Fold a binary operator with constant operands when expanding code for a SCEV.
[llvm-complete.git] / lib / Support / APInt.cpp
blob267aaf81d449bf8dd0cb186a3ed0eaf66d442547
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Sheng Zhou and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <math.h>
21 #include <limits>
22 #include <cstring>
23 #include <cstdlib>
24 #ifndef NDEBUG
25 #include <iomanip>
26 #endif
28 using namespace llvm;
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(uint32_t numWords) {
33 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(uint32_t numWords) {
42 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
47 APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
48 : BitWidth(numBits), VAL(0) {
49 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
50 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
51 if (isSingleWord())
52 VAL = val;
53 else {
54 pVal = getClearedMemory(getNumWords());
55 pVal[0] = val;
56 if (isSigned && int64_t(val) < 0)
57 for (unsigned i = 1; i < getNumWords(); ++i)
58 pVal[i] = -1ULL;
60 clearUnusedBits();
63 APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
64 : BitWidth(numBits), VAL(0) {
65 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
66 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
67 assert(bigVal && "Null pointer detected!");
68 if (isSingleWord())
69 VAL = bigVal[0];
70 else {
71 // Get memory, cleared to 0
72 pVal = getClearedMemory(getNumWords());
73 // Calculate the number of words to copy
74 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
75 // Copy the words from bigVal to pVal
76 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
78 // Make sure unused high bits are cleared
79 clearUnusedBits();
82 APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
83 uint8_t radix)
84 : BitWidth(numbits), VAL(0) {
85 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
86 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
87 fromString(numbits, StrStart, slen, radix);
90 APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
91 : BitWidth(numbits), VAL(0) {
92 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
94 assert(!Val.empty() && "String empty?");
95 fromString(numbits, Val.c_str(), Val.size(), radix);
98 APInt::APInt(const APInt& that)
99 : BitWidth(that.BitWidth), VAL(0) {
100 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
101 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
102 if (isSingleWord())
103 VAL = that.VAL;
104 else {
105 pVal = getMemory(getNumWords());
106 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
110 APInt::~APInt() {
111 if (!isSingleWord() && pVal)
112 delete [] pVal;
115 APInt& APInt::operator=(const APInt& RHS) {
116 // Don't do anything for X = X
117 if (this == &RHS)
118 return *this;
120 // If the bitwidths are the same, we can avoid mucking with memory
121 if (BitWidth == RHS.getBitWidth()) {
122 if (isSingleWord())
123 VAL = RHS.VAL;
124 else
125 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
126 return *this;
129 if (isSingleWord())
130 if (RHS.isSingleWord())
131 VAL = RHS.VAL;
132 else {
133 VAL = 0;
134 pVal = getMemory(RHS.getNumWords());
135 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
137 else if (getNumWords() == RHS.getNumWords())
138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
139 else if (RHS.isSingleWord()) {
140 delete [] pVal;
141 VAL = RHS.VAL;
142 } else {
143 delete [] pVal;
144 pVal = getMemory(RHS.getNumWords());
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
147 BitWidth = RHS.BitWidth;
148 return clearUnusedBits();
151 APInt& APInt::operator=(uint64_t RHS) {
152 if (isSingleWord())
153 VAL = RHS;
154 else {
155 pVal[0] = RHS;
156 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
158 return clearUnusedBits();
161 /// add_1 - This function adds a single "digit" integer, y, to the multiple
162 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
163 /// 1 is returned if there is a carry out, otherwise 0 is returned.
164 /// @returns the carry of the addition.
165 static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
166 for (uint32_t i = 0; i < len; ++i) {
167 dest[i] = y + x[i];
168 if (dest[i] < y)
169 y = 1; // Carry one to next digit.
170 else {
171 y = 0; // No need to carry so exit early
172 break;
175 return y;
178 /// @brief Prefix increment operator. Increments the APInt by one.
179 APInt& APInt::operator++() {
180 if (isSingleWord())
181 ++VAL;
182 else
183 add_1(pVal, pVal, getNumWords(), 1);
184 return clearUnusedBits();
187 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
188 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
189 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
190 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
191 /// In other words, if y > x then this function returns 1, otherwise 0.
192 /// @returns the borrow out of the subtraction
193 static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
194 for (uint32_t i = 0; i < len; ++i) {
195 uint64_t X = x[i];
196 x[i] -= y;
197 if (y > X)
198 y = 1; // We have to "borrow 1" from next "digit"
199 else {
200 y = 0; // No need to borrow
201 break; // Remaining digits are unchanged so exit early
204 return bool(y);
207 /// @brief Prefix decrement operator. Decrements the APInt by one.
208 APInt& APInt::operator--() {
209 if (isSingleWord())
210 --VAL;
211 else
212 sub_1(pVal, getNumWords(), 1);
213 return clearUnusedBits();
216 /// add - This function adds the integer array x to the integer array Y and
217 /// places the result in dest.
218 /// @returns the carry out from the addition
219 /// @brief General addition of 64-bit integer arrays
220 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
221 uint32_t len) {
222 bool carry = false;
223 for (uint32_t i = 0; i< len; ++i) {
224 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
225 dest[i] = x[i] + y[i] + carry;
226 carry = dest[i] < limit || (carry && dest[i] == limit);
228 return carry;
231 /// Adds the RHS APint to this APInt.
232 /// @returns this, after addition of RHS.
233 /// @brief Addition assignment operator.
234 APInt& APInt::operator+=(const APInt& RHS) {
235 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236 if (isSingleWord())
237 VAL += RHS.VAL;
238 else {
239 add(pVal, pVal, RHS.pVal, getNumWords());
241 return clearUnusedBits();
244 /// Subtracts the integer array y from the integer array x
245 /// @returns returns the borrow out.
246 /// @brief Generalized subtraction of 64-bit integer arrays.
247 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
248 uint32_t len) {
249 bool borrow = false;
250 for (uint32_t i = 0; i < len; ++i) {
251 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
252 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
253 dest[i] = x_tmp - y[i];
255 return borrow;
258 /// Subtracts the RHS APInt from this APInt
259 /// @returns this, after subtraction
260 /// @brief Subtraction assignment operator.
261 APInt& APInt::operator-=(const APInt& RHS) {
262 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
263 if (isSingleWord())
264 VAL -= RHS.VAL;
265 else
266 sub(pVal, pVal, RHS.pVal, getNumWords());
267 return clearUnusedBits();
270 /// Multiplies an integer array, x by a a uint64_t integer and places the result
271 /// into dest.
272 /// @returns the carry out of the multiplication.
273 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
274 static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
275 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
276 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
277 uint64_t carry = 0;
279 // For each digit of x.
280 for (uint32_t i = 0; i < len; ++i) {
281 // Split x into high and low words
282 uint64_t lx = x[i] & 0xffffffffULL;
283 uint64_t hx = x[i] >> 32;
284 // hasCarry - A flag to indicate if there is a carry to the next digit.
285 // hasCarry == 0, no carry
286 // hasCarry == 1, has carry
287 // hasCarry == 2, no carry and the calculation result == 0.
288 uint8_t hasCarry = 0;
289 dest[i] = carry + lx * ly;
290 // Determine if the add above introduces carry.
291 hasCarry = (dest[i] < carry) ? 1 : 0;
292 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
293 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
294 // (2^32 - 1) + 2^32 = 2^64.
295 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
297 carry += (lx * hy) & 0xffffffffULL;
298 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
299 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
300 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
302 return carry;
305 /// Multiplies integer array x by integer array y and stores the result into
306 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
307 /// @brief Generalized multiplicate of integer arrays.
