[lit] Improve lit.Run class
[llvm-complete.git] / lib / IR / Function.cpp
blob3f70d2c904e5ceecbfcc4fb689dfdb8948704211
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68 setName(Name);
71 void Argument::setParent(Function *parent) {
72 Parent = parent;
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
82 return true;
83 return false;
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs = getParent()->getAttributes();
107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 Type *Argument::getParamByValType() const {
117 assert(getType()->isPointerTy() && "Only pointers have byval types");
118 return getParent()->getParamByValType(getArgNo());
121 uint64_t Argument::getDereferenceableBytes() const {
122 assert(getType()->isPointerTy() &&
123 "Only pointers have dereferenceable bytes");
124 return getParent()->getParamDereferenceableBytes(getArgNo());
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128 assert(getType()->isPointerTy() &&
129 "Only pointers have dereferenceable bytes");
130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
133 bool Argument::hasNestAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::Nest);
138 bool Argument::hasNoAliasAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoAlias);
143 bool Argument::hasNoCaptureAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::NoCapture);
148 bool Argument::hasStructRetAttr() const {
149 if (!getType()->isPointerTy()) return false;
150 return hasAttribute(Attribute::StructRet);
153 bool Argument::hasInRegAttr() const {
154 return hasAttribute(Attribute::InReg);
157 bool Argument::hasReturnedAttr() const {
158 return hasAttribute(Attribute::Returned);
161 bool Argument::hasZExtAttr() const {
162 return hasAttribute(Attribute::ZExt);
165 bool Argument::hasSExtAttr() const {
166 return hasAttribute(Attribute::SExt);
169 bool Argument::onlyReadsMemory() const {
170 AttributeList Attrs = getParent()->getAttributes();
171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
175 void Argument::addAttrs(AttrBuilder &B) {
176 AttributeList AL = getParent()->getAttributes();
177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178 getParent()->setAttributes(AL);
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182 getParent()->addParamAttr(getArgNo(), Kind);
185 void Argument::addAttr(Attribute Attr) {
186 getParent()->addParamAttr(getArgNo(), Attr);
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190 getParent()->removeParamAttr(getArgNo(), Kind);
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194 return getParent()->hasParamAttribute(getArgNo(), Kind);
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198 return getParent()->getParamAttribute(getArgNo(), Kind);
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
205 LLVMContext &Function::getContext() const {
206 return getType()->getContext();
209 unsigned Function::getInstructionCount() const {
210 unsigned NumInstrs = 0;
211 for (const BasicBlock &BB : BasicBlocks)
212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213 BB.instructionsWithoutDebug().end());
214 return NumInstrs;
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218 const Twine &N, Module &M) {
219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
222 void Function::removeFromParent() {
223 getParent()->getFunctionList().remove(getIterator());
226 void Function::eraseFromParent() {
227 getParent()->getFunctionList().erase(getIterator());
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235 // If AS == -1 and we are passed a valid module pointer we place the function
236 // in the program address space. Otherwise we default to AS0.
237 if (AddrSpace == static_cast<unsigned>(-1))
238 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239 return AddrSpace;
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243 const Twine &name, Module *ParentModule)
244 : GlobalObject(Ty, Value::FunctionVal,
245 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246 computeAddrSpace(AddrSpace, ParentModule)),
247 NumArgs(Ty->getNumParams()) {
248 assert(FunctionType::isValidReturnType(getReturnType()) &&
249 "invalid return type");
250 setGlobalObjectSubClassData(0);
252 // We only need a symbol table for a function if the context keeps value names
253 if (!getContext().shouldDiscardValueNames())
254 SymTab = std::make_unique<ValueSymbolTable>();
256 // If the function has arguments, mark them as lazily built.
257 if (Ty->getNumParams())
258 setValueSubclassData(1); // Set the "has lazy arguments" bit.
260 if (ParentModule)
261 ParentModule->getFunctionList().push_back(this);
263 HasLLVMReservedName = getName().startswith("llvm.");
264 // Ensure intrinsics have the right parameter attributes.
265 // Note, the IntID field will have been set in Value::setName if this function
266 // name is a valid intrinsic ID.
267 if (IntID)
268 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
271 Function::~Function() {
272 dropAllReferences(); // After this it is safe to delete instructions.
274 // Delete all of the method arguments and unlink from symbol table...
275 if (Arguments)
276 clearArguments();
278 // Remove the function from the on-the-side GC table.
279 clearGC();
282 void Function::BuildLazyArguments() const {
283 // Create the arguments vector, all arguments start out unnamed.
284 auto *FT = getFunctionType();
285 if (NumArgs > 0) {
286 Arguments = std::allocator<Argument>().allocate(NumArgs);
287 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288 Type *ArgTy = FT->getParamType(i);
289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
294 // Clear the lazy arguments bit.
295 unsigned SDC = getSubclassDataFromValue();
296 SDC &= ~(1 << 0);
297 const_cast<Function*>(this)->setValueSubclassData(SDC);
298 assert(!hasLazyArguments());
301 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
302 return MutableArrayRef<Argument>(Args, Count);
305 void Function::clearArguments() {
306 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
307 A.setName("");
308 A.~Argument();
310 std::allocator<Argument>().deallocate(Arguments, NumArgs);
311 Arguments = nullptr;
314 void Function::stealArgumentListFrom(Function &Src) {
315 assert(isDeclaration() && "Expected no references to current arguments");
317 // Drop the current arguments, if any, and set the lazy argument bit.
