Fold a binary operator with constant operands when expanding code for a SCEV.
[llvm-complete.git] / lib / Support / FoldingSet.cpp
blob6f7f5ea4cbf3cc09d910579ba03b1191f8d2e445
1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by James M. Laskey and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a hash set that can be used to remove duplication of
11 // nodes in a graph. This code was originally created by Chris Lattner for use
12 // with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13 // set.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/Support/MathExtras.h"
19 #include <cassert>
20 using namespace llvm;
22 //===----------------------------------------------------------------------===//
23 // FoldingSetImpl::NodeID Implementation
25 /// Add* - Add various data types to Bit data.
26 ///
27 void FoldingSetImpl::NodeID::AddPointer(const void *Ptr) {
28 // Note: this adds pointers to the hash using sizes and endianness that
29 // depend on the host. It doesn't matter however, because hashing on
30 // pointer values in inherently unstable. Nothing should depend on the
31 // ordering of nodes in the folding set.
32 intptr_t PtrI = (intptr_t)Ptr;
33 Bits.push_back(unsigned(PtrI));
34 if (sizeof(intptr_t) > sizeof(unsigned))
35 Bits.push_back(unsigned(uint64_t(PtrI) >> 32));
37 void FoldingSetImpl::NodeID::AddInteger(signed I) {
38 Bits.push_back(I);
40 void FoldingSetImpl::NodeID::AddInteger(unsigned I) {
41 Bits.push_back(I);
43 void FoldingSetImpl::NodeID::AddInteger(uint64_t I) {
44 Bits.push_back(unsigned(I));
46 // If the integer is small, encode it just as 32-bits.
47 if ((uint64_t)(int)I != I)
48 Bits.push_back(unsigned(I >> 32));
50 void FoldingSetImpl::NodeID::AddFloat(float F) {
51 Bits.push_back(FloatToBits(F));
53 void FoldingSetImpl::NodeID::AddDouble(double D) {
54 AddInteger(DoubleToBits(D));
56 void FoldingSetImpl::NodeID::AddString(const std::string &String) {
57 unsigned Size = String.size();
58 Bits.push_back(Size);
59 if (!Size) return;
61 unsigned Units = Size / 4;
62 unsigned Pos = 0;
63 const unsigned *Base = (const unsigned *)String.data();
65 // If the string is aligned do a bulk transfer.
66 if (!((intptr_t)Base & 3)) {
67 Bits.append(Base, Base + Units);
68 Pos = (Units + 1) * 4;
69 } else {
70 // Otherwise do it the hard way.
71 for ( Pos += 4; Pos <= Size; Pos += 4) {
72 unsigned V = ((unsigned char)String[Pos - 4] << 24) |
73 ((unsigned char)String[Pos - 3] << 16) |
74 ((unsigned char)String[Pos - 2] << 8) |
75 (unsigned char)String[Pos - 1];
76 Bits.push_back(V);
80 // With the leftover bits.
81 unsigned V = 0;
82 // Pos will have overshot size by 4 - #bytes left over.
83 switch (Pos - Size) {
84 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
85 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
86 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
87 default: return; // Nothing left.
90 Bits.push_back(V);
93 /// ComputeHash - Compute a strong hash value for this NodeID, used to
94 /// lookup the node in the FoldingSetImpl.
95 unsigned FoldingSetImpl::NodeID::ComputeHash() const {
96 // This is adapted from SuperFastHash by Paul Hsieh.
97 unsigned Hash = Bits.size();
98 for (const unsigned *BP = &Bits[0], *E = BP+Bits.size(); BP != E; ++BP) {
99 unsigned Data = *BP;
100 Hash += Data & 0xFFFF;
101 unsigned Tmp = ((Data >> 16) << 11) ^ Hash;
102 Hash = (Hash << 16) ^ Tmp;
103 Hash += Hash >> 11;
106 // Force "avalanching" of final 127 bits.
107 Hash ^= Hash << 3;
108 Hash += Hash >> 5;
109 Hash ^= Hash << 4;
110 Hash += Hash >> 17;
111 Hash ^= Hash << 25;
112 Hash += Hash >> 6;
113 return Hash;
116 /// operator== - Used to compare two nodes to each other.
118 bool FoldingSetImpl::NodeID::operator==(const FoldingSetImpl::NodeID &RHS)const{
119 if (Bits.size() != RHS.Bits.size()) return false;
120 return memcmp(&Bits[0], &RHS.Bits[0], Bits.size()*sizeof(Bits[0])) == 0;
124 //===----------------------------------------------------------------------===//
125 /// Helper functions for FoldingSetImpl.
127 /// GetNextPtr - In order to save space, each bucket is a
128 /// singly-linked-list. In order to make deletion more efficient, we make
129 /// the list circular, so we can delete a node without computing its hash.
130 /// The problem with this is that the start of the hash buckets are not
131 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
132 /// use GetBucketPtr when this happens.
133 static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr,
134 void **Buckets, unsigned NumBuckets) {
135 if (NextInBucketPtr >= Buckets && NextInBucketPtr < Buckets + NumBuckets)
136 return 0;
137 return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
140 /// GetBucketPtr - Provides a casting of a bucket pointer for isNode
141 /// testing.
142 static void **GetBucketPtr(void *NextInBucketPtr) {
143 return static_cast<void**>(NextInBucketPtr);
146 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
147 /// the specified ID.
148 static void **GetBucketFor(const FoldingSetImpl::NodeID &ID,
149 void **Buckets, unsigned NumBuckets) {
150 // NumBuckets is always a power of 2.
