[lit] Improve lit.Run class
[llvm-complete.git] / lib / IR / Verifier.cpp
blobb17fc433ed74c6bddb34566711d05ed38f9695aa
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
114 using namespace llvm;
116 namespace llvm {
118 struct VerifierSupport {
119 raw_ostream *OS;
120 const Module &M;
121 ModuleSlotTracker MST;
122 Triple TT;
123 const DataLayout &DL;
124 LLVMContext &Context;
126 /// Track the brokenness of the module while recursively visiting.
127 bool Broken = false;
128 /// Broken debug info can be "recovered" from by stripping the debug info.
129 bool BrokenDebugInfo = false;
130 /// Whether to treat broken debug info as an error.
131 bool TreatBrokenDebugInfoAsError = true;
133 explicit VerifierSupport(raw_ostream *OS, const Module &M)
134 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
135 Context(M.getContext()) {}
137 private:
138 void Write(const Module *M) {
139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 void Write(const Value *V) {
143 if (V)
144 Write(*V);
147 void Write(const Value &V) {
148 if (isa<Instruction>(V)) {
149 V.print(*OS, MST);
150 *OS << '\n';
151 } else {
152 V.printAsOperand(*OS, true, MST);
153 *OS << '\n';
157 void Write(const Metadata *MD) {
158 if (!MD)
159 return;
160 MD->print(*OS, MST, &M);
161 *OS << '\n';
164 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
165 Write(MD.get());
168 void Write(const NamedMDNode *NMD) {
169 if (!NMD)
170 return;
171 NMD->print(*OS, MST);
172 *OS << '\n';
175 void Write(Type *T) {
176 if (!T)
177 return;
178 *OS << ' ' << *T;
181 void Write(const Comdat *C) {
182 if (!C)
183 return;
184 *OS << *C;
187 void Write(const APInt *AI) {
188 if (!AI)
189 return;
190 *OS << *AI << '\n';
193 void Write(const unsigned i) { *OS << i << '\n'; }
195 template <typename T> void Write(ArrayRef<T> Vs) {
196 for (const T &V : Vs)
197 Write(V);
200 template <typename T1, typename... Ts>
201 void WriteTs(const T1 &V1, const Ts &... Vs) {
202 Write(V1);
203 WriteTs(Vs...);
206 template <typename... Ts> void WriteTs() {}
208 public:
209 /// A check failed, so printout out the condition and the message.
211 /// This provides a nice place to put a breakpoint if you want to see why
212 /// something is not correct.
213 void CheckFailed(const Twine &Message) {
214 if (OS)
215 *OS << Message << '\n';
216 Broken = true;
219 /// A check failed (with values to print).
221 /// This calls the Message-only version so that the above is easier to set a
222 /// breakpoint on.
223 template <typename T1, typename... Ts>
224 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
225 CheckFailed(Message);
226 if (OS)
227 WriteTs(V1, Vs...);
230 /// A debug info check failed.
231 void DebugInfoCheckFailed(const Twine &Message) {
232 if (OS)
233 *OS << Message << '\n';
234 Broken |= TreatBrokenDebugInfoAsError;
235 BrokenDebugInfo = true;
238 /// A debug info check failed (with values to print).
239 template <typename T1, typename... Ts>
240 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
241 const Ts &... Vs) {
242 DebugInfoCheckFailed(Message);
243 if (OS)
244 WriteTs(V1, Vs...);
248 } // namespace llvm
250 namespace {
252 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
253 friend class InstVisitor<Verifier>;
255 DominatorTree DT;
257 /// When verifying a basic block, keep track of all of the
258 /// instructions we have seen so far.
260 /// This allows us to do efficient dominance checks for the case when an
261 /// instruction has an operand that is an instruction in the same block.
262 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 /// Keep track of the metadata nodes that have been checked already.
265 SmallPtrSet<const Metadata *, 32> MDNodes;
267 /// Keep track which DISubprogram is attached to which function.
268 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
273 /// The result type for a landingpad.
274 Type *LandingPadResultTy;
276 /// Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo = false;
283 /// Whether source was present on the first DIFile encountered in each CU.
284 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
286 /// Stores the count of how many objects were passed to llvm.localescape for a
287 /// given function and the largest index passed to llvm.localrecover.
288 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
290 // Maps catchswitches and cleanuppads that unwind to siblings to the
291 // terminators that indicate the unwind, used to detect cycles therein.
292 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
294 /// Cache of constants visited in search of ConstantExprs.
295 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298 SmallVector<const Function *, 4> DeoptimizeDeclarations;
300 // Verify that this GlobalValue is only used in this module.
301 // This map is used to avoid visiting uses twice. We can arrive at a user
302 // twice, if they have multiple operands. In particular for very large
303 // constant expressions, we can arrive at a particular user many times.
304 SmallPtrSet<const Value *, 32> GlobalValueVisited;
306 // Keeps track of duplicate function argument debug info.
307 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
309 TBAAVerifier TBAAVerifyHelper;
311 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
313 public:
314 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
315 const Module &M)
316 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
317 SawFrameEscape(false), TBAAVerifyHelper(this) {
318 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
323 bool verify(const Function &F) {
324 assert(F.getParent() == &M &&
325 "An instance of this class only works with a specific module!");
327 // First ensure the function is well-enough formed to compute dominance
328 // information, and directly compute a dominance tree. We don't rely on the
329 // pass manager to provide this as it isolates us from a potentially
330 // out-of-date dominator tree and makes it significantly more complex to run
331 // this code outside of a pass manager.
332 // FIXME: It's really gross that we have to cast away constness here.
333 if (!F.empty())
334 DT.recalculate(const_cast<Function &>(F));
336 for (const BasicBlock &BB : F) {
337 if (!BB.empty() && BB.back().isTerminator())
338 continue;
340 if (OS) {
341 *OS << "Basic Block in function '" << F.getName()
342 << "' does not have terminator!\n";
343 BB.printAsOperand(*OS, true, MST);
344 *OS << "\n";
346 return false;
349 Broken = false;
350 // FIXME: We strip const here because the inst visitor strips const.
351 visit(const_cast<Function &>(F));
352 verifySiblingFuncletUnwinds();
353 InstsInThisBlock.clear();
354 DebugFnArgs.clear();
355 LandingPadResultTy = nullptr;
356 SawFrameEscape = false;
357 SiblingFuncletInfo.clear();
359 return !Broken;
362 /// Verify the module that this instance of \c Verifier was initialized with.
363 bool verify() {
364 Broken = false;
366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367 for (const Function &F : M)
368 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
369 DeoptimizeDeclarations.push_back(&F);
371 // Now that we've visited every function, verify that we never asked to
372 // recover a frame index that wasn't escaped.
373 verifyFrameRecoverIndices();
374 for (const GlobalVariable &GV : M.globals())
375 visitGlobalVariable(GV);
377 for (const GlobalAlias &GA : M.aliases())
378 visitGlobalAlias(GA);
380 for (const NamedMDNode &NMD : M.named_metadata())
381 visitNamedMDNode(NMD);
383 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
384 visitComdat(SMEC.getValue());
386 visitModuleFlags(M);
387 visitModuleIdents(M);
388 visitModuleCommandLines(M);
390 verifyCompileUnits();
392 verifyDeoptimizeCallingConvs();
393 DISubprogramAttachments.clear();
394 return !Broken;
397 private:
398 // Verification methods...
399 void visitGlobalValue(const GlobalValue &GV);
400 void visitGlobalVariable(const GlobalVariable &GV);
401 void visitGlobalAlias(const GlobalAlias &GA);
402 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
403 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
404 const GlobalAlias &A, const Constant &C);
405 void visitNamedMDNode(const NamedMDNode &NMD);
406 void visitMDNode(const MDNode &MD);
407 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
408 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
409 void visitComdat(const Comdat &C);
410 void visitModuleIdents(const Module &M);
411 void visitModuleCommandLines(const Module &M);
412 void visitModuleFlags(const Module &M);
413 void visitModuleFlag(const MDNode *Op,
414 DenseMap<const MDString *, const MDNode *> &SeenIDs,
415 SmallVectorImpl<const MDNode *> &Requirements);
416 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
417 void visitFunction(const Function &F);
418 void visitBasicBlock(BasicBlock &BB);
419 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
420 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
421 void visitProfMetadata(Instruction &I, MDNode *MD);
423 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
425 #include "llvm/IR/Metadata.def"
426 void visitDIScope(const DIScope &N);
427 void visitDIVariable(const DIVariable &N);
428 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
429 void visitDITemplateParameter(const DITemplateParameter &N);
431 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
433 // InstVisitor overrides...
434 using InstVisitor<Verifier>::visit;
435 void visit(Instruction &I);
437 void visitTruncInst(TruncInst &I);
438 void visitZExtInst(ZExtInst &I);
439 void visitSExtInst(SExtInst &I);
440 void visitFPTruncInst(FPTruncInst &I);
441 void visitFPExtInst(FPExtInst &I);
442 void visitFPToUIInst(FPToUIInst &I);
443 void visitFPToSIInst(FPToSIInst &I);
444 void visitUIToFPInst(UIToFPInst &I);
445 void visitSIToFPInst(SIToFPInst &I);
446 void visitIntToPtrInst(IntToPtrInst &I);
447 void visitPtrToIntInst(PtrToIntInst &I);
448 void visitBitCastInst(BitCastInst &I);
449 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
450 void visitPHINode(PHINode &PN);
451 void visitCallBase(CallBase &Call);
452 void visitUnaryOperator(UnaryOperator &U);
453 void visitBinaryOperator(BinaryOperator &B);
454 void visitICmpInst(ICmpInst &IC);
455 void visitFCmpInst(FCmpInst &FC);
456 void visitExtractElementInst(ExtractElementInst &EI);
457 void visitInsertElementInst(InsertElementInst &EI);
458 void visitShuffleVectorInst(ShuffleVectorInst &EI);
459 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
460 void visitCallInst(CallInst &CI);
461 void visitInvokeInst(InvokeInst &II);
462 void visitGetElementPtrInst(GetElementPtrInst &GEP);
463 void visitLoadInst(LoadInst &LI);
464 void visitStoreInst(StoreInst &SI);
465 void verifyDominatesUse(Instruction &I, unsigned i);
466 void visitInstruction(Instruction &I);
467 void visitTerminator(Instruction &I);
468 void visitBranchInst(BranchInst &BI);
469 void visitReturnInst(ReturnInst &RI);
470 void visitSwitchInst(SwitchInst &SI);
471 void visitIndirectBrInst(IndirectBrInst &BI);
472 void visitCallBrInst(CallBrInst &CBI);
473 void visitSelectInst(SelectInst &SI);
474 void visitUserOp1(Instruction &I);
475 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
476 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
477 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
478 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
479 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
480 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
481 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
482 void visitFenceInst(FenceInst &FI);
483 void visitAllocaInst(AllocaInst &AI);
484 void visitExtractValueInst(ExtractValueInst &EVI);
485 void visitInsertValueInst(InsertValueInst &IVI);
486 void visitEHPadPredecessors(Instruction &I);
487 void visitLandingPadInst(LandingPadInst &LPI);
488 void visitResumeInst(ResumeInst &RI);
489 void visitCatchPadInst(CatchPadInst &CPI);
490 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
491 void visitCleanupPadInst(CleanupPadInst &CPI);
492 void visitFuncletPadInst(FuncletPadInst &FPI);
493 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
494 void visitCleanupReturnInst(CleanupReturnInst &CRI);
496 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
497 void verifySwiftErrorValue(const Value *SwiftErrorVal);
498 void verifyMustTailCall(CallInst &CI);
499 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
500 unsigned ArgNo, std::string &Suffix);
501 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
502 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
503 const Value *V);
504 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
505 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
506 const Value *V, bool IsIntrinsic);
507 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
509 void visitConstantExprsRecursively(const Constant *EntryC);
510 void visitConstantExpr(const ConstantExpr *CE);
511 void verifyStatepoint(const CallBase &Call);
512 void verifyFrameRecoverIndices();
513 void verifySiblingFuncletUnwinds();
515 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
516 template <typename ValueOrMetadata>
517 void verifyFragmentExpression(const DIVariable &V,
518 DIExpression::FragmentInfo Fragment,
519 ValueOrMetadata *Desc);
520 void verifyFnArgs(const DbgVariableIntrinsic &I);
521 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
523 /// Module-level debug info verification...
524 void verifyCompileUnits();
526 /// Module-level verification that all @llvm.experimental.deoptimize
527 /// declarations share the same calling convention.
528 void verifyDeoptimizeCallingConvs();
530 /// Verify all-or-nothing property of DIFile source attribute within a CU.
531 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
534 } // end anonymous namespace
536 /// We know that cond should be true, if not print an error message.
537 #define Assert(C, ...) \
538 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
540 /// We know that a debug info condition should be true, if not print
541 /// an error message.
542 #define AssertDI(C, ...) \
543 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
545 void Verifier::visit(Instruction &I) {
546 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
547 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
548 InstVisitor<Verifier>::visit(I);
551 // Helper to recursively iterate over indirect users. By
552 // returning false, the callback can ask to stop recursing
553 // further.
554 static void forEachUser(const Value *User,
555 SmallPtrSet<const Value *, 32> &Visited,
556 llvm::function_ref<bool(const Value *)> Callback) {
557 if (!Visited.insert(User).second)
558 return;
559 for (const Value *TheNextUser : User->materialized_users())
560 if (Callback(TheNextUser))
561 forEachUser(TheNextUser, Visited, Callback);
564 void Verifier::visitGlobalValue(const GlobalValue &GV) {
565 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
566 "Global is external, but doesn't have external or weak linkage!", &GV);
568 Assert(GV.getAlignment() <= Value::MaximumAlignment,
569 "huge alignment values are unsupported", &GV);
570 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
571 "Only global variables can have appending linkage!", &GV);
573 if (GV.hasAppendingLinkage()) {
574 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
575 Assert(GVar && GVar->getValueType()->isArrayTy(),
576 "Only global arrays can have appending linkage!", GVar);
579 if (GV.isDeclarationForLinker())
580 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
582 if (GV.hasDLLImportStorageClass()) {
583 Assert(!GV.isDSOLocal(),
584 "GlobalValue with DLLImport Storage is dso_local!", &GV);
586 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
587 GV.hasAvailableExternallyLinkage(),
588 "Global is marked as dllimport, but not external", &GV);
591 if (GV.hasLocalLinkage())
592 Assert(GV.isDSOLocal(),
593 "GlobalValue with private or internal linkage must be dso_local!",
594 &GV);
596 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
597 Assert(GV.isDSOLocal(),
598 "GlobalValue with non default visibility must be dso_local!", &GV);
600 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
601 if (const Instruction *I = dyn_cast<Instruction>(V)) {
602 if (!I->getParent() || !I->getParent()->getParent())
603 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
605 else if (I->getParent()->getParent()->getParent() != &M)
606 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
607 I->getParent()->getParent(),
608 I->getParent()->getParent()->getParent());
609 return false;
610 } else if (const Function *F = dyn_cast<Function>(V)) {
611 if (F->getParent() != &M)
612 CheckFailed("Global is used by function in a different module", &GV, &M,
613 F, F->getParent());
614 return false;
616 return true;
620 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
621 if (GV.hasInitializer()) {
622 Assert(GV.getInitializer()->getType() == GV.getValueType(),
623 "Global variable initializer type does not match global "
624 "variable type!",
625 &GV);
626 // If the global has common linkage, it must have a zero initializer and
627 // cannot be constant.
628 if (GV.hasCommonLinkage()) {
629 Assert(GV.getInitializer()->isNullValue(),
630 "'common' global must have a zero initializer!", &GV);
631 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
632 &GV);
633 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
637 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
638 GV.getName() == "llvm.global_dtors")) {
639 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
640 "invalid linkage for intrinsic global variable", &GV);
641 // Don't worry about emitting an error for it not being an array,
642 // visitGlobalValue will complain on appending non-array.
643 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
644 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
645 PointerType *FuncPtrTy =
646 FunctionType::get(Type::getVoidTy(Context), false)->
647 getPointerTo(DL.getProgramAddressSpace());
648 Assert(STy &&
649 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
650 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
651 STy->getTypeAtIndex(1) == FuncPtrTy,
652 "wrong type for intrinsic global variable", &GV);
653 Assert(STy->getNumElements() == 3,
654 "the third field of the element type is mandatory, "
655 "specify i8* null to migrate from the obsoleted 2-field form");
656 Type *ETy = STy->getTypeAtIndex(2);
657 Assert(ETy->isPointerTy() &&
658 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
659 "wrong type for intrinsic global variable", &GV);
663 if (GV.hasName() && (GV.getName() == "llvm.used" ||
664 GV.getName() == "llvm.compiler.used")) {
665 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
666 "invalid linkage for intrinsic global variable", &GV);
667 Type *GVType = GV.getValueType();
668 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
669 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
670 Assert(PTy, "wrong type for intrinsic global variable", &GV);
671 if (GV.hasInitializer()) {
672 const Constant *Init = GV.getInitializer();
673 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
674 Assert(InitArray, "wrong initalizer for intrinsic global variable",
675 Init);
676 for (Value *Op : InitArray->operands()) {
677 Value *V = Op->stripPointerCasts();
678 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
679 isa<GlobalAlias>(V),
680 "invalid llvm.used member", V);
681 Assert(V->hasName(), "members of llvm.used must be named", V);
687 // Visit any debug info attachments.
688 SmallVector<MDNode *, 1> MDs;
689 GV.getMetadata(LLVMContext::MD_dbg, MDs);
690 for (auto *MD : MDs) {
691 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
692 visitDIGlobalVariableExpression(*GVE);
693 else
694 AssertDI(false, "!dbg attachment of global variable must be a "
695 "DIGlobalVariableExpression");
698 // Scalable vectors cannot be global variables, since we don't know
699 // the runtime size. If the global is a struct or an array containing
700 // scalable vectors, that will be caught by the isValidElementType methods
701 // in StructType or ArrayType instead.
702 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
703 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
705 if (!GV.hasInitializer()) {
706 visitGlobalValue(GV);
707 return;
710 // Walk any aggregate initializers looking for bitcasts between address spaces
711 visitConstantExprsRecursively(GV.getInitializer());
713 visitGlobalValue(GV);
716 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
717 SmallPtrSet<const GlobalAlias*, 4> Visited;
718 Visited.insert(&GA);
719 visitAliaseeSubExpr(Visited, GA, C);
722 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
723 const GlobalAlias &GA, const Constant &C) {
724 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
725 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
726 &GA);
728 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
729 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
731 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
732 &GA);
733 } else {
734 // Only continue verifying subexpressions of GlobalAliases.
735 // Do not recurse into global initializers.
736 return;
740 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
741 visitConstantExprsRecursively(CE);
743 for (const Use &U : C.operands()) {
744 Value *V = &*U;
745 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
746 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
747 else if (const auto *C2 = dyn_cast<Constant>(V))
748 visitAliaseeSubExpr(Visited, GA, *C2);
752 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
753 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
754 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
755 "weak_odr, or external linkage!",
756 &GA);
757 const Constant *Aliasee = GA.getAliasee();
758 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
759 Assert(GA.getType() == Aliasee->getType(),
760 "Alias and aliasee types should match!", &GA);
762 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
763 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
765 visitAliaseeSubExpr(GA, *Aliasee);
767 visitGlobalValue(GA);
770 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
771 // There used to be various other llvm.dbg.* nodes, but we don't support
772 // upgrading them and we want to reserve the namespace for future uses.
773 if (NMD.getName().startswith("llvm.dbg."))
774 AssertDI(NMD.getName() == "llvm.dbg.cu",
775 "unrecognized named metadata node in the llvm.dbg namespace",
776 &NMD);
777 for (const MDNode *MD : NMD.operands()) {
778 if (NMD.getName() == "llvm.dbg.cu")
779 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
781 if (!MD)
782 continue;
784 visitMDNode(*MD);
788 void Verifier::visitMDNode(const MDNode &MD) {
789 // Only visit each node once. Metadata can be mutually recursive, so this
790 // avoids infinite recursion here, as well as being an optimization.