318 if (!hasLazyArguments()) {
319 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
320 [](const Argument &A) { return A.use_empty(); }) &&
321 "Expected arguments to be unused in declaration");
322 clearArguments();
323 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
326 // Nothing to steal if Src has lazy arguments.
327 if (Src.hasLazyArguments())
328 return;
330 // Steal arguments from Src, and fix the lazy argument bits.
331 assert(arg_size() == Src.arg_size());
332 Arguments = Src.Arguments;
333 Src.Arguments = nullptr;
334 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
335 // FIXME: This does the work of transferNodesFromList inefficiently.
336 SmallString<128> Name;
337 if (A.hasName())
338 Name = A.getName();
339 if (!Name.empty())
340 A.setName("");
341 A.setParent(this);
342 if (!Name.empty())
343 A.setName(Name);
346 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
347 assert(!hasLazyArguments());
348 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
351 // dropAllReferences() - This function causes all the subinstructions to "let
352 // go" of all references that they are maintaining. This allows one to
353 // 'delete' a whole class at a time, even though there may be circular
354 // references... first all references are dropped, and all use counts go to
355 // zero. Then everything is deleted for real. Note that no operations are
356 // valid on an object that has "dropped all references", except operator
357 // delete.
359 void Function::dropAllReferences() {
360 setIsMaterializable(false);
362 for (BasicBlock &BB : *this)
363 BB.dropAllReferences();
365 // Delete all basic blocks. They are now unused, except possibly by
366 // blockaddresses, but BasicBlock's destructor takes care of those.
367 while (!BasicBlocks.empty())
368 BasicBlocks.begin()->eraseFromParent();
370 // Drop uses of any optional data (real or placeholder).
371 if (getNumOperands()) {
372 User::dropAllReferences();
373 setNumHungOffUseOperands(0);
374 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
377 // Metadata is stored in a side-table.
378 clearMetadata();
381 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
382 AttributeList PAL = getAttributes();
383 PAL = PAL.addAttribute(getContext(), i, Kind);
384 setAttributes(PAL);
387 void Function::addAttribute(unsigned i, Attribute Attr) {
388 AttributeList PAL = getAttributes();
389 PAL = PAL.addAttribute(getContext(), i, Attr);
390 setAttributes(PAL);
393 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
394 AttributeList PAL = getAttributes();
395 PAL = PAL.addAttributes(getContext(), i, Attrs);
396 setAttributes(PAL);
399 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
400 AttributeList PAL = getAttributes();
401 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
402 setAttributes(PAL);
405 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
406 AttributeList PAL = getAttributes();
407 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
408 setAttributes(PAL);
411 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
412 AttributeList PAL = getAttributes();
413 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
414 setAttributes(PAL);
417 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
418 AttributeList PAL = getAttributes();
419 PAL = PAL.removeAttribute(getContext(), i, Kind);
420 setAttributes(PAL);
423 void Function::removeAttribute(unsigned i, StringRef Kind) {
424 AttributeList PAL = getAttributes();
425 PAL = PAL.removeAttribute(getContext(), i, Kind);
426 setAttributes(PAL);
429 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
430 AttributeList PAL = getAttributes();
431 PAL = PAL.removeAttributes(getContext(), i, Attrs);
432 setAttributes(PAL);
435 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
436 AttributeList PAL = getAttributes();
437 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
438 setAttributes(PAL);
441 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
442 AttributeList PAL = getAttributes();
443 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
444 setAttributes(PAL);
447 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
448 AttributeList PAL = getAttributes();
449 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
450 setAttributes(PAL);
453 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
454 AttributeList PAL = getAttributes();
455 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
456 setAttributes(PAL);
459 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
460 AttributeList PAL = getAttributes();
461 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
462 setAttributes(PAL);
465 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
466 AttributeList PAL = getAttributes();
467 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
468 setAttributes(PAL);
471 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
472 uint64_t Bytes) {
473 AttributeList PAL = getAttributes();
474 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
475 setAttributes(PAL);
478 const std::string &Function::getGC() const {
479 assert(hasGC() && "Function has no collector");
480 return getContext().getGC(*this);
483 void Function::setGC(std::string Str) {
484 setValueSubclassDataBit(14, !Str.empty());
485 getContext().setGC(*this, std::move(Str));
488 void Function::clearGC() {
489 if (!hasGC())
490 return;
491 getContext().deleteGC(*this);
492 setValueSubclassDataBit(14, false);
495 /// Copy all additional attributes (those not needed to create a Function) from
496 /// the Function Src to this one.
497 void Function::copyAttributesFrom(const Function *Src) {
498 GlobalObject::copyAttributesFrom(Src);
499 setCallingConv(Src->getCallingConv());
500 setAttributes(Src->getAttributes());
501 if (Src->hasGC())
502 setGC(Src->getGC());
503 else
504 clearGC();
505 if (Src->hasPersonalityFn())
506 setPersonalityFn(Src->getPersonalityFn());
507 if (Src->hasPrefixData())
508 setPrefixData(Src->getPrefixData());
509 if (Src->hasPrologueData())
510 setPrologueData(Src->getPrologueData());
513 /// Table of string intrinsic names indexed by enum value.
514 static const char * const IntrinsicNameTable[] = {
515 "not_intrinsic",
516 #define GET_INTRINSIC_NAME_TABLE
517 #include "llvm/IR/IntrinsicImpl.inc"
518 #undef GET_INTRINSIC_NAME_TABLE
521 /// Table of per-target intrinsic name tables.
522 #define GET_INTRINSIC_TARGET_DATA
523 #include "llvm/IR/IntrinsicImpl.inc"
524 #undef GET_INTRINSIC_TARGET_DATA
526 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
527 /// target as \c Name, or the generic table if \c Name is not target specific.
