1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Streams.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/SmallPtrSet.h"
30 char LoopInfo::ID
= 0;
31 static RegisterPass
<LoopInfo
>
32 X("loops", "Natural Loop Construction", true);
34 //===----------------------------------------------------------------------===//
35 // Loop implementation
37 bool Loop::contains(const BasicBlock
*BB
) const {
38 return std::find(Blocks
.begin(), Blocks
.end(), BB
) != Blocks
.end();
41 bool Loop::isLoopExit(const BasicBlock
*BB
) const {
42 for (succ_const_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
50 /// getNumBackEdges - Calculate the number of back edges to the loop header.
52 unsigned Loop::getNumBackEdges() const {
53 unsigned NumBackEdges
= 0;
54 BasicBlock
*H
= getHeader();
56 for (pred_iterator I
= pred_begin(H
), E
= pred_end(H
); I
!= E
; ++I
)
63 /// isLoopInvariant - Return true if the specified value is loop invariant
65 bool Loop::isLoopInvariant(Value
*V
) const {
66 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
67 return !contains(I
->getParent());
68 return true; // All non-instructions are loop invariant
71 void Loop::print(std::ostream
&OS
, unsigned Depth
) const {
72 OS
<< std::string(Depth
*2, ' ') << "Loop Containing: ";
74 for (unsigned i
= 0; i
< getBlocks().size(); ++i
) {
76 WriteAsOperand(OS
, getBlocks()[i
], false);
80 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
81 (*I
)->print(OS
, Depth
+2);
84 void Loop::dump() const {
89 //===----------------------------------------------------------------------===//
90 // LoopInfo implementation
92 bool LoopInfo::runOnFunction(Function
&) {
94 Calculate(getAnalysis
<DominatorTree
>()); // Update
98 void LoopInfo::releaseMemory() {
99 for (std::vector
<Loop
*>::iterator I
= TopLevelLoops
.begin(),
100 E
= TopLevelLoops
.end(); I
!= E
; ++I
)
101 delete *I
; // Delete all of the loops...
103 BBMap
.clear(); // Reset internal state of analysis
104 TopLevelLoops
.clear();
108 void LoopInfo::Calculate(DominatorTree
&DT
) {
109 BasicBlock
*RootNode
= DT
.getRootNode()->getBlock();
111 for (df_iterator
<BasicBlock
*> NI
= df_begin(RootNode
),
112 NE
= df_end(RootNode
); NI
!= NE
; ++NI
)
113 if (Loop
*L
= ConsiderForLoop(*NI
, DT
))
114 TopLevelLoops
.push_back(L
);
117 void LoopInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
118 AU
.setPreservesAll();
119 AU
.addRequired
<DominatorTree
>();
122 void LoopInfo::print(std::ostream
&OS
, const Module
* ) const {
123 for (unsigned i
= 0; i
< TopLevelLoops
.size(); ++i
)
124 TopLevelLoops
[i
]->print(OS
);
126 for (std::map
<BasicBlock
*, Loop
*>::const_iterator I
= BBMap
.begin(),
127 E
= BBMap
.end(); I
!= E
; ++I
)
128 OS
<< "BB '" << I
->first
->getName() << "' level = "
129 << I
->second
->getLoopDepth() << "\n";
133 static bool isNotAlreadyContainedIn(Loop
*SubLoop
, Loop
*ParentLoop
) {
134 if (SubLoop
== 0) return true;
135 if (SubLoop
== ParentLoop
) return false;
136 return isNotAlreadyContainedIn(SubLoop
->getParentLoop(), ParentLoop
);
139 Loop
*LoopInfo::ConsiderForLoop(BasicBlock
*BB
, DominatorTree
&DT
) {
140 if (BBMap
.find(BB
) != BBMap
.end()) return 0; // Haven't processed this node?
142 std::vector
<BasicBlock
*> TodoStack
;
144 // Scan the predecessors of BB, checking to see if BB dominates any of
145 // them. This identifies backedges which target this node...
146 for (pred_iterator I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
)
147 if (DT
.dominates(BB
, *I
)) // If BB dominates it's predecessor...
148 TodoStack
.push_back(*I
);
150 if (TodoStack
.empty()) return 0; // No backedges to this block...
152 // Create a new loop to represent this basic block...
