[lit] Improve lit.Run class
[llvm-complete.git] / lib / IR / ConstantFold.cpp
blob71fa795ec294a8ca8d6526d266fd2dd43e3ff5dd
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts = DstTy->getNumElements();
54 if (NumElts != CV->getType()->getVectorNumElements())
55 return nullptr;
57 Type *DstEltTy = DstTy->getElementType();
59 SmallVector<Constant*, 16> Result;
60 Type *Ty = IntegerType::get(CV->getContext(), 32);
61 for (unsigned i = 0; i != NumElts; ++i) {
62 Constant *C =
63 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64 C = ConstantExpr::getBitCast(C, DstEltTy);
65 Result.push_back(C);
68 return ConstantVector::get(Result);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
76 foldConstantCastPair(
77 unsigned opc, ///< opcode of the second cast constant expression
78 ConstantExpr *Op, ///< the first cast constant expression
79 Type *DstTy ///< destination type of the first cast
80 ) {
81 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type *SrcTy = Op->getOperand(0)->getType();
87 Type *MidTy = Op->getType();
88 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89 Instruction::CastOps secondOp = Instruction::CastOps(opc);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98 nullptr, FakeIntPtrTy, nullptr);
101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102 Type *SrcTy = V->getType();
103 if (SrcTy == DestTy)
104 return V; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110 if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111 && PTy->getElementType()->isSized()) {
112 SmallVector<Value*, 8> IdxList;
113 Value *Zero =
114 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115 IdxList.push_back(Zero);
116 Type *ElTy = PTy->getElementType();
117 while (ElTy != DPTy->getElementType()) {
118 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119 if (STy->getNumElements() == 0) break;
120 ElTy = STy->getElementType(0);
121 IdxList.push_back(Zero);
122 } else if (SequentialType *STy =
123 dyn_cast<SequentialType>(ElTy)) {
124 ElTy = STy->getElementType();
125 IdxList.push_back(Zero);
126 } else {
127 break;
131 if (ElTy == DPTy->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134 V, IdxList);
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142 "Not cast between same sized vectors!");
143 SrcTy = nullptr;
144 // First, check for null. Undef is already handled.
145 if (isa<ConstantAggregateZero>(V))
146 return Constant::getNullValue(DestTy);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V, DestPTy);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
159 // Finally, implement bitcast folding now. The code below doesn't handle
160 // bitcast right.
161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast<PointerType>(DestTy));
164 // Handle integral constant input.
165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166 if (DestTy->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
169 return V;
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy->getContext(),
174 APFloat(DestTy->getFltSemantics(),
175 CI->getValue()));
177 // Otherwise, can't fold this (vector?)
178 return nullptr;
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP->getType()->isPPC_FP128Ty())
190 return nullptr;
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy->isIntegerTy())
194 return nullptr;
196 return ConstantInt::get(FP->getContext(),
197 FP->getValueAPF().bitcastToAPInt());
200 return nullptr;
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213 unsigned ByteSize) {
214 assert(C->getType()->isIntegerTy() &&
215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218 assert(ByteSize && "Must be accessing some piece");
219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220 assert(ByteSize != CSize && "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224 APInt V = CI->getValue();
225 if (ByteStart)
226 V.lshrInPlace(ByteStart*8);
227 V = V.trunc(ByteSize*8);
228 return ConstantInt::get(CI->getContext(), V);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234 if (!CE) return nullptr;
236 switch (CE->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or: {
239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240 if (!RHS)
241 return nullptr;
243 // X | -1 -> -1.
244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245 if (RHSC->isMinusOne())
246 return RHSC;
248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249 if (!LHS)
250 return nullptr;
251 return ConstantExpr::getOr(LHS, RHS);
253 case Instruction::And: {
254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255 if (!RHS)
256 return nullptr;
258 // X & 0 -> 0.
259 if (RHS->isNullValue())
260 return RHS;
262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263 if (!LHS)
264 return nullptr;
265 return ConstantExpr::getAnd(LHS, RHS);
267 case Instruction::LShr: {
268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269 if (!Amt)
270 return nullptr;
271 APInt ShAmt = Amt->getValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt & 7) != 0)
274 return nullptr;
275 ShAmt.lshrInPlace(3);
277 // If the extract is known to be all zeros, return zero.
278 if (ShAmt.uge(CSize - ByteStart))
279 return Constant::getNullValue(
280 IntegerType::get(CE->getContext(), ByteSize * 8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
283 return ExtractConstantBytes(CE->getOperand(0),
284 ByteStart + ShAmt.getZExtValue(), ByteSize);
286 // TODO: Handle the 'partially zero' case.
287 return nullptr;
290 case Instruction::Shl: {
291 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
292 if (!Amt)
293 return nullptr;
294 APInt ShAmt = Amt->getValue();
295 // Cannot analyze non-byte shifts.
296 if ((ShAmt & 7) != 0)
297 return nullptr;
298 ShAmt.lshrInPlace(3);
300 // If the extract is known to be all zeros, return zero.
301 if (ShAmt.uge(ByteStart + ByteSize))
302 return Constant::getNullValue(
303 IntegerType::get(CE->getContext(), ByteSize * 8));
304 // If the extract is known to be fully in the input, extract it.
305 if (ShAmt.ule(ByteStart))
306 return ExtractConstantBytes(CE->getOperand(0),
307 ByteStart - ShAmt.getZExtValue(), ByteSize);
309 // TODO: Handle the 'partially zero' case.
310 return nullptr;
313 case Instruction::ZExt: {
314 unsigned SrcBitSize =
315 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
317 // If extracting something that is completely zero, return 0.
318 if (ByteStart*8 >= SrcBitSize)
319 return Constant::getNullValue(IntegerType::get(CE->getContext(),
320 ByteSize*8));
322 // If exactly extracting the input, return it.
323 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
324 return CE->getOperand(0);
326 // If extracting something completely in the input, if the input is a
327 // multiple of 8 bits, recurse.
328 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
329 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
331 // Otherwise, if extracting a subset of the input, which is not multiple of
332 // 8 bits, do a shift and trunc to get the bits.
333 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
334 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
335 Constant *Res = CE->getOperand(0);
336 if (ByteStart)
337 Res = ConstantExpr::getLShr(Res,
338 ConstantInt::get(Res->getType(), ByteStart*8));
339 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
340 ByteSize*8));
343 // TODO: Handle the 'partially zero' case.
344 return nullptr;
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
354 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
355 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
356 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
357 return ConstantExpr::getNUWMul(E, N);
360 if (StructType *STy = dyn_cast<StructType>(Ty))
361 if (!STy->isPacked()) {
362 unsigned NumElems = STy->getNumElements();
363 // An empty struct has size zero.
364 if (NumElems == 0)
365 return ConstantExpr::getNullValue(DestTy);
366 // Check for a struct with all members having the same size.
367 Constant *MemberSize =
368 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
369 bool AllSame = true;
370 for (unsigned i = 1; i != NumElems; ++i)
371 if (MemberSize !=
372 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
373 AllSame = false;
374 break;
376 if (AllSame) {
377 Constant *N = ConstantInt::get(DestTy, NumElems);
378 return ConstantExpr::getNUWMul(MemberSize, N);
382 // Pointer size doesn't depend on the pointee type, so canonicalize them
383 // to an arbitrary pointee.
384 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
385 if (!PTy->getElementType()->isIntegerTy(1))
386 return
387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
388 PTy->getAddressSpace()),
389 DestTy, true);
391 // If there's no interesting folding happening, bail so that we don't create
392 // a constant that looks like it needs folding but really doesn't.
393 if (!Folded)
394 return nullptr;
396 // Base case: Get a regular sizeof expression.
397 Constant *C = ConstantExpr::getSizeOf(Ty);
398 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399 DestTy, false),
400 C, DestTy);
401 return C;
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414 DestTy,
415 false),
416 C, DestTy);
417 return C;
420 if (StructType *STy = dyn_cast<StructType>(Ty)) {
421 // Packed structs always have an alignment of 1.
422 if (STy->isPacked())
423 return ConstantInt::get(DestTy, 1);
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems = STy->getNumElements();
429 // An empty struct has minimal alignment.
430 if (NumElems == 0)
431 return ConstantInt::get(DestTy, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant *MemberAlign =
434 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435 bool AllSame = true;
436 for (unsigned i = 1; i != NumElems; ++i)
437 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438 AllSame = false;
439 break;
441 if (AllSame)
442 return MemberAlign;
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448 if (!PTy->getElementType()->isIntegerTy(1))
449 return
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
452 PTy->getAddressSpace()),
453 DestTy, true);
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
457 if (!Folded)
458 return nullptr;
460 // Base case: Get a regular alignof expression.
