Correct names.
[llvm-complete.git] / lib / AsmParser / llvmAsmParser.y
blobd2e5256de8870995c436a48fba858008ad608d12
1 //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the bison parser for LLVM assembly languages files.
12 //===----------------------------------------------------------------------===//
15 #include "ParserInternals.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ValueSymbolTable.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/Support/GetElementPtrTypeIterator.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Streams.h"
28 #include <algorithm>
29 #include <list>
30 #include <map>
31 #include <utility>
32 #ifndef NDEBUG
33 #define YYDEBUG 1
34 #endif
36 // The following is a gross hack. In order to rid the libAsmParser library of
37 // exceptions, we have to have a way of getting the yyparse function to go into
38 // an error situation. So, whenever we want an error to occur, the GenerateError
39 // function (see bottom of file) sets TriggerError. Then, at the end of each
40 // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
41 // (a goto) to put YACC in error state. Furthermore, several calls to
42 // GenerateError are made from inside productions and they must simulate the
43 // previous exception behavior by exiting the production immediately. We have
44 // replaced these with the GEN_ERROR macro which calls GeneratError and then
45 // immediately invokes YYERROR. This would be so much cleaner if it was a
46 // recursive descent parser.
47 static bool TriggerError = false;
48 #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
49 #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
51 int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
52 int yylex(); // declaration" of xxx warnings.
53 int yyparse();
55 namespace llvm {
56 std::string CurFilename;
57 #if YYDEBUG
58 static cl::opt<bool>
59 Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
60 cl::Hidden, cl::init(false));
61 #endif
63 using namespace llvm;
65 static Module *ParserResult;
67 // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
68 // relating to upreferences in the input stream.
70 //#define DEBUG_UPREFS 1
71 #ifdef DEBUG_UPREFS
72 #define UR_OUT(X) cerr << X
73 #else
74 #define UR_OUT(X)
75 #endif
77 #define YYERROR_VERBOSE 1
79 static GlobalVariable *CurGV;
82 // This contains info used when building the body of a function. It is
83 // destroyed when the function is completed.
85 typedef std::vector<Value *> ValueList; // Numbered defs
87 static void
88 ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
90 static struct PerModuleInfo {
91 Module *CurrentModule;
92 ValueList Values; // Module level numbered definitions
93 ValueList LateResolveValues;
94 std::vector<PATypeHolder> Types;
95 std::map<ValID, PATypeHolder> LateResolveTypes;
97 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
98 /// how they were referenced and on which line of the input they came from so
99 /// that we can resolve them later and print error messages as appropriate.
100 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
102 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
103 // references to global values. Global values may be referenced before they
104 // are defined, and if so, the temporary object that they represent is held
105 // here. This is used for forward references of GlobalValues.
107 typedef std::map<std::pair<const PointerType *,
108 ValID>, GlobalValue*> GlobalRefsType;
109 GlobalRefsType GlobalRefs;
111 void ModuleDone() {
112 // If we could not resolve some functions at function compilation time
113 // (calls to functions before they are defined), resolve them now... Types
114 // are resolved when the constant pool has been completely parsed.
116 ResolveDefinitions(LateResolveValues);
117 if (TriggerError)
118 return;
120 // Check to make sure that all global value forward references have been
121 // resolved!
123 if (!GlobalRefs.empty()) {
124 std::string UndefinedReferences = "Unresolved global references exist:\n";
126 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
127 I != E; ++I) {
128 UndefinedReferences += " " + I->first.first->getDescription() + " " +
129 I->first.second.getName() + "\n";
131 GenerateError(UndefinedReferences);
132 return;
135 // Look for intrinsic functions and CallInst that need to be upgraded
136 for (Module::iterator FI = CurrentModule->begin(),
137 FE = CurrentModule->end(); FI != FE; )
138 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
140 Values.clear(); // Clear out function local definitions
141 Types.clear();
142 CurrentModule = 0;
145 // GetForwardRefForGlobal - Check to see if there is a forward reference
146 // for this global. If so, remove it from the GlobalRefs map and return it.
147 // If not, just return null.
148 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
149 // Check to see if there is a forward reference to this global variable...
150 // if there is, eliminate it and patch the reference to use the new def'n.
151 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
152 GlobalValue *Ret = 0;
153 if (I != GlobalRefs.end()) {
154 Ret = I->second;
155 GlobalRefs.erase(I);
157 return Ret;
160 bool TypeIsUnresolved(PATypeHolder* PATy) {
161 // If it isn't abstract, its resolved
162 const Type* Ty = PATy->get();
163 if (!Ty->isAbstract())
164 return false;
165 // Traverse the type looking for abstract types. If it isn't abstract then
166 // we don't need to traverse that leg of the type.
167 std::vector<const Type*> WorkList, SeenList;
168 WorkList.push_back(Ty);
169 while (!WorkList.empty()) {
170 const Type* Ty = WorkList.back();
171 SeenList.push_back(Ty);
172 WorkList.pop_back();
173 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
174 // Check to see if this is an unresolved type
175 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
176 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
177 for ( ; I != E; ++I) {
178 if (I->second.get() == OpTy)
179 return true;
181 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
182 const Type* TheTy = SeqTy->getElementType();
183 if (TheTy->isAbstract() && TheTy != Ty) {
184 std::vector<const Type*>::iterator I = SeenList.begin(),
185 E = SeenList.end();
186 for ( ; I != E; ++I)
187 if (*I == TheTy)
188 break;
189 if (I == E)
190 WorkList.push_back(TheTy);
192 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
193 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
194 const Type* TheTy = StrTy->getElementType(i);
195 if (TheTy->isAbstract() && TheTy != Ty) {
196 std::vector<const Type*>::iterator I = SeenList.begin(),
197 E = SeenList.end();
198 for ( ; I != E; ++I)
199 if (*I == TheTy)
200 break;
201 if (I == E)
202 WorkList.push_back(TheTy);
207 return false;
209 } CurModule;
211 static struct PerFunctionInfo {
212 Function *CurrentFunction; // Pointer to current function being created
214 ValueList Values; // Keep track of #'d definitions
215 unsigned NextValNum;
216 ValueList LateResolveValues;
217 bool isDeclare; // Is this function a forward declararation?
218 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
219 GlobalValue::VisibilityTypes Visibility;
221 /// BBForwardRefs - When we see forward references to basic blocks, keep
222 /// track of them here.
223 std::map<ValID, BasicBlock*> BBForwardRefs;
225 inline PerFunctionInfo() {
226 CurrentFunction = 0;
227 isDeclare = false;
228 Linkage = GlobalValue::ExternalLinkage;
229 Visibility = GlobalValue::DefaultVisibility;
232 inline void FunctionStart(Function *M) {
233 CurrentFunction = M;
234 NextValNum = 0;
237 void FunctionDone() {
238 // Any forward referenced blocks left?
239 if (!BBForwardRefs.empty()) {
240 GenerateError("Undefined reference to label " +
241 BBForwardRefs.begin()->second->getName());
242 return;
245 // Resolve all forward references now.
246 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
248 Values.clear(); // Clear out function local definitions
249 BBForwardRefs.clear();
250 CurrentFunction = 0;
251 isDeclare = false;
252 Linkage = GlobalValue::ExternalLinkage;
253 Visibility = GlobalValue::DefaultVisibility;
255 } CurFun; // Info for the current function...
257 static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
260 //===----------------------------------------------------------------------===//
261 // Code to handle definitions of all the types
262 //===----------------------------------------------------------------------===//
264 static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
265 // Things that have names or are void typed don't get slot numbers
266 if (V->hasName() || (V->getType() == Type::VoidTy))
267 return;
269 // In the case of function values, we have to allow for the forward reference
270 // of basic blocks, which are included in the numbering. Consequently, we keep
271 // track of the next insertion location with NextValNum. When a BB gets
272 // inserted, it could change the size of the CurFun.Values vector.
273 if (&ValueTab == &CurFun.Values) {
274 if (ValueTab.size() <= CurFun.NextValNum)
275 ValueTab.resize(CurFun.NextValNum+1);
276 ValueTab[CurFun.NextValNum++] = V;
277 return;
279 // For all other lists, its okay to just tack it on the back of the vector.
280 ValueTab.push_back(V);
283 static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
284 switch (D.Type) {
285 case ValID::LocalID: // Is it a numbered definition?
286 // Module constants occupy the lowest numbered slots...
287 if (D.Num < CurModule.Types.size())
288 return CurModule.Types[D.Num];
289 break;
290 case ValID::LocalName: // Is it a named definition?
291 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
292 D.destroy(); // Free old strdup'd memory...
293 return N;
295 break;
296 default:
297 GenerateError("Internal parser error: Invalid symbol type reference");
298 return 0;
301 // If we reached here, we referenced either a symbol that we don't know about
302 // or an id number that hasn't been read yet. We may be referencing something
303 // forward, so just create an entry to be resolved later and get to it...
305 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
308 if (inFunctionScope()) {
309 if (D.Type == ValID::LocalName) {
310 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
311 return 0;
312 } else {
313 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
314 return 0;
318 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
319 if (I != CurModule.LateResolveTypes.end())
320 return I->second;
322 Type *Typ = OpaqueType::get();
323 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
324 return Typ;
327 // getExistingVal - Look up the value specified by the provided type and
328 // the provided ValID. If the value exists and has already been defined, return
329 // it. Otherwise return null.