529 /// Returns the relevant slice of \c IntrinsicNameTable
530 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
531 assert(Name.startswith("llvm."));
533 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
534 // Drop "llvm." and take the first dotted component. That will be the target
535 // if this is target specific.
536 StringRef Target = Name.drop_front(5).split('.').first;
537 auto It = partition_point(
538 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
539 // We've either found the target or just fall back to the generic set, which
540 // is always first.
541 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
542 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
545 /// This does the actual lookup of an intrinsic ID which
546 /// matches the given function name.
547 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
548 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
549 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
550 if (Idx == -1)
551 return Intrinsic::not_intrinsic;
553 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
554 // an index into a sub-table.
555 int Adjust = NameTable.data() - IntrinsicNameTable;
556 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
558 // If the intrinsic is not overloaded, require an exact match. If it is
559 // overloaded, require either exact or prefix match.
560 const auto MatchSize = strlen(NameTable[Idx]);
561 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
562 bool IsExactMatch = Name.size() == MatchSize;
563 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
566 void Function::recalculateIntrinsicID() {
567 StringRef Name = getName();
568 if (!Name.startswith("llvm.")) {
569 HasLLVMReservedName = false;
570 IntID = Intrinsic::not_intrinsic;
571 return;
573 HasLLVMReservedName = true;
574 IntID = lookupIntrinsicID(Name);
577 /// Returns a stable mangling for the type specified for use in the name
578 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
579 /// of named types is simply their name. Manglings for unnamed types consist
580 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
581 /// combined with the mangling of their component types. A vararg function
582 /// type will have a suffix of 'vararg'. Since function types can contain
583 /// other function types, we close a function type mangling with suffix 'f'
584 /// which can't be confused with it's prefix. This ensures we don't have
585 /// collisions between two unrelated function types. Otherwise, you might
586 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
588 static std::string getMangledTypeStr(Type* Ty) {
589 std::string Result;
590 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
591 Result += "p" + utostr(PTyp->getAddressSpace()) +
592 getMangledTypeStr(PTyp->getElementType());
593 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
594 Result += "a" + utostr(ATyp->getNumElements()) +
595 getMangledTypeStr(ATyp->getElementType());
596 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
597 if (!STyp->isLiteral()) {
598 Result += "s_";
599 Result += STyp->getName();
600 } else {
601 Result += "sl_";
602 for (auto Elem : STyp->elements())
603 Result += getMangledTypeStr(Elem);
605 // Ensure nested structs are distinguishable.
606 Result += "s";
607 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
608 Result += "f_" + getMangledTypeStr(FT->getReturnType());
609 for (size_t i = 0; i < FT->getNumParams(); i++)
610 Result += getMangledTypeStr(FT->getParamType(i));
611 if (FT->isVarArg())
612 Result += "vararg";
613 // Ensure nested function types are distinguishable.
614 Result += "f";
615 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
616 if (VTy->isScalable())
617 Result += "nx";
618 Result += "v" + utostr(VTy->getVectorNumElements()) +
619 getMangledTypeStr(VTy->getVectorElementType());
620 } else if (Ty) {
621 switch (Ty->getTypeID()) {
622 default: llvm_unreachable("Unhandled type");
623 case Type::VoidTyID: Result += "isVoid"; break;
624 case Type::MetadataTyID: Result += "Metadata"; break;
625 case Type::HalfTyID: Result += "f16"; break;
626 case Type::FloatTyID: Result += "f32"; break;
627 case Type::DoubleTyID: Result += "f64"; break;
628 case Type::X86_FP80TyID: Result += "f80"; break;
629 case Type::FP128TyID: Result += "f128"; break;
630 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
631 case Type::X86_MMXTyID: Result += "x86mmx"; break;
632 case Type::IntegerTyID:
633 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
634 break;
637 return Result;
640 StringRef Intrinsic::getName(ID id) {
641 assert(id < num_intrinsics && "Invalid intrinsic ID!");
642 assert(!isOverloaded(id) &&
643 "This version of getName does not support overloading");
644 return IntrinsicNameTable[id];
647 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
648 assert(id < num_intrinsics && "Invalid intrinsic ID!");
649 std::string Result(IntrinsicNameTable[id]);
650 for (Type *Ty : Tys) {
651 Result += "." + getMangledTypeStr(Ty);
653 return Result;
656 /// IIT_Info - These are enumerators that describe the entries returned by the
657 /// getIntrinsicInfoTableEntries function.
659 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
660 enum IIT_Info {
661 // Common values should be encoded with 0-15.
662 IIT_Done = 0,
663 IIT_I1 = 1,
664 IIT_I8 = 2,
665 IIT_I16 = 3,
666 IIT_I32 = 4,
667 IIT_I64 = 5,
668 IIT_F16 = 6,
669 IIT_F32 = 7,
670 IIT_F64 = 8,
671 IIT_V2 = 9,
672 IIT_V4 = 10,
673 IIT_V8 = 11,
674 IIT_V16 = 12,
675 IIT_V32 = 13,
676 IIT_PTR = 14,
677 IIT_ARG = 15,
679 // Values from 16+ are only encodable with the inefficient encoding.