461 Constant *C = ConstantExpr::getAlignOf(Ty);
462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463 DestTy, false),
464 C, DestTy);
465 return C;
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
473 bool Folded) {
474 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
475 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
476 DestTy, false),
477 FieldNo, DestTy);
478 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
479 return ConstantExpr::getNUWMul(E, N);
482 if (StructType *STy = dyn_cast<StructType>(Ty))
483 if (!STy->isPacked()) {
484 unsigned NumElems = STy->getNumElements();
485 // An empty struct has no members.
486 if (NumElems == 0)
487 return nullptr;
488 // Check for a struct with all members having the same size.
489 Constant *MemberSize =
490 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
491 bool AllSame = true;
492 for (unsigned i = 1; i != NumElems; ++i)
493 if (MemberSize !=
494 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
495 AllSame = false;
496 break;
498 if (AllSame) {
499 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
500 false,
501 DestTy,
502 false),
503 FieldNo, DestTy);
504 return ConstantExpr::getNUWMul(MemberSize, N);
508 // If there's no interesting folding happening, bail so that we don't create
509 // a constant that looks like it needs folding but really doesn't.
510 if (!Folded)
511 return nullptr;
513 // Base case: Get a regular offsetof expression.
514 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
515 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
516 DestTy, false),
517 C, DestTy);
518 return C;
521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
522 Type *DestTy) {
523 if (isa<UndefValue>(V)) {
524 // zext(undef) = 0, because the top bits will be zero.
525 // sext(undef) = 0, because the top bits will all be the same.
526 // [us]itofp(undef) = 0, because the result value is bounded.
527 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
528 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
529 return Constant::getNullValue(DestTy);
530 return UndefValue::get(DestTy);
533 if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
534 opc != Instruction::AddrSpaceCast)
535 return Constant::getNullValue(DestTy);
537 // If the cast operand is a constant expression, there's a few things we can
538 // do to try to simplify it.
539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540 if (CE->isCast()) {
541 // Try hard to fold cast of cast because they are often eliminable.
542 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
543 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
544 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
545 // Do not fold addrspacecast (gep 0, .., 0). It might make the
546 // addrspacecast uncanonicalized.
547 opc != Instruction::AddrSpaceCast &&
548 // Do not fold bitcast (gep) with inrange index, as this loses
549 // information.
550 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
551 // Do not fold if the gep type is a vector, as bitcasting
552 // operand 0 of a vector gep will result in a bitcast between
553 // different sizes.
554 !CE->getType()->isVectorTy()) {
555 // If all of the indexes in the GEP are null values, there is no pointer
556 // adjustment going on. We might as well cast the source pointer.
557 bool isAllNull = true;
558 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
559 if (!CE->getOperand(i)->isNullValue()) {
560 isAllNull = false;
561 break;
563 if (isAllNull)
564 // This is casting one pointer type to another, always BitCast
565 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
569 // If the cast operand is a constant vector, perform the cast by
570 // operating on each element. In the cast of bitcasts, the element
571 // count may be mismatched; don't attempt to handle that here.
572 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
573 DestTy->isVectorTy() &&
574 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
575 SmallVector<Constant*, 16> res;
576 VectorType *DestVecTy = cast<VectorType>(DestTy);
577 Type *DstEltTy = DestVecTy->getElementType();
578 Type *Ty = IntegerType::get(V->getContext(), 32);
579 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
580 Constant *C =
581 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
582 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
584 return ConstantVector::get(res);
587 // We actually have to do a cast now. Perform the cast according to the
588 // opcode specified.
589 switch (opc) {
590 default:
591 llvm_unreachable("Failed to cast constant expression");
592 case Instruction::FPTrunc:
593 case Instruction::FPExt:
594 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
595 bool ignored;
596 APFloat Val = FPC->getValueAPF();
597 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
598 DestTy->isFloatTy() ? APFloat::IEEEsingle() :
599 DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
600 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601 DestTy->isFP128Ty() ? APFloat::IEEEquad() :
602 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
603 APFloat::Bogus(),
604 APFloat::rmNearestTiesToEven, &ignored);
605 return ConstantFP::get(V->getContext(), Val);
607 return nullptr; // Can't fold.
608 case Instruction::FPToUI:
609 case Instruction::FPToSI:
610 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
611 const APFloat &V = FPC->getValueAPF();
612 bool ignored;
613 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
614 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
615 if (APFloat::opInvalidOp ==
616 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
617 // Undefined behavior invoked - the destination type can't represent
618 // the input constant.
619 return UndefValue::get(DestTy);
621 return ConstantInt::get(FPC->getContext(), IntVal);
623 return nullptr; // Can't fold.
624 case Instruction::IntToPtr: //always treated as unsigned
625 if (V->isNullValue()) // Is it an integral null value?
626 return ConstantPointerNull::get(cast<PointerType>(DestTy));
627 return nullptr; // Other pointer types cannot be casted
628 case Instruction::PtrToInt: // always treated as unsigned
629 // Is it a null pointer value?
630 if (V->isNullValue())
631 return ConstantInt::get(DestTy, 0);
632 // If this is a sizeof-like expression, pull out multiplications by
633 // known factors to expose them to subsequent folding. If it's an
634 // alignof-like expression, factor out known factors.
635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
636 if (CE->getOpcode() == Instruction::GetElementPtr &&
637 CE->getOperand(0)->isNullValue()) {
638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642 // happen in one "real" C-code test case, so it does not seem to be an
643 // important optimization to handle vectors here. For now, simply bail
644 // out.
645 if (DestTy->isVectorTy())
646 return nullptr;
647 GEPOperator *GEPO = cast<GEPOperator>(CE);
648 Type *Ty = GEPO->getSourceElementType();
649 if (CE->getNumOperands() == 2) {
650 // Handle a sizeof-like expression.
651 Constant *Idx = CE->getOperand(1);
652 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
653 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
654 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
655 DestTy, false),
656 Idx, DestTy);
657 return ConstantExpr::getMul(C, Idx);
659 } else if (CE->getNumOperands() == 3 &&
660 CE->getOperand(1)->isNullValue()) {
661 // Handle an alignof-like expression.
662 if (StructType *STy = dyn_cast<StructType>(Ty))
663 if (!STy->isPacked()) {
664 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
665 if (CI->isOne() &&
666 STy->getNumElements() == 2 &&
667 STy->getElementType(0)->isIntegerTy(1)) {
668 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
671 // Handle an offsetof-like expression.
672 if (Ty->isStructTy() || Ty->isArrayTy()) {
673 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
674 DestTy, false))
675 return C;
679 // Other pointer types cannot be casted
680 return nullptr;
681 case Instruction::UIToFP:
682 case Instruction::SIToFP:
683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
684 const APInt &api = CI->getValue();
685 APFloat apf(DestTy->getFltSemantics(),
686 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
687 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
688 APFloat::rmNearestTiesToEven);
689 return ConstantFP::get(V->getContext(), apf);
691 return nullptr;
692 case Instruction::ZExt:
693 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695 return ConstantInt::get(V->getContext(),
696 CI->getValue().zext(BitWidth));
698 return nullptr;
699 case Instruction::SExt:
700 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
701 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
702 return ConstantInt::get(V->getContext(),
703 CI->getValue().sext(BitWidth));
705 return nullptr;
706 case Instruction::Trunc: {
707 if (V->getType()->isVectorTy())
708 return nullptr;
710 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712 return ConstantInt::get(V->getContext(),
713 CI->getValue().trunc(DestBitWidth));
716 // The input must be a constantexpr. See if we can simplify this based on
717 // the bytes we are demanding. Only do this if the source and dest are an
718 // even multiple of a byte.
719 if ((DestBitWidth & 7) == 0 &&
720 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
721 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
722 return Res;
724 return nullptr;
726 case Instruction::BitCast:
727 return FoldBitCast(V, DestTy);
728 case Instruction::AddrSpaceCast:
729 return nullptr;
733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
734 Constant *V1, Constant *V2) {
735 // Check for i1 and vector true/false conditions.
736 if (Cond->isNullValue()) return V2;
737 if (Cond->isAllOnesValue()) return V1;
739 // If the condition is a vector constant, fold the result elementwise.
740 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
741 SmallVector<Constant*, 16> Result;
742 Type *Ty = IntegerType::get(CondV->getContext(), 32);
743 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
744 Constant *V;
745 Constant *V1Element = ConstantExpr::getExtractElement(V1,
746 ConstantInt::get(Ty, i));
747 Constant *V2Element = ConstantExpr::getExtractElement(V2,
748 ConstantInt::get(Ty, i));
749 auto *Cond = cast<Constant>(CondV->getOperand(i));
750 if (V1Element == V2Element) {
751 V = V1Element;
752 } else if (isa<UndefValue>(Cond)) {
753 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
754 } else {
755 if (!isa<ConstantInt>(Cond)) break;
756 V = Cond->isNullValue() ? V2Element : V1Element;
758 Result.push_back(V);
761 // If we were able to build the vector, return it.
