e.g: %1 =
774 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
775 // already replaced the def instruction, skip.
776 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
777 continue;
779 assert((LiMI->getOpcode() == PPC::LI ||
780 LiMI->getOpcode() == PPC::LI8) &&
781 "Invalid Opcode!");
782 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
783 LiMI->RemoveOperand(1); // remove the imm of LI
784 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
785 : PPC::ADDI8));
786 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
787 .addReg(DominatorReg)
788 .addImm(LiImm); // restore the imm of LI
789 LLVM_DEBUG(LiMI->dump());
792 // Replace ADD with COPY
793 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
794 LLVM_DEBUG(MI.dump());
795 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
796 MI.getOperand(0).getReg())
797 .add(Op1);
798 ToErase = &MI;
799 Simplified = true;
800 NumOptADDLIs++;
801 break;
803 case PPC::RLDICR: {
804 Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
805 combineSEXTAndSHL(MI, ToErase);
806 break;
811 // If the last instruction was marked for elimination,
812 // remove it now.
813 if (ToErase) {
814 ToErase->eraseFromParent();
815 ToErase = nullptr;
819 // Eliminate all the TOC save instructions which are redundant.
820 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
821 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
822 if (FI->mustSaveTOC())
823 NumTOCSavesInPrologue++;
825 // We try to eliminate redundant compare instruction.
826 Simplified |= eliminateRedundantCompare();
828 return Simplified;
831 // helper functions for eliminateRedundantCompare
832 static bool isEqOrNe(MachineInstr *BI) {
833 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
834 unsigned PredCond = PPC::getPredicateCondition(Pred);
835 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
838 static bool isSupportedCmpOp(unsigned opCode) {
839 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
840 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
841 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
842 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
845 static bool is64bitCmpOp(unsigned opCode) {
846 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
847 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
850 static bool isSignedCmpOp(unsigned opCode) {
851 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
852 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
855 static unsigned getSignedCmpOpCode(unsigned opCode) {
856 if (opCode == PPC::CMPLD) return PPC::CMPD;
857 if (opCode == PPC::CMPLW) return PPC::CMPW;
858 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
859 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
860 return opCode;
863 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
864 // (LT x) to (LE x-1)
865 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
866 uint64_t Imm = CMPI->getOperand(2).getImm();
867 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
868 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
869 return 0;
871 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
872 unsigned PredCond = PPC::getPredicateCondition(Pred);
873 unsigned PredHint = PPC::getPredicateHint(Pred);
874 if (PredCond == PPC::PRED_GE)
875 return PPC::getPredicate(PPC::PRED_GT, PredHint);
876 if (PredCond == PPC::PRED_LT)
877 return PPC::getPredicate(PPC::PRED_LE, PredHint);
879 return 0;
882 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
883 // (LE x) to (LT x+1)
884 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
885 uint64_t Imm = CMPI->getOperand(2).getImm();
886 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
887 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
888 return 0;
890 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
891 unsigned PredCond = PPC::getPredicateCondition(Pred);
892 unsigned PredHint = PPC::getPredicateHint(Pred);
893 if (PredCond == PPC::PRED_GT)
894 return PPC::getPredicate(PPC::PRED_GE, PredHint);
895 if (PredCond == PPC::PRED_LE)
896 return PPC::getPredicate(PPC::PRED_LT, PredHint);
898 return 0;
901 // This takes a Phi node and returns a register value for the specified BB.
902 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
903 MachineBasicBlock *MBB) {
904 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
905 MachineOperand &MO = Phi->getOperand(I);
906 if (MO.getMBB() == MBB)
907 return Phi->getOperand(I-1).getReg();
909 llvm_unreachable("invalid src basic block for this Phi node\n");
910 return 0;
913 // This function tracks the source of the register through register copy.
914 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
915 // assuming that the control comes from BB1 into BB2.
916 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
917 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
918 unsigned SrcReg = Reg;
919 while (1) {
920 unsigned NextReg = SrcReg;
921 MachineInstr *Inst = MRI->getVRegDef(SrcReg);
922 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
923 NextReg = getIncomingRegForBlock(Inst, BB1);
924 // We track through PHI only once to avoid infinite loop.