791 if (!MDNodes.insert(&MD).second)
792 return;
794 switch (MD.getMetadataID()) {
795 default:
796 llvm_unreachable("Invalid MDNode subclass");
797 case Metadata::MDTupleKind:
798 break;
799 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
800 case Metadata::CLASS##Kind: \
801 visit##CLASS(cast<CLASS>(MD)); \
802 break;
803 #include "llvm/IR/Metadata.def"
806 for (const Metadata *Op : MD.operands()) {
807 if (!Op)
808 continue;
809 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
810 &MD, Op);
811 if (auto *N = dyn_cast<MDNode>(Op)) {
812 visitMDNode(*N);
813 continue;
815 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
816 visitValueAsMetadata(*V, nullptr);
817 continue;
821 // Check these last, so we diagnose problems in operands first.
822 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
823 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
826 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
827 Assert(MD.getValue(), "Expected valid value", &MD);
828 Assert(!MD.getValue()->getType()->isMetadataTy(),
829 "Unexpected metadata round-trip through values", &MD, MD.getValue());
831 auto *L = dyn_cast<LocalAsMetadata>(&MD);
832 if (!L)
833 return;
835 Assert(F, "function-local metadata used outside a function", L);
837 // If this was an instruction, bb, or argument, verify that it is in the
838 // function that we expect.
839 Function *ActualF = nullptr;
840 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
841 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
842 ActualF = I->getParent()->getParent();
843 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
844 ActualF = BB->getParent();
845 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
846 ActualF = A->getParent();
847 assert(ActualF && "Unimplemented function local metadata case!");
849 Assert(ActualF == F, "function-local metadata used in wrong function", L);
852 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
853 Metadata *MD = MDV.getMetadata();
854 if (auto *N = dyn_cast<MDNode>(MD)) {
855 visitMDNode(*N);
856 return;
859 // Only visit each node once. Metadata can be mutually recursive, so this
860 // avoids infinite recursion here, as well as being an optimization.
861 if (!MDNodes.insert(MD).second)
862 return;
864 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
865 visitValueAsMetadata(*V, F);
868 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
869 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
870 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
872 void Verifier::visitDILocation(const DILocation &N) {
873 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
874 "location requires a valid scope", &N, N.getRawScope());
875 if (auto *IA = N.getRawInlinedAt())
876 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
877 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
878 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
881 void Verifier::visitGenericDINode(const GenericDINode &N) {
882 AssertDI(N.getTag(), "invalid tag", &N);
885 void Verifier::visitDIScope(const DIScope &N) {
886 if (auto *F = N.getRawFile())
887 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
890 void Verifier::visitDISubrange(const DISubrange &N) {
891 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
892 auto Count = N.getCount();
893 AssertDI(Count, "Count must either be a signed constant or a DIVariable",
894 &N);
895 AssertDI(!Count.is<ConstantInt*>() ||
896 Count.get<ConstantInt*>()->getSExtValue() >= -1,
897 "invalid subrange count", &N);
900 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
901 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
904 void Verifier::visitDIBasicType(const DIBasicType &N) {
905 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
906 N.getTag() == dwarf::DW_TAG_unspecified_type,
907 "invalid tag", &N);
908 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
909 "has conflicting flags", &N);
912 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
913 // Common scope checks.
914 visitDIScope(N);
916 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
917 N.getTag() == dwarf::DW_TAG_pointer_type ||
918 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
919 N.getTag() == dwarf::DW_TAG_reference_type ||
920 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
921 N.getTag() == dwarf::DW_TAG_const_type ||
922 N.getTag() == dwarf::DW_TAG_volatile_type ||
923 N.getTag() == dwarf::DW_TAG_restrict_type ||
924 N.getTag() == dwarf::DW_TAG_atomic_type ||
925 N.getTag() == dwarf::DW_TAG_member ||
926 N.getTag() == dwarf::DW_TAG_inheritance ||
927 N.getTag() == dwarf::DW_TAG_friend,
928 "invalid tag", &N);
929 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
930 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
931 N.getRawExtraData());
934 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
935 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
936 N.getRawBaseType());
938 if (N.getDWARFAddressSpace()) {
939 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
940 N.getTag() == dwarf::DW_TAG_reference_type ||
941 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
942 "DWARF address space only applies to pointer or reference types",
943 &N);
947 /// Detect mutually exclusive flags.
948 static bool hasConflictingReferenceFlags(unsigned Flags) {
949 return ((Flags & DINode::FlagLValueReference) &&
950 (Flags & DINode::FlagRValueReference)) ||
951 ((Flags & DINode::FlagTypePassByValue) &&
952 (Flags & DINode::FlagTypePassByReference));
955 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
956 auto *Params = dyn_cast<MDTuple>(&RawParams);
957 AssertDI(Params, "invalid template params", &N, &RawParams);
958 for (Metadata *Op : Params->operands()) {
959 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
960 &N, Params, Op);
964 void Verifier::visitDICompositeType(const DICompositeType &N) {
965 // Common scope checks.
966 visitDIScope(N);
968 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
969 N.getTag() == dwarf::DW_TAG_structure_type ||
970 N.getTag() == dwarf::DW_TAG_union_type ||
971 N.getTag() == dwarf::DW_TAG_enumeration_type ||
972 N.getTag() == dwarf::DW_TAG_class_type ||
973 N.getTag() == dwarf::DW_TAG_variant_part,
974 "invalid tag", &N);
976 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
977 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
978 N.getRawBaseType());
980 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
981 "invalid composite elements", &N, N.getRawElements());
982 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
983 N.getRawVTableHolder());
984 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
985 "invalid reference flags", &N);
986 unsigned DIBlockByRefStruct = 1 << 4;
987 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
988 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
990 if (N.isVector()) {
991 const DINodeArray Elements = N.getElements();
992 AssertDI(Elements.size() == 1 &&
993 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
994 "invalid vector, expected one element of type subrange", &N);
997 if (auto *Params = N.getRawTemplateParams())
998 visitTemplateParams(N, *Params);
1000 if (N.getTag() == dwarf::DW_TAG_class_type ||
1001 N.getTag() == dwarf::DW_TAG_union_type) {
1002 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1003 "class/union requires a filename", &N, N.getFile());
1006 if (auto *D = N.getRawDiscriminator()) {
1007 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1008 "discriminator can only appear on variant part");
1012 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1013 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1014 if (auto *Types = N.getRawTypeArray()) {
1015 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1016 for (Metadata *Ty : N.getTypeArray()->operands()) {
1017 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1020 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1021 "invalid reference flags", &N);
1024 void Verifier::visitDIFile(const DIFile &N) {
1025 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1026 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1027 if (Checksum) {
1028 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1029 "invalid checksum kind", &N);
1030 size_t Size;
1031 switch (Checksum->Kind) {
1032 case DIFile::CSK_MD5:
1033 Size = 32;
1034 break;
1035 case DIFile::CSK_SHA1:
1036 Size = 40;
1037 break;
1039 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1040 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1041 "invalid checksum", &N);
1045 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1046 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1047 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1049 // Don't bother verifying the compilation directory or producer string
1050 // as those could be empty.
1051 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1052 N.getRawFile());
1053 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1054 N.getFile());
1056 verifySourceDebugInfo(N, *N.getFile());
1058 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1059 "invalid emission kind", &N);
1061 if (auto *Array = N.getRawEnumTypes()) {
1062 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1063 for (Metadata *Op : N.getEnumTypes()->operands()) {
1064 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1065 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1066 "invalid enum type", &N, N.getEnumTypes(), Op);
1069 if (auto *Array = N.getRawRetainedTypes()) {
1070 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1071 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1072 AssertDI(Op && (isa<DIType>(Op) ||
1073 (isa<DISubprogram>(Op) &&
1074 !cast<DISubprogram>(Op)->isDefinition())),
1075 "invalid retained type", &N, Op);
1078 if (auto *Array = N.getRawGlobalVariables()) {
1079 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1080 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1081 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1082 "invalid global variable ref", &N, Op);
1085 if (auto *Array = N.getRawImportedEntities()) {
1086 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1087 for (Metadata *Op : N.getImportedEntities()->operands()) {
1088 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1089 &N, Op);
1092 if (auto *Array = N.getRawMacros()) {
1093 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1094 for (Metadata *Op : N.getMacros()->operands()) {
1095 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1098 CUVisited.insert(&N);
1101 void Verifier::visitDISubprogram(const DISubprogram &N) {
1102 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1103 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1104 if (auto *F = N.getRawFile())
1105 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1106 else
1107 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1108 if (auto *T = N.getRawType())
1109 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1110 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1111 N.getRawContainingType());
1112 if (auto *Params = N.getRawTemplateParams())
1113 visitTemplateParams(N, *Params);
1114 if (auto *S = N.getRawDeclaration())
1115 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1116 "invalid subprogram declaration", &N, S);
1117 if (auto *RawNode = N.getRawRetainedNodes()) {
1118 auto *Node = dyn_cast<MDTuple>(RawNode);
1119 AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1120 for (Metadata *Op : Node->operands()) {
1121 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1122 "invalid retained nodes, expected DILocalVariable or DILabel",
1123 &N, Node, Op);
1126 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1127 "invalid reference flags", &N);
1129 auto *Unit = N.getRawUnit();
1130 if (N.isDefinition()) {
1131 // Subprogram definitions (not part of the type hierarchy).
1132 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1133 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1134 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1135 if (N.getFile())
1136 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1137 } else {
1138 // Subprogram declarations (part of the type hierarchy).
1139 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1142 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1143 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1144 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1145 for (Metadata *Op : ThrownTypes->operands())
1146 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1147 Op);
1150 if (N.areAllCallsDescribed())
1151 AssertDI(N.isDefinition(),
1152 "DIFlagAllCallsDescribed must be attached to a definition");
1155 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1156 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1157 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1158 "invalid local scope", &N, N.getRawScope());
1159 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1160 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1163 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1164 visitDILexicalBlockBase(N);
1166 AssertDI(N.getLine() || !N.getColumn(),
1167 "cannot have column info without line info", &N);
1170 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1171 visitDILexicalBlockBase(N);
1174 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1175 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1176 if (auto *S = N.getRawScope())
1177 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1178 if (auto *S = N.getRawDecl())
1179 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1182 void Verifier::visitDINamespace(const DINamespace &N) {
1183 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1184 if (auto *S = N.getRawScope())
1185 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1188 void Verifier::visitDIMacro(const DIMacro &N) {
1189 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1190 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1191 "invalid macinfo type", &N);
1192 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1193 if (!N.getValue().empty()) {
1194 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1198 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1199 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1200 "invalid macinfo type", &N);
1201 if (auto *F = N.getRawFile())
1202 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1204 if (auto *Array = N.getRawElements()) {
1205 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1206 for (Metadata *Op : N.getElements()->operands()) {
1207 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1212 void Verifier::visitDIModule(const DIModule &N) {
1213 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1214 AssertDI(!N.getName().empty(), "anonymous module", &N);
1217 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1218 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1221 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1222 visitDITemplateParameter(N);
1224 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1225 &N);
1228 void Verifier::visitDITemplateValueParameter(
1229 const DITemplateValueParameter &N) {
1230 visitDITemplateParameter(N);
1232 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1233 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1234 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1235 "invalid tag", &N);
1238 void Verifier::visitDIVariable(const DIVariable &N) {
1239 if (auto *S = N.getRawScope())
1240 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1241 if (auto *F = N.getRawFile())
1242 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1245 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1246 // Checks common to all variables.
1247 visitDIVariable(N);
1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1251 AssertDI(N.getType(), "missing global variable type", &N);
1252 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1253 AssertDI(isa<DIDerivedType>(Member),
1254 "invalid static data member declaration", &N, Member);
1258 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1259 // Checks common to all variables.
1260 visitDIVariable(N);
1262 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1263 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1264 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1265 "local variable requires a valid scope", &N, N.getRawScope());
1266 if (auto Ty = N.getType())
1267 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1270 void Verifier::visitDILabel(const DILabel &N) {
1271 if (auto *S = N.getRawScope())
1272 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1273 if (auto *F = N.getRawFile())
1274 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1276 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1277 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1278 "label requires a valid scope", &N, N.getRawScope());
1281 void Verifier::visitDIExpression(const DIExpression &N) {
1282 AssertDI(N.isValid(), "invalid expression", &N);
1285 void Verifier::visitDIGlobalVariableExpression(
1286 const DIGlobalVariableExpression &GVE) {
1287 AssertDI(GVE.getVariable(), "missing variable");
1288 if (auto *Var = GVE.getVariable())
1289 visitDIGlobalVariable(*Var);
1290 if (auto *Expr = GVE.getExpression()) {
1291 visitDIExpression(*Expr);
1292 if (auto Fragment = Expr->getFragmentInfo())
1293 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1297 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1298 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1299 if (auto *T = N.getRawType())
1300 AssertDI(isType(T), "invalid type ref", &N, T);
1301 if (auto *F = N.getRawFile())
1302 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1305 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1306 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1307 N.getTag() == dwarf::DW_TAG_imported_declaration,
1308 "invalid tag", &N);
1309 if (auto *S = N.getRawScope())
1310 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1311 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1312 N.getRawEntity());
1315 void Verifier::visitComdat(const Comdat &C) {
1316 // In COFF the Module is invalid if the GlobalValue has private linkage.
1317 // Entities with private linkage don't have entries in the symbol table.
1318 if (TT.isOSBinFormatCOFF())
1319 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1320 Assert(!GV->hasPrivateLinkage(),
1321 "comdat global value has private linkage", GV);
1324 void Verifier::visitModuleIdents(const Module &M) {
1325 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1326 if (!Idents)
1327 return;
1329 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1330 // Scan each llvm.ident entry and make sure that this requirement is met.
1331 for (const MDNode *N : Idents->operands()) {
1332 Assert(N->getNumOperands() == 1,
1333 "incorrect number of operands in llvm.ident metadata", N);
1334 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1335 ("invalid value for llvm.ident metadata entry operand"
1336 "(the operand should be a string)"),
1337 N->getOperand(0));
1341 void Verifier::visitModuleCommandLines(const Module &M) {
1342 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1343 if (!CommandLines)
1344 return;
1346 // llvm.commandline takes a list of metadata entry. Each entry has only one
1347 // string. Scan each llvm.commandline entry and make sure that this
1348 // requirement is met.
1349 for (const MDNode *N : CommandLines->operands()) {
1350 Assert(N->getNumOperands() == 1,
1351 "incorrect number of operands in llvm.commandline metadata", N);
1352 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1353 ("invalid value for llvm.commandline metadata entry operand"
1354 "(the operand should be a string)"),
1355 N->getOperand(0));
1359 void Verifier::visitModuleFlags(const Module &M) {
1360 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1361 if (!Flags) return;
1363 // Scan each flag, and track the flags and requirements.
1364 DenseMap<const MDString*, const MDNode*> SeenIDs;
1365 SmallVector<const MDNode*, 16> Requirements;
1366 for (const MDNode *MDN : Flags->operands())
1367 visitModuleFlag(MDN, SeenIDs, Requirements);
1369 // Validate that the requirements in the module are valid.
1370 for (const MDNode *Requirement : Requirements) {
1371 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1372 const Metadata *ReqValue = Requirement->getOperand(1);
1374 const MDNode *Op = SeenIDs.lookup(Flag);
1375 if (!Op) {
1376 CheckFailed("invalid requirement on flag, flag is not present in module",
1377 Flag);
1378 continue;
1381 if (Op->getOperand(2) != ReqValue) {
1382 CheckFailed(("invalid requirement on flag, "
1383 "flag does not have the required value"),
1384 Flag);
1385 continue;
1390 void
1391 Verifier::visitModuleFlag(const MDNode *Op,
1392 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1393 SmallVectorImpl<const MDNode *> &Requirements) {
1394 // Each module flag should have three arguments, the merge behavior (a
1395 // constant int), the flag ID (an MDString), and the value.
1396 Assert(Op->getNumOperands() == 3,
1397 "incorrect number of operands in module flag", Op);
1398 Module::ModFlagBehavior MFB;
1399 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1400 Assert(
1401 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1402 "invalid behavior operand in module flag (expected constant integer)",
1403 Op->getOperand(0));
1404 Assert(false,
1405 "invalid behavior operand in module flag (unexpected constant)",
1406 Op->getOperand(0));
1408 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1409 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1410 Op->getOperand(1));
1412 // Sanity check the values for behaviors with additional requirements.
1413 switch (MFB) {
1414 case Module::Error:
1415 case Module::Warning:
1416 case Module::Override:
1417 // These behavior types accept any value.
1418 break;
1420 case Module::Max: {
1421 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1422 "invalid value for 'max' module flag (expected constant integer)",
1423 Op->getOperand(2));
1424 break;
1427 case Module::Require: {
1428 // The value should itself be an MDNode with two operands, a flag ID (an
1429 // MDString), and a value.
1430 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1431 Assert(Value && Value->getNumOperands() == 2,
1432 "invalid value for 'require' module flag (expected metadata pair)",
1433 Op->getOperand(2));
1434 Assert(isa<MDString>(Value->getOperand(0)),
1435 ("invalid value for 'require' module flag "
1436 "(first value operand should be a string)"),
1437 Value->getOperand(0));
1439 // Append it to the list of requirements, to check once all module flags are
1440 // scanned.
1441 Requirements.push_back(Value);
1442 break;
1445 case Module::Append:
1446 case Module::AppendUnique: {
1447 // These behavior types require the operand be an MDNode.
1448 Assert(isa<MDNode>(Op->getOperand(2)),
1449 "invalid value for 'append'-type module flag "
1450 "(expected a metadata node)",
1451 Op->getOperand(2));
1452 break;
1456 // Unless this is a "requires" flag, check the ID is unique.
1457 if (MFB != Module::Require) {
1458 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1459 Assert(Inserted,
1460 "module flag identifiers must be unique (or of 'require' type)", ID);
1463 if (ID->getString() == "wchar_size") {
1464 ConstantInt *Value
1465 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1466 Assert(Value, "wchar_size metadata requires constant integer argument");
1469 if (ID->getString() == "Linker Options") {
1470 // If the llvm.linker.options named metadata exists, we assume that the
1471 // bitcode reader has upgraded the module flag. Otherwise the flag might
1472 // have been created by a client directly.
1473 Assert(M.getNamedMetadata("llvm.linker.options"),
1474 "'Linker Options' named metadata no longer supported");
1477 if (ID->getString() == "CG Profile") {
1478 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1479 visitModuleFlagCGProfileEntry(MDO);
1483 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1484 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1485 if (!FuncMDO)
1486 return;
1487 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1488 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1489 FuncMDO);
1491 auto Node = dyn_cast_or_null<MDNode>(MDO);
1492 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1493 CheckFunction(Node->getOperand(0));
1494 CheckFunction(Node->getOperand(1));
1495 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1496 Assert(Count && Count->getType()->isIntegerTy(),
1497 "expected an integer constant", Node->getOperand(2));
1500 /// Return true if this attribute kind only applies to functions.
1501 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1502 switch (Kind) {
1503 case Attribute::NoReturn:
1504 case Attribute::NoSync:
1505 case Attribute::WillReturn:
1506 case Attribute::NoCfCheck:
1507 case Attribute::NoUnwind:
1508 case Attribute::NoInline:
1509 case Attribute::NoFree:
1510 case Attribute::AlwaysInline:
1511 case Attribute::OptimizeForSize:
1512 case Attribute::StackProtect:
1513 case Attribute::StackProtectReq:
1514 case Attribute::StackProtectStrong:
1515 case Attribute::SafeStack:
1516 case Attribute::ShadowCallStack:
1517 case Attribute::NoRedZone:
1518 case Attribute::NoImplicitFloat:
1519 case Attribute::Naked:
1520 case Attribute::InlineHint:
1521 case Attribute::StackAlignment:
1522 case Attribute::UWTable:
1523 case Attribute::NonLazyBind:
1524 case Attribute::ReturnsTwice:
1525 case Attribute::SanitizeAddress:
1526 case Attribute::SanitizeHWAddress:
1527 case Attribute::SanitizeMemTag:
1528 case Attribute::SanitizeThread:
1529 case Attribute::SanitizeMemory:
1530 case Attribute::MinSize:
1531 case Attribute::NoDuplicate:
1532 case Attribute::Builtin:
1533 case Attribute::NoBuiltin:
1534 case Attribute::Cold:
1535 case Attribute::OptForFuzzing:
1536 case Attribute::OptimizeNone:
1537 case Attribute::JumpTable:
1538 case Attribute::Convergent:
1539 case Attribute::ArgMemOnly:
1540 case Attribute::NoRecurse:
1541 case Attribute::InaccessibleMemOnly:
1542 case Attribute::InaccessibleMemOrArgMemOnly:
1543 case Attribute::AllocSize:
1544 case Attribute::SpeculativeLoadHardening:
1545 case Attribute::Speculatable:
1546 case Attribute::StrictFP:
1547 return true;
1548 default:
1549 break;
1551 return false;
1554 /// Return true if this is a function attribute that can also appear on
1555 /// arguments.