331 static Value *getExistingVal(const Type *Ty, const ValID &D) {
332 if (isa<FunctionType>(Ty)) {
333 GenerateError("Functions are not values and "
334 "must be referenced as pointers");
335 return 0;
338 switch (D.Type) {
339 case ValID::LocalID: { // Is it a numbered definition?
340 // Check that the number is within bounds.
341 if (D.Num >= CurFun.Values.size())
342 return 0;
343 Value *Result = CurFun.Values[D.Num];
344 if (Ty != Result->getType()) {
345 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
346 Result->getType()->getDescription() + "' does not match "
347 "expected type, '" + Ty->getDescription() + "'");
348 return 0;
350 return Result;
352 case ValID::GlobalID: { // Is it a numbered definition?
353 if (D.Num >= CurModule.Values.size())
354 return 0;
355 Value *Result = CurModule.Values[D.Num];
356 if (Ty != Result->getType()) {
357 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
358 Result->getType()->getDescription() + "' does not match "
359 "expected type, '" + Ty->getDescription() + "'");
360 return 0;
362 return Result;
365 case ValID::LocalName: { // Is it a named definition?
366 if (!inFunctionScope())
367 return 0;
368 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
369 Value *N = SymTab.lookup(D.getName());
370 if (N == 0)
371 return 0;
372 if (N->getType() != Ty)
373 return 0;
375 D.destroy(); // Free old strdup'd memory...
376 return N;
378 case ValID::GlobalName: { // Is it a named definition?
379 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
380 Value *N = SymTab.lookup(D.getName());
381 if (N == 0)
382 return 0;
383 if (N->getType() != Ty)
384 return 0;
386 D.destroy(); // Free old strdup'd memory...
387 return N;
390 // Check to make sure that "Ty" is an integral type, and that our
391 // value will fit into the specified type...
392 case ValID::ConstSIntVal: // Is it a constant pool reference??
393 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
394 GenerateError("Signed integral constant '" +
395 itostr(D.ConstPool64) + "' is invalid for type '" +
396 Ty->getDescription() + "'");
397 return 0;
399 return ConstantInt::get(Ty, D.ConstPool64, true);
401 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
402 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
403 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
404 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
405 "' is invalid or out of range");
406 return 0;
407 } else { // This is really a signed reference. Transmogrify.
408 return ConstantInt::get(Ty, D.ConstPool64, true);
410 } else {
411 return ConstantInt::get(Ty, D.UConstPool64);
414 case ValID::ConstFPVal: // Is it a floating point const pool reference?
415 if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
416 GenerateError("FP constant invalid for type");
417 return 0;
419 // Lexer has no type info, so builds all float and double FP constants
420 // as double. Fix this here. Long double does not need this.
421 if (&D.ConstPoolFP->getSemantics() == &APFloat::IEEEdouble &&
422 Ty==Type::FloatTy)
423 D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
424 return ConstantFP::get(Ty, *D.ConstPoolFP);
426 case ValID::ConstNullVal: // Is it a null value?
427 if (!isa<PointerType>(Ty)) {
428 GenerateError("Cannot create a a non pointer null");
429 return 0;
431 return ConstantPointerNull::get(cast<PointerType>(Ty));
433 case ValID::ConstUndefVal: // Is it an undef value?
434 return UndefValue::get(Ty);
436 case ValID::ConstZeroVal: // Is it a zero value?
437 return Constant::getNullValue(Ty);
439 case ValID::ConstantVal: // Fully resolved constant?
440 if (D.ConstantValue->getType() != Ty) {
441 GenerateError("Constant expression type different from required type");
442 return 0;
444 return D.ConstantValue;
446 case ValID::InlineAsmVal: { // Inline asm expression
447 const PointerType *PTy = dyn_cast<PointerType>(Ty);
448 const FunctionType *FTy =
449 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
450 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
451 GenerateError("Invalid type for asm constraint string");
452 return 0;
454 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
455 D.IAD->HasSideEffects);
456 D.destroy(); // Free InlineAsmDescriptor.
457 return IA;
459 default:
460 assert(0 && "Unhandled case!");
461 return 0;
462 } // End of switch
464 assert(0 && "Unhandled case!");
465 return 0;
468 // getVal - This function is identical to getExistingVal, except that if a
469 // value is not already defined, it "improvises" by creating a placeholder var
470 // that looks and acts just like the requested variable. When the value is
471 // defined later, all uses of the placeholder variable are replaced with the
472 // real thing.
474 static Value *getVal(const Type *Ty, const ValID &ID) {
475 if (Ty == Type::LabelTy) {
476 GenerateError("Cannot use a basic block here");
477 return 0;
480 // See if the value has already been defined.
481 Value *V = getExistingVal(Ty, ID);
482 if (V) return V;
483 if (TriggerError) return 0;
485 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
486 GenerateError("Invalid use of a composite type");
487 return 0;
490 // If we reached here, we referenced either a symbol that we don't know about
491 // or an id number that hasn't been read yet. We may be referencing something
492 // forward, so just create an entry to be resolved later and get to it...
494 switch (ID.Type) {
495 case ValID::GlobalName:
496 case ValID::GlobalID: {
497 const PointerType *PTy = dyn_cast<PointerType>(Ty);
498 if (!PTy) {
499 GenerateError("Invalid type for reference to global" );
500 return 0;
502 const Type* ElTy = PTy->getElementType();
503 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
504 V = new Function(FTy, GlobalValue::ExternalLinkage);
505 else
506 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
507 break;
509 default:
510 V = new Argument(Ty);
513 // Remember where this forward reference came from. FIXME, shouldn't we try
514 // to recycle these things??
515 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
516 llvmAsmlineno)));
518 if (inFunctionScope())
519 InsertValue(V, CurFun.LateResolveValues);
520 else
521 InsertValue(V, CurModule.LateResolveValues);
522 return V;
525 /// defineBBVal - This is a definition of a new basic block with the specified
526 /// identifier which must be the same as CurFun.NextValNum, if its numeric.
527 static BasicBlock *defineBBVal(const ValID &ID) {
528 assert(inFunctionScope() && "Can't get basic block at global scope!");
530 BasicBlock *BB = 0;
532 // First, see if this was forward referenced
534 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
535 if (BBI != CurFun.BBForwardRefs.end()) {
536 BB = BBI->second;
537 // The forward declaration could have been inserted anywhere in the
538 // function: insert it into the correct place now.
539 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
540 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
542 // We're about to erase the entry, save the key so we can clean it up.
543 ValID Tmp = BBI->first;
545 // Erase the forward ref from the map as its no longer "forward"
546 CurFun.BBForwardRefs.erase(ID);
548 // The key has been removed from the map but so we don't want to leave
549 // strdup'd memory around so destroy it too.
550 Tmp.destroy();
552 // If its a numbered definition, bump the number and set the BB value.
553 if (ID.Type == ValID::LocalID) {
554 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
555 InsertValue(BB);
558 ID.destroy();
559 return BB;
562 // We haven't seen this BB before and its first mention is a definition.
563 // Just create it and return it.
564 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
565 BB = new BasicBlock(Name, CurFun.CurrentFunction);
566 if (ID.Type == ValID::LocalID) {
567 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
568 InsertValue(BB);
571 ID.destroy(); // Free strdup'd memory
572 return BB;
575 /// getBBVal - get an existing BB value or create a forward reference for it.
576 ///
577 static BasicBlock *getBBVal(const ValID &ID) {
578 assert(inFunctionScope() && "Can't get basic block at global scope!");
580 BasicBlock *BB = 0;
582 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
583 if (BBI != CurFun.BBForwardRefs.end()) {
584 BB = BBI->second;
585 } if (ID.Type == ValID::LocalName) {
586 std::string Name = ID.getName();
587 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
588 if (N)
589 if (N->getType()->getTypeID() == Type::LabelTyID)
590 BB = cast<BasicBlock>(N);
591 else
592 GenerateError("Reference to label '" + Name + "' is actually of type '"+
593 N->getType()->getDescription() + "'");
594 } else if (ID.Type == ValID::LocalID) {
595 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
596 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
597 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
598 else
599 GenerateError("Reference to label '%" + utostr(ID.Num) +
600 "' is actually of type '"+
601 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
603 } else {
604 GenerateError("Illegal label reference " + ID.getName());
605 return 0;
608 // If its already been defined, return it now.
609 if (BB) {
610 ID.destroy(); // Free strdup'd memory.
611 return BB;
614 // Otherwise, this block has not been seen before, create it.
615 std::string Name;
616 if (ID.Type == ValID::LocalName)
617 Name = ID.getName();
618 BB = new BasicBlock(Name, CurFun.CurrentFunction);
620 // Insert it in the forward refs map.
621 CurFun.BBForwardRefs[ID] = BB;
623 return BB;
627 //===----------------------------------------------------------------------===//
628 // Code to handle forward references in instructions
629 //===----------------------------------------------------------------------===//
631 // This code handles the late binding needed with statements that reference
632 // values not defined yet... for example, a forward branch, or the PHI node for
633 // a loop body.
635 // This keeps a table (CurFun.LateResolveValues) of all such forward references
636 // and back patchs after we are done.
