1 //===- Function.cpp - Implement the Global object classes -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
56 using ProfileCount
= Function::ProfileCount
;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits
<BasicBlock
>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type
*Ty
, const Twine
&Name
, Function
*Par
, unsigned ArgNo
)
67 : Value(Ty
, Value::ArgumentVal
), Parent(Par
), ArgNo(ArgNo
) {
71 void Argument::setParent(Function
*parent
) {
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull
))
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal
);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf
);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError
);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca
);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs
= getParent()->getAttributes();
107 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ByVal
) ||
108 Attrs
.hasParamAttribute(getArgNo(), Attribute::InAlloca
);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 Type
*Argument::getParamByValType() const {
117 assert(getType()->isPointerTy() && "Only pointers have byval types");
118 return getParent()->getParamByValType(getArgNo());
121 uint64_t Argument::getDereferenceableBytes() const {
122 assert(getType()->isPointerTy() &&
123 "Only pointers have dereferenceable bytes");
124 return getParent()->getParamDereferenceableBytes(getArgNo());
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128 assert(getType()->isPointerTy() &&
129 "Only pointers have dereferenceable bytes");
130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
133 bool Argument::hasNestAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::Nest
);
138 bool Argument::hasNoAliasAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoAlias
);
143 bool Argument::hasNoCaptureAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::NoCapture
);
148 bool Argument::hasStructRetAttr() const {
149 if (!getType()->isPointerTy()) return false;
150 return hasAttribute(Attribute::StructRet
);
153 bool Argument::hasInRegAttr() const {
154 return hasAttribute(Attribute::InReg
);
157 bool Argument::hasReturnedAttr() const {
158 return hasAttribute(Attribute::Returned
);
161 bool Argument::hasZExtAttr() const {
162 return hasAttribute(Attribute::ZExt
);
165 bool Argument::hasSExtAttr() const {
166 return hasAttribute(Attribute::SExt
);
169 bool Argument::onlyReadsMemory() const {
170 AttributeList Attrs
= getParent()->getAttributes();
171 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadOnly
) ||
172 Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadNone
);
175 void Argument::addAttrs(AttrBuilder
&B
) {
176 AttributeList AL
= getParent()->getAttributes();
177 AL
= AL
.addParamAttributes(Parent
->getContext(), getArgNo(), B
);
178 getParent()->setAttributes(AL
);
181 void Argument::addAttr(Attribute::AttrKind Kind
) {
182 getParent()->addParamAttr(getArgNo(), Kind
);
185 void Argument::addAttr(Attribute Attr
) {
186 getParent()->addParamAttr(getArgNo(), Attr
);
189 void Argument::removeAttr(Attribute::AttrKind Kind
) {
190 getParent()->removeParamAttr(getArgNo(), Kind
);
193 bool Argument::hasAttribute(Attribute::AttrKind Kind
) const {
194 return getParent()->hasParamAttribute(getArgNo(), Kind
);
197 Attribute
Argument::getAttribute(Attribute::AttrKind Kind
) const {
198 return getParent()->getParamAttribute(getArgNo(), Kind
);
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
205 LLVMContext
&Function::getContext() const {
206 return getType()->getContext();
209 unsigned Function::getInstructionCount() const {
210 unsigned NumInstrs
= 0;
211 for (const BasicBlock
&BB
: BasicBlocks
)
212 NumInstrs
+= std::distance(BB
.instructionsWithoutDebug().begin(),
213 BB
.instructionsWithoutDebug().end());
217 Function
*Function::Create(FunctionType
*Ty
, LinkageTypes Linkage
,
218 const Twine
&N
, Module
&M
) {
219 return Create(Ty
, Linkage
, M
.getDataLayout().getProgramAddressSpace(), N
, &M
);
222 void Function::removeFromParent() {
223 getParent()->getFunctionList().remove(getIterator());
226 void Function::eraseFromParent() {
227 getParent()->getFunctionList().erase(getIterator());
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
234 static unsigned computeAddrSpace(unsigned AddrSpace
, Module
*M
) {
235 // If AS == -1 and we are passed a valid module pointer we place the function
236 // in the program address space. Otherwise we default to AS0.
237 if (AddrSpace
== static_cast<unsigned>(-1))
238 return M
? M
->getDataLayout().getProgramAddressSpace() : 0;
242 Function::Function(FunctionType
*Ty
, LinkageTypes Linkage
, unsigned AddrSpace
,
243 const Twine
&name
, Module
*ParentModule
)
244 : GlobalObject(Ty
, Value::FunctionVal
,
245 OperandTraits
<Function
>::op_begin(this), 0, Linkage
, name
,
246 computeAddrSpace(AddrSpace
, ParentModule
)),
247 NumArgs(Ty
->getNumParams()) {
248 assert(FunctionType::isValidReturnType(getReturnType()) &&
249 "invalid return type");
250 setGlobalObjectSubClassData(0);
252 // We only need a symbol table for a function if the context keeps value names
253 if (!getContext().shouldDiscardValueNames())
254 SymTab
= std::make_unique
<ValueSymbolTable
>();
256 // If the function has arguments, mark them as lazily built.
257 if (Ty
->getNumParams())
258 setValueSubclassData(1); // Set the "has lazy arguments" bit.
261 ParentModule
->getFunctionList().push_back(this);
263 HasLLVMReservedName
= getName().startswith("llvm.");
264 // Ensure intrinsics have the right parameter attributes.
265 // Note, the IntID field will have been set in Value::setName if this function
266 // name is a valid intrinsic ID.
268 setAttributes(Intrinsic::getAttributes(getContext(), IntID
));
271 Function::~Function() {
272 dropAllReferences(); // After this it is safe to delete instructions.
274 // Delete all of the method arguments and unlink from symbol table...
278 // Remove the function from the on-the-side GC table.
282 void Function::BuildLazyArguments() const {
283 // Create the arguments vector, all arguments start out unnamed.
284 auto *FT
= getFunctionType();
286 Arguments
= std::allocator
<Argument
>().allocate(NumArgs
);
287 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; ++i
) {
288 Type
*ArgTy
= FT
->getParamType(i
);
289 assert(!ArgTy
->isVoidTy() && "Cannot have void typed arguments!");
290 new (Arguments
+ i
) Argument(ArgTy
, "", const_cast<Function
*>(this), i
);
294 // Clear the lazy arguments bit.
