Added llvmgcc version to allow tests to be xfailed by frontend version.
[llvm-complete.git] / lib / Target / IA64 / IA64ISelDAGToDAG.cpp
blob1ab87a29ae8fb9bbae13ff1f94c4f7b86900ac62
1 //===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Duraid Madina and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for IA64,
11 // converting a legalized dag to an IA64 dag.
13 //===----------------------------------------------------------------------===//
15 #include "IA64.h"
16 #include "IA64TargetMachine.h"
17 #include "IA64ISelLowering.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/SSARegMap.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Constants.h"
26 #include "llvm/GlobalValue.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include <iostream>
31 #include <set>
32 using namespace llvm;
34 namespace {
35 Statistic<> FusedFP ("ia64-codegen", "Number of fused fp operations");
36 Statistic<> FrameOff("ia64-codegen", "Number of frame idx offsets collapsed");
38 //===--------------------------------------------------------------------===//
39 /// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
40 /// instructions for SelectionDAG operations.
41 ///
42 class IA64DAGToDAGISel : public SelectionDAGISel {
43 IA64TargetLowering IA64Lowering;
44 unsigned GlobalBaseReg;
45 public:
46 IA64DAGToDAGISel(IA64TargetMachine &TM)
47 : SelectionDAGISel(IA64Lowering), IA64Lowering(*TM.getTargetLowering()) {}
49 virtual bool runOnFunction(Function &Fn) {
50 // Make sure we re-emit a set of the global base reg if necessary
51 GlobalBaseReg = 0;
52 return SelectionDAGISel::runOnFunction(Fn);
55 /// getI64Imm - Return a target constant with the specified value, of type
56 /// i64.
57 inline SDOperand getI64Imm(uint64_t Imm) {
58 return CurDAG->getTargetConstant(Imm, MVT::i64);
61 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
62 /// base register. Return the virtual register that holds this value.
63 // SDOperand getGlobalBaseReg(); TODO: hmm
65 // Select - Convert the specified operand from a target-independent to a
66 // target-specific node if it hasn't already been changed.
67 void Select(SDOperand &Result, SDOperand N);
69 SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
70 unsigned OCHi, unsigned OCLo,
71 bool IsArithmetic = false,
72 bool Negate = false);
73 SDNode *SelectBitfieldInsert(SDNode *N);
75 /// SelectCC - Select a comparison of the specified values with the
76 /// specified condition code, returning the CR# of the expression.
77 SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
79 /// SelectAddr - Given the specified address, return the two operands for a
80 /// load/store instruction, and return true if it should be an indexed [r+r]
81 /// operation.
82 bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
84 SDOperand BuildSDIVSequence(SDNode *N);
85 SDOperand BuildUDIVSequence(SDNode *N);
87 /// InstructionSelectBasicBlock - This callback is invoked by
88 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
89 virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
91 virtual const char *getPassName() const {
92 return "IA64 (Itanium) DAG->DAG Instruction Selector";
95 // Include the pieces autogenerated from the target description.
96 #include "IA64GenDAGISel.inc"
98 private:
99 SDOperand SelectDIV(SDOperand Op);
103 /// InstructionSelectBasicBlock - This callback is invoked by
104 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
105 void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
106 DEBUG(BB->dump());
108 // The selection process is inherently a bottom-up recursive process (users
109 // select their uses before themselves). Given infinite stack space, we
110 // could just start selecting on the root and traverse the whole graph. In
111 // practice however, this causes us to run out of stack space on large basic
112 // blocks. To avoid this problem, select the entry node, then all its uses,
113 // iteratively instead of recursively.
114 std::vector<SDOperand> Worklist;
115 Worklist.push_back(DAG.getEntryNode());
117 // Note that we can do this in the IA64 target (scanning forward across token
118 // chain edges) because no nodes ever get folded across these edges. On a
119 // target like X86 which supports load/modify/store operations, this would
120 // have to be more careful.
121 while (!Worklist.empty()) {
122 SDOperand Node = Worklist.back();
123 Worklist.pop_back();
125 // Chose from the least deep of the top two nodes.
126 if (!Worklist.empty() &&
127 Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
128 std::swap(Worklist.back(), Node);
130 if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
131 Node.Val->getOpcode() < IA64ISD::FIRST_NUMBER) ||
132 CodeGenMap.count(Node)) continue;
134 for (SDNode::use_iterator UI = Node.Val->use_begin(),
135 E = Node.Val->use_end(); UI != E; ++UI) {
136 // Scan the values. If this use has a value that is a token chain, add it
137 // to the worklist.