639 // ResolveDefinitions - If we could not resolve some defs at parsing
640 // time (forward branches, phi functions for loops, etc...) resolve the
641 // defs now...
643 static void
644 ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
645 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
646 while (!LateResolvers.empty()) {
647 Value *V = LateResolvers.back();
648 LateResolvers.pop_back();
650 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
651 CurModule.PlaceHolderInfo.find(V);
652 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
654 ValID &DID = PHI->second.first;
656 Value *TheRealValue = getExistingVal(V->getType(), DID);
657 if (TriggerError)
658 return;
659 if (TheRealValue) {
660 V->replaceAllUsesWith(TheRealValue);
661 delete V;
662 CurModule.PlaceHolderInfo.erase(PHI);
663 } else if (FutureLateResolvers) {
664 // Functions have their unresolved items forwarded to the module late
665 // resolver table
666 InsertValue(V, *FutureLateResolvers);
667 } else {
668 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
669 GenerateError("Reference to an invalid definition: '" +DID.getName()+
670 "' of type '" + V->getType()->getDescription() + "'",
671 PHI->second.second);
672 return;
673 } else {
674 GenerateError("Reference to an invalid definition: #" +
675 itostr(DID.Num) + " of type '" +
676 V->getType()->getDescription() + "'",
677 PHI->second.second);
678 return;
682 LateResolvers.clear();
685 // ResolveTypeTo - A brand new type was just declared. This means that (if
686 // name is not null) things referencing Name can be resolved. Otherwise, things
687 // refering to the number can be resolved. Do this now.
689 static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
690 ValID D;
691 if (Name)
692 D = ValID::createLocalName(*Name);
693 else
694 D = ValID::createLocalID(CurModule.Types.size());
696 std::map<ValID, PATypeHolder>::iterator I =
697 CurModule.LateResolveTypes.find(D);
698 if (I != CurModule.LateResolveTypes.end()) {
699 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
700 CurModule.LateResolveTypes.erase(I);
704 // setValueName - Set the specified value to the name given. The name may be
705 // null potentially, in which case this is a noop. The string passed in is
706 // assumed to be a malloc'd string buffer, and is free'd by this function.
708 static void setValueName(Value *V, std::string *NameStr) {
709 if (!NameStr) return;
710 std::string Name(*NameStr); // Copy string
711 delete NameStr; // Free old string
713 if (V->getType() == Type::VoidTy) {
714 GenerateError("Can't assign name '" + Name+"' to value with void type");
715 return;
718 assert(inFunctionScope() && "Must be in function scope!");
719 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
720 if (ST.lookup(Name)) {
721 GenerateError("Redefinition of value '" + Name + "' of type '" +
722 V->getType()->getDescription() + "'");
723 return;
726 // Set the name.
727 V->setName(Name);
730 /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
731 /// this is a declaration, otherwise it is a definition.
732 static GlobalVariable *
733 ParseGlobalVariable(std::string *NameStr,
734 GlobalValue::LinkageTypes Linkage,
735 GlobalValue::VisibilityTypes Visibility,
736 bool isConstantGlobal, const Type *Ty,
737 Constant *Initializer, bool IsThreadLocal) {
738 if (isa<FunctionType>(Ty)) {
739 GenerateError("Cannot declare global vars of function type");
740 return 0;
743 const PointerType *PTy = PointerType::get(Ty);
745 std::string Name;
746 if (NameStr) {
747 Name = *NameStr; // Copy string
748 delete NameStr; // Free old string
751 // See if this global value was forward referenced. If so, recycle the
752 // object.
753 ValID ID;
754 if (!Name.empty()) {
755 ID = ValID::createGlobalName(Name);
756 } else {
757 ID = ValID::createGlobalID(CurModule.Values.size());
760 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
761 // Move the global to the end of the list, from whereever it was
762 // previously inserted.
763 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
764 CurModule.CurrentModule->getGlobalList().remove(GV);
765 CurModule.CurrentModule->getGlobalList().push_back(GV);
766 GV->setInitializer(Initializer);
767 GV->setLinkage(Linkage);
768 GV->setVisibility(Visibility);
769 GV->setConstant(isConstantGlobal);
770 GV->setThreadLocal(IsThreadLocal);
771 InsertValue(GV, CurModule.Values);
772 return GV;
775 // If this global has a name
776 if (!Name.empty()) {
777 // if the global we're parsing has an initializer (is a definition) and
778 // has external linkage.
779 if (Initializer && Linkage != GlobalValue::InternalLinkage)
780 // If there is already a global with external linkage with this name
781 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
782 // If we allow this GVar to get created, it will be renamed in the
783 // symbol table because it conflicts with an existing GVar. We can't
784 // allow redefinition of GVars whose linking indicates that their name
785 // must stay the same. Issue the error.
786 GenerateError("Redefinition of global variable named '" + Name +
787 "' of type '" + Ty->getDescription() + "'");
788 return 0;
792 // Otherwise there is no existing GV to use, create one now.
793 GlobalVariable *GV =
794 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
795 CurModule.CurrentModule, IsThreadLocal);
796 GV->setVisibility(Visibility);
797 InsertValue(GV, CurModule.Values);
798 return GV;
801 // setTypeName - Set the specified type to the name given. The name may be
802 // null potentially, in which case this is a noop. The string passed in is
803 // assumed to be a malloc'd string buffer, and is freed by this function.
805 // This function returns true if the type has already been defined, but is
806 // allowed to be redefined in the specified context. If the name is a new name
807 // for the type plane, it is inserted and false is returned.
808 static bool setTypeName(const Type *T, std::string *NameStr) {
809 assert(!inFunctionScope() && "Can't give types function-local names!");
810 if (NameStr == 0) return false;
812 std::string Name(*NameStr); // Copy string
813 delete NameStr; // Free old string
815 // We don't allow assigning names to void type
816 if (T == Type::VoidTy) {
817 GenerateError("Can't assign name '" + Name + "' to the void type");
818 return false;
821 // Set the type name, checking for conflicts as we do so.
822 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
824 if (AlreadyExists) { // Inserting a name that is already defined???
825 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
826 assert(Existing && "Conflict but no matching type?!");
828 // There is only one case where this is allowed: when we are refining an
829 // opaque type. In this case, Existing will be an opaque type.
830 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
831 // We ARE replacing an opaque type!
832 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
833 return true;
836 // Otherwise, this is an attempt to redefine a type. That's okay if
837 // the redefinition is identical to the original. This will be so if
838 // Existing and T point to the same Type object. In this one case we
839 // allow the equivalent redefinition.
840 if (Existing == T) return true; // Yes, it's equal.
842 // Any other kind of (non-equivalent) redefinition is an error.
843 GenerateError("Redefinition of type named '" + Name + "' of type '" +
844 T->getDescription() + "'");
847 return false;
850 //===----------------------------------------------------------------------===//
851 // Code for handling upreferences in type names...
854 // TypeContains - Returns true if Ty directly contains E in it.
856 static bool TypeContains(const Type *Ty, const Type *E) {
857 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
858 E) != Ty->subtype_end();
861 namespace {
862 struct UpRefRecord {
863 // NestingLevel - The number of nesting levels that need to be popped before
864 // this type is resolved.
865 unsigned NestingLevel;
867 // LastContainedTy - This is the type at the current binding level for the
868 // type. Every time we reduce the nesting level, this gets updated.
869 const Type *LastContainedTy;
871 // UpRefTy - This is the actual opaque type that the upreference is
872 // represented with.
873 OpaqueType *UpRefTy;
875 UpRefRecord(unsigned NL, OpaqueType *URTy)
876 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
880 // UpRefs - A list of the outstanding upreferences that need to be resolved.
881 static std::vector<UpRefRecord> UpRefs;
883 /// HandleUpRefs - Every time we finish a new layer of types, this function is
884 /// called. It loops through the UpRefs vector, which is a list of the
885 /// currently active types. For each type, if the up reference is contained in
886 /// the newly completed type, we decrement the level count. When the level
887 /// count reaches zero, the upreferenced type is the type that is passed in:
888 /// thus we can complete the cycle.
890 static PATypeHolder HandleUpRefs(const Type *ty) {
891 // If Ty isn't abstract, or if there are no up-references in it, then there is
892 // nothing to resolve here.
893 if (!ty->isAbstract() || UpRefs.empty()) return ty;
895 PATypeHolder Ty(ty);
896 UR_OUT("Type '" << Ty->getDescription() <<
897 "' newly formed. Resolving upreferences.\n" <<
898 UpRefs.size() << " upreferences active!\n");
900 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
901 // to zero), we resolve them all together before we resolve them to Ty. At
902 // the end of the loop, if there is anything to resolve to Ty, it will be in
903 // this variable.
904 OpaqueType *TypeToResolve = 0;
906 for (unsigned i = 0; i != UpRefs.size(); ++i) {
907 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
908 << UpRefs[i].second->getDescription() << ") = "
909 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
910 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
911 // Decrement level of upreference
912 unsigned Level = --UpRefs[i].NestingLevel;
913 UpRefs[i].LastContainedTy = Ty;
914 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
915 if (Level == 0) { // Upreference should be resolved!