295 unsigned SDC
= getSubclassDataFromValue();
297 const_cast<Function
*>(this)->setValueSubclassData(SDC
);
298 assert(!hasLazyArguments());
301 static MutableArrayRef
<Argument
> makeArgArray(Argument
*Args
, size_t Count
) {
302 return MutableArrayRef
<Argument
>(Args
, Count
);
305 void Function::clearArguments() {
306 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
310 std::allocator
<Argument
>().deallocate(Arguments
, NumArgs
);
314 void Function::stealArgumentListFrom(Function
&Src
) {
315 assert(isDeclaration() && "Expected no references to current arguments");
317 // Drop the current arguments, if any, and set the lazy argument bit.
318 if (!hasLazyArguments()) {
319 assert(llvm::all_of(makeArgArray(Arguments
, NumArgs
),
320 [](const Argument
&A
) { return A
.use_empty(); }) &&
321 "Expected arguments to be unused in declaration");
323 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
326 // Nothing to steal if Src has lazy arguments.
327 if (Src
.hasLazyArguments())
330 // Steal arguments from Src, and fix the lazy argument bits.
331 assert(arg_size() == Src
.arg_size());
332 Arguments
= Src
.Arguments
;
333 Src
.Arguments
= nullptr;
334 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
335 // FIXME: This does the work of transferNodesFromList inefficiently.
336 SmallString
<128> Name
;
346 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
347 assert(!hasLazyArguments());
348 Src
.setValueSubclassData(Src
.getSubclassDataFromValue() | (1 << 0));
351 // dropAllReferences() - This function causes all the subinstructions to "let
352 // go" of all references that they are maintaining. This allows one to
353 // 'delete' a whole class at a time, even though there may be circular
354 // references... first all references are dropped, and all use counts go to
355 // zero. Then everything is deleted for real. Note that no operations are
356 // valid on an object that has "dropped all references", except operator
359 void Function::dropAllReferences() {
360 setIsMaterializable(false);
362 for (BasicBlock
&BB
: *this)
363 BB
.dropAllReferences();
365 // Delete all basic blocks. They are now unused, except possibly by
366 // blockaddresses, but BasicBlock's destructor takes care of those.
367 while (!BasicBlocks
.empty())
368 BasicBlocks
.begin()->eraseFromParent();
370 // Drop uses of any optional data (real or placeholder).
371 if (getNumOperands()) {
372 User::dropAllReferences();
373 setNumHungOffUseOperands(0);
374 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
377 // Metadata is stored in a side-table.
381 void Function::addAttribute(unsigned i
, Attribute::AttrKind Kind
) {
382 AttributeList PAL
= getAttributes();
383 PAL
= PAL
.addAttribute(getContext(), i
, Kind
);
387 void Function::addAttribute(unsigned i
, Attribute Attr
) {
388 AttributeList PAL
= getAttributes();
389 PAL
= PAL
.addAttribute(getContext(), i
, Attr
);
393 void Function::addAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
394 AttributeList PAL
= getAttributes();
395 PAL
= PAL
.addAttributes(getContext(), i
, Attrs
);
399 void Function::addParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
400 AttributeList PAL
= getAttributes();
401 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Kind
);
405 void Function::addParamAttr(unsigned ArgNo
, Attribute Attr
) {
406 AttributeList PAL
= getAttributes();
407 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Attr
);
411 void Function::addParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
412 AttributeList PAL
= getAttributes();
413 PAL
= PAL
.addParamAttributes(getContext(), ArgNo
, Attrs
);
417 void Function::removeAttribute(unsigned i
, Attribute::AttrKind Kind
) {
418 AttributeList PAL
= getAttributes();
419 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
423 void Function::removeAttribute(unsigned i
, StringRef Kind
) {
424 AttributeList PAL
= getAttributes();
425 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
429 void Function::removeAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
430 AttributeList PAL
= getAttributes();
431 PAL
= PAL
.removeAttributes(getContext(), i
, Attrs
);
435 void Function::removeParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
436 AttributeList PAL
= getAttributes();
437 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
441 void Function::removeParamAttr(unsigned ArgNo
, StringRef Kind
) {
442 AttributeList PAL
= getAttributes();
443 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
447 void Function::removeParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
448 AttributeList PAL
= getAttributes();
449 PAL
= PAL
.removeParamAttributes(getContext(), ArgNo
, Attrs
);
453 void Function::addDereferenceableAttr(unsigned i
, uint64_t Bytes
) {
454 AttributeList PAL
= getAttributes();
455 PAL
= PAL
.addDereferenceableAttr(getContext(), i
, Bytes
);
459 void Function::addDereferenceableParamAttr(unsigned ArgNo
, uint64_t Bytes
) {
460 AttributeList PAL
= getAttributes();
461 PAL
= PAL
.addDereferenceableParamAttr(getContext(), ArgNo
, Bytes
);
465 void Function::addDereferenceableOrNullAttr(unsigned i
, uint64_t Bytes
) {
466 AttributeList PAL
= getAttributes();
467 PAL
= PAL
.addDereferenceableOrNullAttr(getContext(), i
, Bytes
);
471 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo
,
473 AttributeList PAL
= getAttributes();
474 PAL
= PAL
.addDereferenceableOrNullParamAttr(getContext(), ArgNo
, Bytes
);
478 const std::string
&Function::getGC() const {
479 assert(hasGC() && "Function has no collector");
480 return getContext().getGC(*this);
483 void Function::setGC(std::string Str
) {
484 setValueSubclassDataBit(14, !Str
.empty());
485 getContext().setGC(*this, std::move(Str
));
488 void Function::clearGC() {
491 getContext().deleteGC(*this);
492 setValueSubclassDataBit(14, false);
495 /// Copy all additional attributes (those not needed to create a Function) from
496 /// the Function Src to this one.
497 void Function::copyAttributesFrom(const Function
*Src
) {
498 GlobalObject::copyAttributesFrom(Src
);
499 setCallingConv(Src
->getCallingConv());
500 setAttributes(Src
->getAttributes());
505 if (Src
->hasPersonalityFn())
506 setPersonalityFn(Src
->getPersonalityFn());
507 if (Src
->hasPrefixData())
508 setPrefixData(Src
->getPrefixData());
509 if (Src
->hasPrologueData())
510 setPrologueData(Src
->getPrologueData());
513 /// Table of string intrinsic names indexed by enum value.
514 static const char * const IntrinsicNameTable
[] = {
516 #define GET_INTRINSIC_NAME_TABLE
517 #include "llvm/IR/IntrinsicImpl.inc"
518 #undef GET_INTRINSIC_NAME_TABLE
521 /// Table of per-target intrinsic name tables.