680 IIT_V64 = 16,
681 IIT_MMX = 17,
682 IIT_TOKEN = 18,
683 IIT_METADATA = 19,
684 IIT_EMPTYSTRUCT = 20,
685 IIT_STRUCT2 = 21,
686 IIT_STRUCT3 = 22,
687 IIT_STRUCT4 = 23,
688 IIT_STRUCT5 = 24,
689 IIT_EXTEND_ARG = 25,
690 IIT_TRUNC_ARG = 26,
691 IIT_ANYPTR = 27,
692 IIT_V1 = 28,
693 IIT_VARARG = 29,
694 IIT_HALF_VEC_ARG = 30,
695 IIT_SAME_VEC_WIDTH_ARG = 31,
696 IIT_PTR_TO_ARG = 32,
697 IIT_PTR_TO_ELT = 33,
698 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
699 IIT_I128 = 35,
700 IIT_V512 = 36,
701 IIT_V1024 = 37,
702 IIT_STRUCT6 = 38,
703 IIT_STRUCT7 = 39,
704 IIT_STRUCT8 = 40,
705 IIT_F128 = 41,
706 IIT_VEC_ELEMENT = 42,
707 IIT_SCALABLE_VEC = 43,
708 IIT_SUBDIVIDE2_ARG = 44,
709 IIT_SUBDIVIDE4_ARG = 45,
710 IIT_VEC_OF_BITCASTS_TO_INT = 46
713 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
714 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
715 using namespace Intrinsic;
717 IIT_Info Info = IIT_Info(Infos[NextElt++]);
718 unsigned StructElts = 2;
720 switch (Info) {
721 case IIT_Done:
722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
723 return;
724 case IIT_VARARG:
725 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
726 return;
727 case IIT_MMX:
728 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
729 return;
730 case IIT_TOKEN:
731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
732 return;
733 case IIT_METADATA:
734 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
735 return;
736 case IIT_F16:
737 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
738 return;
739 case IIT_F32:
740 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
741 return;
742 case IIT_F64:
743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
744 return;
745 case IIT_F128:
746 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
747 return;
748 case IIT_I1:
749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
750 return;
751 case IIT_I8:
752 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
753 return;
754 case IIT_I16:
755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
756 return;
757 case IIT_I32:
758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
759 return;
760 case IIT_I64:
761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
762 return;
763 case IIT_I128:
764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
765 return;
766 case IIT_V1:
767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
768 DecodeIITType(NextElt, Infos, OutputTable);
769 return;
770 case IIT_V2:
771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
772 DecodeIITType(NextElt, Infos, OutputTable);
773 return;
774 case IIT_V4:
775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
776 DecodeIITType(NextElt, Infos, OutputTable);
777 return;
778 case IIT_V8:
779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
780 DecodeIITType(NextElt, Infos, OutputTable);
781 return;
782 case IIT_V16:
783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
784 DecodeIITType(NextElt, Infos, OutputTable);
785 return;
786 case IIT_V32:
787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
788 DecodeIITType(NextElt, Infos, OutputTable);
789 return;
790 case IIT_V64:
791 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
792 DecodeIITType(NextElt, Infos, OutputTable);
793 return;
794 case IIT_V512:
795 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
796 DecodeIITType(NextElt, Infos, OutputTable);
797 return;
798 case IIT_V1024:
799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
800 DecodeIITType(NextElt, Infos, OutputTable);
801 return;
802 case IIT_PTR:
803 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
804 DecodeIITType(NextElt, Infos, OutputTable);
805 return;
806 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
808 Infos[NextElt++]));
809 DecodeIITType(NextElt, Infos, OutputTable);
810 return;
812 case IIT_ARG: {
813 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
814 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
815 return;
817 case IIT_EXTEND_ARG: {
818 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
820 ArgInfo));
821 return;
823 case IIT_TRUNC_ARG: {
824 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
825 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
826 ArgInfo));
827 return;
829 case IIT_HALF_VEC_ARG: {
830 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
832 ArgInfo));
833 return;
835 case IIT_SAME_VEC_WIDTH_ARG: {
836 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
837 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
838 ArgInfo));
839 return;
841 case IIT_PTR_TO_ARG: {
842 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
843 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
844 ArgInfo));
845 return;
847 case IIT_PTR_TO_ELT: {
848 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
849 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
850 return;
852 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
853 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
854 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
855 OutputTable.push_back(
856 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
857 return;
859 case IIT_EMPTYSTRUCT:
860 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
861 return;
862 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
863 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
864 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
865 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
866 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
867 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
868 case IIT_STRUCT2: {
869 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
871 for (unsigned i = 0; i != StructElts; ++i)
872 DecodeIITType(NextElt, Infos, OutputTable);
873 return;
875 case IIT_SUBDIVIDE2_ARG: {
876 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
877 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
878 ArgInfo));
879 return;
881 case IIT_SUBDIVIDE4_ARG: {
882 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
883 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
884 ArgInfo));
885 return;
887 case IIT_VEC_ELEMENT: {
888 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
889 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
890 ArgInfo));
891 return;
893 case IIT_SCALABLE_VEC: {
894 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
895 0));
896 DecodeIITType(NextElt, Infos, OutputTable);
897 return;
899 case IIT_VEC_OF_BITCASTS_TO_INT: {
900 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
901 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
902 ArgInfo));
903 return;
906 llvm_unreachable("unhandled");
909 #define GET_INTRINSIC_GENERATOR_GLOBAL
910 #include "llvm/IR/IntrinsicImpl.inc"
911 #undef GET_INTRINSIC_GENERATOR_GLOBAL
913 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
914 SmallVectorImpl<IITDescriptor> &T){
915 // Check to see if the intrinsic's type was expressible by the table.
916 unsigned TableVal = IIT_Table[id-1];
918 // Decode the TableVal into an array of IITValues.