308 static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
309 uint32_t ylen) {
310 dest[xlen] = mul_1(dest, x, xlen, y[0]);
311 for (uint32_t i = 1; i < ylen; ++i) {
312 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
313 uint64_t carry = 0, lx = 0, hx = 0;
314 for (uint32_t j = 0; j < xlen; ++j) {
315 lx = x[j] & 0xffffffffULL;
316 hx = x[j] >> 32;
317 // hasCarry - A flag to indicate if has carry.
318 // hasCarry == 0, no carry
319 // hasCarry == 1, has carry
320 // hasCarry == 2, no carry and the calculation result == 0.
321 uint8_t hasCarry = 0;
322 uint64_t resul = carry + lx * ly;
323 hasCarry = (resul < carry) ? 1 : 0;
324 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
325 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
327 carry += (lx * hy) & 0xffffffffULL;
328 resul = (carry << 32) | (resul & 0xffffffffULL);
329 dest[i+j] += resul;
330 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
331 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
332 ((lx * hy) >> 32) + hx * hy;
334 dest[i+xlen] = carry;
338 APInt& APInt::operator*=(const APInt& RHS) {
339 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
340 if (isSingleWord()) {
341 VAL *= RHS.VAL;
342 clearUnusedBits();
343 return *this;
346 // Get some bit facts about LHS and check for zero
347 uint32_t lhsBits = getActiveBits();
348 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
349 if (!lhsWords)
350 // 0 * X ===> 0
351 return *this;
353 // Get some bit facts about RHS and check for zero
354 uint32_t rhsBits = RHS.getActiveBits();
355 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
356 if (!rhsWords) {
357 // X * 0 ===> 0
358 clear();
359 return *this;
362 // Allocate space for the result
363 uint32_t destWords = rhsWords + lhsWords;
364 uint64_t *dest = getMemory(destWords);
366 // Perform the long multiply
367 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
369 // Copy result back into *this
370 clear();
371 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
372 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
374 // delete dest array and return
375 delete[] dest;
376 return *this;
379 APInt& APInt::operator&=(const APInt& RHS) {
380 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
381 if (isSingleWord()) {
382 VAL &= RHS.VAL;
383 return *this;
385 uint32_t numWords = getNumWords();
386 for (uint32_t i = 0; i < numWords; ++i)
387 pVal[i] &= RHS.pVal[i];
388 return *this;
391 APInt& APInt::operator|=(const APInt& RHS) {
392 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
393 if (isSingleWord()) {
394 VAL |= RHS.VAL;
395 return *this;
397 uint32_t numWords = getNumWords();
398 for (uint32_t i = 0; i < numWords; ++i)
399 pVal[i] |= RHS.pVal[i];
400 return *this;
403 APInt& APInt::operator^=(const APInt& RHS) {
404 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
405 if (isSingleWord()) {
406 VAL ^= RHS.VAL;
407 this->clearUnusedBits();
408 return *this;
410 uint32_t numWords = getNumWords();
411 for (uint32_t i = 0; i < numWords; ++i)
412 pVal[i] ^= RHS.pVal[i];
413 return clearUnusedBits();
416 APInt APInt::operator&(const APInt& RHS) const {
417 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
418 if (isSingleWord())
419 return APInt(getBitWidth(), VAL & RHS.VAL);
421 uint32_t numWords = getNumWords();
422 uint64_t* val = getMemory(numWords);
423 for (uint32_t i = 0; i < numWords; ++i)
424 val[i] = pVal[i] & RHS.pVal[i];
425 return APInt(val, getBitWidth());
428 APInt APInt::operator|(const APInt& RHS) const {
429 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
430 if (isSingleWord())
431 return APInt(getBitWidth(), VAL | RHS.VAL);
433 uint32_t numWords = getNumWords();
434 uint64_t *val = getMemory(numWords);
435 for (uint32_t i = 0; i < numWords; ++i)
436 val[i] = pVal[i] | RHS.pVal[i];
437 return APInt(val, getBitWidth());
440 APInt APInt::operator^(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL ^ RHS.VAL);
445 uint32_t numWords = getNumWords();
446 uint64_t *val = getMemory(numWords);
447 for (uint32_t i = 0; i < numWords; ++i)
448 val[i] = pVal[i] ^ RHS.pVal[i];
450 // 0^0==1 so clear the high bits in case they got set.
451 return APInt(val, getBitWidth()).clearUnusedBits();
454 bool APInt::operator !() const {
455 if (isSingleWord())
456 return !VAL;
458 for (uint32_t i = 0; i < getNumWords(); ++i)
459 if (pVal[i])
460 return false;
461 return true;
464 APInt APInt::operator*(const APInt& RHS) const {
465 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
466 if (isSingleWord())
467 return APInt(BitWidth, VAL * RHS.VAL);
468 APInt Result(*this);
469 Result *= RHS;
470 return Result.clearUnusedBits();
473 APInt APInt::operator+(const APInt& RHS) const {
474 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
475 if (isSingleWord())
476 return APInt(BitWidth, VAL + RHS.VAL);
477 APInt Result(BitWidth, 0);
478 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
479 return Result.clearUnusedBits();
482 APInt APInt::operator-(const APInt& RHS) const {
483 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
484 if (isSingleWord())
485 return APInt(BitWidth, VAL - RHS.VAL);
486 APInt Result(BitWidth, 0);
487 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
488 return Result.clearUnusedBits();
491 bool APInt::operator[](uint32_t bitPosition) const {
492 return (maskBit(bitPosition) &
493 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
496 bool APInt::operator==(const APInt& RHS) const {
497 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
498 if (isSingleWord())
499 return VAL == RHS.VAL;
501 // Get some facts about the number of bits used in the two operands.
502 uint32_t n1 = getActiveBits();
503 uint32_t n2 = RHS.getActiveBits();
505 // If the number of bits isn't the same, they aren't equal
506 if (n1 != n2)
507 return false;
509 // If the number of bits fits in a word, we only need to compare the low word.
510 if (n1 <= APINT_BITS_PER_WORD)
511 return pVal[0] == RHS.pVal[0];
513 // Otherwise, compare everything
514 for (int i = whichWord(n1 - 1); i >= 0; --i)
515 if (pVal[i] != RHS.pVal[i])
516 return false;
517 return true;
520 bool APInt::operator==(uint64_t Val) const {
521 if (isSingleWord())
522 return VAL == Val;
524 uint32_t n = getActiveBits();
525 if (n <= APINT_BITS_PER_WORD)
526 return pVal[0] == Val;
527 else
528 return false;
531 bool APInt::ult(const APInt& RHS) const {
532 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
533 if (isSingleWord())
534 return VAL < RHS.VAL;
536 // Get active bit length of both operands
537 uint32_t n1 = getActiveBits();
538 uint32_t n2 = RHS.getActiveBits();
540 // If magnitude of LHS is less than RHS, return true.
541 if (n1 < n2)
542 return true;
544 // If magnitude of RHS is greather than LHS, return false.