522 #define GET_INTRINSIC_TARGET_DATA
523 #include "llvm/IR/IntrinsicImpl.inc"
524 #undef GET_INTRINSIC_TARGET_DATA
526 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
527 /// target as \c Name, or the generic table if \c Name is not target specific.
529 /// Returns the relevant slice of \c IntrinsicNameTable
530 static ArrayRef
<const char *> findTargetSubtable(StringRef Name
) {
531 assert(Name
.startswith("llvm."));
533 ArrayRef
<IntrinsicTargetInfo
> Targets(TargetInfos
);
534 // Drop "llvm." and take the first dotted component. That will be the target
535 // if this is target specific.
536 StringRef Target
= Name
.drop_front(5).split('.').first
;
537 auto It
= partition_point(
538 Targets
, [=](const IntrinsicTargetInfo
&TI
) { return TI
.Name
< Target
; });
539 // We've either found the target or just fall back to the generic set, which
541 const auto &TI
= It
!= Targets
.end() && It
->Name
== Target
? *It
: Targets
[0];
542 return makeArrayRef(&IntrinsicNameTable
[1] + TI
.Offset
, TI
.Count
);
545 /// This does the actual lookup of an intrinsic ID which
546 /// matches the given function name.
547 Intrinsic::ID
Function::lookupIntrinsicID(StringRef Name
) {
548 ArrayRef
<const char *> NameTable
= findTargetSubtable(Name
);
549 int Idx
= Intrinsic::lookupLLVMIntrinsicByName(NameTable
, Name
);
551 return Intrinsic::not_intrinsic
;
553 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
554 // an index into a sub-table.
555 int Adjust
= NameTable
.data() - IntrinsicNameTable
;
556 Intrinsic::ID ID
= static_cast<Intrinsic::ID
>(Idx
+ Adjust
);
558 // If the intrinsic is not overloaded, require an exact match. If it is
559 // overloaded, require either exact or prefix match.
560 const auto MatchSize
= strlen(NameTable
[Idx
]);
561 assert(Name
.size() >= MatchSize
&& "Expected either exact or prefix match");
562 bool IsExactMatch
= Name
.size() == MatchSize
;
563 return IsExactMatch
|| isOverloaded(ID
) ? ID
: Intrinsic::not_intrinsic
;
566 void Function::recalculateIntrinsicID() {
567 StringRef Name
= getName();
568 if (!Name
.startswith("llvm.")) {
569 HasLLVMReservedName
= false;
570 IntID
= Intrinsic::not_intrinsic
;
573 HasLLVMReservedName
= true;
574 IntID
= lookupIntrinsicID(Name
);
577 /// Returns a stable mangling for the type specified for use in the name
578 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
579 /// of named types is simply their name. Manglings for unnamed types consist
580 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
581 /// combined with the mangling of their component types. A vararg function
582 /// type will have a suffix of 'vararg'. Since function types can contain
583 /// other function types, we close a function type mangling with suffix 'f'
584 /// which can't be confused with it's prefix. This ensures we don't have
585 /// collisions between two unrelated function types. Otherwise, you might
586 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
588 static std::string
getMangledTypeStr(Type
* Ty
) {
590 if (PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
591 Result
+= "p" + utostr(PTyp
->getAddressSpace()) +
592 getMangledTypeStr(PTyp
->getElementType());
593 } else if (ArrayType
* ATyp
= dyn_cast
<ArrayType
>(Ty
)) {
594 Result
+= "a" + utostr(ATyp
->getNumElements()) +
595 getMangledTypeStr(ATyp
->getElementType());
596 } else if (StructType
*STyp
= dyn_cast
<StructType
>(Ty
)) {
597 if (!STyp
->isLiteral()) {
599 Result
+= STyp
->getName();
602 for (auto Elem
: STyp
->elements())
603 Result
+= getMangledTypeStr(Elem
);
605 // Ensure nested structs are distinguishable.
607 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(Ty
)) {
608 Result
+= "f_" + getMangledTypeStr(FT
->getReturnType());
609 for (size_t i
= 0; i
< FT
->getNumParams(); i
++)
610 Result
+= getMangledTypeStr(FT
->getParamType(i
));
613 // Ensure nested function types are distinguishable.
615 } else if (VectorType
* VTy
= dyn_cast
<VectorType
>(Ty
)) {
616 if (VTy
->isScalable())
618 Result
+= "v" + utostr(VTy
->getVectorNumElements()) +
619 getMangledTypeStr(VTy
->getVectorElementType());
621 switch (Ty
->getTypeID()) {
622 default: llvm_unreachable("Unhandled type");
623 case Type::VoidTyID
: Result
+= "isVoid"; break;
624 case Type::MetadataTyID
: Result
+= "Metadata"; break;
625 case Type::HalfTyID
: Result
+= "f16"; break;
626 case Type::FloatTyID
: Result
+= "f32"; break;
627 case Type::DoubleTyID
: Result
+= "f64"; break;
628 case Type::X86_FP80TyID
: Result
+= "f80"; break;
629 case Type::FP128TyID
: Result
+= "f128"; break;
630 case Type::PPC_FP128TyID
: Result
+= "ppcf128"; break;
631 case Type::X86_MMXTyID
: Result
+= "x86mmx"; break;
632 case Type::IntegerTyID
:
633 Result
+= "i" + utostr(cast
<IntegerType
>(Ty
)->getBitWidth());
640 StringRef
Intrinsic::getName(ID id
) {
641 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
642 assert(!isOverloaded(id
) &&
643 "This version of getName does not support overloading");
644 return IntrinsicNameTable
[id
];
647 std::string
Intrinsic::getName(ID id
, ArrayRef
<Type
*> Tys
) {
648 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
649 std::string
Result(IntrinsicNameTable
[id
]);
650 for (Type
*Ty
: Tys
) {
651 Result
+= "." + getMangledTypeStr(Ty
);
656 /// IIT_Info - These are enumerators that describe the entries returned by the
657 /// getIntrinsicInfoTableEntries function.
659 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
661 // Common values should be encoded with 0-15.
679 // Values from 16+ are only encodable with the inefficient encoding.
