1 //===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Duraid Madina and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a pattern matching instruction selector for IA64,
11 // converting a legalized dag to an IA64 dag.
13 //===----------------------------------------------------------------------===//
16 #include "IA64TargetMachine.h"
17 #include "IA64ISelLowering.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/SSARegMap.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Constants.h"
26 #include "llvm/GlobalValue.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
35 Statistic
<> FusedFP ("ia64-codegen", "Number of fused fp operations");
36 Statistic
<> FrameOff("ia64-codegen", "Number of frame idx offsets collapsed");
38 //===--------------------------------------------------------------------===//
39 /// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
40 /// instructions for SelectionDAG operations.
42 class IA64DAGToDAGISel
: public SelectionDAGISel
{
43 IA64TargetLowering IA64Lowering
;
44 unsigned GlobalBaseReg
;
46 IA64DAGToDAGISel(IA64TargetMachine
&TM
)
47 : SelectionDAGISel(IA64Lowering
), IA64Lowering(*TM
.getTargetLowering()) {}
49 virtual bool runOnFunction(Function
&Fn
) {
50 // Make sure we re-emit a set of the global base reg if necessary
52 return SelectionDAGISel::runOnFunction(Fn
);
55 /// getI64Imm - Return a target constant with the specified value, of type
57 inline SDOperand
getI64Imm(uint64_t Imm
) {
58 return CurDAG
->getTargetConstant(Imm
, MVT::i64
);
61 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
62 /// base register. Return the virtual register that holds this value.
63 // SDOperand getGlobalBaseReg(); TODO: hmm
65 // Select - Convert the specified operand from a target-independent to a
66 // target-specific node if it hasn't already been changed.
67 void Select(SDOperand
&Result
, SDOperand N
);
69 SDNode
*SelectIntImmediateExpr(SDOperand LHS
, SDOperand RHS
,
70 unsigned OCHi
, unsigned OCLo
,
71 bool IsArithmetic
= false,
73 SDNode
*SelectBitfieldInsert(SDNode
*N
);
75 /// SelectCC - Select a comparison of the specified values with the
76 /// specified condition code, returning the CR# of the expression.
77 SDOperand
SelectCC(SDOperand LHS
, SDOperand RHS
, ISD::CondCode CC
);
79 /// SelectAddr - Given the specified address, return the two operands for a
80 /// load/store instruction, and return true if it should be an indexed [r+r]
82 bool SelectAddr(SDOperand Addr
, SDOperand
&Op1
, SDOperand
&Op2
);
84 SDOperand
BuildSDIVSequence(SDNode
*N
);
85 SDOperand
BuildUDIVSequence(SDNode
*N
);
87 /// InstructionSelectBasicBlock - This callback is invoked by
88 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
89 virtual void InstructionSelectBasicBlock(SelectionDAG
&DAG
);
91 virtual const char *getPassName() const {
92 return "IA64 (Itanium) DAG->DAG Instruction Selector";
95 // Include the pieces autogenerated from the target description.
96 #include "IA64GenDAGISel.inc"
99 SDOperand
SelectDIV(SDOperand Op
);
103 /// InstructionSelectBasicBlock - This callback is invoked by
104 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
105 void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG
&DAG
) {
108 // The selection process is inherently a bottom-up recursive process (users
109 // select their uses before themselves). Given infinite stack space, we
110 // could just start selecting on the root and traverse the whole graph. In
111 // practice however, this causes us to run out of stack space on large basic
112 // blocks. To avoid this problem, select the entry node, then all its uses,
113 // iteratively instead of recursively.
114 std::vector
<SDOperand
> Worklist
;
115 Worklist
.push_back(DAG
.getEntryNode());
117 // Note that we can do this in the IA64 target (scanning forward across token
118 // chain edges) because no nodes ever get folded across these edges. On a
119 // target like X86 which supports load/modify/store operations, this would
120 // have to be more careful.
121 while (!Worklist
.empty()) {
122 SDOperand Node
= Worklist
.back();
125 // Chose from the least deep of the top two nodes.