545 if (n2 < n1)
546 return false;
548 // If they bot fit in a word, just compare the low order word
549 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
550 return pVal[0] < RHS.pVal[0];
552 // Otherwise, compare all words
553 uint32_t topWord = whichWord(std::max(n1,n2)-1);
554 for (int i = topWord; i >= 0; --i) {
555 if (pVal[i] > RHS.pVal[i])
556 return false;
557 if (pVal[i] < RHS.pVal[i])
558 return true;
560 return false;
563 bool APInt::slt(const APInt& RHS) const {
564 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
565 if (isSingleWord()) {
566 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
567 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
568 return lhsSext < rhsSext;
571 APInt lhs(*this);
572 APInt rhs(RHS);
573 bool lhsNeg = isNegative();
574 bool rhsNeg = rhs.isNegative();
575 if (lhsNeg) {
576 // Sign bit is set so perform two's complement to make it positive
577 lhs.flip();
578 lhs++;
580 if (rhsNeg) {
581 // Sign bit is set so perform two's complement to make it positive
582 rhs.flip();
583 rhs++;
586 // Now we have unsigned values to compare so do the comparison if necessary
587 // based on the negativeness of the values.
588 if (lhsNeg)
589 if (rhsNeg)
590 return lhs.ugt(rhs);
591 else
592 return true;
593 else if (rhsNeg)
594 return false;
595 else
596 return lhs.ult(rhs);
599 APInt& APInt::set(uint32_t bitPosition) {
600 if (isSingleWord())
601 VAL |= maskBit(bitPosition);
602 else
603 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
604 return *this;
607 APInt& APInt::set() {
608 if (isSingleWord()) {
609 VAL = -1ULL;
610 return clearUnusedBits();
613 // Set all the bits in all the words.
614 for (uint32_t i = 0; i < getNumWords(); ++i)
615 pVal[i] = -1ULL;
616 // Clear the unused ones
617 return clearUnusedBits();
620 /// Set the given bit to 0 whose position is given as "bitPosition".
621 /// @brief Set a given bit to 0.
622 APInt& APInt::clear(uint32_t bitPosition) {
623 if (isSingleWord())
624 VAL &= ~maskBit(bitPosition);
625 else
626 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
627 return *this;
630 /// @brief Set every bit to 0.
631 APInt& APInt::clear() {
632 if (isSingleWord())
633 VAL = 0;
634 else
635 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
636 return *this;
639 /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
640 /// this APInt.
641 APInt APInt::operator~() const {
642 APInt Result(*this);
643 Result.flip();
644 return Result;
647 /// @brief Toggle every bit to its opposite value.
648 APInt& APInt::flip() {
649 if (isSingleWord()) {
650 VAL ^= -1ULL;
651 return clearUnusedBits();
653 for (uint32_t i = 0; i < getNumWords(); ++i)
654 pVal[i] ^= -1ULL;
655 return clearUnusedBits();
658 /// Toggle a given bit to its opposite value whose position is given
659 /// as "bitPosition".
660 /// @brief Toggles a given bit to its opposite value.
661 APInt& APInt::flip(uint32_t bitPosition) {
662 assert(bitPosition < BitWidth && "Out of the bit-width range!");
663 if ((*this)[bitPosition]) clear(bitPosition);
664 else set(bitPosition);
665 return *this;
668 uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
669 assert(str != 0 && "Invalid value string");
670 assert(slen > 0 && "Invalid string length");
672 // Each computation below needs to know if its negative
673 uint32_t isNegative = str[0] == '-';
674 if (isNegative) {
675 slen--;
676 str++;
678 // For radixes of power-of-two values, the bits required is accurately and
679 // easily computed
680 if (radix == 2)
681 return slen + isNegative;
682 if (radix == 8)
683 return slen * 3 + isNegative;
684 if (radix == 16)
685 return slen * 4 + isNegative;
687 // Otherwise it must be radix == 10, the hard case
688 assert(radix == 10 && "Invalid radix");
690 // This is grossly inefficient but accurate. We could probably do something
691 // with a computation of roughly slen*64/20 and then adjust by the value of
692 // the first few digits. But, I'm not sure how accurate that could be.
694 // Compute a sufficient number of bits that is always large enough but might
695 // be too large. This avoids the assertion in the constructor.
696 uint32_t sufficient = slen*64/18;
698 // Convert to the actual binary value.
699 APInt tmp(sufficient, str, slen, radix);
701 // Compute how many bits are required.
702 return isNegative + tmp.logBase2() + 1;
705 uint64_t APInt::getHashValue() const {
706 // Put the bit width into the low order bits.
707 uint64_t hash = BitWidth;
709 // Add the sum of the words to the hash.
710 if (isSingleWord())
711 hash += VAL << 6; // clear separation of up to 64 bits
712 else
713 for (uint32_t i = 0; i < getNumWords(); ++i)
714 hash += pVal[i] << 6; // clear sepration of up to 64 bits
715 return hash;
718 /// HiBits - This function returns the high "numBits" bits of this APInt.
719 APInt APInt::getHiBits(uint32_t numBits) const {
720 return APIntOps::lshr(*this, BitWidth - numBits);
723 /// LoBits - This function returns the low "numBits" bits of this APInt.
724 APInt APInt::getLoBits(uint32_t numBits) const {
725 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
726 BitWidth - numBits);
729 bool APInt::isPowerOf2() const {
730 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
733 uint32_t APInt::countLeadingZeros() const {
734 uint32_t Count = 0;
735 if (isSingleWord())
736 Count = CountLeadingZeros_64(VAL);
737 else {
738 for (uint32_t i = getNumWords(); i > 0u; --i) {
739 if (pVal[i-1] == 0)
740 Count += APINT_BITS_PER_WORD;
741 else {
742 Count += CountLeadingZeros_64(pVal[i-1]);
743 break;
747 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
748 if (remainder)
749 Count -= APINT_BITS_PER_WORD - remainder;
750 return Count;
753 static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
754 uint32_t Count = 0;
755 if (skip)
756 V <<= skip;
757 while (V && (V & (1ULL << 63))) {
758 Count++;
759 V <<= 1;
761 return Count;
764 uint32_t APInt::countLeadingOnes() const {
765 if (isSingleWord())
766 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
768 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
769 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
770 int i = getNumWords() - 1;
771 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
772 if (Count == highWordBits) {
773 for (i--; i >= 0; --i) {
774 if (pVal[i] == -1ULL)
775 Count += APINT_BITS_PER_WORD;
776 else {
777 Count += countLeadingOnes_64(pVal[i], 0);
778 break;
782 return Count;
785 uint32_t APInt::countTrailingZeros() const {
786 if (isSingleWord())
787 return CountTrailingZeros_64(VAL);
788 uint32_t Count = 0;
789 uint32_t i = 0;
790 for (; i < getNumWords() && pVal[i] == 0; ++i)
791 Count += APINT_BITS_PER_WORD;
792 if (i < getNumWords())
793 Count += CountTrailingZeros_64(pVal[i]);
794 return Count;
797 uint32_t APInt::countPopulation() const {
798 if (isSingleWord())
799 return CountPopulation_64(VAL);
800 uint32_t Count = 0;
801 for (uint32_t i = 0; i < getNumWords(); ++i)
802 Count += CountPopulation_64(pVal[i]);
803 return Count;
806 APInt APInt::byteSwap() const {
807 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
808 if (BitWidth == 16)
809 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
810 else if (BitWidth == 32)
811 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
812 else if (BitWidth == 48) {
813 uint32_t Tmp1 = uint32_t(VAL >> 16);
814 Tmp1 = ByteSwap_32(Tmp1);
815 uint16_t Tmp2 = uint16_t(VAL);
816 Tmp2 = ByteSwap_16(Tmp2);
817 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
818 } else if (BitWidth == 64)
819 return APInt(BitWidth, ByteSwap_64(VAL));
820 else {
821 APInt Result(BitWidth, 0);
822 char *pByte = (char*)Result.pVal;
823 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
824 char Tmp = pByte[i];
825 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
826 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
828 return Result;
832 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
833 const APInt& API2) {
834 APInt A = API1, B = API2;
835 while (!!B) {
836 APInt T = B;
837 B = APIntOps::urem(A, B);
838 A = T;
840 return A;
843 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
844 union {
845 double D;
846 uint64_t I;
847 } T;
848 T.D = Double;
850 // Get the sign bit from the highest order bit
851 bool isNeg = T.I >> 63;
853 // Get the 11-bit exponent and adjust for the 1023 bit bias
854 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
856 // If the exponent is negative, the value is < 0 so just return 0.
