Added llvmgcc version to allow tests to be xfailed by frontend version.
[llvm-complete.git] / lib / Bytecode / Reader / Reader.cpp
blob36b2ecb37fdcc04ba51e9197d7cda9ee5d2ccfef
1 //===- Reader.cpp - Code to read bytecode files ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Bytecode/Reader.h
12 // Note that this library should be as fast as possible, reentrant, and
13 // threadsafe!!
15 // TODO: Allow passing in an option to ignore the symbol table
17 //===----------------------------------------------------------------------===//
19 #include "Reader.h"
20 #include "llvm/Assembly/AutoUpgrade.h"
21 #include "llvm/Bytecode/BytecodeHandler.h"
22 #include "llvm/BasicBlock.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/SymbolTable.h"
28 #include "llvm/Bytecode/Format.h"
29 #include "llvm/Config/alloca.h"
30 #include "llvm/Support/GetElementPtrTypeIterator.h"
31 #include "llvm/Support/Compressor.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include <sstream>
35 #include <algorithm>
36 using namespace llvm;
38 namespace {
39 /// @brief A class for maintaining the slot number definition
40 /// as a placeholder for the actual definition for forward constants defs.
41 class ConstantPlaceHolder : public ConstantExpr {
42 ConstantPlaceHolder(); // DO NOT IMPLEMENT
43 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
44 public:
45 Use Op;
46 ConstantPlaceHolder(const Type *Ty)
47 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
48 Op(UndefValue::get(Type::IntTy), this) {
53 // Provide some details on error
54 inline void BytecodeReader::error(std::string err) {
55 err += " (Vers=" ;
56 err += itostr(RevisionNum) ;
57 err += ", Pos=" ;
58 err += itostr(At-MemStart);
59 err += ")";
60 throw err;
63 //===----------------------------------------------------------------------===//
64 // Bytecode Reading Methods
65 //===----------------------------------------------------------------------===//
67 /// Determine if the current block being read contains any more data.
68 inline bool BytecodeReader::moreInBlock() {
69 return At < BlockEnd;
72 /// Throw an error if we've read past the end of the current block
73 inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
74 if (At > BlockEnd)
75 error(std::string("Attempt to read past the end of ") + block_name +
76 " block.");
79 /// Align the buffer position to a 32 bit boundary
80 inline void BytecodeReader::align32() {
81 if (hasAlignment) {
82 BufPtr Save = At;
83 At = (const unsigned char *)((intptr_t)(At+3) & (~3UL));
84 if (At > Save)
85 if (Handler) Handler->handleAlignment(At - Save);
86 if (At > BlockEnd)
87 error("Ran out of data while aligning!");
91 /// Read a whole unsigned integer
92 inline unsigned BytecodeReader::read_uint() {
93 if (At+4 > BlockEnd)
94 error("Ran out of data reading uint!");
95 At += 4;
96 return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
99 /// Read a variable-bit-rate encoded unsigned integer
100 inline unsigned BytecodeReader::read_vbr_uint() {
101 unsigned Shift = 0;
102 unsigned Result = 0;
103 BufPtr Save = At;
105 do {
106 if (At == BlockEnd)
107 error("Ran out of data reading vbr_uint!");
108 Result |= (unsigned)((*At++) & 0x7F) << Shift;
109 Shift += 7;
110 } while (At[-1] & 0x80);
111 if (Handler) Handler->handleVBR32(At-Save);
112 return Result;
115 /// Read a variable-bit-rate encoded unsigned 64-bit integer.
116 inline uint64_t BytecodeReader::read_vbr_uint64() {
117 unsigned Shift = 0;
118 uint64_t Result = 0;
119 BufPtr Save = At;
121 do {
122 if (At == BlockEnd)
123 error("Ran out of data reading vbr_uint64!");
124 Result |= (uint64_t)((*At++) & 0x7F) << Shift;
125 Shift += 7;
126 } while (At[-1] & 0x80);
127 if (Handler) Handler->handleVBR64(At-Save);
128 return Result;
131 /// Read a variable-bit-rate encoded signed 64-bit integer.
132 inline int64_t BytecodeReader::read_vbr_int64() {
133 uint64_t R = read_vbr_uint64();
134 if (R & 1) {
135 if (R != 1)
136 return -(int64_t)(R >> 1);
137 else // There is no such thing as -0 with integers. "-0" really means
138 // 0x8000000000000000.
139 return 1LL << 63;
140 } else
141 return (int64_t)(R >> 1);
144 /// Read a pascal-style string (length followed by text)
145 inline std::string BytecodeReader::read_str() {
146 unsigned Size = read_vbr_uint();
147 const unsigned char *OldAt = At;
148 At += Size;
149 if (At > BlockEnd) // Size invalid?
150 error("Ran out of data reading a string!");
151 return std::string((char*)OldAt, Size);
154 /// Read an arbitrary block of data
155 inline void BytecodeReader::read_data(void *Ptr, void *End) {
156 unsigned char *Start = (unsigned char *)Ptr;
157 unsigned Amount = (unsigned char *)End - Start;
158 if (At+Amount > BlockEnd)
159 error("Ran out of data!");
160 std::copy(At, At+Amount, Start);
161 At += Amount;
164 /// Read a float value in little-endian order
165 inline void BytecodeReader::read_float(float& FloatVal) {
166 /// FIXME: This isn't optimal, it has size problems on some platforms
167 /// where FP is not IEEE.
168 FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
169 At+=sizeof(uint32_t);
172 /// Read a double value in little-endian order
173 inline void BytecodeReader::read_double(double& DoubleVal) {
174 /// FIXME: This isn't optimal, it has size problems on some platforms
175 /// where FP is not IEEE.
176 DoubleVal = BitsToDouble((uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
177 (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
178 (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
179 (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
180 At+=sizeof(uint64_t);
183 /// Read a block header and obtain its type and size
184 inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
185 if ( hasLongBlockHeaders ) {
186 Type = read_uint();
187 Size = read_uint();
188 switch (Type) {
189 case BytecodeFormat::Reserved_DoNotUse :
190 error("Reserved_DoNotUse used as Module Type?");
191 Type = BytecodeFormat::ModuleBlockID; break;
192 case BytecodeFormat::Module:
193 Type = BytecodeFormat::ModuleBlockID; break;
194 case BytecodeFormat::Function:
195 Type = BytecodeFormat::FunctionBlockID; break;
196 case BytecodeFormat::ConstantPool:
197 Type = BytecodeFormat::ConstantPoolBlockID; break;
198 case BytecodeFormat::SymbolTable:
199 Type = BytecodeFormat::SymbolTableBlockID; break;
200 case BytecodeFormat::ModuleGlobalInfo:
201 Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
202 case BytecodeFormat::GlobalTypePlane:
203 Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
204 case BytecodeFormat::InstructionList:
205 Type = BytecodeFormat::InstructionListBlockID; break;
206 case BytecodeFormat::CompactionTable:
207 Type = BytecodeFormat::CompactionTableBlockID; break;
208 case BytecodeFormat::BasicBlock:
209 /// This block type isn't used after version 1.1. However, we have to
210 /// still allow the value in case this is an old bc format file.
211 /// We just let its value creep thru.
212 break;
213 default:
214 error("Invalid block id found: " + utostr(Type));
215 break;
217 } else {
218 Size = read_uint();
219 Type = Size & 0x1F; // mask low order five bits
220 Size >>= 5; // get rid of five low order bits, leaving high 27
222 BlockStart = At;
223 if (At + Size > BlockEnd)
224 error("Attempt to size a block past end of memory");
225 BlockEnd = At + Size;
226 if (Handler) Handler->handleBlock(Type, BlockStart, Size);
230 /// In LLVM 1.2 and before, Types were derived from Value and so they were
231 /// written as part of the type planes along with any other Value. In LLVM
232 /// 1.3 this changed so that Type does not derive from Value. Consequently,
233 /// the BytecodeReader's containers for Values can't contain Types because
234 /// there's no inheritance relationship. This means that the "Type Type"
235 /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
236 /// whenever a bytecode construct must have both types and values together,
237 /// the types are always read/written first and then the Values. Furthermore
238 /// since Type::TypeTyID no longer exists, its value (12) now corresponds to
239 /// Type::LabelTyID. In order to overcome this we must "sanitize" all the
240 /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
241 /// For LLVM 1.2 and before, this function will decrement the type id by
242 /// one to account for the missing Type::TypeTyID enumerator if the value is
243 /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
244 /// function returns true, otherwise false. This helps detect situations
245 /// where the pre 1.3 bytecode is indicating that what follows is a type.
246 /// @returns true iff type id corresponds to pre 1.3 "type type"
247 inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
248 if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
249 if (TypeId == Type::LabelTyID) {
250 TypeId = Type::VoidTyID; // sanitize it
251 return true; // indicate we got TypeTyID in pre 1.3 bytecode
252 } else if (TypeId > Type::LabelTyID)
253 --TypeId; // shift all planes down because type type plane is missing
255 return false;
258 /// Reads a vbr uint to read in a type id and does the necessary
259 /// conversion on it by calling sanitizeTypeId.
260 /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
261 /// @see sanitizeTypeId
262 inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
263 TypeId = read_vbr_uint();
264 if ( !has32BitTypes )
265 if ( TypeId == 0x00FFFFFF )
266 TypeId = read_vbr_uint();
267 return sanitizeTypeId(TypeId);
270 //===----------------------------------------------------------------------===//
271 // IR Lookup Methods
272 //===----------------------------------------------------------------------===//
274 /// Determine if a type id has an implicit null value
275 inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
276 if (!hasExplicitPrimitiveZeros)
277 return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
278 return TyID >= Type::FirstDerivedTyID;
281 /// Obtain a type given a typeid and account for things like compaction tables,
282 /// function level vs module level, and the offsetting for the primitive types.
283 const Type *BytecodeReader::getType(unsigned ID) {
284 if (ID < Type::FirstDerivedTyID)
285 if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
286 return T; // Asked for a primitive type...
288 // Otherwise, derived types need offset...
289 ID -= Type::FirstDerivedTyID;
291 if (!CompactionTypes.empty()) {
292 if (ID >= CompactionTypes.size())
293 error("Type ID out of range for compaction table!");
294 return CompactionTypes[ID].first;
297 // Is it a module-level type?
298 if (ID < ModuleTypes.size())
299 return ModuleTypes[ID].get();
301 // Nope, is it a function-level type?
302 ID -= ModuleTypes.size();
303 if (ID < FunctionTypes.size())
304 return FunctionTypes[ID].get();
306 error("Illegal type reference!");
307 return Type::VoidTy;
310 /// Get a sanitized type id. This just makes sure that the \p ID
311 /// is both sanitized and not the "type type" of pre-1.3 bytecode.
312 /// @see sanitizeTypeId
313 inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
314 if (sanitizeTypeId(ID))
315 error("Invalid type id encountered");
316 return getType(ID);
319 /// This method just saves some coding. It uses read_typeid to read
320 /// in a sanitized type id, errors that its not the type type, and
321 /// then calls getType to return the type value.
322 inline const Type* BytecodeReader::readSanitizedType() {
323 unsigned ID;
324 if (read_typeid(ID))
325 error("Invalid type id encountered");
326 return getType(ID);
329 /// Get the slot number associated with a type accounting for primitive
330 /// types, compaction tables, and function level vs module level.
331 unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
332 if (Ty->isPrimitiveType())
333 return Ty->getTypeID();
335 // Scan the compaction table for the type if needed.
336 if (!CompactionTypes.empty()) {
337 for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
338 if (CompactionTypes[i].first == Ty)
339 return Type::FirstDerivedTyID + i;
341 error("Couldn't find type specified in compaction table!");
344 // Check the function level types first...
345 TypeListTy::iterator I = std::find(FunctionTypes.begin(),
346 FunctionTypes.end(), Ty);
348 if (I != FunctionTypes.end())
349 return Type::FirstDerivedTyID + ModuleTypes.size() +
350 (&*I - &FunctionTypes[0]);
352 // If we don't have our cache yet, build it now.
353 if (ModuleTypeIDCache.empty()) {
354 unsigned N = 0;
355 ModuleTypeIDCache.reserve(ModuleTypes.size());
356 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
357 I != E; ++I, ++N)
358 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
360 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
363 // Binary search the cache for the entry.
364 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
365 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
366 std::make_pair(Ty, 0U));
367 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
368 error("Didn't find type in ModuleTypes.");
370 return Type::FirstDerivedTyID + IT->second;
373 /// This is just like getType, but when a compaction table is in use, it is
374 /// ignored. It also ignores function level types.
375 /// @see getType
376 const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
377 if (Slot < Type::FirstDerivedTyID) {
378 const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
379 if (!Ty)
380 error("Not a primitive type ID?");
381 return Ty;
383 Slot -= Type::FirstDerivedTyID;
384 if (Slot >= ModuleTypes.size())
385 error("Illegal compaction table type reference!");
386 return ModuleTypes[Slot];
389 /// This is just like getTypeSlot, but when a compaction table is in use, it
390 /// is ignored. It also ignores function level types.
391 unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
392 if (Ty->isPrimitiveType())
393 return Ty->getTypeID();
395 // If we don't have our cache yet, build it now.
396 if (ModuleTypeIDCache.empty()) {
397 unsigned N = 0;
398 ModuleTypeIDCache.reserve(ModuleTypes.size());
399 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
400 I != E; ++I, ++N)
401 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
403 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
406 // Binary search the cache for the entry.
407 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
408 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
409 std::make_pair(Ty, 0U));
410 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
411 error("Didn't find type in ModuleTypes.");
413 return Type::FirstDerivedTyID + IT->second;
416 /// Retrieve a value of a given type and slot number, possibly creating
417 /// it if it doesn't already exist.
418 Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
419 assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
420 unsigned Num = oNum;
422 // If there is a compaction table active, it defines the low-level numbers.
423 // If not, the module values define the low-level numbers.
424 if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
425 if (Num < CompactionValues[type].size())
426 return CompactionValues[type][Num];
427 Num -= CompactionValues[type].size();
428 } else {
429 // By default, the global type id is the type id passed in
430 unsigned GlobalTyID = type;
432 // If the type plane was compactified, figure out the global type ID by
433 // adding the derived type ids and the distance.
434 if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
435 GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
437 if (hasImplicitNull(GlobalTyID)) {
438 const Type *Ty = getType(type);
439 if (!isa<OpaqueType>(Ty)) {
440 if (Num == 0)
441 return Constant::getNullValue(Ty);
442 --Num;
446 if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
447 if (Num < ModuleValues[GlobalTyID]->size())
448 return ModuleValues[GlobalTyID]->getOperand(Num);
449 Num -= ModuleValues[GlobalTyID]->size();
453 if (FunctionValues.size() > type &&
454 FunctionValues[type] &&
455 Num < FunctionValues[type]->size())
456 return FunctionValues[type]->getOperand(Num);
458 if (!Create) return 0; // Do not create a placeholder?
460 // Did we already create a place holder?
461 std::pair<unsigned,unsigned> KeyValue(type, oNum);
462 ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
463 if (I != ForwardReferences.end() && I->first == KeyValue)
464 return I->second; // We have already created this placeholder
466 // If the type exists (it should)
467 if (const Type* Ty = getType(type)) {
468 // Create the place holder
469 Value *Val = new Argument(Ty);
470 ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
471 return Val;
473 throw "Can't create placeholder for value of type slot #" + utostr(type);
476 /// This is just like getValue, but when a compaction table is in use, it
477 /// is ignored. Also, no forward references or other fancy features are
478 /// supported.
479 Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
480 if (SlotNo == 0)
481 return Constant::getNullValue(getType(TyID));
483 if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
484 TyID -= Type::FirstDerivedTyID;
485 if (TyID >= CompactionTypes.size())
486 error("Type ID out of range for compaction table!");
487 TyID = CompactionTypes[TyID].second;
490 --SlotNo;
492 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
493 SlotNo >= ModuleValues[TyID]->size()) {
494 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
495 error("Corrupt compaction table entry!"
496 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
497 + utostr(ModuleValues.size()));
498 else
499 error("Corrupt compaction table entry!"
500 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
501 + utostr(ModuleValues.size()) + ", "
502 + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
503 + ", "
504 + utostr(ModuleValues[TyID]->size()));
506 return ModuleValues[TyID]->getOperand(SlotNo);
509 /// Just like getValue, except that it returns a null pointer
510 /// only on error. It always returns a constant (meaning that if the value is
511 /// defined, but is not a constant, that is an error). If the specified
512 /// constant hasn't been parsed yet, a placeholder is defined and used.
513 /// Later, after the real value is parsed, the placeholder is eliminated.
514 Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
515 if (Value *V = getValue(TypeSlot, Slot, false))
516 if (Constant *C = dyn_cast<Constant>(V))
517 return C; // If we already have the value parsed, just return it
518 else
519 error("Value for slot " + utostr(Slot) +
520 " is expected to be a constant!");
522 std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
523 ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
525 if (I != ConstantFwdRefs.end() && I->first == Key) {
526 return I->second;
527 } else {
528 // Create a placeholder for the constant reference and
529 // keep track of the fact that we have a forward ref to recycle it
530 Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
532 // Keep track of the fact that we have a forward ref to recycle it
533 ConstantFwdRefs.insert(I, std::make_pair(Key, C));
534 return C;
538 //===----------------------------------------------------------------------===//
539 // IR Construction Methods
540 //===----------------------------------------------------------------------===//
542 /// As values are created, they are inserted into the appropriate place
543 /// with this method. The ValueTable argument must be one of ModuleValues
544 /// or FunctionValues data members of this class.
545 unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
546 ValueTable &ValueTab) {
547 if (ValueTab.size() <= type)
548 ValueTab.resize(type+1);
550 if (!ValueTab[type]) ValueTab[type] = new ValueList();
552 ValueTab[type]->push_back(Val);
554 bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
555 return ValueTab[type]->size()-1 + HasOffset;
558 /// Insert the arguments of a function as new values in the reader.
559 void BytecodeReader::insertArguments(Function* F) {
560 const FunctionType *FT = F->getFunctionType();
561 Function::arg_iterator AI = F->arg_begin();
562 for (FunctionType::param_iterator It = FT->param_begin();
563 It != FT->param_end(); ++It, ++AI)
564 insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
567 //===----------------------------------------------------------------------===//
568 // Bytecode Parsing Methods
569 //===----------------------------------------------------------------------===//
571 /// This method parses a single instruction. The instruction is
572 /// inserted at the end of the \p BB provided. The arguments of
573 /// the instruction are provided in the \p Oprnds vector.
574 void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
575 BasicBlock* BB) {
576 BufPtr SaveAt = At;
578 // Clear instruction data
579 Oprnds.clear();
580 unsigned iType = 0;
581 unsigned Opcode = 0;
582 unsigned Op = read_uint();
584 // bits Instruction format: Common to all formats
585 // --------------------------
586 // 01-00: Opcode type, fixed to 1.
587 // 07-02: Opcode
588 Opcode = (Op >> 2) & 63;
589 Oprnds.resize((Op >> 0) & 03);
591 // Extract the operands
592 switch (Oprnds.size()) {
593 case 1:
594 // bits Instruction format:
595 // --------------------------
596 // 19-08: Resulting type plane
597 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
599 iType = (Op >> 8) & 4095;
600 Oprnds[0] = (Op >> 20) & 4095;
601 if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
602 Oprnds.resize(0);
603 break;
604 case 2:
605 // bits Instruction format:
606 // --------------------------
607 // 15-08: Resulting type plane
608 // 23-16: Operand #1
609 // 31-24: Operand #2
611 iType = (Op >> 8) & 255;
612 Oprnds[0] = (Op >> 16) & 255;
613 Oprnds[1] = (Op >> 24) & 255;
614 break;
615 case 3:
616 // bits Instruction format:
617 // --------------------------
618 // 13-08: Resulting type plane
619 // 19-14: Operand #1
620 // 25-20: Operand #2
621 // 31-26: Operand #3
623 iType = (Op >> 8) & 63;
624 Oprnds[0] = (Op >> 14) & 63;
625 Oprnds[1] = (Op >> 20) & 63;
626 Oprnds[2] = (Op >> 26) & 63;
627 break;
628 case 0:
629 At -= 4; // Hrm, try this again...
630 Opcode = read_vbr_uint();
631 Opcode >>= 2;
632 iType = read_vbr_uint();
634 unsigned NumOprnds = read_vbr_uint();
635 Oprnds.resize(NumOprnds);
637 if (NumOprnds == 0)
638 error("Zero-argument instruction found; this is invalid.");
640 for (unsigned i = 0; i != NumOprnds; ++i)
641 Oprnds[i] = read_vbr_uint();
642 align32();
643 break;
646 const Type *InstTy = getSanitizedType(iType);
648 // We have enough info to inform the handler now.
649 if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
651 // Declare the resulting instruction we'll build.
652 Instruction *Result = 0;
654 // If this is a bytecode format that did not include the unreachable
655 // instruction, bump up all opcodes numbers to make space.
656 if (hasNoUnreachableInst) {
657 if (Opcode >= Instruction::Unreachable &&
658 Opcode < 62) {
659 ++Opcode;
663 // Handle binary operators
664 if (Opcode >= Instruction::BinaryOpsBegin &&
665 Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
666 Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
667 getValue(iType, Oprnds[0]),
668 getValue(iType, Oprnds[1]));
670 bool isCall = false;
671 switch (Opcode) {
672 default:
673 if (Result == 0)
674 error("Illegal instruction read!");
675 break;
676 case Instruction::VAArg:
677 Result = new VAArgInst(getValue(iType, Oprnds[0]),
678 getSanitizedType(Oprnds[1]));
679 break;
680 case 32: { //VANext_old
681 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
682 Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
683 (Type *)0);
685 //b = vanext a, t ->
686 //foo = alloca 1 of t
687 //bar = vacopy a
688 //store bar -> foo
689 //tmp = vaarg foo, t
690 //b = load foo
691 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
692 BB->getInstList().push_back(foo);
693 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
694 BB->getInstList().push_back(bar);
695 BB->getInstList().push_back(new StoreInst(bar, foo));
696 Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
697 BB->getInstList().push_back(tmp);
698 Result = new LoadInst(foo);
699 break;
701 case 33: { //VAArg_old
702 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
703 Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
704 (Type *)0);
706 //b = vaarg a, t ->
707 //foo = alloca 1 of t
708 //bar = vacopy a
709 //store bar -> foo
710 //b = vaarg foo, t
711 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
712 BB->getInstList().push_back(foo);
713 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
714 BB->getInstList().push_back(bar);
715 BB->getInstList().push_back(new StoreInst(bar, foo));
716 Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
717 break;
719 case Instruction::ExtractElement: {
720 if (Oprnds.size() != 2)
721 throw std::string("Invalid extractelement instruction!");
722 Value *V1 = getValue(iType, Oprnds[0]);
723 Value *V2 = getValue(Type::UIntTyID, Oprnds[1]);
725 if (!ExtractElementInst::isValidOperands(V1, V2))
726 throw std::string("Invalid extractelement instruction!");
728 Result = new ExtractElementInst(V1, V2);
729 break;
731 case Instruction::InsertElement: {
732 const PackedType *PackedTy = dyn_cast<PackedType>(InstTy);
733 if (!PackedTy || Oprnds.size() != 3)
734 throw std::string("Invalid insertelement instruction!");
736 Value *V1 = getValue(iType, Oprnds[0]);
737 Value *V2 = getValue(getTypeSlot(PackedTy->getElementType()), Oprnds[1]);
738 Value *V3 = getValue(Type::UIntTyID, Oprnds[2]);
740 if (!InsertElementInst::isValidOperands(V1, V2, V3))
741 throw std::string("Invalid insertelement instruction!");
742 Result = new InsertElementInst(V1, V2, V3);
743 break;
745 case Instruction::ShuffleVector: {
746 const PackedType *PackedTy = dyn_cast<PackedType>(InstTy);
747 if (!PackedTy || Oprnds.size() != 3)
748 throw std::string("Invalid shufflevector instruction!");
749 Value *V1 = getValue(iType, Oprnds[0]);
750 Value *V2 = getValue(iType, Oprnds[1]);
751 const PackedType *EltTy =
752 PackedType::get(Type::UIntTy, PackedTy->getNumElements());
753 Value *V3 = getValue(getTypeSlot(EltTy), Oprnds[2]);
754 if (!ShuffleVectorInst::isValidOperands(V1, V2, V3))
755 throw std::string("Invalid shufflevector instruction!");
756 Result = new ShuffleVectorInst(V1, V2, V3);
757 break;
759 case Instruction::Cast:
760 Result = new CastInst(getValue(iType, Oprnds[0]),
761 getSanitizedType(Oprnds[1]));
762 break;
763 case Instruction::Select:
764 Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
765 getValue(iType, Oprnds[1]),
766 getValue(iType, Oprnds[2]));
767 break;
768 case Instruction::PHI: {
769 if (Oprnds.size() == 0 || (Oprnds.size() & 1))
770 error("Invalid phi node encountered!");
772 PHINode *PN = new PHINode(InstTy);
773 PN->reserveOperandSpace(Oprnds.size());
774 for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
775 PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
776 Result = PN;
777 break;
780 case Instruction::Shl:
781 case Instruction::Shr:
782 Result = new ShiftInst((Instruction::OtherOps)Opcode,
783 getValue(iType, Oprnds[0]),
784 getValue(Type::UByteTyID, Oprnds[1]));
785 break;
786 case Instruction::Ret:
787 if (Oprnds.size() == 0)
788 Result = new ReturnInst();
789 else if (Oprnds.size() == 1)
790 Result = new ReturnInst(getValue(iType, Oprnds[0]));
791 else
792 error("Unrecognized instruction!");
793 break;
795 case Instruction::Br:
796 if (Oprnds.size() == 1)
797 Result = new BranchInst(getBasicBlock(Oprnds[0]));
798 else if (Oprnds.size() == 3)
799 Result = new BranchInst(getBasicBlock(Oprnds[0]),
800 getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
801 else
802 error("Invalid number of operands for a 'br' instruction!");
803 break;
804 case Instruction::Switch: {
805 if (Oprnds.size() & 1)
806 error("Switch statement with odd number of arguments!");
808 SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
809 getBasicBlock(Oprnds[1]),
810 Oprnds.size()/2-1);
811 for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
812 I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
813 getBasicBlock(Oprnds[i+1]));
814 Result = I;
815 break;
818 case 58: // Call with extra operand for calling conv
819 case 59: // tail call, Fast CC
820 case 60: // normal call, Fast CC
821 case 61: // tail call, C Calling Conv
822 case Instruction::Call: { // Normal Call, C Calling Convention
823 if (Oprnds.size() == 0)
824 error("Invalid call instruction encountered!");
826 Value *F = getValue(iType, Oprnds[0]);
828 unsigned CallingConv = CallingConv::C;
829 bool isTailCall = false;
831 if (Opcode == 61 || Opcode == 59)
832 isTailCall = true;
834 // Check to make sure we have a pointer to function type
835 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
836 if (PTy == 0) error("Call to non function pointer value!");
837 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
838 if (FTy == 0) error("Call to non function pointer value!");
840 std::vector<Value *> Params;
841 if (!FTy->isVarArg()) {
842 FunctionType::param_iterator It = FTy->param_begin();
844 if (Opcode == 58) {
845 isTailCall = Oprnds.back() & 1;
846 CallingConv = Oprnds.back() >> 1;
847 Oprnds.pop_back();
848 } else if (Opcode == 59 || Opcode == 60)
849 CallingConv = CallingConv::Fast;
851 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
852 if (It == FTy->param_end())
853 error("Invalid call instruction!");
854 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
856 if (It != FTy->param_end())
857 error("Invalid call instruction!");
858 } else {
859 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
861 unsigned FirstVariableOperand;
862 if (Oprnds.size() < FTy->getNumParams())
863 error("Call instruction missing operands!");
865 // Read all of the fixed arguments
866 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
867 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
869 FirstVariableOperand = FTy->getNumParams();
871 if ((Oprnds.size()-FirstVariableOperand) & 1)
872 error("Invalid call instruction!"); // Must be pairs of type/value
874 for (unsigned i = FirstVariableOperand, e = Oprnds.size();
875 i != e; i += 2)
876 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
879 Result = new CallInst(F, Params);
880 if (isTailCall) cast<CallInst>(Result)->setTailCall();
881 if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
882 break;
884 case 56: // Invoke with encoded CC
885 case 57: // Invoke Fast CC
886 case Instruction::Invoke: { // Invoke C CC
887 if (Oprnds.size() < 3)
888 error("Invalid invoke instruction!");
889 Value *F = getValue(iType, Oprnds[0]);
891 // Check to make sure we have a pointer to function type
892 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
893 if (PTy == 0)
894 error("Invoke to non function pointer value!");
895 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
896 if (FTy == 0)
897 error("Invoke to non function pointer value!");
899 std::vector<Value *> Params;
900 BasicBlock *Normal, *Except;
901 unsigned CallingConv = CallingConv::C;
903 if (Opcode == 57)
904 CallingConv = CallingConv::Fast;
905 else if (Opcode == 56) {
906 CallingConv = Oprnds.back();
907 Oprnds.pop_back();
910 if (!FTy->isVarArg()) {
911 Normal = getBasicBlock(Oprnds[1]);
912 Except = getBasicBlock(Oprnds[2]);
914 FunctionType::param_iterator It = FTy->param_begin();
915 for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
916 if (It == FTy->param_end())
917 error("Invalid invoke instruction!");
918 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
920 if (It != FTy->param_end())
921 error("Invalid invoke instruction!");
922 } else {
923 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
925 Normal = getBasicBlock(Oprnds[0]);
926 Except = getBasicBlock(Oprnds[1]);
928 unsigned FirstVariableArgument = FTy->getNumParams()+2;
929 for (unsigned i = 2; i != FirstVariableArgument; ++i)
930 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
931 Oprnds[i]));
933 if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
934 error("Invalid invoke instruction!");
936 for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
937 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
940 Result = new InvokeInst(F, Normal, Except, Params);
941 if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
942 break;
944 case Instruction::Malloc: {
945 unsigned Align = 0;
946 if (Oprnds.size() == 2)
947 Align = (1 << Oprnds[1]) >> 1;
948 else if (Oprnds.size() > 2)
949 error("Invalid malloc instruction!");
950 if (!isa<PointerType>(InstTy))
951 error("Invalid malloc instruction!");
953 Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
954 getValue(Type::UIntTyID, Oprnds[0]), Align);
955 break;
958 case Instruction::Alloca: {
959 unsigned Align = 0;
960 if (Oprnds.size() == 2)
961 Align = (1 << Oprnds[1]) >> 1;
962 else if (Oprnds.size() > 2)
963 error("Invalid alloca instruction!");
964 if (!isa<PointerType>(InstTy))
965 error("Invalid alloca instruction!");
967 Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
968 getValue(Type::UIntTyID, Oprnds[0]), Align);
969 break;
971 case Instruction::Free:
972 if (!isa<PointerType>(InstTy))
973 error("Invalid free instruction!");
974 Result = new FreeInst(getValue(iType, Oprnds[0]));
975 break;
976 case Instruction::GetElementPtr: {
977 if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
978 error("Invalid getelementptr instruction!");
980 std::vector<Value*> Idx;
982 const Type *NextTy = InstTy;
983 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
984 const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
985 if (!TopTy)
986 error("Invalid getelementptr instruction!");
988 unsigned ValIdx = Oprnds[i];
989 unsigned IdxTy = 0;
990 if (!hasRestrictedGEPTypes) {
991 // Struct indices are always uints, sequential type indices can be any
992 // of the 32 or 64-bit integer types. The actual choice of type is
993 // encoded in the low two bits of the slot number.
994 if (isa<StructType>(TopTy))
995 IdxTy = Type::UIntTyID;
996 else {
997 switch (ValIdx & 3) {
998 default:
999 case 0: IdxTy = Type::UIntTyID; break;
1000 case 1: IdxTy = Type::IntTyID; break;
1001 case 2: IdxTy = Type::ULongTyID; break;
1002 case 3: IdxTy = Type::LongTyID; break;
1004 ValIdx >>= 2;
1006 } else {
1007 IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
1010 Idx.push_back(getValue(IdxTy, ValIdx));
1012 // Convert ubyte struct indices into uint struct indices.
1013 if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
1014 if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
1015 Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
1017 NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
1020 Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
1021 break;
1024 case 62: // volatile load
1025 case Instruction::Load:
1026 if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
1027 error("Invalid load instruction!");
1028 Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
1029 break;
1031 case 63: // volatile store
1032 case Instruction::Store: {
1033 if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
1034 error("Invalid store instruction!");
1036 Value *Ptr = getValue(iType, Oprnds[1]);
1037 const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
1038 Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
1039 Opcode == 63);
1040 break;
1042 case Instruction::Unwind:
1043 if (Oprnds.size() != 0) error("Invalid unwind instruction!");
1044 Result = new UnwindInst();
1045 break;
1046 case Instruction::Unreachable:
1047 if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
1048 Result = new UnreachableInst();
1049 break;
1050 } // end switch(Opcode)
1052 BB->getInstList().push_back(Result);
1054 unsigned TypeSlot;
1055 if (Result->getType() == InstTy)
1056 TypeSlot = iType;
1057 else
1058 TypeSlot = getTypeSlot(Result->getType());
1060 insertValue(Result, TypeSlot, FunctionValues);
1063 /// Get a particular numbered basic block, which might be a forward reference.
1064 /// This works together with ParseBasicBlock to handle these forward references
1065 /// in a clean manner. This function is used when constructing phi, br, switch,
1066 /// and other instructions that reference basic blocks. Blocks are numbered
1067 /// sequentially as they appear in the function.
1068 BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
1069 // Make sure there is room in the table...
1070 if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
1072 // First check to see if this is a backwards reference, i.e., ParseBasicBlock
1073 // has already created this block, or if the forward reference has already
1074 // been created.
1075 if (ParsedBasicBlocks[ID])
1076 return ParsedBasicBlocks[ID];
1078 // Otherwise, the basic block has not yet been created. Do so and add it to
1079 // the ParsedBasicBlocks list.
1080 return ParsedBasicBlocks[ID] = new BasicBlock();
1083 /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
1084 /// This method reads in one of the basicblock packets. This method is not used
1085 /// for bytecode files after LLVM 1.0
1086 /// @returns The basic block constructed.
1087 BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
1088 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
1090 BasicBlock *BB = 0;
1092 if (ParsedBasicBlocks.size() == BlockNo)
1093 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1094 else if (ParsedBasicBlocks[BlockNo] == 0)
1095 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1096 else
1097 BB = ParsedBasicBlocks[BlockNo];
1099 std::vector<unsigned> Operands;
1100 while (moreInBlock())
1101 ParseInstruction(Operands, BB);
1103 if (Handler) Handler->handleBasicBlockEnd(BlockNo);
1104 return BB;
1107 /// Parse all of the BasicBlock's & Instruction's in the body of a function.
1108 /// In post 1.0 bytecode files, we no longer emit basic block individually,
1109 /// in order to avoid per-basic-block overhead.
1110 /// @returns Rhe number of basic blocks encountered.
1111 unsigned BytecodeReader::ParseInstructionList(Function* F) {
1112 unsigned BlockNo = 0;
1113 std::vector<unsigned> Args;
1115 while (moreInBlock()) {
1116 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
1117 BasicBlock *BB;
1118 if (ParsedBasicBlocks.size() == BlockNo)
1119 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1120 else if (ParsedBasicBlocks[BlockNo] == 0)
1121 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1122 else
1123 BB = ParsedBasicBlocks[BlockNo];
1124 ++BlockNo;
1125 F->getBasicBlockList().push_back(BB);
1127 // Read instructions into this basic block until we get to a terminator
1128 while (moreInBlock() && !BB->getTerminator())
1129 ParseInstruction(Args, BB);
1131 if (!BB->getTerminator())
1132 error("Non-terminated basic block found!");
1134 if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
1137 return BlockNo;
1140 /// Parse a symbol table. This works for both module level and function
1141 /// level symbol tables. For function level symbol tables, the CurrentFunction
1142 /// parameter must be non-zero and the ST parameter must correspond to
1143 /// CurrentFunction's symbol table. For Module level symbol tables, the
1144 /// CurrentFunction argument must be zero.
1145 void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
1146 SymbolTable *ST) {
1147 if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
1149 // Allow efficient basic block lookup by number.
1150 std::vector<BasicBlock*> BBMap;
1151 if (CurrentFunction)
1152 for (Function::iterator I = CurrentFunction->begin(),
1153 E = CurrentFunction->end(); I != E; ++I)
1154 BBMap.push_back(I);
1156 /// In LLVM 1.3 we write types separately from values so
1157 /// The types are always first in the symbol table. This is
1158 /// because Type no longer derives from Value.
1159 if (!hasTypeDerivedFromValue) {
1160 // Symtab block header: [num entries]
1161 unsigned NumEntries = read_vbr_uint();
1162 for (unsigned i = 0; i < NumEntries; ++i) {
1163 // Symtab entry: [def slot #][name]
1164 unsigned slot = read_vbr_uint();
1165 std::string Name = read_str();
1166 const Type* T = getType(slot);
1167 ST->insert(Name, T);
1171 while (moreInBlock()) {
1172 // Symtab block header: [num entries][type id number]
1173 unsigned NumEntries = read_vbr_uint();
1174 unsigned Typ = 0;
1175 bool isTypeType = read_typeid(Typ);
1176 const Type *Ty = getType(Typ);
1178 for (unsigned i = 0; i != NumEntries; ++i) {
1179 // Symtab entry: [def slot #][name]
1180 unsigned slot = read_vbr_uint();
1181 std::string Name = read_str();
1183 // if we're reading a pre 1.3 bytecode file and the type plane
1184 // is the "type type", handle it here
1185 if (isTypeType) {
1186 const Type* T = getType(slot);
1187 if (T == 0)
1188 error("Failed type look-up for name '" + Name + "'");
1189 ST->insert(Name, T);
1190 continue; // code below must be short circuited
1191 } else {
1192 Value *V = 0;
1193 if (Typ == Type::LabelTyID) {
1194 if (slot < BBMap.size())
1195 V = BBMap[slot];
1196 } else {
1197 V = getValue(Typ, slot, false); // Find mapping...
1199 if (V == 0)
1200 error("Failed value look-up for name '" + Name + "'");
1201 V->setName(Name);
1205 checkPastBlockEnd("Symbol Table");
1206 if (Handler) Handler->handleSymbolTableEnd();
1209 /// Read in the types portion of a compaction table.
1210 void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
1211 for (unsigned i = 0; i != NumEntries; ++i) {
1212 unsigned TypeSlot = 0;
1213 if (read_typeid(TypeSlot))
1214 error("Invalid type in compaction table: type type");
1215 const Type *Typ = getGlobalTableType(TypeSlot);
1216 CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
1217 if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
1221 /// Parse a compaction table.
1222 void BytecodeReader::ParseCompactionTable() {
1224 // Notify handler that we're beginning a compaction table.
1225 if (Handler) Handler->handleCompactionTableBegin();
1227 // In LLVM 1.3 Type no longer derives from Value. So,
1228 // we always write them first in the compaction table
1229 // because they can't occupy a "type plane" where the
1230 // Values reside.
1231 if (! hasTypeDerivedFromValue) {
1232 unsigned NumEntries = read_vbr_uint();
1233 ParseCompactionTypes(NumEntries);
1236 // Compaction tables live in separate blocks so we have to loop
1237 // until we've read the whole thing.
1238 while (moreInBlock()) {
1239 // Read the number of Value* entries in the compaction table
1240 unsigned NumEntries = read_vbr_uint();
1241 unsigned Ty = 0;
1242 unsigned isTypeType = false;
1244 // Decode the type from value read in. Most compaction table
1245 // planes will have one or two entries in them. If that's the
1246 // case then the length is encoded in the bottom two bits and
1247 // the higher bits encode the type. This saves another VBR value.
1248 if ((NumEntries & 3) == 3) {
1249 // In this case, both low-order bits are set (value 3). This
1250 // is a signal that the typeid follows.
1251 NumEntries >>= 2;
1252 isTypeType = read_typeid(Ty);
1253 } else {
1254 // In this case, the low-order bits specify the number of entries
1255 // and the high order bits specify the type.
1256 Ty = NumEntries >> 2;
1257 isTypeType = sanitizeTypeId(Ty);
1258 NumEntries &= 3;
1261 // if we're reading a pre 1.3 bytecode file and the type plane
1262 // is the "type type", handle it here
1263 if (isTypeType) {
1264 ParseCompactionTypes(NumEntries);
1265 } else {
1266 // Make sure we have enough room for the plane.
1267 if (Ty >= CompactionValues.size())
1268 CompactionValues.resize(Ty+1);
1270 // Make sure the plane is empty or we have some kind of error.
1271 if (!CompactionValues[Ty].empty())
1272 error("Compaction table plane contains multiple entries!");
1274 // Notify handler about the plane.
1275 if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
1277 // Push the implicit zero.
1278 CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
1280 // Read in each of the entries, put them in the compaction table
1281 // and notify the handler that we have a new compaction table value.
1282 for (unsigned i = 0; i != NumEntries; ++i) {
1283 unsigned ValSlot = read_vbr_uint();
1284 Value *V = getGlobalTableValue(Ty, ValSlot);
1285 CompactionValues[Ty].push_back(V);
1286 if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
1290 // Notify handler that the compaction table is done.
1291 if (Handler) Handler->handleCompactionTableEnd();
1294 // Parse a single type. The typeid is read in first. If its a primitive type
1295 // then nothing else needs to be read, we know how to instantiate it. If its
1296 // a derived type, then additional data is read to fill out the type
1297 // definition.
1298 const Type *BytecodeReader::ParseType() {
1299 unsigned PrimType = 0;
1300 if (read_typeid(PrimType))
1301 error("Invalid type (type type) in type constants!");
1303 const Type *Result = 0;
1304 if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
1305 return Result;
1307 switch (PrimType) {
1308 case Type::FunctionTyID: {
1309 const Type *RetType = readSanitizedType();
1311 unsigned NumParams = read_vbr_uint();
1313 std::vector<const Type*> Params;
1314 while (NumParams--)
1315 Params.push_back(readSanitizedType());
1317 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1318 if (isVarArg) Params.pop_back();
1320 Result = FunctionType::get(RetType, Params, isVarArg);
1321 break;
1323 case Type::ArrayTyID: {
1324 const Type *ElementType = readSanitizedType();
1325 unsigned NumElements = read_vbr_uint();
1326 Result = ArrayType::get(ElementType, NumElements);
1327 break;
1329 case Type::PackedTyID: {
1330 const Type *ElementType = readSanitizedType();
1331 unsigned NumElements = read_vbr_uint();
1332 Result = PackedType::get(ElementType, NumElements);
1333 break;
1335 case Type::StructTyID: {
1336 std::vector<const Type*> Elements;
1337 unsigned Typ = 0;
1338 if (read_typeid(Typ))
1339 error("Invalid element type (type type) for structure!");
1341 while (Typ) { // List is terminated by void/0 typeid
1342 Elements.push_back(getType(Typ));
1343 if (read_typeid(Typ))
1344 error("Invalid element type (type type) for structure!");
1347 Result = StructType::get(Elements);
1348 break;
1350 case Type::PointerTyID: {
1351 Result = PointerType::get(readSanitizedType());
1352 break;
1355 case Type::OpaqueTyID: {
1356 Result = OpaqueType::get();
1357 break;
1360 default:
1361 error("Don't know how to deserialize primitive type " + utostr(PrimType));
1362 break;
1364 if (Handler) Handler->handleType(Result);
1365 return Result;
1368 // ParseTypes - We have to use this weird code to handle recursive
1369 // types. We know that recursive types will only reference the current slab of
1370 // values in the type plane, but they can forward reference types before they
1371 // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
1372 // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
1373 // this ugly problem, we pessimistically insert an opaque type for each type we
1374 // are about to read. This means that forward references will resolve to
1375 // something and when we reread the type later, we can replace the opaque type
1376 // with a new resolved concrete type.
1378 void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
1379 assert(Tab.size() == 0 && "should not have read type constants in before!");
1381 // Insert a bunch of opaque types to be resolved later...
1382 Tab.reserve(NumEntries);
1383 for (unsigned i = 0; i != NumEntries; ++i)
1384 Tab.push_back(OpaqueType::get());
1386 if (Handler)
1387 Handler->handleTypeList(NumEntries);
1389 // If we are about to resolve types, make sure the type cache is clear.
1390 if (NumEntries)
1391 ModuleTypeIDCache.clear();
1393 // Loop through reading all of the types. Forward types will make use of the
1394 // opaque types just inserted.
1396 for (unsigned i = 0; i != NumEntries; ++i) {
1397 const Type* NewTy = ParseType();
1398 const Type* OldTy = Tab[i].get();
1399 if (NewTy == 0)
1400 error("Couldn't parse type!");
1402 // Don't directly push the new type on the Tab. Instead we want to replace
1403 // the opaque type we previously inserted with the new concrete value. This
1404 // approach helps with forward references to types. The refinement from the
1405 // abstract (opaque) type to the new type causes all uses of the abstract
1406 // type to use the concrete type (NewTy). This will also cause the opaque
1407 // type to be deleted.
1408 cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
1410 // This should have replaced the old opaque type with the new type in the
1411 // value table... or with a preexisting type that was already in the system.
1412 // Let's just make sure it did.
1413 assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
1417 /// Parse a single constant value
1418 Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
1419 // We must check for a ConstantExpr before switching by type because
1420 // a ConstantExpr can be of any type, and has no explicit value.
1422 // 0 if not expr; numArgs if is expr
1423 unsigned isExprNumArgs = read_vbr_uint();
1425 if (isExprNumArgs) {
1426 if (!hasNoUndefValue) {
1427 // 'undef' is encoded with 'exprnumargs' == 1.
1428 if (isExprNumArgs == 1)
1429 return UndefValue::get(getType(TypeID));
1431 // Inline asm is encoded with exprnumargs == ~0U.
1432 if (isExprNumArgs == ~0U) {
1433 std::string AsmStr = read_str();
1434 std::string ConstraintStr = read_str();
1435 unsigned Flags = read_vbr_uint();
1437 const PointerType *PTy = dyn_cast<PointerType>(getType(TypeID));
1438 const FunctionType *FTy =
1439 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1441 if (!FTy || !InlineAsm::Verify(FTy, ConstraintStr))
1442 error("Invalid constraints for inline asm");
1443 if (Flags & ~1U)
1444 error("Invalid flags for inline asm");
1445 bool HasSideEffects = Flags & 1;
1446 return InlineAsm::get(FTy, AsmStr, ConstraintStr, HasSideEffects);
1449 --isExprNumArgs;
1452 // FIXME: Encoding of constant exprs could be much more compact!
1453 std::vector<Constant*> ArgVec;
1454 ArgVec.reserve(isExprNumArgs);
1455 unsigned Opcode = read_vbr_uint();
1457 // Bytecode files before LLVM 1.4 need have a missing terminator inst.
1458 if (hasNoUnreachableInst) Opcode++;
1460 // Read the slot number and types of each of the arguments
1461 for (unsigned i = 0; i != isExprNumArgs; ++i) {
1462 unsigned ArgValSlot = read_vbr_uint();
1463 unsigned ArgTypeSlot = 0;
1464 if (read_typeid(ArgTypeSlot))
1465 error("Invalid argument type (type type) for constant value");
1467 // Get the arg value from its slot if it exists, otherwise a placeholder
1468 ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
1471 // Construct a ConstantExpr of the appropriate kind
1472 if (isExprNumArgs == 1) { // All one-operand expressions
1473 if (Opcode != Instruction::Cast)
1474 error("Only cast instruction has one argument for ConstantExpr");
1476 Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
1477 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1478 return Result;
1479 } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
1480 std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
1482 if (hasRestrictedGEPTypes) {
1483 const Type *BaseTy = ArgVec[0]->getType();
1484 generic_gep_type_iterator<std::vector<Constant*>::iterator>
1485 GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
1486 E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
1487 for (unsigned i = 0; GTI != E; ++GTI, ++i)
1488 if (isa<StructType>(*GTI)) {
1489 if (IdxList[i]->getType() != Type::UByteTy)
1490 error("Invalid index for getelementptr!");
1491 IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
1495 Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
1496 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1497 return Result;
1498 } else if (Opcode == Instruction::Select) {
1499 if (ArgVec.size() != 3)
1500 error("Select instruction must have three arguments.");
1501 Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
1502 ArgVec[2]);
1503 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1504 return Result;
1505 } else if (Opcode == Instruction::ExtractElement) {
1506 if (ArgVec.size() != 2 ||
1507 !ExtractElementInst::isValidOperands(ArgVec[0], ArgVec[1]))
1508 error("Invalid extractelement constand expr arguments");
1509 Constant* Result = ConstantExpr::getExtractElement(ArgVec[0], ArgVec[1]);
1510 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1511 return Result;
1512 } else if (Opcode == Instruction::InsertElement) {
1513 if (ArgVec.size() != 3 ||
1514 !InsertElementInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
1515 error("Invalid insertelement constand expr arguments");
1517 Constant *Result =
1518 ConstantExpr::getInsertElement(ArgVec[0], ArgVec[1], ArgVec[2]);
1519 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1520 return Result;
1521 } else if (Opcode == Instruction::ShuffleVector) {
1522 if (ArgVec.size() != 3 ||
1523 !ShuffleVectorInst::isValidOperands(ArgVec[0], ArgVec[1], ArgVec[2]))
1524 error("Invalid shufflevector constant expr arguments.");
1525 Constant *Result =
1526 ConstantExpr::getShuffleVector(ArgVec[0], ArgVec[1], ArgVec[2]);
1527 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1528 return Result;
1529 } else { // All other 2-operand expressions
1530 Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
1531 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1532 return Result;
1536 // Ok, not an ConstantExpr. We now know how to read the given type...
1537 const Type *Ty = getType(TypeID);
1538 Constant *Result = 0;
1539 switch (Ty->getTypeID()) {
1540 case Type::BoolTyID: {
1541 unsigned Val = read_vbr_uint();
1542 if (Val != 0 && Val != 1)
1543 error("Invalid boolean value read.");
1544 Result = ConstantBool::get(Val == 1);
1545 if (Handler) Handler->handleConstantValue(Result);
1546 break;
1549 case Type::UByteTyID: // Unsigned integer types...
1550 case Type::UShortTyID:
1551 case Type::UIntTyID: {
1552 unsigned Val = read_vbr_uint();
1553 if (!ConstantUInt::isValueValidForType(Ty, Val))
1554 error("Invalid unsigned byte/short/int read.");
1555 Result = ConstantUInt::get(Ty, Val);
1556 if (Handler) Handler->handleConstantValue(Result);
1557 break;
1560 case Type::ULongTyID:
1561 Result = ConstantUInt::get(Ty, read_vbr_uint64());
1562 if (Handler) Handler->handleConstantValue(Result);
1563 break;
1565 case Type::SByteTyID: // Signed integer types...
1566 case Type::ShortTyID:
1567 case Type::IntTyID:
1568 case Type::LongTyID: {
1569 int64_t Val = read_vbr_int64();
1570 if (!ConstantSInt::isValueValidForType(Ty, Val))
1571 error("Invalid signed byte/short/int/long read.");
1572 Result = ConstantSInt::get(Ty, Val);
1573 if (Handler) Handler->handleConstantValue(Result);
1574 break;
1577 case Type::FloatTyID: {
1578 float Val;
1579 read_float(Val);
1580 Result = ConstantFP::get(Ty, Val);
1581 if (Handler) Handler->handleConstantValue(Result);
1582 break;
1585 case Type::DoubleTyID: {
1586 double Val;
1587 read_double(Val);
1588 Result = ConstantFP::get(Ty, Val);
1589 if (Handler) Handler->handleConstantValue(Result);
1590 break;
1593 case Type::ArrayTyID: {
1594 const ArrayType *AT = cast<ArrayType>(Ty);
1595 unsigned NumElements = AT->getNumElements();
1596 unsigned TypeSlot = getTypeSlot(AT->getElementType());
1597 std::vector<Constant*> Elements;
1598 Elements.reserve(NumElements);
1599 while (NumElements--) // Read all of the elements of the constant.
1600 Elements.push_back(getConstantValue(TypeSlot,
1601 read_vbr_uint()));
1602 Result = ConstantArray::get(AT, Elements);
1603 if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
1604 break;
1607 case Type::StructTyID: {
1608 const StructType *ST = cast<StructType>(Ty);
1610 std::vector<Constant *> Elements;
1611 Elements.reserve(ST->getNumElements());
1612 for (unsigned i = 0; i != ST->getNumElements(); ++i)
1613 Elements.push_back(getConstantValue(ST->getElementType(i),
1614 read_vbr_uint()));
1616 Result = ConstantStruct::get(ST, Elements);
1617 if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
1618 break;
1621 case Type::PackedTyID: {
1622 const PackedType *PT = cast<PackedType>(Ty);
1623 unsigned NumElements = PT->getNumElements();
1624 unsigned TypeSlot = getTypeSlot(PT->getElementType());
1625 std::vector<Constant*> Elements;
1626 Elements.reserve(NumElements);
1627 while (NumElements--) // Read all of the elements of the constant.
1628 Elements.push_back(getConstantValue(TypeSlot,
1629 read_vbr_uint()));
1630 Result = ConstantPacked::get(PT, Elements);
1631 if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
1632 break;
1635 case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
1636 const PointerType *PT = cast<PointerType>(Ty);
1637 unsigned Slot = read_vbr_uint();
1639 // Check to see if we have already read this global variable...
1640 Value *Val = getValue(TypeID, Slot, false);
1641 if (Val) {
1642 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
1643 if (!GV) error("GlobalValue not in ValueTable!");
1644 if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
1645 return GV;
1646 } else {
1647 error("Forward references are not allowed here.");
1651 default:
1652 error("Don't know how to deserialize constant value of type '" +
1653 Ty->getDescription());
1654 break;
1657 // Check that we didn't read a null constant if they are implicit for this
1658 // type plane. Do not do this check for constantexprs, as they may be folded
1659 // to a null value in a way that isn't predicted when a .bc file is initially
1660 // produced.
1661 assert((!isa<Constant>(Result) || !cast<Constant>(Result)->isNullValue()) ||
1662 !hasImplicitNull(TypeID) &&
1663 "Cannot read null values from bytecode!");
1664 return Result;
1667 /// Resolve references for constants. This function resolves the forward
1668 /// referenced constants in the ConstantFwdRefs map. It uses the
1669 /// replaceAllUsesWith method of Value class to substitute the placeholder
1670 /// instance with the actual instance.
1671 void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
1672 unsigned Slot) {
1673 ConstantRefsType::iterator I =
1674 ConstantFwdRefs.find(std::make_pair(Typ, Slot));
1675 if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
1677 Value *PH = I->second; // Get the placeholder...
1678 PH->replaceAllUsesWith(NewV);
1679 delete PH; // Delete the old placeholder
1680 ConstantFwdRefs.erase(I); // Remove the map entry for it
1683 /// Parse the constant strings section.
1684 void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
1685 for (; NumEntries; --NumEntries) {
1686 unsigned Typ = 0;
1687 if (read_typeid(Typ))
1688 error("Invalid type (type type) for string constant");
1689 const Type *Ty = getType(Typ);
1690 if (!isa<ArrayType>(Ty))
1691 error("String constant data invalid!");
1693 const ArrayType *ATy = cast<ArrayType>(Ty);
1694 if (ATy->getElementType() != Type::SByteTy &&
1695 ATy->getElementType() != Type::UByteTy)
1696 error("String constant data invalid!");
1698 // Read character data. The type tells us how long the string is.
1699 char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
1700 read_data(Data, Data+ATy->getNumElements());
1702 std::vector<Constant*> Elements(ATy->getNumElements());
1703 if (ATy->getElementType() == Type::SByteTy)
1704 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1705 Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
1706 else
1707 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1708 Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
1710 // Create the constant, inserting it as needed.
1711 Constant *C = ConstantArray::get(ATy, Elements);
1712 unsigned Slot = insertValue(C, Typ, Tab);
1713 ResolveReferencesToConstant(C, Typ, Slot);
1714 if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
1718 /// Parse the constant pool.
1719 void BytecodeReader::ParseConstantPool(ValueTable &Tab,
1720 TypeListTy &TypeTab,
1721 bool isFunction) {
1722 if (Handler) Handler->handleGlobalConstantsBegin();
1724 /// In LLVM 1.3 Type does not derive from Value so the types
1725 /// do not occupy a plane. Consequently, we read the types
1726 /// first in the constant pool.
1727 if (isFunction && !hasTypeDerivedFromValue) {
1728 unsigned NumEntries = read_vbr_uint();
1729 ParseTypes(TypeTab, NumEntries);
1732 while (moreInBlock()) {
1733 unsigned NumEntries = read_vbr_uint();
1734 unsigned Typ = 0;
1735 bool isTypeType = read_typeid(Typ);
1737 /// In LLVM 1.2 and before, Types were written to the
1738 /// bytecode file in the "Type Type" plane (#12).
1739 /// In 1.3 plane 12 is now the label plane. Handle this here.
1740 if (isTypeType) {
1741 ParseTypes(TypeTab, NumEntries);
1742 } else if (Typ == Type::VoidTyID) {
1743 /// Use of Type::VoidTyID is a misnomer. It actually means
1744 /// that the following plane is constant strings
1745 assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
1746 ParseStringConstants(NumEntries, Tab);
1747 } else {
1748 for (unsigned i = 0; i < NumEntries; ++i) {
1749 Value *V = ParseConstantPoolValue(Typ);
1750 assert(V && "ParseConstantPoolValue returned NULL!");
1751 unsigned Slot = insertValue(V, Typ, Tab);
1753 // If we are reading a function constant table, make sure that we adjust
1754 // the slot number to be the real global constant number.
1756 if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
1757 ModuleValues[Typ])
1758 Slot += ModuleValues[Typ]->size();
1759 if (Constant *C = dyn_cast<Constant>(V))
1760 ResolveReferencesToConstant(C, Typ, Slot);
1765 // After we have finished parsing the constant pool, we had better not have
1766 // any dangling references left.
1767 if (!ConstantFwdRefs.empty()) {
1768 ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
1769 Constant* missingConst = I->second;
1770 error(utostr(ConstantFwdRefs.size()) +
1771 " unresolved constant reference exist. First one is '" +
1772 missingConst->getName() + "' of type '" +
1773 missingConst->getType()->getDescription() + "'.");
1776 checkPastBlockEnd("Constant Pool");
1777 if (Handler) Handler->handleGlobalConstantsEnd();
1780 /// Parse the contents of a function. Note that this function can be
1781 /// called lazily by materializeFunction
1782 /// @see materializeFunction
1783 void BytecodeReader::ParseFunctionBody(Function* F) {
1785 unsigned FuncSize = BlockEnd - At;
1786 GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
1788 unsigned LinkageType = read_vbr_uint();
1789 switch (LinkageType) {
1790 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1791 case 1: Linkage = GlobalValue::WeakLinkage; break;
1792 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1793 case 3: Linkage = GlobalValue::InternalLinkage; break;
1794 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
1795 default:
1796 error("Invalid linkage type for Function.");
1797 Linkage = GlobalValue::InternalLinkage;
1798 break;
1801 F->setLinkage(Linkage);
1802 if (Handler) Handler->handleFunctionBegin(F,FuncSize);
1804 // Keep track of how many basic blocks we have read in...
1805 unsigned BlockNum = 0;
1806 bool InsertedArguments = false;
1808 BufPtr MyEnd = BlockEnd;
1809 while (At < MyEnd) {
1810 unsigned Type, Size;
1811 BufPtr OldAt = At;
1812 read_block(Type, Size);
1814 switch (Type) {
1815 case BytecodeFormat::ConstantPoolBlockID:
1816 if (!InsertedArguments) {
1817 // Insert arguments into the value table before we parse the first basic
1818 // block in the function, but after we potentially read in the
1819 // compaction table.
1820 insertArguments(F);
1821 InsertedArguments = true;
1824 ParseConstantPool(FunctionValues, FunctionTypes, true);
1825 break;
1827 case BytecodeFormat::CompactionTableBlockID:
1828 ParseCompactionTable();
1829 break;
1831 case BytecodeFormat::BasicBlock: {
1832 if (!InsertedArguments) {
1833 // Insert arguments into the value table before we parse the first basic
1834 // block in the function, but after we potentially read in the
1835 // compaction table.
1836 insertArguments(F);
1837 InsertedArguments = true;
1840 BasicBlock *BB = ParseBasicBlock(BlockNum++);
1841 F->getBasicBlockList().push_back(BB);
1842 break;
1845 case BytecodeFormat::InstructionListBlockID: {
1846 // Insert arguments into the value table before we parse the instruction
1847 // list for the function, but after we potentially read in the compaction
1848 // table.
1849 if (!InsertedArguments) {
1850 insertArguments(F);
1851 InsertedArguments = true;
1854 if (BlockNum)
1855 error("Already parsed basic blocks!");
1856 BlockNum = ParseInstructionList(F);
1857 break;
1860 case BytecodeFormat::SymbolTableBlockID:
1861 ParseSymbolTable(F, &F->getSymbolTable());
1862 break;
1864 default:
1865 At += Size;
1866 if (OldAt > At)
1867 error("Wrapped around reading bytecode.");
1868 break;
1870 BlockEnd = MyEnd;
1872 // Malformed bc file if read past end of block.
1873 align32();
1876 // Make sure there were no references to non-existant basic blocks.
1877 if (BlockNum != ParsedBasicBlocks.size())
1878 error("Illegal basic block operand reference");
1880 ParsedBasicBlocks.clear();
1882 // Resolve forward references. Replace any uses of a forward reference value
1883 // with the real value.
1884 while (!ForwardReferences.empty()) {
1885 std::map<std::pair<unsigned,unsigned>, Value*>::iterator
1886 I = ForwardReferences.begin();
1887 Value *V = getValue(I->first.first, I->first.second, false);
1888 Value *PlaceHolder = I->second;
1889 PlaceHolder->replaceAllUsesWith(V);
1890 ForwardReferences.erase(I);
1891 delete PlaceHolder;
1894 // If upgraded intrinsic functions were detected during reading of the
1895 // module information, then we need to look for instructions that need to
1896 // be upgraded. This can't be done while the instructions are read in because
1897 // additional instructions inserted mess up the slot numbering.
1898 if (!upgradedFunctions.empty()) {
1899 for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
1900 for (BasicBlock::iterator II = BI->begin(), IE = BI->end();
1901 II != IE;)
1902 if (CallInst* CI = dyn_cast<CallInst>(II++)) {
1903 std::map<Function*,Function*>::iterator FI =
1904 upgradedFunctions.find(CI->getCalledFunction());
1905 if (FI != upgradedFunctions.end())
1906 UpgradeIntrinsicCall(CI, FI->second);
1910 // Clear out function-level types...
1911 FunctionTypes.clear();
1912 CompactionTypes.clear();
1913 CompactionValues.clear();
1914 freeTable(FunctionValues);
1916 if (Handler) Handler->handleFunctionEnd(F);
1919 /// This function parses LLVM functions lazily. It obtains the type of the
1920 /// function and records where the body of the function is in the bytecode
1921 /// buffer. The caller can then use the ParseNextFunction and
1922 /// ParseAllFunctionBodies to get handler events for the functions.
1923 void BytecodeReader::ParseFunctionLazily() {
1924 if (FunctionSignatureList.empty())
1925 error("FunctionSignatureList empty!");
1927 Function *Func = FunctionSignatureList.back();
1928 FunctionSignatureList.pop_back();
1930 // Save the information for future reading of the function
1931 LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
1933 // This function has a body but it's not loaded so it appears `External'.
1934 // Mark it as a `Ghost' instead to notify the users that it has a body.
1935 Func->setLinkage(GlobalValue::GhostLinkage);
1937 // Pretend we've `parsed' this function
1938 At = BlockEnd;
1941 /// The ParserFunction method lazily parses one function. Use this method to
1942 /// casue the parser to parse a specific function in the module. Note that
1943 /// this will remove the function from what is to be included by
1944 /// ParseAllFunctionBodies.
1945 /// @see ParseAllFunctionBodies
1946 /// @see ParseBytecode
1947 void BytecodeReader::ParseFunction(Function* Func) {
1948 // Find {start, end} pointers and slot in the map. If not there, we're done.
1949 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
1951 // Make sure we found it
1952 if (Fi == LazyFunctionLoadMap.end()) {
1953 error("Unrecognized function of type " + Func->getType()->getDescription());
1954 return;
1957 BlockStart = At = Fi->second.Buf;
1958 BlockEnd = Fi->second.EndBuf;
1959 assert(Fi->first == Func && "Found wrong function?");
1961 LazyFunctionLoadMap.erase(Fi);
1963 this->ParseFunctionBody(Func);
1966 /// The ParseAllFunctionBodies method parses through all the previously
1967 /// unparsed functions in the bytecode file. If you want to completely parse
1968 /// a bytecode file, this method should be called after Parsebytecode because
1969 /// Parsebytecode only records the locations in the bytecode file of where
1970 /// the function definitions are located. This function uses that information
1971 /// to materialize the functions.
1972 /// @see ParseBytecode
1973 void BytecodeReader::ParseAllFunctionBodies() {
1974 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
1975 LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
1977 while (Fi != Fe) {
1978 Function* Func = Fi->first;
1979 BlockStart = At = Fi->second.Buf;
1980 BlockEnd = Fi->second.EndBuf;
1981 ParseFunctionBody(Func);
1982 ++Fi;
1984 LazyFunctionLoadMap.clear();
1988 /// Parse the global type list
1989 void BytecodeReader::ParseGlobalTypes() {
1990 // Read the number of types
1991 unsigned NumEntries = read_vbr_uint();
1993 // Ignore the type plane identifier for types if the bc file is pre 1.3
1994 if (hasTypeDerivedFromValue)
1995 read_vbr_uint();
1997 ParseTypes(ModuleTypes, NumEntries);
2000 /// Parse the Global info (types, global vars, constants)
2001 void BytecodeReader::ParseModuleGlobalInfo() {
2003 if (Handler) Handler->handleModuleGlobalsBegin();
2005 // SectionID - If a global has an explicit section specified, this map
2006 // remembers the ID until we can translate it into a string.
2007 std::map<GlobalValue*, unsigned> SectionID;
2009 // Read global variables...
2010 unsigned VarType = read_vbr_uint();
2011 while (VarType != Type::VoidTyID) { // List is terminated by Void
2012 // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
2013 // Linkage, bit4+ = slot#
2014 unsigned SlotNo = VarType >> 5;
2015 if (sanitizeTypeId(SlotNo))
2016 error("Invalid type (type type) for global var!");
2017 unsigned LinkageID = (VarType >> 2) & 7;
2018 bool isConstant = VarType & 1;
2019 bool hasInitializer = (VarType & 2) != 0;
2020 unsigned Alignment = 0;
2021 unsigned GlobalSectionID = 0;
2023 // An extension word is present when linkage = 3 (internal) and hasinit = 0.
2024 if (LinkageID == 3 && !hasInitializer) {
2025 unsigned ExtWord = read_vbr_uint();
2026 // The extension word has this format: bit 0 = has initializer, bit 1-3 =
2027 // linkage, bit 4-8 = alignment (log2), bits 10+ = future use.
2028 hasInitializer = ExtWord & 1;
2029 LinkageID = (ExtWord >> 1) & 7;
2030 Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1;
2032 if (ExtWord & (1 << 9)) // Has a section ID.
2033 GlobalSectionID = read_vbr_uint();
2036 GlobalValue::LinkageTypes Linkage;
2037 switch (LinkageID) {
2038 case 0: Linkage = GlobalValue::ExternalLinkage; break;
2039 case 1: Linkage = GlobalValue::WeakLinkage; break;
2040 case 2: Linkage = GlobalValue::AppendingLinkage; break;
2041 case 3: Linkage = GlobalValue::InternalLinkage; break;
2042 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
2043 default:
2044 error("Unknown linkage type: " + utostr(LinkageID));
2045 Linkage = GlobalValue::InternalLinkage;
2046 break;
2049 const Type *Ty = getType(SlotNo);
2050 if (!Ty)
2051 error("Global has no type! SlotNo=" + utostr(SlotNo));
2053 if (!isa<PointerType>(Ty))
2054 error("Global not a pointer type! Ty= " + Ty->getDescription());
2056 const Type *ElTy = cast<PointerType>(Ty)->getElementType();
2058 // Create the global variable...
2059 GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
2060 0, "", TheModule);
2061 GV->setAlignment(Alignment);
2062 insertValue(GV, SlotNo, ModuleValues);
2064 if (GlobalSectionID != 0)
2065 SectionID[GV] = GlobalSectionID;
2067 unsigned initSlot = 0;
2068 if (hasInitializer) {
2069 initSlot = read_vbr_uint();
2070 GlobalInits.push_back(std::make_pair(GV, initSlot));
2073 // Notify handler about the global value.
2074 if (Handler)
2075 Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
2077 // Get next item
2078 VarType = read_vbr_uint();
2081 // Read the function objects for all of the functions that are coming
2082 unsigned FnSignature = read_vbr_uint();
2084 if (hasNoFlagsForFunctions)
2085 FnSignature = (FnSignature << 5) + 1;
2087 // List is terminated by VoidTy.
2088 while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) {
2089 const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5);
2090 if (!isa<PointerType>(Ty) ||
2091 !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
2092 error("Function not a pointer to function type! Ty = " +
2093 Ty->getDescription());
2096 // We create functions by passing the underlying FunctionType to create...
2097 const FunctionType* FTy =
2098 cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2100 // Insert the place holder.
2101 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
2102 "", TheModule);
2104 insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues);
2106 // Flags are not used yet.
2107 unsigned Flags = FnSignature & 31;
2109 // Save this for later so we know type of lazily instantiated functions.
2110 // Note that known-external functions do not have FunctionInfo blocks, so we
2111 // do not add them to the FunctionSignatureList.
2112 if ((Flags & (1 << 4)) == 0)
2113 FunctionSignatureList.push_back(Func);
2115 // Get the calling convention from the low bits.
2116 unsigned CC = Flags & 15;
2117 unsigned Alignment = 0;
2118 if (FnSignature & (1 << 31)) { // Has extension word?
2119 unsigned ExtWord = read_vbr_uint();
2120 Alignment = (1 << (ExtWord & 31)) >> 1;
2121 CC |= ((ExtWord >> 5) & 15) << 4;
2123 if (ExtWord & (1 << 10)) // Has a section ID.
2124 SectionID[Func] = read_vbr_uint();
2127 Func->setCallingConv(CC-1);
2128 Func->setAlignment(Alignment);
2130 if (Handler) Handler->handleFunctionDeclaration(Func);
2132 // Get the next function signature.
2133 FnSignature = read_vbr_uint();
2134 if (hasNoFlagsForFunctions)
2135 FnSignature = (FnSignature << 5) + 1;
2138 // Now that the function signature list is set up, reverse it so that we can
2139 // remove elements efficiently from the back of the vector.
2140 std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
2142 /// SectionNames - This contains the list of section names encoded in the
2143 /// moduleinfoblock. Functions and globals with an explicit section index
2144 /// into this to get their section name.
2145 std::vector<std::string> SectionNames;
2147 if (hasInconsistentModuleGlobalInfo) {
2148 align32();
2149 } else if (!hasNoDependentLibraries) {
2150 // If this bytecode format has dependent library information in it, read in
2151 // the number of dependent library items that follow.
2152 unsigned num_dep_libs = read_vbr_uint();
2153 std::string dep_lib;
2154 while (num_dep_libs--) {
2155 dep_lib = read_str();
2156 TheModule->addLibrary(dep_lib);
2157 if (Handler)
2158 Handler->handleDependentLibrary(dep_lib);
2161 // Read target triple and place into the module.
2162 std::string triple = read_str();
2163 TheModule->setTargetTriple(triple);
2164 if (Handler)
2165 Handler->handleTargetTriple(triple);
2167 if (!hasAlignment && At != BlockEnd) {
2168 // If the file has section info in it, read the section names now.
2169 unsigned NumSections = read_vbr_uint();
2170 while (NumSections--)
2171 SectionNames.push_back(read_str());
2174 // If the file has module-level inline asm, read it now.
2175 if (!hasAlignment && At != BlockEnd)
2176 TheModule->setModuleInlineAsm(read_str());
2179 // If any globals are in specified sections, assign them now.
2180 for (std::map<GlobalValue*, unsigned>::iterator I = SectionID.begin(), E =
2181 SectionID.end(); I != E; ++I)
2182 if (I->second) {
2183 if (I->second > SectionID.size())
2184 error("SectionID out of range for global!");
2185 I->first->setSection(SectionNames[I->second-1]);
2188 // This is for future proofing... in the future extra fields may be added that
2189 // we don't understand, so we transparently ignore them.
2191 At = BlockEnd;
2193 if (Handler) Handler->handleModuleGlobalsEnd();
2196 /// Parse the version information and decode it by setting flags on the
2197 /// Reader that enable backward compatibility of the reader.
2198 void BytecodeReader::ParseVersionInfo() {
2199 unsigned Version = read_vbr_uint();
2201 // Unpack version number: low four bits are for flags, top bits = version
2202 Module::Endianness Endianness;
2203 Module::PointerSize PointerSize;
2204 Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
2205 PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
2207 bool hasNoEndianness = Version & 4;
2208 bool hasNoPointerSize = Version & 8;
2210 RevisionNum = Version >> 4;
2212 // Default values for the current bytecode version
2213 hasInconsistentModuleGlobalInfo = false;
2214 hasExplicitPrimitiveZeros = false;
2215 hasRestrictedGEPTypes = false;
2216 hasTypeDerivedFromValue = false;
2217 hasLongBlockHeaders = false;
2218 has32BitTypes = false;
2219 hasNoDependentLibraries = false;
2220 hasAlignment = false;
2221 hasNoUndefValue = false;
2222 hasNoFlagsForFunctions = false;
2223 hasNoUnreachableInst = false;
2225 switch (RevisionNum) {
2226 case 0: // LLVM 1.0, 1.1 (Released)
2227 // Base LLVM 1.0 bytecode format.
2228 hasInconsistentModuleGlobalInfo = true;
2229 hasExplicitPrimitiveZeros = true;
2231 // FALL THROUGH
2233 case 1: // LLVM 1.2 (Released)
2234 // LLVM 1.2 added explicit support for emitting strings efficiently.
2236 // Also, it fixed the problem where the size of the ModuleGlobalInfo block
2237 // included the size for the alignment at the end, where the rest of the
2238 // blocks did not.
2240 // LLVM 1.2 and before required that GEP indices be ubyte constants for
2241 // structures and longs for sequential types.
2242 hasRestrictedGEPTypes = true;
2244 // LLVM 1.2 and before had the Type class derive from Value class. This
2245 // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
2246 // written differently because Types can no longer be part of the
2247 // type planes for Values.
2248 hasTypeDerivedFromValue = true;
2250 // FALL THROUGH
2252 case 2: // 1.2.5 (Not Released)
2254 // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
2255 // especially for small files where the 8 bytes per block is a large
2256 // fraction of the total block size. In LLVM 1.3, the block type and length
2257 // are compressed into a single 32-bit unsigned integer. 27 bits for length,
2258 // 5 bits for block type.
2259 hasLongBlockHeaders = true;
2261 // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
2262 // this has been reduced to vbr_uint24. It shouldn't make much difference
2263 // since we haven't run into a module with > 24 million types, but for
2264 // safety the 24-bit restriction has been enforced in 1.3 to free some bits
2265 // in various places and to ensure consistency.
2266 has32BitTypes = true;
2268 // LLVM 1.2 and earlier did not provide a target triple nor a list of
2269 // libraries on which the bytecode is dependent. LLVM 1.3 provides these
2270 // features, for use in future versions of LLVM.
2271 hasNoDependentLibraries = true;
2273 // FALL THROUGH
2275 case 3: // LLVM 1.3 (Released)
2276 // LLVM 1.3 and earlier caused alignment bytes to be written on some block
2277 // boundaries and at the end of some strings. In extreme cases (e.g. lots
2278 // of GEP references to a constant array), this can increase the file size
2279 // by 30% or more. In version 1.4 alignment is done away with completely.
2280 hasAlignment = true;
2282 // FALL THROUGH
2284 case 4: // 1.3.1 (Not Released)
2285 // In version 4, we did not support the 'undef' constant.
2286 hasNoUndefValue = true;
2288 // In version 4 and above, we did not include space for flags for functions
2289 // in the module info block.
2290 hasNoFlagsForFunctions = true;
2292 // In version 4 and above, we did not include the 'unreachable' instruction
2293 // in the opcode numbering in the bytecode file.
2294 hasNoUnreachableInst = true;
2295 break;
2297 // FALL THROUGH
2299 case 5: // 1.4 (Released)
2300 break;
2302 default:
2303 error("Unknown bytecode version number: " + itostr(RevisionNum));
2306 if (hasNoEndianness) Endianness = Module::AnyEndianness;
2307 if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
2309 TheModule->setEndianness(Endianness);
2310 TheModule->setPointerSize(PointerSize);
2312 if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
2315 /// Parse a whole module.
2316 void BytecodeReader::ParseModule() {
2317 unsigned Type, Size;
2319 FunctionSignatureList.clear(); // Just in case...
2321 // Read into instance variables...
2322 ParseVersionInfo();
2323 align32();
2325 bool SeenModuleGlobalInfo = false;
2326 bool SeenGlobalTypePlane = false;
2327 BufPtr MyEnd = BlockEnd;
2328 while (At < MyEnd) {
2329 BufPtr OldAt = At;
2330 read_block(Type, Size);
2332 switch (Type) {
2334 case BytecodeFormat::GlobalTypePlaneBlockID:
2335 if (SeenGlobalTypePlane)
2336 error("Two GlobalTypePlane Blocks Encountered!");
2338 if (Size > 0)
2339 ParseGlobalTypes();
2340 SeenGlobalTypePlane = true;
2341 break;
2343 case BytecodeFormat::ModuleGlobalInfoBlockID:
2344 if (SeenModuleGlobalInfo)
2345 error("Two ModuleGlobalInfo Blocks Encountered!");
2346 ParseModuleGlobalInfo();
2347 SeenModuleGlobalInfo = true;
2348 break;
2350 case BytecodeFormat::ConstantPoolBlockID:
2351 ParseConstantPool(ModuleValues, ModuleTypes,false);
2352 break;
2354 case BytecodeFormat::FunctionBlockID:
2355 ParseFunctionLazily();
2356 break;
2358 case BytecodeFormat::SymbolTableBlockID:
2359 ParseSymbolTable(0, &TheModule->getSymbolTable());
2360 break;
2362 default:
2363 At += Size;
2364 if (OldAt > At) {
2365 error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
2367 break;
2369 BlockEnd = MyEnd;
2370 align32();
2373 // After the module constant pool has been read, we can safely initialize
2374 // global variables...
2375 while (!GlobalInits.empty()) {
2376 GlobalVariable *GV = GlobalInits.back().first;
2377 unsigned Slot = GlobalInits.back().second;
2378 GlobalInits.pop_back();
2380 // Look up the initializer value...
2381 // FIXME: Preserve this type ID!
2383 const llvm::PointerType* GVType = GV->getType();
2384 unsigned TypeSlot = getTypeSlot(GVType->getElementType());
2385 if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
2386 if (GV->hasInitializer())
2387 error("Global *already* has an initializer?!");
2388 if (Handler) Handler->handleGlobalInitializer(GV,CV);
2389 GV->setInitializer(CV);
2390 } else
2391 error("Cannot find initializer value.");
2394 if (!ConstantFwdRefs.empty())
2395 error("Use of undefined constants in a module");
2397 /// Make sure we pulled them all out. If we didn't then there's a declaration
2398 /// but a missing body. That's not allowed.
2399 if (!FunctionSignatureList.empty())
2400 error("Function declared, but bytecode stream ended before definition");
2403 /// This function completely parses a bytecode buffer given by the \p Buf
2404 /// and \p Length parameters.
2405 void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
2406 const std::string &ModuleID) {
2408 try {
2409 RevisionNum = 0;
2410 At = MemStart = BlockStart = Buf;
2411 MemEnd = BlockEnd = Buf + Length;
2413 // Create the module
2414 TheModule = new Module(ModuleID);
2416 if (Handler) Handler->handleStart(TheModule, Length);
2418 // Read the four bytes of the signature.
2419 unsigned Sig = read_uint();
2421 // If this is a compressed file
2422 if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
2424 // Invoke the decompression of the bytecode. Note that we have to skip the
2425 // file's magic number which is not part of the compressed block. Hence,
2426 // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
2427 // member for retention until BytecodeReader is destructed.
2428 unsigned decompressedLength = Compressor::decompressToNewBuffer(
2429 (char*)Buf+4,Length-4,decompressedBlock);
2431 // We must adjust the buffer pointers used by the bytecode reader to point
2432 // into the new decompressed block. After decompression, the
2433 // decompressedBlock will point to a contiguous memory area that has
2434 // the decompressed data.
2435 At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
2436 MemEnd = BlockEnd = Buf + decompressedLength;
2438 // else if this isn't a regular (uncompressed) bytecode file, then its
2439 // and error, generate that now.
2440 } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
2441 error("Invalid bytecode signature: " + utohexstr(Sig));
2444 // Tell the handler we're starting a module
2445 if (Handler) Handler->handleModuleBegin(ModuleID);
2447 // Get the module block and size and verify. This is handled specially
2448 // because the module block/size is always written in long format. Other
2449 // blocks are written in short format so the read_block method is used.
2450 unsigned Type, Size;
2451 Type = read_uint();
2452 Size = read_uint();
2453 if (Type != BytecodeFormat::ModuleBlockID) {
2454 error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
2455 + utostr(Size));
2458 // It looks like the darwin ranlib program is broken, and adds trailing
2459 // garbage to the end of some bytecode files. This hack allows the bc
2460 // reader to ignore trailing garbage on bytecode files.
2461 if (At + Size < MemEnd)
2462 MemEnd = BlockEnd = At+Size;
2464 if (At + Size != MemEnd)
2465 error("Invalid Top Level Block Length! Type:" + utostr(Type)
2466 + ", Size:" + utostr(Size));
2468 // Parse the module contents
2469 this->ParseModule();
2471 // Check for missing functions
2472 if (hasFunctions())
2473 error("Function expected, but bytecode stream ended!");
2475 // Look for intrinsic functions to upgrade, upgrade them, and save the
2476 // mapping from old function to new for use later when instructions are
2477 // converted.
2478 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2479 FI != FE; ++FI)
2480 if (Function* newF = UpgradeIntrinsicFunction(FI)) {
2481 upgradedFunctions.insert(std::make_pair(FI, newF));
2482 FI->setName("");
2485 // Tell the handler we're done with the module
2486 if (Handler)
2487 Handler->handleModuleEnd(ModuleID);
2489 // Tell the handler we're finished the parse
2490 if (Handler) Handler->handleFinish();
2492 } catch (std::string& errstr) {
2493 if (Handler) Handler->handleError(errstr);
2494 freeState();
2495 delete TheModule;
2496 TheModule = 0;
2497 if (decompressedBlock != 0 ) {
2498 ::free(decompressedBlock);
2499 decompressedBlock = 0;
2501 throw;
2502 } catch (...) {
2503 std::string msg("Unknown Exception Occurred");
2504 if (Handler) Handler->handleError(msg);
2505 freeState();
2506 delete TheModule;
2507 TheModule = 0;
2508 if (decompressedBlock != 0) {
2509 ::free(decompressedBlock);
2510 decompressedBlock = 0;
2512 throw msg;
2516 //===----------------------------------------------------------------------===//
2517 //=== Default Implementations of Handler Methods
2518 //===----------------------------------------------------------------------===//
2520 BytecodeHandler::~BytecodeHandler() {}