153 Loop
*L
= new Loop(BB
);
156 BasicBlock
*EntryBlock
= &BB
->getParent()->getEntryBlock();
158 while (!TodoStack
.empty()) { // Process all the nodes in the loop
159 BasicBlock
*X
= TodoStack
.back();
160 TodoStack
.pop_back();
162 if (!L
->contains(X
) && // As of yet unprocessed??
163 DT
.dominates(EntryBlock
, X
)) { // X is reachable from entry block?
164 // Check to see if this block already belongs to a loop. If this occurs
165 // then we have a case where a loop that is supposed to be a child of the
166 // current loop was processed before the current loop. When this occurs,
167 // this child loop gets added to a part of the current loop, making it a
168 // sibling to the current loop. We have to reparent this loop.
169 if (Loop
*SubLoop
= const_cast<Loop
*>(getLoopFor(X
)))
170 if (SubLoop
->getHeader() == X
&& isNotAlreadyContainedIn(SubLoop
, L
)) {
171 // Remove the subloop from it's current parent...
172 assert(SubLoop
->ParentLoop
&& SubLoop
->ParentLoop
!= L
);
173 Loop
*SLP
= SubLoop
->ParentLoop
; // SubLoopParent
174 std::vector
<Loop
*>::iterator I
=
175 std::find(SLP
->SubLoops
.begin(), SLP
->SubLoops
.end(), SubLoop
);
176 assert(I
!= SLP
->SubLoops
.end() && "SubLoop not a child of parent?");
177 SLP
->SubLoops
.erase(I
); // Remove from parent...
179 // Add the subloop to THIS loop...
180 SubLoop
->ParentLoop
= L
;
181 L
->SubLoops
.push_back(SubLoop
);
184 // Normal case, add the block to our loop...
185 L
->Blocks
.push_back(X
);
187 // Add all of the predecessors of X to the end of the work stack...
188 TodoStack
.insert(TodoStack
.end(), pred_begin(X
), pred_end(X
));
192 // If there are any loops nested within this loop, create them now!
193 for (std::vector
<BasicBlock
*>::iterator I
= L
->Blocks
.begin(),
194 E
= L
->Blocks
.end(); I
!= E
; ++I
)
195 if (Loop
*NewLoop
= ConsiderForLoop(*I
, DT
)) {
196 L
->SubLoops
.push_back(NewLoop
);
197 NewLoop
->ParentLoop
= L
;
200 // Add the basic blocks that comprise this loop to the BBMap so that this
201 // loop can be found for them.
203 for (std::vector
<BasicBlock
*>::iterator I
= L
->Blocks
.begin(),
204 E
= L
->Blocks
.end(); I
!= E
; ++I
) {
205 std::map
<BasicBlock
*, Loop
*>::iterator BBMI
= BBMap
.lower_bound(*I
);
206 if (BBMI
== BBMap
.end() || BBMI
->first
!= *I
) // Not in map yet...
207 BBMap
.insert(BBMI
, std::make_pair(*I
, L
)); // Must be at this level
210 // Now that we have a list of all of the child loops of this loop, check to
211 // see if any of them should actually be nested inside of each other. We can
212 // accidentally pull loops our of their parents, so we must make sure to
213 // organize the loop nests correctly now.
215 std::map
<BasicBlock
*, Loop
*> ContainingLoops
;
216 for (unsigned i
= 0; i
!= L
->SubLoops
.size(); ++i
) {
217 Loop
*Child
= L
->SubLoops
[i
];
218 assert(Child
->getParentLoop() == L
&& "Not proper child loop?");
220 if (Loop
*ContainingLoop
= ContainingLoops
[Child
->getHeader()]) {
221 // If there is already a loop which contains this loop, move this loop
222 // into the containing loop.
223 MoveSiblingLoopInto(Child
, ContainingLoop
);
224 --i
; // The loop got removed from the SubLoops list.
226 // This is currently considered to be a top-level loop. Check to see if
227 // any of the contained blocks are loop headers for subloops we have
228 // already processed.
229 for (unsigned b
= 0, e
= Child
->Blocks
.size(); b
!= e
; ++b
) {
230 Loop
*&BlockLoop
= ContainingLoops
[Child
->Blocks
[b
]];
231 if (BlockLoop
== 0) { // Child block not processed yet...
