1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the target-independent interfaces which should be
11 // implemented by each target which is using a TableGen based code generator.
13 //===----------------------------------------------------------------------===//
15 // Include all information about LLVM intrinsics.
16 include "llvm/Intrinsics.td"
18 //===----------------------------------------------------------------------===//
19 // Register file description - These classes are used to fill in the target
20 // description classes.
22 class RegisterClass; // Forward def
24 // Register - You should define one instance of this class for each register
25 // in the target machine. String n will become the "name" of the register.
26 class Register<string n> {
27 string Namespace = "";
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modifie the aliased
45 list<Register> Aliases = [];
47 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
48 // These values can be determined by locating the <target>.h file in the
49 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
50 // order of these names correspond to the enumeration used by gcc. A value of
51 // -1 indicates that the gcc number is undefined.
55 // RegisterGroup - This can be used to define instances of Register which
56 // need to specify aliases.
57 // List "aliases" specifies which registers are aliased to this one. This
58 // allows the code generator to be careful not to put two values with
59 // overlapping live ranges into registers which alias.
60 class RegisterGroup<string n, list<Register> aliases> : Register<n> {
61 let Aliases = aliases;
64 // RegisterClass - Now that all of the registers are defined, and aliases
65 // between registers are defined, specify which registers belong to which
66 // register classes. This also defines the default allocation order of
67 // registers by register allocators.
69 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
70 list<Register> regList> {
71 string Namespace = namespace;
73 // RegType - Specify the ValueType of the registers in this register class.
74 // Note that all registers in a register class must have the same ValueType.
76 list<ValueType> RegTypes = regTypes;
78 // Size - Specify the spill size in bits of the registers. A default value of
79 // zero lets tablgen pick an appropriate size.
82 // Alignment - Specify the alignment required of the registers when they are
83 // stored or loaded to memory.
85 int Alignment = alignment;
87 // MemberList - Specify which registers are in this class. If the
88 // allocation_order_* method are not specified, this also defines the order of
89 // allocation used by the register allocator.
91 list<Register> MemberList = regList;
93 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
94 // code into a generated register class. The normal usage of this is to
95 // overload virtual methods.
96 code MethodProtos = [{}];
97 code MethodBodies = [{}];
101 //===----------------------------------------------------------------------===//
102 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
103 // to the register numbering used by gcc and gdb. These values are used by a
104 // debug information writer (ex. DwarfWriter) to describe where values may be
105 // located during execution.
106 class DwarfRegNum<int N> {
107 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
108 // These values can be determined by locating the <target>.h file in the
109 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
110 // order of these names correspond to the enumeration used by gcc. A value of
111 // -1 indicates that the gcc number is undefined.
115 //===----------------------------------------------------------------------===//
116 // Pull in the common support for scheduling
118 include "../TargetSchedule.td"
120 class Predicate; // Forward def
122 //===----------------------------------------------------------------------===//
123 // Instruction set description - These classes correspond to the C++ classes in
124 // the Target/TargetInstrInfo.h file.
127 string Name = ""; // The opcode string for this instruction
128 string Namespace = "";
130 dag OperandList; // An dag containing the MI operand list.
131 string AsmString = ""; // The .s format to print the instruction with.
133 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
134 // otherwise, uninitialized.
137 // The follow state will eventually be inferred automatically from the
138 // instruction pattern.
140 list<Register> Uses = []; // Default to using no non-operand registers
141 list<Register> Defs = []; // Default to modifying no non-operand registers
143 // Predicates - List of predicates which will be turned into isel matching
145 list<Predicate> Predicates = [];
147 // These bits capture information about the high-level semantics of the
149 bit isReturn = 0; // Is this instruction a return instruction?
150 bit isBranch = 0; // Is this instruction a branch instruction?
151 bit isBarrier = 0; // Can control flow fall through this instruction?
152 bit isCall = 0; // Is this instruction a call instruction?
153 bit isLoad = 0; // Is this instruction a load instruction?
154 bit isStore = 0; // Is this instruction a store instruction?
155 bit isTwoAddress = 0; // Is this a two address instruction?
156 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
157 bit isCommutable = 0; // Is this 3 operand instruction commutable?
158 bit isTerminator = 0; // Is this part of the terminator for a basic block?
159 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
160 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
161 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
162 bit noResults = 0; // Does this instruction produce no results?
164 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
167 /// Predicates - These are extra conditionals which are turned into instruction
168 /// selector matching code. Currently each predicate is just a string.