138 SDNode *User = *UI;
139 for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
140 if (User->getValueType(i) == MVT::Other) {
141 Worklist.push_back(SDOperand(User, i));
142 break;
146 // Finally, legalize this node.
147 SDOperand Dummy;
148 Select(Dummy, Node);
151 // Select target instructions for the DAG.
152 DAG.setRoot(SelectRoot(DAG.getRoot()));
153 CodeGenMap.clear();
154 DAG.RemoveDeadNodes();
156 // Emit machine code to BB.
157 ScheduleAndEmitDAG(DAG);
160 SDOperand IA64DAGToDAGISel::SelectDIV(SDOperand Op) {
161 SDNode *N = Op.Val;
162 SDOperand Chain, Tmp1, Tmp2;
163 Select(Chain, N->getOperand(0));
165 Select(Tmp1, N->getOperand(0));
166 Select(Tmp2, N->getOperand(1));
168 bool isFP=false;
170 if(MVT::isFloatingPoint(Tmp1.getValueType()))
171 isFP=true;
173 bool isModulus=false; // is it a division or a modulus?
174 bool isSigned=false;
176 switch(N->getOpcode()) {
177 case ISD::FDIV:
178 case ISD::SDIV: isModulus=false; isSigned=true; break;
179 case ISD::UDIV: isModulus=false; isSigned=false; break;
180 case ISD::FREM:
181 case ISD::SREM: isModulus=true; isSigned=true; break;
182 case ISD::UREM: isModulus=true; isSigned=false; break;
185 // TODO: check for integer divides by powers of 2 (or other simple patterns?)
187 SDOperand TmpPR, TmpPR2;
188 SDOperand TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
189 SDOperand TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
190 SDNode *Result;
192 // we'll need copies of F0 and F1
193 SDOperand F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
194 SDOperand F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
196 // OK, emit some code:
198 if(!isFP) {
199 // first, load the inputs into FP regs.
200 TmpF1 =
201 SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1), 0);
202 Chain = TmpF1.getValue(1);
203 TmpF2 =
204 SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2), 0);
205 Chain = TmpF2.getValue(1);
207 // next, convert the inputs to FP
208 if(isSigned) {
209 TmpF3 =
210 SDOperand(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1), 0);
211 Chain = TmpF3.getValue(1);
212 TmpF4 =
213 SDOperand(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2), 0);
214 Chain = TmpF4.getValue(1);
215 } else { // is unsigned
216 TmpF3 =
217 SDOperand(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1), 0);
218 Chain = TmpF3.getValue(1);
219 TmpF4 =
220 SDOperand(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2), 0);
221 Chain = TmpF4.getValue(1);
224 } else { // this is an FP divide/remainder, so we 'leak' some temp
225 // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
226 TmpF3=Tmp1;
227 TmpF4=Tmp2;
230 // we start by computing an approximate reciprocal (good to 9 bits?)
231 // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
232 if(isFP)
233 TmpF5 = SDOperand(CurDAG->getTargetNode(IA64::FRCPAS0, MVT::f64, MVT::i1,
234 TmpF3, TmpF4), 0);
235 else
236 TmpF5 = SDOperand(CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1,
237 TmpF3, TmpF4), 0);
239 TmpPR = TmpF5.getValue(1);
240 Chain = TmpF5.getValue(2);
242 SDOperand minusB;
243 if(isModulus) { // for remainders, it'll be handy to have
244 // copies of -input_b
245 minusB = SDOperand(CurDAG->getTargetNode(IA64::SUB, MVT::i64,
246 CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2), 0);
247 Chain = minusB.getValue(1);
250 SDOperand TmpE0, TmpY1, TmpE1, TmpY2;
252 TmpE0 = SDOperand(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
253 TmpF4, TmpF5, F1, TmpPR), 0);
254 Chain = TmpE0.getValue(1);
255 TmpY1 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
256 TmpF5, TmpE0, TmpF5, TmpPR), 0);
257 Chain = TmpY1.getValue(1);
258 TmpE1 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
259 TmpE0, TmpE0, F0, TmpPR), 0);
260 Chain = TmpE1.getValue(1);
261 TmpY2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
262 TmpY1, TmpE1, TmpY1, TmpPR), 0);
263 Chain = TmpY2.getValue(1);
265 if(isFP) { // if this is an FP divide, we finish up here and exit early
266 if(isModulus)
267 assert(0 && "Sorry, try another FORTRAN compiler.");