233 } else if (BlockLoop
!= Child
) {
234 Loop
*SubLoop
= BlockLoop
;
235 // Reparent all of the blocks which used to belong to BlockLoops
236 for (unsigned j
= 0, e
= SubLoop
->Blocks
.size(); j
!= e
; ++j
)
237 ContainingLoops
[SubLoop
->Blocks
[j
]] = Child
;
239 // There is already a loop which contains this block, that means
240 // that we should reparent the loop which the block is currently
241 // considered to belong to to be a child of this loop.
242 MoveSiblingLoopInto(SubLoop
, Child
);
243 --i
; // We just shrunk the SubLoops list.
253 /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
254 /// the NewParent Loop, instead of being a sibling of it.
255 void LoopInfo::MoveSiblingLoopInto(Loop
*NewChild
, Loop
*NewParent
) {
256 Loop
*OldParent
= NewChild
->getParentLoop();
257 assert(OldParent
&& OldParent
== NewParent
->getParentLoop() &&
258 NewChild
!= NewParent
&& "Not sibling loops!");
260 // Remove NewChild from being a child of OldParent
261 std::vector
<Loop
*>::iterator I
=
262 std::find(OldParent
->SubLoops
.begin(), OldParent
->SubLoops
.end(), NewChild
);
263 assert(I
!= OldParent
->SubLoops
.end() && "Parent fields incorrect??");
264 OldParent
->SubLoops
.erase(I
); // Remove from parent's subloops list
265 NewChild
->ParentLoop
= 0;
267 InsertLoopInto(NewChild
, NewParent
);
270 /// InsertLoopInto - This inserts loop L into the specified parent loop. If the
271 /// parent loop contains a loop which should contain L, the loop gets inserted
273 void LoopInfo::InsertLoopInto(Loop
*L
, Loop
*Parent
) {
274 BasicBlock
*LHeader
= L
->getHeader();
275 assert(Parent
->contains(LHeader
) && "This loop should not be inserted here!");
277 // Check to see if it belongs in a child loop...
278 for (unsigned i
= 0, e
= Parent
->SubLoops
.size(); i
!= e
; ++i
)
279 if (Parent
->SubLoops
[i
]->contains(LHeader
)) {
280 InsertLoopInto(L
, Parent
->SubLoops
[i
]);
284 // If not, insert it here!
285 Parent
->SubLoops
.push_back(L
);
286 L
->ParentLoop
= Parent
;
289 /// changeLoopFor - Change the top-level loop that contains BB to the
290 /// specified loop. This should be used by transformations that restructure
291 /// the loop hierarchy tree.
292 void LoopInfo::changeLoopFor(BasicBlock
*BB
, Loop
*L
) {
293 Loop
*&OldLoop
= BBMap
[BB
];
294 assert(OldLoop
&& "Block not in a loop yet!");
298 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
299 /// list with the indicated loop.
300 void LoopInfo::changeTopLevelLoop(Loop
*OldLoop
, Loop
*NewLoop
) {
301 std::vector
<Loop
*>::iterator I
= std::find(TopLevelLoops
.begin(),
302 TopLevelLoops
.end(), OldLoop
);
303 assert(I
!= TopLevelLoops
.end() && "Old loop not at top level!");
305 assert(NewLoop
->ParentLoop
== 0 && OldLoop
->ParentLoop
== 0 &&
306 "Loops already embedded into a subloop!");
309 /// removeLoop - This removes the specified top-level loop from this loop info
310 /// object. The loop is not deleted, as it will presumably be inserted into
312 Loop
*LoopInfo::removeLoop(iterator I
) {
313 assert(I
!= end() && "Cannot remove end iterator!");
315 assert(L
->getParentLoop() == 0 && "Not a top-level loop!");
316 TopLevelLoops
.erase(TopLevelLoops
.begin() + (I
-begin()));
320 /// removeBlock - This method completely removes BB from all data structures,
321 /// including all of the Loop objects it is nested in and our mapping from
322 /// BasicBlocks to loops.