684 IIT_EMPTYSTRUCT
= 20,
694 IIT_HALF_VEC_ARG
= 30,
695 IIT_SAME_VEC_WIDTH_ARG
= 31,
698 IIT_VEC_OF_ANYPTRS_TO_ELT
= 34,
706 IIT_VEC_ELEMENT
= 42,
707 IIT_SCALABLE_VEC
= 43,
708 IIT_SUBDIVIDE2_ARG
= 44,
709 IIT_SUBDIVIDE4_ARG
= 45,
710 IIT_VEC_OF_BITCASTS_TO_INT
= 46
713 static void DecodeIITType(unsigned &NextElt
, ArrayRef
<unsigned char> Infos
,
714 SmallVectorImpl
<Intrinsic::IITDescriptor
> &OutputTable
) {
715 using namespace Intrinsic
;
717 IIT_Info Info
= IIT_Info(Infos
[NextElt
++]);
718 unsigned StructElts
= 2;
722 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Void
, 0));
725 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VarArg
, 0));
728 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::MMX
, 0));
731 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Token
, 0));
734 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Metadata
, 0));
737 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Half
, 0));
740 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Float
, 0));
743 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Double
, 0));
746 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Quad
, 0));
749 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 1));
752 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 8));
755 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
,16));
758 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 32));
761 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 64));
764 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 128));
767 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1));
768 DecodeIITType(NextElt
, Infos
, OutputTable
);
771 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 2));
772 DecodeIITType(NextElt
, Infos
, OutputTable
);
775 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 4));
776 DecodeIITType(NextElt
, Infos
, OutputTable
);
779 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 8));
780 DecodeIITType(NextElt
, Infos
, OutputTable
);
783 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 16));
784 DecodeIITType(NextElt
, Infos
, OutputTable
);
787 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 32));
788 DecodeIITType(NextElt
, Infos
, OutputTable
);
791 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 64));
792 DecodeIITType(NextElt
, Infos
, OutputTable
);
795 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 512));
796 DecodeIITType(NextElt
, Infos
, OutputTable
);
799 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1024));
800 DecodeIITType(NextElt
, Infos
, OutputTable
);
803 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 0));
804 DecodeIITType(NextElt
, Infos
, OutputTable
);
806 case IIT_ANYPTR
: { // [ANYPTR addrspace, subtype]
807 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
,
809 DecodeIITType(NextElt
, Infos
, OutputTable
);
813 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
814 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Argument
, ArgInfo
));
817 case IIT_EXTEND_ARG
: {
818 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
819 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument
,
823 case IIT_TRUNC_ARG
: {
824 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
825 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::TruncArgument
,
829 case IIT_HALF_VEC_ARG
: {
830 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
831 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument
,
835 case IIT_SAME_VEC_WIDTH_ARG
: {
836 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
837 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument
,
841 case IIT_PTR_TO_ARG
: {
842 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
843 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument
,
847 case IIT_PTR_TO_ELT
: {
848 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
849 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToElt
, ArgInfo
));
852 case IIT_VEC_OF_ANYPTRS_TO_ELT
: {
853 unsigned short ArgNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
854 unsigned short RefNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
855 OutputTable
.push_back(
856 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt
, ArgNo
, RefNo
));
859 case IIT_EMPTYSTRUCT
:
860 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
, 0));
862 case IIT_STRUCT8
: ++StructElts
; LLVM_FALLTHROUGH
;
863 case IIT_STRUCT7
: ++StructElts
; LLVM_FALLTHROUGH
;
864 case IIT_STRUCT6
: ++StructElts
; LLVM_FALLTHROUGH
;
865 case IIT_STRUCT5
: ++StructElts
; LLVM_FALLTHROUGH
;
866 case IIT_STRUCT4
: ++StructElts
; LLVM_FALLTHROUGH
;
867 case IIT_STRUCT3
: ++StructElts
; LLVM_FALLTHROUGH
;
869 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
,StructElts
));
871 for (unsigned i
= 0; i
!= StructElts
; ++i
)
872 DecodeIITType(NextElt
, Infos
, OutputTable
);
875 case IIT_SUBDIVIDE2_ARG
: {
876 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
877 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument
,
881 case IIT_SUBDIVIDE4_ARG
: {
882 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
883 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument
,
887 case IIT_VEC_ELEMENT
: {
888 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
889 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument
,
893 case IIT_SCALABLE_VEC
: {
894 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument
,
896 DecodeIITType(NextElt
, Infos
, OutputTable
);
899 case IIT_VEC_OF_BITCASTS_TO_INT
: {
900 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
901 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt
,
906 llvm_unreachable("unhandled");
909 #define GET_INTRINSIC_GENERATOR_GLOBAL
910 #include "llvm/IR/IntrinsicImpl.inc"
911 #undef GET_INTRINSIC_GENERATOR_GLOBAL
913 void Intrinsic::getIntrinsicInfoTableEntries(ID id
,
914 SmallVectorImpl
<IITDescriptor
> &T
){
915 // Check to see if the intrinsic's type was expressible by the table.
916 unsigned TableVal
= IIT_Table
[id
-1];
918 // Decode the TableVal into an array of IITValues.
919 SmallVector
<unsigned char, 8> IITValues
;
920 ArrayRef
<unsigned char> IITEntries
;
921 unsigned NextElt
= 0;
922 if ((TableVal
>> 31) != 0) {
923 // This is an offset into the IIT_LongEncodingTable.
924 IITEntries
= IIT_LongEncodingTable
;
926 // Strip sentinel bit.
927 NextElt
= (TableVal
<< 1) >> 1;
929 // Decode the TableVal into an array of IITValues. If the entry was encoded
930 // into a single word in the table itself, decode it now.
932 IITValues
.push_back(TableVal
& 0xF);
936 IITEntries
= IITValues
;
940 // Okay, decode the table into the output vector of IITDescriptors.