762 if (Result.size() == V1->getType()->getVectorNumElements())
763 return ConstantVector::get(Result);
766 if (isa<UndefValue>(Cond)) {
767 if (isa<UndefValue>(V1)) return V1;
768 return V2;
770 if (isa<UndefValue>(V1)) return V2;
771 if (isa<UndefValue>(V2)) return V1;
772 if (V1 == V2) return V1;
774 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
775 if (TrueVal->getOpcode() == Instruction::Select)
776 if (TrueVal->getOperand(0) == Cond)
777 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
779 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
780 if (FalseVal->getOpcode() == Instruction::Select)
781 if (FalseVal->getOperand(0) == Cond)
782 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
785 return nullptr;
788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
789 Constant *Idx) {
790 // extractelt undef, C -> undef
791 // extractelt C, undef -> undef
792 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
793 return UndefValue::get(Val->getType()->getVectorElementType());
795 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
796 // ee({w,x,y,z}, wrong_value) -> undef
797 if (CIdx->uge(Val->getType()->getVectorNumElements()))
798 return UndefValue::get(Val->getType()->getVectorElementType());
799 return Val->getAggregateElement(CIdx->getZExtValue());
801 return nullptr;
804 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
805 Constant *Elt,
806 Constant *Idx) {
807 if (isa<UndefValue>(Idx))
808 return UndefValue::get(Val->getType());
810 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
811 if (!CIdx) return nullptr;
813 unsigned NumElts = Val->getType()->getVectorNumElements();
814 if (CIdx->uge(NumElts))
815 return UndefValue::get(Val->getType());
817 SmallVector<Constant*, 16> Result;
818 Result.reserve(NumElts);
819 auto *Ty = Type::getInt32Ty(Val->getContext());
820 uint64_t IdxVal = CIdx->getZExtValue();
821 for (unsigned i = 0; i != NumElts; ++i) {
822 if (i == IdxVal) {
823 Result.push_back(Elt);
824 continue;
827 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
828 Result.push_back(C);
831 return ConstantVector::get(Result);
834 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
835 Constant *V2,
836 Constant *Mask) {
837 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
838 Type *EltTy = V1->getType()->getVectorElementType();
840 // Undefined shuffle mask -> undefined value.
841 if (isa<UndefValue>(Mask))
842 return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
844 // Don't break the bitcode reader hack.
845 if (isa<ConstantExpr>(Mask)) return nullptr;
847 unsigned SrcNumElts = V1->getType()->getVectorNumElements();
849 // Loop over the shuffle mask, evaluating each element.
850 SmallVector<Constant*, 32> Result;
851 for (unsigned i = 0; i != MaskNumElts; ++i) {
852 int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
853 if (Elt == -1) {
854 Result.push_back(UndefValue::get(EltTy));
855 continue;
857 Constant *InElt;
858 if (unsigned(Elt) >= SrcNumElts*2)
859 InElt = UndefValue::get(EltTy);
860 else if (unsigned(Elt) >= SrcNumElts) {
861 Type *Ty = IntegerType::get(V2->getContext(), 32);
862 InElt =
863 ConstantExpr::getExtractElement(V2,
864 ConstantInt::get(Ty, Elt - SrcNumElts));
865 } else {
866 Type *Ty = IntegerType::get(V1->getContext(), 32);
867 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
869 Result.push_back(InElt);
872 return ConstantVector::get(Result);
875 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
876 ArrayRef<unsigned> Idxs) {
877 // Base case: no indices, so return the entire value.
878 if (Idxs.empty())
879 return Agg;
881 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
882 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
884 return nullptr;
887 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
888 Constant *Val,
889 ArrayRef<unsigned> Idxs) {
890 // Base case: no indices, so replace the entire value.
891 if (Idxs.empty())
892 return Val;
894 unsigned NumElts;
895 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
896 NumElts = ST->getNumElements();
897 else
898 NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
900 SmallVector<Constant*, 32> Result;
901 for (unsigned i = 0; i != NumElts; ++i) {
902 Constant *C = Agg->getAggregateElement(i);
903 if (!C) return nullptr;
905 if (Idxs[0] == i)
906 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
908 Result.push_back(C);
911 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
912 return ConstantStruct::get(ST, Result);
913 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
914 return ConstantArray::get(AT, Result);
915 return ConstantVector::get(Result);
918 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
919 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
921 // Handle scalar UndefValue. Vectors are always evaluated per element.
922 bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
924 if (HasScalarUndef) {
925 switch (static_cast<Instruction::UnaryOps>(Opcode)) {
926 case Instruction::FNeg:
927 return C; // -undef -> undef
928 case Instruction::UnaryOpsEnd:
929 llvm_unreachable("Invalid UnaryOp");
933 // Constant should not be UndefValue, unless these are vector constants.
934 assert(!HasScalarUndef && "Unexpected UndefValue");
935 // We only have FP UnaryOps right now.
936 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
938 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
939 const APFloat &CV = CFP->getValueAPF();
940 switch (Opcode) {
941 default:
942 break;
943 case Instruction::FNeg:
944 return ConstantFP::get(C->getContext(), neg(CV));
946 } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
947 // Fold each element and create a vector constant from those constants.
948 SmallVector<Constant*, 16> Result;
949 Type *Ty = IntegerType::get(VTy->getContext(), 32);
950 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
951 Constant *ExtractIdx = ConstantInt::get(Ty, i);
952 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
954 Result.push_back(ConstantExpr::get(Opcode, Elt));
957 return ConstantVector::get(Result);
960 // We don't know how to fold this.
961 return nullptr;
964 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
965 Constant *C2) {
966 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
968 // Handle scalar UndefValue. Vectors are always evaluated per element.
969 bool HasScalarUndef = !C1->getType()->isVectorTy() &&
970 (isa<UndefValue>(C1) || isa<UndefValue>(C2));
971 if (HasScalarUndef) {
972 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
973 case Instruction::Xor:
974 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
975 // Handle undef ^ undef -> 0 special case. This is a common
976 // idiom (misuse).
977 return Constant::getNullValue(C1->getType());
978 LLVM_FALLTHROUGH;
979 case Instruction::Add:
980 case Instruction::Sub:
981 return UndefValue::get(C1->getType());
982 case Instruction::And:
983 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
984 return C1;
985 return Constant::getNullValue(C1->getType()); // undef & X -> 0
986 case Instruction::Mul: {
987 // undef * undef -> undef
988 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
989 return C1;
990 const APInt *CV;
991 // X * undef -> undef if X is odd
992 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
993 if ((*CV)[0])
994 return UndefValue::get(C1->getType());
996 // X * undef -> 0 otherwise
997 return Constant::getNullValue(C1->getType());
999 case Instruction::SDiv:
1000 case Instruction::UDiv:
1001 // X / undef -> undef
1002 if (isa<UndefValue>(C2))
1003 return C2;
1004 // undef / 0 -> undef
1005 // undef / 1 -> undef
1006 if (match(C2, m_Zero()) || match(C2, m_One()))
1007 return C1;
1008 // undef / X -> 0 otherwise
1009 return Constant::getNullValue(C1->getType());
1010 case Instruction::URem:
1011 case Instruction::SRem:
1012 // X % undef -> undef
1013 if (match(C2, m_Undef()))
1014 return C2;
1015 // undef % 0 -> undef
1016 if (match(C2, m_Zero()))
1017 return C1;
1018 // undef % X -> 0 otherwise
1019 return Constant::getNullValue(C1->getType());
1020 case Instruction::Or: // X | undef -> -1
1021 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1022 return C1;
1023 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1024 case Instruction::LShr:
1025 // X >>l undef -> undef
1026 if (isa<UndefValue>(C2))
1027 return C2;
1028 // undef >>l 0 -> undef
1029 if (match(C2, m_Zero()))
1030 return C1;
1031 // undef >>l X -> 0
1032 return Constant::getNullValue(C1->getType());
1033 case Instruction::AShr:
1034 // X >>a undef -> undef
1035 if (isa<UndefValue>(C2))
1036 return C2;
1037 // undef >>a 0 -> undef
1038 if (match(C2, m_Zero()))
1039 return C1;
1040 // TODO: undef >>a X -> undef if the shift is exact
1041 // undef >>a X -> 0
1042 return Constant::getNullValue(C1->getType());
1043 case Instruction::Shl:
1044 // X << undef -> undef
1045 if (isa<UndefValue>(C2))
1046 return C2;
1047 // undef << 0 -> undef
1048 if (match(C2, m_Zero()))
1049 return C1;
1050 // undef << X -> 0
1051 return Constant::getNullValue(C1->getType());
1052 case Instruction::FAdd:
1053 case Instruction::FSub:
1054 case Instruction::FMul:
1055 case Instruction::FDiv:
1056 case Instruction::FRem:
1057 // [any flop] undef, undef -> undef
1058 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1059 return C1;
1060 // [any flop] C, undef -> NaN
1061 // [any flop] undef, C -> NaN
1062 // We could potentially specialize NaN/Inf constants vs. 'normal'
1063 // constants (possibly differently depending on opcode and operand). This
1064 // would allow returning undef sometimes. But it is always safe to fold to
1065 // NaN because we can choose the undef operand as NaN, and any FP opcode
1066 // with a NaN operand will propagate NaN.