857 if (exp < 0)
858 return APInt(width, 0u);
860 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
861 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
863 // If the exponent doesn't shift all bits out of the mantissa
864 if (exp < 52)
865 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
866 APInt(width, mantissa >> (52 - exp));
868 // If the client didn't provide enough bits for us to shift the mantissa into
869 // then the result is undefined, just return 0
870 if (width <= exp - 52)
871 return APInt(width, 0);
873 // Otherwise, we have to shift the mantissa bits up to the right location
874 APInt Tmp(width, mantissa);
875 Tmp = Tmp.shl(exp - 52);
876 return isNeg ? -Tmp : Tmp;
879 /// RoundToDouble - This function convert this APInt to a double.
880 /// The layout for double is as following (IEEE Standard 754):
881 /// --------------------------------------
882 /// | Sign Exponent Fraction Bias |
883 /// |-------------------------------------- |
884 /// | 1[63] 11[62-52] 52[51-00] 1023 |
885 /// --------------------------------------
886 double APInt::roundToDouble(bool isSigned) const {
888 // Handle the simple case where the value is contained in one uint64_t.
889 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
890 if (isSigned) {
891 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
892 return double(sext);
893 } else
894 return double(VAL);
897 // Determine if the value is negative.
898 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
900 // Construct the absolute value if we're negative.
901 APInt Tmp(isNeg ? -(*this) : (*this));
903 // Figure out how many bits we're using.
904 uint32_t n = Tmp.getActiveBits();
906 // The exponent (without bias normalization) is just the number of bits
907 // we are using. Note that the sign bit is gone since we constructed the
908 // absolute value.
909 uint64_t exp = n;
911 // Return infinity for exponent overflow
912 if (exp > 1023) {
913 if (!isSigned || !isNeg)
914 return std::numeric_limits<double>::infinity();
915 else
916 return -std::numeric_limits<double>::infinity();
918 exp += 1023; // Increment for 1023 bias
920 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
921 // extract the high 52 bits from the correct words in pVal.
922 uint64_t mantissa;
923 unsigned hiWord = whichWord(n-1);
924 if (hiWord == 0) {
925 mantissa = Tmp.pVal[0];
926 if (n > 52)
927 mantissa >>= n - 52; // shift down, we want the top 52 bits.
928 } else {
929 assert(hiWord > 0 && "huh?");
930 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
931 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
932 mantissa = hibits | lobits;
935 // The leading bit of mantissa is implicit, so get rid of it.
936 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
937 union {
938 double D;
939 uint64_t I;
940 } T;
941 T.I = sign | (exp << 52) | mantissa;
942 return T.D;
945 // Truncate to new width.
946 APInt &APInt::trunc(uint32_t width) {
947 assert(width < BitWidth && "Invalid APInt Truncate request");
948 assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
949 uint32_t wordsBefore = getNumWords();
950 BitWidth = width;
951 uint32_t wordsAfter = getNumWords();
952 if (wordsBefore != wordsAfter) {
953 if (wordsAfter == 1) {
954 uint64_t *tmp = pVal;
955 VAL = pVal[0];
956 delete [] tmp;
957 } else {
958 uint64_t *newVal = getClearedMemory(wordsAfter);
959 for (uint32_t i = 0; i < wordsAfter; ++i)
960 newVal[i] = pVal[i];
961 delete [] pVal;
962 pVal = newVal;
965 return clearUnusedBits();
968 // Sign extend to a new width.
969 APInt &APInt::sext(uint32_t width) {
970 assert(width > BitWidth && "Invalid APInt SignExtend request");
971 assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
972 // If the sign bit isn't set, this is the same as zext.
973 if (!isNegative()) {
974 zext(width);
975 return *this;
978 // The sign bit is set. First, get some facts
979 uint32_t wordsBefore = getNumWords();
980 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
981 BitWidth = width;
982 uint32_t wordsAfter = getNumWords();
984 // Mask the high order word appropriately
985 if (wordsBefore == wordsAfter) {
986 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
987 // The extension is contained to the wordsBefore-1th word.
988 uint64_t mask = ~0ULL;
989 if (newWordBits)
990 mask >>= APINT_BITS_PER_WORD - newWordBits;
991 mask <<= wordBits;
992 if (wordsBefore == 1)
993 VAL |= mask;
994 else
995 pVal[wordsBefore-1] |= mask;
996 return clearUnusedBits();
999 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1000 uint64_t *newVal = getMemory(wordsAfter);
1001 if (wordsBefore == 1)
1002 newVal[0] = VAL | mask;
1003 else {
1004 for (uint32_t i = 0; i < wordsBefore; ++i)
1005 newVal[i] = pVal[i];
1006 newVal[wordsBefore-1] |= mask;
1008 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1009 newVal[i] = -1ULL;
1010 if (wordsBefore != 1)
1011 delete [] pVal;
1012 pVal = newVal;
1013 return clearUnusedBits();
1016 // Zero extend to a new width.
1017 APInt &APInt::zext(uint32_t width) {
1018 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1019 assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
1020 uint32_t wordsBefore = getNumWords();
1021 BitWidth = width;
1022 uint32_t wordsAfter = getNumWords();
1023 if (wordsBefore != wordsAfter) {
1024 uint64_t *newVal = getClearedMemory(wordsAfter);
1025 if (wordsBefore == 1)
1026 newVal[0] = VAL;
1027 else
1028 for (uint32_t i = 0; i < wordsBefore; ++i)
1029 newVal[i] = pVal[i];
1030 if (wordsBefore != 1)
1031 delete [] pVal;
1032 pVal = newVal;
1034 return *this;
1037 APInt &APInt::zextOrTrunc(uint32_t width) {
1038 if (BitWidth < width)
1039 return zext(width);
1040 if (BitWidth > width)
1041 return trunc(width);
1042 return *this;
1045 APInt &APInt::sextOrTrunc(uint32_t width) {
1046 if (BitWidth < width)
1047 return sext(width);
1048 if (BitWidth > width)
1049 return trunc(width);
1050 return *this;
1053 /// Arithmetic right-shift this APInt by shiftAmt.
1054 /// @brief Arithmetic right-shift function.
1055 APInt APInt::ashr(uint32_t shiftAmt) const {
1056 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1057 // Handle a degenerate case
1058 if (shiftAmt == 0)
1059 return *this;
1061 // Handle single word shifts with built-in ashr
1062 if (isSingleWord()) {
1063 if (shiftAmt == BitWidth)
1064 return APInt(BitWidth, 0); // undefined
1065 else {
1066 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1067 return APInt(BitWidth,
1068 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1072 // If all the bits were shifted out, the result is, technically, undefined.
1073 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1074 // issues in the algorithm below.
1075 if (shiftAmt == BitWidth) {
1076 if (isNegative())
1077 return APInt(BitWidth, -1ULL);
1078 else
1079 return APInt(BitWidth, 0);
1082 // Create some space for the result.