323 void LoopInfo::removeBlock(BasicBlock
*BB
) {
324 std::map
<BasicBlock
*, Loop
*>::iterator I
= BBMap
.find(BB
);
325 if (I
!= BBMap
.end()) {
326 for (Loop
*L
= I
->second
; L
; L
= L
->getParentLoop())
327 L
->removeBlockFromLoop(BB
);
334 //===----------------------------------------------------------------------===//
335 // APIs for simple analysis of the loop.
338 /// getExitingBlocks - Return all blocks inside the loop that have successors
339 /// outside of the loop. These are the blocks _inside of the current loop_
340 /// which branch out. The returned list is always unique.
342 void Loop::getExitingBlocks(std::vector
<BasicBlock
*> &ExitingBlocks
) const {
343 // Sort the blocks vector so that we can use binary search to do quick
345 std::vector
<BasicBlock
*> LoopBBs(block_begin(), block_end());
346 std::sort(LoopBBs
.begin(), LoopBBs
.end());
348 for (std::vector
<BasicBlock
*>::const_iterator BI
= Blocks
.begin(),
349 BE
= Blocks
.end(); BI
!= BE
; ++BI
)
350 for (succ_iterator I
= succ_begin(*BI
), E
= succ_end(*BI
); I
!= E
; ++I
)
351 if (!std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), *I
)) {
352 // Not in current loop? It must be an exit block.
353 ExitingBlocks
.push_back(*BI
);
358 /// getExitBlocks - Return all of the successor blocks of this loop. These
359 /// are the blocks _outside of the current loop_ which are branched to.
361 void Loop::getExitBlocks(std::vector
<BasicBlock
*> &ExitBlocks
) const {
362 // Sort the blocks vector so that we can use binary search to do quick
364 std::vector
<BasicBlock
*> LoopBBs(block_begin(), block_end());
365 std::sort(LoopBBs
.begin(), LoopBBs
.end());
367 for (std::vector
<BasicBlock
*>::const_iterator BI
= Blocks
.begin(),
368 BE
= Blocks
.end(); BI
!= BE
; ++BI
)
369 for (succ_iterator I
= succ_begin(*BI
), E
= succ_end(*BI
); I
!= E
; ++I
)
370 if (!std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), *I
))
371 // Not in current loop? It must be an exit block.
372 ExitBlocks
.push_back(*I
);
375 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. These
376 /// are the blocks _outside of the current loop_ which are branched to. This
377 /// assumes that loop is in canonical form.
379 void Loop::getUniqueExitBlocks(std::vector
<BasicBlock
*> &ExitBlocks
) const {
380 // Sort the blocks vector so that we can use binary search to do quick
382 std::vector
<BasicBlock
*> LoopBBs(block_begin(), block_end());
383 std::sort(LoopBBs
.begin(), LoopBBs
.end());
385 std::vector
<BasicBlock
*> switchExitBlocks
;
387 for (std::vector
<BasicBlock
*>::const_iterator BI
= Blocks
.begin(),
388 BE
= Blocks
.end(); BI
!= BE
; ++BI
) {
390 BasicBlock
*current
= *BI
;
391 switchExitBlocks
.clear();
393 for (succ_iterator I
= succ_begin(*BI
), E
= succ_end(*BI
); I
!= E
; ++I
) {
394 if (std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), *I
))
395 // If block is inside the loop then it is not a exit block.
398 pred_iterator PI
= pred_begin(*I
);
399 BasicBlock
*firstPred
= *PI
;
401 // If current basic block is this exit block's first predecessor
402 // then only insert exit block in to the output ExitBlocks vector.
403 // This ensures that same exit block is not inserted twice into
404 // ExitBlocks vector.
405 if (current
!= firstPred
)
408 // If a terminator has more then two successors, for example SwitchInst,
409 // then it is possible that there are multiple edges from current block
410 // to one exit block.
411 if (current
->getTerminator()->getNumSuccessors() <= 2) {
412 ExitBlocks
.push_back(*I
);
416 // In case of multiple edges from current block to exit block, collect
417 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
419 if (std::find(switchExitBlocks
.begin(), switchExitBlocks
.end(), *I
)
420 == switchExitBlocks
.end()) {
421 switchExitBlocks
.push_back(*I
);
422 ExitBlocks
.push_back(*I
);
429 /// getLoopPreheader - If there is a preheader for this loop, return it. A
430 /// loop has a preheader if there is only one edge to the header of the loop
431 /// from outside of the loop. If this is the case, the block branching to the
432 /// header of the loop is the preheader node.