1067 return ConstantFP::getNaN(C1->getType());
1068 case Instruction::BinaryOpsEnd:
1069 llvm_unreachable("Invalid BinaryOp");
1073 // Neither constant should be UndefValue, unless these are vector constants.
1074 assert(!HasScalarUndef && "Unexpected UndefValue");
1076 // Handle simplifications when the RHS is a constant int.
1077 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1078 switch (Opcode) {
1079 case Instruction::Add:
1080 if (CI2->isZero()) return C1; // X + 0 == X
1081 break;
1082 case Instruction::Sub:
1083 if (CI2->isZero()) return C1; // X - 0 == X
1084 break;
1085 case Instruction::Mul:
1086 if (CI2->isZero()) return C2; // X * 0 == 0
1087 if (CI2->isOne())
1088 return C1; // X * 1 == X
1089 break;
1090 case Instruction::UDiv:
1091 case Instruction::SDiv:
1092 if (CI2->isOne())
1093 return C1; // X / 1 == X
1094 if (CI2->isZero())
1095 return UndefValue::get(CI2->getType()); // X / 0 == undef
1096 break;
1097 case Instruction::URem:
1098 case Instruction::SRem:
1099 if (CI2->isOne())
1100 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1101 if (CI2->isZero())
1102 return UndefValue::get(CI2->getType()); // X % 0 == undef
1103 break;
1104 case Instruction::And:
1105 if (CI2->isZero()) return C2; // X & 0 == 0
1106 if (CI2->isMinusOne())
1107 return C1; // X & -1 == X
1109 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1110 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1111 if (CE1->getOpcode() == Instruction::ZExt) {
1112 unsigned DstWidth = CI2->getType()->getBitWidth();
1113 unsigned SrcWidth =
1114 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1115 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1116 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1117 return C1;
1120 // If and'ing the address of a global with a constant, fold it.
1121 if (CE1->getOpcode() == Instruction::PtrToInt &&
1122 isa<GlobalValue>(CE1->getOperand(0))) {
1123 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1125 MaybeAlign GVAlign;
1127 if (Module *TheModule = GV->getParent()) {
1128 GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1130 // If the function alignment is not specified then assume that it
1131 // is 4.
1132 // This is dangerous; on x86, the alignment of the pointer
1133 // corresponds to the alignment of the function, but might be less
1134 // than 4 if it isn't explicitly specified.
1135 // However, a fix for this behaviour was reverted because it
1136 // increased code size (see https://reviews.llvm.org/D55115)
1137 // FIXME: This code should be deleted once existing targets have
1138 // appropriate defaults
1139 if (!GVAlign && isa<Function>(GV))
1140 GVAlign = Align(4);
1141 } else if (isa<Function>(GV)) {
1142 // Without a datalayout we have to assume the worst case: that the
1143 // function pointer isn't aligned at all.
1144 GVAlign = llvm::None;
1145 } else {
1146 GVAlign = MaybeAlign(GV->getAlignment());
1149 if (GVAlign && *GVAlign > 1) {
1150 unsigned DstWidth = CI2->getType()->getBitWidth();
1151 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1152 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1154 // If checking bits we know are clear, return zero.
1155 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1156 return Constant::getNullValue(CI2->getType());
1160 break;
1161 case Instruction::Or:
1162 if (CI2->isZero()) return C1; // X | 0 == X
1163 if (CI2->isMinusOne())
1164 return C2; // X | -1 == -1
1165 break;
1166 case Instruction::Xor:
1167 if (CI2->isZero()) return C1; // X ^ 0 == X
1169 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1170 switch (CE1->getOpcode()) {
1171 default: break;
1172 case Instruction::ICmp:
1173 case Instruction::FCmp:
1174 // cmp pred ^ true -> cmp !pred
1175 assert(CI2->isOne());
1176 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1177 pred = CmpInst::getInversePredicate(pred);
1178 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1179 CE1->getOperand(1));
1182 break;
1183 case Instruction::AShr:
1184 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1185 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1186 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1187 return ConstantExpr::getLShr(C1, C2);
1188 break;
1190 } else if (isa<ConstantInt>(C1)) {
1191 // If C1 is a ConstantInt and C2 is not, swap the operands.
1192 if (Instruction::isCommutative(Opcode))
1193 return ConstantExpr::get(Opcode, C2, C1);
1196 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1197 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1198 const APInt &C1V = CI1->getValue();
1199 const APInt &C2V = CI2->getValue();
1200 switch (Opcode) {
1201 default:
1202 break;
1203 case Instruction::Add:
1204 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1205 case Instruction::Sub:
1206 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1207 case Instruction::Mul:
1208 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1209 case Instruction::UDiv:
1210 assert(!CI2->isZero() && "Div by zero handled above");
1211 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1212 case Instruction::SDiv:
1213 assert(!CI2->isZero() && "Div by zero handled above");
1214 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1215 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1216 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1217 case Instruction::URem:
1218 assert(!CI2->isZero() && "Div by zero handled above");
1219 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1220 case Instruction::SRem:
1221 assert(!CI2->isZero() && "Div by zero handled above");
1222 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1223 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1224 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1225 case Instruction::And:
1226 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1227 case Instruction::Or:
1228 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1229 case Instruction::Xor:
1230 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1231 case Instruction::Shl:
1232 if (C2V.ult(C1V.getBitWidth()))
1233 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1234 return UndefValue::get(C1->getType()); // too big shift is undef
1235 case Instruction::LShr:
1236 if (C2V.ult(C1V.getBitWidth()))
1237 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1238 return UndefValue::get(C1->getType()); // too big shift is undef
1239 case Instruction::AShr:
1240 if (C2V.ult(C1V.getBitWidth()))
1241 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1242 return UndefValue::get(C1->getType()); // too big shift is undef
1246 switch (Opcode) {
1247 case Instruction::SDiv:
1248 case Instruction::UDiv:
1249 case Instruction::URem:
1250 case Instruction::SRem:
1251 case Instruction::LShr:
1252 case Instruction::AShr:
1253 case Instruction::Shl:
1254 if (CI1->isZero()) return C1;
1255 break;
1256 default:
1257 break;
1259 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1260 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1261 const APFloat &C1V = CFP1->getValueAPF();
1262 const APFloat &C2V = CFP2->getValueAPF();
1263 APFloat C3V = C1V; // copy for modification
1264 switch (Opcode) {
1265 default:
1266 break;
1267 case Instruction::FAdd:
1268 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1269 return ConstantFP::get(C1->getContext(), C3V);
1270 case Instruction::FSub:
1271 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1272 return ConstantFP::get(C1->getContext(), C3V);
1273 case Instruction::FMul:
1274 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1275 return ConstantFP::get(C1->getContext(), C3V);
1276 case Instruction::FDiv:
1277 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1278 return ConstantFP::get(C1->getContext(), C3V);
1279 case Instruction::FRem:
1280 (void)C3V.mod(C2V);
1281 return ConstantFP::get(C1->getContext(), C3V);
1284 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1285 // Fold each element and create a vector constant from those constants.
1286 SmallVector<Constant*, 16> Result;
1287 Type *Ty = IntegerType::get(VTy->getContext(), 32);
1288 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1289 Constant *ExtractIdx = ConstantInt::get(Ty, i);
1290 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1291 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1293 // If any element of a divisor vector is zero, the whole op is undef.
1294 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1295 return UndefValue::get(VTy);
1297 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1300 return ConstantVector::get(Result);
1303 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1304 // There are many possible foldings we could do here. We should probably
1305 // at least fold add of a pointer with an integer into the appropriate
1306 // getelementptr. This will improve alias analysis a bit.