1083 uint64_t * val = new uint64_t[getNumWords()];
1085 // Compute some values needed by the following shift algorithms
1086 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1087 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1088 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1089 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1090 if (bitsInWord == 0)
1091 bitsInWord = APINT_BITS_PER_WORD;
1093 // If we are shifting whole words, just move whole words
1094 if (wordShift == 0) {
1095 // Move the words containing significant bits
1096 for (uint32_t i = 0; i <= breakWord; ++i)
1097 val[i] = pVal[i+offset]; // move whole word
1099 // Adjust the top significant word for sign bit fill, if negative
1100 if (isNegative())
1101 if (bitsInWord < APINT_BITS_PER_WORD)
1102 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1103 } else {
1104 // Shift the low order words
1105 for (uint32_t i = 0; i < breakWord; ++i) {
1106 // This combines the shifted corresponding word with the low bits from
1107 // the next word (shifted into this word's high bits).
1108 val[i] = (pVal[i+offset] >> wordShift) |
1109 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1112 // Shift the break word. In this case there are no bits from the next word
1113 // to include in this word.
1114 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1116 // Deal with sign extenstion in the break word, and possibly the word before
1117 // it.
1118 if (isNegative()) {
1119 if (wordShift > bitsInWord) {
1120 if (breakWord > 0)
1121 val[breakWord-1] |=
1122 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1123 val[breakWord] |= ~0ULL;
1124 } else
1125 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1129 // Remaining words are 0 or -1, just assign them.
1130 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1131 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1132 val[i] = fillValue;
1133 return APInt(val, BitWidth).clearUnusedBits();
1136 /// Logical right-shift this APInt by shiftAmt.
1137 /// @brief Logical right-shift function.
1138 APInt APInt::lshr(uint32_t shiftAmt) const {
1139 if (isSingleWord()) {
1140 if (shiftAmt == BitWidth)
1141 return APInt(BitWidth, 0);
1142 else
1143 return APInt(BitWidth, this->VAL >> shiftAmt);
1146 // If all the bits were shifted out, the result is 0. This avoids issues
1147 // with shifting by the size of the integer type, which produces undefined
1148 // results. We define these "undefined results" to always be 0.
1149 if (shiftAmt == BitWidth)
1150 return APInt(BitWidth, 0);
1152 // If none of the bits are shifted out, the result is *this. This avoids
1153 // issues with shifting byt he size of the integer type, which produces
1154 // undefined results in the code below. This is also an optimization.
1155 if (shiftAmt == 0)
1156 return *this;
1158 // Create some space for the result.
1159 uint64_t * val = new uint64_t[getNumWords()];
1161 // If we are shifting less than a word, compute the shift with a simple carry
1162 if (shiftAmt < APINT_BITS_PER_WORD) {
1163 uint64_t carry = 0;
1164 for (int i = getNumWords()-1; i >= 0; --i) {
1165 val[i] = (pVal[i] >> shiftAmt) | carry;
1166 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1168 return APInt(val, BitWidth).clearUnusedBits();
1171 // Compute some values needed by the remaining shift algorithms
1172 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1173 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1175 // If we are shifting whole words, just move whole words
1176 if (wordShift == 0) {
1177 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1178 val[i] = pVal[i+offset];
1179 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1180 val[i] = 0;
1181 return APInt(val,BitWidth).clearUnusedBits();
1184 // Shift the low order words
1185 uint32_t breakWord = getNumWords() - offset -1;
1186 for (uint32_t i = 0; i < breakWord; ++i)
1187 val[i] = (pVal[i+offset] >> wordShift) |
1188 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1189 // Shift the break word.
1190 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1192 // Remaining words are 0
1193 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1194 val[i] = 0;
1195 return APInt(val, BitWidth).clearUnusedBits();
1198 /// Left-shift this APInt by shiftAmt.
1199 /// @brief Left-shift function.
1200 APInt APInt::shl(uint32_t shiftAmt) const {
1201 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1202 if (isSingleWord()) {
1203 if (shiftAmt == BitWidth)
1204 return APInt(BitWidth, 0); // avoid undefined shift results
1205 return APInt(BitWidth, VAL << shiftAmt);
1208 // If all the bits were shifted out, the result is 0. This avoids issues
1209 // with shifting by the size of the integer type, which produces undefined
1210 // results. We define these "undefined results" to always be 0.
1211 if (shiftAmt == BitWidth)
1212 return APInt(BitWidth, 0);
1214 // If none of the bits are shifted out, the result is *this. This avoids a
1215 // lshr by the words size in the loop below which can produce incorrect
1216 // results. It also avoids the expensive computation below for a common case.
1217 if (shiftAmt == 0)
1218 return *this;
1220 // Create some space for the result.
1221 uint64_t * val = new uint64_t[getNumWords()];
1223 // If we are shifting less than a word, do it the easy way
1224 if (shiftAmt < APINT_BITS_PER_WORD) {
1225 uint64_t carry = 0;
1226 for (uint32_t i = 0; i < getNumWords(); i++) {
1227 val[i] = pVal[i] << shiftAmt | carry;
1228 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1230 return APInt(val, BitWidth).clearUnusedBits();
1233 // Compute some values needed by the remaining shift algorithms
1234 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1235 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1237 // If we are shifting whole words, just move whole words
1238 if (wordShift == 0) {
1239 for (uint32_t i = 0; i < offset; i++)
1240 val[i] = 0;
1241 for (uint32_t i = offset; i < getNumWords(); i++)
1242 val[i] = pVal[i-offset];
1243 return APInt(val,BitWidth).clearUnusedBits();
1246 // Copy whole words from this to Result.
1247 uint32_t i = getNumWords() - 1;
1248 for (; i > offset; --i)
1249 val[i] = pVal[i-offset] << wordShift |
1250 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1251 val[offset] = pVal[0] << wordShift;
1252 for (i = 0; i < offset; ++i)
1253 val[i] = 0;
1254 return APInt(val, BitWidth).clearUnusedBits();
1257 APInt APInt::rotl(uint32_t rotateAmt) const {
1258 if (rotateAmt == 0)
1259 return *this;
1260 // Don't get too fancy, just use existing shift/or facilities
1261 APInt hi(*this);
1262 APInt lo(*this);
1263 hi.shl(rotateAmt);
1264 lo.lshr(BitWidth - rotateAmt);
1265 return hi | lo;
1268 APInt APInt::rotr(uint32_t rotateAmt) const {
1269 if (rotateAmt == 0)
1270 return *this;
1271 // Don't get too fancy, just use existing shift/or facilities
1272 APInt hi(*this);
1273 APInt lo(*this);
1274 lo.lshr(rotateAmt);
1275 hi.shl(BitWidth - rotateAmt);
1276 return hi | lo;
1279 // Square Root - this method computes and returns the square root of "this".
1280 // Three mechanisms are used for computation. For small values (<= 5 bits),
1281 // a table lookup is done. This gets some performance for common cases. For
1282 // values using less than 52 bits, the value is converted to double and then
1283 // the libc sqrt function is called. The result is rounded and then converted
1284 // back to a uint64_t which is then used to construct the result. Finally,
1285 // the Babylonian method for computing square roots is used.
1286 APInt APInt::sqrt() const {
1288 // Determine the magnitude of the value.
1289 uint32_t magnitude = getActiveBits();
1291 // Use a fast table for some small values. This also gets rid of some
1292 // rounding errors in libc sqrt for small values.