126 if (!Worklist
.empty() &&
127 Worklist
.back().Val
->getNodeDepth() < Node
.Val
->getNodeDepth())
128 std::swap(Worklist
.back(), Node
);
130 if ((Node
.Val
->getOpcode() >= ISD::BUILTIN_OP_END
&&
131 Node
.Val
->getOpcode() < IA64ISD::FIRST_NUMBER
) ||
132 CodeGenMap
.count(Node
)) continue;
134 for (SDNode::use_iterator UI
= Node
.Val
->use_begin(),
135 E
= Node
.Val
->use_end(); UI
!= E
; ++UI
) {
136 // Scan the values. If this use has a value that is a token chain, add it
139 for (unsigned i
= 0, e
= User
->getNumValues(); i
!= e
; ++i
)
140 if (User
->getValueType(i
) == MVT::Other
) {
141 Worklist
.push_back(SDOperand(User
, i
));
146 // Finally, legalize this node.
151 // Select target instructions for the DAG.
152 DAG
.setRoot(SelectRoot(DAG
.getRoot()));
154 DAG
.RemoveDeadNodes();
156 // Emit machine code to BB.
157 ScheduleAndEmitDAG(DAG
);
160 SDOperand
IA64DAGToDAGISel::SelectDIV(SDOperand Op
) {
162 SDOperand Chain
, Tmp1
, Tmp2
;
163 Select(Chain
, N
->getOperand(0));
165 Select(Tmp1
, N
->getOperand(0));
166 Select(Tmp2
, N
->getOperand(1));
170 if(MVT::isFloatingPoint(Tmp1
.getValueType()))
173 bool isModulus
=false; // is it a division or a modulus?
176 switch(N
->getOpcode()) {
178 case ISD::SDIV
: isModulus
=false; isSigned
=true; break;
179 case ISD::UDIV
: isModulus
=false; isSigned
=false; break;
181 case ISD::SREM
: isModulus
=true; isSigned
=true; break;
182 case ISD::UREM
: isModulus
=true; isSigned
=false; break;
185 // TODO: check for integer divides by powers of 2 (or other simple patterns?)
187 SDOperand TmpPR
, TmpPR2
;
188 SDOperand TmpF1
, TmpF2
, TmpF3
, TmpF4
, TmpF5
, TmpF6
, TmpF7
, TmpF8
;
189 SDOperand TmpF9
, TmpF10
,TmpF11
,TmpF12
,TmpF13
,TmpF14
,TmpF15
;
192 // we'll need copies of F0 and F1
193 SDOperand F0
= CurDAG
->getRegister(IA64::F0
, MVT::f64
);
194 SDOperand F1
= CurDAG
->getRegister(IA64::F1
, MVT::f64
);
196 // OK, emit some code:
199 // first, load the inputs into FP regs.
201 SDOperand(CurDAG
->getTargetNode(IA64::SETFSIG
, MVT::f64
, Tmp1
), 0);
202 Chain
= TmpF1
.getValue(1);
204 SDOperand(CurDAG
->getTargetNode(IA64::SETFSIG
, MVT::f64
, Tmp2
), 0);
205 Chain
= TmpF2
.getValue(1);
207 // next, convert the inputs to FP
210 SDOperand(CurDAG
->getTargetNode(IA64::FCVTXF
, MVT::f64
, TmpF1
), 0);
211 Chain
= TmpF3
.getValue(1);
213 SDOperand(CurDAG
->getTargetNode(IA64::FCVTXF
, MVT::f64
, TmpF2
), 0);
214 Chain
= TmpF4
.getValue(1);
215 } else { // is unsigned
217 SDOperand(CurDAG
->getTargetNode(IA64::FCVTXUFS1
, MVT::f64
, TmpF1
), 0);
218 Chain
= TmpF3
.getValue(1);
220 SDOperand(CurDAG
->getTargetNode(IA64::FCVTXUFS1
, MVT::f64
, TmpF2
), 0);
221 Chain
= TmpF4
.getValue(1);
224 } else { // this is an FP divide/remainder, so we 'leak' some temp
225 // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
230 // we start by computing an approximate reciprocal (good to 9 bits?)