434 /// This method returns null if there is no preheader for the loop.
436 BasicBlock
*Loop::getLoopPreheader() const {
437 // Keep track of nodes outside the loop branching to the header...
440 // Loop over the predecessors of the header node...
441 BasicBlock
*Header
= getHeader();
442 for (pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
444 if (!contains(*PI
)) { // If the block is not in the loop...
445 if (Out
&& Out
!= *PI
)
446 return 0; // Multiple predecessors outside the loop
450 // Make sure there is only one exit out of the preheader.
451 assert(Out
&& "Header of loop has no predecessors from outside loop?");
452 succ_iterator SI
= succ_begin(Out
);
454 if (SI
!= succ_end(Out
))
455 return 0; // Multiple exits from the block, must not be a preheader.
457 // If there is exactly one preheader, return it. If there was zero, then Out
462 /// getLoopLatch - If there is a latch block for this loop, return it. A
463 /// latch block is the canonical backedge for a loop. A loop header in normal
464 /// form has two edges into it: one from a preheader and one from a latch
466 BasicBlock
*Loop::getLoopLatch() const {
467 BasicBlock
*Header
= getHeader();
468 pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
469 if (PI
== PE
) return 0; // no preds?
471 BasicBlock
*Latch
= 0;
475 if (PI
== PE
) return 0; // only one pred?
478 if (Latch
) return 0; // multiple backedges
482 if (PI
!= PE
) return 0; // more than two preds
487 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
488 /// induction variable: an integer recurrence that starts at 0 and increments by
489 /// one each time through the loop. If so, return the phi node that corresponds
492 PHINode
*Loop::getCanonicalInductionVariable() const {
493 BasicBlock
*H
= getHeader();
495 BasicBlock
*Incoming
= 0, *Backedge
= 0;
496 pred_iterator PI
= pred_begin(H
);
497 assert(PI
!= pred_end(H
) && "Loop must have at least one backedge!");
499 if (PI
== pred_end(H
)) return 0; // dead loop
501 if (PI
!= pred_end(H
)) return 0; // multiple backedges?
503 if (contains(Incoming
)) {
504 if (contains(Backedge
))
506 std::swap(Incoming
, Backedge
);
507 } else if (!contains(Backedge
))
510 // Loop over all of the PHI nodes, looking for a canonical indvar.
511 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
512 PHINode
*PN
= cast
<PHINode
>(I
);
513 if (Instruction
*Inc
=
514 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
515 if (Inc
->getOpcode() == Instruction::Add
&& Inc
->getOperand(0) == PN
)
516 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
517 if (CI
->equalsInt(1))
523 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
524 /// the canonical induction variable value for the "next" iteration of the loop.
525 /// This always succeeds if getCanonicalInductionVariable succeeds.
527 Instruction
*Loop::getCanonicalInductionVariableIncrement() const {
528 if (PHINode
*PN
= getCanonicalInductionVariable()) {
529 bool P1InLoop
= contains(PN
->getIncomingBlock(1));
530 return cast
<Instruction
>(PN
->getIncomingValue(P1InLoop
));
535 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
536 /// times the loop will be executed. Note that this means that the backedge of
537 /// the loop executes N-1 times. If the trip-count cannot be determined, this
540 Value
*Loop::getTripCount() const {
541 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
542 // canonical induction variable and V is the trip count of the loop.