1293 if (magnitude <= 5) {
1294 static const uint8_t results[32] = {
1295 /* 0 */ 0,
1296 /* 1- 2 */ 1, 1,
1297 /* 3- 6 */ 2, 2, 2, 2,
1298 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1299 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1300 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1301 /* 31 */ 6
1303 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1306 // If the magnitude of the value fits in less than 52 bits (the precision of
1307 // an IEEE double precision floating point value), then we can use the
1308 // libc sqrt function which will probably use a hardware sqrt computation.
1309 // This should be faster than the algorithm below.
1310 if (magnitude < 52) {
1311 #ifdef _MSC_VER
1312 // Amazingly, VC++ doesn't have round().
1313 return APInt(BitWidth,
1314 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1315 #else
1316 return APInt(BitWidth,
1317 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1318 #endif
1321 // Okay, all the short cuts are exhausted. We must compute it. The following
1322 // is a classical Babylonian method for computing the square root. This code
1323 // was adapted to APINt from a wikipedia article on such computations.
1324 // See http://www.wikipedia.org/ and go to the page named
1325 // Calculate_an_integer_square_root.
1326 uint32_t nbits = BitWidth, i = 4;
1327 APInt testy(BitWidth, 16);
1328 APInt x_old(BitWidth, 1);
1329 APInt x_new(BitWidth, 0);
1330 APInt two(BitWidth, 2);
1332 // Select a good starting value using binary logarithms.
1333 for (;; i += 2, testy = testy.shl(2))
1334 if (i >= nbits || this->ule(testy)) {
1335 x_old = x_old.shl(i / 2);
1336 break;
1339 // Use the Babylonian method to arrive at the integer square root:
1340 for (;;) {
1341 x_new = (this->udiv(x_old) + x_old).udiv(two);
1342 if (x_old.ule(x_new))
1343 break;
1344 x_old = x_new;
1347 // Make sure we return the closest approximation
1348 // NOTE: The rounding calculation below is correct. It will produce an
1349 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1350 // determined to be a rounding issue with pari/gp as it begins to use a
1351 // floating point representation after 192 bits. There are no discrepancies
1352 // between this algorithm and pari/gp for bit widths < 192 bits.
1353 APInt square(x_old * x_old);
1354 APInt nextSquare((x_old + 1) * (x_old +1));
1355 if (this->ult(square))
1356 return x_old;
1357 else if (this->ule(nextSquare)) {
1358 APInt midpoint((nextSquare - square).udiv(two));
1359 APInt offset(*this - square);
1360 if (offset.ult(midpoint))
1361 return x_old;
1362 else
1363 return x_old + 1;
1364 } else
1365 assert(0 && "Error in APInt::sqrt computation");
1366 return x_old + 1;
1369 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1370 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1371 /// variables here have the same names as in the algorithm. Comments explain
1372 /// the algorithm and any deviation from it.
1373 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1374 uint32_t m, uint32_t n) {
1375 assert(u && "Must provide dividend");
1376 assert(v && "Must provide divisor");
1377 assert(q && "Must provide quotient");
1378 assert(u != v && u != q && v != q && "Must us different memory");
1379 assert(n>1 && "n must be > 1");
1381 // Knuth uses the value b as the base of the number system. In our case b
1382 // is 2^31 so we just set it to -1u.
1383 uint64_t b = uint64_t(1) << 32;
1385 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1386 DEBUG(cerr << "KnuthDiv: original:");
1387 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1388 DEBUG(cerr << " by");
1389 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1390 DEBUG(cerr << '\n');
1391 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1392 // u and v by d. Note that we have taken Knuth's advice here to use a power
1393 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1394 // 2 allows us to shift instead of multiply and it is easy to determine the
1395 // shift amount from the leading zeros. We are basically normalizing the u
1396 // and v so that its high bits are shifted to the top of v's range without
1397 // overflow. Note that this can require an extra word in u so that u must
1398 // be of length m+n+1.
1399 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1400 uint32_t v_carry = 0;
1401 uint32_t u_carry = 0;
1402 if (shift) {
1403 for (uint32_t i = 0; i < m+n; ++i) {
1404 uint32_t u_tmp = u[i] >> (32 - shift);
1405 u[i] = (u[i] << shift) | u_carry;
1406 u_carry = u_tmp;
1408 for (uint32_t i = 0; i < n; ++i) {
1409 uint32_t v_tmp = v[i] >> (32 - shift);
1410 v[i] = (v[i] << shift) | v_carry;
1411 v_carry = v_tmp;
1414 u[m+n] = u_carry;
1415 DEBUG(cerr << "KnuthDiv: normal:");
1416 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1417 DEBUG(cerr << " by");
1418 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1419 DEBUG(cerr << '\n');
1421 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1422 int j = m;
1423 do {
1424 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1425 // D3. [Calculate q'.].
1426 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1427 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1428 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1429 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1430 // on v[n-2] determines at high speed most of the cases in which the trial
1431 // value qp is one too large, and it eliminates all cases where qp is two
1432 // too large.
1433 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1434 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1435 uint64_t qp = dividend / v[n-1];
1436 uint64_t rp = dividend % v[n-1];
1437 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1438 qp--;
1439 rp += v[n-1];
1440 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1441 qp--;
1443 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1445 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1446 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1447 // consists of a simple multiplication by a one-place number, combined with
1448 // a subtraction.
1449 bool isNeg = false;
1450 for (uint32_t i = 0; i < n; ++i) {
1451 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1452 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1453 bool borrow = subtrahend > u_tmp;
1454 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1455 << ", subtrahend == " << subtrahend
1456 << ", borrow = " << borrow << '\n');
1458 uint64_t result = u_tmp - subtrahend;
1459 uint32_t k = j + i;
1460 u[k++] = result & (b-1); // subtract low word
1461 u[k++] = result >> 32; // subtract high word
1462 while (borrow && k <= m+n) { // deal with borrow to the left
1463 borrow = u[k] == 0;
1464 u[k]--;
1465 k++;
1467 isNeg |= borrow;
1468 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1469 u[j+i+1] << '\n');
1471 DEBUG(cerr << "KnuthDiv: after subtraction:");
1472 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1473 DEBUG(cerr << '\n');
1474 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1475 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1476 // true value plus b**(n+1), namely as the b's complement of
1477 // the true value, and a "borrow" to the left should be remembered.
1479 if (isNeg) {
1480 bool carry = true; // true because b's complement is "complement + 1"
1481 for (uint32_t i = 0; i <= m+n; ++i) {
1482 u[i] = ~u[i] + carry; // b's complement
1483 carry = carry && u[i] == 0;
1486 DEBUG(cerr << "KnuthDiv: after complement:");
1487 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1488 DEBUG(cerr << '\n');
1490 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1491 // negative, go to step D6; otherwise go on to step D7.
1492 q[j] = qp;
1493 if (isNeg) {
1494 // D6. [Add back]. The probability that this step is necessary is very
1495 // small, on the order of only 2/b. Make sure that test data accounts for
1496 // this possibility. Decrease q[j] by 1
1497 q[j]--;
1498 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1499 // A carry will occur to the left of u[j+n], and it should be ignored
1500 // since it cancels with the borrow that occurred in D4.
1501 bool carry = false;
1502 for (uint32_t i = 0; i < n; i++) {
1503 uint32_t limit = std::min(u[j+i],v[i]);
1504 u[j+i] += v[i] + carry;
1505 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1507 u[j+n] += carry;
1509 DEBUG(cerr << "KnuthDiv: after correction:");
1510 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1511 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1513 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1514 } while (--j >= 0);
1516 DEBUG(cerr << "KnuthDiv: quotient:");
1517 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1518 DEBUG(cerr << '\n');
1520 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1521 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1522 // compute the remainder (urem uses this).