1556 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1557 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1558 Kind == Attribute::ReadNone;
1561 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1562 const Value *V) {
1563 for (Attribute A : Attrs) {
1564 if (A.isStringAttribute())
1565 continue;
1567 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1568 if (!IsFunction) {
1569 CheckFailed("Attribute '" + A.getAsString() +
1570 "' only applies to functions!",
1572 return;
1574 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1575 CheckFailed("Attribute '" + A.getAsString() +
1576 "' does not apply to functions!",
1578 return;
1583 // VerifyParameterAttrs - Check the given attributes for an argument or return
1584 // value of the specified type. The value V is printed in error messages.
1585 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1586 const Value *V) {
1587 if (!Attrs.hasAttributes())
1588 return;
1590 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1592 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1593 Assert(Attrs.getNumAttributes() == 1,
1594 "Attribute 'immarg' is incompatible with other attributes", V);
1597 // Check for mutually incompatible attributes. Only inreg is compatible with
1598 // sret.
1599 unsigned AttrCount = 0;
1600 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1601 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1602 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1603 Attrs.hasAttribute(Attribute::InReg);
1604 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1605 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1606 "and 'sret' are incompatible!",
1609 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1610 Attrs.hasAttribute(Attribute::ReadOnly)),
1611 "Attributes "
1612 "'inalloca and readonly' are incompatible!",
1615 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1616 Attrs.hasAttribute(Attribute::Returned)),
1617 "Attributes "
1618 "'sret and returned' are incompatible!",
1621 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1622 Attrs.hasAttribute(Attribute::SExt)),
1623 "Attributes "
1624 "'zeroext and signext' are incompatible!",
1627 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1628 Attrs.hasAttribute(Attribute::ReadOnly)),
1629 "Attributes "
1630 "'readnone and readonly' are incompatible!",
1633 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1634 Attrs.hasAttribute(Attribute::WriteOnly)),
1635 "Attributes "
1636 "'readnone and writeonly' are incompatible!",
1639 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1640 Attrs.hasAttribute(Attribute::WriteOnly)),
1641 "Attributes "
1642 "'readonly and writeonly' are incompatible!",
1645 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1646 Attrs.hasAttribute(Attribute::AlwaysInline)),
1647 "Attributes "
1648 "'noinline and alwaysinline' are incompatible!",
1651 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1652 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1653 "Attribute 'byval' type does not match parameter!", V);
1656 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1657 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1658 "Wrong types for attribute: " +
1659 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1662 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1663 SmallPtrSet<Type*, 4> Visited;
1664 if (!PTy->getElementType()->isSized(&Visited)) {
1665 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1666 !Attrs.hasAttribute(Attribute::InAlloca),
1667 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1670 if (!isa<PointerType>(PTy->getElementType()))
1671 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1672 "Attribute 'swifterror' only applies to parameters "
1673 "with pointer to pointer type!",
1675 } else {
1676 Assert(!Attrs.hasAttribute(Attribute::ByVal),
1677 "Attribute 'byval' only applies to parameters with pointer type!",
1679 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1680 "Attribute 'swifterror' only applies to parameters "
1681 "with pointer type!",
1686 // Check parameter attributes against a function type.
1687 // The value V is printed in error messages.
1688 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1689 const Value *V, bool IsIntrinsic) {
1690 if (Attrs.isEmpty())
1691 return;
1693 bool SawNest = false;
1694 bool SawReturned = false;
1695 bool SawSRet = false;
1696 bool SawSwiftSelf = false;
1697 bool SawSwiftError = false;
1699 // Verify return value attributes.
1700 AttributeSet RetAttrs = Attrs.getRetAttributes();
1701 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1702 !RetAttrs.hasAttribute(Attribute::Nest) &&
1703 !RetAttrs.hasAttribute(Attribute::StructRet) &&
1704 !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1705 !RetAttrs.hasAttribute(Attribute::Returned) &&
1706 !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1707 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1708 !RetAttrs.hasAttribute(Attribute::SwiftError)),
1709 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1710 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1711 "values!",
1713 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1714 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1715 !RetAttrs.hasAttribute(Attribute::ReadNone)),
1716 "Attribute '" + RetAttrs.getAsString() +
1717 "' does not apply to function returns",
1719 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1721 // Verify parameter attributes.
1722 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1723 Type *Ty = FT->getParamType(i);
1724 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1726 if (!IsIntrinsic) {
1727 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1728 "immarg attribute only applies to intrinsics",V);
1731 verifyParameterAttrs(ArgAttrs, Ty, V);
1733 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1734 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1735 SawNest = true;
1738 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1739 Assert(!SawReturned, "More than one parameter has attribute returned!",
1741 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1742 "Incompatible argument and return types for 'returned' attribute",
1744 SawReturned = true;
1747 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1748 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1749 Assert(i == 0 || i == 1,
1750 "Attribute 'sret' is not on first or second parameter!", V);
1751 SawSRet = true;
1754 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1755 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1756 SawSwiftSelf = true;
1759 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1760 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1762 SawSwiftError = true;
1765 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1766 Assert(i == FT->getNumParams() - 1,
1767 "inalloca isn't on the last parameter!", V);
1771 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1772 return;
1774 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1776 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1777 Attrs.hasFnAttribute(Attribute::ReadOnly)),
1778 "Attributes 'readnone and readonly' are incompatible!", V);
1780 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1781 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1782 "Attributes 'readnone and writeonly' are incompatible!", V);
1784 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1785 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1786 "Attributes 'readonly and writeonly' are incompatible!", V);
1788 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1789 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1790 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1791 "incompatible!",
1794 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1795 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1796 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1798 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1799 Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1800 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1802 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1803 Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1804 "Attribute 'optnone' requires 'noinline'!", V);
1806 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1807 "Attributes 'optsize and optnone' are incompatible!", V);
1809 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1810 "Attributes 'minsize and optnone' are incompatible!", V);
1813 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1814 const GlobalValue *GV = cast<GlobalValue>(V);
1815 Assert(GV->hasGlobalUnnamedAddr(),
1816 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1819 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1820 std::pair<unsigned, Optional<unsigned>> Args =
1821 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1823 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1824 if (ParamNo >= FT->getNumParams()) {
1825 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1826 return false;
1829 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1830 CheckFailed("'allocsize' " + Name +
1831 " argument must refer to an integer parameter",
1833 return false;
1836 return true;
1839 if (!CheckParam("element size", Args.first))
1840 return;
1842 if (Args.second && !CheckParam("number of elements", *Args.second))
1843 return;
1847 void Verifier::verifyFunctionMetadata(
1848 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1849 for (const auto &Pair : MDs) {
1850 if (Pair.first == LLVMContext::MD_prof) {
1851 MDNode *MD = Pair.second;
1852 Assert(MD->getNumOperands() >= 2,
1853 "!prof annotations should have no less than 2 operands", MD);
1855 // Check first operand.
1856 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1857 MD);
1858 Assert(isa<MDString>(MD->getOperand(0)),
1859 "expected string with name of the !prof annotation", MD);
1860 MDString *MDS = cast<MDString>(MD->getOperand(0));
1861 StringRef ProfName = MDS->getString();
1862 Assert(ProfName.equals("function_entry_count") ||
1863 ProfName.equals("synthetic_function_entry_count"),
1864 "first operand should be 'function_entry_count'"
1865 " or 'synthetic_function_entry_count'",
1866 MD);
1868 // Check second operand.
1869 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1870 MD);
1871 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1872 "expected integer argument to function_entry_count", MD);
1877 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1878 if (!ConstantExprVisited.insert(EntryC).second)
1879 return;
1881 SmallVector<const Constant *, 16> Stack;
1882 Stack.push_back(EntryC);
1884 while (!Stack.empty()) {
1885 const Constant *C = Stack.pop_back_val();
1887 // Check this constant expression.
1888 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1889 visitConstantExpr(CE);
1891 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1892 // Global Values get visited separately, but we do need to make sure
1893 // that the global value is in the correct module
1894 Assert(GV->getParent() == &M, "Referencing global in another module!",
1895 EntryC, &M, GV, GV->getParent());
1896 continue;
1899 // Visit all sub-expressions.
1900 for (const Use &U : C->operands()) {
1901 const auto *OpC = dyn_cast<Constant>(U);
1902 if (!OpC)
1903 continue;
1904 if (!ConstantExprVisited.insert(OpC).second)
1905 continue;
1906 Stack.push_back(OpC);
1911 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1912 if (CE->getOpcode() == Instruction::BitCast)
1913 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1914 CE->getType()),
1915 "Invalid bitcast", CE);
1917 if (CE->getOpcode() == Instruction::IntToPtr ||
1918 CE->getOpcode() == Instruction::PtrToInt) {
1919 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1920 ? CE->getType()
1921 : CE->getOperand(0)->getType();
1922 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1923 ? "inttoptr not supported for non-integral pointers"
1924 : "ptrtoint not supported for non-integral pointers";
1925 Assert(
1926 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1927 Msg);
1931 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1932 // There shouldn't be more attribute sets than there are parameters plus the
1933 // function and return value.
1934 return Attrs.getNumAttrSets() <= Params + 2;
1937 /// Verify that statepoint intrinsic is well formed.
1938 void Verifier::verifyStatepoint(const CallBase &Call) {
1939 assert(Call.getCalledFunction() &&
1940 Call.getCalledFunction()->getIntrinsicID() ==
1941 Intrinsic::experimental_gc_statepoint);
1943 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1944 !Call.onlyAccessesArgMemory(),
1945 "gc.statepoint must read and write all memory to preserve "
1946 "reordering restrictions required by safepoint semantics",
1947 Call);
1949 const int64_t NumPatchBytes =
1950 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1951 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1952 Assert(NumPatchBytes >= 0,
1953 "gc.statepoint number of patchable bytes must be "
1954 "positive",
1955 Call);
1957 const Value *Target = Call.getArgOperand(2);
1958 auto *PT = dyn_cast<PointerType>(Target->getType());
1959 Assert(PT && PT->getElementType()->isFunctionTy(),
1960 "gc.statepoint callee must be of function pointer type", Call, Target);
1961 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1963 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1964 Assert(NumCallArgs >= 0,
1965 "gc.statepoint number of arguments to underlying call "
1966 "must be positive",
1967 Call);
1968 const int NumParams = (int)TargetFuncType->getNumParams();
1969 if (TargetFuncType->isVarArg()) {
1970 Assert(NumCallArgs >= NumParams,
1971 "gc.statepoint mismatch in number of vararg call args", Call);
1973 // TODO: Remove this limitation
1974 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1975 "gc.statepoint doesn't support wrapping non-void "
1976 "vararg functions yet",
1977 Call);
1978 } else
1979 Assert(NumCallArgs == NumParams,
1980 "gc.statepoint mismatch in number of call args", Call);
1982 const uint64_t Flags
1983 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1984 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1985 "unknown flag used in gc.statepoint flags argument", Call);
1987 // Verify that the types of the call parameter arguments match
1988 // the type of the wrapped callee.
1989 AttributeList Attrs = Call.getAttributes();
1990 for (int i = 0; i < NumParams; i++) {
1991 Type *ParamType = TargetFuncType->getParamType(i);
1992 Type *ArgType = Call.getArgOperand(5 + i)->getType();
1993 Assert(ArgType == ParamType,
1994 "gc.statepoint call argument does not match wrapped "
1995 "function type",
1996 Call);
1998 if (TargetFuncType->isVarArg()) {
1999 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2000 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2001 "Attribute 'sret' cannot be used for vararg call arguments!",
2002 Call);
2006 const int EndCallArgsInx = 4 + NumCallArgs;
2008 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2009 Assert(isa<ConstantInt>(NumTransitionArgsV),
2010 "gc.statepoint number of transition arguments "
2011 "must be constant integer",
2012 Call);
2013 const int NumTransitionArgs =
2014 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2015 Assert(NumTransitionArgs >= 0,
2016 "gc.statepoint number of transition arguments must be positive", Call);
2017 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2019 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2020 Assert(isa<ConstantInt>(NumDeoptArgsV),
2021 "gc.statepoint number of deoptimization arguments "
2022 "must be constant integer",
2023 Call);
2024 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2025 Assert(NumDeoptArgs >= 0,
2026 "gc.statepoint number of deoptimization arguments "
2027 "must be positive",
2028 Call);
2030 const int ExpectedNumArgs =
2031 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2032 Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2033 "gc.statepoint too few arguments according to length fields", Call);
2035 // Check that the only uses of this gc.statepoint are gc.result or
2036 // gc.relocate calls which are tied to this statepoint and thus part
2037 // of the same statepoint sequence
2038 for (const User *U : Call.users()) {
2039 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2040 Assert(UserCall, "illegal use of statepoint token", Call, U);
2041 if (!UserCall)
2042 continue;
2043 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2044 "gc.result or gc.relocate are the only value uses "
2045 "of a gc.statepoint",
2046 Call, U);
2047 if (isa<GCResultInst>(UserCall)) {
2048 Assert(UserCall->getArgOperand(0) == &Call,
2049 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2050 } else if (isa<GCRelocateInst>(Call)) {
2051 Assert(UserCall->getArgOperand(0) == &Call,
2052 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2056 // Note: It is legal for a single derived pointer to be listed multiple
2057 // times. It's non-optimal, but it is legal. It can also happen after
2058 // insertion if we strip a bitcast away.
2059 // Note: It is really tempting to check that each base is relocated and
2060 // that a derived pointer is never reused as a base pointer. This turns
2061 // out to be problematic since optimizations run after safepoint insertion
2062 // can recognize equality properties that the insertion logic doesn't know
2063 // about. See example statepoint.ll in the verifier subdirectory
2066 void Verifier::verifyFrameRecoverIndices() {
2067 for (auto &Counts : FrameEscapeInfo) {
2068 Function *F = Counts.first;
2069 unsigned EscapedObjectCount = Counts.second.first;
2070 unsigned MaxRecoveredIndex = Counts.second.second;
2071 Assert(MaxRecoveredIndex <= EscapedObjectCount,
2072 "all indices passed to llvm.localrecover must be less than the "
2073 "number of arguments passed to llvm.localescape in the parent "
2074 "function",
2079 static Instruction *getSuccPad(Instruction *Terminator) {
2080 BasicBlock *UnwindDest;
2081 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2082 UnwindDest = II->getUnwindDest();
2083 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2084 UnwindDest = CSI->getUnwindDest();
2085 else
2086 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2087 return UnwindDest->getFirstNonPHI();
2090 void Verifier::verifySiblingFuncletUnwinds() {
2091 SmallPtrSet<Instruction *, 8> Visited;
2092 SmallPtrSet<Instruction *, 8> Active;
2093 for (const auto &Pair : SiblingFuncletInfo) {
2094 Instruction *PredPad = Pair.first;
2095 if (Visited.count(PredPad))
2096 continue;
2097 Active.insert(PredPad);
2098 Instruction *Terminator = Pair.second;
2099 do {
2100 Instruction *SuccPad = getSuccPad(Terminator);
2101 if (Active.count(SuccPad)) {
2102 // Found a cycle; report error
2103 Instruction *CyclePad = SuccPad;
2104 SmallVector<Instruction *, 8> CycleNodes;
2105 do {
2106 CycleNodes.push_back(CyclePad);
2107 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2108 if (CycleTerminator != CyclePad)
2109 CycleNodes.push_back(CycleTerminator);
2110 CyclePad = getSuccPad(CycleTerminator);
2111 } while (CyclePad != SuccPad);
2112 Assert(false, "EH pads can't handle each other's exceptions",
2113 ArrayRef<Instruction *>(CycleNodes));
2115 // Don't re-walk a node we've already checked
2116 if (!Visited.insert(SuccPad).second)
2117 break;
2118 // Walk to this successor if it has a map entry.
2119 PredPad = SuccPad;
2120 auto TermI = SiblingFuncletInfo.find(PredPad);
2121 if (TermI == SiblingFuncletInfo.end())
2122 break;
2123 Terminator = TermI->second;
2124 Active.insert(PredPad);
2125 } while (true);
2126 // Each node only has one successor, so we've walked all the active
2127 // nodes' successors.
2128 Active.clear();
2132 // visitFunction - Verify that a function is ok.
2134 void Verifier::visitFunction(const Function &F) {
2135 visitGlobalValue(F);
2137 // Check function arguments.
2138 FunctionType *FT = F.getFunctionType();
2139 unsigned NumArgs = F.arg_size();
2141 Assert(&Context == &F.getContext(),
2142 "Function context does not match Module context!", &F);
2144 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2145 Assert(FT->getNumParams() == NumArgs,
2146 "# formal arguments must match # of arguments for function type!", &F,
2147 FT);
2148 Assert(F.getReturnType()->isFirstClassType() ||
2149 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2150 "Functions cannot return aggregate values!", &F);
2152 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2153 "Invalid struct return type!", &F);
2155 AttributeList Attrs = F.getAttributes();
2157 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2158 "Attribute after last parameter!", &F);
2160 bool isLLVMdotName = F.getName().size() >= 5 &&
2161 F.getName().substr(0, 5) == "llvm.";
2163 // Check function attributes.
2164 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2166 // On function declarations/definitions, we do not support the builtin
2167 // attribute. We do not check this in VerifyFunctionAttrs since that is
2168 // checking for Attributes that can/can not ever be on functions.
2169 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2170 "Attribute 'builtin' can only be applied to a callsite.", &F);
2172 // Check that this function meets the restrictions on this calling convention.
2173 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2174 // restrictions can be lifted.
2175 switch (F.getCallingConv()) {
2176 default:
2177 case CallingConv::C:
2178 break;
2179 case CallingConv::AMDGPU_KERNEL:
2180 case CallingConv::SPIR_KERNEL:
2181 Assert(F.getReturnType()->isVoidTy(),
2182 "Calling convention requires void return type", &F);
2183 LLVM_FALLTHROUGH;
2184 case CallingConv::AMDGPU_VS:
2185 case CallingConv::AMDGPU_HS:
2186 case CallingConv::AMDGPU_GS:
2187 case CallingConv::AMDGPU_PS:
2188 case CallingConv::AMDGPU_CS:
2189 Assert(!F.hasStructRetAttr(),
2190 "Calling convention does not allow sret", &F);
2191 LLVM_FALLTHROUGH;
2192 case CallingConv::Fast:
2193 case CallingConv::Cold:
2194 case CallingConv::Intel_OCL_BI:
2195 case CallingConv::PTX_Kernel:
2196 case CallingConv::PTX_Device:
2197 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2198 "perfect forwarding!",
2199 &F);
2200 break;
2203 // Check that the argument values match the function type for this function...
2204 unsigned i = 0;
2205 for (const Argument &Arg : F.args()) {
2206 Assert(Arg.getType() == FT->getParamType(i),
2207 "Argument value does not match function argument type!", &Arg,
2208 FT->getParamType(i));
2209 Assert(Arg.getType()->isFirstClassType(),
2210 "Function arguments must have first-class types!", &Arg);
2211 if (!isLLVMdotName) {
2212 Assert(!Arg.getType()->isMetadataTy(),
2213 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2214 Assert(!Arg.getType()->isTokenTy(),
2215 "Function takes token but isn't an intrinsic", &Arg, &F);
2218 // Check that swifterror argument is only used by loads and stores.
2219 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2220 verifySwiftErrorValue(&Arg);
2222 ++i;
2225 if (!isLLVMdotName)
2226 Assert(!F.getReturnType()->isTokenTy(),
2227 "Functions returns a token but isn't an intrinsic", &F);
2229 // Get the function metadata attachments.
2230 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2231 F.getAllMetadata(MDs);
2232 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2233 verifyFunctionMetadata(MDs);
2235 // Check validity of the personality function
2236 if (F.hasPersonalityFn()) {
2237 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2238 if (Per)
2239 Assert(Per->getParent() == F.getParent(),
2240 "Referencing personality function in another module!",
2241 &F, F.getParent(), Per, Per->getParent());
2244 if (F.isMaterializable()) {
2245 // Function has a body somewhere we can't see.
2246 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2247 MDs.empty() ? nullptr : MDs.front().second);
2248 } else if (F.isDeclaration()) {
2249 for (const auto &I : MDs) {
2250 // This is used for call site debug information.