269 SDOperand TmpE2, TmpY3, TmpQ0, TmpR0;
271 TmpE2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
272 TmpE1, TmpE1, F0, TmpPR), 0);
273 Chain = TmpE2.getValue(1);
274 TmpY3 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
275 TmpY2, TmpE2, TmpY2, TmpPR), 0);
276 Chain = TmpY3.getValue(1);
277 TmpQ0 =
278 SDOperand(CurDAG->getTargetNode(IA64::CFMADS1, MVT::f64, // double prec!
279 Tmp1, TmpY3, F0, TmpPR), 0);
280 Chain = TmpQ0.getValue(1);
281 TmpR0 =
282 SDOperand(CurDAG->getTargetNode(IA64::CFNMADS1, MVT::f64, // double prec!
283 Tmp2, TmpQ0, Tmp1, TmpPR), 0);
284 Chain = TmpR0.getValue(1);
286 // we want Result to have the same target register as the frcpa, so
287 // we two-address hack it. See the comment "for this to work..." on
288 // page 48 of Intel application note #245415
289 Result = CurDAG->getTargetNode(IA64::TCFMADS0, MVT::f64, // d.p. s0 rndg!
290 TmpF5, TmpY3, TmpR0, TmpQ0, TmpPR);
291 Chain = SDOperand(Result, 1);
292 return SDOperand(Result, 0); // XXX: early exit!
293 } else { // this is *not* an FP divide, so there's a bit left to do:
295 SDOperand TmpQ2, TmpR2, TmpQ3, TmpQ;
297 TmpQ2 = SDOperand(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
298 TmpF3, TmpY2, F0, TmpPR), 0);
299 Chain = TmpQ2.getValue(1);
300 TmpR2 = SDOperand(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
301 TmpF4, TmpQ2, TmpF3, TmpPR), 0);
302 Chain = TmpR2.getValue(1);
304 // we want TmpQ3 to have the same target register as the frcpa? maybe we
305 // should two-address hack it. See the comment "for this to work..." on page
306 // 48 of Intel application note #245415
307 TmpQ3 = SDOperand(CurDAG->getTargetNode(IA64::TCFMAS1, MVT::f64,
308 TmpF5, TmpR2, TmpY2, TmpQ2, TmpPR), 0);
309 Chain = TmpQ3.getValue(1);
311 // STORY: without these two-address instructions (TCFMAS1 and TCFMADS0)
312 // the FPSWA won't be able to help out in the case of large/tiny
313 // arguments. Other fun bugs may also appear, e.g. 0/x = x, not 0.
315 if(isSigned)
316 TmpQ = SDOperand(CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1,
317 MVT::f64, TmpQ3), 0);
318 else
319 TmpQ = SDOperand(CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1,
320 MVT::f64, TmpQ3), 0);
322 Chain = TmpQ.getValue(1);
324 if(isModulus) {
325 SDOperand FPminusB =
326 SDOperand(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, minusB), 0);
327 Chain = FPminusB.getValue(1);
328 SDOperand Remainder =
329 SDOperand(CurDAG->getTargetNode(IA64::XMAL, MVT::f64,
330 TmpQ, FPminusB, TmpF1), 0);
331 Chain = Remainder.getValue(1);
332 Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, Remainder);
333 Chain = SDOperand(Result, 1);
334 } else { // just an integer divide
335 Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpQ);
336 Chain = SDOperand(Result, 1);
339 return SDOperand(Result, 0);
340 } // wasn't an FP divide
343 // Select - Convert the specified operand from a target-independent to a
344 // target-specific node if it hasn't already been changed.
345 void IA64DAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
346 SDNode *N = Op.Val;
347 if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
348 N->getOpcode() < IA64ISD::FIRST_NUMBER) {
349 Result = Op;
350 return; // Already selected.
353 // If this has already been converted, use it.
354 std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
355 if (CGMI != CodeGenMap.end()) {
356 Result = CGMI->second;
357 return;
360 switch (N->getOpcode()) {
361 default: break;
363 case IA64ISD::BRCALL: { // XXX: this is also a hack!