941 DecodeIITType(NextElt
, IITEntries
, T
);
942 while (NextElt
!= IITEntries
.size() && IITEntries
[NextElt
] != 0)
943 DecodeIITType(NextElt
, IITEntries
, T
);
946 static Type
*DecodeFixedType(ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
947 ArrayRef
<Type
*> Tys
, LLVMContext
&Context
) {
948 using namespace Intrinsic
;
950 IITDescriptor D
= Infos
.front();
951 Infos
= Infos
.slice(1);
954 case IITDescriptor::Void
: return Type::getVoidTy(Context
);
955 case IITDescriptor::VarArg
: return Type::getVoidTy(Context
);
956 case IITDescriptor::MMX
: return Type::getX86_MMXTy(Context
);
957 case IITDescriptor::Token
: return Type::getTokenTy(Context
);
958 case IITDescriptor::Metadata
: return Type::getMetadataTy(Context
);
959 case IITDescriptor::Half
: return Type::getHalfTy(Context
);
960 case IITDescriptor::Float
: return Type::getFloatTy(Context
);
961 case IITDescriptor::Double
: return Type::getDoubleTy(Context
);
962 case IITDescriptor::Quad
: return Type::getFP128Ty(Context
);
964 case IITDescriptor::Integer
:
965 return IntegerType::get(Context
, D
.Integer_Width
);
966 case IITDescriptor::Vector
:
967 return VectorType::get(DecodeFixedType(Infos
, Tys
, Context
),D
.Vector_Width
);
968 case IITDescriptor::Pointer
:
969 return PointerType::get(DecodeFixedType(Infos
, Tys
, Context
),
970 D
.Pointer_AddressSpace
);
971 case IITDescriptor::Struct
: {
972 SmallVector
<Type
*, 8> Elts
;
973 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
974 Elts
.push_back(DecodeFixedType(Infos
, Tys
, Context
));
975 return StructType::get(Context
, Elts
);
977 case IITDescriptor::Argument
:
978 return Tys
[D
.getArgumentNumber()];
979 case IITDescriptor::ExtendArgument
: {
980 Type
*Ty
= Tys
[D
.getArgumentNumber()];
981 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
982 return VectorType::getExtendedElementVectorType(VTy
);
984 return IntegerType::get(Context
, 2 * cast
<IntegerType
>(Ty
)->getBitWidth());
986 case IITDescriptor::TruncArgument
: {
987 Type
*Ty
= Tys
[D
.getArgumentNumber()];
988 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
989 return VectorType::getTruncatedElementVectorType(VTy
);
991 IntegerType
*ITy
= cast
<IntegerType
>(Ty
);
992 assert(ITy
->getBitWidth() % 2 == 0);
993 return IntegerType::get(Context
, ITy
->getBitWidth() / 2);
995 case IITDescriptor::Subdivide2Argument
:
996 case IITDescriptor::Subdivide4Argument
: {
997 Type
*Ty
= Tys
[D
.getArgumentNumber()];
998 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
999 assert(VTy
&& "Expected an argument of Vector Type");
1000 int SubDivs
= D
.Kind
== IITDescriptor::Subdivide2Argument
? 1 : 2;
1001 return VectorType::getSubdividedVectorType(VTy
, SubDivs
);
1003 case IITDescriptor::HalfVecArgument
:
1004 return VectorType::getHalfElementsVectorType(cast
<VectorType
>(
1005 Tys
[D
.getArgumentNumber()]));
1006 case IITDescriptor::SameVecWidthArgument
: {
1007 Type
*EltTy
= DecodeFixedType(Infos
, Tys
, Context
);
1008 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1009 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
1010 return VectorType::get(EltTy
, VTy
->getElementCount());
1013 case IITDescriptor::PtrToArgument
: {
1014 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1015 return PointerType::getUnqual(Ty
);
1017 case IITDescriptor::PtrToElt
: {
1018 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1019 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1021 llvm_unreachable("Expected an argument of Vector Type");
1022 Type
*EltTy
= VTy
->getVectorElementType();
1023 return PointerType::getUnqual(EltTy
);
1025 case IITDescriptor::VecElementArgument
: {
1026 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1027 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
1028 return VTy
->getElementType();
1029 llvm_unreachable("Expected an argument of Vector Type");
1031 case IITDescriptor::VecOfBitcastsToInt
: {
1032 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1033 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1034 assert(VTy
&& "Expected an argument of Vector Type");
1035 return VectorType::getInteger(VTy
);
1037 case IITDescriptor::VecOfAnyPtrsToElt
:
1038 // Return the overloaded type (which determines the pointers address space)
1039 return Tys
[D
.getOverloadArgNumber()];
1040 case IITDescriptor::ScalableVecArgument
: {
1041 Type
*Ty
= DecodeFixedType(Infos
, Tys
, Context
);
1042 return VectorType::get(Ty
->getVectorElementType(),
1043 { Ty
->getVectorNumElements(), true });
1046 llvm_unreachable("unhandled");
1049 FunctionType
*Intrinsic::getType(LLVMContext
&Context
,
1050 ID id
, ArrayRef
<Type
*> Tys
) {
1051 SmallVector
<IITDescriptor
, 8> Table
;
1052 getIntrinsicInfoTableEntries(id
, Table
);
1054 ArrayRef
<IITDescriptor
> TableRef
= Table
;
1055 Type
*ResultTy
= DecodeFixedType(TableRef
, Tys
, Context
);
1057 SmallVector
<Type
*, 8> ArgTys
;
1058 while (!TableRef
.empty())
1059 ArgTys
.push_back(DecodeFixedType(TableRef
, Tys
, Context
));
1061 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1062 // If we see void type as the type of the last argument, it is vararg intrinsic
1063 if (!ArgTys
.empty() && ArgTys
.back()->isVoidTy()) {
1065 return FunctionType::get(ResultTy
, ArgTys
, true);
1067 return FunctionType::get(ResultTy
, ArgTys
, false);
1070 bool Intrinsic::isOverloaded(ID id
) {
1071 #define GET_INTRINSIC_OVERLOAD_TABLE
1072 #include "llvm/IR/IntrinsicImpl.inc"
1073 #undef GET_INTRINSIC_OVERLOAD_TABLE
1076 bool Intrinsic::isLeaf(ID id
) {
1081 case Intrinsic::experimental_gc_statepoint
:
1082 case Intrinsic::experimental_patchpoint_void
:
1083 case Intrinsic::experimental_patchpoint_i64
:
1088 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1089 #define GET_INTRINSIC_ATTRIBUTES
1090 #include "llvm/IR/IntrinsicImpl.inc"
1091 #undef GET_INTRINSIC_ATTRIBUTES
1093 Function
*Intrinsic::getDeclaration(Module
*M
, ID id
, ArrayRef
<Type
*> Tys
) {
1094 // There can never be multiple globals with the same name of different types,
1095 // because intrinsics must be a specific type.