231 // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
233 TmpF5
= SDOperand(CurDAG
->getTargetNode(IA64::FRCPAS0
, MVT::f64
, MVT::i1
,
236 TmpF5
= SDOperand(CurDAG
->getTargetNode(IA64::FRCPAS1
, MVT::f64
, MVT::i1
,
239 TmpPR
= TmpF5
.getValue(1);
240 Chain
= TmpF5
.getValue(2);
243 if(isModulus
) { // for remainders, it'll be handy to have
244 // copies of -input_b
245 minusB
= SDOperand(CurDAG
->getTargetNode(IA64::SUB
, MVT::i64
,
246 CurDAG
->getRegister(IA64::r0
, MVT::i64
), Tmp2
), 0);
247 Chain
= minusB
.getValue(1);
250 SDOperand TmpE0
, TmpY1
, TmpE1
, TmpY2
;
252 TmpE0
= SDOperand(CurDAG
->getTargetNode(IA64::CFNMAS1
, MVT::f64
,
253 TmpF4
, TmpF5
, F1
, TmpPR
), 0);
254 Chain
= TmpE0
.getValue(1);
255 TmpY1
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
256 TmpF5
, TmpE0
, TmpF5
, TmpPR
), 0);
257 Chain
= TmpY1
.getValue(1);
258 TmpE1
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
259 TmpE0
, TmpE0
, F0
, TmpPR
), 0);
260 Chain
= TmpE1
.getValue(1);
261 TmpY2
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
262 TmpY1
, TmpE1
, TmpY1
, TmpPR
), 0);
263 Chain
= TmpY2
.getValue(1);
265 if(isFP
) { // if this is an FP divide, we finish up here and exit early
267 assert(0 && "Sorry, try another FORTRAN compiler.");
269 SDOperand TmpE2
, TmpY3
, TmpQ0
, TmpR0
;
271 TmpE2
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
272 TmpE1
, TmpE1
, F0
, TmpPR
), 0);
273 Chain
= TmpE2
.getValue(1);
274 TmpY3
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
275 TmpY2
, TmpE2
, TmpY2
, TmpPR
), 0);
276 Chain
= TmpY3
.getValue(1);
278 SDOperand(CurDAG
->getTargetNode(IA64::CFMADS1
, MVT::f64
, // double prec!
279 Tmp1
, TmpY3
, F0
, TmpPR
), 0);
280 Chain
= TmpQ0
.getValue(1);
282 SDOperand(CurDAG
->getTargetNode(IA64::CFNMADS1
, MVT::f64
, // double prec!
283 Tmp2
, TmpQ0
, Tmp1
, TmpPR
), 0);
284 Chain
= TmpR0
.getValue(1);
286 // we want Result to have the same target register as the frcpa, so
287 // we two-address hack it. See the comment "for this to work..." on
288 // page 48 of Intel application note #245415
289 Result
= CurDAG
->getTargetNode(IA64::TCFMADS0
, MVT::f64
, // d.p. s0 rndg!
290 TmpF5
, TmpY3
, TmpR0
, TmpQ0
, TmpPR
);
291 Chain
= SDOperand(Result
, 1);
292 return SDOperand(Result
, 0); // XXX: early exit!
293 } else { // this is *not* an FP divide, so there's a bit left to do:
295 SDOperand TmpQ2
, TmpR2
, TmpQ3
, TmpQ
;
297 TmpQ2
= SDOperand(CurDAG
->getTargetNode(IA64::CFMAS1
, MVT::f64
,
298 TmpF3
, TmpY2
, F0
, TmpPR
), 0);
299 Chain
= TmpQ2
.getValue(1);
300 TmpR2
= SDOperand(CurDAG
->getTargetNode(IA64::CFNMAS1
, MVT::f64
,
301 TmpF4
, TmpQ2
, TmpF3
, TmpPR
), 0);
302 Chain
= TmpR2
.getValue(1);
304 // we want TmpQ3 to have the same target register as the frcpa? maybe we
305 // should two-address hack it. See the comment "for this to work..." on page
306 // 48 of Intel application note #245415
307 TmpQ3
= SDOperand(CurDAG
->getTargetNode(IA64::TCFMAS1
, MVT::f64
,
308 TmpF5
, TmpR2
, TmpY2
, TmpQ2
, TmpPR
), 0);
309 Chain
= TmpQ3
.getValue(1);
311 // STORY: without these two-address instructions (TCFMAS1 and TCFMADS0)
312 // the FPSWA won't be able to help out in the case of large/tiny
313 // arguments. Other fun bugs may also appear, e.g. 0/x = x, not 0.