916 if (!TypeToResolve) {
917 TypeToResolve = UpRefs[i].UpRefTy;
918 } else {
919 UR_OUT(" * Resolving upreference for "
920 << UpRefs[i].second->getDescription() << "\n";
921 std::string OldName = UpRefs[i].UpRefTy->getDescription());
922 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
923 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
924 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
926 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
927 --i; // Do not skip the next element...
932 if (TypeToResolve) {
933 UR_OUT(" * Resolving upreference for "
934 << UpRefs[i].second->getDescription() << "\n";
935 std::string OldName = TypeToResolve->getDescription());
936 TypeToResolve->refineAbstractTypeTo(Ty);
939 return Ty;
942 //===----------------------------------------------------------------------===//
943 // RunVMAsmParser - Define an interface to this parser
944 //===----------------------------------------------------------------------===//
946 static Module* RunParser(Module * M);
948 Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
949 set_scan_file(F);
951 CurFilename = Filename;
952 return RunParser(new Module(CurFilename));
955 Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
956 set_scan_string(AsmString);
958 CurFilename = "from_memory";
959 if (M == NULL) {
960 return RunParser(new Module (CurFilename));
961 } else {
962 return RunParser(M);
968 %union {
969 llvm::Module *ModuleVal;
970 llvm::Function *FunctionVal;
971 llvm::BasicBlock *BasicBlockVal;
972 llvm::TerminatorInst *TermInstVal;
973 llvm::Instruction *InstVal;
974 llvm::Constant *ConstVal;
976 const llvm::Type *PrimType;
977 std::list<llvm::PATypeHolder> *TypeList;
978 llvm::PATypeHolder *TypeVal;
979 llvm::Value *ValueVal;
980 std::vector<llvm::Value*> *ValueList;
981 llvm::ArgListType *ArgList;
982 llvm::TypeWithAttrs TypeWithAttrs;
983 llvm::TypeWithAttrsList *TypeWithAttrsList;
984 llvm::ValueRefList *ValueRefList;
986 // Represent the RHS of PHI node
987 std::list<std::pair<llvm::Value*,
988 llvm::BasicBlock*> > *PHIList;
989 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
990 std::vector<llvm::Constant*> *ConstVector;
992 llvm::GlobalValue::LinkageTypes Linkage;
993 llvm::GlobalValue::VisibilityTypes Visibility;
994 uint16_t ParamAttrs;
995 llvm::APInt *APIntVal;
996 int64_t SInt64Val;
997 uint64_t UInt64Val;
998 int SIntVal;
999 unsigned UIntVal;
1000 llvm::APFloat *FPVal;
1001 bool BoolVal;
1003 std::string *StrVal; // This memory must be deleted
1004 llvm::ValID ValIDVal;
1006 llvm::Instruction::BinaryOps BinaryOpVal;
1007 llvm::Instruction::TermOps TermOpVal;
1008 llvm::Instruction::MemoryOps MemOpVal;
1009 llvm::Instruction::CastOps CastOpVal;
1010 llvm::Instruction::OtherOps OtherOpVal;
1011 llvm::ICmpInst::Predicate IPredicate;
1012 llvm::FCmpInst::Predicate FPredicate;
1015 %type <ModuleVal> Module
1016 %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1017 %type <BasicBlockVal> BasicBlock InstructionList
1018 %type <TermInstVal> BBTerminatorInst
1019 %type <InstVal> Inst InstVal MemoryInst
1020 %type <ConstVal> ConstVal ConstExpr AliaseeRef
1021 %type <ConstVector> ConstVector
1022 %type <ArgList> ArgList ArgListH
1023 %type <PHIList> PHIList
1024 %type <ValueRefList> ValueRefList // For call param lists & GEP indices
1025 %type <ValueList> IndexList // For GEP indices
1026 %type <TypeList> TypeListI
1027 %type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1028 %type <TypeWithAttrs> ArgType
1029 %type <JumpTable> JumpTable
1030 %type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1031 %type <BoolVal> ThreadLocal // 'thread_local' or not
1032 %type <BoolVal> OptVolatile // 'volatile' or not
1033 %type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1034 %type <BoolVal> OptSideEffect // 'sideeffect' or not.
1035 %type <Linkage> GVInternalLinkage GVExternalLinkage
1036 %type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1037 %type <Linkage> AliasLinkage
1038 %type <Visibility> GVVisibilityStyle
1040 // ValueRef - Unresolved reference to a definition or BB
1041 %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1042 %type <ValueVal> ResolvedVal // <type> <valref> pair
1043 // Tokens and types for handling constant integer values
1045 // ESINT64VAL - A negative number within long long range
1046 %token <SInt64Val> ESINT64VAL
1048 // EUINT64VAL - A positive number within uns. long long range
1049 %token <UInt64Val> EUINT64VAL
1051 // ESAPINTVAL - A negative number with arbitrary precision
1052 %token <APIntVal> ESAPINTVAL
1054 // EUAPINTVAL - A positive number with arbitrary precision
1055 %token <APIntVal> EUAPINTVAL
1057 %token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1058 %token <FPVal> FPVAL // Float or Double constant
1060 // Built in types...
1061 %type <TypeVal> Types ResultTypes
1062 %type <PrimType> IntType FPType PrimType // Classifications
1063 %token <PrimType> VOID INTTYPE
1064 %token <PrimType> FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL
1065 %token TYPE
1068 %token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1069 %token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1070 %type <StrVal> LocalName OptLocalName OptLocalAssign
1071 %type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1072 %type <StrVal> OptSection SectionString
1074 %type <UIntVal> OptAlign OptCAlign
1076 %token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1077 %token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1078 %token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1079 %token DLLIMPORT DLLEXPORT EXTERN_WEAK
1080 %token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
1081 %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1082 %token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1083 %token DATALAYOUT
1084 %type <UIntVal> OptCallingConv
1085 %type <ParamAttrs> OptParamAttrs ParamAttr
1086 %type <ParamAttrs> OptFuncAttrs FuncAttr
1088 // Basic Block Terminating Operators
1089 %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1091 // Binary Operators
1092 %type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1093 %token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1094 %token <BinaryOpVal> SHL LSHR ASHR
1096 %token <OtherOpVal> ICMP FCMP
1097 %type <IPredicate> IPredicates
1098 %type <FPredicate> FPredicates
1099 %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1100 %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1102 // Memory Instructions
1103 %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1105 // Cast Operators
1106 %type <CastOpVal> CastOps
1107 %token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1108 %token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1110 // Other Operators
1111 %token <OtherOpVal> PHI_TOK SELECT VAARG
1112 %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1114 // Function Attributes
1115 %token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST
1117 // Visibility Styles
1118 %token DEFAULT HIDDEN PROTECTED
1120 %start Module
1124 // Operations that are notably excluded from this list include:
1125 // RET, BR, & SWITCH because they end basic blocks and are treated specially.
1127 ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1128 LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1129 CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1130 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1132 IPredicates
1133 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1134 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1135 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1136 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1137 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1140 FPredicates
1141 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1142 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1143 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1144 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1145 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1146 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1147 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1148 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1149 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1152 // These are some types that allow classification if we only want a particular
1153 // thing... for example, only a signed, unsigned, or integral type.
1154 IntType : INTTYPE;
1155 FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80;
1157 LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1158 OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1160 /// OptLocalAssign - Value producing statements have an optional assignment
1161 /// component.
1162 OptLocalAssign : LocalName '=' {
1163 $$ = $1;
1164 CHECK_FOR_ERROR
1166 | /*empty*/ {
1167 $$ = 0;
1168 CHECK_FOR_ERROR
1171 GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1173 OptGlobalAssign : GlobalAssign
1174 | /*empty*/ {
1175 $$ = 0;
1176 CHECK_FOR_ERROR
1179 GlobalAssign : GlobalName '=' {
1180 $$ = $1;
1181 CHECK_FOR_ERROR
1184 GVInternalLinkage
1185 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1186 | WEAK { $$ = GlobalValue::WeakLinkage; }
1187 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1188 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1189 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1192 GVExternalLinkage
1193 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1194 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1195 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1198 GVVisibilityStyle
1199 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1200 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1201 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1202 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1205 FunctionDeclareLinkage
1206 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1207 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1208 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1211 FunctionDefineLinkage
1212 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1213 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1214 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1215 | WEAK { $$ = GlobalValue::WeakLinkage; }
1216 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1219 AliasLinkage
1220 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1221 | WEAK { $$ = GlobalValue::WeakLinkage; }
1222 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1225 OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1226 CCC_TOK { $$ = CallingConv::C; } |
1227 FASTCC_TOK { $$ = CallingConv::Fast; } |
1228 COLDCC_TOK { $$ = CallingConv::Cold; } |
1229 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1230 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1231 CC_TOK EUINT64VAL {
1232 if ((unsigned)$2 != $2)
1233 GEN_ERROR("Calling conv too large");
1234 $$ = $2;
1235 CHECK_FOR_ERROR
1238 ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; }
1239 | ZEXT { $$ = ParamAttr::ZExt; }
1240 | SIGNEXT { $$ = ParamAttr::SExt; }
1241 | SEXT { $$ = ParamAttr::SExt; }
1242 | INREG { $$ = ParamAttr::InReg; }
1243 | SRET { $$ = ParamAttr::StructRet; }
1244 | NOALIAS { $$ = ParamAttr::NoAlias; }
1245 | BYVAL { $$ = ParamAttr::ByVal; }
1246 | NEST { $$ = ParamAttr::Nest; }
1249 OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
1250 | OptParamAttrs ParamAttr {
1251 $$ = $1 | $2;
1255 FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
1256 | NOUNWIND { $$ = ParamAttr::NoUnwind; }
1257 | ZEROEXT { $$ = ParamAttr::ZExt; }
1258 | SIGNEXT { $$ = ParamAttr::SExt; }
1261 OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
1262 | OptFuncAttrs FuncAttr {
1263 $$ = $1 | $2;
1267 // OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1268 // a comma before it.