1523 if (r) {
1524 // The value d is expressed by the "shift" value above since we avoided
1525 // multiplication by d by using a shift left. So, all we have to do is
1526 // shift right here. In order to mak
1527 if (shift) {
1528 uint32_t carry = 0;
1529 DEBUG(cerr << "KnuthDiv: remainder:");
1530 for (int i = n-1; i >= 0; i--) {
1531 r[i] = (u[i] >> shift) | carry;
1532 carry = u[i] << (32 - shift);
1533 DEBUG(cerr << " " << r[i]);
1535 } else {
1536 for (int i = n-1; i >= 0; i--) {
1537 r[i] = u[i];
1538 DEBUG(cerr << " " << r[i]);
1541 DEBUG(cerr << '\n');
1543 DEBUG(cerr << std::setbase(10) << '\n');
1546 void APInt::divide(const APInt LHS, uint32_t lhsWords,
1547 const APInt &RHS, uint32_t rhsWords,
1548 APInt *Quotient, APInt *Remainder)
1550 assert(lhsWords >= rhsWords && "Fractional result");
1552 // First, compose the values into an array of 32-bit words instead of
1553 // 64-bit words. This is a necessity of both the "short division" algorithm
1554 // and the the Knuth "classical algorithm" which requires there to be native
1555 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1556 // can't use 64-bit operands here because we don't have native results of
1557 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1558 // work on large-endian machines.
1559 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1560 uint32_t n = rhsWords * 2;
1561 uint32_t m = (lhsWords * 2) - n;
1563 // Allocate space for the temporary values we need either on the stack, if
1564 // it will fit, or on the heap if it won't.
1565 uint32_t SPACE[128];
1566 uint32_t *U = 0;
1567 uint32_t *V = 0;
1568 uint32_t *Q = 0;
1569 uint32_t *R = 0;
1570 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1571 U = &SPACE[0];
1572 V = &SPACE[m+n+1];
1573 Q = &SPACE[(m+n+1) + n];
1574 if (Remainder)
1575 R = &SPACE[(m+n+1) + n + (m+n)];
1576 } else {
1577 U = new uint32_t[m + n + 1];
1578 V = new uint32_t[n];
1579 Q = new uint32_t[m+n];
1580 if (Remainder)
1581 R = new uint32_t[n];
1584 // Initialize the dividend
1585 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1586 for (unsigned i = 0; i < lhsWords; ++i) {
1587 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1588 U[i * 2] = tmp & mask;
1589 U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1591 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1593 // Initialize the divisor
1594 memset(V, 0, (n)*sizeof(uint32_t));
1595 for (unsigned i = 0; i < rhsWords; ++i) {
1596 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1597 V[i * 2] = tmp & mask;
1598 V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1601 // initialize the quotient and remainder
1602 memset(Q, 0, (m+n) * sizeof(uint32_t));
1603 if (Remainder)
1604 memset(R, 0, n * sizeof(uint32_t));
1606 // Now, adjust m and n for the Knuth division. n is the number of words in
1607 // the divisor. m is the number of words by which the dividend exceeds the
1608 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1609 // contain any zero words or the Knuth algorithm fails.
1610 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1611 n--;
1612 m++;
1614 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1615 m--;
1617 // If we're left with only a single word for the divisor, Knuth doesn't work
1618 // so we implement the short division algorithm here. This is much simpler
1619 // and faster because we are certain that we can divide a 64-bit quantity
1620 // by a 32-bit quantity at hardware speed and short division is simply a
1621 // series of such operations. This is just like doing short division but we
1622 // are using base 2^32 instead of base 10.
1623 assert(n != 0 && "Divide by zero?");
1624 if (n == 1) {
1625 uint32_t divisor = V[0];
1626 uint32_t remainder = 0;
1627 for (int i = m+n-1; i >= 0; i--) {
1628 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1629 if (partial_dividend == 0) {
1630 Q[i] = 0;
1631 remainder = 0;
1632 } else if (partial_dividend < divisor) {
1633 Q[i] = 0;
1634 remainder = partial_dividend;
1635 } else if (partial_dividend == divisor) {
1636 Q[i] = 1;
1637 remainder = 0;
1638 } else {
1639 Q[i] = partial_dividend / divisor;
1640 remainder = partial_dividend - (Q[i] * divisor);
1643 if (R)
1644 R[0] = remainder;
1645 } else {
1646 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1647 // case n > 1.
1648 KnuthDiv(U, V, Q, R, m, n);
1651 // If the caller wants the quotient
1652 if (Quotient) {
1653 // Set up the Quotient value's memory.
1654 if (Quotient->BitWidth != LHS.BitWidth) {
1655 if (Quotient->isSingleWord())
1656 Quotient->VAL = 0;
1657 else
1658 delete [] Quotient->pVal;
1659 Quotient->BitWidth = LHS.BitWidth;
1660 if (!Quotient->isSingleWord())
1661 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1662 } else
1663 Quotient->clear();
1665 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1666 // order words.
1667 if (lhsWords == 1) {
1668 uint64_t tmp =
1669 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1670 if (Quotient->isSingleWord())
1671 Quotient->VAL = tmp;
1672 else
1673 Quotient->pVal[0] = tmp;
1674 } else {
1675 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1676 for (unsigned i = 0; i < lhsWords; ++i)
1677 Quotient->pVal[i] =
1678 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1682 // If the caller wants the remainder
1683 if (Remainder) {
1684 // Set up the Remainder value's memory.
1685 if (Remainder->BitWidth != RHS.BitWidth) {
1686 if (Remainder->isSingleWord())
1687 Remainder->VAL = 0;
1688 else
1689 delete [] Remainder->pVal;
1690 Remainder->BitWidth = RHS.BitWidth;
1691 if (!Remainder->isSingleWord())
1692 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1693 } else
1694 Remainder->clear();
1696 // The remainder is in R. Reconstitute the remainder into Remainder's low
1697 // order words.
1698 if (rhsWords == 1) {
1699 uint64_t tmp =
1700 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1701 if (Remainder->isSingleWord())
1702 Remainder->VAL = tmp;
1703 else
1704 Remainder->pVal[0] = tmp;
1705 } else {
1706 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1707 for (unsigned i = 0; i < rhsWords; ++i)
1708 Remainder->pVal[i] =
1709 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1713 // Clean up the memory we allocated.
1714 if (U != &SPACE[0]) {
1715 delete [] U;
1716 delete [] V;
1717 delete [] Q;
1718 delete [] R;
1722 APInt APInt::udiv(const APInt& RHS) const {
1723 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1725 // First, deal with the easy case
1726 if (isSingleWord()) {
1727 assert(RHS.VAL != 0 && "Divide by zero?");
1728 return APInt(BitWidth, VAL / RHS.VAL);
1731 // Get some facts about the LHS and RHS number of bits and words
1732 uint32_t rhsBits = RHS.getActiveBits();
1733 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1734 assert(rhsWords && "Divided by zero???");
1735 uint32_t lhsBits = this->getActiveBits();
1736 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1738 // Deal with some degenerate cases
1739 if (!lhsWords)
1740 // 0 / X ===> 0
1741 return APInt(BitWidth, 0);
1742 else if (lhsWords < rhsWords || this->ult(RHS)) {
1743 // X / Y ===> 0, iff X < Y
1744 return APInt(BitWidth, 0);
1745 } else if (*this == RHS) {
1746 // X / X ===> 1
1747 return APInt(BitWidth, 1);
1748 } else if (lhsWords == 1 && rhsWords == 1) {
1749 // All high words are zero, just use native divide
1750 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1753 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1754 APInt Quotient(1,0); // to hold result.