925 BB1 = nullptr;
927 else if (Inst->isFullCopy())
928 NextReg = Inst->getOperand(1).getReg();
929 if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
930 break;
931 SrcReg = NextReg;
933 return SrcReg;
936 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
937 MachineBasicBlock *&PredMBB,
938 MachineBasicBlock *&MBBtoMoveCmp,
939 MachineRegisterInfo *MRI) {
941 auto isEligibleBB = [&](MachineBasicBlock &BB) {
942 auto BII = BB.getFirstInstrTerminator();
943 // We optimize BBs ending with a conditional branch.
944 // We check only for BCC here, not BCCLR, because BCCLR
945 // will be formed only later in the pipeline.
946 if (BB.succ_size() == 2 &&
947 BII != BB.instr_end() &&
948 (*BII).getOpcode() == PPC::BCC &&
949 (*BII).getOperand(1).isReg()) {
950 // We optimize only if the condition code is used only by one BCC.
951 Register CndReg = (*BII).getOperand(1).getReg();
952 if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
953 return false;
955 MachineInstr *CMPI = MRI->getVRegDef(CndReg);
956 // We assume compare and branch are in the same BB for ease of analysis.
957 if (CMPI->getParent() != &BB)
958 return false;
960 // We skip this BB if a physical register is used in comparison.
961 for (MachineOperand &MO : CMPI->operands())
962 if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
963 return false;
965 return true;
967 return false;
970 // If this BB has more than one successor, we can create a new BB and
971 // move the compare instruction in the new BB.
972 // So far, we do not move compare instruction to a BB having multiple
973 // successors to avoid potentially increasing code size.
974 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
975 return BB.succ_size() == 1;
978 if (!isEligibleBB(MBB))
979 return false;
981 unsigned NumPredBBs = MBB.pred_size();
982 if (NumPredBBs == 1) {
983 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
984 if (isEligibleBB(*TmpMBB)) {
985 PredMBB = TmpMBB;
986 MBBtoMoveCmp = nullptr;
987 return true;
990 else if (NumPredBBs == 2) {
991 // We check for partially redundant case.
992 // So far, we support cases with only two predecessors
993 // to avoid increasing the number of instructions.
994 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
995 MachineBasicBlock *Pred1MBB = *PI;
996 MachineBasicBlock *Pred2MBB = *(PI+1);
998 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
999 // We assume Pred1MBB is the BB containing the compare to be merged and
1000 // Pred2MBB is the BB to which we will append a compare instruction.
1001 // Hence we can proceed as is.
1003 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1004 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1005 std::swap(Pred1MBB, Pred2MBB);
1007 else return false;
1009 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1010 // We cannot move the compare instruction if operands are not available
1011 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1012 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1013 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1014 for (int I = 1; I <= 2; I++)
1015 if (CMPI->getOperand(I).isReg()) {
1016 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1017 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1018 return false;
1021 PredMBB = Pred1MBB;
1022 MBBtoMoveCmp = Pred2MBB;
1023 return true;
1026 return false;
1029 // This function will iterate over the input map containing a pair of TOC save
1030 // instruction and a flag. The flag will be set to false if the TOC save is
1031 // proven redundant. This function will erase from the basic block all the TOC
1032 // saves marked as redundant.
1033 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1034 std::map<MachineInstr *, bool> &TOCSaves) {
1035 bool Simplified = false;
1036 int NumKept = 0;
1037 for (auto TOCSave : TOCSaves) {
1038 if (!TOCSave.second) {
1039 TOCSave.first->eraseFromParent();
1040 RemoveTOCSave++;
1041 Simplified = true;
1042 } else {
1043 NumKept++;
1047 if (NumKept > 1)
1048 MultiTOCSaves++;
1050 return Simplified;
1053 // If multiple conditional branches are executed based on the (essentially)
1054 // same comparison, we merge compare instructions into one and make multiple
1055 // conditional branches on this comparison.
1056 // For example,
1057 // if (a == 0) { ... }
1058 // else if (a < 0) { ... }
1059 // can be executed by one compare and two conditional branches instead of
1060 // two pairs of a compare and a conditional branch.
1062 // This method merges two compare instructions in two MBBs and modifies the
1063 // compare and conditional branch instructions if needed.