1269 OptAlign : /*empty*/ { $$ = 0; } |
1270 ALIGN EUINT64VAL {
1271 $$ = $2;
1272 if ($$ != 0 && !isPowerOf2_32($$))
1273 GEN_ERROR("Alignment must be a power of two");
1274 CHECK_FOR_ERROR
1276 OptCAlign : /*empty*/ { $$ = 0; } |
1277 ',' ALIGN EUINT64VAL {
1278 $$ = $3;
1279 if ($$ != 0 && !isPowerOf2_32($$))
1280 GEN_ERROR("Alignment must be a power of two");
1281 CHECK_FOR_ERROR
1285 SectionString : SECTION STRINGCONSTANT {
1286 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1287 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1288 GEN_ERROR("Invalid character in section name");
1289 $$ = $2;
1290 CHECK_FOR_ERROR
1293 OptSection : /*empty*/ { $$ = 0; } |
1294 SectionString { $$ = $1; };
1296 // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1297 // is set to be the global we are processing.
1299 GlobalVarAttributes : /* empty */ {} |
1300 ',' GlobalVarAttribute GlobalVarAttributes {};
1301 GlobalVarAttribute : SectionString {
1302 CurGV->setSection(*$1);
1303 delete $1;
1304 CHECK_FOR_ERROR
1306 | ALIGN EUINT64VAL {
1307 if ($2 != 0 && !isPowerOf2_32($2))
1308 GEN_ERROR("Alignment must be a power of two");
1309 CurGV->setAlignment($2);
1310 CHECK_FOR_ERROR
1313 //===----------------------------------------------------------------------===//
1314 // Types includes all predefined types... except void, because it can only be
1315 // used in specific contexts (function returning void for example).
1317 // Derived types are added later...
1319 PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ;
1321 Types
1322 : OPAQUE {
1323 $$ = new PATypeHolder(OpaqueType::get());
1324 CHECK_FOR_ERROR
1326 | PrimType {
1327 $$ = new PATypeHolder($1);
1328 CHECK_FOR_ERROR
1330 | Types '*' { // Pointer type?
1331 if (*$1 == Type::LabelTy)
1332 GEN_ERROR("Cannot form a pointer to a basic block");
1333 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1334 delete $1;
1335 CHECK_FOR_ERROR
1337 | SymbolicValueRef { // Named types are also simple types...
1338 const Type* tmp = getTypeVal($1);
1339 CHECK_FOR_ERROR
1340 $$ = new PATypeHolder(tmp);
1342 | '\\' EUINT64VAL { // Type UpReference
1343 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1344 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1345 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1346 $$ = new PATypeHolder(OT);
1347 UR_OUT("New Upreference!\n");
1348 CHECK_FOR_ERROR
1350 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1351 std::vector<const Type*> Params;
1352 ParamAttrsVector Attrs;
1353 if ($5 != ParamAttr::None) {
1354 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1355 Attrs.push_back(X);
1357 unsigned index = 1;
1358 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1359 for (; I != E; ++I, ++index) {
1360 const Type *Ty = I->Ty->get();
1361 Params.push_back(Ty);
1362 if (Ty != Type::VoidTy)
1363 if (I->Attrs != ParamAttr::None) {
1364 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1365 Attrs.push_back(X);
1368 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1369 if (isVarArg) Params.pop_back();
1371 ParamAttrsList *ActualAttrs = 0;
1372 if (!Attrs.empty())
1373 ActualAttrs = ParamAttrsList::get(Attrs);
1374 FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
1375 delete $3; // Delete the argument list
1376 delete $1; // Delete the return type handle
1377 $$ = new PATypeHolder(HandleUpRefs(FT));
1378 CHECK_FOR_ERROR
1380 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1381 std::vector<const Type*> Params;
1382 ParamAttrsVector Attrs;
1383 if ($5 != ParamAttr::None) {
1384 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1385 Attrs.push_back(X);
1387 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1388 unsigned index = 1;
1389 for ( ; I != E; ++I, ++index) {
1390 const Type* Ty = I->Ty->get();
1391 Params.push_back(Ty);
1392 if (Ty != Type::VoidTy)
1393 if (I->Attrs != ParamAttr::None) {
1394 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1395 Attrs.push_back(X);
1398 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1399 if (isVarArg) Params.pop_back();
1401 ParamAttrsList *ActualAttrs = 0;
1402 if (!Attrs.empty())
1403 ActualAttrs = ParamAttrsList::get(Attrs);
1405 FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
1406 delete $3; // Delete the argument list
1407 $$ = new PATypeHolder(HandleUpRefs(FT));
1408 CHECK_FOR_ERROR
1411 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1412 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1413 delete $4;
1414 CHECK_FOR_ERROR
1416 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1417 const llvm::Type* ElemTy = $4->get();
1418 if ((unsigned)$2 != $2)
1419 GEN_ERROR("Unsigned result not equal to signed result");
1420 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1421 GEN_ERROR("Element type of a VectorType must be primitive");
1422 if (!isPowerOf2_32($2))
1423 GEN_ERROR("Vector length should be a power of 2");
1424 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1425 delete $4;
1426 CHECK_FOR_ERROR
1428 | '{' TypeListI '}' { // Structure type?
1429 std::vector<const Type*> Elements;
1430 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1431 E = $2->end(); I != E; ++I)
1432 Elements.push_back(*I);
1434 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1435 delete $2;
1436 CHECK_FOR_ERROR
1438 | '{' '}' { // Empty structure type?
1439 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1440 CHECK_FOR_ERROR
1442 | '<' '{' TypeListI '}' '>' {
1443 std::vector<const Type*> Elements;
1444 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1445 E = $3->end(); I != E; ++I)
1446 Elements.push_back(*I);
1448 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1449 delete $3;
1450 CHECK_FOR_ERROR
1452 | '<' '{' '}' '>' { // Empty structure type?
1453 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1454 CHECK_FOR_ERROR
1458 ArgType
1459 : Types OptParamAttrs {
1460 $$.Ty = $1;
1461 $$.Attrs = $2;
1465 ResultTypes
1466 : Types {
1467 if (!UpRefs.empty())
1468 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1469 if (!(*$1)->isFirstClassType())
1470 GEN_ERROR("LLVM functions cannot return aggregate types");
1471 $$ = $1;
1473 | VOID {
1474 $$ = new PATypeHolder(Type::VoidTy);
1478 ArgTypeList : ArgType {
1479 $$ = new TypeWithAttrsList();
1480 $$->push_back($1);
1481 CHECK_FOR_ERROR
1483 | ArgTypeList ',' ArgType {
1484 ($$=$1)->push_back($3);
1485 CHECK_FOR_ERROR
1489 ArgTypeListI
1490 : ArgTypeList
1491 | ArgTypeList ',' DOTDOTDOT {
1492 $$=$1;
1493 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1494 TWA.Ty = new PATypeHolder(Type::VoidTy);
1495 $$->push_back(TWA);
1496 CHECK_FOR_ERROR
1498 | DOTDOTDOT {
1499 $$ = new TypeWithAttrsList;
1500 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1501 TWA.Ty = new PATypeHolder(Type::VoidTy);
1502 $$->push_back(TWA);
1503 CHECK_FOR_ERROR
1505 | /*empty*/ {
1506 $$ = new TypeWithAttrsList();
1507 CHECK_FOR_ERROR
1510 // TypeList - Used for struct declarations and as a basis for function type
1511 // declaration type lists
1513 TypeListI : Types {
1514 $$ = new std::list<PATypeHolder>();
1515 $$->push_back(*$1);
1516 delete $1;
1517 CHECK_FOR_ERROR
1519 | TypeListI ',' Types {
1520 ($$=$1)->push_back(*$3);
1521 delete $3;
1522 CHECK_FOR_ERROR
1525 // ConstVal - The various declarations that go into the constant pool. This
1526 // production is used ONLY to represent constants that show up AFTER a 'const',
1527 // 'constant' or 'global' token at global scope. Constants that can be inlined
1528 // into other expressions (such as integers and constexprs) are handled by the
1529 // ResolvedVal, ValueRef and ConstValueRef productions.
1531 ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1532 if (!UpRefs.empty())
1533 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1534 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1535 if (ATy == 0)
1536 GEN_ERROR("Cannot make array constant with type: '" +
1537 (*$1)->getDescription() + "'");
1538 const Type *ETy = ATy->getElementType();
1539 int NumElements = ATy->getNumElements();
1541 // Verify that we have the correct size...
1542 if (NumElements != -1 && NumElements != (int)$3->size())
1543 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1544 utostr($3->size()) + " arguments, but has size of " +
1545 itostr(NumElements) + "");
1547 // Verify all elements are correct type!