316 TmpQ
= SDOperand(CurDAG
->getTargetNode(IA64::FCVTFXTRUNCS1
,
317 MVT::f64
, TmpQ3
), 0);
319 TmpQ
= SDOperand(CurDAG
->getTargetNode(IA64::FCVTFXUTRUNCS1
,
320 MVT::f64
, TmpQ3
), 0);
322 Chain
= TmpQ
.getValue(1);
326 SDOperand(CurDAG
->getTargetNode(IA64::SETFSIG
, MVT::f64
, minusB
), 0);
327 Chain
= FPminusB
.getValue(1);
328 SDOperand Remainder
=
329 SDOperand(CurDAG
->getTargetNode(IA64::XMAL
, MVT::f64
,
330 TmpQ
, FPminusB
, TmpF1
), 0);
331 Chain
= Remainder
.getValue(1);
332 Result
= CurDAG
->getTargetNode(IA64::GETFSIG
, MVT::i64
, Remainder
);
333 Chain
= SDOperand(Result
, 1);
334 } else { // just an integer divide
335 Result
= CurDAG
->getTargetNode(IA64::GETFSIG
, MVT::i64
, TmpQ
);
336 Chain
= SDOperand(Result
, 1);
339 return SDOperand(Result
, 0);
340 } // wasn't an FP divide
343 // Select - Convert the specified operand from a target-independent to a
344 // target-specific node if it hasn't already been changed.
345 void IA64DAGToDAGISel::Select(SDOperand
&Result
, SDOperand Op
) {
347 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
&&
348 N
->getOpcode() < IA64ISD::FIRST_NUMBER
) {
350 return; // Already selected.
353 // If this has already been converted, use it.
354 std::map
<SDOperand
, SDOperand
>::iterator CGMI
= CodeGenMap
.find(Op
);
355 if (CGMI
!= CodeGenMap
.end()) {
356 Result
= CGMI
->second
;
360 switch (N
->getOpcode()) {
363 case IA64ISD::BRCALL
: { // XXX: this is also a hack!
365 SDOperand InFlag
; // Null incoming flag value.
367 Select(Chain
, N
->getOperand(0));
368 if(N
->getNumOperands()==3) // we have an incoming chain, callee and flag
369 Select(InFlag
, N
->getOperand(2));
372 SDOperand CallOperand
;
374 // if we can call directly, do so
375 if (GlobalAddressSDNode
*GASD
=
376 dyn_cast
<GlobalAddressSDNode
>(N
->getOperand(1))) {
377 CallOpcode
= IA64::BRCALL_IPREL_GA
;
378 CallOperand
= CurDAG
->getTargetGlobalAddress(GASD
->getGlobal(), MVT::i64
);
379 } else if (ExternalSymbolSDNode
*ESSDN
= // FIXME: we currently NEED this
380 // case for correctness, to avoid
381 // "non-pic code with imm reloc.n
382 // against dynamic symbol" errors
383 dyn_cast
<ExternalSymbolSDNode
>(N
->getOperand(1))) {
384 CallOpcode
= IA64::BRCALL_IPREL_ES
;
385 CallOperand
= N
->getOperand(1);
387 // otherwise we need to load the function descriptor,
388 // load the branch target (function)'s entry point and GP,
389 // branch (call) then restore the GP
390 SDOperand FnDescriptor
;
391 Select(FnDescriptor
, N
->getOperand(1));
393 // load the branch target's entry point [mem] and
395 SDOperand targetEntryPoint
=
396 SDOperand(CurDAG
->getTargetNode(IA64::LD8
, MVT::i64
, FnDescriptor
), 0);
397 Chain
= targetEntryPoint
.getValue(1);
398 SDOperand targetGPAddr
=
399 SDOperand(CurDAG
->getTargetNode(IA64::ADDS
, MVT::i64
,
400 FnDescriptor
, CurDAG
->getConstant(8, MVT::i64
)), 0);
401 Chain
= targetGPAddr
.getValue(1);
403 SDOperand(CurDAG
->getTargetNode(IA64::LD8
, MVT::i64
, targetGPAddr
), 0);
404 Chain
= targetGP
.getValue(1);
406 Chain
= CurDAG
->getCopyToReg(Chain
, IA64::r1
, targetGP
, InFlag
);
407 InFlag
= Chain
.getValue(1);
408 Chain
= CurDAG
->getCopyToReg(Chain
, IA64::B6
, targetEntryPoint
, InFlag
); // FLAG these?