1308 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1309 // (a + (b + c)).
1310 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1311 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1312 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1313 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1315 } else if (isa<ConstantExpr>(C2)) {
1316 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1317 // other way if possible.
1318 if (Instruction::isCommutative(Opcode))
1319 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1322 // i1 can be simplified in many cases.
1323 if (C1->getType()->isIntegerTy(1)) {
1324 switch (Opcode) {
1325 case Instruction::Add:
1326 case Instruction::Sub:
1327 return ConstantExpr::getXor(C1, C2);
1328 case Instruction::Mul:
1329 return ConstantExpr::getAnd(C1, C2);
1330 case Instruction::Shl:
1331 case Instruction::LShr:
1332 case Instruction::AShr:
1333 // We can assume that C2 == 0. If it were one the result would be
1334 // undefined because the shift value is as large as the bitwidth.
1335 return C1;
1336 case Instruction::SDiv:
1337 case Instruction::UDiv:
1338 // We can assume that C2 == 1. If it were zero the result would be
1339 // undefined through division by zero.
1340 return C1;
1341 case Instruction::URem:
1342 case Instruction::SRem:
1343 // We can assume that C2 == 1. If it were zero the result would be
1344 // undefined through division by zero.
1345 return ConstantInt::getFalse(C1->getContext());
1346 default:
1347 break;
1351 // We don't know how to fold this.
1352 return nullptr;
1355 /// This type is zero-sized if it's an array or structure of zero-sized types.
1356 /// The only leaf zero-sized type is an empty structure.
1357 static bool isMaybeZeroSizedType(Type *Ty) {
1358 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1359 if (STy->isOpaque()) return true; // Can't say.
1361 // If all of elements have zero size, this does too.
1362 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1363 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1364 return true;
1366 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1367 return isMaybeZeroSizedType(ATy->getElementType());
1369 return false;
1372 /// Compare the two constants as though they were getelementptr indices.
1373 /// This allows coercion of the types to be the same thing.
1375 /// If the two constants are the "same" (after coercion), return 0. If the
1376 /// first is less than the second, return -1, if the second is less than the
1377 /// first, return 1. If the constants are not integral, return -2.
1379 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1380 if (C1 == C2) return 0;
1382 // Ok, we found a different index. If they are not ConstantInt, we can't do
1383 // anything with them.
1384 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1385 return -2; // don't know!
1387 // We cannot compare the indices if they don't fit in an int64_t.
1388 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1389 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1390 return -2; // don't know!
1392 // Ok, we have two differing integer indices. Sign extend them to be the same
1393 // type.
1394 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1395 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1397 if (C1Val == C2Val) return 0; // They are equal
1399 // If the type being indexed over is really just a zero sized type, there is
1400 // no pointer difference being made here.
1401 if (isMaybeZeroSizedType(ElTy))
1402 return -2; // dunno.
1404 // If they are really different, now that they are the same type, then we
1405 // found a difference!
1406 if (C1Val < C2Val)
1407 return -1;
1408 else
1409 return 1;
1412 /// This function determines if there is anything we can decide about the two
1413 /// constants provided. This doesn't need to handle simple things like
1414 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1415 /// If we can determine that the two constants have a particular relation to
1416 /// each other, we should return the corresponding FCmpInst predicate,
1417 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1418 /// ConstantFoldCompareInstruction.
1420 /// To simplify this code we canonicalize the relation so that the first
1421 /// operand is always the most "complex" of the two. We consider ConstantFP
1422 /// to be the simplest, and ConstantExprs to be the most complex.
1423 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1424 assert(V1->getType() == V2->getType() &&
1425 "Cannot compare values of different types!");
1427 // We do not know if a constant expression will evaluate to a number or NaN.
1428 // Therefore, we can only say that the relation is unordered or equal.
1429 if (V1 == V2) return FCmpInst::FCMP_UEQ;
1431 if (!isa<ConstantExpr>(V1)) {
1432 if (!isa<ConstantExpr>(V2)) {
1433 // Simple case, use the standard constant folder.
1434 ConstantInt *R = nullptr;
1435 R = dyn_cast<ConstantInt>(
1436 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1437 if (R && !R->isZero())
1438 return FCmpInst::FCMP_OEQ;
1439 R = dyn_cast<ConstantInt>(
1440 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1441 if (R && !R->isZero())
1442 return FCmpInst::FCMP_OLT;
1443 R = dyn_cast<ConstantInt>(
1444 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1445 if (R && !R->isZero())
1446 return FCmpInst::FCMP_OGT;
1448 // Nothing more we can do
1449 return FCmpInst::BAD_FCMP_PREDICATE;
1452 // If the first operand is simple and second is ConstantExpr, swap operands.
1453 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1454 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1455 return FCmpInst::getSwappedPredicate(SwappedRelation);
1456 } else {
1457 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1458 // constantexpr or a simple constant.
1459 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1460 switch (CE1->getOpcode()) {
1461 case Instruction::FPTrunc:
1462 case Instruction::FPExt:
1463 case Instruction::UIToFP:
1464 case Instruction::SIToFP:
1465 // We might be able to do something with these but we don't right now.
1466 break;
1467 default:
1468 break;
1471 // There are MANY other foldings that we could perform here. They will
1472 // probably be added on demand, as they seem needed.
1473 return FCmpInst::BAD_FCMP_PREDICATE;
1476 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1477 const GlobalValue *GV2) {
1478 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1479 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1480 return true;
1481 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1482 Type *Ty = GVar->getValueType();
1483 // A global with opaque type might end up being zero sized.
1484 if (!Ty->isSized())
1485 return true;
1486 // A global with an empty type might lie at the address of any other
1487 // global.
1488 if (Ty->isEmptyTy())
1489 return true;
1491 return false;
1493 // Don't try to decide equality of aliases.
1494 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1495 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1496 return ICmpInst::ICMP_NE;
1497 return ICmpInst::BAD_ICMP_PREDICATE;
1500 /// This function determines if there is anything we can decide about the two
1501 /// constants provided. This doesn't need to handle simple things like integer
1502 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1503 /// If we can determine that the two constants have a particular relation to
1504 /// each other, we should return the corresponding ICmp predicate, otherwise
1505 /// return ICmpInst::BAD_ICMP_PREDICATE.
1507 /// To simplify this code we canonicalize the relation so that the first
1508 /// operand is always the most "complex" of the two. We consider simple
1509 /// constants (like ConstantInt) to be the simplest, followed by
1510 /// GlobalValues, followed by ConstantExpr's (the most complex).
1512 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1513 bool isSigned) {
1514 assert(V1->getType() == V2->getType() &&
1515 "Cannot compare different types of values!");
1516 if (V1 == V2) return ICmpInst::ICMP_EQ;
1518 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1519 !isa<BlockAddress>(V1)) {
1520 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1521 !isa<BlockAddress>(V2)) {
1522 // We distilled this down to a simple case, use the standard constant
1523 // folder.
1524 ConstantInt *R = nullptr;
1525 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1526 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1527 if (R && !R->isZero())
1528 return pred;
1529 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1530 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1531 if (R && !R->isZero())
1532 return pred;
1533 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1534 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1535 if (R && !R->isZero())
1536 return pred;
1538 // If we couldn't figure it out, bail.
1539 return ICmpInst::BAD_ICMP_PREDICATE;
1542 // If the first operand is simple, swap operands.
1543 ICmpInst::Predicate SwappedRelation =
1544 evaluateICmpRelation(V2, V1, isSigned);
1545 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1546 return ICmpInst::getSwappedPredicate(SwappedRelation);
1548 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1549 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1550 ICmpInst::Predicate SwappedRelation =
1551 evaluateICmpRelation(V2, V1, isSigned);
1552 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1553 return ICmpInst::getSwappedPredicate(SwappedRelation);
1554 return ICmpInst::BAD_ICMP_PREDICATE;
1557 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1558 // constant (which, since the types must match, means that it's a
1559 // ConstantPointerNull).
1560 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1561 return areGlobalsPotentiallyEqual(GV, GV2);
1562 } else if (isa<BlockAddress>(V2)) {
1563 return ICmpInst::ICMP_NE; // Globals never equal labels.
1564 } else {
1565 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1566 // GlobalVals can never be null unless they have external weak linkage.
1567 // We don't try to evaluate aliases here.
1568 // NOTE: We should not be doing this constant folding if null pointer
1569 // is considered valid for the function. But currently there is no way to
1570 // query it from the Constant type.