919 SmallVector<unsigned char, 8> IITValues;
920 ArrayRef<unsigned char> IITEntries;
921 unsigned NextElt = 0;
922 if ((TableVal >> 31) != 0) {
923 // This is an offset into the IIT_LongEncodingTable.
924 IITEntries = IIT_LongEncodingTable;
926 // Strip sentinel bit.
927 NextElt = (TableVal << 1) >> 1;
928 } else {
929 // Decode the TableVal into an array of IITValues. If the entry was encoded
930 // into a single word in the table itself, decode it now.
931 do {
932 IITValues.push_back(TableVal & 0xF);
933 TableVal >>= 4;
934 } while (TableVal);
936 IITEntries = IITValues;
937 NextElt = 0;
940 // Okay, decode the table into the output vector of IITDescriptors.
941 DecodeIITType(NextElt, IITEntries, T);
942 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
943 DecodeIITType(NextElt, IITEntries, T);
946 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
947 ArrayRef<Type*> Tys, LLVMContext &Context) {
948 using namespace Intrinsic;
950 IITDescriptor D = Infos.front();
951 Infos = Infos.slice(1);
953 switch (D.Kind) {
954 case IITDescriptor::Void: return Type::getVoidTy(Context);
955 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
956 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
957 case IITDescriptor::Token: return Type::getTokenTy(Context);
958 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
959 case IITDescriptor::Half: return Type::getHalfTy(Context);
960 case IITDescriptor::Float: return Type::getFloatTy(Context);
961 case IITDescriptor::Double: return Type::getDoubleTy(Context);
962 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
964 case IITDescriptor::Integer:
965 return IntegerType::get(Context, D.Integer_Width);
966 case IITDescriptor::Vector:
967 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
968 case IITDescriptor::Pointer:
969 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
970 D.Pointer_AddressSpace);
971 case IITDescriptor::Struct: {
972 SmallVector<Type *, 8> Elts;
973 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
974 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
975 return StructType::get(Context, Elts);
977 case IITDescriptor::Argument:
978 return Tys[D.getArgumentNumber()];
979 case IITDescriptor::ExtendArgument: {
980 Type *Ty = Tys[D.getArgumentNumber()];
981 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
982 return VectorType::getExtendedElementVectorType(VTy);
984 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
986 case IITDescriptor::TruncArgument: {
987 Type *Ty = Tys[D.getArgumentNumber()];
988 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
989 return VectorType::getTruncatedElementVectorType(VTy);
991 IntegerType *ITy = cast<IntegerType>(Ty);
992 assert(ITy->getBitWidth() % 2 == 0);
993 return IntegerType::get(Context, ITy->getBitWidth() / 2);
995 case IITDescriptor::Subdivide2Argument:
996 case IITDescriptor::Subdivide4Argument: {
997 Type *Ty = Tys[D.getArgumentNumber()];
998 VectorType *VTy = dyn_cast<VectorType>(Ty);
999 assert(VTy && "Expected an argument of Vector Type");
1000 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1001 return VectorType::getSubdividedVectorType(VTy, SubDivs);
1003 case IITDescriptor::HalfVecArgument:
1004 return VectorType::getHalfElementsVectorType(cast<VectorType>(
1005 Tys[D.getArgumentNumber()]));
1006 case IITDescriptor::SameVecWidthArgument: {
1007 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1008 Type *Ty = Tys[D.getArgumentNumber()];
1009 if (auto *VTy = dyn_cast<VectorType>(Ty))
1010 return VectorType::get(EltTy, VTy->getElementCount());
1011 return EltTy;
1013 case IITDescriptor::PtrToArgument: {
1014 Type *Ty = Tys[D.getArgumentNumber()];
1015 return PointerType::getUnqual(Ty);
1017 case IITDescriptor::PtrToElt: {
1018 Type *Ty = Tys[D.getArgumentNumber()];
1019 VectorType *VTy = dyn_cast<VectorType>(Ty);
1020 if (!VTy)
1021 llvm_unreachable("Expected an argument of Vector Type");
1022 Type *EltTy = VTy->getVectorElementType();
1023 return PointerType::getUnqual(EltTy);
1025 case IITDescriptor::VecElementArgument: {
1026 Type *Ty = Tys[D.getArgumentNumber()];
1027 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1028 return VTy->getElementType();
1029 llvm_unreachable("Expected an argument of Vector Type");
1031 case IITDescriptor::VecOfBitcastsToInt: {
1032 Type *Ty = Tys[D.getArgumentNumber()];
1033 VectorType *VTy = dyn_cast<VectorType>(Ty);
1034 assert(VTy && "Expected an argument of Vector Type");
1035 return VectorType::getInteger(VTy);
1037 case IITDescriptor::VecOfAnyPtrsToElt:
1038 // Return the overloaded type (which determines the pointers address space)
1039 return Tys[D.getOverloadArgNumber()];
1040 case IITDescriptor::ScalableVecArgument: {
1041 Type *Ty = DecodeFixedType(Infos, Tys, Context);
1042 return VectorType::get(Ty->getVectorElementType(),
1043 { Ty->getVectorNumElements(), true });
1046 llvm_unreachable("unhandled");
1049 FunctionType *Intrinsic::getType(LLVMContext &Context,
1050 ID id, ArrayRef<Type*> Tys) {
1051 SmallVector<IITDescriptor, 8> Table;
1052 getIntrinsicInfoTableEntries(id, Table);
1054 ArrayRef<IITDescriptor> TableRef = Table;
1055 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1057 SmallVector<Type*, 8> ArgTys;
1058 while (!TableRef.empty())
1059 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1061 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1062 // If we see void type as the type of the last argument, it is vararg intrinsic
1063 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1064 ArgTys.pop_back();
1065 return FunctionType::get(ResultTy, ArgTys, true);
1067 return FunctionType::get(ResultTy, ArgTys, false);
1070 bool Intrinsic::isOverloaded(ID id) {
1071 #define GET_INTRINSIC_OVERLOAD_TABLE
1072 #include "llvm/IR/IntrinsicImpl.inc"
1073 #undef GET_INTRINSIC_OVERLOAD_TABLE
1076 bool Intrinsic::isLeaf(ID id) {
1077 switch (id) {
1078 default:
1079 return true;
1081 case Intrinsic::experimental_gc_statepoint:
1082 case Intrinsic::experimental_patchpoint_void:
1083 case Intrinsic::experimental_patchpoint_i64:
1084 return false;
1088 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1089 #define GET_INTRINSIC_ATTRIBUTES
1090 #include "llvm/IR/IntrinsicImpl.inc"
1091 #undef GET_INTRINSIC_ATTRIBUTES
1093 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1094 // There can never be multiple globals with the same name of different types,
1095 // because intrinsics must be a specific type.