1096 return cast
<Function
>(
1097 M
->getOrInsertFunction(getName(id
, Tys
),
1098 getType(M
->getContext(), id
, Tys
))
1102 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1103 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1104 #include "llvm/IR/IntrinsicImpl.inc"
1105 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1107 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1108 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1109 #include "llvm/IR/IntrinsicImpl.inc"
1110 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1112 using DeferredIntrinsicMatchPair
=
1113 std::pair
<Type
*, ArrayRef
<Intrinsic::IITDescriptor
>>;
1115 static bool matchIntrinsicType(
1116 Type
*Ty
, ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1117 SmallVectorImpl
<Type
*> &ArgTys
,
1118 SmallVectorImpl
<DeferredIntrinsicMatchPair
> &DeferredChecks
,
1119 bool IsDeferredCheck
) {
1120 using namespace Intrinsic
;
1122 // If we ran out of descriptors, there are too many arguments.
1123 if (Infos
.empty()) return true;
1125 // Do this before slicing off the 'front' part
1126 auto InfosRef
= Infos
;
1127 auto DeferCheck
= [&DeferredChecks
, &InfosRef
](Type
*T
) {
1128 DeferredChecks
.emplace_back(T
, InfosRef
);
1132 IITDescriptor D
= Infos
.front();
1133 Infos
= Infos
.slice(1);
1136 case IITDescriptor::Void
: return !Ty
->isVoidTy();
1137 case IITDescriptor::VarArg
: return true;
1138 case IITDescriptor::MMX
: return !Ty
->isX86_MMXTy();
1139 case IITDescriptor::Token
: return !Ty
->isTokenTy();
1140 case IITDescriptor::Metadata
: return !Ty
->isMetadataTy();
1141 case IITDescriptor::Half
: return !Ty
->isHalfTy();
1142 case IITDescriptor::Float
: return !Ty
->isFloatTy();
1143 case IITDescriptor::Double
: return !Ty
->isDoubleTy();
1144 case IITDescriptor::Quad
: return !Ty
->isFP128Ty();
1145 case IITDescriptor::Integer
: return !Ty
->isIntegerTy(D
.Integer_Width
);
1146 case IITDescriptor::Vector
: {
1147 VectorType
*VT
= dyn_cast
<VectorType
>(Ty
);
1148 return !VT
|| VT
->getNumElements() != D
.Vector_Width
||
1149 matchIntrinsicType(VT
->getElementType(), Infos
, ArgTys
,
1150 DeferredChecks
, IsDeferredCheck
);
1152 case IITDescriptor::Pointer
: {
1153 PointerType
*PT
= dyn_cast
<PointerType
>(Ty
);
1154 return !PT
|| PT
->getAddressSpace() != D
.Pointer_AddressSpace
||
1155 matchIntrinsicType(PT
->getElementType(), Infos
, ArgTys
,
1156 DeferredChecks
, IsDeferredCheck
);
1159 case IITDescriptor::Struct
: {
1160 StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1161 if (!ST
|| ST
->getNumElements() != D
.Struct_NumElements
)
1164 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
1165 if (matchIntrinsicType(ST
->getElementType(i
), Infos
, ArgTys
,
1166 DeferredChecks
, IsDeferredCheck
))
1171 case IITDescriptor::Argument
:
1172 // If this is the second occurrence of an argument,
1173 // verify that the later instance matches the previous instance.
1174 if (D
.getArgumentNumber() < ArgTys
.size())
1175 return Ty
!= ArgTys
[D
.getArgumentNumber()];
1177 if (D
.getArgumentNumber() > ArgTys
.size() ||
1178 D
.getArgumentKind() == IITDescriptor::AK_MatchType
)
1179 return IsDeferredCheck
|| DeferCheck(Ty
);
1181 assert(D
.getArgumentNumber() == ArgTys
.size() && !IsDeferredCheck
&&
1182 "Table consistency error");
1183 ArgTys
.push_back(Ty
);
1185 switch (D
.getArgumentKind()) {
1186 case IITDescriptor::AK_Any
: return false; // Success
1187 case IITDescriptor::AK_AnyInteger
: return !Ty
->isIntOrIntVectorTy();
1188 case IITDescriptor::AK_AnyFloat
: return !Ty
->isFPOrFPVectorTy();
1189 case IITDescriptor::AK_AnyVector
: return !isa
<VectorType
>(Ty
);
1190 case IITDescriptor::AK_AnyPointer
: return !isa
<PointerType
>(Ty
);
1193 llvm_unreachable("all argument kinds not covered");
1195 case IITDescriptor::ExtendArgument
: {
1196 // If this is a forward reference, defer the check for later.
1197 if (D
.getArgumentNumber() >= ArgTys
.size())
1198 return IsDeferredCheck
|| DeferCheck(Ty
);
1200 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1201 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1202 NewTy
= VectorType::getExtendedElementVectorType(VTy
);
1203 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1204 NewTy
= IntegerType::get(ITy
->getContext(), 2 * ITy
->getBitWidth());
1210 case IITDescriptor::TruncArgument
: {
1211 // If this is a forward reference, defer the check for later.
1212 if (D
.getArgumentNumber() >= ArgTys
.size())
1213 return IsDeferredCheck
|| DeferCheck(Ty
);
1215 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1216 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1217 NewTy
= VectorType::getTruncatedElementVectorType(VTy
);
1218 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1219 NewTy
= IntegerType::get(ITy
->getContext(), ITy
->getBitWidth() / 2);
1225 case IITDescriptor::HalfVecArgument
:
1226 // If this is a forward reference, defer the check for later.
1227 if (D
.getArgumentNumber() >= ArgTys
.size())
1228 return IsDeferredCheck
|| DeferCheck(Ty
);
1229 return !isa
<VectorType
>(ArgTys
[D
.getArgumentNumber()]) ||
1230 VectorType::getHalfElementsVectorType(
1231 cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()])) != Ty
;
1232 case IITDescriptor::SameVecWidthArgument
: {
1233 if (D
.getArgumentNumber() >= ArgTys
.size()) {
1234 // Defer check and subsequent check for the vector element type.
1235 Infos
= Infos
.slice(1);
1236 return IsDeferredCheck
|| DeferCheck(Ty
);
1238 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1239 auto *ThisArgType
= dyn_cast
<VectorType
>(Ty
);
1240 // Both must be vectors of the same number of elements or neither.