2251 AssertDI(I.first != LLVMContext::MD_dbg ||
2252 !cast<DISubprogram>(I.second)->isDistinct(),
2253 "function declaration may only have a unique !dbg attachment",
2254 &F);
2255 Assert(I.first != LLVMContext::MD_prof,
2256 "function declaration may not have a !prof attachment", &F);
2258 // Verify the metadata itself.
2259 visitMDNode(*I.second);
2261 Assert(!F.hasPersonalityFn(),
2262 "Function declaration shouldn't have a personality routine", &F);
2263 } else {
2264 // Verify that this function (which has a body) is not named "llvm.*". It
2265 // is not legal to define intrinsics.
2266 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2268 // Check the entry node
2269 const BasicBlock *Entry = &F.getEntryBlock();
2270 Assert(pred_empty(Entry),
2271 "Entry block to function must not have predecessors!", Entry);
2273 // The address of the entry block cannot be taken, unless it is dead.
2274 if (Entry->hasAddressTaken()) {
2275 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2276 "blockaddress may not be used with the entry block!", Entry);
2279 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2280 // Visit metadata attachments.
2281 for (const auto &I : MDs) {
2282 // Verify that the attachment is legal.
2283 switch (I.first) {
2284 default:
2285 break;
2286 case LLVMContext::MD_dbg: {
2287 ++NumDebugAttachments;
2288 AssertDI(NumDebugAttachments == 1,
2289 "function must have a single !dbg attachment", &F, I.second);
2290 AssertDI(isa<DISubprogram>(I.second),
2291 "function !dbg attachment must be a subprogram", &F, I.second);
2292 auto *SP = cast<DISubprogram>(I.second);
2293 const Function *&AttachedTo = DISubprogramAttachments[SP];
2294 AssertDI(!AttachedTo || AttachedTo == &F,
2295 "DISubprogram attached to more than one function", SP, &F);
2296 AttachedTo = &F;
2297 break;
2299 case LLVMContext::MD_prof:
2300 ++NumProfAttachments;
2301 Assert(NumProfAttachments == 1,
2302 "function must have a single !prof attachment", &F, I.second);
2303 break;
2306 // Verify the metadata itself.
2307 visitMDNode(*I.second);
2311 // If this function is actually an intrinsic, verify that it is only used in
2312 // direct call/invokes, never having its "address taken".
2313 // Only do this if the module is materialized, otherwise we don't have all the
2314 // uses.
2315 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2316 const User *U;
2317 if (F.hasAddressTaken(&U))
2318 Assert(false, "Invalid user of intrinsic instruction!", U);
2321 auto *N = F.getSubprogram();
2322 HasDebugInfo = (N != nullptr);
2323 if (!HasDebugInfo)
2324 return;
2326 // Check that all !dbg attachments lead to back to N (or, at least, another
2327 // subprogram that describes the same function).
2329 // FIXME: Check this incrementally while visiting !dbg attachments.
2330 // FIXME: Only check when N is the canonical subprogram for F.
2331 SmallPtrSet<const MDNode *, 32> Seen;
2332 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2333 // Be careful about using DILocation here since we might be dealing with
2334 // broken code (this is the Verifier after all).
2335 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2336 if (!DL)
2337 return;
2338 if (!Seen.insert(DL).second)
2339 return;
2341 Metadata *Parent = DL->getRawScope();
2342 AssertDI(Parent && isa<DILocalScope>(Parent),
2343 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2344 Parent);
2345 DILocalScope *Scope = DL->getInlinedAtScope();
2346 if (Scope && !Seen.insert(Scope).second)
2347 return;
2349 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2351 // Scope and SP could be the same MDNode and we don't want to skip
2352 // validation in that case
2353 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2354 return;
2356 // FIXME: Once N is canonical, check "SP == &N".
2357 AssertDI(SP->describes(&F),
2358 "!dbg attachment points at wrong subprogram for function", N, &F,
2359 &I, DL, Scope, SP);
2361 for (auto &BB : F)
2362 for (auto &I : BB) {
2363 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2364 // The llvm.loop annotations also contain two DILocations.
2365 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2366 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2367 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2368 if (BrokenDebugInfo)
2369 return;
2373 // verifyBasicBlock - Verify that a basic block is well formed...
2375 void Verifier::visitBasicBlock(BasicBlock &BB) {
2376 InstsInThisBlock.clear();
2378 // Ensure that basic blocks have terminators!
2379 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2381 // Check constraints that this basic block imposes on all of the PHI nodes in
2382 // it.
2383 if (isa<PHINode>(BB.front())) {
2384 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2385 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2386 llvm::sort(Preds);
2387 for (const PHINode &PN : BB.phis()) {
2388 // Ensure that PHI nodes have at least one entry!
2389 Assert(PN.getNumIncomingValues() != 0,
2390 "PHI nodes must have at least one entry. If the block is dead, "
2391 "the PHI should be removed!",
2392 &PN);
2393 Assert(PN.getNumIncomingValues() == Preds.size(),
2394 "PHINode should have one entry for each predecessor of its "
2395 "parent basic block!",
2396 &PN);
2398 // Get and sort all incoming values in the PHI node...
2399 Values.clear();
2400 Values.reserve(PN.getNumIncomingValues());
2401 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2402 Values.push_back(
2403 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2404 llvm::sort(Values);
2406 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2407 // Check to make sure that if there is more than one entry for a
2408 // particular basic block in this PHI node, that the incoming values are
2409 // all identical.
2411 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2412 Values[i].second == Values[i - 1].second,
2413 "PHI node has multiple entries for the same basic block with "
2414 "different incoming values!",
2415 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2417 // Check to make sure that the predecessors and PHI node entries are
2418 // matched up.
2419 Assert(Values[i].first == Preds[i],
2420 "PHI node entries do not match predecessors!", &PN,
2421 Values[i].first, Preds[i]);
2426 // Check that all instructions have their parent pointers set up correctly.
2427 for (auto &I : BB)
2429 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2433 void Verifier::visitTerminator(Instruction &I) {
2434 // Ensure that terminators only exist at the end of the basic block.
2435 Assert(&I == I.getParent()->getTerminator(),
2436 "Terminator found in the middle of a basic block!", I.getParent());
2437 visitInstruction(I);
2440 void Verifier::visitBranchInst(BranchInst &BI) {
2441 if (BI.isConditional()) {
2442 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2443 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2445 visitTerminator(BI);
2448 void Verifier::visitReturnInst(ReturnInst &RI) {
2449 Function *F = RI.getParent()->getParent();
2450 unsigned N = RI.getNumOperands();
2451 if (F->getReturnType()->isVoidTy())
2452 Assert(N == 0,
2453 "Found return instr that returns non-void in Function of void "
2454 "return type!",
2455 &RI, F->getReturnType());
2456 else
2457 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2458 "Function return type does not match operand "
2459 "type of return inst!",
2460 &RI, F->getReturnType());
2462 // Check to make sure that the return value has necessary properties for
2463 // terminators...
2464 visitTerminator(RI);
2467 void Verifier::visitSwitchInst(SwitchInst &SI) {
2468 // Check to make sure that all of the constants in the switch instruction
2469 // have the same type as the switched-on value.
2470 Type *SwitchTy = SI.getCondition()->getType();
2471 SmallPtrSet<ConstantInt*, 32> Constants;
2472 for (auto &Case : SI.cases()) {
2473 Assert(Case.getCaseValue()->getType() == SwitchTy,
2474 "Switch constants must all be same type as switch value!", &SI);
2475 Assert(Constants.insert(Case.getCaseValue()).second,
2476 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2479 visitTerminator(SI);
2482 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2483 Assert(BI.getAddress()->getType()->isPointerTy(),
2484 "Indirectbr operand must have pointer type!", &BI);
2485 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2486 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2487 "Indirectbr destinations must all have pointer type!", &BI);
2489 visitTerminator(BI);
2492 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2493 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2494 &CBI);
2495 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2496 &CBI);
2497 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2498 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2499 "Callbr successors must all have pointer type!", &CBI);
2500 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2501 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2502 "Using an unescaped label as a callbr argument!", &CBI);
2503 if (isa<BasicBlock>(CBI.getOperand(i)))
2504 for (unsigned j = i + 1; j != e; ++j)
2505 Assert(CBI.getOperand(i) != CBI.getOperand(j),
2506 "Duplicate callbr destination!", &CBI);
2509 SmallPtrSet<BasicBlock *, 4> ArgBBs;
2510 for (Value *V : CBI.args())
2511 if (auto *BA = dyn_cast<BlockAddress>(V))
2512 ArgBBs.insert(BA->getBasicBlock());
2513 for (BasicBlock *BB : CBI.getIndirectDests())
2514 Assert(ArgBBs.find(BB) != ArgBBs.end(),
2515 "Indirect label missing from arglist.", &CBI);
2518 visitTerminator(CBI);
2521 void Verifier::visitSelectInst(SelectInst &SI) {
2522 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2523 SI.getOperand(2)),
2524 "Invalid operands for select instruction!", &SI);
2526 Assert(SI.getTrueValue()->getType() == SI.getType(),
2527 "Select values must have same type as select instruction!", &SI);
2528 visitInstruction(SI);
2531 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2532 /// a pass, if any exist, it's an error.
2534 void Verifier::visitUserOp1(Instruction &I) {
2535 Assert(false, "User-defined operators should not live outside of a pass!", &I);
2538 void Verifier::visitTruncInst(TruncInst &I) {
2539 // Get the source and destination types
2540 Type *SrcTy = I.getOperand(0)->getType();
2541 Type *DestTy = I.getType();
2543 // Get the size of the types in bits, we'll need this later
2544 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2545 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2547 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2548 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2549 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2550 "trunc source and destination must both be a vector or neither", &I);
2551 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2553 visitInstruction(I);
2556 void Verifier::visitZExtInst(ZExtInst &I) {
2557 // Get the source and destination types
2558 Type *SrcTy = I.getOperand(0)->getType();
2559 Type *DestTy = I.getType();
2561 // Get the size of the types in bits, we'll need this later
2562 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2563 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2564 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2565 "zext source and destination must both be a vector or neither", &I);
2566 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2567 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2569 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2571 visitInstruction(I);
2574 void Verifier::visitSExtInst(SExtInst &I) {
2575 // Get the source and destination types
2576 Type *SrcTy = I.getOperand(0)->getType();
2577 Type *DestTy = I.getType();
2579 // Get the size of the types in bits, we'll need this later
2580 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2581 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2583 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2584 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2585 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586 "sext source and destination must both be a vector or neither", &I);
2587 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2589 visitInstruction(I);
2592 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2593 // Get the source and destination types
2594 Type *SrcTy = I.getOperand(0)->getType();
2595 Type *DestTy = I.getType();
2596 // Get the size of the types in bits, we'll need this later
2597 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2598 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2600 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2601 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2602 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2603 "fptrunc source and destination must both be a vector or neither", &I);
2604 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2606 visitInstruction(I);
2609 void Verifier::visitFPExtInst(FPExtInst &I) {
2610 // Get the source and destination types
2611 Type *SrcTy = I.getOperand(0)->getType();
2612 Type *DestTy = I.getType();
2614 // Get the size of the types in bits, we'll need this later
2615 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2616 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2618 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2619 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2620 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2621 "fpext source and destination must both be a vector or neither", &I);
2622 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2624 visitInstruction(I);
2627 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2628 // Get the source and destination types
2629 Type *SrcTy = I.getOperand(0)->getType();
2630 Type *DestTy = I.getType();
2632 bool SrcVec = SrcTy->isVectorTy();
2633 bool DstVec = DestTy->isVectorTy();
2635 Assert(SrcVec == DstVec,
2636 "UIToFP source and dest must both be vector or scalar", &I);
2637 Assert(SrcTy->isIntOrIntVectorTy(),
2638 "UIToFP source must be integer or integer vector", &I);
2639 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2640 &I);
2642 if (SrcVec && DstVec)
2643 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2644 cast<VectorType>(DestTy)->getNumElements(),
2645 "UIToFP source and dest vector length mismatch", &I);
2647 visitInstruction(I);
2650 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2651 // Get the source and destination types
2652 Type *SrcTy = I.getOperand(0)->getType();
2653 Type *DestTy = I.getType();
2655 bool SrcVec = SrcTy->isVectorTy();
2656 bool DstVec = DestTy->isVectorTy();
2658 Assert(SrcVec == DstVec,
2659 "SIToFP source and dest must both be vector or scalar", &I);
2660 Assert(SrcTy->isIntOrIntVectorTy(),
2661 "SIToFP source must be integer or integer vector", &I);
2662 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2663 &I);
2665 if (SrcVec && DstVec)
2666 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2667 cast<VectorType>(DestTy)->getNumElements(),
2668 "SIToFP source and dest vector length mismatch", &I);
2670 visitInstruction(I);
2673 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2674 // Get the source and destination types
2675 Type *SrcTy = I.getOperand(0)->getType();
2676 Type *DestTy = I.getType();
2678 bool SrcVec = SrcTy->isVectorTy();
2679 bool DstVec = DestTy->isVectorTy();
2681 Assert(SrcVec == DstVec,
2682 "FPToUI source and dest must both be vector or scalar", &I);
2683 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2684 &I);
2685 Assert(DestTy->isIntOrIntVectorTy(),
2686 "FPToUI result must be integer or integer vector", &I);
2688 if (SrcVec && DstVec)
2689 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2690 cast<VectorType>(DestTy)->getNumElements(),
2691 "FPToUI source and dest vector length mismatch", &I);
2693 visitInstruction(I);
2696 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2697 // Get the source and destination types
2698 Type *SrcTy = I.getOperand(0)->getType();
2699 Type *DestTy = I.getType();
2701 bool SrcVec = SrcTy->isVectorTy();
2702 bool DstVec = DestTy->isVectorTy();
2704 Assert(SrcVec == DstVec,
2705 "FPToSI source and dest must both be vector or scalar", &I);
2706 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2707 &I);
2708 Assert(DestTy->isIntOrIntVectorTy(),
2709 "FPToSI result must be integer or integer vector", &I);
2711 if (SrcVec && DstVec)
2712 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2713 cast<VectorType>(DestTy)->getNumElements(),
2714 "FPToSI source and dest vector length mismatch", &I);
2716 visitInstruction(I);
2719 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2720 // Get the source and destination types
2721 Type *SrcTy = I.getOperand(0)->getType();
2722 Type *DestTy = I.getType();
2724 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2726 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2727 Assert(!DL.isNonIntegralPointerType(PTy),
2728 "ptrtoint not supported for non-integral pointers");
2730 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2731 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2732 &I);
2734 if (SrcTy->isVectorTy()) {
2735 VectorType *VSrc = cast<VectorType>(SrcTy);
2736 VectorType *VDest = cast<VectorType>(DestTy);
2737 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2738 "PtrToInt Vector width mismatch", &I);
2741 visitInstruction(I);
2744 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2745 // Get the source and destination types
2746 Type *SrcTy = I.getOperand(0)->getType();
2747 Type *DestTy = I.getType();
2749 Assert(SrcTy->isIntOrIntVectorTy(),
2750 "IntToPtr source must be an integral", &I);
2751 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2753 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2754 Assert(!DL.isNonIntegralPointerType(PTy),
2755 "inttoptr not supported for non-integral pointers");
2757 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2758 &I);
2759 if (SrcTy->isVectorTy()) {
2760 VectorType *VSrc = cast<VectorType>(SrcTy);
2761 VectorType *VDest = cast<VectorType>(DestTy);
2762 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2763 "IntToPtr Vector width mismatch", &I);
2765 visitInstruction(I);
2768 void Verifier::visitBitCastInst(BitCastInst &I) {
2769 Assert(
2770 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2771 "Invalid bitcast", &I);
2772 visitInstruction(I);
2775 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2776 Type *SrcTy = I.getOperand(0)->getType();
2777 Type *DestTy = I.getType();
2779 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2780 &I);
2781 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2782 &I);
2783 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2784 "AddrSpaceCast must be between different address spaces", &I);
2785 if (SrcTy->isVectorTy())
2786 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2787 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2788 visitInstruction(I);
2791 /// visitPHINode - Ensure that a PHI node is well formed.
2793 void Verifier::visitPHINode(PHINode &PN) {
2794 // Ensure that the PHI nodes are all grouped together at the top of the block.
2795 // This can be tested by checking whether the instruction before this is
2796 // either nonexistent (because this is begin()) or is a PHI node. If not,
2797 // then there is some other instruction before a PHI.
2798 Assert(&PN == &PN.getParent()->front() ||
2799 isa<PHINode>(--BasicBlock::iterator(&PN)),
2800 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2802 // Check that a PHI doesn't yield a Token.
2803 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2805 // Check that all of the values of the PHI node have the same type as the
2806 // result, and that the incoming blocks are really basic blocks.
2807 for (Value *IncValue : PN.incoming_values()) {
2808 Assert(PN.getType() == IncValue->getType(),
2809 "PHI node operands are not the same type as the result!", &PN);
2812 // All other PHI node constraints are checked in the visitBasicBlock method.
2814 visitInstruction(PN);
2817 void Verifier::visitCallBase(CallBase &Call) {
2818 Assert(Call.getCalledValue()->getType()->isPointerTy(),
2819 "Called function must be a pointer!", Call);
2820 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2822 Assert(FPTy->getElementType()->isFunctionTy(),
2823 "Called function is not pointer to function type!", Call);
2825 Assert(FPTy->getElementType() == Call.getFunctionType(),
2826 "Called function is not the same type as the call!", Call);
2828 FunctionType *FTy = Call.getFunctionType();
2830 // Verify that the correct number of arguments are being passed
2831 if (FTy->isVarArg())
2832 Assert(Call.arg_size() >= FTy->getNumParams(),
2833 "Called function requires more parameters than were provided!",
2834 Call);
2835 else
2836 Assert(Call.arg_size() == FTy->getNumParams(),
2837 "Incorrect number of arguments passed to called function!", Call);
2839 // Verify that all arguments to the call match the function type.
2840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2841 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2842 "Call parameter type does not match function signature!",
2843 Call.getArgOperand(i), FTy->getParamType(i), Call);
2845 AttributeList Attrs = Call.getAttributes();
2847 Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2848 "Attribute after last parameter!", Call);
2850 bool IsIntrinsic = Call.getCalledFunction() &&
2851 Call.getCalledFunction()->getName().startswith("llvm.");
2853 Function *Callee
2854 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2856 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2857 // Don't allow speculatable on call sites, unless the underlying function
2858 // declaration is also speculatable.
2859 Assert(Callee && Callee->isSpeculatable(),
2860 "speculatable attribute may not apply to call sites", Call);
2863 // Verify call attributes.
2864 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2866 // Conservatively check the inalloca argument.
2867 // We have a bug if we can find that there is an underlying alloca without
2868 // inalloca.
2869 if (Call.hasInAllocaArgument()) {
2870 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2871 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2872 Assert(AI->isUsedWithInAlloca(),
2873 "inalloca argument for call has mismatched alloca", AI, Call);
2876 // For each argument of the callsite, if it has the swifterror argument,
2877 // make sure the underlying alloca/parameter it comes from has a swifterror as
2878 // well.
2879 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2880 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2881 Value *SwiftErrorArg = Call.getArgOperand(i);
2882 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2883 Assert(AI->isSwiftError(),
2884 "swifterror argument for call has mismatched alloca", AI, Call);
2885 continue;
2887 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2888 Assert(ArgI,
2889 "swifterror argument should come from an alloca or parameter",
2890 SwiftErrorArg, Call);
2891 Assert(ArgI->hasSwiftErrorAttr(),
2892 "swifterror argument for call has mismatched parameter", ArgI,
2893 Call);
2896 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2897 // Don't allow immarg on call sites, unless the underlying declaration
2898 // also has the matching immarg.
2899 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2900 "immarg may not apply only to call sites",
2901 Call.getArgOperand(i), Call);
2904 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2905 Value *ArgVal = Call.getArgOperand(i);
2906 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2907 "immarg operand has non-immediate parameter", ArgVal, Call);
2911 if (FTy->isVarArg()) {
2912 // FIXME? is 'nest' even legal here?
2913 bool SawNest = false;
2914 bool SawReturned = false;
2916 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2917 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2918 SawNest = true;
2919 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2920 SawReturned = true;
2923 // Check attributes on the varargs part.