1096 return cast<Function>(
1097 M->getOrInsertFunction(getName(id, Tys),
1098 getType(M->getContext(), id, Tys))
1099 .getCallee());
1102 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1103 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1104 #include "llvm/IR/IntrinsicImpl.inc"
1105 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1107 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1108 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1109 #include "llvm/IR/IntrinsicImpl.inc"
1110 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1112 using DeferredIntrinsicMatchPair =
1113 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1115 static bool matchIntrinsicType(
1116 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1117 SmallVectorImpl<Type *> &ArgTys,
1118 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1119 bool IsDeferredCheck) {
1120 using namespace Intrinsic;
1122 // If we ran out of descriptors, there are too many arguments.
1123 if (Infos.empty()) return true;
1125 // Do this before slicing off the 'front' part
1126 auto InfosRef = Infos;
1127 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1128 DeferredChecks.emplace_back(T, InfosRef);
1129 return false;
1132 IITDescriptor D = Infos.front();
1133 Infos = Infos.slice(1);
1135 switch (D.Kind) {
1136 case IITDescriptor::Void: return !Ty->isVoidTy();
1137 case IITDescriptor::VarArg: return true;
1138 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1139 case IITDescriptor::Token: return !Ty->isTokenTy();
1140 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1141 case IITDescriptor::Half: return !Ty->isHalfTy();
1142 case IITDescriptor::Float: return !Ty->isFloatTy();
1143 case IITDescriptor::Double: return !Ty->isDoubleTy();
1144 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1145 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1146 case IITDescriptor::Vector: {
1147 VectorType *VT = dyn_cast<VectorType>(Ty);
1148 return !VT || VT->getNumElements() != D.Vector_Width ||
1149 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1150 DeferredChecks, IsDeferredCheck);
1152 case IITDescriptor::Pointer: {
1153 PointerType *PT = dyn_cast<PointerType>(Ty);
1154 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1155 matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1156 DeferredChecks, IsDeferredCheck);
1159 case IITDescriptor::Struct: {
1160 StructType *ST = dyn_cast<StructType>(Ty);
1161 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1162 return true;
1164 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1165 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1166 DeferredChecks, IsDeferredCheck))
1167 return true;
1168 return false;
1171 case IITDescriptor::Argument:
1172 // If this is the second occurrence of an argument,
1173 // verify that the later instance matches the previous instance.
1174 if (D.getArgumentNumber() < ArgTys.size())
1175 return Ty != ArgTys[D.getArgumentNumber()];
1177 if (D.getArgumentNumber() > ArgTys.size() ||
1178 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1179 return IsDeferredCheck || DeferCheck(Ty);
1181 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1182 "Table consistency error");
1183 ArgTys.push_back(Ty);
1185 switch (D.getArgumentKind()) {
1186 case IITDescriptor::AK_Any: return false; // Success
1187 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1188 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1189 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1190 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1191 default: break;
1193 llvm_unreachable("all argument kinds not covered");
1195 case IITDescriptor::ExtendArgument: {
1196 // If this is a forward reference, defer the check for later.
1197 if (D.getArgumentNumber() >= ArgTys.size())
1198 return IsDeferredCheck || DeferCheck(Ty);
1200 Type *NewTy = ArgTys[D.getArgumentNumber()];
1201 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1202 NewTy = VectorType::getExtendedElementVectorType(VTy);
1203 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1204 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1205 else
1206 return true;
1208 return Ty != NewTy;
1210 case IITDescriptor::TruncArgument: {
1211 // If this is a forward reference, defer the check for later.
1212 if (D.getArgumentNumber() >= ArgTys.size())
1213 return IsDeferredCheck || DeferCheck(Ty);
1215 Type *NewTy = ArgTys[D.getArgumentNumber()];
1216 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1217 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1218 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1219 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1220 else
1221 return true;
1223 return Ty != NewTy;
1225 case IITDescriptor::HalfVecArgument:
1226 // If this is a forward reference, defer the check for later.
1227 if (D.getArgumentNumber() >= ArgTys.size())
1228 return IsDeferredCheck || DeferCheck(Ty);
1229 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1230 VectorType::getHalfElementsVectorType(
1231 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1232 case IITDescriptor::SameVecWidthArgument: {
1233 if (D.getArgumentNumber() >= ArgTys.size()) {
1234 // Defer check and subsequent check for the vector element type.