1241 if ((ReferenceType
!= nullptr) != (ThisArgType
!= nullptr))
1245 if (ReferenceType
->getElementCount() !=
1246 ThisArgType
->getElementCount())
1248 EltTy
= ThisArgType
->getVectorElementType();
1250 return matchIntrinsicType(EltTy
, Infos
, ArgTys
, DeferredChecks
,
1253 case IITDescriptor::PtrToArgument
: {
1254 if (D
.getArgumentNumber() >= ArgTys
.size())
1255 return IsDeferredCheck
|| DeferCheck(Ty
);
1256 Type
* ReferenceType
= ArgTys
[D
.getArgumentNumber()];
1257 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1258 return (!ThisArgType
|| ThisArgType
->getElementType() != ReferenceType
);
1260 case IITDescriptor::PtrToElt
: {
1261 if (D
.getArgumentNumber() >= ArgTys
.size())
1262 return IsDeferredCheck
|| DeferCheck(Ty
);
1263 VectorType
* ReferenceType
=
1264 dyn_cast
<VectorType
> (ArgTys
[D
.getArgumentNumber()]);
1265 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1267 return (!ThisArgType
|| !ReferenceType
||
1268 ThisArgType
->getElementType() != ReferenceType
->getElementType());
1270 case IITDescriptor::VecOfAnyPtrsToElt
: {
1271 unsigned RefArgNumber
= D
.getRefArgNumber();
1272 if (RefArgNumber
>= ArgTys
.size()) {
1273 if (IsDeferredCheck
)
1275 // If forward referencing, already add the pointer-vector type and
1276 // defer the checks for later.
1277 ArgTys
.push_back(Ty
);
1278 return DeferCheck(Ty
);
1281 if (!IsDeferredCheck
){
1282 assert(D
.getOverloadArgNumber() == ArgTys
.size() &&
1283 "Table consistency error");
1284 ArgTys
.push_back(Ty
);
1287 // Verify the overloaded type "matches" the Ref type.
1288 // i.e. Ty is a vector with the same width as Ref.
1289 // Composed of pointers to the same element type as Ref.
1290 VectorType
*ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[RefArgNumber
]);
1291 VectorType
*ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1292 if (!ThisArgVecTy
|| !ReferenceType
||
1293 (ReferenceType
->getVectorNumElements() !=
1294 ThisArgVecTy
->getVectorNumElements()))
1296 PointerType
*ThisArgEltTy
=
1297 dyn_cast
<PointerType
>(ThisArgVecTy
->getVectorElementType());
1300 return ThisArgEltTy
->getElementType() !=
1301 ReferenceType
->getVectorElementType();
1303 case IITDescriptor::VecElementArgument
: {
1304 if (D
.getArgumentNumber() >= ArgTys
.size())
1305 return IsDeferredCheck
? true : DeferCheck(Ty
);
1306 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1307 return !ReferenceType
|| Ty
!= ReferenceType
->getElementType();
1309 case IITDescriptor::Subdivide2Argument
:
1310 case IITDescriptor::Subdivide4Argument
: {
1311 // If this is a forward reference, defer the check for later.
1312 if (D
.getArgumentNumber() >= ArgTys
.size())
1313 return IsDeferredCheck
|| DeferCheck(Ty
);
1315 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1316 if (auto *VTy
= dyn_cast
<VectorType
>(NewTy
)) {
1317 int SubDivs
= D
.Kind
== IITDescriptor::Subdivide2Argument
? 1 : 2;
1318 NewTy
= VectorType::getSubdividedVectorType(VTy
, SubDivs
);
1323 case IITDescriptor::ScalableVecArgument
: {
1324 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1325 if (!VTy
|| !VTy
->isScalable())
1327 return matchIntrinsicType(VTy
, Infos
, ArgTys
, DeferredChecks
,
1330 case IITDescriptor::VecOfBitcastsToInt
: {
1331 if (D
.getArgumentNumber() >= ArgTys
.size())
1332 return IsDeferredCheck
|| DeferCheck(Ty
);
1333 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1334 auto *ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1335 if (!ThisArgVecTy
|| !ReferenceType
)
1337 return ThisArgVecTy
!= VectorType::getInteger(ReferenceType
);
1340 llvm_unreachable("unhandled");
1343 Intrinsic::MatchIntrinsicTypesResult
1344 Intrinsic::matchIntrinsicSignature(FunctionType
*FTy
,
1345 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1346 SmallVectorImpl
<Type
*> &ArgTys
) {
1347 SmallVector
<DeferredIntrinsicMatchPair
, 2> DeferredChecks
;
1348 if (matchIntrinsicType(FTy
->getReturnType(), Infos
, ArgTys
, DeferredChecks
,
1350 return MatchIntrinsicTypes_NoMatchRet
;
1352 unsigned NumDeferredReturnChecks
= DeferredChecks
.size();
1354 for (auto Ty
: FTy
->params())
1355 if (matchIntrinsicType(Ty
, Infos
, ArgTys
, DeferredChecks
, false))
1356 return MatchIntrinsicTypes_NoMatchArg
;
1358 for (unsigned I
= 0, E
= DeferredChecks
.size(); I
!= E
; ++I
) {
1359 DeferredIntrinsicMatchPair
&Check
= DeferredChecks
[I
];
1360 if (matchIntrinsicType(Check
.first
, Check
.second
, ArgTys
, DeferredChecks
,
1362 return I
< NumDeferredReturnChecks
? MatchIntrinsicTypes_NoMatchRet
1363 : MatchIntrinsicTypes_NoMatchArg
;
1366 return MatchIntrinsicTypes_Match
;
1370 Intrinsic::matchIntrinsicVarArg(bool isVarArg
,
1371 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
) {
1372 // If there are no descriptors left, then it can't be a vararg.
1376 // There should be only one descriptor remaining at this point.
1377 if (Infos
.size() != 1)
1380 // Check and verify the descriptor.
1381 IITDescriptor D
= Infos
.front();
1382 Infos
= Infos
.slice(1);
1383 if (D
.Kind
== IITDescriptor::VarArg
)
1389 Optional
<Function
*> Intrinsic::remangleIntrinsicFunction(Function
*F
) {
1390 Intrinsic::ID ID
= F
->getIntrinsicID();
1394 FunctionType
*FTy
= F
->getFunctionType();
1395 // Accumulate an array of overloaded types for the given intrinsic
1396 SmallVector
<Type
*, 4> ArgTys
;
1398 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
1399 getIntrinsicInfoTableEntries(ID
, Table
);
1400 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
1402 if (Intrinsic::matchIntrinsicSignature(FTy
, TableRef
, ArgTys
))
1404 if (Intrinsic::matchIntrinsicVarArg(FTy
->isVarArg(), TableRef
))
1408 StringRef Name
= F
->getName();
1409 if (Name
== Intrinsic::getName(ID
, ArgTys
))
1412 auto NewDecl
= Intrinsic::getDeclaration(F
->getParent(), ID
, ArgTys
);
1413 NewDecl
->setCallingConv(F
->getCallingConv());
1414 assert(NewDecl
->getFunctionType() == FTy
&& "Shouldn't change the signature");
1418 /// hasAddressTaken - returns true if there are any uses of this function
1419 /// other than direct calls or invokes to it.