2924 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2925 Type *Ty = Call.getArgOperand(Idx)->getType();
2926 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2927 verifyParameterAttrs(ArgAttrs, Ty, &Call);
2929 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2930 Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2931 SawNest = true;
2934 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2935 Assert(!SawReturned, "More than one parameter has attribute returned!",
2936 Call);
2937 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2938 "Incompatible argument and return types for 'returned' "
2939 "attribute",
2940 Call);
2941 SawReturned = true;
2944 // Statepoint intrinsic is vararg but the wrapped function may be not.
2945 // Allow sret here and check the wrapped function in verifyStatepoint.
2946 if (!Call.getCalledFunction() ||
2947 Call.getCalledFunction()->getIntrinsicID() !=
2948 Intrinsic::experimental_gc_statepoint)
2949 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2950 "Attribute 'sret' cannot be used for vararg call arguments!",
2951 Call);
2953 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2954 Assert(Idx == Call.arg_size() - 1,
2955 "inalloca isn't on the last argument!", Call);
2959 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2960 if (!IsIntrinsic) {
2961 for (Type *ParamTy : FTy->params()) {
2962 Assert(!ParamTy->isMetadataTy(),
2963 "Function has metadata parameter but isn't an intrinsic", Call);
2964 Assert(!ParamTy->isTokenTy(),
2965 "Function has token parameter but isn't an intrinsic", Call);
2969 // Verify that indirect calls don't return tokens.
2970 if (!Call.getCalledFunction())
2971 Assert(!FTy->getReturnType()->isTokenTy(),
2972 "Return type cannot be token for indirect call!");
2974 if (Function *F = Call.getCalledFunction())
2975 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2976 visitIntrinsicCall(ID, Call);
2978 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2979 // at most one "gc-transition" operand bundle.
2980 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2981 FoundGCTransitionBundle = false;
2982 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2983 OperandBundleUse BU = Call.getOperandBundleAt(i);
2984 uint32_t Tag = BU.getTagID();
2985 if (Tag == LLVMContext::OB_deopt) {
2986 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2987 FoundDeoptBundle = true;
2988 } else if (Tag == LLVMContext::OB_gc_transition) {
2989 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2990 Call);
2991 FoundGCTransitionBundle = true;
2992 } else if (Tag == LLVMContext::OB_funclet) {
2993 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2994 FoundFuncletBundle = true;
2995 Assert(BU.Inputs.size() == 1,
2996 "Expected exactly one funclet bundle operand", Call);
2997 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2998 "Funclet bundle operands should correspond to a FuncletPadInst",
2999 Call);
3003 // Verify that each inlinable callsite of a debug-info-bearing function in a
3004 // debug-info-bearing function has a debug location attached to it. Failure to
3005 // do so causes assertion failures when the inliner sets up inline scope info.
3006 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3007 Call.getCalledFunction()->getSubprogram())
3008 AssertDI(Call.getDebugLoc(),
3009 "inlinable function call in a function with "
3010 "debug info must have a !dbg location",
3011 Call);
3013 visitInstruction(Call);
3016 /// Two types are "congruent" if they are identical, or if they are both pointer
3017 /// types with different pointee types and the same address space.
3018 static bool isTypeCongruent(Type *L, Type *R) {
3019 if (L == R)
3020 return true;
3021 PointerType *PL = dyn_cast<PointerType>(L);
3022 PointerType *PR = dyn_cast<PointerType>(R);
3023 if (!PL || !PR)
3024 return false;
3025 return PL->getAddressSpace() == PR->getAddressSpace();
3028 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3029 static const Attribute::AttrKind ABIAttrs[] = {
3030 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3031 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3032 Attribute::SwiftError};
3033 AttrBuilder Copy;
3034 for (auto AK : ABIAttrs) {
3035 if (Attrs.hasParamAttribute(I, AK))
3036 Copy.addAttribute(AK);
3038 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3039 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3040 return Copy;
3043 void Verifier::verifyMustTailCall(CallInst &CI) {
3044 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3046 // - The caller and callee prototypes must match. Pointer types of
3047 // parameters or return types may differ in pointee type, but not
3048 // address space.
3049 Function *F = CI.getParent()->getParent();
3050 FunctionType *CallerTy = F->getFunctionType();
3051 FunctionType *CalleeTy = CI.getFunctionType();
3052 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3053 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3054 "cannot guarantee tail call due to mismatched parameter counts",
3055 &CI);
3056 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3057 Assert(
3058 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3059 "cannot guarantee tail call due to mismatched parameter types", &CI);
3062 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3063 "cannot guarantee tail call due to mismatched varargs", &CI);
3064 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3065 "cannot guarantee tail call due to mismatched return types", &CI);
3067 // - The calling conventions of the caller and callee must match.
3068 Assert(F->getCallingConv() == CI.getCallingConv(),
3069 "cannot guarantee tail call due to mismatched calling conv", &CI);
3071 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3072 // returned, and inalloca, must match.
3073 AttributeList CallerAttrs = F->getAttributes();
3074 AttributeList CalleeAttrs = CI.getAttributes();
3075 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3076 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3077 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3078 Assert(CallerABIAttrs == CalleeABIAttrs,
3079 "cannot guarantee tail call due to mismatched ABI impacting "
3080 "function attributes",
3081 &CI, CI.getOperand(I));
3084 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3085 // or a pointer bitcast followed by a ret instruction.
3086 // - The ret instruction must return the (possibly bitcasted) value
3087 // produced by the call or void.
3088 Value *RetVal = &CI;
3089 Instruction *Next = CI.getNextNode();
3091 // Handle the optional bitcast.
3092 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3093 Assert(BI->getOperand(0) == RetVal,
3094 "bitcast following musttail call must use the call", BI);
3095 RetVal = BI;
3096 Next = BI->getNextNode();
3099 // Check the return.
3100 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3101 Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3102 &CI);
3103 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3104 "musttail call result must be returned", Ret);
3107 void Verifier::visitCallInst(CallInst &CI) {
3108 visitCallBase(CI);
3110 if (CI.isMustTailCall())
3111 verifyMustTailCall(CI);
3114 void Verifier::visitInvokeInst(InvokeInst &II) {
3115 visitCallBase(II);
3117 // Verify that the first non-PHI instruction of the unwind destination is an
3118 // exception handling instruction.
3119 Assert(
3120 II.getUnwindDest()->isEHPad(),
3121 "The unwind destination does not have an exception handling instruction!",
3122 &II);
3124 visitTerminator(II);
3127 /// visitUnaryOperator - Check the argument to the unary operator.
3129 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3130 Assert(U.getType() == U.getOperand(0)->getType(),
3131 "Unary operators must have same type for"
3132 "operands and result!",
3133 &U);
3135 switch (U.getOpcode()) {
3136 // Check that floating-point arithmetic operators are only used with
3137 // floating-point operands.
3138 case Instruction::FNeg:
3139 Assert(U.getType()->isFPOrFPVectorTy(),
3140 "FNeg operator only works with float types!", &U);
3141 break;
3142 default:
3143 llvm_unreachable("Unknown UnaryOperator opcode!");
3146 visitInstruction(U);
3149 /// visitBinaryOperator - Check that both arguments to the binary operator are
3150 /// of the same type!
3152 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3153 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3154 "Both operands to a binary operator are not of the same type!", &B);
3156 switch (B.getOpcode()) {
3157 // Check that integer arithmetic operators are only used with
3158 // integral operands.
3159 case Instruction::Add:
3160 case Instruction::Sub:
3161 case Instruction::Mul:
3162 case Instruction::SDiv:
3163 case Instruction::UDiv:
3164 case Instruction::SRem:
3165 case Instruction::URem:
3166 Assert(B.getType()->isIntOrIntVectorTy(),
3167 "Integer arithmetic operators only work with integral types!", &B);
3168 Assert(B.getType() == B.getOperand(0)->getType(),
3169 "Integer arithmetic operators must have same type "
3170 "for operands and result!",
3171 &B);
3172 break;
3173 // Check that floating-point arithmetic operators are only used with
3174 // floating-point operands.
3175 case Instruction::FAdd:
3176 case Instruction::FSub:
3177 case Instruction::FMul:
3178 case Instruction::FDiv:
3179 case Instruction::FRem:
3180 Assert(B.getType()->isFPOrFPVectorTy(),
3181 "Floating-point arithmetic operators only work with "
3182 "floating-point types!",
3183 &B);
3184 Assert(B.getType() == B.getOperand(0)->getType(),
3185 "Floating-point arithmetic operators must have same type "
3186 "for operands and result!",
3187 &B);
3188 break;
3189 // Check that logical operators are only used with integral operands.
3190 case Instruction::And:
3191 case Instruction::Or:
3192 case Instruction::Xor:
3193 Assert(B.getType()->isIntOrIntVectorTy(),
3194 "Logical operators only work with integral types!", &B);
3195 Assert(B.getType() == B.getOperand(0)->getType(),
3196 "Logical operators must have same type for operands and result!",
3197 &B);
3198 break;
3199 case Instruction::Shl:
3200 case Instruction::LShr:
3201 case Instruction::AShr:
3202 Assert(B.getType()->isIntOrIntVectorTy(),
3203 "Shifts only work with integral types!", &B);
3204 Assert(B.getType() == B.getOperand(0)->getType(),
3205 "Shift return type must be same as operands!", &B);
3206 break;
3207 default:
3208 llvm_unreachable("Unknown BinaryOperator opcode!");
3211 visitInstruction(B);
3214 void Verifier::visitICmpInst(ICmpInst &IC) {
3215 // Check that the operands are the same type
3216 Type *Op0Ty = IC.getOperand(0)->getType();
3217 Type *Op1Ty = IC.getOperand(1)->getType();
3218 Assert(Op0Ty == Op1Ty,
3219 "Both operands to ICmp instruction are not of the same type!", &IC);
3220 // Check that the operands are the right type
3221 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3222 "Invalid operand types for ICmp instruction", &IC);
3223 // Check that the predicate is valid.
3224 Assert(IC.isIntPredicate(),
3225 "Invalid predicate in ICmp instruction!", &IC);
3227 visitInstruction(IC);
3230 void Verifier::visitFCmpInst(FCmpInst &FC) {
3231 // Check that the operands are the same type
3232 Type *Op0Ty = FC.getOperand(0)->getType();
3233 Type *Op1Ty = FC.getOperand(1)->getType();
3234 Assert(Op0Ty == Op1Ty,
3235 "Both operands to FCmp instruction are not of the same type!", &FC);
3236 // Check that the operands are the right type
3237 Assert(Op0Ty->isFPOrFPVectorTy(),
3238 "Invalid operand types for FCmp instruction", &FC);
3239 // Check that the predicate is valid.
3240 Assert(FC.isFPPredicate(),
3241 "Invalid predicate in FCmp instruction!", &FC);
3243 visitInstruction(FC);
3246 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3247 Assert(
3248 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3249 "Invalid extractelement operands!", &EI);
3250 visitInstruction(EI);
3253 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3254 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3255 IE.getOperand(2)),
3256 "Invalid insertelement operands!", &IE);
3257 visitInstruction(IE);
3260 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3261 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3262 SV.getOperand(2)),
3263 "Invalid shufflevector operands!", &SV);
3264 visitInstruction(SV);
3267 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3268 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3270 Assert(isa<PointerType>(TargetTy),
3271 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3272 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3274 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3275 Assert(all_of(
3276 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3277 "GEP indexes must be integers", &GEP);
3278 Type *ElTy =
3279 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3280 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3282 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3283 GEP.getResultElementType() == ElTy,
3284 "GEP is not of right type for indices!", &GEP, ElTy);
3286 if (GEP.getType()->isVectorTy()) {
3287 // Additional checks for vector GEPs.
3288 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3289 if (GEP.getPointerOperandType()->isVectorTy())
3290 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3291 "Vector GEP result width doesn't match operand's", &GEP);
3292 for (Value *Idx : Idxs) {
3293 Type *IndexTy = Idx->getType();
3294 if (IndexTy->isVectorTy()) {
3295 unsigned IndexWidth = IndexTy->getVectorNumElements();
3296 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3298 Assert(IndexTy->isIntOrIntVectorTy(),
3299 "All GEP indices should be of integer type");
3303 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3304 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3305 "GEP address space doesn't match type", &GEP);
3308 visitInstruction(GEP);
3311 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3312 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3315 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3316 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3317 "precondition violation");
3319 unsigned NumOperands = Range->getNumOperands();
3320 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3321 unsigned NumRanges = NumOperands / 2;
3322 Assert(NumRanges >= 1, "It should have at least one range!", Range);
3324 ConstantRange LastRange(1, true); // Dummy initial value
3325 for (unsigned i = 0; i < NumRanges; ++i) {
3326 ConstantInt *Low =
3327 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3328 Assert(Low, "The lower limit must be an integer!", Low);
3329 ConstantInt *High =
3330 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3331 Assert(High, "The upper limit must be an integer!", High);
3332 Assert(High->getType() == Low->getType() && High->getType() == Ty,
3333 "Range types must match instruction type!", &I);
3335 APInt HighV = High->getValue();
3336 APInt LowV = Low->getValue();
3337 ConstantRange CurRange(LowV, HighV);
3338 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3339 "Range must not be empty!", Range);
3340 if (i != 0) {
3341 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3342 "Intervals are overlapping", Range);
3343 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3344 Range);
3345 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3346 Range);
3348 LastRange = ConstantRange(LowV, HighV);
3350 if (NumRanges > 2) {
3351 APInt FirstLow =
3352 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3353 APInt FirstHigh =
3354 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3355 ConstantRange FirstRange(FirstLow, FirstHigh);
3356 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3357 "Intervals are overlapping", Range);
3358 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3359 Range);
3363 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3364 unsigned Size = DL.getTypeSizeInBits(Ty);
3365 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3366 Assert(!(Size & (Size - 1)),
3367 "atomic memory access' operand must have a power-of-two size", Ty, I);
3370 void Verifier::visitLoadInst(LoadInst &LI) {
3371 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3372 Assert(PTy, "Load operand must be a pointer.", &LI);
3373 Type *ElTy = LI.getType();
3374 Assert(LI.getAlignment() <= Value::MaximumAlignment,
3375 "huge alignment values are unsupported", &LI);
3376 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3377 if (LI.isAtomic()) {
3378 Assert(LI.getOrdering() != AtomicOrdering::Release &&
3379 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3380 "Load cannot have Release ordering", &LI);
3381 Assert(LI.getAlignment() != 0,
3382 "Atomic load must specify explicit alignment", &LI);
3383 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3384 "atomic load operand must have integer, pointer, or floating point "
3385 "type!",
3386 ElTy, &LI);
3387 checkAtomicMemAccessSize(ElTy, &LI);
3388 } else {
3389 Assert(LI.getSyncScopeID() == SyncScope::System,
3390 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3393 visitInstruction(LI);
3396 void Verifier::visitStoreInst(StoreInst &SI) {
3397 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3398 Assert(PTy, "Store operand must be a pointer.", &SI);
3399 Type *ElTy = PTy->getElementType();
3400 Assert(ElTy == SI.getOperand(0)->getType(),
3401 "Stored value type does not match pointer operand type!", &SI, ElTy);
3402 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3403 "huge alignment values are unsupported", &SI);
3404 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3405 if (SI.isAtomic()) {
3406 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3407 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3408 "Store cannot have Acquire ordering", &SI);
3409 Assert(SI.getAlignment() != 0,
3410 "Atomic store must specify explicit alignment", &SI);
3411 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3412 "atomic store operand must have integer, pointer, or floating point "
3413 "type!",
3414 ElTy, &SI);
3415 checkAtomicMemAccessSize(ElTy, &SI);
3416 } else {
3417 Assert(SI.getSyncScopeID() == SyncScope::System,
3418 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3420 visitInstruction(SI);
3423 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3424 void Verifier::verifySwiftErrorCall(CallBase &Call,
3425 const Value *SwiftErrorVal) {
3426 unsigned Idx = 0;
3427 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3428 if (*I == SwiftErrorVal) {
3429 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3430 "swifterror value when used in a callsite should be marked "
3431 "with swifterror attribute",
3432 SwiftErrorVal, Call);
3437 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3438 // Check that swifterror value is only used by loads, stores, or as
3439 // a swifterror argument.
3440 for (const User *U : SwiftErrorVal->users()) {
3441 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3442 isa<InvokeInst>(U),
3443 "swifterror value can only be loaded and stored from, or "
3444 "as a swifterror argument!",
3445 SwiftErrorVal, U);
3446 // If it is used by a store, check it is the second operand.
3447 if (auto StoreI = dyn_cast<StoreInst>(U))
3448 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3449 "swifterror value should be the second operand when used "
3450 "by stores", SwiftErrorVal, U);
3451 if (auto *Call = dyn_cast<CallBase>(U))
3452 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3456 void Verifier::visitAllocaInst(AllocaInst &AI) {
3457 SmallPtrSet<Type*, 4> Visited;
3458 PointerType *PTy = AI.getType();
3459 // TODO: Relax this restriction?
3460 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3461 "Allocation instruction pointer not in the stack address space!",
3462 &AI);
3463 Assert(AI.getAllocatedType()->isSized(&Visited),
3464 "Cannot allocate unsized type", &AI);
3465 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3466 "Alloca array size must have integer type", &AI);
3467 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3468 "huge alignment values are unsupported", &AI);
3470 if (AI.isSwiftError()) {
3471 verifySwiftErrorValue(&AI);
3474 visitInstruction(AI);
3477 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3479 // FIXME: more conditions???
3480 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3481 "cmpxchg instructions must be atomic.", &CXI);
3482 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3483 "cmpxchg instructions must be atomic.", &CXI);
3484 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3485 "cmpxchg instructions cannot be unordered.", &CXI);
3486 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3487 "cmpxchg instructions cannot be unordered.", &CXI);
3488 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3489 "cmpxchg instructions failure argument shall be no stronger than the "
3490 "success argument",
3491 &CXI);
3492 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3493 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3494 "cmpxchg failure ordering cannot include release semantics", &CXI);
3496 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3497 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3498 Type *ElTy = PTy->getElementType();
3499 Assert(ElTy->isIntOrPtrTy(),
3500 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3501 checkAtomicMemAccessSize(ElTy, &CXI);
3502 Assert(ElTy == CXI.getOperand(1)->getType(),
3503 "Expected value type does not match pointer operand type!", &CXI,
3504 ElTy);
3505 Assert(ElTy == CXI.getOperand(2)->getType(),
3506 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3507 visitInstruction(CXI);
3510 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3511 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3512 "atomicrmw instructions must be atomic.", &RMWI);
3513 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3514 "atomicrmw instructions cannot be unordered.", &RMWI);
3515 auto Op = RMWI.getOperation();
3516 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3517 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3518 Type *ElTy = PTy->getElementType();
3519 if (Op == AtomicRMWInst::Xchg) {
3520 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3521 AtomicRMWInst::getOperationName(Op) +
3522 " operand must have integer or floating point type!",
3523 &RMWI, ElTy);
3524 } else if (AtomicRMWInst::isFPOperation(Op)) {
3525 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3526 AtomicRMWInst::getOperationName(Op) +
3527 " operand must have floating point type!",
3528 &RMWI, ElTy);
3529 } else {
3530 Assert(ElTy->isIntegerTy(), "atomicrmw " +
3531 AtomicRMWInst::getOperationName(Op) +
3532 " operand must have integer type!",
3533 &RMWI, ElTy);
3535 checkAtomicMemAccessSize(ElTy, &RMWI);
3536 Assert(ElTy == RMWI.getOperand(1)->getType(),
3537 "Argument value type does not match pointer operand type!", &RMWI,
3538 ElTy);
3539 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3540 "Invalid binary operation!", &RMWI);
3541 visitInstruction(RMWI);
3544 void Verifier::visitFenceInst(FenceInst &FI) {
3545 const AtomicOrdering Ordering = FI.getOrdering();
3546 Assert(Ordering == AtomicOrdering::Acquire ||
3547 Ordering == AtomicOrdering::Release ||
3548 Ordering == AtomicOrdering::AcquireRelease ||
3549 Ordering == AtomicOrdering::SequentiallyConsistent,
3550 "fence instructions may only have acquire, release, acq_rel, or "
3551 "seq_cst ordering.",
3552 &FI);
3553 visitInstruction(FI);
3556 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3557 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3558 EVI.getIndices()) == EVI.getType(),
3559 "Invalid ExtractValueInst operands!", &EVI);
3561 visitInstruction(EVI);
3564 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3565 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3566 IVI.getIndices()) ==
3567 IVI.getOperand(1)->getType(),
3568 "Invalid InsertValueInst operands!", &IVI);
3570 visitInstruction(IVI);
3573 static Value *getParentPad(Value *EHPad) {
3574 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3575 return FPI->getParentPad();
3577 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3580 void Verifier::visitEHPadPredecessors(Instruction &I) {
3581 assert(I.isEHPad());
3583 BasicBlock *BB = I.getParent();
3584 Function *F = BB->getParent();
3586 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3588 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3589 // The landingpad instruction defines its parent as a landing pad block. The
3590 // landing pad block may be branched to only by the unwind edge of an
3591 // invoke.
