Added llvmgcc version to allow tests to be xfailed by frontend version.
[llvm-complete.git] / lib / Target / X86 / X86RegisterInfo.td
blobb7b5874717df3b9916e8ab3a6a7cca2af08f52c5
1 //===- X86RegisterInfo.td - Describe the X86 Register File ------*- C++ -*-===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86 Register file, defining the registers themselves,
11 // aliases between the registers, and the register classes built out of the
12 // registers.
14 //===----------------------------------------------------------------------===//
16 //===----------------------------------------------------------------------===//
17 //  Register definitions...
19 let Namespace = "X86" in {
21   // In the register alias definitions below, we define which registers alias
22   // which others.  We only specify which registers the small registers alias,
23   // because the register file generator is smart enough to figure out that
24   // AL aliases AX if we tell it that AX aliased AL (for example).
26   // 32-bit registers
27   def EAX : Register<"EAX">, DwarfRegNum<0>;
28   def ECX : Register<"ECX">, DwarfRegNum<2>;
29   def EDX : Register<"EDX">, DwarfRegNum<1>;
30   def EBX : Register<"EBX">, DwarfRegNum<3>;
31   def ESP : Register<"ESP">, DwarfRegNum<7>;
32   def EBP : Register<"EBP">, DwarfRegNum<6>;
33   def ESI : Register<"ESI">, DwarfRegNum<4>;
34   def EDI : Register<"EDI">, DwarfRegNum<5>;
35   
36   // 16-bit registers
37   def AX : RegisterGroup<"AX", [EAX]>, DwarfRegNum<0>;
38   def CX : RegisterGroup<"CX", [ECX]>, DwarfRegNum<2>;
39   def DX : RegisterGroup<"DX", [EDX]>, DwarfRegNum<1>;
40   def BX : RegisterGroup<"BX", [EBX]>, DwarfRegNum<3>;
41   def SP : RegisterGroup<"SP", [ESP]>, DwarfRegNum<7>;
42   def BP : RegisterGroup<"BP", [EBP]>, DwarfRegNum<6>;
43   def SI : RegisterGroup<"SI", [ESI]>, DwarfRegNum<4>;
44   def DI : RegisterGroup<"DI", [EDI]>, DwarfRegNum<5>;
45   
46   // 8-bit registers
47   def AL : RegisterGroup<"AL", [AX,EAX]>, DwarfRegNum<0>;
48   def CL : RegisterGroup<"CL", [CX,ECX]>, DwarfRegNum<2>;
49   def DL : RegisterGroup<"DL", [DX,EDX]>, DwarfRegNum<1>;
50   def BL : RegisterGroup<"BL", [BX,EBX]>, DwarfRegNum<0>;
51   def AH : RegisterGroup<"AH", [AX,EAX]>, DwarfRegNum<2>;
52   def CH : RegisterGroup<"CH", [CX,ECX]>, DwarfRegNum<2>;
53   def DH : RegisterGroup<"DH", [DX,EDX]>, DwarfRegNum<1>;
54   def BH : RegisterGroup<"BH", [BX,EBX]>, DwarfRegNum<3>;
56   // MMX Registers. These are actually aliased to ST0 .. ST7
57   def MM0 : Register<"MM0">, DwarfRegNum<29>;
58   def MM1 : Register<"MM1">, DwarfRegNum<30>;
59   def MM2 : Register<"MM2">, DwarfRegNum<31>;
60   def MM3 : Register<"MM3">, DwarfRegNum<32>;
61   def MM4 : Register<"MM4">, DwarfRegNum<33>;
62   def MM5 : Register<"MM5">, DwarfRegNum<34>;
63   def MM6 : Register<"MM6">, DwarfRegNum<35>;
64   def MM7 : Register<"MM7">, DwarfRegNum<36>;
65   
66   // Pseudo Floating Point registers
67   def FP0 : Register<"FP0">, DwarfRegNum<-1>;
68   def FP1 : Register<"FP1">, DwarfRegNum<-1>;
69   def FP2 : Register<"FP2">, DwarfRegNum<-1>;
70   def FP3 : Register<"FP3">, DwarfRegNum<-1>;
71   def FP4 : Register<"FP4">, DwarfRegNum<-1>;
72   def FP5 : Register<"FP5">, DwarfRegNum<-1>;
73   def FP6 : Register<"FP6">, DwarfRegNum<-1>; 
75   // XMM Registers, used by the various SSE instruction set extensions
76   def XMM0: Register<"XMM0">, DwarfRegNum<21>;
77   def XMM1: Register<"XMM1">, DwarfRegNum<22>;
78   def XMM2: Register<"XMM2">, DwarfRegNum<23>;
79   def XMM3: Register<"XMM3">, DwarfRegNum<24>;
80   def XMM4: Register<"XMM4">, DwarfRegNum<25>;
81   def XMM5: Register<"XMM5">, DwarfRegNum<26>;
82   def XMM6: Register<"XMM6">, DwarfRegNum<27>;
83   def XMM7: Register<"XMM7">, DwarfRegNum<28>;
85   // Floating point stack registers
86   def ST0 : Register<"ST(0)">, DwarfRegNum<8>;
87   def ST1 : Register<"ST(1)">, DwarfRegNum<9>;