409 InFlag
= Chain
.getValue(1);
411 CallOperand
= CurDAG
->getRegister(IA64::B6
, MVT::i64
);
412 CallOpcode
= IA64::BRCALL_INDIRECT
;
415 // Finally, once everything is setup, emit the call itself
417 Chain
= SDOperand(CurDAG
->getTargetNode(CallOpcode
, MVT::Other
, MVT::Flag
,
418 CallOperand
, InFlag
), 0);
419 else // there might be no arguments
420 Chain
= SDOperand(CurDAG
->getTargetNode(CallOpcode
, MVT::Other
, MVT::Flag
,
421 CallOperand
, Chain
), 0);
422 InFlag
= Chain
.getValue(1);
424 std::vector
<SDOperand
> CallResults
;
426 CallResults
.push_back(Chain
);
427 CallResults
.push_back(InFlag
);
429 for (unsigned i
= 0, e
= CallResults
.size(); i
!= e
; ++i
)
430 CodeGenMap
[Op
.getValue(i
)] = CallResults
[i
];
431 Result
= CallResults
[Op
.ResNo
];
435 case IA64ISD::GETFD
: {
437 Select(Input
, N
->getOperand(0));
438 Result
= SDOperand(CurDAG
->getTargetNode(IA64::GETFD
, MVT::i64
, Input
), 0);
439 CodeGenMap
[Op
] = Result
;
448 Result
= SelectDIV(Op
);
451 case ISD::TargetConstantFP
: {
452 SDOperand Chain
= CurDAG
->getEntryNode(); // this is a constant, so..
454 if (cast
<ConstantFPSDNode
>(N
)->isExactlyValue(+0.0)) {
455 Result
= CurDAG
->getCopyFromReg(Chain
, IA64::F0
, MVT::f64
);
456 } else if (cast
<ConstantFPSDNode
>(N
)->isExactlyValue(+1.0)) {
457 Result
= CurDAG
->getCopyFromReg(Chain
, IA64::F1
, MVT::f64
);
459 assert(0 && "Unexpected FP constant!");
463 case ISD::FrameIndex
: { // TODO: reduce creepyness
464 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
466 Result
= CurDAG
->SelectNodeTo(N
, IA64::MOV
, MVT::i64
,
467 CurDAG
->getTargetFrameIndex(FI
, MVT::i64
));
469 Result
= CodeGenMap
[Op
] = SDOperand(CurDAG
->getTargetNode(IA64::MOV
, MVT::i64
,
470 CurDAG
->getTargetFrameIndex(FI
, MVT::i64
)), 0);
474 case ISD::ConstantPool
: { // TODO: nuke the constant pool
475 // (ia64 doesn't need one)
476 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
477 Constant
*C
= CP
->get();
478 SDOperand CPI
= CurDAG
->getTargetConstantPool(C
, MVT::i64
,
480 Result
= SDOperand(CurDAG
->getTargetNode(IA64::ADDL_GA
, MVT::i64
, // ?
481 CurDAG
->getRegister(IA64::r1
, MVT::i64
), CPI
), 0);
485 case ISD::GlobalAddress
: {
486 GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(N
)->getGlobal();
487 SDOperand GA
= CurDAG
->getTargetGlobalAddress(GV
, MVT::i64
);
488 SDOperand Tmp
= SDOperand(CurDAG
->getTargetNode(IA64::ADDL_GA
, MVT::i64
,
489 CurDAG
->getRegister(IA64::r1
, MVT::i64
), GA
), 0);
490 Result
= SDOperand(CurDAG
->getTargetNode(IA64::LD8
, MVT::i64
, Tmp
), 0);
494 /* XXX case ISD::ExternalSymbol: {
495 SDOperand EA = CurDAG->getTargetExternalSymbol(cast<ExternalSymbolSDNode>(N)->getSymbol(),
497 SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64,
498 CurDAG->getRegister(IA64::r1, MVT::i64), EA);
499 return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
504 case ISD::EXTLOAD
: // FIXME: load -1, not 1, for bools?
505 case ISD::ZEXTLOAD
: {
506 SDOperand Chain
, Address
;
507 Select(Chain
, N
->getOperand(0));
508 Select(Address
, N
->getOperand(1));
510 MVT::ValueType TypeBeingLoaded
= (N
->getOpcode() == ISD::LOAD
) ?
511 N
->getValueType(0) : cast
<VTSDNode
>(N
->getOperand(3))->getVT();
513 switch (TypeBeingLoaded
) {
514 default: N
->dump(); assert(0 && "Cannot load this type!");
515 case MVT::i1
: { // this is a bool
516 Opc
= IA64::LD1
; // first we load a byte, then compare for != 0
517 if(N
->getValueType(0) == MVT::i1
) { // XXX: early exit!