3592 for (BasicBlock *PredBB : predecessors(BB)) {
3593 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3594 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3595 "Block containing LandingPadInst must be jumped to "
3596 "only by the unwind edge of an invoke.",
3597 LPI);
3599 return;
3601 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3602 if (!pred_empty(BB))
3603 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3604 "Block containg CatchPadInst must be jumped to "
3605 "only by its catchswitch.",
3606 CPI);
3607 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3608 "Catchswitch cannot unwind to one of its catchpads",
3609 CPI->getCatchSwitch(), CPI);
3610 return;
3613 // Verify that each pred has a legal terminator with a legal to/from EH
3614 // pad relationship.
3615 Instruction *ToPad = &I;
3616 Value *ToPadParent = getParentPad(ToPad);
3617 for (BasicBlock *PredBB : predecessors(BB)) {
3618 Instruction *TI = PredBB->getTerminator();
3619 Value *FromPad;
3620 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3621 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3622 "EH pad must be jumped to via an unwind edge", ToPad, II);
3623 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3624 FromPad = Bundle->Inputs[0];
3625 else
3626 FromPad = ConstantTokenNone::get(II->getContext());
3627 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3628 FromPad = CRI->getOperand(0);
3629 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3630 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3631 FromPad = CSI;
3632 } else {
3633 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3636 // The edge may exit from zero or more nested pads.
3637 SmallSet<Value *, 8> Seen;
3638 for (;; FromPad = getParentPad(FromPad)) {
3639 Assert(FromPad != ToPad,
3640 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3641 if (FromPad == ToPadParent) {
3642 // This is a legal unwind edge.
3643 break;
3645 Assert(!isa<ConstantTokenNone>(FromPad),
3646 "A single unwind edge may only enter one EH pad", TI);
3647 Assert(Seen.insert(FromPad).second,
3648 "EH pad jumps through a cycle of pads", FromPad);
3653 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3654 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3655 // isn't a cleanup.
3656 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3657 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3659 visitEHPadPredecessors(LPI);
3661 if (!LandingPadResultTy)
3662 LandingPadResultTy = LPI.getType();
3663 else
3664 Assert(LandingPadResultTy == LPI.getType(),
3665 "The landingpad instruction should have a consistent result type "
3666 "inside a function.",
3667 &LPI);
3669 Function *F = LPI.getParent()->getParent();
3670 Assert(F->hasPersonalityFn(),
3671 "LandingPadInst needs to be in a function with a personality.", &LPI);
3673 // The landingpad instruction must be the first non-PHI instruction in the
3674 // block.
3675 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3676 "LandingPadInst not the first non-PHI instruction in the block.",
3677 &LPI);
3679 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3680 Constant *Clause = LPI.getClause(i);
3681 if (LPI.isCatch(i)) {
3682 Assert(isa<PointerType>(Clause->getType()),
3683 "Catch operand does not have pointer type!", &LPI);
3684 } else {
3685 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3686 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3687 "Filter operand is not an array of constants!", &LPI);
3691 visitInstruction(LPI);
3694 void Verifier::visitResumeInst(ResumeInst &RI) {
3695 Assert(RI.getFunction()->hasPersonalityFn(),
3696 "ResumeInst needs to be in a function with a personality.", &RI);
3698 if (!LandingPadResultTy)
3699 LandingPadResultTy = RI.getValue()->getType();
3700 else
3701 Assert(LandingPadResultTy == RI.getValue()->getType(),
3702 "The resume instruction should have a consistent result type "
3703 "inside a function.",
3704 &RI);
3706 visitTerminator(RI);
3709 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3710 BasicBlock *BB = CPI.getParent();
3712 Function *F = BB->getParent();
3713 Assert(F->hasPersonalityFn(),
3714 "CatchPadInst needs to be in a function with a personality.", &CPI);
3716 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3717 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3718 CPI.getParentPad());
3720 // The catchpad instruction must be the first non-PHI instruction in the
3721 // block.
3722 Assert(BB->getFirstNonPHI() == &CPI,
3723 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3725 visitEHPadPredecessors(CPI);
3726 visitFuncletPadInst(CPI);
3729 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3730 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3731 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3732 CatchReturn.getOperand(0));
3734 visitTerminator(CatchReturn);
3737 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3738 BasicBlock *BB = CPI.getParent();
3740 Function *F = BB->getParent();
3741 Assert(F->hasPersonalityFn(),
3742 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3744 // The cleanuppad instruction must be the first non-PHI instruction in the
3745 // block.
3746 Assert(BB->getFirstNonPHI() == &CPI,
3747 "CleanupPadInst not the first non-PHI instruction in the block.",
3748 &CPI);
3750 auto *ParentPad = CPI.getParentPad();
3751 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3752 "CleanupPadInst has an invalid parent.", &CPI);
3754 visitEHPadPredecessors(CPI);
3755 visitFuncletPadInst(CPI);
3758 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3759 User *FirstUser = nullptr;
3760 Value *FirstUnwindPad = nullptr;
3761 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3762 SmallSet<FuncletPadInst *, 8> Seen;
3764 while (!Worklist.empty()) {
3765 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3766 Assert(Seen.insert(CurrentPad).second,
3767 "FuncletPadInst must not be nested within itself", CurrentPad);
3768 Value *UnresolvedAncestorPad = nullptr;
3769 for (User *U : CurrentPad->users()) {
3770 BasicBlock *UnwindDest;
3771 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3772 UnwindDest = CRI->getUnwindDest();
3773 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3774 // We allow catchswitch unwind to caller to nest
3775 // within an outer pad that unwinds somewhere else,
3776 // because catchswitch doesn't have a nounwind variant.
3777 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3778 if (CSI->unwindsToCaller())
3779 continue;
3780 UnwindDest = CSI->getUnwindDest();
3781 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3782 UnwindDest = II->getUnwindDest();
3783 } else if (isa<CallInst>(U)) {
3784 // Calls which don't unwind may be found inside funclet
3785 // pads that unwind somewhere else. We don't *require*
3786 // such calls to be annotated nounwind.
3787 continue;
3788 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3789 // The unwind dest for a cleanup can only be found by
3790 // recursive search. Add it to the worklist, and we'll
3791 // search for its first use that determines where it unwinds.
3792 Worklist.push_back(CPI);
3793 continue;
3794 } else {
3795 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3796 continue;
3799 Value *UnwindPad;
3800 bool ExitsFPI;
3801 if (UnwindDest) {
3802 UnwindPad = UnwindDest->getFirstNonPHI();
3803 if (!cast<Instruction>(UnwindPad)->isEHPad())
3804 continue;
3805 Value *UnwindParent = getParentPad(UnwindPad);
3806 // Ignore unwind edges that don't exit CurrentPad.
3807 if (UnwindParent == CurrentPad)
3808 continue;
3809 // Determine whether the original funclet pad is exited,
3810 // and if we are scanning nested pads determine how many
3811 // of them are exited so we can stop searching their
3812 // children.
3813 Value *ExitedPad = CurrentPad;
3814 ExitsFPI = false;
3815 do {
3816 if (ExitedPad == &FPI) {
3817 ExitsFPI = true;
3818 // Now we can resolve any ancestors of CurrentPad up to
3819 // FPI, but not including FPI since we need to make sure
3820 // to check all direct users of FPI for consistency.
3821 UnresolvedAncestorPad = &FPI;
3822 break;
3824 Value *ExitedParent = getParentPad(ExitedPad);
3825 if (ExitedParent == UnwindParent) {
3826 // ExitedPad is the ancestor-most pad which this unwind
3827 // edge exits, so we can resolve up to it, meaning that
3828 // ExitedParent is the first ancestor still unresolved.
3829 UnresolvedAncestorPad = ExitedParent;
3830 break;
3832 ExitedPad = ExitedParent;
3833 } while (!isa<ConstantTokenNone>(ExitedPad));
3834 } else {
3835 // Unwinding to caller exits all pads.
3836 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3837 ExitsFPI = true;
3838 UnresolvedAncestorPad = &FPI;
3841 if (ExitsFPI) {
3842 // This unwind edge exits FPI. Make sure it agrees with other
3843 // such edges.
3844 if (FirstUser) {
3845 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3846 "pad must have the same unwind "
3847 "dest",
3848 &FPI, U, FirstUser);
3849 } else {
3850 FirstUser = U;
3851 FirstUnwindPad = UnwindPad;
3852 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3853 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3854 getParentPad(UnwindPad) == getParentPad(&FPI))
3855 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3858 // Make sure we visit all uses of FPI, but for nested pads stop as
3859 // soon as we know where they unwind to.
3860 if (CurrentPad != &FPI)
3861 break;
3863 if (UnresolvedAncestorPad) {
3864 if (CurrentPad == UnresolvedAncestorPad) {
3865 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3866 // we've found an unwind edge that exits it, because we need to verify
3867 // all direct uses of FPI.
3868 assert(CurrentPad == &FPI);
3869 continue;
3871 // Pop off the worklist any nested pads that we've found an unwind
3872 // destination for. The pads on the worklist are the uncles,
3873 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3874 // for all ancestors of CurrentPad up to but not including
3875 // UnresolvedAncestorPad.
3876 Value *ResolvedPad = CurrentPad;
3877 while (!Worklist.empty()) {
3878 Value *UnclePad = Worklist.back();
3879 Value *AncestorPad = getParentPad(UnclePad);
3880 // Walk ResolvedPad up the ancestor list until we either find the
3881 // uncle's parent or the last resolved ancestor.
3882 while (ResolvedPad != AncestorPad) {
3883 Value *ResolvedParent = getParentPad(ResolvedPad);
3884 if (ResolvedParent == UnresolvedAncestorPad) {
3885 break;
3887 ResolvedPad = ResolvedParent;
3889 // If the resolved ancestor search didn't find the uncle's parent,
3890 // then the uncle is not yet resolved.
3891 if (ResolvedPad != AncestorPad)
3892 break;
3893 // This uncle is resolved, so pop it from the worklist.
3894 Worklist.pop_back();
3899 if (FirstUnwindPad) {
3900 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3901 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3902 Value *SwitchUnwindPad;
3903 if (SwitchUnwindDest)
3904 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3905 else
3906 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3907 Assert(SwitchUnwindPad == FirstUnwindPad,
3908 "Unwind edges out of a catch must have the same unwind dest as "
3909 "the parent catchswitch",
3910 &FPI, FirstUser, CatchSwitch);
3914 visitInstruction(FPI);
3917 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3918 BasicBlock *BB = CatchSwitch.getParent();
3920 Function *F = BB->getParent();
3921 Assert(F->hasPersonalityFn(),
3922 "CatchSwitchInst needs to be in a function with a personality.",
3923 &CatchSwitch);
3925 // The catchswitch instruction must be the first non-PHI instruction in the
3926 // block.
3927 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3928 "CatchSwitchInst not the first non-PHI instruction in the block.",
3929 &CatchSwitch);
3931 auto *ParentPad = CatchSwitch.getParentPad();
3932 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3933 "CatchSwitchInst has an invalid parent.", ParentPad);
3935 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3936 Instruction *I = UnwindDest->getFirstNonPHI();
3937 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3938 "CatchSwitchInst must unwind to an EH block which is not a "
3939 "landingpad.",
3940 &CatchSwitch);
3942 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3943 if (getParentPad(I) == ParentPad)
3944 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3947 Assert(CatchSwitch.getNumHandlers() != 0,
3948 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3950 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3951 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3952 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3955 visitEHPadPredecessors(CatchSwitch);
3956 visitTerminator(CatchSwitch);
3959 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3960 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3961 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3962 CRI.getOperand(0));
3964 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3965 Instruction *I = UnwindDest->getFirstNonPHI();
3966 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3967 "CleanupReturnInst must unwind to an EH block which is not a "
3968 "landingpad.",
3969 &CRI);
3972 visitTerminator(CRI);
3975 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3976 Instruction *Op = cast<Instruction>(I.getOperand(i));
3977 // If the we have an invalid invoke, don't try to compute the dominance.
3978 // We already reject it in the invoke specific checks and the dominance
3979 // computation doesn't handle multiple edges.
3980 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3981 if (II->getNormalDest() == II->getUnwindDest())
3982 return;
3985 // Quick check whether the def has already been encountered in the same block.
3986 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3987 // uses are defined to happen on the incoming edge, not at the instruction.
3989 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3990 // wrapping an SSA value, assert that we've already encountered it. See
3991 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3992 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3993 return;
3995 const Use &U = I.getOperandUse(i);
3996 Assert(DT.dominates(Op, U),
3997 "Instruction does not dominate all uses!", Op, &I);
4000 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4001 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4002 "apply only to pointer types", &I);
4003 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4004 "dereferenceable, dereferenceable_or_null apply only to load"
4005 " and inttoptr instructions, use attributes for calls or invokes", &I);
4006 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4007 "take one operand!", &I);
4008 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4009 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4010 "dereferenceable_or_null metadata value must be an i64!", &I);
4013 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4014 Assert(MD->getNumOperands() >= 2,
4015 "!prof annotations should have no less than 2 operands", MD);
4017 // Check first operand.
4018 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4019 Assert(isa<MDString>(MD->getOperand(0)),
4020 "expected string with name of the !prof annotation", MD);
4021 MDString *MDS = cast<MDString>(MD->getOperand(0));
4022 StringRef ProfName = MDS->getString();
4024 // Check consistency of !prof branch_weights metadata.
4025 if (ProfName.equals("branch_weights")) {
4026 unsigned ExpectedNumOperands = 0;
4027 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4028 ExpectedNumOperands = BI->getNumSuccessors();
4029 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4030 ExpectedNumOperands = SI->getNumSuccessors();
4031 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4032 ExpectedNumOperands = 1;
4033 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4034 ExpectedNumOperands = IBI->getNumDestinations();
4035 else if (isa<SelectInst>(&I))
4036 ExpectedNumOperands = 2;
4037 else
4038 CheckFailed("!prof branch_weights are not allowed for this instruction",
4039 MD);
4041 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4042 "Wrong number of operands", MD);
4043 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4044 auto &MDO = MD->getOperand(i);
4045 Assert(MDO, "second operand should not be null", MD);
4046 Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4047 "!prof brunch_weights operand is not a const int");
4052 /// verifyInstruction - Verify that an instruction is well formed.
4054 void Verifier::visitInstruction(Instruction &I) {
4055 BasicBlock *BB = I.getParent();
4056 Assert(BB, "Instruction not embedded in basic block!", &I);
4058 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4059 for (User *U : I.users()) {
4060 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4061 "Only PHI nodes may reference their own value!", &I);
4065 // Check that void typed values don't have names
4066 Assert(!I.getType()->isVoidTy() || !I.hasName(),
4067 "Instruction has a name, but provides a void value!", &I);
4069 // Check that the return value of the instruction is either void or a legal
4070 // value type.
4071 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4072 "Instruction returns a non-scalar type!", &I);
4074 // Check that the instruction doesn't produce metadata. Calls are already
4075 // checked against the callee type.
4076 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4077 "Invalid use of metadata!", &I);
4079 // Check that all uses of the instruction, if they are instructions
4080 // themselves, actually have parent basic blocks. If the use is not an
4081 // instruction, it is an error!
4082 for (Use &U : I.uses()) {
4083 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4084 Assert(Used->getParent() != nullptr,
4085 "Instruction referencing"
4086 " instruction not embedded in a basic block!",
4087 &I, Used);
4088 else {
4089 CheckFailed("Use of instruction is not an instruction!", U);
4090 return;
4094 // Get a pointer to the call base of the instruction if it is some form of
4095 // call.
4096 const CallBase *CBI = dyn_cast<CallBase>(&I);
4098 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4099 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4101 // Check to make sure that only first-class-values are operands to
4102 // instructions.
4103 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4104 Assert(false, "Instruction operands must be first-class values!", &I);
4107 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4108 // Check to make sure that the "address of" an intrinsic function is never
4109 // taken.
4110 Assert(!F->isIntrinsic() ||
4111 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4112 "Cannot take the address of an intrinsic!", &I);
4113 Assert(
4114 !F->isIntrinsic() || isa<CallInst>(I) ||
4115 F->getIntrinsicID() == Intrinsic::donothing ||
4116 F->getIntrinsicID() == Intrinsic::coro_resume ||
4117 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4118 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4119 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4120 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4121 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4122 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4123 "statepoint, coro_resume or coro_destroy",
4124 &I);
4125 Assert(F->getParent() == &M, "Referencing function in another module!",
4126 &I, &M, F, F->getParent());
4127 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4128 Assert(OpBB->getParent() == BB->getParent(),
4129 "Referring to a basic block in another function!", &I);
4130 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4131 Assert(OpArg->getParent() == BB->getParent(),
4132 "Referring to an argument in another function!", &I);
4133 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4134 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4135 &M, GV, GV->getParent());
4136 } else if (isa<Instruction>(I.getOperand(i))) {
4137 verifyDominatesUse(I, i);
4138 } else if (isa<InlineAsm>(I.getOperand(i))) {
4139 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4140 "Cannot take the address of an inline asm!", &I);
4141 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4142 if (CE->getType()->isPtrOrPtrVectorTy() ||
4143 !DL.getNonIntegralAddressSpaces().empty()) {
4144 // If we have a ConstantExpr pointer, we need to see if it came from an
4145 // illegal bitcast. If the datalayout string specifies non-integral
4146 // address spaces then we also need to check for illegal ptrtoint and
4147 // inttoptr expressions.
4148 visitConstantExprsRecursively(CE);
4153 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4154 Assert(I.getType()->isFPOrFPVectorTy(),
4155 "fpmath requires a floating point result!", &I);
4156 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4157 if (ConstantFP *CFP0 =
4158 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4159 const APFloat &Accuracy = CFP0->getValueAPF();
4160 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4161 "fpmath accuracy must have float type", &I);
4162 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4163 "fpmath accuracy not a positive number!", &I);
4164 } else {
4165 Assert(false, "invalid fpmath accuracy!", &I);
4169 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4170 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4171 "Ranges are only for loads, calls and invokes!", &I);
4172 visitRangeMetadata(I, Range, I.getType());
4175 if (I.getMetadata(LLVMContext::MD_nonnull)) {
4176 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4177 &I);
4178 Assert(isa<LoadInst>(I),
4179 "nonnull applies only to load instructions, use attributes"
4180 " for calls or invokes",
4181 &I);
4184 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4185 visitDereferenceableMetadata(I, MD);
4187 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4188 visitDereferenceableMetadata(I, MD);
4190 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4191 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4193 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4194 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4195 &I);
4196 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4197 "use attributes for calls or invokes", &I);
4198 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4199 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4200 Assert(CI && CI->getType()->isIntegerTy(64),
4201 "align metadata value must be an i64!", &I);
4202 uint64_t Align = CI->getZExtValue();
4203 Assert(isPowerOf2_64(Align),
4204 "align metadata value must be a power of 2!", &I);
4205 Assert(Align <= Value::MaximumAlignment,
4206 "alignment is larger that implementation defined limit", &I);
4209 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4210 visitProfMetadata(I, MD);
4212 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4213 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4214 visitMDNode(*N);
4217 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4218 verifyFragmentExpression(*DII);
4219 verifyNotEntryValue(*DII);
4222 InstsInThisBlock.insert(&I);
4225 /// Allow intrinsics to be verified in different ways.
4226 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4227 Function *IF = Call.getCalledFunction();
4228 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4229 IF);
4231 // Verify that the intrinsic prototype lines up with what the .td files
4232 // describe.
4233 FunctionType *IFTy = IF->getFunctionType();
4234 bool IsVarArg = IFTy->isVarArg();
4236 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4237 getIntrinsicInfoTableEntries(ID, Table);
4238 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4240 // Walk the descriptors to extract overloaded types.
4241 SmallVector<Type *, 4> ArgTys;
4242 Intrinsic::MatchIntrinsicTypesResult Res =
4243 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4244 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4245 "Intrinsic has incorrect return type!", IF);
4246 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4247 "Intrinsic has incorrect argument type!", IF);
4249 // Verify if the intrinsic call matches the vararg property.