364 SDOperand Chain;
365 SDOperand InFlag; // Null incoming flag value.
367 Select(Chain, N->getOperand(0));
368 if(N->getNumOperands()==3) // we have an incoming chain, callee and flag
369 Select(InFlag, N->getOperand(2));
371 unsigned CallOpcode;
372 SDOperand CallOperand;
374 // if we can call directly, do so
375 if (GlobalAddressSDNode *GASD =
376 dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
377 CallOpcode = IA64::BRCALL_IPREL_GA;
378 CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64);
379 } else if (ExternalSymbolSDNode *ESSDN = // FIXME: we currently NEED this
380 // case for correctness, to avoid
381 // "non-pic code with imm reloc.n
382 // against dynamic symbol" errors
383 dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
384 CallOpcode = IA64::BRCALL_IPREL_ES;
385 CallOperand = N->getOperand(1);
386 } else {
387 // otherwise we need to load the function descriptor,
388 // load the branch target (function)'s entry point and GP,
389 // branch (call) then restore the GP
390 SDOperand FnDescriptor;
391 Select(FnDescriptor, N->getOperand(1));
393 // load the branch target's entry point [mem] and
394 // GP value [mem+8]
395 SDOperand targetEntryPoint=
396 SDOperand(CurDAG->getTargetNode(IA64::LD8, MVT::i64, FnDescriptor), 0);
397 Chain = targetEntryPoint.getValue(1);
398 SDOperand targetGPAddr=
399 SDOperand(CurDAG->getTargetNode(IA64::ADDS, MVT::i64,
400 FnDescriptor, CurDAG->getConstant(8, MVT::i64)), 0);
401 Chain = targetGPAddr.getValue(1);
402 SDOperand targetGP=
403 SDOperand(CurDAG->getTargetNode(IA64::LD8, MVT::i64, targetGPAddr), 0);
404 Chain = targetGP.getValue(1);
406 Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP, InFlag);
407 InFlag = Chain.getValue(1);
408 Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint, InFlag); // FLAG these?
409 InFlag = Chain.getValue(1);
411 CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64);
412 CallOpcode = IA64::BRCALL_INDIRECT;
415 // Finally, once everything is setup, emit the call itself
416 if(InFlag.Val)
417 Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
418 CallOperand, InFlag), 0);
419 else // there might be no arguments
420 Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
421 CallOperand, Chain), 0);
422 InFlag = Chain.getValue(1);
424 std::vector<SDOperand> CallResults;
426 CallResults.push_back(Chain);
427 CallResults.push_back(InFlag);
429 for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
430 CodeGenMap[Op.getValue(i)] = CallResults[i];
431 Result = CallResults[Op.ResNo];
432 return;
435 case IA64ISD::GETFD: {
436 SDOperand Input;
437 Select(Input, N->getOperand(0));
438 Result = SDOperand(CurDAG->getTargetNode(IA64::GETFD, MVT::i64, Input), 0);
439 CodeGenMap[Op] = Result;
440 return;
443 case ISD::FDIV:
444 case ISD::SDIV:
445 case ISD::UDIV:
446 case ISD::SREM:
447 case ISD::UREM:
448 Result = SelectDIV(Op);
449 return;
451 case ISD::TargetConstantFP: {
452 SDOperand Chain = CurDAG->getEntryNode(); // this is a constant, so..
454 if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0)) {
455 Result = CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64);
456 } else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0)) {
457 Result = CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64);
458 } else
459 assert(0 && "Unexpected FP constant!");
460 return;
463 case ISD::FrameIndex: { // TODO: reduce creepyness
464 int FI = cast<FrameIndexSDNode>(N)->getIndex();
465 if (N->hasOneUse())
466 Result = CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
467 CurDAG->getTargetFrameIndex(FI, MVT::i64));
468 else
469 Result = CodeGenMap[Op] = SDOperand(CurDAG->getTargetNode(IA64::MOV, MVT::i64,
470 CurDAG->getTargetFrameIndex(FI, MVT::i64)), 0);
471 return;
474 case ISD::ConstantPool: { // TODO: nuke the constant pool
475 // (ia64 doesn't need one)
476 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
477 Constant *C = CP->get();
478 SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64,
479 CP->getAlignment());
480 Result = SDOperand(CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ?
481 CurDAG->getRegister(IA64::r1, MVT::i64), CPI), 0);
482 return;
485 case ISD::GlobalAddress: {
486 GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
487 SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
488 SDOperand Tmp = SDOperand(CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64,
489 CurDAG->getRegister(IA64::r1, MVT::i64), GA), 0);
490 Result = SDOperand(CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp), 0);
491 return;
494 /* XXX case ISD::ExternalSymbol: {
495 SDOperand EA = CurDAG->getTargetExternalSymbol(cast<ExternalSymbolSDNode>(N)->getSymbol(),
496 MVT::i64);
497 SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64,
498 CurDAG->getRegister(IA64::r1, MVT::i64), EA);
499 return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
503 case ISD::LOAD:
504 case ISD::EXTLOAD: // FIXME: load -1, not 1, for bools?