1571 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1572 !NullPointerIsDefined(nullptr /* F */,
1573 GV->getType()->getAddressSpace()))
1574 return ICmpInst::ICMP_NE;
1576 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1577 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1578 ICmpInst::Predicate SwappedRelation =
1579 evaluateICmpRelation(V2, V1, isSigned);
1580 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1581 return ICmpInst::getSwappedPredicate(SwappedRelation);
1582 return ICmpInst::BAD_ICMP_PREDICATE;
1585 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1586 // constant (which, since the types must match, means that it is a
1587 // ConstantPointerNull).
1588 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1589 // Block address in another function can't equal this one, but block
1590 // addresses in the current function might be the same if blocks are
1591 // empty.
1592 if (BA2->getFunction() != BA->getFunction())
1593 return ICmpInst::ICMP_NE;
1594 } else {
1595 // Block addresses aren't null, don't equal the address of globals.
1596 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1597 "Canonicalization guarantee!");
1598 return ICmpInst::ICMP_NE;
1600 } else {
1601 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1602 // constantexpr, a global, block address, or a simple constant.
1603 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1604 Constant *CE1Op0 = CE1->getOperand(0);
1606 switch (CE1->getOpcode()) {
1607 case Instruction::Trunc:
1608 case Instruction::FPTrunc:
1609 case Instruction::FPExt:
1610 case Instruction::FPToUI:
1611 case Instruction::FPToSI:
1612 break; // We can't evaluate floating point casts or truncations.
1614 case Instruction::UIToFP:
1615 case Instruction::SIToFP:
1616 case Instruction::BitCast:
1617 case Instruction::ZExt:
1618 case Instruction::SExt:
1619 // We can't evaluate floating point casts or truncations.
1620 if (CE1Op0->getType()->isFPOrFPVectorTy())
1621 break;
1623 // If the cast is not actually changing bits, and the second operand is a
1624 // null pointer, do the comparison with the pre-casted value.
1625 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1626 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1627 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1628 return evaluateICmpRelation(CE1Op0,
1629 Constant::getNullValue(CE1Op0->getType()),
1630 isSigned);
1632 break;
1634 case Instruction::GetElementPtr: {
1635 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1636 // Ok, since this is a getelementptr, we know that the constant has a
1637 // pointer type. Check the various cases.
1638 if (isa<ConstantPointerNull>(V2)) {
1639 // If we are comparing a GEP to a null pointer, check to see if the base
1640 // of the GEP equals the null pointer.
1641 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1642 if (GV->hasExternalWeakLinkage())
1643 // Weak linkage GVals could be zero or not. We're comparing that
1644 // to null pointer so its greater-or-equal
1645 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1646 else
1647 // If its not weak linkage, the GVal must have a non-zero address
1648 // so the result is greater-than
1649 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1650 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1651 // If we are indexing from a null pointer, check to see if we have any
1652 // non-zero indices.
1653 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1654 if (!CE1->getOperand(i)->isNullValue())
1655 // Offsetting from null, must not be equal.
1656 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1657 // Only zero indexes from null, must still be zero.
1658 return ICmpInst::ICMP_EQ;
1660 // Otherwise, we can't really say if the first operand is null or not.
1661 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1662 if (isa<ConstantPointerNull>(CE1Op0)) {
1663 if (GV2->hasExternalWeakLinkage())
1664 // Weak linkage GVals could be zero or not. We're comparing it to
1665 // a null pointer, so its less-or-equal
1666 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1667 else
1668 // If its not weak linkage, the GVal must have a non-zero address
1669 // so the result is less-than
1670 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1671 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1672 if (GV == GV2) {
1673 // If this is a getelementptr of the same global, then it must be
1674 // different. Because the types must match, the getelementptr could
1675 // only have at most one index, and because we fold getelementptr's
1676 // with a single zero index, it must be nonzero.
1677 assert(CE1->getNumOperands() == 2 &&
1678 !CE1->getOperand(1)->isNullValue() &&
1679 "Surprising getelementptr!");
1680 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1681 } else {
1682 if (CE1GEP->hasAllZeroIndices())
1683 return areGlobalsPotentiallyEqual(GV, GV2);
1684 return ICmpInst::BAD_ICMP_PREDICATE;
1687 } else {
1688 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1689 Constant *CE2Op0 = CE2->getOperand(0);
1691 // There are MANY other foldings that we could perform here. They will
1692 // probably be added on demand, as they seem needed.
1693 switch (CE2->getOpcode()) {
1694 default: break;
1695 case Instruction::GetElementPtr:
1696 // By far the most common case to handle is when the base pointers are
1697 // obviously to the same global.
1698 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1699 // Don't know relative ordering, but check for inequality.
1700 if (CE1Op0 != CE2Op0) {
1701 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1702 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1703 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1704 cast<GlobalValue>(CE2Op0));
1705 return ICmpInst::BAD_ICMP_PREDICATE;
1707 // Ok, we know that both getelementptr instructions are based on the
1708 // same global. From this, we can precisely determine the relative
1709 // ordering of the resultant pointers.
1710 unsigned i = 1;
1712 // The logic below assumes that the result of the comparison
1713 // can be determined by finding the first index that differs.
1714 // This doesn't work if there is over-indexing in any
1715 // subsequent indices, so check for that case first.
1716 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1717 !CE2->isGEPWithNoNotionalOverIndexing())
1718 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1720 // Compare all of the operands the GEP's have in common.
1721 gep_type_iterator GTI = gep_type_begin(CE1);
1722 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1723 ++i, ++GTI)
1724 switch (IdxCompare(CE1->getOperand(i),
1725 CE2->getOperand(i), GTI.getIndexedType())) {
1726 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1727 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1728 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1731 // Ok, we ran out of things they have in common. If any leftovers
1732 // are non-zero then we have a difference, otherwise we are equal.
1733 for (; i < CE1->getNumOperands(); ++i)
1734 if (!CE1->getOperand(i)->isNullValue()) {
1735 if (isa<ConstantInt>(CE1->getOperand(i)))
1736 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1737 else
1738 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1741 for (; i < CE2->getNumOperands(); ++i)
1742 if (!CE2->getOperand(i)->isNullValue()) {
1743 if (isa<ConstantInt>(CE2->getOperand(i)))
1744 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1745 else
1746 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1748 return ICmpInst::ICMP_EQ;
1752 break;
1754 default:
1755 break;
1759 return ICmpInst::BAD_ICMP_PREDICATE;
1762 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1763 Constant *C1, Constant *C2) {
1764 Type *ResultTy;
1765 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1766 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1767 VT->getNumElements());
1768 else
1769 ResultTy = Type::getInt1Ty(C1->getContext());
1771 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1772 if (pred == FCmpInst::FCMP_FALSE)
1773 return Constant::getNullValue(ResultTy);
1775 if (pred == FCmpInst::FCMP_TRUE)
1776 return Constant::getAllOnesValue(ResultTy);
1778 // Handle some degenerate cases first
1779 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1780 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1781 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1782 // For EQ and NE, we can always pick a value for the undef to make the
1783 // predicate pass or fail, so we can return undef.
1784 // Also, if both operands are undef, we can return undef for int comparison.
1785 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1786 return UndefValue::get(ResultTy);
1788 // Otherwise, for integer compare, pick the same value as the non-undef
1789 // operand, and fold it to true or false.
1790 if (isIntegerPredicate)
1791 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1793 // Choosing NaN for the undef will always make unordered comparison succeed
1794 // and ordered comparison fails.
1795 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1798 // icmp eq/ne(null,GV) -> false/true
1799 if (C1->isNullValue()) {
1800 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1801 // Don't try to evaluate aliases. External weak GV can be null.
1802 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1803 !NullPointerIsDefined(nullptr /* F */,
1804 GV->getType()->getAddressSpace())) {
1805 if (pred == ICmpInst::ICMP_EQ)
1806 return ConstantInt::getFalse(C1->getContext());
1807 else if (pred == ICmpInst::ICMP_NE)
1808 return ConstantInt::getTrue(C1->getContext());
1810 // icmp eq/ne(GV,null) -> false/true
1811 } else if (C2->isNullValue()) {
1812 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1813 // Don't try to evaluate aliases. External weak GV can be null.
1814 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1815 !NullPointerIsDefined(nullptr /* F */,
1816 GV->getType()->getAddressSpace())) {
1817 if (pred == ICmpInst::ICMP_EQ)
1818 return ConstantInt::getFalse(C1->getContext());
1819 else if (pred == ICmpInst::ICMP_NE)
1820 return ConstantInt::getTrue(C1->getContext());
1824 // If the comparison is a comparison between two i1's, simplify it.