1548 for (unsigned i = 0; i < $3->size(); i++) {
1549 if (ETy != (*$3)[i]->getType())
1550 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1551 ETy->getDescription() +"' as required!\nIt is of type '"+
1552 (*$3)[i]->getType()->getDescription() + "'.");
1555 $$ = ConstantArray::get(ATy, *$3);
1556 delete $1; delete $3;
1557 CHECK_FOR_ERROR
1559 | Types '[' ']' {
1560 if (!UpRefs.empty())
1561 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1562 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1563 if (ATy == 0)
1564 GEN_ERROR("Cannot make array constant with type: '" +
1565 (*$1)->getDescription() + "'");
1567 int NumElements = ATy->getNumElements();
1568 if (NumElements != -1 && NumElements != 0)
1569 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1570 " arguments, but has size of " + itostr(NumElements) +"");
1571 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1572 delete $1;
1573 CHECK_FOR_ERROR
1575 | Types 'c' STRINGCONSTANT {
1576 if (!UpRefs.empty())
1577 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1578 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1579 if (ATy == 0)
1580 GEN_ERROR("Cannot make array constant with type: '" +
1581 (*$1)->getDescription() + "'");
1583 int NumElements = ATy->getNumElements();
1584 const Type *ETy = ATy->getElementType();
1585 if (NumElements != -1 && NumElements != int($3->length()))
1586 GEN_ERROR("Can't build string constant of size " +
1587 itostr((int)($3->length())) +
1588 " when array has size " + itostr(NumElements) + "");
1589 std::vector<Constant*> Vals;
1590 if (ETy == Type::Int8Ty) {
1591 for (unsigned i = 0; i < $3->length(); ++i)
1592 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1593 } else {
1594 delete $3;
1595 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1597 delete $3;
1598 $$ = ConstantArray::get(ATy, Vals);
1599 delete $1;
1600 CHECK_FOR_ERROR
1602 | Types '<' ConstVector '>' { // Nonempty unsized arr
1603 if (!UpRefs.empty())
1604 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1605 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1606 if (PTy == 0)
1607 GEN_ERROR("Cannot make packed constant with type: '" +
1608 (*$1)->getDescription() + "'");
1609 const Type *ETy = PTy->getElementType();
1610 int NumElements = PTy->getNumElements();
1612 // Verify that we have the correct size...
1613 if (NumElements != -1 && NumElements != (int)$3->size())
1614 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1615 utostr($3->size()) + " arguments, but has size of " +
1616 itostr(NumElements) + "");
1618 // Verify all elements are correct type!
1619 for (unsigned i = 0; i < $3->size(); i++) {
1620 if (ETy != (*$3)[i]->getType())
1621 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1622 ETy->getDescription() +"' as required!\nIt is of type '"+
1623 (*$3)[i]->getType()->getDescription() + "'.");
1626 $$ = ConstantVector::get(PTy, *$3);
1627 delete $1; delete $3;
1628 CHECK_FOR_ERROR
1630 | Types '{' ConstVector '}' {
1631 const StructType *STy = dyn_cast<StructType>($1->get());
1632 if (STy == 0)
1633 GEN_ERROR("Cannot make struct constant with type: '" +
1634 (*$1)->getDescription() + "'");
1636 if ($3->size() != STy->getNumContainedTypes())
1637 GEN_ERROR("Illegal number of initializers for structure type");
1639 // Check to ensure that constants are compatible with the type initializer!
1640 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1641 if ((*$3)[i]->getType() != STy->getElementType(i))
1642 GEN_ERROR("Expected type '" +
1643 STy->getElementType(i)->getDescription() +
1644 "' for element #" + utostr(i) +
1645 " of structure initializer");
1647 // Check to ensure that Type is not packed
1648 if (STy->isPacked())
1649 GEN_ERROR("Unpacked Initializer to vector type '" +
1650 STy->getDescription() + "'");
1652 $$ = ConstantStruct::get(STy, *$3);
1653 delete $1; delete $3;
1654 CHECK_FOR_ERROR
1656 | Types '{' '}' {
1657 if (!UpRefs.empty())
1658 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1659 const StructType *STy = dyn_cast<StructType>($1->get());
1660 if (STy == 0)
1661 GEN_ERROR("Cannot make struct constant with type: '" +
1662 (*$1)->getDescription() + "'");
1664 if (STy->getNumContainedTypes() != 0)
1665 GEN_ERROR("Illegal number of initializers for structure type");
1667 // Check to ensure that Type is not packed
1668 if (STy->isPacked())
1669 GEN_ERROR("Unpacked Initializer to vector type '" +
1670 STy->getDescription() + "'");
1672 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1673 delete $1;
1674 CHECK_FOR_ERROR
1676 | Types '<' '{' ConstVector '}' '>' {
1677 const StructType *STy = dyn_cast<StructType>($1->get());
1678 if (STy == 0)
1679 GEN_ERROR("Cannot make struct constant with type: '" +
1680 (*$1)->getDescription() + "'");
1682 if ($4->size() != STy->getNumContainedTypes())
1683 GEN_ERROR("Illegal number of initializers for structure type");
1685 // Check to ensure that constants are compatible with the type initializer!
1686 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1687 if ((*$4)[i]->getType() != STy->getElementType(i))
1688 GEN_ERROR("Expected type '" +
1689 STy->getElementType(i)->getDescription() +
1690 "' for element #" + utostr(i) +
1691 " of structure initializer");
1693 // Check to ensure that Type is packed
1694 if (!STy->isPacked())
1695 GEN_ERROR("Vector initializer to non-vector type '" +
1696 STy->getDescription() + "'");
1698 $$ = ConstantStruct::get(STy, *$4);
1699 delete $1; delete $4;
1700 CHECK_FOR_ERROR
1702 | Types '<' '{' '}' '>' {
1703 if (!UpRefs.empty())
1704 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1705 const StructType *STy = dyn_cast<StructType>($1->get());
1706 if (STy == 0)
1707 GEN_ERROR("Cannot make struct constant with type: '" +
1708 (*$1)->getDescription() + "'");
1710 if (STy->getNumContainedTypes() != 0)
1711 GEN_ERROR("Illegal number of initializers for structure type");
1713 // Check to ensure that Type is packed
1714 if (!STy->isPacked())
1715 GEN_ERROR("Vector initializer to non-vector type '" +
1716 STy->getDescription() + "'");
1718 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1719 delete $1;
1720 CHECK_FOR_ERROR
1722 | Types NULL_TOK {
1723 if (!UpRefs.empty())
1724 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1725 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1726 if (PTy == 0)
1727 GEN_ERROR("Cannot make null pointer constant with type: '" +
1728 (*$1)->getDescription() + "'");
1730 $$ = ConstantPointerNull::get(PTy);
1731 delete $1;
1732 CHECK_FOR_ERROR
1734 | Types UNDEF {
1735 if (!UpRefs.empty())
1736 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1737 $$ = UndefValue::get($1->get());
1738 delete $1;
1739 CHECK_FOR_ERROR
1741 | Types SymbolicValueRef {
1742 if (!UpRefs.empty())
1743 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1744 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1745 if (Ty == 0)
1746 GEN_ERROR("Global const reference must be a pointer type");
1748 // ConstExprs can exist in the body of a function, thus creating
1749 // GlobalValues whenever they refer to a variable. Because we are in
1750 // the context of a function, getExistingVal will search the functions
1751 // symbol table instead of the module symbol table for the global symbol,
1752 // which throws things all off. To get around this, we just tell
1753 // getExistingVal that we are at global scope here.
1755 Function *SavedCurFn = CurFun.CurrentFunction;
1756 CurFun.CurrentFunction = 0;
1758 Value *V = getExistingVal(Ty, $2);
1759 CHECK_FOR_ERROR
1761 CurFun.CurrentFunction = SavedCurFn;
1763 // If this is an initializer for a constant pointer, which is referencing a
1764 // (currently) undefined variable, create a stub now that shall be replaced
1765 // in the future with the right type of variable.
1767 if (V == 0) {
1768 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1769 const PointerType *PT = cast<PointerType>(Ty);
1771 // First check to see if the forward references value is already created!
1772 PerModuleInfo::GlobalRefsType::iterator I =
1773 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1775 if (I != CurModule.GlobalRefs.end()) {
1776 V = I->second; // Placeholder already exists, use it...
1777 $2.destroy();
1778 } else {
1779 std::string Name;
1780 if ($2.Type == ValID::GlobalName)
1781 Name = $2.getName();
1782 else if ($2.Type != ValID::GlobalID)
1783 GEN_ERROR("Invalid reference to global");
1785 // Create the forward referenced global.