505 case ISD::ZEXTLOAD: {
506 SDOperand Chain, Address;
507 Select(Chain, N->getOperand(0));
508 Select(Address, N->getOperand(1));
510 MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
511 N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
512 unsigned Opc;
513 switch (TypeBeingLoaded) {
514 default: N->dump(); assert(0 && "Cannot load this type!");
515 case MVT::i1: { // this is a bool
516 Opc = IA64::LD1; // first we load a byte, then compare for != 0
517 if(N->getValueType(0) == MVT::i1) { // XXX: early exit!
518 Result = CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other,
519 SDOperand(CurDAG->getTargetNode(Opc, MVT::i64, Address), 0),
520 CurDAG->getRegister(IA64::r0, MVT::i64),
521 Chain).getValue(Op.ResNo);
522 return;
524 /* otherwise, we want to load a bool into something bigger: LD1
525 will do that for us, so we just fall through */
527 case MVT::i8: Opc = IA64::LD1; break;
528 case MVT::i16: Opc = IA64::LD2; break;
529 case MVT::i32: Opc = IA64::LD4; break;
530 case MVT::i64: Opc = IA64::LD8; break;
532 case MVT::f32: Opc = IA64::LDF4; break;
533 case MVT::f64: Opc = IA64::LDF8; break;
536 // TODO: comment this
537 Result = CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
538 Address, Chain).getValue(Op.ResNo);
539 return;
542 case ISD::TRUNCSTORE:
543 case ISD::STORE: {
544 SDOperand Address, Chain;
545 Select(Address, N->getOperand(2));
546 Select(Chain, N->getOperand(0));
548 unsigned Opc;
549 if (N->getOpcode() == ISD::STORE) {
550 switch (N->getOperand(1).getValueType()) {
551 default: assert(0 && "unknown type in store");
552 case MVT::i1: { // this is a bool
553 Opc = IA64::ST1; // we store either 0 or 1 as a byte
554 // first load zero!
555 SDOperand Initial = CurDAG->getCopyFromReg(Chain, IA64::r0, MVT::i64);
556 Chain = Initial.getValue(1);
557 // then load 1 into the same reg iff the predicate to store is 1
558 SDOperand Tmp;
559 Select(Tmp, N->getOperand(1));
560 Tmp = SDOperand(CurDAG->getTargetNode(IA64::TPCADDS, MVT::i64, Initial,
561 CurDAG->getConstant(1, MVT::i64),
562 Tmp), 0);
563 Result = CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
564 return;
566 case MVT::i64: Opc = IA64::ST8; break;
567 case MVT::f64: Opc = IA64::STF8; break;
569 } else { //ISD::TRUNCSTORE
570 switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
571 default: assert(0 && "unknown type in truncstore");
572 case MVT::i8: Opc = IA64::ST1; break;
573 case MVT::i16: Opc = IA64::ST2; break;
574 case MVT::i32: Opc = IA64::ST4; break;
575 case MVT::f32: Opc = IA64::STF4; break;
579 SDOperand N1, N2;
580 Select(N1, N->getOperand(1));
581 Select(N2, N->getOperand(2));
582 Result = CurDAG->SelectNodeTo(N, Opc, MVT::Other, N2, N1, Chain);
583 return;
586 case ISD::BRCOND: {
587 SDOperand Chain, CC;
588 Select(Chain, N->getOperand(0));
589 Select(CC, N->getOperand(1));
590 MachineBasicBlock *Dest =
591 cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
592 //FIXME - we do NOT need long branches all the time
593 Result = CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC,
594 CurDAG->getBasicBlock(Dest), Chain);
595 return;
598 case ISD::CALLSEQ_START:
599 case ISD::CALLSEQ_END: {
600 int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
601 unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
602 IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
603 SDOperand N0;
604 Select(N0, N->getOperand(0));
605 Result = CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), N0);
606 return;
609 case ISD::BR:
610 // FIXME: we don't need long branches all the time!
611 SDOperand N0;
612 Select(N0, N->getOperand(0));
613 Result = CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other,
614 N->getOperand(1), N0);
615 return;
618 SelectCode(Result, Op);
622 /// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
623 /// into an IA64-specific DAG, ready for instruction scheduling.
625 FunctionPass
626 *llvm::createIA64DAGToDAGInstructionSelector(IA64TargetMachine &TM) {
627 return new IA64DAGToDAGISel(TM);