Added llvmgcc version to allow tests to be xfailed by frontend version.
[llvm-complete.git] / lib / Target / X86 / X86ISelLowering.h
blobe9cf0282adad7432ca2fa632af96ac131152cbc7
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "llvm/Target/TargetLowering.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
22 namespace llvm {
23 namespace X86ISD {
24 // X86 Specific DAG Nodes
25 enum NodeType {
26 // Start the numbering where the builtin ops leave off.
27 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
29 /// SHLD, SHRD - Double shift instructions. These correspond to
30 /// X86::SHLDxx and X86::SHRDxx instructions.
31 SHLD,
32 SHRD,
34 /// FAND - Bitwise logical AND of floating point values. This corresponds
35 /// to X86::ANDPS or X86::ANDPD.
36 FAND,
38 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
39 /// to X86::XORPS or X86::XORPD.
40 FXOR,
42 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
43 /// integer source in memory and FP reg result. This corresponds to the
44 /// X86::FILD*m instructions. It has three inputs (token chain, address,
45 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
46 /// also produces a flag).
47 FILD,
48 FILD_FLAG,
50 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
51 /// integer destination in memory and a FP reg source. This corresponds
52 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
53 /// has two inputs (token chain and address) and two outputs (int value and
54 /// token chain).
55 FP_TO_INT16_IN_MEM,
56 FP_TO_INT32_IN_MEM,
57 FP_TO_INT64_IN_MEM,
59 /// FLD - This instruction implements an extending load to FP stack slots.
60 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
61 /// operand, ptr to load from, and a ValueType node indicating the type
62 /// to load to.
63 FLD,
65 /// FST - This instruction implements a truncating store to FP stack
66 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
67 /// chain operand, value to store, address, and a ValueType to store it
68 /// as.
69 FST,
71 /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction
72 /// which copies from ST(0) to the destination. It takes a chain and writes
73 /// a RFP result and a chain.
74 FP_GET_RESULT,
76 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction
77 /// which copies the source operand to ST(0). It takes a chain and writes
78 /// a chain and a flag.
79 FP_SET_RESULT,
81 /// CALL/TAILCALL - These operations represent an abstract X86 call
82 /// instruction, which includes a bunch of information. In particular the
83 /// operands of these node are:
84 ///
85 /// #0 - The incoming token chain
86 /// #1 - The callee
87 /// #2 - The number of arg bytes the caller pushes on the stack.
88 /// #3 - The number of arg bytes the callee pops off the stack.
89 /// #4 - The value to pass in AL/AX/EAX (optional)
90 /// #5 - The value to pass in DL/DX/EDX (optional)
91 ///
92 /// The result values of these nodes are:
93 ///
94 /// #0 - The outgoing token chain
95 /// #1 - The first register result value (optional)
96 /// #2 - The second register result value (optional)
97 ///
98 /// The CALL vs TAILCALL distinction boils down to whether the callee is
99 /// known not to modify the caller's stack frame, as is standard with
100 /// LLVM.
101 CALL,
102 TAILCALL,
104 /// RDTSC_DAG - This operation implements the lowering for
105 /// readcyclecounter
106 RDTSC_DAG,
108 /// X86 compare and logical compare instructions.
109 CMP, TEST, COMI, UCOMI,
111 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
112 /// operand produced by a CMP instruction.
113 SETCC,
115 /// X86 conditional moves. Operand 1 and operand 2 are the two values
116 /// to select from (operand 1 is a R/W operand). Operand 3 is the condition
117 /// code, and operand 4 is the flag operand produced by a CMP or TEST
118 /// instruction. It also writes a flag result.
119 CMOV,
121 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
122 /// is the block to branch if condition is true, operand 3 is the
123 /// condition code, and operand 4 is the flag operand produced by a CMP
124 /// or TEST instruction.
125 BRCOND,
127 /// Return with a flag operand. Operand 1 is the chain operand, operand
128 /// 2 is the number of bytes of stack to pop.
129 RET_FLAG,
131 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
132 REP_STOS,
134 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
135 REP_MOVS,
137 /// LOAD_PACK Load a 128-bit packed float / double value. It has the same
138 /// operands as a normal load.
139 LOAD_PACK,
141 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
142 /// at function entry, used for PIC code.
143 GlobalBaseReg,
145 /// TCPWrapper - A wrapper node for TargetConstantPool,
146 /// TargetExternalSymbol, and TargetGlobalAddress.
147 Wrapper,
149 /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
150 /// have to match the operand type.
151 S2VEC,
153 /// ZEXT_S2VEC - SCALAR_TO_VECTOR with zero extension. The destination base
154 /// does not have to match the operand type.
155 ZEXT_S2VEC,
157 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
158 /// i32, corresponds to X86::PEXTRW.
159 PEXTRW,
161 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
162 /// corresponds to X86::PINSRW.
163 PINSRW,
166 // X86 specific condition code. These correspond to X86_*_COND in
167 // X86InstrInfo.td. They must be kept in synch.