169 class Predicate<string cond> {
170 string CondString = cond;
173 class Requires<list<Predicate> preds> {
174 list<Predicate> Predicates = preds;
177 /// ops definition - This is just a simple marker used to identify the operands
178 /// list for an instruction. This should be used like this:
179 /// (ops R32:$dst, R32:$src) or something similar.
182 /// variable_ops definition - Mark this instruction as taking a variable number
186 /// Operand Types - These provide the built-in operand types that may be used
187 /// by a target. Targets can optionally provide their own operand types as
188 /// needed, though this should not be needed for RISC targets.
189 class Operand<ValueType ty> {
191 string PrintMethod = "printOperand";
192 int NumMIOperands = 1;
193 dag MIOperandInfo = (ops);
196 def i1imm : Operand<i1>;
197 def i8imm : Operand<i8>;
198 def i16imm : Operand<i16>;
199 def i32imm : Operand<i32>;
200 def i64imm : Operand<i64>;
202 // InstrInfo - This class should only be instantiated once to provide parameters
203 // which are global to the the target machine.
206 // If the target wants to associate some target-specific information with each
207 // instruction, it should provide these two lists to indicate how to assemble
208 // the target specific information into the 32 bits available.
210 list<string> TSFlagsFields = [];
211 list<int> TSFlagsShifts = [];
213 // Target can specify its instructions in either big or little-endian formats.
214 // For instance, while both Sparc and PowerPC are big-endian platforms, the
215 // Sparc manual specifies its instructions in the format [31..0] (big), while
216 // PowerPC specifies them using the format [0..31] (little).
217 bit isLittleEndianEncoding = 0;
220 // Standard Instructions.
221 def PHI : Instruction {
222 let OperandList = (ops variable_ops);
223 let AsmString = "PHINODE";
225 def INLINEASM : Instruction {
226 let OperandList = (ops variable_ops);
230 //===----------------------------------------------------------------------===//
231 // AsmWriter - This class can be implemented by targets that need to customize
232 // the format of the .s file writer.
234 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
235 // on X86 for example).
238 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
239 // class. Generated AsmWriter classes are always prefixed with the target
241 string AsmWriterClassName = "AsmPrinter";
243 // InstFormatName - AsmWriters can specify the name of the format string to
244 // print instructions with.
245 string InstFormatName = "AsmString";
247 // Variant - AsmWriters can be of multiple different variants. Variants are
248 // used to support targets that need to emit assembly code in ways that are
249 // mostly the same for different targets, but have minor differences in
250 // syntax. If the asmstring contains {|} characters in them, this integer
251 // will specify which alternative to use. For example "{x|y|z}" with Variant
252 // == 1, will expand to "y".
255 def DefaultAsmWriter : AsmWriter;
258 //===----------------------------------------------------------------------===//
259 // Target - This class contains the "global" target information
262 // CalleeSavedRegisters - As you might guess, this is a list of the callee
263 // saved registers for a target.
264 list<Register> CalleeSavedRegisters = [];
266 // PointerType - Specify the value type to be used to represent pointers in
267 // this target. Typically this is an i32 or i64 type.
268 ValueType PointerType;
270 // InstructionSet - Instruction set description for this target.
271 InstrInfo InstructionSet;
273 // AssemblyWriters - The AsmWriter instances available for this target.
274 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
277 //===----------------------------------------------------------------------===//
278 // SubtargetFeature - A characteristic of the chip set.
280 class SubtargetFeature<string n, string a, string v, string d> {
281 // Name - Feature name. Used by command line (-mattr=) to determine the
282 // appropriate target chip.
286 // Attribute - Attribute to be set by feature.
288 string Attribute = a;
290 // Value - Value the attribute to be set to by feature.
294 // Desc - Feature description. Used by command line (-mattr=) to display help
300 //===----------------------------------------------------------------------===//
301 // Processor chip sets - These values represent each of the chip sets supported
302 // by the scheduler. Each Processor definition requires corresponding
303 // instruction itineraries.
305 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
306 // Name - Chip set name. Used by command line (-mcpu=) to determine the
307 // appropriate target chip.
311 // ProcItin - The scheduling information for the target processor.
313 ProcessorItineraries ProcItin = pi;
315 // Features - list of
316 list<SubtargetFeature> Features = f;
319 //===----------------------------------------------------------------------===//
320 // Pull in the common support for DAG isel generation
322 include "../TargetSelectionDAG.td"