1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #include "X86TargetMachine.h"
16 #include "X86Relocations.h"
18 #include "llvm/PassManager.h"
19 #include "llvm/CodeGen/MachineCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/Function.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Target/TargetOptions.h"
31 NumEmitted("x86-emitter", "Number of machine instructions emitted");
35 class Emitter
: public MachineFunctionPass
{
36 const X86InstrInfo
*II
;
37 MachineCodeEmitter
&MCE
;
38 std::map
<const MachineBasicBlock
*, unsigned> BasicBlockAddrs
;
39 std::vector
<std::pair
<const MachineBasicBlock
*, unsigned> > BBRefs
;
41 explicit Emitter(MachineCodeEmitter
&mce
) : II(0), MCE(mce
) {}
42 Emitter(MachineCodeEmitter
&mce
, const X86InstrInfo
& ii
)
43 : II(&ii
), MCE(mce
) {}
45 bool runOnMachineFunction(MachineFunction
&MF
);
47 virtual const char *getPassName() const {
48 return "X86 Machine Code Emitter";
51 void emitInstruction(const MachineInstr
&MI
);
54 void emitBasicBlock(const MachineBasicBlock
&MBB
);
56 void emitPCRelativeBlockAddress(const MachineBasicBlock
*BB
);
57 void emitPCRelativeValue(unsigned Address
);
58 void emitGlobalAddressForCall(GlobalValue
*GV
, bool isTailCall
);
59 void emitGlobalAddressForPtr(GlobalValue
*GV
, int Disp
= 0);
60 void emitExternalSymbolAddress(const char *ES
, bool isPCRelative
,
63 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
64 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
65 void emitConstant(unsigned Val
, unsigned Size
);
67 void emitMemModRMByte(const MachineInstr
&MI
,
68 unsigned Op
, unsigned RegOpcodeField
);
73 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
74 /// to the specified MCE object.
75 FunctionPass
*llvm::createX86CodeEmitterPass(MachineCodeEmitter
&MCE
) {
76 return new Emitter(MCE
);
79 bool Emitter::runOnMachineFunction(MachineFunction
&MF
) {
80 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
81 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
82 "JIT relocation model must be set to static or default!");
83 II
= ((X86TargetMachine
&)MF
.getTarget()).getInstrInfo();
85 MCE
.startFunction(MF
);
86 MCE
.emitConstantPool(MF
.getConstantPool());
87 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
89 MCE
.finishFunction(MF
);
91 // Resolve all forward branches now...
92 for (unsigned i
= 0, e
= BBRefs
.size(); i
!= e
; ++i
) {
93 unsigned Location
= BasicBlockAddrs
[BBRefs
[i
].first
];
94 unsigned Ref
= BBRefs
[i
].second
;
95 MCE
.emitWordAt(Location
-Ref
-4, (unsigned*)(intptr_t)Ref
);
98 BasicBlockAddrs
.clear();
102 void Emitter::emitBasicBlock(const MachineBasicBlock
&MBB
) {
103 if (uint64_t Addr
= MCE
.getCurrentPCValue())
104 BasicBlockAddrs
[&MBB
] = Addr
;
106 for (MachineBasicBlock::const_iterator I
= MBB
.begin(), E
= MBB
.end();
111 /// emitPCRelativeValue - Emit a 32-bit PC relative address.
113 void Emitter::emitPCRelativeValue(unsigned Address
) {
114 MCE
.emitWord(Address
-MCE
.getCurrentPCValue()-4);
117 /// emitPCRelativeBlockAddress - This method emits the PC relative address of
118 /// the specified basic block, or if the basic block hasn't been emitted yet
119 /// (because this is a forward branch), it keeps track of the information
120 /// necessary to resolve this address later (and emits a dummy value).
122 void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock
*MBB
) {
123 // If this is a backwards branch, we already know the address of the target,
124 // so just emit the value.
125 std::map
<const MachineBasicBlock
*, unsigned>::iterator I
=
126 BasicBlockAddrs
.find(MBB
);
127 if (I
!= BasicBlockAddrs
.end()) {
128 emitPCRelativeValue(I
->second
);
130 // Otherwise, remember where this reference was and where it is to so we can
131 // deal with it later.
132 BBRefs
.push_back(std::make_pair(MBB
, MCE
.getCurrentPCValue()));
137 /// emitGlobalAddressForCall - Emit the specified address to the code stream
138 /// assuming this is part of a function call, which is PC relative.