1064 // For the above example, the input for this pass looks like:
1065 // cmplwi r3, 0
1066 // beq 0, .LBB0_3
1067 // cmpwi r3, -1
1068 // bgt 0, .LBB0_4
1069 // So, before merging two compares, we need to modify these instructions as
1070 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1071 // beq 0, .LBB0_3
1072 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1073 // bge 0, .LBB0_4
1075 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1076 bool Simplified = false;
1078 for (MachineBasicBlock &MBB2 : *MF) {
1079 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1081 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1082 // as an optimization target if
1083 // - both MBBs end with a conditional branch,
1084 // - MBB1 is the only predecessor of MBB2, and
1085 // - compare does not take a physical register as a operand in both MBBs.
1086 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1088 // As partially redundant case, we additionally handle if MBB2 has one
1089 // additional predecessor, which has only one successor (MBB2).
1090 // In this case, we move the compare instruction originally in MBB2 into
1091 // MBBtoMoveCmp. This partially redundant case is typically appear by
1092 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1094 // Overview of CFG of related basic blocks
1095 // Fully redundant case Partially redundant case
1096 // -------- ---------------- --------
1097 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1098 // -------- ---------------- --------
1099 // | \ (w/ 1 succ) \ | \
1100 // | \ \ | \
1101 // | \ |
1102 // -------- --------
1103 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1104 // -------- and 2 succ) -------- and 2 succ)
1105 // | \ | \
1106 // | \ | \
1108 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1109 continue;
1111 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1112 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1114 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1115 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1116 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1118 // We cannot optimize an unsupported compare opcode or
1119 // a mix of 32-bit and 64-bit comaprisons
1120 if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1121 !isSupportedCmpOp(CMPI2->getOpcode()) ||
1122 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1123 continue;
1125 unsigned NewOpCode = 0;
1126 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1127 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1128 bool SwapOperands = false;
1130 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1131 // Typically, unsigned comparison is used for equality check, but
1132 // we replace it with a signed comparison if the comparison
1133 // to be merged is a signed comparison.
1134 // In other cases of opcode mismatch, we cannot optimize this.
1136 // We cannot change opcode when comparing against an immediate
1137 // if the most significant bit of the immediate is one
1138 // due to the difference in sign extension.
1139 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1140 if (!I->getOperand(2).isImm())
1141 return false;
1142 int16_t Imm = (int16_t)I->getOperand(2).getImm();
1143 return Imm < 0;
1146 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1147 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1148 NewOpCode = CMPI1->getOpcode();
1149 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1150 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1151 NewOpCode = CMPI2->getOpcode();
1152 else continue;
1155 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1156 // In case of comparisons between two registers, these two registers
1157 // must be same to merge two comparisons.
1158 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1159 nullptr, nullptr, MRI);
1160 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1161 nullptr, nullptr, MRI);
1162 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1163 MBB1, &MBB2, MRI);
1164 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1165 MBB1, &MBB2, MRI);
1167 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1168 // Same pair of registers in the same order; ready to merge as is.
1170 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1171 // Same pair of registers in different order.
1172 // We reverse the predicate to merge compare instructions.
1173 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1174 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1175 // In case of partial redundancy, we need to swap operands
1176 // in another compare instruction.
1177 SwapOperands = true;
1179 else continue;
1181 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1182 // In case of comparisons between a register and an immediate,
1183 // the operand register must be same for two compare instructions.
1184 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1185 nullptr, nullptr, MRI);
1186 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1187 MBB1, &MBB2, MRI);
1188 if (Cmp1Operand1 != Cmp2Operand1)
1189 continue;
1191 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1192 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1194 // If immediate are not same, we try to adjust by changing predicate;
1195 // e.g. GT imm means GE (imm+1).