1825 if (C1->getType()->isIntegerTy(1)) {
1826 switch(pred) {
1827 case ICmpInst::ICMP_EQ:
1828 if (isa<ConstantInt>(C2))
1829 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1830 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1831 case ICmpInst::ICMP_NE:
1832 return ConstantExpr::getXor(C1, C2);
1833 default:
1834 break;
1838 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1839 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1840 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1841 switch (pred) {
1842 default: llvm_unreachable("Invalid ICmp Predicate");
1843 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1844 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1845 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1846 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1847 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1848 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1849 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1850 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1851 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1852 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1854 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1855 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1856 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1857 APFloat::cmpResult R = C1V.compare(C2V);
1858 switch (pred) {
1859 default: llvm_unreachable("Invalid FCmp Predicate");
1860 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1861 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1862 case FCmpInst::FCMP_UNO:
1863 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1864 case FCmpInst::FCMP_ORD:
1865 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1866 case FCmpInst::FCMP_UEQ:
1867 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1868 R==APFloat::cmpEqual);
1869 case FCmpInst::FCMP_OEQ:
1870 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1871 case FCmpInst::FCMP_UNE:
1872 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1873 case FCmpInst::FCMP_ONE:
1874 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1875 R==APFloat::cmpGreaterThan);
1876 case FCmpInst::FCMP_ULT:
1877 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1878 R==APFloat::cmpLessThan);
1879 case FCmpInst::FCMP_OLT:
1880 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1881 case FCmpInst::FCMP_UGT:
1882 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1883 R==APFloat::cmpGreaterThan);
1884 case FCmpInst::FCMP_OGT:
1885 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1886 case FCmpInst::FCMP_ULE:
1887 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1888 case FCmpInst::FCMP_OLE:
1889 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1890 R==APFloat::cmpEqual);
1891 case FCmpInst::FCMP_UGE:
1892 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1893 case FCmpInst::FCMP_OGE:
1894 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1895 R==APFloat::cmpEqual);
1897 } else if (C1->getType()->isVectorTy()) {
1898 // If we can constant fold the comparison of each element, constant fold
1899 // the whole vector comparison.
1900 SmallVector<Constant*, 4> ResElts;
1901 Type *Ty = IntegerType::get(C1->getContext(), 32);
1902 // Compare the elements, producing an i1 result or constant expr.
1903 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1904 Constant *C1E =
1905 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1906 Constant *C2E =
1907 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1909 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1912 return ConstantVector::get(ResElts);
1915 if (C1->getType()->isFloatingPointTy() &&
1916 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1917 // infinite recursive loop
1918 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1919 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1920 switch (evaluateFCmpRelation(C1, C2)) {
1921 default: llvm_unreachable("Unknown relation!");
1922 case FCmpInst::FCMP_UNO:
1923 case FCmpInst::FCMP_ORD:
1924 case FCmpInst::FCMP_UNE:
1925 case FCmpInst::FCMP_ULT:
1926 case FCmpInst::FCMP_UGT:
1927 case FCmpInst::FCMP_ULE:
1928 case FCmpInst::FCMP_UGE:
1929 case FCmpInst::FCMP_TRUE:
1930 case FCmpInst::FCMP_FALSE:
1931 case FCmpInst::BAD_FCMP_PREDICATE:
1932 break; // Couldn't determine anything about these constants.
1933 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1934 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1935 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1936 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1937 break;
1938 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1939 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1940 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1941 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1942 break;
1943 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1944 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1945 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1946 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1947 break;
1948 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1949 // We can only partially decide this relation.
1950 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1951 Result = 0;
1952 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1953 Result = 1;
1954 break;
1955 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1956 // We can only partially decide this relation.
1957 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1958 Result = 0;
1959 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1960 Result = 1;
1961 break;
1962 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1963 // We can only partially decide this relation.
1964 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1965 Result = 0;
1966 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1967 Result = 1;
1968 break;
1969 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1970 // We can only partially decide this relation.
1971 if (pred == FCmpInst::FCMP_ONE)
1972 Result = 0;
1973 else if (pred == FCmpInst::FCMP_UEQ)
1974 Result = 1;
1975 break;
1978 // If we evaluated the result, return it now.
1979 if (Result != -1)
1980 return ConstantInt::get(ResultTy, Result);
1982 } else {
1983 // Evaluate the relation between the two constants, per the predicate.
1984 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1985 switch (evaluateICmpRelation(C1, C2,
1986 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1987 default: llvm_unreachable("Unknown relational!");
1988 case ICmpInst::BAD_ICMP_PREDICATE:
1989 break; // Couldn't determine anything about these constants.
1990 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1991 // If we know the constants are equal, we can decide the result of this
1992 // computation precisely.
1993 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1994 break;
1995 case ICmpInst::ICMP_ULT:
1996 switch (pred) {
1997 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1998 Result = 1; break;
1999 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2000 Result = 0; break;
2002 break;
2003 case ICmpInst::ICMP_SLT:
2004 switch (pred) {
2005 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2006 Result = 1; break;
2007 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2008 Result = 0; break;
2010 break;
2011 case ICmpInst::ICMP_UGT:
2012 switch (pred) {
2013 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2014 Result = 1; break;
2015 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2016 Result = 0; break;
2018 break;
2019 case ICmpInst::ICMP_SGT:
2020 switch (pred) {
2021 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2022 Result = 1; break;
2023 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2024 Result = 0; break;
2026 break;
2027 case ICmpInst::ICMP_ULE:
2028 if (pred == ICmpInst::ICMP_UGT) Result = 0;
2029 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2030 break;
2031 case ICmpInst::ICMP_SLE:
2032 if (pred == ICmpInst::ICMP_SGT) Result = 0;
2033 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2034 break;
2035 case ICmpInst::ICMP_UGE:
2036 if (pred == ICmpInst::ICMP_ULT) Result = 0;
2037 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2038 break;
2039 case ICmpInst::ICMP_SGE:
2040 if (pred == ICmpInst::ICMP_SLT) Result = 0;
2041 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2042 break;
2043 case ICmpInst::ICMP_NE:
2044 if (pred == ICmpInst::ICMP_EQ) Result = 0;
2045 if (pred == ICmpInst::ICMP_NE) Result = 1;
2046 break;
2049 // If we evaluated the result, return it now.
2050 if (Result != -1)
2051 return ConstantInt::get(ResultTy, Result);
2053 // If the right hand side is a bitcast, try using its inverse to simplify
2054 // it by moving it to the left hand side. We can't do this if it would turn
2055 // a vector compare into a scalar compare or visa versa, or if it would turn
2056 // the operands into FP values.
2057 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2058 Constant *CE2Op0 = CE2->getOperand(0);
2059 if (CE2->getOpcode() == Instruction::BitCast &&
2060 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2061 !CE2Op0->getType()->isFPOrFPVectorTy()) {
2062 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2063 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2067 // If the left hand side is an extension, try eliminating it.
2068 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2069 if ((CE1->getOpcode() == Instruction::SExt &&
2070 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2071 (CE1->getOpcode() == Instruction::ZExt &&
2072 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2073 Constant *CE1Op0 = CE1->getOperand(0);
2074 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2075 if (CE1Inverse == CE1Op0) {
2076 // Check whether we can safely truncate the right hand side.
2077 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2078 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2079 C2->getType()) == C2)
2080 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2085 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2086 (C1->isNullValue() && !C2->isNullValue())) {
2087 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2088 // other way if possible.
2089 // Also, if C1 is null and C2 isn't, flip them around.
2090 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2091 return ConstantExpr::getICmp(pred, C2, C1);
2094 return nullptr;
2097 /// Test whether the given sequence of *normalized* indices is "inbounds".
2098 template<typename IndexTy>
2099 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2100 // No indices means nothing that could be out of bounds.
2101 if (Idxs.empty()) return true;
2103 // If the first index is zero, it's in bounds.
2104 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2106 // If the first index is one and all the rest are zero, it's in bounds,
2107 // by the one-past-the-end rule.
2108 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2109 if (!CI->isOne())
2110 return false;
2111 } else {
2112 auto *CV = cast<ConstantDataVector>(Idxs[0]);
2113 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2114 if (!CI || !CI->isOne())
2115 return false;
2118 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2119 if (!cast<Constant>(Idxs[i])->isNullValue())
2120 return false;
2121 return true;
2124 /// Test whether a given ConstantInt is in-range for a SequentialType.
2125 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2126 const ConstantInt *CI) {
2127 // We cannot bounds check the index if it doesn't fit in an int64_t.
2128 if (CI->getValue().getMinSignedBits() > 64)
2129 return false;
2131 // A negative index or an index past the end of our sequential type is
2132 // considered out-of-range.
2133 int64_t IndexVal = CI->getSExtValue();
2134 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2135 return false;
2137 // Otherwise, it is in-range.