88   def ST2 : Register<"ST(2)">, DwarfRegNum<10>;
89   def ST3 : Register<"ST(3)">, DwarfRegNum<11>;
90   def ST4 : Register<"ST(4)">, DwarfRegNum<12>;
91   def ST5 : Register<"ST(5)">, DwarfRegNum<13>;
92   def ST6 : Register<"ST(6)">, DwarfRegNum<14>;
93   def ST7 : Register<"ST(7)">, DwarfRegNum<15>; 
96 //===----------------------------------------------------------------------===//
97 // Register Class Definitions... now that we have all of the pieces, define the
98 // top-level register classes.  The order specified in the register list is
99 // implicitly defined to be the register allocation order.
102 // List AL,CL,DL before AH,CH,DH, as X86 processors often suffer from false
103 // dependences between upper and lower parts of the register.  BL and BH are
104 // last because they are call clobbered. Both Athlon and P4 chips suffer this
105 // issue.
106 def R8  : RegisterClass<"X86", [i8],  8, [AL, CL, DL, AH, CH, DH, BL, BH]>;
108 def R16 : RegisterClass<"X86", [i16], 16, [AX, CX, DX, SI, DI, BX, BP, SP]> {
109   let MethodProtos = [{
110     iterator allocation_order_end(MachineFunction &MF) const;
111   }];
112   let MethodBodies = [{
113     R16Class::iterator
114     R16Class::allocation_order_end(MachineFunction &MF) const {
115       if (hasFP(MF))     // Does the function dedicate EBP to being a frame ptr?
116         return end()-2;  // If so, don't allocate SP or BP
117       else
118         return end()-1;  // If not, just don't allocate SP
119     }
120   }];
123 def R32 : RegisterClass<"X86", [i32], 32, 
124                         [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> {
125   let MethodProtos = [{
126     iterator allocation_order_end(MachineFunction &MF) const;
127   }];
128   let MethodBodies = [{
129     R32Class::iterator
130     R32Class::allocation_order_end(MachineFunction &MF) const {
131       if (hasFP(MF))     // Does the function dedicate EBP to being a frame ptr?
132         return end()-2;  // If so, don't allocate ESP or EBP
133       else
134         return end()-1;  // If not, just don't allocate ESP
135     }
136   }];
139 // Scalar SSE2 floating point registers.
140 def FR32 : RegisterClass<"X86", [f32], 32,
141                          [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>;
142 def FR64 : RegisterClass<"X86", [f64], 64,
143                          [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>;
145 // FIXME: This sets up the floating point register files as though they are f64
146 // values, though they really are f80 values.  This will cause us to spill
147 // values as 64-bit quantities instead of 80-bit quantities, which is much much
148 // faster on common hardware.  In reality, this should be controlled by a
149 // command line option or something.
151 def RFP : RegisterClass<"X86", [f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
153 // Floating point stack registers (these are not allocatable by the
154 // register allocator - the floating point stackifier is responsible
155 // for transforming FPn allocations to STn registers)
156 def RST : RegisterClass<"X86", [f64], 32,
157                         [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
158     let MethodProtos = [{
159     iterator allocation_order_end(MachineFunction &MF) const;
160   }];
161   let MethodBodies = [{
162     RSTClass::iterator
163     RSTClass::allocation_order_end(MachineFunction &MF) const {
164       return begin();
165     }
166   }];
169 // Generic vector registers: VR64 and VR128.
170 def VR64  : RegisterClass<"X86", [v8i8, v4i16, v2i32], 64,
171                           [MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>;
172 def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128,
173                          [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>;