518 Result
= CurDAG
->SelectNodeTo(N
, IA64::CMPNE
, MVT::i1
, MVT::Other
,
519 SDOperand(CurDAG
->getTargetNode(Opc
, MVT::i64
, Address
), 0),
520 CurDAG
->getRegister(IA64::r0
, MVT::i64
),
521 Chain
).getValue(Op
.ResNo
);
524 /* otherwise, we want to load a bool into something bigger: LD1
525 will do that for us, so we just fall through */
527 case MVT::i8
: Opc
= IA64::LD1
; break;
528 case MVT::i16
: Opc
= IA64::LD2
; break;
529 case MVT::i32
: Opc
= IA64::LD4
; break;
530 case MVT::i64
: Opc
= IA64::LD8
; break;
532 case MVT::f32
: Opc
= IA64::LDF4
; break;
533 case MVT::f64
: Opc
= IA64::LDF8
; break;
536 // TODO: comment this
537 Result
= CurDAG
->SelectNodeTo(N
, Opc
, N
->getValueType(0), MVT::Other
,
538 Address
, Chain
).getValue(Op
.ResNo
);
542 case ISD::TRUNCSTORE
:
544 SDOperand Address
, Chain
;
545 Select(Address
, N
->getOperand(2));
546 Select(Chain
, N
->getOperand(0));
549 if (N
->getOpcode() == ISD::STORE
) {
550 switch (N
->getOperand(1).getValueType()) {
551 default: assert(0 && "unknown type in store");
552 case MVT::i1
: { // this is a bool
553 Opc
= IA64::ST1
; // we store either 0 or 1 as a byte
555 SDOperand Initial
= CurDAG
->getCopyFromReg(Chain
, IA64::r0
, MVT::i64
);
556 Chain
= Initial
.getValue(1);
557 // then load 1 into the same reg iff the predicate to store is 1
559 Select(Tmp
, N
->getOperand(1));
560 Tmp
= SDOperand(CurDAG
->getTargetNode(IA64::TPCADDS
, MVT::i64
, Initial
,
561 CurDAG
->getConstant(1, MVT::i64
),
563 Result
= CurDAG
->SelectNodeTo(N
, Opc
, MVT::Other
, Address
, Tmp
, Chain
);
566 case MVT::i64
: Opc
= IA64::ST8
; break;
567 case MVT::f64
: Opc
= IA64::STF8
; break;
569 } else { //ISD::TRUNCSTORE
570 switch(cast
<VTSDNode
>(N
->getOperand(4))->getVT()) {
571 default: assert(0 && "unknown type in truncstore");
572 case MVT::i8
: Opc
= IA64::ST1
; break;
573 case MVT::i16
: Opc
= IA64::ST2
; break;
574 case MVT::i32
: Opc
= IA64::ST4
; break;
575 case MVT::f32
: Opc
= IA64::STF4
; break;
580 Select(N1
, N
->getOperand(1));
581 Select(N2
, N
->getOperand(2));
582 Result
= CurDAG
->SelectNodeTo(N
, Opc
, MVT::Other
, N2
, N1
, Chain
);
588 Select(Chain
, N
->getOperand(0));
589 Select(CC
, N
->getOperand(1));
590 MachineBasicBlock
*Dest
=
591 cast
<BasicBlockSDNode
>(N
->getOperand(2))->getBasicBlock();
592 //FIXME - we do NOT need long branches all the time
593 Result
= CurDAG
->SelectNodeTo(N
, IA64::BRLCOND_NOTCALL
, MVT::Other
, CC
,
594 CurDAG
->getBasicBlock(Dest
), Chain
);
598 case ISD::CALLSEQ_START
:
599 case ISD::CALLSEQ_END
: {
600 int64_t Amt
= cast
<ConstantSDNode
>(N
->getOperand(1))->getValue();
601 unsigned Opc
= N
->getOpcode() == ISD::CALLSEQ_START
?
602 IA64::ADJUSTCALLSTACKDOWN
: IA64::ADJUSTCALLSTACKUP
;
604 Select(N0
, N
->getOperand(0));
605 Result
= CurDAG
->SelectNodeTo(N
, Opc
, MVT::Other
, getI64Imm(Amt
), N0
);
610 // FIXME: we don't need long branches all the time!
612 Select(N0
, N
->getOperand(0));
613 Result
= CurDAG
->SelectNodeTo(N
, IA64::BRL_NOTCALL
, MVT::Other
,
614 N
->getOperand(1), N0
);
618 SelectCode(Result
, Op
);
622 /// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
623 /// into an IA64-specific DAG, ready for instruction scheduling.
626 *llvm::createIA64DAGToDAGInstructionSelector(IA64TargetMachine
&TM
) {
627 return new IA64DAGToDAGISel(TM
);