1235 Infos = Infos.slice(1);
1236 return IsDeferredCheck || DeferCheck(Ty);
1238 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1239 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1240 // Both must be vectors of the same number of elements or neither.
1241 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1242 return true;
1243 Type *EltTy = Ty;
1244 if (ThisArgType) {
1245 if (ReferenceType->getElementCount() !=
1246 ThisArgType->getElementCount())
1247 return true;
1248 EltTy = ThisArgType->getVectorElementType();
1250 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1251 IsDeferredCheck);
1253 case IITDescriptor::PtrToArgument: {
1254 if (D.getArgumentNumber() >= ArgTys.size())
1255 return IsDeferredCheck || DeferCheck(Ty);
1256 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1257 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1258 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1260 case IITDescriptor::PtrToElt: {
1261 if (D.getArgumentNumber() >= ArgTys.size())
1262 return IsDeferredCheck || DeferCheck(Ty);
1263 VectorType * ReferenceType =
1264 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1265 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1267 return (!ThisArgType || !ReferenceType ||
1268 ThisArgType->getElementType() != ReferenceType->getElementType());
1270 case IITDescriptor::VecOfAnyPtrsToElt: {
1271 unsigned RefArgNumber = D.getRefArgNumber();
1272 if (RefArgNumber >= ArgTys.size()) {
1273 if (IsDeferredCheck)
1274 return true;
1275 // If forward referencing, already add the pointer-vector type and
1276 // defer the checks for later.
1277 ArgTys.push_back(Ty);
1278 return DeferCheck(Ty);
1281 if (!IsDeferredCheck){
1282 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1283 "Table consistency error");
1284 ArgTys.push_back(Ty);
1287 // Verify the overloaded type "matches" the Ref type.
1288 // i.e. Ty is a vector with the same width as Ref.
1289 // Composed of pointers to the same element type as Ref.
1290 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1291 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1292 if (!ThisArgVecTy || !ReferenceType ||
1293 (ReferenceType->getVectorNumElements() !=
1294 ThisArgVecTy->getVectorNumElements()))
1295 return true;
1296 PointerType *ThisArgEltTy =
1297 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1298 if (!ThisArgEltTy)
1299 return true;
1300 return ThisArgEltTy->getElementType() !=
1301 ReferenceType->getVectorElementType();
1303 case IITDescriptor::VecElementArgument: {
1304 if (D.getArgumentNumber() >= ArgTys.size())
1305 return IsDeferredCheck ? true : DeferCheck(Ty);
1306 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1307 return !ReferenceType || Ty != ReferenceType->getElementType();
1309 case IITDescriptor::Subdivide2Argument:
1310 case IITDescriptor::Subdivide4Argument: {
1311 // If this is a forward reference, defer the check for later.
1312 if (D.getArgumentNumber() >= ArgTys.size())
1313 return IsDeferredCheck || DeferCheck(Ty);
1315 Type *NewTy = ArgTys[D.getArgumentNumber()];
1316 if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1317 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1318 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1319 return Ty != NewTy;
1321 return true;
1323 case IITDescriptor::ScalableVecArgument: {
1324 VectorType *VTy = dyn_cast<VectorType>(Ty);
1325 if (!VTy || !VTy->isScalable())
1326 return true;
1327 return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1328 IsDeferredCheck);
1330 case IITDescriptor::VecOfBitcastsToInt: {
1331 if (D.getArgumentNumber() >= ArgTys.size())
1332 return IsDeferredCheck || DeferCheck(Ty);
1333 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1334 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1335 if (!ThisArgVecTy || !ReferenceType)
1336 return true;
1337 return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1340 llvm_unreachable("unhandled");
1343 Intrinsic::MatchIntrinsicTypesResult
1344 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1345 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1346 SmallVectorImpl<Type *> &ArgTys) {
1347 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1348 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1349 false))
1350 return MatchIntrinsicTypes_NoMatchRet;
1352 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1354 for (auto Ty : FTy->params())
1355 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1356 return MatchIntrinsicTypes_NoMatchArg;
1358 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1359 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1360 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1361 true))
1362 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1363 : MatchIntrinsicTypes_NoMatchArg;
1366 return MatchIntrinsicTypes_Match;
1369 bool
1370 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1371 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1372 // If there are no descriptors left, then it can't be a vararg.
1373 if (Infos.empty())
1374 return isVarArg;
1376 // There should be only one descriptor remaining at this point.
1377 if (Infos.size() != 1)
1378 return true;
1380 // Check and verify the descriptor.
1381 IITDescriptor D = Infos.front();
1382 Infos = Infos.slice(1);
1383 if (D.Kind == IITDescriptor::VarArg)
1384 return !isVarArg;
1386 return true;
1389 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1390 Intrinsic::ID ID = F->getIntrinsicID();
1391 if (!ID)
1392 return None;
1394 FunctionType *FTy = F->getFunctionType();
1395 // Accumulate an array of overloaded types for the given intrinsic
1396 SmallVector<Type *, 4> ArgTys;
1398 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1399 getIntrinsicInfoTableEntries(ID, Table);
1400 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1402 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1403 return None;
1404 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1405 return None;
1408 StringRef Name = F->getName();
1409 if (Name == Intrinsic::getName(ID, ArgTys))
1410 return None;
1412 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1413 NewDecl->setCallingConv(F->getCallingConv());
1414 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1415 return NewDecl;
1418 /// hasAddressTaken - returns true if there are any uses of this function
1419 /// other than direct calls or invokes to it.