4250 if (IsVarArg)
4251 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4252 "Intrinsic was not defined with variable arguments!", IF);
4253 else
4254 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4255 "Callsite was not defined with variable arguments!", IF);
4257 // All descriptors should be absorbed by now.
4258 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4260 // Now that we have the intrinsic ID and the actual argument types (and we
4261 // know they are legal for the intrinsic!) get the intrinsic name through the
4262 // usual means. This allows us to verify the mangling of argument types into
4263 // the name.
4264 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4265 Assert(ExpectedName == IF->getName(),
4266 "Intrinsic name not mangled correctly for type arguments! "
4267 "Should be: " +
4268 ExpectedName,
4269 IF);
4271 // If the intrinsic takes MDNode arguments, verify that they are either global
4272 // or are local to *this* function.
4273 for (Value *V : Call.args())
4274 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4275 visitMetadataAsValue(*MD, Call.getCaller());
4277 switch (ID) {
4278 default:
4279 break;
4280 case Intrinsic::coro_id: {
4281 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4282 if (isa<ConstantPointerNull>(InfoArg))
4283 break;
4284 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4285 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4286 "info argument of llvm.coro.begin must refer to an initialized "
4287 "constant");
4288 Constant *Init = GV->getInitializer();
4289 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4290 "info argument of llvm.coro.begin must refer to either a struct or "
4291 "an array");
4292 break;
4294 case Intrinsic::experimental_constrained_fadd:
4295 case Intrinsic::experimental_constrained_fsub:
4296 case Intrinsic::experimental_constrained_fmul:
4297 case Intrinsic::experimental_constrained_fdiv:
4298 case Intrinsic::experimental_constrained_frem:
4299 case Intrinsic::experimental_constrained_fma:
4300 case Intrinsic::experimental_constrained_fptosi:
4301 case Intrinsic::experimental_constrained_fptoui:
4302 case Intrinsic::experimental_constrained_fptrunc:
4303 case Intrinsic::experimental_constrained_fpext:
4304 case Intrinsic::experimental_constrained_sqrt:
4305 case Intrinsic::experimental_constrained_pow:
4306 case Intrinsic::experimental_constrained_powi:
4307 case Intrinsic::experimental_constrained_sin:
4308 case Intrinsic::experimental_constrained_cos:
4309 case Intrinsic::experimental_constrained_exp:
4310 case Intrinsic::experimental_constrained_exp2:
4311 case Intrinsic::experimental_constrained_log:
4312 case Intrinsic::experimental_constrained_log10:
4313 case Intrinsic::experimental_constrained_log2:
4314 case Intrinsic::experimental_constrained_lrint:
4315 case Intrinsic::experimental_constrained_llrint:
4316 case Intrinsic::experimental_constrained_rint:
4317 case Intrinsic::experimental_constrained_nearbyint:
4318 case Intrinsic::experimental_constrained_maxnum:
4319 case Intrinsic::experimental_constrained_minnum:
4320 case Intrinsic::experimental_constrained_ceil:
4321 case Intrinsic::experimental_constrained_floor:
4322 case Intrinsic::experimental_constrained_lround:
4323 case Intrinsic::experimental_constrained_llround:
4324 case Intrinsic::experimental_constrained_round:
4325 case Intrinsic::experimental_constrained_trunc:
4326 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4327 break;
4328 case Intrinsic::dbg_declare: // llvm.dbg.declare
4329 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4330 "invalid llvm.dbg.declare intrinsic call 1", Call);
4331 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4332 break;
4333 case Intrinsic::dbg_addr: // llvm.dbg.addr
4334 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4335 break;
4336 case Intrinsic::dbg_value: // llvm.dbg.value
4337 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4338 break;
4339 case Intrinsic::dbg_label: // llvm.dbg.label
4340 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4341 break;
4342 case Intrinsic::memcpy:
4343 case Intrinsic::memmove:
4344 case Intrinsic::memset: {
4345 const auto *MI = cast<MemIntrinsic>(&Call);
4346 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4347 return Alignment == 0 || isPowerOf2_32(Alignment);
4349 Assert(IsValidAlignment(MI->getDestAlignment()),
4350 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4351 Call);
4352 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4353 Assert(IsValidAlignment(MTI->getSourceAlignment()),
4354 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4355 Call);
4358 break;
4360 case Intrinsic::memcpy_element_unordered_atomic:
4361 case Intrinsic::memmove_element_unordered_atomic:
4362 case Intrinsic::memset_element_unordered_atomic: {
4363 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4365 ConstantInt *ElementSizeCI =
4366 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4367 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4368 Assert(ElementSizeVal.isPowerOf2(),
4369 "element size of the element-wise atomic memory intrinsic "
4370 "must be a power of 2",
4371 Call);
4373 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4374 uint64_t Length = LengthCI->getZExtValue();
4375 uint64_t ElementSize = AMI->getElementSizeInBytes();
4376 Assert((Length % ElementSize) == 0,
4377 "constant length must be a multiple of the element size in the "
4378 "element-wise atomic memory intrinsic",
4379 Call);
4382 auto IsValidAlignment = [&](uint64_t Alignment) {
4383 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4385 uint64_t DstAlignment = AMI->getDestAlignment();
4386 Assert(IsValidAlignment(DstAlignment),
4387 "incorrect alignment of the destination argument", Call);
4388 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4389 uint64_t SrcAlignment = AMT->getSourceAlignment();
4390 Assert(IsValidAlignment(SrcAlignment),
4391 "incorrect alignment of the source argument", Call);
4393 break;
4395 case Intrinsic::gcroot:
4396 case Intrinsic::gcwrite:
4397 case Intrinsic::gcread:
4398 if (ID == Intrinsic::gcroot) {
4399 AllocaInst *AI =
4400 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4401 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4402 Assert(isa<Constant>(Call.getArgOperand(1)),
4403 "llvm.gcroot parameter #2 must be a constant.", Call);
4404 if (!AI->getAllocatedType()->isPointerTy()) {
4405 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4406 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4407 "or argument #2 must be a non-null constant.",
4408 Call);
4412 Assert(Call.getParent()->getParent()->hasGC(),
4413 "Enclosing function does not use GC.", Call);
4414 break;
4415 case Intrinsic::init_trampoline:
4416 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4417 "llvm.init_trampoline parameter #2 must resolve to a function.",
4418 Call);
4419 break;
4420 case Intrinsic::prefetch:
4421 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4422 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4423 "invalid arguments to llvm.prefetch", Call);
4424 break;
4425 case Intrinsic::stackprotector:
4426 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4427 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4428 break;
4429 case Intrinsic::localescape: {
4430 BasicBlock *BB = Call.getParent();
4431 Assert(BB == &BB->getParent()->front(),
4432 "llvm.localescape used outside of entry block", Call);
4433 Assert(!SawFrameEscape,
4434 "multiple calls to llvm.localescape in one function", Call);
4435 for (Value *Arg : Call.args()) {
4436 if (isa<ConstantPointerNull>(Arg))
4437 continue; // Null values are allowed as placeholders.
4438 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4439 Assert(AI && AI->isStaticAlloca(),
4440 "llvm.localescape only accepts static allocas", Call);
4442 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4443 SawFrameEscape = true;
4444 break;
4446 case Intrinsic::localrecover: {
4447 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4448 Function *Fn = dyn_cast<Function>(FnArg);
4449 Assert(Fn && !Fn->isDeclaration(),
4450 "llvm.localrecover first "
4451 "argument must be function defined in this module",
4452 Call);
4453 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4454 auto &Entry = FrameEscapeInfo[Fn];
4455 Entry.second = unsigned(
4456 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4457 break;
4460 case Intrinsic::experimental_gc_statepoint:
4461 if (auto *CI = dyn_cast<CallInst>(&Call))
4462 Assert(!CI->isInlineAsm(),
4463 "gc.statepoint support for inline assembly unimplemented", CI);
4464 Assert(Call.getParent()->getParent()->hasGC(),
4465 "Enclosing function does not use GC.", Call);
4467 verifyStatepoint(Call);
4468 break;
4469 case Intrinsic::experimental_gc_result: {
4470 Assert(Call.getParent()->getParent()->hasGC(),
4471 "Enclosing function does not use GC.", Call);
4472 // Are we tied to a statepoint properly?
4473 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4474 const Function *StatepointFn =
4475 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4476 Assert(StatepointFn && StatepointFn->isDeclaration() &&
4477 StatepointFn->getIntrinsicID() ==
4478 Intrinsic::experimental_gc_statepoint,
4479 "gc.result operand #1 must be from a statepoint", Call,
4480 Call.getArgOperand(0));
4482 // Assert that result type matches wrapped callee.
4483 const Value *Target = StatepointCall->getArgOperand(2);
4484 auto *PT = cast<PointerType>(Target->getType());
4485 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4486 Assert(Call.getType() == TargetFuncType->getReturnType(),
4487 "gc.result result type does not match wrapped callee", Call);
4488 break;
4490 case Intrinsic::experimental_gc_relocate: {
4491 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4493 Assert(isa<PointerType>(Call.getType()->getScalarType()),
4494 "gc.relocate must return a pointer or a vector of pointers", Call);
4496 // Check that this relocate is correctly tied to the statepoint
4498 // This is case for relocate on the unwinding path of an invoke statepoint
4499 if (LandingPadInst *LandingPad =
4500 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4502 const BasicBlock *InvokeBB =
4503 LandingPad->getParent()->getUniquePredecessor();
4505 // Landingpad relocates should have only one predecessor with invoke
4506 // statepoint terminator
4507 Assert(InvokeBB, "safepoints should have unique landingpads",
4508 LandingPad->getParent());
4509 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4510 InvokeBB);
4511 Assert(isStatepoint(InvokeBB->getTerminator()),
4512 "gc relocate should be linked to a statepoint", InvokeBB);
4513 } else {
4514 // In all other cases relocate should be tied to the statepoint directly.
4515 // This covers relocates on a normal return path of invoke statepoint and
4516 // relocates of a call statepoint.
4517 auto Token = Call.getArgOperand(0);
4518 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4519 "gc relocate is incorrectly tied to the statepoint", Call, Token);
4522 // Verify rest of the relocate arguments.
4523 const CallBase &StatepointCall =
4524 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4526 // Both the base and derived must be piped through the safepoint.
4527 Value *Base = Call.getArgOperand(1);
4528 Assert(isa<ConstantInt>(Base),
4529 "gc.relocate operand #2 must be integer offset", Call);
4531 Value *Derived = Call.getArgOperand(2);
4532 Assert(isa<ConstantInt>(Derived),
4533 "gc.relocate operand #3 must be integer offset", Call);
4535 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4536 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4537 // Check the bounds
4538 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4539 "gc.relocate: statepoint base index out of bounds", Call);
4540 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4541 "gc.relocate: statepoint derived index out of bounds", Call);
4543 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4544 // section of the statepoint's argument.
4545 Assert(StatepointCall.arg_size() > 0,
4546 "gc.statepoint: insufficient arguments");
4547 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4548 "gc.statement: number of call arguments must be constant integer");
4549 const unsigned NumCallArgs =
4550 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4551 Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4552 "gc.statepoint: mismatch in number of call arguments");
4553 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4554 "gc.statepoint: number of transition arguments must be "
4555 "a constant integer");
4556 const int NumTransitionArgs =
4557 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4558 ->getZExtValue();
4559 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4560 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4561 "gc.statepoint: number of deoptimization arguments must be "
4562 "a constant integer");
4563 const int NumDeoptArgs =
4564 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4565 ->getZExtValue();
4566 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4567 const int GCParamArgsEnd = StatepointCall.arg_size();
4568 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4569 "gc.relocate: statepoint base index doesn't fall within the "
4570 "'gc parameters' section of the statepoint call",
4571 Call);
4572 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4573 "gc.relocate: statepoint derived index doesn't fall within the "
4574 "'gc parameters' section of the statepoint call",
4575 Call);
4577 // Relocated value must be either a pointer type or vector-of-pointer type,
4578 // but gc_relocate does not need to return the same pointer type as the
4579 // relocated pointer. It can be casted to the correct type later if it's
4580 // desired. However, they must have the same address space and 'vectorness'
4581 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4582 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4583 "gc.relocate: relocated value must be a gc pointer", Call);
4585 auto ResultType = Call.getType();
4586 auto DerivedType = Relocate.getDerivedPtr()->getType();
4587 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4588 "gc.relocate: vector relocates to vector and pointer to pointer",
4589 Call);
4590 Assert(
4591 ResultType->getPointerAddressSpace() ==
4592 DerivedType->getPointerAddressSpace(),
4593 "gc.relocate: relocating a pointer shouldn't change its address space",
4594 Call);
4595 break;
4597 case Intrinsic::eh_exceptioncode:
4598 case Intrinsic::eh_exceptionpointer: {
4599 Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4600 "eh.exceptionpointer argument must be a catchpad", Call);
4601 break;
4603 case Intrinsic::masked_load: {
4604 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4605 Call);
4607 Value *Ptr = Call.getArgOperand(0);
4608 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4609 Value *Mask = Call.getArgOperand(2);
4610 Value *PassThru = Call.getArgOperand(3);
4611 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4612 Call);
4613 Assert(Alignment->getValue().isPowerOf2(),
4614 "masked_load: alignment must be a power of 2", Call);
4616 // DataTy is the overloaded type
4617 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4618 Assert(DataTy == Call.getType(),
4619 "masked_load: return must match pointer type", Call);
4620 Assert(PassThru->getType() == DataTy,
4621 "masked_load: pass through and data type must match", Call);
4622 Assert(Mask->getType()->getVectorNumElements() ==
4623 DataTy->getVectorNumElements(),
4624 "masked_load: vector mask must be same length as data", Call);
4625 break;
4627 case Intrinsic::masked_store: {
4628 Value *Val = Call.getArgOperand(0);
4629 Value *Ptr = Call.getArgOperand(1);
4630 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4631 Value *Mask = Call.getArgOperand(3);
4632 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4633 Call);
4634 Assert(Alignment->getValue().isPowerOf2(),
4635 "masked_store: alignment must be a power of 2", Call);
4637 // DataTy is the overloaded type
4638 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4639 Assert(DataTy == Val->getType(),
4640 "masked_store: storee must match pointer type", Call);
4641 Assert(Mask->getType()->getVectorNumElements() ==
4642 DataTy->getVectorNumElements(),
4643 "masked_store: vector mask must be same length as data", Call);
4644 break;
4647 case Intrinsic::experimental_guard: {
4648 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4649 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4650 "experimental_guard must have exactly one "
4651 "\"deopt\" operand bundle");
4652 break;
4655 case Intrinsic::experimental_deoptimize: {
4656 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4657 Call);
4658 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4659 "experimental_deoptimize must have exactly one "
4660 "\"deopt\" operand bundle");
4661 Assert(Call.getType() == Call.getFunction()->getReturnType(),
4662 "experimental_deoptimize return type must match caller return type");
4664 if (isa<CallInst>(Call)) {
4665 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4666 Assert(RI,
4667 "calls to experimental_deoptimize must be followed by a return");
4669 if (!Call.getType()->isVoidTy() && RI)
4670 Assert(RI->getReturnValue() == &Call,
4671 "calls to experimental_deoptimize must be followed by a return "
4672 "of the value computed by experimental_deoptimize");
4675 break;
4677 case Intrinsic::sadd_sat:
4678 case Intrinsic::uadd_sat:
4679 case Intrinsic::ssub_sat:
4680 case Intrinsic::usub_sat: {
4681 Value *Op1 = Call.getArgOperand(0);
4682 Value *Op2 = Call.getArgOperand(1);
4683 Assert(Op1->getType()->isIntOrIntVectorTy(),
4684 "first operand of [us][add|sub]_sat must be an int type or vector "
4685 "of ints");
4686 Assert(Op2->getType()->isIntOrIntVectorTy(),
4687 "second operand of [us][add|sub]_sat must be an int type or vector "
4688 "of ints");
4689 break;
4691 case Intrinsic::smul_fix:
4692 case Intrinsic::smul_fix_sat:
4693 case Intrinsic::umul_fix:
4694 case Intrinsic::umul_fix_sat: {
4695 Value *Op1 = Call.getArgOperand(0);
4696 Value *Op2 = Call.getArgOperand(1);
4697 Assert(Op1->getType()->isIntOrIntVectorTy(),
4698 "first operand of [us]mul_fix[_sat] must be an int type or vector "
4699 "of ints");
4700 Assert(Op2->getType()->isIntOrIntVectorTy(),
4701 "second operand of [us]mul_fix_[sat] must be an int type or vector "
4702 "of ints");
4704 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4705 Assert(Op3->getType()->getBitWidth() <= 32,
4706 "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4708 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4709 Assert(
4710 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4711 "the scale of smul_fix[_sat] must be less than the width of the operands");
4712 } else {
4713 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4714 "the scale of umul_fix[_sat] must be less than or equal to the width of "
4715 "the operands");
4717 break;
4719 case Intrinsic::lround:
4720 case Intrinsic::llround:
4721 case Intrinsic::lrint:
4722 case Intrinsic::llrint: {
4723 Type *ValTy = Call.getArgOperand(0)->getType();
4724 Type *ResultTy = Call.getType();
4725 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4726 "Intrinsic does not support vectors", &Call);
4727 break;
4732 /// Carefully grab the subprogram from a local scope.
4734 /// This carefully grabs the subprogram from a local scope, avoiding the
4735 /// built-in assertions that would typically fire.
4736 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4737 if (!LocalScope)
4738 return nullptr;
4740 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4741 return SP;
4743 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4744 return getSubprogram(LB->getRawScope());
4746 // Just return null; broken scope chains are checked elsewhere.
4747 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4748 return nullptr;
4751 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4752 unsigned NumOperands = FPI.getNumArgOperands();
4753 bool HasExceptionMD = false;
4754 bool HasRoundingMD = false;
4755 switch (FPI.getIntrinsicID()) {
4756 case Intrinsic::experimental_constrained_sqrt:
4757 case Intrinsic::experimental_constrained_sin:
4758 case Intrinsic::experimental_constrained_cos:
4759 case Intrinsic::experimental_constrained_exp:
4760 case Intrinsic::experimental_constrained_exp2:
4761 case Intrinsic::experimental_constrained_log:
4762 case Intrinsic::experimental_constrained_log10:
4763 case Intrinsic::experimental_constrained_log2:
4764 case Intrinsic::experimental_constrained_rint:
4765 case Intrinsic::experimental_constrained_nearbyint:
4766 case Intrinsic::experimental_constrained_ceil:
4767 case Intrinsic::experimental_constrained_floor:
4768 case Intrinsic::experimental_constrained_round:
4769 case Intrinsic::experimental_constrained_trunc:
4770 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4771 &FPI);
4772 HasExceptionMD = true;
4773 HasRoundingMD = true;
4774 break;
4776 case Intrinsic::experimental_constrained_lrint:
4777 case Intrinsic::experimental_constrained_llrint: {
4778 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4779 &FPI);
4780 Type *ValTy = FPI.getArgOperand(0)->getType();
4781 Type *ResultTy = FPI.getType();
4782 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4783 "Intrinsic does not support vectors", &FPI);
4784 HasExceptionMD = true;
4785 HasRoundingMD = true;
4787 break;
4789 case Intrinsic::experimental_constrained_lround:
4790 case Intrinsic::experimental_constrained_llround: {
4791 Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic",
4792 &FPI);
4793 Type *ValTy = FPI.getArgOperand(0)->getType();
4794 Type *ResultTy = FPI.getType();
4795 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4796 "Intrinsic does not support vectors", &FPI);
4797 HasExceptionMD = true;
4798 break;
4801 case Intrinsic::experimental_constrained_fma:
4802 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4803 &FPI);
4804 HasExceptionMD = true;
4805 HasRoundingMD = true;
4806 break;
4808 case Intrinsic::experimental_constrained_fadd:
4809 case Intrinsic::experimental_constrained_fsub:
4810 case Intrinsic::experimental_constrained_fmul:
4811 case Intrinsic::experimental_constrained_fdiv:
4812 case Intrinsic::experimental_constrained_frem:
4813 case Intrinsic::experimental_constrained_pow:
4814 case Intrinsic::experimental_constrained_powi:
4815 case Intrinsic::experimental_constrained_maxnum:
4816 case Intrinsic::experimental_constrained_minnum:
4817 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4818 &FPI);
4819 HasExceptionMD = true;
4820 HasRoundingMD = true;
4821 break;
4823 case Intrinsic::experimental_constrained_fptosi:
4824 case Intrinsic::experimental_constrained_fptoui: {
4825 Assert((NumOperands == 2),
4826 "invalid arguments for constrained FP intrinsic", &FPI);
4827 HasExceptionMD = true;
4829 Value *Operand = FPI.getArgOperand(0);
4830 uint64_t NumSrcElem = 0;
4831 Assert(Operand->getType()->isFPOrFPVectorTy(),
4832 "Intrinsic first argument must be floating point", &FPI);
4833 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4834 NumSrcElem = OperandT->getNumElements();
4837 Operand = &FPI;
4838 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4839 "Intrinsic first argument and result disagree on vector use", &FPI);
4840 Assert(Operand->getType()->isIntOrIntVectorTy(),
4841 "Intrinsic result must be an integer", &FPI);
4842 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4843 Assert(NumSrcElem == OperandT->getNumElements(),
4844 "Intrinsic first argument and result vector lengths must be equal",
4845 &FPI);
4848 break;
4850 case Intrinsic::experimental_constrained_fptrunc:
4851 case Intrinsic::experimental_constrained_fpext: {
4852 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4853 Assert((NumOperands == 3),
4854 "invalid arguments for constrained FP intrinsic", &FPI);
4855 HasRoundingMD = true;
4856 } else {
4857 Assert((NumOperands == 2),
4858 "invalid arguments for constrained FP intrinsic", &FPI);
4860 HasExceptionMD = true;
4862 Value *Operand = FPI.getArgOperand(0);
4863 Type *OperandTy = Operand->getType();
4864 Value *Result = &FPI;
4865 Type *ResultTy = Result->getType();
4866 Assert(OperandTy->isFPOrFPVectorTy(),
4867 "Intrinsic first argument must be FP or FP vector", &FPI);
4868 Assert(ResultTy->isFPOrFPVectorTy(),
4869 "Intrinsic result must be FP or FP vector", &FPI);
4870 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4871 "Intrinsic first argument and result disagree on vector use", &FPI);
4872 if (OperandTy->isVectorTy()) {
4873 auto *OperandVecTy = cast<VectorType>(OperandTy);
4874 auto *ResultVecTy = cast<VectorType>(ResultTy);
4875 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4876 "Intrinsic first argument and result vector lengths must be equal",
4877 &FPI);
4879 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4880 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4881 "Intrinsic first argument's type must be larger than result type",
4882 &FPI);
4883 } else {
4884 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4885 "Intrinsic first argument's type must be smaller than result type",
4886 &FPI);
4889 break;
4891 default:
4892 llvm_unreachable("Invalid constrained FP intrinsic!");
4895 // If a non-metadata argument is passed in a metadata slot then the
4896 // error will be caught earlier when the incorrect argument doesn't
4897 // match the specification in the intrinsic call table. Thus, no
4898 // argument type check is needed here.