1786 GlobalValue *GV;
1787 if (const FunctionType *FTy =
1788 dyn_cast<FunctionType>(PT->getElementType())) {
1789 GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
1790 CurModule.CurrentModule);
1791 } else {
1792 GV = new GlobalVariable(PT->getElementType(), false,
1793 GlobalValue::ExternalWeakLinkage, 0,
1794 Name, CurModule.CurrentModule);
1797 // Keep track of the fact that we have a forward ref to recycle it
1798 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1799 V = GV;
1803 $$ = cast<GlobalValue>(V);
1804 delete $1; // Free the type handle
1805 CHECK_FOR_ERROR
1807 | Types ConstExpr {
1808 if (!UpRefs.empty())
1809 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1810 if ($1->get() != $2->getType())
1811 GEN_ERROR("Mismatched types for constant expression: " +
1812 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1813 $$ = $2;
1814 delete $1;
1815 CHECK_FOR_ERROR
1817 | Types ZEROINITIALIZER {
1818 if (!UpRefs.empty())
1819 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1820 const Type *Ty = $1->get();
1821 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1822 GEN_ERROR("Cannot create a null initialized value of this type");
1823 $$ = Constant::getNullValue(Ty);
1824 delete $1;
1825 CHECK_FOR_ERROR
1827 | IntType ESINT64VAL { // integral constants
1828 if (!ConstantInt::isValueValidForType($1, $2))
1829 GEN_ERROR("Constant value doesn't fit in type");
1830 $$ = ConstantInt::get($1, $2, true);
1831 CHECK_FOR_ERROR
1833 | IntType ESAPINTVAL { // arbitrary precision integer constants
1834 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1835 if ($2->getBitWidth() > BitWidth) {
1836 GEN_ERROR("Constant value does not fit in type");
1838 $2->sextOrTrunc(BitWidth);
1839 $$ = ConstantInt::get(*$2);
1840 delete $2;
1841 CHECK_FOR_ERROR
1843 | IntType EUINT64VAL { // integral constants
1844 if (!ConstantInt::isValueValidForType($1, $2))
1845 GEN_ERROR("Constant value doesn't fit in type");
1846 $$ = ConstantInt::get($1, $2, false);
1847 CHECK_FOR_ERROR
1849 | IntType EUAPINTVAL { // arbitrary precision integer constants
1850 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1851 if ($2->getBitWidth() > BitWidth) {
1852 GEN_ERROR("Constant value does not fit in type");
1854 $2->zextOrTrunc(BitWidth);
1855 $$ = ConstantInt::get(*$2);
1856 delete $2;
1857 CHECK_FOR_ERROR
1859 | INTTYPE TRUETOK { // Boolean constants
1860 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1861 $$ = ConstantInt::getTrue();
1862 CHECK_FOR_ERROR
1864 | INTTYPE FALSETOK { // Boolean constants
1865 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1866 $$ = ConstantInt::getFalse();
1867 CHECK_FOR_ERROR
1869 | FPType FPVAL { // Floating point constants
1870 if (!ConstantFP::isValueValidForType($1, *$2))
1871 GEN_ERROR("Floating point constant invalid for type");
1872 // Lexer has no type info, so builds all float and double FP constants
1873 // as double. Fix this here. Long double is done right.
1874 if (&$2->getSemantics()==&APFloat::IEEEdouble && $1==Type::FloatTy)
1875 $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
1876 $$ = ConstantFP::get($1, *$2);
1877 delete $2;
1878 CHECK_FOR_ERROR
1882 ConstExpr: CastOps '(' ConstVal TO Types ')' {
1883 if (!UpRefs.empty())
1884 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1885 Constant *Val = $3;
1886 const Type *DestTy = $5->get();
1887 if (!CastInst::castIsValid($1, $3, DestTy))
1888 GEN_ERROR("invalid cast opcode for cast from '" +
1889 Val->getType()->getDescription() + "' to '" +
1890 DestTy->getDescription() + "'");
1891 $$ = ConstantExpr::getCast($1, $3, DestTy);
1892 delete $5;
1894 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1895 if (!isa<PointerType>($3->getType()))
1896 GEN_ERROR("GetElementPtr requires a pointer operand");
1898 const Type *IdxTy =
1899 GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end(),
1900 true);
1901 if (!IdxTy)
1902 GEN_ERROR("Index list invalid for constant getelementptr");
1904 SmallVector<Constant*, 8> IdxVec;
1905 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1906 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1907 IdxVec.push_back(C);
1908 else
1909 GEN_ERROR("Indices to constant getelementptr must be constants");
1911 delete $4;
1913 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1914 CHECK_FOR_ERROR
1916 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1917 if ($3->getType() != Type::Int1Ty)
1918 GEN_ERROR("Select condition must be of boolean type");
1919 if ($5->getType() != $7->getType())
1920 GEN_ERROR("Select operand types must match");
1921 $$ = ConstantExpr::getSelect($3, $5, $7);
1922 CHECK_FOR_ERROR
1924 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1925 if ($3->getType() != $5->getType())
1926 GEN_ERROR("Binary operator types must match");
1927 CHECK_FOR_ERROR;
1928 $$ = ConstantExpr::get($1, $3, $5);
1930 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1931 if ($3->getType() != $5->getType())
1932 GEN_ERROR("Logical operator types must match");
1933 if (!$3->getType()->isInteger()) {
1934 if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
1935 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1936 GEN_ERROR("Logical operator requires integral operands");
1938 $$ = ConstantExpr::get($1, $3, $5);
1939 CHECK_FOR_ERROR
1941 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
1942 if ($4->getType() != $6->getType())
1943 GEN_ERROR("icmp operand types must match");
1944 $$ = ConstantExpr::getICmp($2, $4, $6);
1946 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
1947 if ($4->getType() != $6->getType())
1948 GEN_ERROR("fcmp operand types must match");
1949 $$ = ConstantExpr::getFCmp($2, $4, $6);
1951 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1952 if (!ExtractElementInst::isValidOperands($3, $5))
1953 GEN_ERROR("Invalid extractelement operands");
1954 $$ = ConstantExpr::getExtractElement($3, $5);
1955 CHECK_FOR_ERROR
1957 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1958 if (!InsertElementInst::isValidOperands($3, $5, $7))
1959 GEN_ERROR("Invalid insertelement operands");
1960 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1961 CHECK_FOR_ERROR
1963 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1964 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1965 GEN_ERROR("Invalid shufflevector operands");
1966 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1967 CHECK_FOR_ERROR
1971 // ConstVector - A list of comma separated constants.
1972 ConstVector : ConstVector ',' ConstVal {
1973 ($$ = $1)->push_back($3);
1974 CHECK_FOR_ERROR
1976 | ConstVal {
1977 $$ = new std::vector<Constant*>();
1978 $$->push_back($1);
1979 CHECK_FOR_ERROR
1983 // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1984 GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1986 // ThreadLocal
1987 ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
1989 // AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
1990 AliaseeRef : ResultTypes SymbolicValueRef {
1991 const Type* VTy = $1->get();
1992 Value *V = getVal(VTy, $2);
1993 CHECK_FOR_ERROR
1994 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
1995 if (!Aliasee)
1996 GEN_ERROR("Aliases can be created only to global values");
1998 $$ = Aliasee;
1999 CHECK_FOR_ERROR
2000 delete $1;
2002 | BITCAST '(' AliaseeRef TO Types ')' {
2003 Constant *Val = $3;
2004 const Type *DestTy = $5->get();
2005 if (!CastInst::castIsValid($1, $3, DestTy))
2006 GEN_ERROR("invalid cast opcode for cast from '" +
2007 Val->getType()->getDescription() + "' to '" +
2008 DestTy->getDescription() + "'");
2010 $$ = ConstantExpr::getCast($1, $3, DestTy);
2011 CHECK_FOR_ERROR
2012 delete $5;
2015 //===----------------------------------------------------------------------===//
2016 // Rules to match Modules
2017 //===----------------------------------------------------------------------===//
2019 // Module rule: Capture the result of parsing the whole file into a result
2020 // variable...
2022 Module
2023 : DefinitionList {
2024 $$ = ParserResult = CurModule.CurrentModule;
2025 CurModule.ModuleDone();
2026 CHECK_FOR_ERROR;
2028 | /*empty*/ {
2029 $$ = ParserResult = CurModule.CurrentModule;
2030 CurModule.ModuleDone();
2031 CHECK_FOR_ERROR;
2035 DefinitionList
2036 : Definition
2037 | DefinitionList Definition
2040 Definition
2041 : DEFINE { CurFun.isDeclare = false; } Function {
2042 CurFun.FunctionDone();
2043 CHECK_FOR_ERROR
2045 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2046 CHECK_FOR_ERROR
2048 | MODULE ASM_TOK AsmBlock {
2049 CHECK_FOR_ERROR
2051 | OptLocalAssign TYPE Types {
2052 if (!UpRefs.empty())
2053 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2054 // Eagerly resolve types. This is not an optimization, this is a
2055 // requirement that is due to the fact that we could have this:
2057 // %list = type { %list * }
2058 // %list = type { %list * } ; repeated type decl
2060 // If types are not resolved eagerly, then the two types will not be
2061 // determined to be the same type!
2063 ResolveTypeTo($1, *$3);
2065 if (!setTypeName(*$3, $1) && !$1) {
2066 CHECK_FOR_ERROR
2067 // If this is a named type that is not a redefinition, add it to the slot
2068 // table.
2069 CurModule.Types.push_back(*$3);
2072 delete $3;
2073 CHECK_FOR_ERROR
2075 | OptLocalAssign TYPE VOID {
2076 ResolveTypeTo($1, $3);
2078 if (!setTypeName($3, $1) && !$1) {
2079 CHECK_FOR_ERROR
2080 // If this is a named type that is not a redefinition, add it to the slot
2081 // table.