1420 bool Function::hasAddressTaken(const User
* *PutOffender
) const {
1421 for (const Use
&U
: uses()) {
1422 const User
*FU
= U
.getUser();
1423 if (isa
<BlockAddress
>(FU
))
1425 const auto *Call
= dyn_cast
<CallBase
>(FU
);
1431 if (!Call
->isCallee(&U
)) {
1440 bool Function::isDefTriviallyDead() const {
1441 // Check the linkage
1442 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1443 !hasAvailableExternallyLinkage())
1446 // Check if the function is used by anything other than a blockaddress.
1447 for (const User
*U
: users())
1448 if (!isa
<BlockAddress
>(U
))
1454 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1455 /// setjmp or other function that gcc recognizes as "returning twice".
1456 bool Function::callsFunctionThatReturnsTwice() const {
1457 for (const Instruction
&I
: instructions(this))
1458 if (const auto *Call
= dyn_cast
<CallBase
>(&I
))
1459 if (Call
->hasFnAttr(Attribute::ReturnsTwice
))
1465 Constant
*Function::getPersonalityFn() const {
1466 assert(hasPersonalityFn() && getNumOperands());
1467 return cast
<Constant
>(Op
<0>());
1470 void Function::setPersonalityFn(Constant
*Fn
) {
1471 setHungoffOperand
<0>(Fn
);
1472 setValueSubclassDataBit(3, Fn
!= nullptr);
1475 Constant
*Function::getPrefixData() const {
1476 assert(hasPrefixData() && getNumOperands());
1477 return cast
<Constant
>(Op
<1>());
1480 void Function::setPrefixData(Constant
*PrefixData
) {
1481 setHungoffOperand
<1>(PrefixData
);
1482 setValueSubclassDataBit(1, PrefixData
!= nullptr);
1485 Constant
*Function::getPrologueData() const {
1486 assert(hasPrologueData() && getNumOperands());
1487 return cast
<Constant
>(Op
<2>());
1490 void Function::setPrologueData(Constant
*PrologueData
) {
1491 setHungoffOperand
<2>(PrologueData
);
1492 setValueSubclassDataBit(2, PrologueData
!= nullptr);
1495 void Function::allocHungoffUselist() {
1496 // If we've already allocated a uselist, stop here.
1497 if (getNumOperands())
1500 allocHungoffUses(3, /*IsPhi=*/ false);
1501 setNumHungOffUseOperands(3);
1503 // Initialize the uselist with placeholder operands to allow traversal.
1504 auto *CPN
= ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1511 void Function::setHungoffOperand(Constant
*C
) {
1513 allocHungoffUselist();
1515 } else if (getNumOperands()) {
1517 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1521 void Function::setValueSubclassDataBit(unsigned Bit
, bool On
) {
1522 assert(Bit
< 16 && "SubclassData contains only 16 bits");
1524 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit
));
1526 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit
));
1529 void Function::setEntryCount(ProfileCount Count
,
1530 const DenseSet
<GlobalValue::GUID
> *S
) {
1531 assert(Count
.hasValue());
1532 #if !defined(NDEBUG)
1533 auto PrevCount
= getEntryCount();
1534 assert(!PrevCount
.hasValue() || PrevCount
.getType() == Count
.getType());
1536 MDBuilder
MDB(getContext());
1538 LLVMContext::MD_prof
,
1539 MDB
.createFunctionEntryCount(Count
.getCount(), Count
.isSynthetic(), S
));
1542 void Function::setEntryCount(uint64_t Count
, Function::ProfileCountType Type
,
1543 const DenseSet
<GlobalValue::GUID
> *Imports
) {
1544 setEntryCount(ProfileCount(Count
, Type
), Imports
);
1547 ProfileCount
Function::getEntryCount(bool AllowSynthetic
) const {
1548 MDNode
*MD
= getMetadata(LLVMContext::MD_prof
);
1549 if (MD
&& MD
->getOperand(0))
1550 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0))) {
1551 if (MDS
->getString().equals("function_entry_count")) {
1552 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1553 uint64_t Count
= CI
->getValue().getZExtValue();
1554 // A value of -1 is used for SamplePGO when there were no samples.
1555 // Treat this the same as unknown.
1556 if (Count
== (uint64_t)-1)
1557 return ProfileCount::getInvalid();
1558 return ProfileCount(Count
, PCT_Real
);
1559 } else if (AllowSynthetic
&&
1560 MDS
->getString().equals("synthetic_function_entry_count")) {
1561 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1562 uint64_t Count
= CI
->getValue().getZExtValue();
1563 return ProfileCount(Count
, PCT_Synthetic
);
1566 return ProfileCount::getInvalid();
1569 DenseSet
<GlobalValue::GUID
> Function::getImportGUIDs() const {
1570 DenseSet
<GlobalValue::GUID
> R
;
1571 if (MDNode
*MD
= getMetadata(LLVMContext::MD_prof
))
1572 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0)))
1573 if (MDS
->getString().equals("function_entry_count"))
1574 for (unsigned i
= 2; i
< MD
->getNumOperands(); i
++)
1575 R
.insert(mdconst::extract
<ConstantInt
>(MD
->getOperand(i
))
1581 void Function::setSectionPrefix(StringRef Prefix
) {
1582 MDBuilder
MDB(getContext());
1583 setMetadata(LLVMContext::MD_section_prefix
,
1584 MDB
.createFunctionSectionPrefix(Prefix
));
1587 Optional
<StringRef
> Function::getSectionPrefix() const {
1588 if (MDNode
*MD
= getMetadata(LLVMContext::MD_section_prefix
)) {
1589 assert(cast
<MDString
>(MD
->getOperand(0))
1591 .equals("function_section_prefix") &&
1592 "Metadata not match");
1593 return cast
<MDString
>(MD
->getOperand(1))->getString();
1598 bool Function::nullPointerIsDefined() const {
1599 return getFnAttribute("null-pointer-is-valid")
1604 bool llvm::NullPointerIsDefined(const Function
*F
, unsigned AS
) {
1605 if (F
&& F
->nullPointerIsDefined())