168 enum CondCode {
169 COND_A = 0,
170 COND_AE = 1,
171 COND_B = 2,
172 COND_BE = 3,
173 COND_E = 4,
174 COND_G = 5,
175 COND_GE = 6,
176 COND_L = 7,
177 COND_LE = 8,
178 COND_NE = 9,
179 COND_NO = 10,
180 COND_NP = 11,
181 COND_NS = 12,
182 COND_O = 13,
183 COND_P = 14,
184 COND_S = 15,
185 COND_INVALID
189 /// Define some predicates that are used for node matching.
190 namespace X86 {
191 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
192 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
193 bool isPSHUFDMask(SDNode *N);
195 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
196 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
197 bool isPSHUFHWMask(SDNode *N);
199 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
200 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
201 bool isPSHUFLWMask(SDNode *N);
203 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
204 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
205 bool isSHUFPMask(SDNode *N);
207 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
208 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
209 bool isMOVLHPSMask(SDNode *N);
211 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
212 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
213 bool isMOVHLPSMask(SDNode *N);
215 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
216 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
217 bool isMOVLPMask(SDNode *N);
219 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
220 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}.
221 bool isMOVHPMask(SDNode *N);
223 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
224 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
225 bool isUNPCKLMask(SDNode *N);
227 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
228 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
229 bool isUNPCKHMask(SDNode *N);
231 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
232 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
233 /// <0, 0, 1, 1>
234 bool isUNPCKL_v_undef_Mask(SDNode *N);
236 /// isMOVSMask - Return true if the specified VECTOR_SHUFFLE operand
237 /// specifies a shuffle of elements that is suitable for input to MOVS{S|D}.
238 bool isMOVSMask(SDNode *N);
240 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
241 /// specifies a splat of a single element.
242 bool isSplatMask(SDNode *N);
244 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
245 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
246 /// instructions.
247 unsigned getShuffleSHUFImmediate(SDNode *N);
249 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
250 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
251 /// instructions.
252 unsigned getShufflePSHUFHWImmediate(SDNode *N);
254 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
255 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
256 /// instructions.
257 unsigned getShufflePSHUFLWImmediate(SDNode *N);
260 //===----------------------------------------------------------------------===//
261 // X86TargetLowering - X86 Implementation of the TargetLowering interface
262 class X86TargetLowering : public TargetLowering {
263 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
264 int ReturnAddrIndex; // FrameIndex for return slot.
265 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
266 int BytesCallerReserves; // Number of arg bytes caller makes.
267 public:
268 X86TargetLowering(TargetMachine &TM);
270 // Return the number of bytes that a function should pop when it returns (in
271 // addition to the space used by the return address).
273 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
275 // Return the number of bytes that the caller reserves for arguments passed
276 // to this function.
277 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
279 /// LowerOperation - Provide custom lowering hooks for some operations.
281 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
283 /// LowerArguments - This hook must be implemented to indicate how we should
284 /// lower the arguments for the specified function, into the specified DAG.
285 virtual std::vector<SDOperand>
286 LowerArguments(Function &F, SelectionDAG &DAG);
288 /// LowerCallTo - This hook lowers an abstract call to a function into an
289 /// actual call.
290 virtual std::pair<SDOperand, SDOperand>
291 LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
292 bool isTailCall, SDOperand Callee, ArgListTy &Args,
293 SelectionDAG &DAG);
295 virtual std::pair<SDOperand, SDOperand>
296 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
297 SelectionDAG &DAG);
299 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
300 MachineBasicBlock *MBB);
302 /// getTargetNodeName - This method returns the name of a target specific
303 /// DAG node.
304 virtual const char *getTargetNodeName(unsigned Opcode) const;
306 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
307 /// in Mask are known to be either zero or one and return them in the
308 /// KnownZero/KnownOne bitsets.
309 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
310 uint64_t Mask,
311 uint64_t &KnownZero,
312 uint64_t &KnownOne,
313 unsigned Depth = 0) const;
315 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
317 std::vector<unsigned>
318 getRegClassForInlineAsmConstraint(const std::string &Constraint,
319 MVT::ValueType VT) const;
321 /// isLegalAddressImmediate - Return true if the integer value or
322 /// GlobalValue can be used as the offset of the target addressing mode.
323 virtual bool isLegalAddressImmediate(int64_t V) const;
324 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
326 /// isShuffleMaskLegal - Targets can use this to indicate that they only
327 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
328 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
329 /// are assumed to be legal.
330 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
331 private:
332 // C Calling Convention implementation.
333 std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG);
334 std::pair<SDOperand, SDOperand>
335 LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
336 bool isTailCall,
337 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
339 // Fast Calling Convention implementation.
340 std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG);
341 std::pair<SDOperand, SDOperand>
342 LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall,
343 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
345 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
346 /// make the right decision when generating code for different targets.
347 const X86Subtarget *Subtarget;
349 /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
350 bool X86ScalarSSE;
354 #endif // X86ISELLOWERING_H