1420 bool Function::hasAddressTaken(const User* *PutOffender) const {
1421 for (const Use &U : uses()) {
1422 const User *FU = U.getUser();
1423 if (isa<BlockAddress>(FU))
1424 continue;
1425 const auto *Call = dyn_cast<CallBase>(FU);
1426 if (!Call) {
1427 if (PutOffender)
1428 *PutOffender = FU;
1429 return true;
1431 if (!Call->isCallee(&U)) {
1432 if (PutOffender)
1433 *PutOffender = FU;
1434 return true;
1437 return false;
1440 bool Function::isDefTriviallyDead() const {
1441 // Check the linkage
1442 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1443 !hasAvailableExternallyLinkage())
1444 return false;
1446 // Check if the function is used by anything other than a blockaddress.
1447 for (const User *U : users())
1448 if (!isa<BlockAddress>(U))
1449 return false;
1451 return true;
1454 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1455 /// setjmp or other function that gcc recognizes as "returning twice".
1456 bool Function::callsFunctionThatReturnsTwice() const {
1457 for (const Instruction &I : instructions(this))
1458 if (const auto *Call = dyn_cast<CallBase>(&I))
1459 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1460 return true;
1462 return false;
1465 Constant *Function::getPersonalityFn() const {
1466 assert(hasPersonalityFn() && getNumOperands());
1467 return cast<Constant>(Op<0>());
1470 void Function::setPersonalityFn(Constant *Fn) {
1471 setHungoffOperand<0>(Fn);
1472 setValueSubclassDataBit(3, Fn != nullptr);
1475 Constant *Function::getPrefixData() const {
1476 assert(hasPrefixData() && getNumOperands());
1477 return cast<Constant>(Op<1>());
1480 void Function::setPrefixData(Constant *PrefixData) {
1481 setHungoffOperand<1>(PrefixData);
1482 setValueSubclassDataBit(1, PrefixData != nullptr);
1485 Constant *Function::getPrologueData() const {
1486 assert(hasPrologueData() && getNumOperands());
1487 return cast<Constant>(Op<2>());
1490 void Function::setPrologueData(Constant *PrologueData) {
1491 setHungoffOperand<2>(PrologueData);
1492 setValueSubclassDataBit(2, PrologueData != nullptr);
1495 void Function::allocHungoffUselist() {
1496 // If we've already allocated a uselist, stop here.
1497 if (getNumOperands())
1498 return;
1500 allocHungoffUses(3, /*IsPhi=*/ false);
1501 setNumHungOffUseOperands(3);
1503 // Initialize the uselist with placeholder operands to allow traversal.
1504 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1505 Op<0>().set(CPN);
1506 Op<1>().set(CPN);
1507 Op<2>().set(CPN);
1510 template <int Idx>
1511 void Function::setHungoffOperand(Constant *C) {
1512 if (C) {
1513 allocHungoffUselist();
1514 Op<Idx>().set(C);
1515 } else if (getNumOperands()) {
1516 Op<Idx>().set(
1517 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1521 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1522 assert(Bit < 16 && "SubclassData contains only 16 bits");
1523 if (On)
1524 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1525 else
1526 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1529 void Function::setEntryCount(ProfileCount Count,
1530 const DenseSet<GlobalValue::GUID> *S) {
1531 assert(Count.hasValue());
1532 #if !defined(NDEBUG)
1533 auto PrevCount = getEntryCount();
1534 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1535 #endif
1536 MDBuilder MDB(getContext());
1537 setMetadata(
1538 LLVMContext::MD_prof,
1539 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1542 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1543 const DenseSet<GlobalValue::GUID> *Imports) {
1544 setEntryCount(ProfileCount(Count, Type), Imports);
1547 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1548 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1549 if (MD && MD->getOperand(0))
1550 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1551 if (MDS->getString().equals("function_entry_count")) {
1552 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1553 uint64_t Count = CI->getValue().getZExtValue();
1554 // A value of -1 is used for SamplePGO when there were no samples.
1555 // Treat this the same as unknown.
1556 if (Count == (uint64_t)-1)
1557 return ProfileCount::getInvalid();
1558 return ProfileCount(Count, PCT_Real);
1559 } else if (AllowSynthetic &&
1560 MDS->getString().equals("synthetic_function_entry_count")) {
1561 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1562 uint64_t Count = CI->getValue().getZExtValue();
1563 return ProfileCount(Count, PCT_Synthetic);
1566 return ProfileCount::getInvalid();
1569 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1570 DenseSet<GlobalValue::GUID> R;
1571 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1572 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1573 if (MDS->getString().equals("function_entry_count"))
1574 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1575 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1576 ->getValue()
1577 .getZExtValue());
1578 return R;
1581 void Function::setSectionPrefix(StringRef Prefix) {
1582 MDBuilder MDB(getContext());
1583 setMetadata(LLVMContext::MD_section_prefix,
1584 MDB.createFunctionSectionPrefix(Prefix));
1587 Optional<StringRef> Function::getSectionPrefix() const {
1588 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1589 assert(cast<MDString>(MD->getOperand(0))
1590 ->getString()
1591 .equals("function_section_prefix") &&
1592 "Metadata not match");
1593 return cast<MDString>(MD->getOperand(1))->getString();
1595 return None;
1598 bool Function::nullPointerIsDefined() const {
1599 return getFnAttribute("null-pointer-is-valid")
1600 .getValueAsString()
1601 .equals("true");
1604 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1605 if (F && F->nullPointerIsDefined())
1606 return true;
1608 if (AS != 0)
1609 return true;
1611 return false;