1755 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1756 return Quotient;
1759 APInt APInt::urem(const APInt& RHS) const {
1760 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1761 if (isSingleWord()) {
1762 assert(RHS.VAL != 0 && "Remainder by zero?");
1763 return APInt(BitWidth, VAL % RHS.VAL);
1766 // Get some facts about the LHS
1767 uint32_t lhsBits = getActiveBits();
1768 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1770 // Get some facts about the RHS
1771 uint32_t rhsBits = RHS.getActiveBits();
1772 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1773 assert(rhsWords && "Performing remainder operation by zero ???");
1775 // Check the degenerate cases
1776 if (lhsWords == 0) {
1777 // 0 % Y ===> 0
1778 return APInt(BitWidth, 0);
1779 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1780 // X % Y ===> X, iff X < Y
1781 return *this;
1782 } else if (*this == RHS) {
1783 // X % X == 0;
1784 return APInt(BitWidth, 0);
1785 } else if (lhsWords == 1) {
1786 // All high words are zero, just use native remainder
1787 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1790 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1791 APInt Remainder(1,0);
1792 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1793 return Remainder;
1796 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1797 APInt &Quotient, APInt &Remainder) {
1798 // Get some size facts about the dividend and divisor
1799 uint32_t lhsBits = LHS.getActiveBits();
1800 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1801 uint32_t rhsBits = RHS.getActiveBits();
1802 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1804 // Check the degenerate cases
1805 if (lhsWords == 0) {
1806 Quotient = 0; // 0 / Y ===> 0
1807 Remainder = 0; // 0 % Y ===> 0
1808 return;
1811 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1812 Quotient = 0; // X / Y ===> 0, iff X < Y
1813 Remainder = LHS; // X % Y ===> X, iff X < Y
1814 return;
1817 if (LHS == RHS) {
1818 Quotient = 1; // X / X ===> 1
1819 Remainder = 0; // X % X ===> 0;
1820 return;
1823 if (lhsWords == 1 && rhsWords == 1) {
1824 // There is only one word to consider so use the native versions.
1825 if (LHS.isSingleWord()) {
1826 Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1827 Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1828 } else {
1829 Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1830 Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1832 return;
1835 // Okay, lets do it the long way
1836 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1839 void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1840 uint8_t radix) {
1841 // Check our assumptions here
1842 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1843 "Radix should be 2, 8, 10, or 16!");
1844 assert(str && "String is null?");
1845 bool isNeg = str[0] == '-';
1846 if (isNeg)
1847 str++, slen--;
1848 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1849 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1850 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1851 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1853 // Allocate memory
1854 if (!isSingleWord())
1855 pVal = getClearedMemory(getNumWords());
1857 // Figure out if we can shift instead of multiply
1858 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1860 // Set up an APInt for the digit to add outside the loop so we don't
1861 // constantly construct/destruct it.
1862 APInt apdigit(getBitWidth(), 0);
1863 APInt apradix(getBitWidth(), radix);
1865 // Enter digit traversal loop
1866 for (unsigned i = 0; i < slen; i++) {
1867 // Get a digit
1868 uint32_t digit = 0;
1869 char cdigit = str[i];
1870 if (radix == 16) {
1871 if (!isxdigit(cdigit))
1872 assert(0 && "Invalid hex digit in string");
1873 if (isdigit(cdigit))
1874 digit = cdigit - '0';
1875 else if (cdigit >= 'a')
1876 digit = cdigit - 'a' + 10;
1877 else if (cdigit >= 'A')
1878 digit = cdigit - 'A' + 10;
1879 else
1880 assert(0 && "huh? we shouldn't get here");
1881 } else if (isdigit(cdigit)) {
1882 digit = cdigit - '0';
1883 } else {
1884 assert(0 && "Invalid character in digit string");
1887 // Shift or multiply the value by the radix
1888 if (shift)
1889 *this <<= shift;
1890 else
1891 *this *= apradix;
1893 // Add in the digit we just interpreted
1894 if (apdigit.isSingleWord())
1895 apdigit.VAL = digit;
1896 else
1897 apdigit.pVal[0] = digit;
1898 *this += apdigit;
1900 // If its negative, put it in two's complement form
1901 if (isNeg) {
1902 (*this)--;
1903 this->flip();
1907 std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1908 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1909 "Radix should be 2, 8, 10, or 16!");
1910 static const char *digits[] = {
1911 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1913 std::string result;
1914 uint32_t bits_used = getActiveBits();
1915 if (isSingleWord()) {
1916 char buf[65];
1917 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1918 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1919 if (format) {
1920 if (wantSigned) {
1921 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1922 (APINT_BITS_PER_WORD-BitWidth);
1923 sprintf(buf, format, sextVal);
1924 } else
1925 sprintf(buf, format, VAL);
1926 } else {
1927 memset(buf, 0, 65);
1928 uint64_t v = VAL;
1929 while (bits_used) {
1930 uint32_t bit = v & 1;
1931 bits_used--;
1932 buf[bits_used] = digits[bit][0];
1933 v >>=1;
1936 result = buf;
1937 return result;
1940 if (radix != 10) {
1941 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1942 // because the number of bits per digit (1,3 and 4 respectively) divides
1943 // equaly. We just shift until there value is zero.
1945 // First, check for a zero value and just short circuit the logic below.
1946 if (*this == 0)
1947 result = "0";
1948 else {
1949 APInt tmp(*this);
1950 size_t insert_at = 0;
1951 if (wantSigned && this->isNegative()) {
1952 // They want to print the signed version and it is a negative value
1953 // Flip the bits and add one to turn it into the equivalent positive
1954 // value and put a '-' in the result.
1955 tmp.flip();
1956 tmp++;
1957 result = "-";
1958 insert_at = 1;
1960 // Just shift tmp right for each digit width until it becomes zero
1961 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
1962 uint64_t mask = radix - 1;
1963 APInt zero(tmp.getBitWidth(), 0);
1964 while (tmp.ne(zero)) {
1965 unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
1966 result.insert(insert_at, digits[digit]);
1967 tmp = tmp.lshr(shift);
1970 return result;
1973 APInt tmp(*this);
1974 APInt divisor(4, radix);
1975 APInt zero(tmp.getBitWidth(), 0);
1976 size_t insert_at = 0;
1977 if (wantSigned && tmp[BitWidth-1]) {
1978 // They want to print the signed version and it is a negative value
1979 // Flip the bits and add one to turn it into the equivalent positive
1980 // value and put a '-' in the result.
1981 tmp.flip();
1982 tmp++;
1983 result = "-";
1984 insert_at = 1;
1986 if (tmp == APInt(tmp.getBitWidth(), 0))
1987 result = "0";
1988 else while (tmp.ne(zero)) {
1989 APInt APdigit(1,0);
1990 APInt tmp2(tmp.getBitWidth(), 0);
1991 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1992 &APdigit);
1993 uint32_t digit = APdigit.getZExtValue();
1994 assert(digit < radix && "divide failed");
1995 result.insert(insert_at,digits[digit]);
1996 tmp = tmp2;
1999 return result;
2002 #ifndef NDEBUG
2003 void APInt::dump() const
2005 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2006 if (isSingleWord())
2007 cerr << VAL;
2008 else for (unsigned i = getNumWords(); i > 0; i--) {
2009 cerr << pVal[i-1] << " ";
2011 cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
2012 << ")\n" << std::setbase(10);
2014 #endif