140 void Emitter::emitGlobalAddressForCall(GlobalValue
*GV
, bool isTailCall
) {
141 MCE
.addRelocation(MachineRelocation(MCE
.getCurrentPCOffset(),
142 X86::reloc_pcrel_word
, GV
, 0,
143 !isTailCall
/*Doesn'tNeedStub*/));
147 /// emitGlobalAddress - Emit the specified address to the code stream assuming
148 /// this is part of a "take the address of a global" instruction, which is not
151 void Emitter::emitGlobalAddressForPtr(GlobalValue
*GV
, int Disp
/* = 0 */) {
152 MCE
.addRelocation(MachineRelocation(MCE
.getCurrentPCOffset(),
153 X86::reloc_absolute_word
, GV
));
154 MCE
.emitWord(Disp
); // The relocated value will be added to the displacement
157 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
158 /// be emitted to the current location in the function, and allow it to be PC
160 void Emitter::emitExternalSymbolAddress(const char *ES
, bool isPCRelative
,
162 MCE
.addRelocation(MachineRelocation(MCE
.getCurrentPCOffset(),
163 isPCRelative
? X86::reloc_pcrel_word
: X86::reloc_absolute_word
, ES
));
167 /// N86 namespace - Native X86 Register numbers... used by X86 backend.
171 EAX
= 0, ECX
= 1, EDX
= 2, EBX
= 3, ESP
= 4, EBP
= 5, ESI
= 6, EDI
= 7
176 // getX86RegNum - This function maps LLVM register identifiers to their X86
177 // specific numbering, which is used in various places encoding instructions.
179 static unsigned getX86RegNum(unsigned RegNo
) {
181 case X86::EAX
: case X86::AX
: case X86::AL
: return N86::EAX
;
182 case X86::ECX
: case X86::CX
: case X86::CL
: return N86::ECX
;
183 case X86::EDX
: case X86::DX
: case X86::DL
: return N86::EDX
;
184 case X86::EBX
: case X86::BX
: case X86::BL
: return N86::EBX
;
185 case X86::ESP
: case X86::SP
: case X86::AH
: return N86::ESP
;
186 case X86::EBP
: case X86::BP
: case X86::CH
: return N86::EBP
;
187 case X86::ESI
: case X86::SI
: case X86::DH
: return N86::ESI
;
188 case X86::EDI
: case X86::DI
: case X86::BH
: return N86::EDI
;
190 case X86::ST0
: case X86::ST1
: case X86::ST2
: case X86::ST3
:
191 case X86::ST4
: case X86::ST5
: case X86::ST6
: case X86::ST7
:
192 return RegNo
-X86::ST0
;
194 case X86::XMM0
: case X86::XMM1
: case X86::XMM2
: case X86::XMM3
:
195 case X86::XMM4
: case X86::XMM5
: case X86::XMM6
: case X86::XMM7
:
196 return RegNo
-X86::XMM0
;
199 assert(MRegisterInfo::isVirtualRegister(RegNo
) &&
200 "Unknown physical register!");
201 assert(0 && "Register allocator hasn't allocated reg correctly yet!");
206 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
208 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
209 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
212 void Emitter::emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeFld
){
213 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
216 void Emitter::emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
) {
217 // SIB byte is in the same format as the ModRMByte...
218 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
221 void Emitter::emitConstant(unsigned Val
, unsigned Size
) {
222 // Output the constant in little endian byte order...
223 for (unsigned i
= 0; i
!= Size
; ++i
) {
224 MCE
.emitByte(Val
& 255);
229 static bool isDisp8(int Value
) {
230 return Value
== (signed char)Value
;
233 void Emitter::emitMemModRMByte(const MachineInstr
&MI
,
234 unsigned Op
, unsigned RegOpcodeField
) {
235 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
239 if (Op3
.isGlobalAddress()) {
240 GV
= Op3
.getGlobal();
241 DispVal
= Op3
.getOffset();
242 } else if (Op3
.isConstantPoolIndex()) {
243 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getConstantPoolIndex());
244 DispVal
+= Op3
.getOffset();
246 DispVal
= Op3
.getImmedValue();
249 const MachineOperand
&Base
= MI
.getOperand(Op
);
250 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
251 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
253 unsigned BaseReg
= Base
.getReg();
255 // Is a SIB byte needed?
256 if (IndexReg
.getReg() == 0 && BaseReg
!= X86::ESP
) {
257 if (BaseReg
== 0) { // Just a displacement?
258 // Emit special case [disp32] encoding
259 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
261 emitGlobalAddressForPtr(GV
, DispVal
);
263 emitConstant(DispVal
, 4);
265 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
267 // Emit the most general non-SIB encoding: [REG+disp32]
268 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
269 emitGlobalAddressForPtr(GV
, DispVal
);
270 } else if (DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
271 // Emit simple indirect register encoding... [EAX] f.e.