543 Instruction
*Inc
= getCanonicalInductionVariableIncrement();
544 if (Inc
== 0) return 0;
545 PHINode
*IV
= cast
<PHINode
>(Inc
->getOperand(0));
547 BasicBlock
*BackedgeBlock
=
548 IV
->getIncomingBlock(contains(IV
->getIncomingBlock(1)));
550 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BackedgeBlock
->getTerminator()))
551 if (BI
->isConditional()) {
552 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
553 if (ICI
->getOperand(0) == Inc
)
554 if (BI
->getSuccessor(0) == getHeader()) {
555 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
556 return ICI
->getOperand(1);
557 } else if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
) {
558 return ICI
->getOperand(1);
566 /// isLCSSAForm - Return true if the Loop is in LCSSA form
567 bool Loop::isLCSSAForm() const {
568 // Sort the blocks vector so that we can use binary search to do quick
570 SmallPtrSet
<BasicBlock
*, 16> LoopBBs(block_begin(), block_end());
572 for (block_iterator BI
= block_begin(), E
= block_end(); BI
!= E
; ++BI
) {
573 BasicBlock
*BB
= *BI
;
574 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
575 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
577 BasicBlock
*UserBB
= cast
<Instruction
>(*UI
)->getParent();
578 if (PHINode
*P
= dyn_cast
<PHINode
>(*UI
)) {
579 unsigned OperandNo
= UI
.getOperandNo();
580 UserBB
= P
->getIncomingBlock(OperandNo
/2);
583 // Check the current block, as a fast-path. Most values are used in the
584 // same block they are defined in.
585 if (UserBB
!= BB
&& !LoopBBs
.count(UserBB
))
593 //===-------------------------------------------------------------------===//
594 // APIs for updating loop information after changing the CFG
597 /// addBasicBlockToLoop - This function is used by other analyses to update loop
598 /// information. NewBB is set to be a new member of the current loop. Because
599 /// of this, it is added as a member of all parent loops, and is added to the
600 /// specified LoopInfo object as being in the current basic block. It is not
601 /// valid to replace the loop header with this method.
603 void Loop::addBasicBlockToLoop(BasicBlock
*NewBB
, LoopInfo
&LI
) {
604 assert((Blocks
.empty() || LI
[getHeader()] == this) &&
605 "Incorrect LI specified for this loop!");
606 assert(NewBB
&& "Cannot add a null basic block to the loop!");
607 assert(LI
[NewBB
] == 0 && "BasicBlock already in the loop!");
609 // Add the loop mapping to the LoopInfo object...
610 LI
.BBMap
[NewBB
] = this;
612 // Add the basic block to this loop and all parent loops...
615 L
->Blocks
.push_back(NewBB
);
616 L
= L
->getParentLoop();
620 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
621 /// the OldChild entry in our children list with NewChild, and updates the
622 /// parent pointers of the two loops as appropriate.
623 void Loop::replaceChildLoopWith(Loop
*OldChild
, Loop
*NewChild
) {
624 assert(OldChild
->ParentLoop
== this && "This loop is already broken!");
625 assert(NewChild
->ParentLoop
== 0 && "NewChild already has a parent!");
626 std::vector
<Loop
*>::iterator I
= std::find(SubLoops
.begin(), SubLoops
.end(),
628 assert(I
!= SubLoops
.end() && "OldChild not in loop!");
630 OldChild
->ParentLoop
= 0;
631 NewChild
->ParentLoop
= this;
634 /// addChildLoop - Add the specified loop to be a child of this loop.
636 void Loop::addChildLoop(Loop
*NewChild
) {
637 assert(NewChild
->ParentLoop
== 0 && "NewChild already has a parent!");
638 NewChild
->ParentLoop
= this;
639 SubLoops
.push_back(NewChild
);
643 static void RemoveFromVector(std::vector
<T
*> &V
, T
*N
) {
644 typename
std::vector
<T
*>::iterator I
= std::find(V
.begin(), V
.end(), N
);
645 assert(I
!= V
.end() && "N is not in this list!");
649 /// removeChildLoop - This removes the specified child from being a subloop of
650 /// this loop. The loop is not deleted, as it will presumably be inserted
651 /// into another loop.
652 Loop
*Loop::removeChildLoop(iterator I
) {
653 assert(I
!= SubLoops
.end() && "Cannot remove end iterator!");
655 assert(Child
->ParentLoop
== this && "Child is not a child of this loop!");
656 SubLoops
.erase(SubLoops
.begin()+(I
-begin()));
657 Child
->ParentLoop
= 0;
662 /// removeBlockFromLoop - This removes the specified basic block from the
663 /// current loop, updating the Blocks and ExitBlocks lists as appropriate. This
664 /// does not update the mapping in the LoopInfo class.
665 void Loop::removeBlockFromLoop(BasicBlock
*BB
) {
666 RemoveFromVector(Blocks
, BB
);
669 // Ensure this file gets linked when LoopInfo.h is used.
670 DEFINING_FILE_FOR(LoopInfo
)