1196 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1197 int Diff = Imm1 - Imm2;
1198 if (Diff < -2 || Diff > 2)
1199 continue;
1201 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1202 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1203 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1204 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1205 if (Diff == 2) {
1206 if (PredToInc2 && PredToDec1) {
1207 NewPredicate2 = PredToInc2;
1208 NewPredicate1 = PredToDec1;
1209 NewImm2++;
1210 NewImm1--;
1213 else if (Diff == 1) {
1214 if (PredToInc2) {
1215 NewImm2++;
1216 NewPredicate2 = PredToInc2;
1218 else if (PredToDec1) {
1219 NewImm1--;
1220 NewPredicate1 = PredToDec1;
1223 else if (Diff == -1) {
1224 if (PredToDec2) {
1225 NewImm2--;
1226 NewPredicate2 = PredToDec2;
1228 else if (PredToInc1) {
1229 NewImm1++;
1230 NewPredicate1 = PredToInc1;
1233 else if (Diff == -2) {
1234 if (PredToDec2 && PredToInc1) {
1235 NewPredicate2 = PredToDec2;
1236 NewPredicate1 = PredToInc1;
1237 NewImm2--;
1238 NewImm1++;
1243 // We cannot merge two compares if the immediates are not same.
1244 if (NewImm2 != NewImm1)
1245 continue;
1248 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1249 LLVM_DEBUG(CMPI1->dump());
1250 LLVM_DEBUG(BI1->dump());
1251 LLVM_DEBUG(CMPI2->dump());
1252 LLVM_DEBUG(BI2->dump());
1254 // We adjust opcode, predicates and immediate as we determined above.
1255 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1256 CMPI1->setDesc(TII->get(NewOpCode));
1258 if (NewPredicate1) {
1259 BI1->getOperand(0).setImm(NewPredicate1);
1261 if (NewPredicate2) {
1262 BI2->getOperand(0).setImm(NewPredicate2);
1264 if (NewImm1 != Imm1) {
1265 CMPI1->getOperand(2).setImm(NewImm1);
1268 if (IsPartiallyRedundant) {
1269 // We touch up the compare instruction in MBB2 and move it to
1270 // a previous BB to handle partially redundant case.
1271 if (SwapOperands) {
1272 Register Op1 = CMPI2->getOperand(1).getReg();
1273 Register Op2 = CMPI2->getOperand(2).getReg();
1274 CMPI2->getOperand(1).setReg(Op2);
1275 CMPI2->getOperand(2).setReg(Op1);
1277 if (NewImm2 != Imm2)
1278 CMPI2->getOperand(2).setImm(NewImm2);
1280 for (int I = 1; I <= 2; I++) {
1281 if (CMPI2->getOperand(I).isReg()) {
1282 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1283 if (Inst->getParent() != &MBB2)
1284 continue;
1286 assert(Inst->getOpcode() == PPC::PHI &&
1287 "We cannot support if an operand comes from this BB.");
1288 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1289 CMPI2->getOperand(I).setReg(SrcReg);
1292 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1293 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1295 DebugLoc DL = CMPI2->getDebugLoc();
1296 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1297 BuildMI(MBB2, MBB2.begin(), DL,
1298 TII->get(PPC::PHI), NewVReg)
1299 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1300 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1301 BI2->getOperand(1).setReg(NewVReg);
1303 else {
1304 // We finally eliminate compare instruction in MBB2.
1305 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1306 CMPI2->eraseFromParent();
1308 BI2->getOperand(1).setIsKill(true);
1309 BI1->getOperand(1).setIsKill(false);
1311 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1312 LLVM_DEBUG(CMPI1->dump());
1313 LLVM_DEBUG(BI1->dump());
1314 LLVM_DEBUG(BI2->dump());
1315 if (IsPartiallyRedundant) {
1316 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1317 << printMBBReference(*MBBtoMoveCmp)
1318 << " to handle partial redundancy.\n");
1319 LLVM_DEBUG(CMPI2->dump());
1322 Simplified = true;
1325 return Simplified;
1328 // We miss the opportunity to emit an RLDIC when lowering jump tables
1329 // since ISEL sees only a single basic block. When selecting, the clear
1330 // and shift left will be in different blocks.