2138 return true;
2141 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2142 bool InBounds,
2143 Optional<unsigned> InRangeIndex,
2144 ArrayRef<Value *> Idxs) {
2145 if (Idxs.empty()) return C;
2147 Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2148 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2150 if (isa<UndefValue>(C))
2151 return UndefValue::get(GEPTy);
2153 Constant *Idx0 = cast<Constant>(Idxs[0]);
2154 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2155 return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2156 ? ConstantVector::getSplat(
2157 cast<VectorType>(GEPTy)->getNumElements(), C)
2158 : C;
2160 if (C->isNullValue()) {
2161 bool isNull = true;
2162 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2163 if (!isa<UndefValue>(Idxs[i]) &&
2164 !cast<Constant>(Idxs[i])->isNullValue()) {
2165 isNull = false;
2166 break;
2168 if (isNull) {
2169 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2170 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2172 assert(Ty && "Invalid indices for GEP!");
2173 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2174 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2175 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2176 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2178 // The GEP returns a vector of pointers when one of more of
2179 // its arguments is a vector.
2180 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2181 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2182 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2183 break;
2187 return Constant::getNullValue(GEPTy);
2191 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2192 // Combine Indices - If the source pointer to this getelementptr instruction
2193 // is a getelementptr instruction, combine the indices of the two
2194 // getelementptr instructions into a single instruction.
2196 if (CE->getOpcode() == Instruction::GetElementPtr) {
2197 gep_type_iterator LastI = gep_type_end(CE);
2198 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2199 I != E; ++I)
2200 LastI = I;
2202 // We cannot combine indices if doing so would take us outside of an
2203 // array or vector. Doing otherwise could trick us if we evaluated such a
2204 // GEP as part of a load.
2206 // e.g. Consider if the original GEP was:
2207 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2208 // i32 0, i32 0, i64 0)
2210 // If we then tried to offset it by '8' to get to the third element,
2211 // an i8, we should *not* get:
2212 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2213 // i32 0, i32 0, i64 8)
2215 // This GEP tries to index array element '8 which runs out-of-bounds.
2216 // Subsequent evaluation would get confused and produce erroneous results.
2218 // The following prohibits such a GEP from being formed by checking to see
2219 // if the index is in-range with respect to an array.
2220 // TODO: This code may be extended to handle vectors as well.
2221 bool PerformFold = false;
2222 if (Idx0->isNullValue())
2223 PerformFold = true;
2224 else if (LastI.isSequential())
2225 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2226 PerformFold = (!LastI.isBoundedSequential() ||
2227 isIndexInRangeOfArrayType(
2228 LastI.getSequentialNumElements(), CI)) &&
2229 !CE->getOperand(CE->getNumOperands() - 1)
2230 ->getType()
2231 ->isVectorTy();
2233 if (PerformFold) {
2234 SmallVector<Value*, 16> NewIndices;
2235 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2236 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2238 // Add the last index of the source with the first index of the new GEP.
2239 // Make sure to handle the case when they are actually different types.
2240 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2241 // Otherwise it must be an array.
2242 if (!Idx0->isNullValue()) {
2243 Type *IdxTy = Combined->getType();
2244 if (IdxTy != Idx0->getType()) {
2245 unsigned CommonExtendedWidth =
2246 std::max(IdxTy->getIntegerBitWidth(),
2247 Idx0->getType()->getIntegerBitWidth());
2248 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2250 Type *CommonTy =
2251 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2252 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2253 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2254 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2255 } else {
2256 Combined =
2257 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2261 NewIndices.push_back(Combined);
2262 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2264 // The combined GEP normally inherits its index inrange attribute from
2265 // the inner GEP, but if the inner GEP's last index was adjusted by the
2266 // outer GEP, any inbounds attribute on that index is invalidated.
2267 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2268 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2269 IRIndex = None;
2271 return ConstantExpr::getGetElementPtr(
2272 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2273 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2274 IRIndex);
2278 // Attempt to fold casts to the same type away. For example, folding:
2280 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2281 // i64 0, i64 0)
2282 // into:
2284 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2286 // Don't fold if the cast is changing address spaces.
2287 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2288 PointerType *SrcPtrTy =
2289 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2290 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2291 if (SrcPtrTy && DstPtrTy) {
2292 ArrayType *SrcArrayTy =
2293 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2294 ArrayType *DstArrayTy =
2295 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2296 if (SrcArrayTy && DstArrayTy
2297 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2298 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2299 return ConstantExpr::getGetElementPtr(SrcArrayTy,
2300 (Constant *)CE->getOperand(0),
2301 Idxs, InBounds, InRangeIndex);
2306 // Check to see if any array indices are not within the corresponding
2307 // notional array or vector bounds. If so, try to determine if they can be
2308 // factored out into preceding dimensions.
2309 SmallVector<Constant *, 8> NewIdxs;
2310 Type *Ty = PointeeTy;
2311 Type *Prev = C->getType();
2312 bool Unknown =
2313 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2314 for (unsigned i = 1, e = Idxs.size(); i != e;
2315 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2316 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2317 // We don't know if it's in range or not.
2318 Unknown = true;
2319 continue;
2321 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2322 // Skip if the type of the previous index is not supported.
2323 continue;
2324 if (InRangeIndex && i == *InRangeIndex + 1) {
2325 // If an index is marked inrange, we cannot apply this canonicalization to
2326 // the following index, as that will cause the inrange index to point to
2327 // the wrong element.
2328 continue;
2330 if (isa<StructType>(Ty)) {
2331 // The verify makes sure that GEPs into a struct are in range.
2332 continue;
2334 auto *STy = cast<SequentialType>(Ty);
2335 if (isa<VectorType>(STy)) {
2336 // There can be awkward padding in after a non-power of two vector.
2337 Unknown = true;
2338 continue;
2340 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2341 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2342 // It's in range, skip to the next index.
2343 continue;
2344 if (CI->getSExtValue() < 0) {
2345 // It's out of range and negative, don't try to factor it.
2346 Unknown = true;
2347 continue;
2349 } else {
2350 auto *CV = cast<ConstantDataVector>(Idxs[i]);
2351 bool InRange = true;
2352 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2353 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2354 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2355 if (CI->getSExtValue() < 0) {
2356 Unknown = true;
2357 break;
2360 if (InRange || Unknown)
2361 // It's in range, skip to the next index.
2362 // It's out of range and negative, don't try to factor it.
2363 continue;
2365 if (isa<StructType>(Prev)) {
2366 // It's out of range, but the prior dimension is a struct
2367 // so we can't do anything about it.
2368 Unknown = true;
2369 continue;
2371 // It's out of range, but we can factor it into the prior
2372 // dimension.
2373 NewIdxs.resize(Idxs.size());
2374 // Determine the number of elements in our sequential type.
2375 uint64_t NumElements = STy->getArrayNumElements();
2377 // Expand the current index or the previous index to a vector from a scalar
2378 // if necessary.
2379 Constant *CurrIdx = cast<Constant>(Idxs[i]);
2380 auto *PrevIdx =
2381 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2382 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2383 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2384 bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2386 if (!IsCurrIdxVector && IsPrevIdxVector)
2387 CurrIdx = ConstantDataVector::getSplat(
2388 PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2390 if (!IsPrevIdxVector && IsCurrIdxVector)
2391 PrevIdx = ConstantDataVector::getSplat(
2392 CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2394 Constant *Factor =
2395 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2396 if (UseVector)
2397 Factor = ConstantDataVector::getSplat(
2398 IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2399 : CurrIdx->getType()->getVectorNumElements(),
2400 Factor);
2402 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2404 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2406 unsigned CommonExtendedWidth =
2407 std::max(PrevIdx->getType()->getScalarSizeInBits(),
2408 Div->getType()->getScalarSizeInBits());
2409 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2411 // Before adding, extend both operands to i64 to avoid
2412 // overflow trouble.
2413 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2414 if (UseVector)
2415 ExtendedTy = VectorType::get(
2416 ExtendedTy, IsPrevIdxVector
2417 ? PrevIdx->getType()->getVectorNumElements()
2418 : CurrIdx->getType()->getVectorNumElements());
2420 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2421 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2423 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2424 Div = ConstantExpr::getSExt(Div, ExtendedTy);
2426 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2429 // If we did any factoring, start over with the adjusted indices.
2430 if (!NewIdxs.empty()) {
2431 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2432 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2433 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2434 InRangeIndex);
2437 // If all indices are known integers and normalized, we can do a simple
2438 // check for the "inbounds" property.
2439 if (!Unknown && !InBounds)
2440 if (auto *GV = dyn_cast<GlobalVariable>(C))
2441 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2442 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2443 /*InBounds=*/true, InRangeIndex);
2445 return nullptr;