4900 if (HasExceptionMD) {
4901 Assert(FPI.getExceptionBehavior().hasValue(),
4902 "invalid exception behavior argument", &FPI);
4904 if (HasRoundingMD) {
4905 Assert(FPI.getRoundingMode().hasValue(),
4906 "invalid rounding mode argument", &FPI);
4910 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4911 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4912 AssertDI(isa<ValueAsMetadata>(MD) ||
4913 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4914 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4915 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4916 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4917 DII.getRawVariable());
4918 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4919 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4920 DII.getRawExpression());
4922 // Ignore broken !dbg attachments; they're checked elsewhere.
4923 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4924 if (!isa<DILocation>(N))
4925 return;
4927 BasicBlock *BB = DII.getParent();
4928 Function *F = BB ? BB->getParent() : nullptr;
4930 // The scopes for variables and !dbg attachments must agree.
4931 DILocalVariable *Var = DII.getVariable();
4932 DILocation *Loc = DII.getDebugLoc();
4933 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4934 &DII, BB, F);
4936 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4937 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4938 if (!VarSP || !LocSP)
4939 return; // Broken scope chains are checked elsewhere.
4941 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4942 " variable and !dbg attachment",
4943 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4944 Loc->getScope()->getSubprogram());
4946 // This check is redundant with one in visitLocalVariable().
4947 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4948 Var->getRawType());
4949 verifyFnArgs(DII);
4952 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4953 AssertDI(isa<DILabel>(DLI.getRawLabel()),
4954 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4955 DLI.getRawLabel());
4957 // Ignore broken !dbg attachments; they're checked elsewhere.
4958 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4959 if (!isa<DILocation>(N))
4960 return;
4962 BasicBlock *BB = DLI.getParent();
4963 Function *F = BB ? BB->getParent() : nullptr;
4965 // The scopes for variables and !dbg attachments must agree.
4966 DILabel *Label = DLI.getLabel();
4967 DILocation *Loc = DLI.getDebugLoc();
4968 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4969 &DLI, BB, F);
4971 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4972 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4973 if (!LabelSP || !LocSP)
4974 return;
4976 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4977 " label and !dbg attachment",
4978 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4979 Loc->getScope()->getSubprogram());
4982 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4983 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4984 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4986 // We don't know whether this intrinsic verified correctly.
4987 if (!V || !E || !E->isValid())
4988 return;
4990 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4991 auto Fragment = E->getFragmentInfo();
4992 if (!Fragment)
4993 return;
4995 // The frontend helps out GDB by emitting the members of local anonymous
4996 // unions as artificial local variables with shared storage. When SROA splits
4997 // the storage for artificial local variables that are smaller than the entire
4998 // union, the overhang piece will be outside of the allotted space for the
4999 // variable and this check fails.
5000 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5001 if (V->isArtificial())
5002 return;
5004 verifyFragmentExpression(*V, *Fragment, &I);
5007 template <typename ValueOrMetadata>
5008 void Verifier::verifyFragmentExpression(const DIVariable &V,
5009 DIExpression::FragmentInfo Fragment,
5010 ValueOrMetadata *Desc) {
5011 // If there's no size, the type is broken, but that should be checked
5012 // elsewhere.
5013 auto VarSize = V.getSizeInBits();
5014 if (!VarSize)
5015 return;
5017 unsigned FragSize = Fragment.SizeInBits;
5018 unsigned FragOffset = Fragment.OffsetInBits;
5019 AssertDI(FragSize + FragOffset <= *VarSize,
5020 "fragment is larger than or outside of variable", Desc, &V);
5021 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5024 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5025 // This function does not take the scope of noninlined function arguments into
5026 // account. Don't run it if current function is nodebug, because it may
5027 // contain inlined debug intrinsics.
5028 if (!HasDebugInfo)
5029 return;
5031 // For performance reasons only check non-inlined ones.
5032 if (I.getDebugLoc()->getInlinedAt())
5033 return;
5035 DILocalVariable *Var = I.getVariable();
5036 AssertDI(Var, "dbg intrinsic without variable");
5038 unsigned ArgNo = Var->getArg();
5039 if (!ArgNo)
5040 return;
5042 // Verify there are no duplicate function argument debug info entries.
5043 // These will cause hard-to-debug assertions in the DWARF backend.
5044 if (DebugFnArgs.size() < ArgNo)
5045 DebugFnArgs.resize(ArgNo, nullptr);
5047 auto *Prev = DebugFnArgs[ArgNo - 1];
5048 DebugFnArgs[ArgNo - 1] = Var;
5049 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5050 Prev, Var);
5053 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5054 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5056 // We don't know whether this intrinsic verified correctly.
5057 if (!E || !E->isValid())
5058 return;
5060 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5063 void Verifier::verifyCompileUnits() {
5064 // When more than one Module is imported into the same context, such as during
5065 // an LTO build before linking the modules, ODR type uniquing may cause types
5066 // to point to a different CU. This check does not make sense in this case.
5067 if (M.getContext().isODRUniquingDebugTypes())
5068 return;
5069 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5070 SmallPtrSet<const Metadata *, 2> Listed;
5071 if (CUs)
5072 Listed.insert(CUs->op_begin(), CUs->op_end());
5073 for (auto *CU : CUVisited)
5074 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5075 CUVisited.clear();
5078 void Verifier::verifyDeoptimizeCallingConvs() {
5079 if (DeoptimizeDeclarations.empty())
5080 return;
5082 const Function *First = DeoptimizeDeclarations[0];
5083 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5084 Assert(First->getCallingConv() == F->getCallingConv(),
5085 "All llvm.experimental.deoptimize declarations must have the same "
5086 "calling convention",
5087 First, F);
5091 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5092 bool HasSource = F.getSource().hasValue();
5093 if (!HasSourceDebugInfo.count(&U))
5094 HasSourceDebugInfo[&U] = HasSource;
5095 AssertDI(HasSource == HasSourceDebugInfo[&U],
5096 "inconsistent use of embedded source");
5099 //===----------------------------------------------------------------------===//
5100 // Implement the public interfaces to this file...
5101 //===----------------------------------------------------------------------===//
5103 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5104 Function &F = const_cast<Function &>(f);
5106 // Don't use a raw_null_ostream. Printing IR is expensive.
5107 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5109 // Note that this function's return value is inverted from what you would
5110 // expect of a function called "verify".
5111 return !V.verify(F);
5114 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5115 bool *BrokenDebugInfo) {
5116 // Don't use a raw_null_ostream. Printing IR is expensive.
5117 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5119 bool Broken = false;
5120 for (const Function &F : M)
5121 Broken |= !V.verify(F);
5123 Broken |= !V.verify();
5124 if (BrokenDebugInfo)
5125 *BrokenDebugInfo = V.hasBrokenDebugInfo();
5126 // Note that this function's return value is inverted from what you would
5127 // expect of a function called "verify".
5128 return Broken;
5131 namespace {
5133 struct VerifierLegacyPass : public FunctionPass {
5134 static char ID;
5136 std::unique_ptr<Verifier> V;
5137 bool FatalErrors = true;
5139 VerifierLegacyPass() : FunctionPass(ID) {
5140 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5142 explicit VerifierLegacyPass(bool FatalErrors)
5143 : FunctionPass(ID),
5144 FatalErrors(FatalErrors) {
5145 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5148 bool doInitialization(Module &M) override {
5149 V = std::make_unique<Verifier>(
5150 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5151 return false;
5154 bool runOnFunction(Function &F) override {
5155 if (!V->verify(F) && FatalErrors) {
5156 errs() << "in function " << F.getName() << '\n';
5157 report_fatal_error("Broken function found, compilation aborted!");
5159 return false;
5162 bool doFinalization(Module &M) override {
5163 bool HasErrors = false;
5164 for (Function &F : M)
5165 if (F.isDeclaration())
5166 HasErrors |= !V->verify(F);
5168 HasErrors |= !V->verify();
5169 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5170 report_fatal_error("Broken module found, compilation aborted!");
5171 return false;
5174 void getAnalysisUsage(AnalysisUsage &AU) const override {
5175 AU.setPreservesAll();
5179 } // end anonymous namespace
5181 /// Helper to issue failure from the TBAA verification
5182 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5183 if (Diagnostic)
5184 return Diagnostic->CheckFailed(Args...);
5187 #define AssertTBAA(C, ...) \
5188 do { \
5189 if (!(C)) { \
5190 CheckFailed(__VA_ARGS__); \
5191 return false; \
5193 } while (false)
5195 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5196 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5197 /// struct-type node describing an aggregate data structure (like a struct).
5198 TBAAVerifier::TBAABaseNodeSummary
5199 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5200 bool IsNewFormat) {
5201 if (BaseNode->getNumOperands() < 2) {
5202 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5203 return {true, ~0u};
5206 auto Itr = TBAABaseNodes.find(BaseNode);
5207 if (Itr != TBAABaseNodes.end())
5208 return Itr->second;
5210 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5211 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5212 (void)InsertResult;
5213 assert(InsertResult.second && "We just checked!");
5214 return Result;
5217 TBAAVerifier::TBAABaseNodeSummary
5218 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5219 bool IsNewFormat) {
5220 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5222 if (BaseNode->getNumOperands() == 2) {
5223 // Scalar nodes can only be accessed at offset 0.
5224 return isValidScalarTBAANode(BaseNode)
5225 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5226 : InvalidNode;
5229 if (IsNewFormat) {
5230 if (BaseNode->getNumOperands() % 3 != 0) {
5231 CheckFailed("Access tag nodes must have the number of operands that is a "
5232 "multiple of 3!", BaseNode);
5233 return InvalidNode;
5235 } else {
5236 if (BaseNode->getNumOperands() % 2 != 1) {
5237 CheckFailed("Struct tag nodes must have an odd number of operands!",
5238 BaseNode);
5239 return InvalidNode;
5243 // Check the type size field.
5244 if (IsNewFormat) {
5245 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5246 BaseNode->getOperand(1));
5247 if (!TypeSizeNode) {
5248 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5249 return InvalidNode;
5253 // Check the type name field. In the new format it can be anything.
5254 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5255 CheckFailed("Struct tag nodes have a string as their first operand",
5256 BaseNode);
5257 return InvalidNode;
5260 bool Failed = false;
5262 Optional<APInt> PrevOffset;
5263 unsigned BitWidth = ~0u;
5265 // We've already checked that BaseNode is not a degenerate root node with one
5266 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5267 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5268 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5269 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5270 Idx += NumOpsPerField) {
5271 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5272 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5273 if (!isa<MDNode>(FieldTy)) {
5274 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5275 Failed = true;
5276 continue;
5279 auto *OffsetEntryCI =
5280 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5281 if (!OffsetEntryCI) {
5282 CheckFailed("Offset entries must be constants!", &I, BaseNode);
5283 Failed = true;
5284 continue;
5287 if (BitWidth == ~0u)
5288 BitWidth = OffsetEntryCI->getBitWidth();
5290 if (OffsetEntryCI->getBitWidth() != BitWidth) {
5291 CheckFailed(
5292 "Bitwidth between the offsets and struct type entries must match", &I,
5293 BaseNode);
5294 Failed = true;
5295 continue;
5298 // NB! As far as I can tell, we generate a non-strictly increasing offset
5299 // sequence only from structs that have zero size bit fields. When
5300 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5301 // pick the field lexically the latest in struct type metadata node. This
5302 // mirrors the actual behavior of the alias analysis implementation.
5303 bool IsAscending =
5304 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5306 if (!IsAscending) {
5307 CheckFailed("Offsets must be increasing!", &I, BaseNode);
5308 Failed = true;
5311 PrevOffset = OffsetEntryCI->getValue();
5313 if (IsNewFormat) {
5314 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5315 BaseNode->getOperand(Idx + 2));
5316 if (!MemberSizeNode) {
5317 CheckFailed("Member size entries must be constants!", &I, BaseNode);
5318 Failed = true;
5319 continue;
5324 return Failed ? InvalidNode
5325 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5328 static bool IsRootTBAANode(const MDNode *MD) {
5329 return MD->getNumOperands() < 2;
5332 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5333 SmallPtrSetImpl<const MDNode *> &Visited) {
5334 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5335 return false;
5337 if (!isa<MDString>(MD->getOperand(0)))
5338 return false;
5340 if (MD->getNumOperands() == 3) {
5341 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5342 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5343 return false;
5346 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5347 return Parent && Visited.insert(Parent).second &&
5348 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5351 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5352 auto ResultIt = TBAAScalarNodes.find(MD);
5353 if (ResultIt != TBAAScalarNodes.end())
5354 return ResultIt->second;
5356 SmallPtrSet<const MDNode *, 4> Visited;
5357 bool Result = IsScalarTBAANodeImpl(MD, Visited);
5358 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5359 (void)InsertResult;
5360 assert(InsertResult.second && "Just checked!");
5362 return Result;
5365 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5366 /// Offset in place to be the offset within the field node returned.
5368 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5369 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5370 const MDNode *BaseNode,
5371 APInt &Offset,
5372 bool IsNewFormat) {
5373 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5375 // Scalar nodes have only one possible "field" -- their parent in the access
5376 // hierarchy. Offset must be zero at this point, but our caller is supposed
5377 // to Assert that.
5378 if (BaseNode->getNumOperands() == 2)
5379 return cast<MDNode>(BaseNode->getOperand(1));
5381 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5382 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5383 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5384 Idx += NumOpsPerField) {
5385 auto *OffsetEntryCI =
5386 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5387 if (OffsetEntryCI->getValue().ugt(Offset)) {
5388 if (Idx == FirstFieldOpNo) {
5389 CheckFailed("Could not find TBAA parent in struct type node", &I,
5390 BaseNode, &Offset);
5391 return nullptr;
5394 unsigned PrevIdx = Idx - NumOpsPerField;
5395 auto *PrevOffsetEntryCI =
5396 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5397 Offset -= PrevOffsetEntryCI->getValue();
5398 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5402 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5403 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5404 BaseNode->getOperand(LastIdx + 1));
5405 Offset -= LastOffsetEntryCI->getValue();
5406 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5409 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5410 if (!Type || Type->getNumOperands() < 3)
5411 return false;
5413 // In the new format type nodes shall have a reference to the parent type as
5414 // its first operand.
5415 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5416 if (!Parent)
5417 return false;
5419 return true;
5422 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5423 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5424 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5425 isa<AtomicCmpXchgInst>(I),
5426 "This instruction shall not have a TBAA access tag!", &I);
5428 bool IsStructPathTBAA =
5429 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5431 AssertTBAA(
5432 IsStructPathTBAA,
5433 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5435 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5436 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5438 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5440 if (IsNewFormat) {
5441 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5442 "Access tag metadata must have either 4 or 5 operands", &I, MD);
5443 } else {
5444 AssertTBAA(MD->getNumOperands() < 5,
5445 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5448 // Check the access size field.
5449 if (IsNewFormat) {
5450 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5451 MD->getOperand(3));
5452 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5455 // Check the immutability flag.
5456 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5457 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5458 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5459 MD->getOperand(ImmutabilityFlagOpNo));
5460 AssertTBAA(IsImmutableCI,
5461 "Immutability tag on struct tag metadata must be a constant",
5462 &I, MD);
5463 AssertTBAA(
5464 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5465 "Immutability part of the struct tag metadata must be either 0 or 1",
5466 &I, MD);
5469 AssertTBAA(BaseNode && AccessType,
5470 "Malformed struct tag metadata: base and access-type "
5471 "should be non-null and point to Metadata nodes",
5472 &I, MD, BaseNode, AccessType);
5474 if (!IsNewFormat) {
5475 AssertTBAA(isValidScalarTBAANode(AccessType),
5476 "Access type node must be a valid scalar type", &I, MD,
5477 AccessType);
5480 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5481 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5483 APInt Offset = OffsetCI->getValue();
5484 bool SeenAccessTypeInPath = false;
5486 SmallPtrSet<MDNode *, 4> StructPath;
5488 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5489 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5490 IsNewFormat)) {
5491 if (!StructPath.insert(BaseNode).second) {
5492 CheckFailed("Cycle detected in struct path", &I, MD);
5493 return false;
5496 bool Invalid;
5497 unsigned BaseNodeBitWidth;
5498 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5499 IsNewFormat);
5501 // If the base node is invalid in itself, then we've already printed all the
5502 // errors we wanted to print.
5503 if (Invalid)
5504 return false;
5506 SeenAccessTypeInPath |= BaseNode == AccessType;
5508 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5509 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5510 &I, MD, &Offset);
5512 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5513 (BaseNodeBitWidth == 0 && Offset == 0) ||
5514 (IsNewFormat && BaseNodeBitWidth == ~0u),
5515 "Access bit-width not the same as description bit-width", &I, MD,
5516 BaseNodeBitWidth, Offset.getBitWidth());
5518 if (IsNewFormat && SeenAccessTypeInPath)
5519 break;
5522 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5523 &I, MD);
5524 return true;
5527 char VerifierLegacyPass::ID = 0;
5528 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5530 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5531 return new VerifierLegacyPass(FatalErrors);
5534 AnalysisKey VerifierAnalysis::Key;
5535 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5536 ModuleAnalysisManager &) {
5537 Result Res;
5538 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5539 return Res;
5542 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5543 FunctionAnalysisManager &) {
5544 return { llvm::verifyFunction(F, &dbgs()), false };
5547 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5548 auto Res = AM.getResult<VerifierAnalysis>(M);
5549 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5550 report_fatal_error("Broken module found, compilation aborted!");
5552 return PreservedAnalyses::all();
5555 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5556 auto res = AM.getResult<VerifierAnalysis>(F);
5557 if (res.IRBroken && FatalErrors)
5558 report_fatal_error("Broken function found, compilation aborted!");
5560 return PreservedAnalyses::all();