1331 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1332 if (MI.getOpcode() != PPC::RLDICR)
1333 return false;
1335 Register SrcReg = MI.getOperand(1).getReg();
1336 if (!Register::isVirtualRegister(SrcReg))
1337 return false;
1339 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1340 if (SrcMI->getOpcode() != PPC::RLDICL)
1341 return false;
1343 MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1344 MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1345 MachineOperand MOpSHMI = MI.getOperand(2);
1346 MachineOperand MOpMEMI = MI.getOperand(3);
1347 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1348 MOpMEMI.isImm()))
1349 return false;
1351 uint64_t SHSrc = MOpSHSrc.getImm();
1352 uint64_t MBSrc = MOpMBSrc.getImm();
1353 uint64_t SHMI = MOpSHMI.getImm();
1354 uint64_t MEMI = MOpMEMI.getImm();
1355 uint64_t NewSH = SHSrc + SHMI;
1356 uint64_t NewMB = MBSrc - SHMI;
1357 if (NewMB > 63 || NewSH > 63)
1358 return false;
1360 // The bits cleared with RLDICL are [0, MBSrc).
1361 // The bits cleared with RLDICR are (MEMI, 63].
1362 // After the sequence, the bits cleared are:
1363 // [0, MBSrc-SHMI) and (MEMI, 63).
1365 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1366 if ((63 - NewSH) != MEMI)
1367 return false;
1369 LLVM_DEBUG(dbgs() << "Converting pair: ");
1370 LLVM_DEBUG(SrcMI->dump());
1371 LLVM_DEBUG(MI.dump());
1373 MI.setDesc(TII->get(PPC::RLDIC));
1374 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1375 MI.getOperand(2).setImm(NewSH);
1376 MI.getOperand(3).setImm(NewMB);
1378 LLVM_DEBUG(dbgs() << "To: ");
1379 LLVM_DEBUG(MI.dump());
1380 NumRotatesCollapsed++;
1381 return true;
1384 // For case in LLVM IR
1385 // entry:
1386 // %iconv = sext i32 %index to i64
1387 // br i1 undef label %true, label %false
1388 // true:
1389 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1390 // ...
1391 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1392 // different BBs when conducting instruction selection. We can do a peephole
1393 // optimization to combine these two instructions into extswsli after
1394 // instruction selection.
1395 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1396 MachineInstr *&ToErase) {
1397 if (MI.getOpcode() != PPC::RLDICR)
1398 return false;
1400 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1401 return false;
1403 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1405 MachineOperand MOpSHMI = MI.getOperand(2);
1406 MachineOperand MOpMEMI = MI.getOperand(3);
1407 if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1408 return false;
1410 uint64_t SHMI = MOpSHMI.getImm();
1411 uint64_t MEMI = MOpMEMI.getImm();
1412 if (SHMI + MEMI != 63)
1413 return false;
1415 Register SrcReg = MI.getOperand(1).getReg();
1416 if (!Register::isVirtualRegister(SrcReg))
1417 return false;
1419 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1420 if (SrcMI->getOpcode() != PPC::EXTSW &&
1421 SrcMI->getOpcode() != PPC::EXTSW_32_64)
1422 return false;
1424 // If the register defined by extsw has more than one use, combination is not
1425 // needed.
1426 if (!MRI->hasOneNonDBGUse(SrcReg))
1427 return false;
1429 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1430 assert(SrcMI->getOperand(1).isReg() &&
1431 "EXTSW's second operand should be a register");
1432 if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1433 return false;
1435 LLVM_DEBUG(dbgs() << "Combining pair: ");
1436 LLVM_DEBUG(SrcMI->dump());
1437 LLVM_DEBUG(MI.dump());
1439 MachineInstr *NewInstr =
1440 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1441 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1442 : TII->get(PPC::EXTSWSLI_32_64),
1443 MI.getOperand(0).getReg())
1444 .add(SrcMI->getOperand(1))
1445 .add(MOpSHMI);
1446 (void)NewInstr;
1448 LLVM_DEBUG(dbgs() << "TO: ");
1449 LLVM_DEBUG(NewInstr->dump());
1450 ++NumEXTSWAndSLDICombined;
1451 ToErase = &MI;
1452 // SrcMI, which is extsw, is of no use now, erase it.
1453 SrcMI->eraseFromParent();
1454 return true;
1457 } // end default namespace
1459 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1460 "PowerPC MI Peephole Optimization", false, false)
1461 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1462 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1463 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1464 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1465 "PowerPC MI Peephole Optimization", false, false)
1467 char PPCMIPeephole::ID = 0;
1468 FunctionPass*
1469 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }