1 //===-- Writer.cpp - Library for writing LLVM bytecode files --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Bytecode/Writer.h
12 // Note that this file uses an unusual technique of outputting all the bytecode
13 // to a vector of unsigned char, then copies the vector to an ostream. The
14 // reason for this is that we must do "seeking" in the stream to do back-
15 // patching, and some very important ostreams that we want to support (like
16 // pipes) do not support seeking. :( :( :(
18 //===----------------------------------------------------------------------===//
20 #include "WriterInternals.h"
21 #include "llvm/Bytecode/WriteBytecodePass.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Module.h"
28 #include "llvm/SymbolTable.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/Compressor.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
38 /// This value needs to be incremented every time the bytecode format changes
39 /// so that the reader can distinguish which format of the bytecode file has
41 /// @brief The bytecode version number
42 const unsigned BCVersionNum
= 5;
44 static RegisterPass
<WriteBytecodePass
> X("emitbytecode", "Bytecode Writer");
47 BytesWritten("bytecodewriter", "Number of bytecode bytes written");
49 //===----------------------------------------------------------------------===//
50 //=== Output Primitives ===//
51 //===----------------------------------------------------------------------===//
53 // output - If a position is specified, it must be in the valid portion of the
54 // string... note that this should be inlined always so only the relevant IF
55 // body should be included.
56 inline void BytecodeWriter::output(unsigned i
, int pos
) {
57 if (pos
== -1) { // Be endian clean, little endian is our friend
58 Out
.push_back((unsigned char)i
);
59 Out
.push_back((unsigned char)(i
>> 8));
60 Out
.push_back((unsigned char)(i
>> 16));
61 Out
.push_back((unsigned char)(i
>> 24));
63 Out
[pos
] = (unsigned char)i
;
64 Out
[pos
+1] = (unsigned char)(i
>> 8);
65 Out
[pos
+2] = (unsigned char)(i
>> 16);
66 Out
[pos
+3] = (unsigned char)(i
>> 24);
70 inline void BytecodeWriter::output(int i
) {
74 /// output_vbr - Output an unsigned value, by using the least number of bytes
75 /// possible. This is useful because many of our "infinite" values are really
76 /// very small most of the time; but can be large a few times.
77 /// Data format used: If you read a byte with the high bit set, use the low
78 /// seven bits as data and then read another byte.
79 inline void BytecodeWriter::output_vbr(uint64_t i
) {
81 if (i
< 0x80) { // done?
82 Out
.push_back((unsigned char)i
); // We know the high bit is clear...
86 // Nope, we are bigger than a character, output the next 7 bits and set the
87 // high bit to say that there is more coming...
88 Out
.push_back(0x80 | ((unsigned char)i
& 0x7F));
89 i
>>= 7; // Shift out 7 bits now...
93 inline void BytecodeWriter::output_vbr(unsigned i
) {
95 if (i
< 0x80) { // done?
96 Out
.push_back((unsigned char)i
); // We know the high bit is clear...
100 // Nope, we are bigger than a character, output the next 7 bits and set the
101 // high bit to say that there is more coming...
102 Out
.push_back(0x80 | ((unsigned char)i
& 0x7F));
103 i
>>= 7; // Shift out 7 bits now...
107 inline void BytecodeWriter::output_typeid(unsigned i
) {
111 this->output_vbr(0x00FFFFFF);
116 inline void BytecodeWriter::output_vbr(int64_t i
) {
118 output_vbr(((uint64_t)(-i
) << 1) | 1); // Set low order sign bit...
120 output_vbr((uint64_t)i
<< 1); // Low order bit is clear.
124 inline void BytecodeWriter::output_vbr(int i
) {
126 output_vbr(((unsigned)(-i
) << 1) | 1); // Set low order sign bit...
128 output_vbr((unsigned)i
<< 1); // Low order bit is clear.
131 inline void BytecodeWriter::output(const std::string
&s
) {
132 unsigned Len
= s
.length();
133 output_vbr(Len
); // Strings may have an arbitrary length...
134 Out
.insert(Out
.end(), s
.begin(), s
.end());
137 inline void BytecodeWriter::output_data(const void *Ptr
, const void *End
) {
138 Out
.insert(Out
.end(), (const unsigned char*)Ptr
, (const unsigned char*)End
);
141 inline void BytecodeWriter::output_float(float& FloatVal
) {
142 /// FIXME: This isn't optimal, it has size problems on some platforms
143 /// where FP is not IEEE.
144 uint32_t i
= FloatToBits(FloatVal
);
145 Out
.push_back( static_cast<unsigned char>( (i
& 0xFF )));
146 Out
.push_back( static_cast<unsigned char>( (i
>> 8) & 0xFF));
147 Out
.push_back( static_cast<unsigned char>( (i
>> 16) & 0xFF));
148 Out
.push_back( static_cast<unsigned char>( (i
>> 24) & 0xFF));
151 inline void BytecodeWriter::output_double(double& DoubleVal
) {
152 /// FIXME: This isn't optimal, it has size problems on some platforms
153 /// where FP is not IEEE.
154 uint64_t i
= DoubleToBits(DoubleVal
);
155 Out
.push_back( static_cast<unsigned char>( (i
& 0xFF )));
156 Out
.push_back( static_cast<unsigned char>( (i
>> 8) & 0xFF));
157 Out
.push_back( static_cast<unsigned char>( (i
>> 16) & 0xFF));
158 Out
.push_back( static_cast<unsigned char>( (i
>> 24) & 0xFF));
159 Out
.push_back( static_cast<unsigned char>( (i
>> 32) & 0xFF));
160 Out
.push_back( static_cast<unsigned char>( (i
>> 40) & 0xFF));
161 Out
.push_back( static_cast<unsigned char>( (i
>> 48) & 0xFF));
162 Out
.push_back( static_cast<unsigned char>( (i
>> 56) & 0xFF));
165 inline BytecodeBlock::BytecodeBlock(unsigned ID
, BytecodeWriter
&w
,
166 bool elideIfEmpty
, bool hasLongFormat
)
167 : Id(ID
), Writer(w
), ElideIfEmpty(elideIfEmpty
), HasLongFormat(hasLongFormat
){
171 w
.output(0U); // For length in long format
173 w
.output(0U); /// Place holder for ID and length for this block
178 inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
180 if (Loc
== Writer
.size() && ElideIfEmpty
) {
181 // If the block is empty, and we are allowed to, do not emit the block at
183 Writer
.resize(Writer
.size()-(HasLongFormat
?8:4));
188 Writer
.output(unsigned(Writer
.size()-Loc
), int(Loc
-4));
190 Writer
.output(unsigned(Writer
.size()-Loc
) << 5 | (Id
& 0x1F), int(Loc
-4));
193 //===----------------------------------------------------------------------===//
194 //=== Constant Output ===//
195 //===----------------------------------------------------------------------===//
197 void BytecodeWriter::outputType(const Type
*T
) {
198 output_vbr((unsigned)T
->getTypeID());
200 // That's all there is to handling primitive types...
201 if (T
->isPrimitiveType()) {
202 return; // We might do this if we alias a prim type: %x = type int
205 switch (T
->getTypeID()) { // Handle derived types now.
206 case Type::FunctionTyID
: {
207 const FunctionType
*MT
= cast
<FunctionType
>(T
);
208 int Slot
= Table
.getSlot(MT
->getReturnType());
209 assert(Slot
!= -1 && "Type used but not available!!");
210 output_typeid((unsigned)Slot
);
212 // Output the number of arguments to function (+1 if varargs):
213 output_vbr((unsigned)MT
->getNumParams()+MT
->isVarArg());
215 // Output all of the arguments...
216 FunctionType::param_iterator I
= MT
->param_begin();
217 for (; I
!= MT
->param_end(); ++I
) {
218 Slot
= Table
.getSlot(*I
);
219 assert(Slot
!= -1 && "Type used but not available!!");
220 output_typeid((unsigned)Slot
);
223 // Terminate list with VoidTy if we are a varargs function...
225 output_typeid((unsigned)Type::VoidTyID
);
229 case Type::ArrayTyID
: {
230 const ArrayType
*AT
= cast
<ArrayType
>(T
);
231 int Slot
= Table
.getSlot(AT
->getElementType());
232 assert(Slot
!= -1 && "Type used but not available!!");
233 output_typeid((unsigned)Slot
);
234 output_vbr(AT
->getNumElements());
238 case Type::PackedTyID
: {
239 const PackedType
*PT
= cast
<PackedType
>(T
);
240 int Slot
= Table
.getSlot(PT
->getElementType());
241 assert(Slot
!= -1 && "Type used but not available!!");
242 output_typeid((unsigned)Slot
);
243 output_vbr(PT
->getNumElements());
248 case Type::StructTyID
: {
249 const StructType
*ST
= cast
<StructType
>(T
);
251 // Output all of the element types...
252 for (StructType::element_iterator I
= ST
->element_begin(),
253 E
= ST
->element_end(); I
!= E
; ++I
) {
254 int Slot
= Table
.getSlot(*I
);
255 assert(Slot
!= -1 && "Type used but not available!!");
256 output_typeid((unsigned)Slot
);
259 // Terminate list with VoidTy
260 output_typeid((unsigned)Type::VoidTyID
);
264 case Type::PointerTyID
: {
265 const PointerType
*PT
= cast
<PointerType
>(T
);
266 int Slot
= Table
.getSlot(PT
->getElementType());
267 assert(Slot
!= -1 && "Type used but not available!!");
268 output_typeid((unsigned)Slot
);
272 case Type::OpaqueTyID
:
273 // No need to emit anything, just the count of opaque types is enough.
277 std::cerr
<< __FILE__
<< ":" << __LINE__
<< ": Don't know how to serialize"
278 << " Type '" << T
->getDescription() << "'\n";
283 void BytecodeWriter::outputConstant(const Constant
*CPV
) {
284 assert((CPV
->getType()->isPrimitiveType() || !CPV
->isNullValue()) &&
285 "Shouldn't output null constants!");
287 // We must check for a ConstantExpr before switching by type because
288 // a ConstantExpr can be of any type, and has no explicit value.
290 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
291 // FIXME: Encoding of constant exprs could be much more compact!
292 assert(CE
->getNumOperands() > 0 && "ConstantExpr with 0 operands");
293 assert(CE
->getNumOperands() != 1 || CE
->getOpcode() == Instruction::Cast
);
294 output_vbr(1+CE
->getNumOperands()); // flags as an expr
295 output_vbr(CE
->getOpcode()); // flags as an expr
297 for (User::const_op_iterator OI
= CE
->op_begin(); OI
!= CE
->op_end(); ++OI
){
298 int Slot
= Table
.getSlot(*OI
);
299 assert(Slot
!= -1 && "Unknown constant used in ConstantExpr!!");
300 output_vbr((unsigned)Slot
);
301 Slot
= Table
.getSlot((*OI
)->getType());
302 output_typeid((unsigned)Slot
);
305 } else if (isa
<UndefValue
>(CPV
)) {
306 output_vbr(1U); // 1 -> UndefValue constant.
309 output_vbr(0U); // flag as not a ConstantExpr
312 switch (CPV
->getType()->getTypeID()) {
313 case Type::BoolTyID
: // Boolean Types
314 if (cast
<ConstantBool
>(CPV
)->getValue())
320 case Type::UByteTyID
: // Unsigned integer types...
321 case Type::UShortTyID
:
323 case Type::ULongTyID
:
324 output_vbr(cast
<ConstantUInt
>(CPV
)->getValue());
327 case Type::SByteTyID
: // Signed integer types...
328 case Type::ShortTyID
:
331 output_vbr(cast
<ConstantSInt
>(CPV
)->getValue());
334 case Type::ArrayTyID
: {
335 const ConstantArray
*CPA
= cast
<ConstantArray
>(CPV
);
336 assert(!CPA
->isString() && "Constant strings should be handled specially!");
338 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
) {
339 int Slot
= Table
.getSlot(CPA
->getOperand(i
));
340 assert(Slot
!= -1 && "Constant used but not available!!");
341 output_vbr((unsigned)Slot
);
346 case Type::PackedTyID
: {
347 const ConstantPacked
*CP
= cast
<ConstantPacked
>(CPV
);
349 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
350 int Slot
= Table
.getSlot(CP
->getOperand(i
));
351 assert(Slot
!= -1 && "Constant used but not available!!");
352 output_vbr((unsigned)Slot
);
357 case Type::StructTyID
: {
358 const ConstantStruct
*CPS
= cast
<ConstantStruct
>(CPV
);
360 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
) {
361 int Slot
= Table
.getSlot(CPS
->getOperand(i
));
362 assert(Slot
!= -1 && "Constant used but not available!!");
363 output_vbr((unsigned)Slot
);
368 case Type::PointerTyID
:
369 assert(0 && "No non-null, non-constant-expr constants allowed!");
372 case Type::FloatTyID
: { // Floating point types...
373 float Tmp
= (float)cast
<ConstantFP
>(CPV
)->getValue();
377 case Type::DoubleTyID
: {
378 double Tmp
= cast
<ConstantFP
>(CPV
)->getValue();
384 case Type::LabelTyID
:
386 std::cerr
<< __FILE__
<< ":" << __LINE__
<< ": Don't know how to serialize"
387 << " type '" << *CPV
->getType() << "'\n";
393 /// outputInlineAsm - InlineAsm's get emitted to the constant pool, so they can
394 /// be shared by multiple uses.
395 void BytecodeWriter::outputInlineAsm(const InlineAsm
*IA
) {
396 // Output a marker, so we know when we have one one parsing the constant pool.
397 // Note that this encoding is 5 bytes: not very efficient for a marker. Since
398 // unique inline asms are rare, this should hardly matter.
401 output(IA
->getAsmString());
402 output(IA
->getConstraintString());
403 output_vbr(unsigned(IA
->hasSideEffects()));
406 void BytecodeWriter::outputConstantStrings() {
407 SlotCalculator::string_iterator I
= Table
.string_begin();
408 SlotCalculator::string_iterator E
= Table
.string_end();
409 if (I
== E
) return; // No strings to emit
411 // If we have != 0 strings to emit, output them now. Strings are emitted into
412 // the 'void' type plane.
413 output_vbr(unsigned(E
-I
));
414 output_typeid(Type::VoidTyID
);
416 // Emit all of the strings.
417 for (I
= Table
.string_begin(); I
!= E
; ++I
) {
418 const ConstantArray
*Str
= *I
;
419 int Slot
= Table
.getSlot(Str
->getType());
420 assert(Slot
!= -1 && "Constant string of unknown type?");
421 output_typeid((unsigned)Slot
);
423 // Now that we emitted the type (which indicates the size of the string),
424 // emit all of the characters.
425 std::string Val
= Str
->getAsString();
426 output_data(Val
.c_str(), Val
.c_str()+Val
.size());
430 //===----------------------------------------------------------------------===//
431 //=== Instruction Output ===//
432 //===----------------------------------------------------------------------===//
434 // outputInstructionFormat0 - Output those weird instructions that have a large
435 // number of operands or have large operands themselves.
437 // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
439 void BytecodeWriter::outputInstructionFormat0(const Instruction
*I
,
441 const SlotCalculator
&Table
,
443 // Opcode must have top two bits clear...
444 output_vbr(Opcode
<< 2); // Instruction Opcode ID
445 output_typeid(Type
); // Result type
447 unsigned NumArgs
= I
->getNumOperands();
448 output_vbr(NumArgs
+ (isa
<CastInst
>(I
) ||
449 isa
<VAArgInst
>(I
) || Opcode
== 56 || Opcode
== 58));
451 if (!isa
<GetElementPtrInst
>(&I
)) {
452 for (unsigned i
= 0; i
< NumArgs
; ++i
) {
453 int Slot
= Table
.getSlot(I
->getOperand(i
));
454 assert(Slot
>= 0 && "No slot number for value!?!?");
455 output_vbr((unsigned)Slot
);
458 if (isa
<CastInst
>(I
) || isa
<VAArgInst
>(I
)) {
459 int Slot
= Table
.getSlot(I
->getType());
460 assert(Slot
!= -1 && "Cast return type unknown?");
461 output_typeid((unsigned)Slot
);
462 } else if (Opcode
== 56) { // Invoke escape sequence
463 output_vbr(cast
<InvokeInst
>(I
)->getCallingConv());
464 } else if (Opcode
== 58) { // Call escape sequence
465 output_vbr((cast
<CallInst
>(I
)->getCallingConv() << 1) |
466 unsigned(cast
<CallInst
>(I
)->isTailCall()));
469 int Slot
= Table
.getSlot(I
->getOperand(0));
470 assert(Slot
>= 0 && "No slot number for value!?!?");
471 output_vbr(unsigned(Slot
));
473 // We need to encode the type of sequential type indices into their slot #
475 for (gep_type_iterator TI
= gep_type_begin(I
), E
= gep_type_end(I
);
476 Idx
!= NumArgs
; ++TI
, ++Idx
) {
477 Slot
= Table
.getSlot(I
->getOperand(Idx
));
478 assert(Slot
>= 0 && "No slot number for value!?!?");
480 if (isa
<SequentialType
>(*TI
)) {
482 switch (I
->getOperand(Idx
)->getType()->getTypeID()) {
483 default: assert(0 && "Unknown index type!");
484 case Type::UIntTyID
: IdxId
= 0; break;
485 case Type::IntTyID
: IdxId
= 1; break;
486 case Type::ULongTyID
: IdxId
= 2; break;
487 case Type::LongTyID
: IdxId
= 3; break;
489 Slot
= (Slot
<< 2) | IdxId
;
491 output_vbr(unsigned(Slot
));
497 // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
498 // This are more annoying than most because the signature of the call does not
499 // tell us anything about the types of the arguments in the varargs portion.
500 // Because of this, we encode (as type 0) all of the argument types explicitly
501 // before the argument value. This really sucks, but you shouldn't be using
502 // varargs functions in your code! *death to printf*!
504 // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
506 void BytecodeWriter::outputInstrVarArgsCall(const Instruction
*I
,
508 const SlotCalculator
&Table
,
510 assert(isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
));
511 // Opcode must have top two bits clear...
512 output_vbr(Opcode
<< 2); // Instruction Opcode ID
513 output_typeid(Type
); // Result type (varargs type)
515 const PointerType
*PTy
= cast
<PointerType
>(I
->getOperand(0)->getType());
516 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
517 unsigned NumParams
= FTy
->getNumParams();
519 unsigned NumFixedOperands
;
520 if (isa
<CallInst
>(I
)) {
521 // Output an operand for the callee and each fixed argument, then two for
522 // each variable argument.
523 NumFixedOperands
= 1+NumParams
;
525 assert(isa
<InvokeInst
>(I
) && "Not call or invoke??");
526 // Output an operand for the callee and destinations, then two for each
527 // variable argument.
528 NumFixedOperands
= 3+NumParams
;
530 output_vbr(2 * I
->getNumOperands()-NumFixedOperands
);
532 // The type for the function has already been emitted in the type field of the
533 // instruction. Just emit the slot # now.
534 for (unsigned i
= 0; i
!= NumFixedOperands
; ++i
) {
535 int Slot
= Table
.getSlot(I
->getOperand(i
));
536 assert(Slot
>= 0 && "No slot number for value!?!?");
537 output_vbr((unsigned)Slot
);
540 for (unsigned i
= NumFixedOperands
, e
= I
->getNumOperands(); i
!= e
; ++i
) {
541 // Output Arg Type ID
542 int Slot
= Table
.getSlot(I
->getOperand(i
)->getType());
543 assert(Slot
>= 0 && "No slot number for value!?!?");
544 output_typeid((unsigned)Slot
);
546 // Output arg ID itself
547 Slot
= Table
.getSlot(I
->getOperand(i
));
548 assert(Slot
>= 0 && "No slot number for value!?!?");
549 output_vbr((unsigned)Slot
);
554 // outputInstructionFormat1 - Output one operand instructions, knowing that no
555 // operand index is >= 2^12.
557 inline void BytecodeWriter::outputInstructionFormat1(const Instruction
*I
,
561 // bits Instruction format:
562 // --------------------------
563 // 01-00: Opcode type, fixed to 1.
565 // 19-08: Resulting type plane
566 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
568 output(1 | (Opcode
<< 2) | (Type
<< 8) | (Slots
[0] << 20));
572 // outputInstructionFormat2 - Output two operand instructions, knowing that no
573 // operand index is >= 2^8.
575 inline void BytecodeWriter::outputInstructionFormat2(const Instruction
*I
,
579 // bits Instruction format:
580 // --------------------------
581 // 01-00: Opcode type, fixed to 2.
583 // 15-08: Resulting type plane
587 output(2 | (Opcode
<< 2) | (Type
<< 8) | (Slots
[0] << 16) | (Slots
[1] << 24));
591 // outputInstructionFormat3 - Output three operand instructions, knowing that no
592 // operand index is >= 2^6.
594 inline void BytecodeWriter::outputInstructionFormat3(const Instruction
*I
,
598 // bits Instruction format:
599 // --------------------------
600 // 01-00: Opcode type, fixed to 3.
602 // 13-08: Resulting type plane
607 output(3 | (Opcode
<< 2) | (Type
<< 8) |
608 (Slots
[0] << 14) | (Slots
[1] << 20) | (Slots
[2] << 26));
611 void BytecodeWriter::outputInstruction(const Instruction
&I
) {
612 assert(I
.getOpcode() < 56 && "Opcode too big???");
613 unsigned Opcode
= I
.getOpcode();
614 unsigned NumOperands
= I
.getNumOperands();
616 // Encode 'tail call' as 61, 'volatile load' as 62, and 'volatile store' as
618 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
619 if (CI
->getCallingConv() == CallingConv::C
) {
620 if (CI
->isTailCall())
621 Opcode
= 61; // CCC + Tail Call
623 ; // Opcode = Instruction::Call
624 } else if (CI
->getCallingConv() == CallingConv::Fast
) {
625 if (CI
->isTailCall())
626 Opcode
= 59; // FastCC + TailCall
628 Opcode
= 60; // FastCC + Not Tail Call
630 Opcode
= 58; // Call escape sequence.
632 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
633 if (II
->getCallingConv() == CallingConv::Fast
)
634 Opcode
= 57; // FastCC invoke.
635 else if (II
->getCallingConv() != CallingConv::C
)
636 Opcode
= 56; // Invoke escape sequence.
638 } else if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) {
640 } else if (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile()) {
644 // Figure out which type to encode with the instruction. Typically we want
645 // the type of the first parameter, as opposed to the type of the instruction
646 // (for example, with setcc, we always know it returns bool, but the type of
647 // the first param is actually interesting). But if we have no arguments
648 // we take the type of the instruction itself.
651 switch (I
.getOpcode()) {
652 case Instruction::Select
:
653 case Instruction::Malloc
:
654 case Instruction::Alloca
:
655 Ty
= I
.getType(); // These ALWAYS want to encode the return type
657 case Instruction::Store
:
658 Ty
= I
.getOperand(1)->getType(); // Encode the pointer type...
659 assert(isa
<PointerType
>(Ty
) && "Store to nonpointer type!?!?");
661 default: // Otherwise use the default behavior...
662 Ty
= NumOperands
? I
.getOperand(0)->getType() : I
.getType();
667 int Slot
= Table
.getSlot(Ty
);
668 assert(Slot
!= -1 && "Type not available!!?!");
669 Type
= (unsigned)Slot
;
671 // Varargs calls and invokes are encoded entirely different from any other
673 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)){
674 const PointerType
*Ty
=cast
<PointerType
>(CI
->getCalledValue()->getType());
675 if (cast
<FunctionType
>(Ty
->getElementType())->isVarArg()) {
676 outputInstrVarArgsCall(CI
, Opcode
, Table
, Type
);
679 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
680 const PointerType
*Ty
=cast
<PointerType
>(II
->getCalledValue()->getType());
681 if (cast
<FunctionType
>(Ty
->getElementType())->isVarArg()) {
682 outputInstrVarArgsCall(II
, Opcode
, Table
, Type
);
687 if (NumOperands
<= 3) {
688 // Make sure that we take the type number into consideration. We don't want
689 // to overflow the field size for the instruction format we select.
691 unsigned MaxOpSlot
= Type
;
692 unsigned Slots
[3]; Slots
[0] = (1 << 12)-1; // Marker to signify 0 operands
694 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
695 int slot
= Table
.getSlot(I
.getOperand(i
));
696 assert(slot
!= -1 && "Broken bytecode!");
697 if (unsigned(slot
) > MaxOpSlot
) MaxOpSlot
= unsigned(slot
);
698 Slots
[i
] = unsigned(slot
);
701 // Handle the special cases for various instructions...
702 if (isa
<CastInst
>(I
) || isa
<VAArgInst
>(I
)) {
703 // Cast has to encode the destination type as the second argument in the
704 // packet, or else we won't know what type to cast to!
705 Slots
[1] = Table
.getSlot(I
.getType());
706 assert(Slots
[1] != ~0U && "Cast return type unknown?");
707 if (Slots
[1] > MaxOpSlot
) MaxOpSlot
= Slots
[1];
709 } else if (const AllocationInst
*AI
= dyn_cast
<AllocationInst
>(&I
)) {
710 assert(NumOperands
== 1 && "Bogus allocation!");
711 if (AI
->getAlignment()) {
712 Slots
[1] = Log2_32(AI
->getAlignment())+1;
713 if (Slots
[1] > MaxOpSlot
) MaxOpSlot
= Slots
[1];
716 } else if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
717 // We need to encode the type of sequential type indices into their slot #
719 for (gep_type_iterator I
= gep_type_begin(GEP
), E
= gep_type_end(GEP
);
721 if (isa
<SequentialType
>(*I
)) {
723 switch (GEP
->getOperand(Idx
)->getType()->getTypeID()) {
724 default: assert(0 && "Unknown index type!");
725 case Type::UIntTyID
: IdxId
= 0; break;
726 case Type::IntTyID
: IdxId
= 1; break;
727 case Type::ULongTyID
: IdxId
= 2; break;
728 case Type::LongTyID
: IdxId
= 3; break;
730 Slots
[Idx
] = (Slots
[Idx
] << 2) | IdxId
;
731 if (Slots
[Idx
] > MaxOpSlot
) MaxOpSlot
= Slots
[Idx
];
733 } else if (Opcode
== 58) {
734 // If this is the escape sequence for call, emit the tailcall/cc info.
735 const CallInst
&CI
= cast
<CallInst
>(I
);
737 if (NumOperands
< 3) {
738 Slots
[NumOperands
-1] = (CI
.getCallingConv() << 1)|unsigned(CI
.isTailCall());
739 if (Slots
[NumOperands
-1] > MaxOpSlot
)
740 MaxOpSlot
= Slots
[NumOperands
-1];
742 } else if (Opcode
== 56) {
743 // Invoke escape seq has at least 4 operands to encode.
747 // Decide which instruction encoding to use. This is determined primarily
748 // by the number of operands, and secondarily by whether or not the max
749 // operand will fit into the instruction encoding. More operands == fewer
752 switch (NumOperands
) {
755 if (MaxOpSlot
< (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
756 outputInstructionFormat1(&I
, Opcode
, Slots
, Type
);
762 if (MaxOpSlot
< (1 << 8)) {
763 outputInstructionFormat2(&I
, Opcode
, Slots
, Type
);
769 if (MaxOpSlot
< (1 << 6)) {
770 outputInstructionFormat3(&I
, Opcode
, Slots
, Type
);
779 // If we weren't handled before here, we either have a large number of
780 // operands or a large operand index that we are referring to.
781 outputInstructionFormat0(&I
, Opcode
, Table
, Type
);
784 //===----------------------------------------------------------------------===//
785 //=== Block Output ===//
786 //===----------------------------------------------------------------------===//
788 BytecodeWriter::BytecodeWriter(std::vector
<unsigned char> &o
, const Module
*M
)
791 // Emit the signature...
792 static const unsigned char *Sig
= (const unsigned char*)"llvm";
793 output_data(Sig
, Sig
+4);
795 // Emit the top level CLASS block.
796 BytecodeBlock
ModuleBlock(BytecodeFormat::ModuleBlockID
, *this, false, true);
798 bool isBigEndian
= M
->getEndianness() == Module::BigEndian
;
799 bool hasLongPointers
= M
->getPointerSize() == Module::Pointer64
;
800 bool hasNoEndianness
= M
->getEndianness() == Module::AnyEndianness
;
801 bool hasNoPointerSize
= M
->getPointerSize() == Module::AnyPointerSize
;
803 // Output the version identifier and other information.
804 unsigned Version
= (BCVersionNum
<< 4) |
805 (unsigned)isBigEndian
| (hasLongPointers
<< 1) |
806 (hasNoEndianness
<< 2) |
807 (hasNoPointerSize
<< 3);
810 // The Global type plane comes first
812 BytecodeBlock
CPool(BytecodeFormat::GlobalTypePlaneBlockID
, *this );
813 outputTypes(Type::FirstDerivedTyID
);
816 // The ModuleInfoBlock follows directly after the type information
817 outputModuleInfoBlock(M
);
819 // Output module level constants, used for global variable initializers
820 outputConstants(false);
822 // Do the whole module now! Process each function at a time...
823 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
)
826 // If needed, output the symbol table for the module...
827 outputSymbolTable(M
->getSymbolTable());
830 void BytecodeWriter::outputTypes(unsigned TypeNum
) {
831 // Write the type plane for types first because earlier planes (e.g. for a
832 // primitive type like float) may have constants constructed using types
833 // coming later (e.g., via getelementptr from a pointer type). The type
834 // plane is needed before types can be fwd or bkwd referenced.
835 const std::vector
<const Type
*>& Types
= Table
.getTypes();
836 assert(!Types
.empty() && "No types at all?");
837 assert(TypeNum
<= Types
.size() && "Invalid TypeNo index");
839 unsigned NumEntries
= Types
.size() - TypeNum
;
841 // Output type header: [num entries]
842 output_vbr(NumEntries
);
844 for (unsigned i
= TypeNum
; i
< TypeNum
+NumEntries
; ++i
)
845 outputType(Types
[i
]);
848 // Helper function for outputConstants().
849 // Writes out all the constants in the plane Plane starting at entry StartNo.
851 void BytecodeWriter::outputConstantsInPlane(const std::vector
<const Value
*>
852 &Plane
, unsigned StartNo
) {
853 unsigned ValNo
= StartNo
;
855 // Scan through and ignore function arguments, global values, and constant
857 for (; ValNo
< Plane
.size() &&
858 (isa
<Argument
>(Plane
[ValNo
]) || isa
<GlobalValue
>(Plane
[ValNo
]) ||
859 (isa
<ConstantArray
>(Plane
[ValNo
]) &&
860 cast
<ConstantArray
>(Plane
[ValNo
])->isString())); ValNo
++)
863 unsigned NC
= ValNo
; // Number of constants
864 for (; NC
< Plane
.size() && (isa
<Constant
>(Plane
[NC
]) ||
865 isa
<InlineAsm
>(Plane
[NC
])); NC
++)
867 NC
-= ValNo
; // Convert from index into count
868 if (NC
== 0) return; // Skip empty type planes...
870 // FIXME: Most slabs only have 1 or 2 entries! We should encode this much
873 // Output type header: [num entries][type id number]
877 // Output the Type ID Number...
878 int Slot
= Table
.getSlot(Plane
.front()->getType());
879 assert (Slot
!= -1 && "Type in constant pool but not in function!!");
880 output_typeid((unsigned)Slot
);
882 for (unsigned i
= ValNo
; i
< ValNo
+NC
; ++i
) {
883 const Value
*V
= Plane
[i
];
884 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
887 outputInlineAsm(cast
<InlineAsm
>(V
));
891 static inline bool hasNullValue(const Type
*Ty
) {
892 return Ty
!= Type::LabelTy
&& Ty
!= Type::VoidTy
&& !isa
<OpaqueType
>(Ty
);
895 void BytecodeWriter::outputConstants(bool isFunction
) {
896 BytecodeBlock
CPool(BytecodeFormat::ConstantPoolBlockID
, *this,
897 true /* Elide block if empty */);
899 unsigned NumPlanes
= Table
.getNumPlanes();
902 // Output the type plane before any constants!
903 outputTypes(Table
.getModuleTypeLevel());
905 // Output module-level string constants before any other constants.
906 outputConstantStrings();
908 for (unsigned pno
= 0; pno
!= NumPlanes
; pno
++) {
909 const std::vector
<const Value
*> &Plane
= Table
.getPlane(pno
);
910 if (!Plane
.empty()) { // Skip empty type planes...
912 if (isFunction
) // Don't re-emit module constants
913 ValNo
+= Table
.getModuleLevel(pno
);
915 if (hasNullValue(Plane
[0]->getType())) {
916 // Skip zero initializer
921 // Write out constants in the plane
922 outputConstantsInPlane(Plane
, ValNo
);
927 static unsigned getEncodedLinkage(const GlobalValue
*GV
) {
928 switch (GV
->getLinkage()) {
929 default: assert(0 && "Invalid linkage!");
930 case GlobalValue::ExternalLinkage
: return 0;
931 case GlobalValue::WeakLinkage
: return 1;
932 case GlobalValue::AppendingLinkage
: return 2;
933 case GlobalValue::InternalLinkage
: return 3;
934 case GlobalValue::LinkOnceLinkage
: return 4;
938 void BytecodeWriter::outputModuleInfoBlock(const Module
*M
) {
939 BytecodeBlock
ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID
, *this);
941 // Give numbers to sections as we encounter them.
942 unsigned SectionIDCounter
= 0;
943 std::vector
<std::string
> SectionNames
;
944 std::map
<std::string
, unsigned> SectionID
;
946 // Output the types for the global variables in the module...
947 for (Module::const_global_iterator I
= M
->global_begin(),
948 End
= M
->global_end(); I
!= End
; ++I
) {
949 int Slot
= Table
.getSlot(I
->getType());
950 assert(Slot
!= -1 && "Module global vars is broken!");
952 assert((I
->hasInitializer() || !I
->hasInternalLinkage()) &&
953 "Global must have an initializer or have external linkage!");
955 // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage,
956 // bit5+ = Slot # for type.
957 bool HasExtensionWord
= (I
->getAlignment() != 0) || I
->hasSection();
959 // If we need to use the extension byte, set linkage=3(internal) and
960 // initializer = 0 (impossible!).
961 if (!HasExtensionWord
) {
962 unsigned oSlot
= ((unsigned)Slot
<< 5) | (getEncodedLinkage(I
) << 2) |
963 (I
->hasInitializer() << 1) | (unsigned)I
->isConstant();
966 unsigned oSlot
= ((unsigned)Slot
<< 5) | (3 << 2) |
967 (0 << 1) | (unsigned)I
->isConstant();
970 // The extension word has this format: bit 0 = has initializer, bit 1-3 =
971 // linkage, bit 4-8 = alignment (log2), bit 9 = has SectionID,
972 // bits 10+ = future use.
973 unsigned ExtWord
= (unsigned)I
->hasInitializer() |
974 (getEncodedLinkage(I
) << 1) |
975 ((Log2_32(I
->getAlignment())+1) << 4) |
976 ((unsigned)I
->hasSection() << 9);
978 if (I
->hasSection()) {
979 // Give section names unique ID's.
980 unsigned &Entry
= SectionID
[I
->getSection()];
982 Entry
= ++SectionIDCounter
;
983 SectionNames
.push_back(I
->getSection());
989 // If we have an initializer, output it now.
990 if (I
->hasInitializer()) {
991 Slot
= Table
.getSlot((Value
*)I
->getInitializer());
992 assert(Slot
!= -1 && "No slot for global var initializer!");
993 output_vbr((unsigned)Slot
);
996 output_typeid((unsigned)Table
.getSlot(Type::VoidTy
));
998 // Output the types of the functions in this module.
999 for (Module::const_iterator I
= M
->begin(), End
= M
->end(); I
!= End
; ++I
) {
1000 int Slot
= Table
.getSlot(I
->getType());
1001 assert(Slot
!= -1 && "Module slot calculator is broken!");
1002 assert(Slot
>= Type::FirstDerivedTyID
&& "Derived type not in range!");
1003 assert(((Slot
<< 6) >> 6) == Slot
&& "Slot # too big!");
1004 unsigned CC
= I
->getCallingConv()+1;
1005 unsigned ID
= (Slot
<< 5) | (CC
& 15);
1007 if (I
->isExternal()) // If external, we don't have an FunctionInfo block.
1010 if (I
->getAlignment() || I
->hasSection() || (CC
& ~15) != 0)
1011 ID
|= 1 << 31; // Do we need an extension word?
1015 if (ID
& (1 << 31)) {
1016 // Extension byte: bits 0-4 = alignment, bits 5-9 = top nibble of calling
1017 // convention, bit 10 = hasSectionID.
1018 ID
= (Log2_32(I
->getAlignment())+1) | ((CC
>> 4) << 5) |
1019 (I
->hasSection() << 10);
1022 // Give section names unique ID's.
1023 if (I
->hasSection()) {
1024 unsigned &Entry
= SectionID
[I
->getSection()];
1026 Entry
= ++SectionIDCounter
;
1027 SectionNames
.push_back(I
->getSection());
1033 output_vbr((unsigned)Table
.getSlot(Type::VoidTy
) << 5);
1035 // Emit the list of dependent libraries for the Module.
1036 Module::lib_iterator LI
= M
->lib_begin();
1037 Module::lib_iterator LE
= M
->lib_end();
1038 output_vbr(unsigned(LE
- LI
)); // Emit the number of dependent libraries.
1039 for (; LI
!= LE
; ++LI
)
1042 // Output the target triple from the module
1043 output(M
->getTargetTriple());
1045 // Emit the table of section names.
1046 output_vbr((unsigned)SectionNames
.size());
1047 for (unsigned i
= 0, e
= SectionNames
.size(); i
!= e
; ++i
)
1048 output(SectionNames
[i
]);
1050 // Output the inline asm string.
1051 output(M
->getModuleInlineAsm());
1054 void BytecodeWriter::outputInstructions(const Function
*F
) {
1055 BytecodeBlock
ILBlock(BytecodeFormat::InstructionListBlockID
, *this);
1056 for (Function::const_iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1057 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
; ++I
)
1058 outputInstruction(*I
);
1061 void BytecodeWriter::outputFunction(const Function
*F
) {
1062 // If this is an external function, there is nothing else to emit!
1063 if (F
->isExternal()) return;
1065 BytecodeBlock
FunctionBlock(BytecodeFormat::FunctionBlockID
, *this);
1066 output_vbr(getEncodedLinkage(F
));
1068 // Get slot information about the function...
1069 Table
.incorporateFunction(F
);
1071 if (Table
.getCompactionTable().empty()) {
1072 // Output information about the constants in the function if the compaction
1073 // table is not being used.
1074 outputConstants(true);
1076 // Otherwise, emit the compaction table.
1077 outputCompactionTable();
1080 // Output all of the instructions in the body of the function
1081 outputInstructions(F
);
1083 // If needed, output the symbol table for the function...
1084 outputSymbolTable(F
->getSymbolTable());
1086 Table
.purgeFunction();
1089 void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo
,
1090 const std::vector
<const Value
*> &Plane
,
1092 unsigned End
= Table
.getModuleLevel(PlaneNo
);
1093 if (Plane
.empty() || StartNo
== End
|| End
== 0) return; // Nothing to emit
1094 assert(StartNo
< End
&& "Cannot emit negative range!");
1095 assert(StartNo
< Plane
.size() && End
<= Plane
.size());
1097 // Do not emit the null initializer!
1100 // Figure out which encoding to use. By far the most common case we have is
1101 // to emit 0-2 entries in a compaction table plane.
1102 switch (End
-StartNo
) {
1103 case 0: // Avoid emitting two vbr's if possible.
1106 output_vbr((PlaneNo
<< 2) | End
-StartNo
);
1109 // Output the number of things.
1110 output_vbr((unsigned(End
-StartNo
) << 2) | 3);
1111 output_typeid(PlaneNo
); // Emit the type plane this is
1115 for (unsigned i
= StartNo
; i
!= End
; ++i
)
1116 output_vbr(Table
.getGlobalSlot(Plane
[i
]));
1119 void BytecodeWriter::outputCompactionTypes(unsigned StartNo
) {
1120 // Get the compaction type table from the slot calculator
1121 const std::vector
<const Type
*> &CTypes
= Table
.getCompactionTypes();
1123 // The compaction types may have been uncompactified back to the
1124 // global types. If so, we just write an empty table
1125 if (CTypes
.size() == 0 ) {
1130 assert(CTypes
.size() >= StartNo
&& "Invalid compaction types start index");
1132 // Determine how many types to write
1133 unsigned NumTypes
= CTypes
.size() - StartNo
;
1135 // Output the number of types.
1136 output_vbr(NumTypes
);
1138 for (unsigned i
= StartNo
; i
< StartNo
+NumTypes
; ++i
)
1139 output_typeid(Table
.getGlobalSlot(CTypes
[i
]));
1142 void BytecodeWriter::outputCompactionTable() {
1143 // Avoid writing the compaction table at all if there is no content.
1144 if (Table
.getCompactionTypes().size() >= Type::FirstDerivedTyID
||
1145 (!Table
.CompactionTableIsEmpty())) {
1146 BytecodeBlock
CTB(BytecodeFormat::CompactionTableBlockID
, *this,
1147 true/*ElideIfEmpty*/);
1148 const std::vector
<std::vector
<const Value
*> > &CT
=
1149 Table
.getCompactionTable();
1151 // First things first, emit the type compaction table if there is one.
1152 outputCompactionTypes(Type::FirstDerivedTyID
);
1154 for (unsigned i
= 0, e
= CT
.size(); i
!= e
; ++i
)
1155 outputCompactionTablePlane(i
, CT
[i
], 0);
1159 void BytecodeWriter::outputSymbolTable(const SymbolTable
&MST
) {
1160 // Do not output the Bytecode block for an empty symbol table, it just wastes
1162 if (MST
.isEmpty()) return;
1164 BytecodeBlock
SymTabBlock(BytecodeFormat::SymbolTableBlockID
, *this,
1165 true/*ElideIfEmpty*/);
1167 // Write the number of types
1168 output_vbr(MST
.num_types());
1170 // Write each of the types
1171 for (SymbolTable::type_const_iterator TI
= MST
.type_begin(),
1172 TE
= MST
.type_end(); TI
!= TE
; ++TI
) {
1173 // Symtab entry:[def slot #][name]
1174 output_typeid((unsigned)Table
.getSlot(TI
->second
));
1178 // Now do each of the type planes in order.
1179 for (SymbolTable::plane_const_iterator PI
= MST
.plane_begin(),
1180 PE
= MST
.plane_end(); PI
!= PE
; ++PI
) {
1181 SymbolTable::value_const_iterator I
= MST
.value_begin(PI
->first
);
1182 SymbolTable::value_const_iterator End
= MST
.value_end(PI
->first
);
1185 if (I
== End
) continue; // Don't mess with an absent type...
1187 // Write the number of values in this plane
1188 output_vbr((unsigned)PI
->second
.size());
1190 // Write the slot number of the type for this plane
1191 Slot
= Table
.getSlot(PI
->first
);
1192 assert(Slot
!= -1 && "Type in symtab, but not in table!");
1193 output_typeid((unsigned)Slot
);
1195 // Write each of the values in this plane
1196 for (; I
!= End
; ++I
) {
1197 // Symtab entry: [def slot #][name]
1198 Slot
= Table
.getSlot(I
->second
);
1199 assert(Slot
!= -1 && "Value in symtab but has no slot number!!");
1200 output_vbr((unsigned)Slot
);
1206 void llvm::WriteBytecodeToFile(const Module
*M
, std::ostream
&Out
,
1208 assert(M
&& "You can't write a null module!!");
1210 // Create a vector of unsigned char for the bytecode output. We
1211 // reserve 256KBytes of space in the vector so that we avoid doing
1212 // lots of little allocations. 256KBytes is sufficient for a large
1213 // proportion of the bytecode files we will encounter. Larger files
1214 // will be automatically doubled in size as needed (std::vector
1216 std::vector
<unsigned char> Buffer
;
1217 Buffer
.reserve(256 * 1024);
1219 // The BytecodeWriter populates Buffer for us.
1220 BytecodeWriter
BCW(Buffer
, M
);
1222 // Keep track of how much we've written
1223 BytesWritten
+= Buffer
.size();
1225 // Determine start and end points of the Buffer
1226 const unsigned char *FirstByte
= &Buffer
.front();
1228 // If we're supposed to compress this mess ...
1231 // We signal compression by using an alternate magic number for the
1232 // file. The compressed bytecode file's magic number is "llvc" instead
1234 char compressed_magic
[4];
1235 compressed_magic
[0] = 'l';
1236 compressed_magic
[1] = 'l';
1237 compressed_magic
[2] = 'v';
1238 compressed_magic
[3] = 'c';
1240 Out
.write(compressed_magic
,4);
1242 // Compress everything after the magic number (which we altered)
1243 uint64_t zipSize
= Compressor::compressToStream(
1244 (char*)(FirstByte
+4), // Skip the magic number
1245 Buffer
.size()-4, // Skip the magic number
1246 Out
// Where to write compressed data
1251 // We're not compressing, so just write the entire block.
1252 Out
.write((char*)FirstByte
, Buffer
.size());
1255 // make sure it hits disk now