272 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
273 } else if (isDisp8(DispVal
)) {
274 // Emit the disp8 encoding... [REG+disp8]
275 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
276 emitConstant(DispVal
, 1);
278 // Emit the most general non-SIB encoding: [REG+disp32]
279 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
280 emitConstant(DispVal
, 4);
284 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
285 assert(IndexReg
.getReg() != X86::ESP
&& "Cannot use ESP as index reg!");
287 bool ForceDisp32
= false;
288 bool ForceDisp8
= false;
290 // If there is no base register, we emit the special case SIB byte with
291 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
292 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
295 // Emit the normal disp32 encoding...
296 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
298 } else if (DispVal
== 0 && BaseReg
!= X86::EBP
) {
299 // Emit no displacement ModR/M byte
300 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
301 } else if (isDisp8(DispVal
)) {
302 // Emit the disp8 encoding...
303 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
304 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
306 // Emit the normal disp32 encoding...
307 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
310 // Calculate what the SS field value should be...
311 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
312 unsigned SS
= SSTable
[Scale
.getImmedValue()];
315 // Handle the SIB byte for the case where there is no base. The
316 // displacement has already been output.
317 assert(IndexReg
.getReg() && "Index register must be specified!");
318 emitSIBByte(SS
, getX86RegNum(IndexReg
.getReg()), 5);
320 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
322 if (IndexReg
.getReg())
323 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
325 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
326 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
329 // Do we need to output a displacement?
330 if (DispVal
!= 0 || ForceDisp32
|| ForceDisp8
) {
331 if (!ForceDisp32
&& isDisp8(DispVal
))
332 emitConstant(DispVal
, 1);
334 emitGlobalAddressForPtr(GV
, DispVal
);
336 emitConstant(DispVal
, 4);
341 static unsigned sizeOfImm(const TargetInstrDescriptor
&Desc
) {
342 switch (Desc
.TSFlags
& X86II::ImmMask
) {
343 case X86II::Imm8
: return 1;
344 case X86II::Imm16
: return 2;
345 case X86II::Imm32
: return 4;
346 default: assert(0 && "Immediate size not set!");
351 void Emitter::emitInstruction(const MachineInstr
&MI
) {
352 NumEmitted
++; // Keep track of the # of mi's emitted
354 unsigned Opcode
= MI
.getOpcode();
355 const TargetInstrDescriptor
&Desc
= II
->get(Opcode
);
357 // Emit the repeat opcode prefix as needed.
358 if ((Desc
.TSFlags
& X86II::Op0Mask
) == X86II::REP
) MCE
.emitByte(0xF3);
360 // Emit the operand size opcode prefix as needed.
361 if (Desc
.TSFlags
& X86II::OpSize
) MCE
.emitByte(0x66);
363 switch (Desc
.TSFlags
& X86II::Op0Mask
) {
365 MCE
.emitByte(0x0F); // Two-byte opcode prefix
367 case X86II::REP
: break; // already handled.
368 case X86II::XS
: // F3 0F
372 case X86II::XD
: // F2 0F
376 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
377 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
379 (((Desc
.TSFlags
& X86II::Op0Mask
)-X86II::D8
)
380 >> X86II::Op0Shift
));
381 break; // Two-byte opcode prefix
382 default: assert(0 && "Invalid prefix!");
383 case 0: break; // No prefix!
386 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Opcode
);
387 switch (Desc
.TSFlags
& X86II::FormMask
) {
388 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
393 assert(0 && "psuedo instructions should be removed before code emission");
394 case X86::IMPLICIT_USE
:
395 case X86::IMPLICIT_DEF
:
396 case X86::IMPLICIT_DEF_R8
:
397 case X86::IMPLICIT_DEF_R16
:
398 case X86::IMPLICIT_DEF_R32
:
399 case X86::IMPLICIT_DEF_FR32
:
400 case X86::IMPLICIT_DEF_FR64
:
401 case X86::IMPLICIT_DEF_VR64
:
402 case X86::IMPLICIT_DEF_VR128
:
403 case X86::FP_REG_KILL
:
410 MCE
.emitByte(BaseOpcode
);
411 if (MI
.getNumOperands() == 1) {
412 const MachineOperand
&MO
= MI
.getOperand(0);
413 if (MO
.isMachineBasicBlock()) {
414 emitPCRelativeBlockAddress(MO
.getMachineBasicBlock());
415 } else if (MO
.isGlobalAddress()) {
416 bool isTailCall
= Opcode
== X86::TAILJMPd
||
417 Opcode
== X86::TAILJMPr
|| Opcode
== X86::TAILJMPm
;
418 emitGlobalAddressForCall(MO
.getGlobal(), isTailCall
);
419 } else if (MO
.isExternalSymbol()) {
420 bool isTailCall
= Opcode
== X86::TAILJMPd
||
421 Opcode
== X86::TAILJMPr
|| Opcode
== X86::TAILJMPm
;
422 emitExternalSymbolAddress(MO
.getSymbolName(), true, isTailCall
);
423 } else if (MO
.isImmediate()) {
424 emitConstant(MO
.getImmedValue(), sizeOfImm(Desc
));
426 assert(0 && "Unknown RawFrm operand!");
431 case X86II::AddRegFrm
:
432 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(0).getReg()));
433 if (MI
.getNumOperands() == 2) {
434 const MachineOperand
&MO1
= MI
.getOperand(1);
435 if (Value
*V
= MO1
.getVRegValueOrNull()) {
436 assert(sizeOfImm(Desc
) == 4 &&
437 "Don't know how to emit non-pointer values!");
438 emitGlobalAddressForPtr(cast
<GlobalValue
>(V
));
439 } else if (MO1
.isGlobalAddress()) {
440 assert(sizeOfImm(Desc
) == 4 &&
441 "Don't know how to emit non-pointer values!");
442 assert(!MO1
.isPCRelative() && "Function pointer ref is PC relative?");
443 emitGlobalAddressForPtr(MO1
.getGlobal(), MO1
.getOffset());
444 } else if (MO1
.isExternalSymbol()) {
445 assert(sizeOfImm(Desc
) == 4 &&
446 "Don't know how to emit non-pointer values!");
447 emitExternalSymbolAddress(MO1
.getSymbolName(), false, false);
449 emitConstant(MO1
.getImmedValue(), sizeOfImm(Desc
));
454 case X86II::MRMDestReg
: {
455 MCE
.emitByte(BaseOpcode
);
456 emitRegModRMByte(MI
.getOperand(0).getReg(),
457 getX86RegNum(MI
.getOperand(1).getReg()));
458 if (MI
.getNumOperands() == 3)
459 emitConstant(MI
.getOperand(2).getImmedValue(), sizeOfImm(Desc
));
462 case X86II::MRMDestMem
:
463 MCE
.emitByte(BaseOpcode
);
464 emitMemModRMByte(MI
, 0, getX86RegNum(MI
.getOperand(4).getReg()));
465 if (MI
.getNumOperands() == 6)
466 emitConstant(MI
.getOperand(5).getImmedValue(), sizeOfImm(Desc
));
469 case X86II::MRMSrcReg
:
470 MCE
.emitByte(BaseOpcode
);
471 emitRegModRMByte(MI
.getOperand(1).getReg(),
472 getX86RegNum(MI
.getOperand(0).getReg()));
473 if (MI
.getNumOperands() == 3)
474 emitConstant(MI
.getOperand(2).getImmedValue(), sizeOfImm(Desc
));
477 case X86II::MRMSrcMem
:
478 MCE
.emitByte(BaseOpcode
);
479 emitMemModRMByte(MI
, 1, getX86RegNum(MI
.getOperand(0).getReg()));
480 if (MI
.getNumOperands() == 2+4)
481 emitConstant(MI
.getOperand(5).getImmedValue(), sizeOfImm(Desc
));
484 case X86II::MRM0r
: case X86II::MRM1r
:
485 case X86II::MRM2r
: case X86II::MRM3r
:
486 case X86II::MRM4r
: case X86II::MRM5r
:
487 case X86II::MRM6r
: case X86II::MRM7r
:
488 MCE
.emitByte(BaseOpcode
);
489 emitRegModRMByte(MI
.getOperand(0).getReg(),
490 (Desc
.TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
492 if (MI
.getOperand(MI
.getNumOperands()-1).isImmediate()) {
493 emitConstant(MI
.getOperand(MI
.getNumOperands()-1).getImmedValue(),
498 case X86II::MRM0m
: case X86II::MRM1m
:
499 case X86II::MRM2m
: case X86II::MRM3m
:
500 case X86II::MRM4m
: case X86II::MRM5m
:
501 case X86II::MRM6m
: case X86II::MRM7m
:
502 MCE
.emitByte(BaseOpcode
);
503 emitMemModRMByte(MI
, 0, (Desc
.TSFlags
& X86II::FormMask
)-X86II::MRM0m
);
505 if (MI
.getNumOperands() == 5) {
506 if (MI
.getOperand(4).isImmediate())
507 emitConstant(MI
.getOperand(4).getImmedValue(), sizeOfImm(Desc
));
508 else if (MI
.getOperand(4).isGlobalAddress())
509 emitGlobalAddressForPtr(MI
.getOperand(4).getGlobal(),
510 MI
.getOperand(4).getOffset());
512 assert(0 && "Unknown operand!");
516 case X86II::MRMInitReg
:
517 MCE
.emitByte(BaseOpcode
);
518 emitRegModRMByte(MI
.getOperand(0).getReg(),
519 getX86RegNum(MI
.getOperand(0).getReg()));