151 unsigned BucketNum = ID.ComputeHash() & (NumBuckets-1);
152 return Buckets + BucketNum;
155 //===----------------------------------------------------------------------===//
156 // FoldingSetImpl Implementation
158 FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) : NumNodes(0) {
159 assert(5 < Log2InitSize && Log2InitSize < 32 &&
160 "Initial hash table size out of range");
161 NumBuckets = 1 << Log2InitSize;
162 Buckets = new void*[NumBuckets];
163 memset(Buckets, 0, NumBuckets*sizeof(void*));
165 FoldingSetImpl::~FoldingSetImpl() {
166 delete [] Buckets;
169 /// GrowHashTable - Double the size of the hash table and rehash everything.
171 void FoldingSetImpl::GrowHashTable() {
172 void **OldBuckets = Buckets;
173 unsigned OldNumBuckets = NumBuckets;
174 NumBuckets <<= 1;
176 // Reset the node count to zero: we're going to reinsert everything.
177 NumNodes = 0;
179 // Clear out new buckets.
180 Buckets = new void*[NumBuckets];
181 memset(Buckets, 0, NumBuckets*sizeof(void*));
183 // Walk the old buckets, rehashing nodes into their new place.
184 for (unsigned i = 0; i != OldNumBuckets; ++i) {
185 void *Probe = OldBuckets[i];
186 if (!Probe) continue;
187 while (Node *NodeInBucket = GetNextPtr(Probe, OldBuckets, OldNumBuckets)) {
188 // Figure out the next link, remove NodeInBucket from the old link.
189 Probe = NodeInBucket->getNextInBucket();
190 NodeInBucket->SetNextInBucket(0);
192 // Insert the node into the new bucket, after recomputing the hash.
193 NodeID ID;
194 GetNodeProfile(ID, NodeInBucket);
195 InsertNode(NodeInBucket, GetBucketFor(ID, Buckets, NumBuckets));
199 delete[] OldBuckets;
202 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
203 /// return it. If not, return the insertion token that will make insertion
204 /// faster.
205 FoldingSetImpl::Node *FoldingSetImpl::FindNodeOrInsertPos(const NodeID &ID,
206 void *&InsertPos) {
207 void **Bucket = GetBucketFor(ID, Buckets, NumBuckets);
208 void *Probe = *Bucket;
210 InsertPos = 0;
212 while (Node *NodeInBucket = GetNextPtr(Probe, Buckets, NumBuckets)) {
213 NodeID OtherID;
214 GetNodeProfile(OtherID, NodeInBucket);
215 if (OtherID == ID)
216 return NodeInBucket;
218 Probe = NodeInBucket->getNextInBucket();
221 // Didn't find the node, return null with the bucket as the InsertPos.
222 InsertPos = Bucket;
223 return 0;
226 /// InsertNode - Insert the specified node into the folding set, knowing that it
227 /// is not already in the map. InsertPos must be obtained from
228 /// FindNodeOrInsertPos.
229 void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
230 assert(N->getNextInBucket() == 0);
231 // Do we need to grow the hashtable?
232 if (NumNodes+1 > NumBuckets*2) {
233 GrowHashTable();
234 NodeID ID;
235 GetNodeProfile(ID, N);
236 InsertPos = GetBucketFor(ID, Buckets, NumBuckets);
239 ++NumNodes;
241 /// The insert position is actually a bucket pointer.
242 void **Bucket = static_cast<void**>(InsertPos);
244 void *Next = *Bucket;
246 // If this is the first insertion into this bucket, its next pointer will be
247 // null. Pretend as if it pointed to itself.
248 if (Next == 0)
249 Next = Bucket;
251 // Set the node's next pointer, and make the bucket point to the node.
252 N->SetNextInBucket(Next);
253 *Bucket = N;
256 /// RemoveNode - Remove a node from the folding set, returning true if one was
257 /// removed or false if the node was not in the folding set.
258 bool FoldingSetImpl::RemoveNode(Node *N) {
259 // Because each bucket is a circular list, we don't need to compute N's hash
260 // to remove it.
261 void *Ptr = N->getNextInBucket();
262 if (Ptr == 0) return false; // Not in folding set.
264 --NumNodes;
265 N->SetNextInBucket(0);
267 // Remember what N originally pointed to, either a bucket or another node.
268 void *NodeNextPtr = Ptr;
270 // Chase around the list until we find the node (or bucket) which points to N.
271 while (true) {
272 if (Node *NodeInBucket = GetNextPtr(Ptr, Buckets, NumBuckets)) {
273 // Advance pointer.
274 Ptr = NodeInBucket->getNextInBucket();
276 // We found a node that points to N, change it to point to N's next node,
277 // removing N from the list.
278 if (Ptr == N) {
279 NodeInBucket->SetNextInBucket(NodeNextPtr);
280 return true;
282 } else {
283 void **Bucket = GetBucketPtr(Ptr);
284 Ptr = *Bucket;
286 // If we found that the bucket points to N, update the bucket to point to
287 // whatever is next.
288 if (Ptr == N) {
289 *Bucket = NodeNextPtr;
290 return true;
296 /// GetOrInsertNode - If there is an existing simple Node exactly
297 /// equal to the specified node, return it. Otherwise, insert 'N' and it
298 /// instead.
299 FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
300 NodeID ID;
301 GetNodeProfile(ID, N);
302 void *IP;
303 if (Node *E = FindNodeOrInsertPos(ID, IP))
304 return E;
305 InsertNode(N, IP);
306 return N;