2082 CurModule.Types.push_back($3);
2084 CHECK_FOR_ERROR
2086 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
2087 /* "Externally Visible" Linkage */
2088 if ($5 == 0)
2089 GEN_ERROR("Global value initializer is not a constant");
2090 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2091 $2, $4, $5->getType(), $5, $3);
2092 CHECK_FOR_ERROR
2093 } GlobalVarAttributes {
2094 CurGV = 0;
2096 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2097 ConstVal {
2098 if ($6 == 0)
2099 GEN_ERROR("Global value initializer is not a constant");
2100 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
2101 CHECK_FOR_ERROR
2102 } GlobalVarAttributes {
2103 CurGV = 0;
2105 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2106 Types {
2107 if (!UpRefs.empty())
2108 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2109 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
2110 CHECK_FOR_ERROR
2111 delete $6;
2112 } GlobalVarAttributes {
2113 CurGV = 0;
2114 CHECK_FOR_ERROR
2116 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2117 std::string Name;
2118 if ($1) {
2119 Name = *$1;
2120 delete $1;
2122 if (Name.empty())
2123 GEN_ERROR("Alias name cannot be empty");
2125 Constant* Aliasee = $5;
2126 if (Aliasee == 0)
2127 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2129 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2130 CurModule.CurrentModule);
2131 GA->setVisibility($2);
2132 InsertValue(GA, CurModule.Values);
2135 // If there was a forward reference of this alias, resolve it now.
2137 ValID ID;
2138 if (!Name.empty())
2139 ID = ValID::createGlobalName(Name);
2140 else
2141 ID = ValID::createGlobalID(CurModule.Values.size()-1);
2143 if (GlobalValue *FWGV =
2144 CurModule.GetForwardRefForGlobal(GA->getType(), ID)) {
2145 // Replace uses of the fwdref with the actual alias.
2146 FWGV->replaceAllUsesWith(GA);
2147 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(FWGV))
2148 GV->eraseFromParent();
2149 else
2150 cast<Function>(FWGV)->eraseFromParent();
2152 ID.destroy();
2154 CHECK_FOR_ERROR
2156 | TARGET TargetDefinition {
2157 CHECK_FOR_ERROR
2159 | DEPLIBS '=' LibrariesDefinition {
2160 CHECK_FOR_ERROR
2165 AsmBlock : STRINGCONSTANT {
2166 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2167 if (AsmSoFar.empty())
2168 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2169 else
2170 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2171 delete $1;
2172 CHECK_FOR_ERROR
2175 TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2176 CurModule.CurrentModule->setTargetTriple(*$3);
2177 delete $3;
2179 | DATALAYOUT '=' STRINGCONSTANT {
2180 CurModule.CurrentModule->setDataLayout(*$3);
2181 delete $3;
2184 LibrariesDefinition : '[' LibList ']';
2186 LibList : LibList ',' STRINGCONSTANT {
2187 CurModule.CurrentModule->addLibrary(*$3);
2188 delete $3;
2189 CHECK_FOR_ERROR
2191 | STRINGCONSTANT {
2192 CurModule.CurrentModule->addLibrary(*$1);
2193 delete $1;
2194 CHECK_FOR_ERROR
2196 | /* empty: end of list */ {
2197 CHECK_FOR_ERROR
2201 //===----------------------------------------------------------------------===//
2202 // Rules to match Function Headers
2203 //===----------------------------------------------------------------------===//
2205 ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
2206 if (!UpRefs.empty())
2207 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2208 if (*$3 == Type::VoidTy)
2209 GEN_ERROR("void typed arguments are invalid");
2210 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2211 $$ = $1;
2212 $1->push_back(E);
2213 CHECK_FOR_ERROR
2215 | Types OptParamAttrs OptLocalName {
2216 if (!UpRefs.empty())
2217 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2218 if (*$1 == Type::VoidTy)
2219 GEN_ERROR("void typed arguments are invalid");
2220 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2221 $$ = new ArgListType;
2222 $$->push_back(E);
2223 CHECK_FOR_ERROR
2226 ArgList : ArgListH {
2227 $$ = $1;
2228 CHECK_FOR_ERROR
2230 | ArgListH ',' DOTDOTDOT {
2231 $$ = $1;
2232 struct ArgListEntry E;
2233 E.Ty = new PATypeHolder(Type::VoidTy);
2234 E.Name = 0;
2235 E.Attrs = ParamAttr::None;
2236 $$->push_back(E);
2237 CHECK_FOR_ERROR
2239 | DOTDOTDOT {
2240 $$ = new ArgListType;
2241 struct ArgListEntry E;
2242 E.Ty = new PATypeHolder(Type::VoidTy);
2243 E.Name = 0;
2244 E.Attrs = ParamAttr::None;
2245 $$->push_back(E);
2246 CHECK_FOR_ERROR
2248 | /* empty */ {
2249 $$ = 0;
2250 CHECK_FOR_ERROR
2253 FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
2254 OptFuncAttrs OptSection OptAlign {
2255 std::string FunctionName(*$3);
2256 delete $3; // Free strdup'd memory!
2258 // Check the function result for abstractness if this is a define. We should
2259 // have no abstract types at this point
2260 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
2261 GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
2263 std::vector<const Type*> ParamTypeList;
2264 ParamAttrsVector Attrs;
2265 if ($7 != ParamAttr::None) {
2266 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
2267 Attrs.push_back(PAWI);
2269 if ($5) { // If there are arguments...
2270 unsigned index = 1;
2271 for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
2272 const Type* Ty = I->Ty->get();
2273 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2274 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2275 ParamTypeList.push_back(Ty);
2276 if (Ty != Type::VoidTy)
2277 if (I->Attrs != ParamAttr::None) {
2278 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2279 Attrs.push_back(PAWI);
2284 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2285 if (isVarArg) ParamTypeList.pop_back();
2287 ParamAttrsList *PAL = 0;
2288 if (!Attrs.empty())
2289 PAL = ParamAttrsList::get(Attrs);
2291 FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
2292 const PointerType *PFT = PointerType::get(FT);
2293 delete $2;
2295 ValID ID;
2296 if (!FunctionName.empty()) {
2297 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2298 } else {
2299 ID = ValID::createGlobalID(CurModule.Values.size());
2302 Function *Fn = 0;
2303 // See if this function was forward referenced. If so, recycle the object.
2304 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2305 // Move the function to the end of the list, from whereever it was
2306 // previously inserted.
2307 Fn = cast<Function>(FWRef);
2308 CurModule.CurrentModule->getFunctionList().remove(Fn);
2309 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2310 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2311 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2312 if (Fn->getFunctionType() != FT) {
2313 // The existing function doesn't have the same type. This is an overload
2314 // error.
2315 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2316 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2317 // Neither the existing or the current function is a declaration and they
2318 // have the same name and same type. Clearly this is a redefinition.
2319 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2320 } if (Fn->isDeclaration()) {
2321 // Make sure to strip off any argument names so we can't get conflicts.
2322 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2323 AI != AE; ++AI)
2324 AI->setName("");
2326 } else { // Not already defined?
2327 Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2328 CurModule.CurrentModule);
2330 InsertValue(Fn, CurModule.Values);
2333 CurFun.FunctionStart(Fn);
2335 if (CurFun.isDeclare) {
2336 // If we have declaration, always overwrite linkage. This will allow us to
2337 // correctly handle cases, when pointer to function is passed as argument to
2338 // another function.
2339 Fn->setLinkage(CurFun.Linkage);
2340 Fn->setVisibility(CurFun.Visibility);
2342 Fn->setCallingConv($1);
2343 Fn->setAlignment($9);
2344 if ($8) {
2345 Fn->setSection(*$8);
2346 delete $8;
2349 // Add all of the arguments we parsed to the function...
2350 if ($5) { // Is null if empty...
2351 if (isVarArg) { // Nuke the last entry
2352 assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
2353 "Not a varargs marker!");
2354 delete $5->back().Ty;
2355 $5->pop_back(); // Delete the last entry
2357 Function::arg_iterator ArgIt = Fn->arg_begin();
2358 Function::arg_iterator ArgEnd = Fn->arg_end();
2359 unsigned Idx = 1;
2360 for (ArgListType::iterator I = $5->begin();
2361 I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2362 delete I->Ty; // Delete the typeholder...
2363 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2364 CHECK_FOR_ERROR
2365 InsertValue(ArgIt);
2366 Idx++;
2369 delete $5; // We're now done with the argument list
2371 CHECK_FOR_ERROR
2374 BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2376 FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2377 $$ = CurFun.CurrentFunction;
2379 // Make sure that we keep track of the linkage type even if there was a
2380 // previous "declare".
2381 $$->setLinkage($1);
2382 $$->setVisibility($2);
2385 END : ENDTOK | '}'; // Allow end of '}' to end a function
2387 Function : BasicBlockList END {
2388 $$ = $1;
2389 CHECK_FOR_ERROR
2392 FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2393 CurFun.CurrentFunction->setLinkage($1);
2394 CurFun.CurrentFunction->setVisibility($2);
2395 $$ = CurFun.CurrentFunction;
2396 CurFun.FunctionDone();
2397 CHECK_FOR_ERROR
2400 //===----------------------------------------------------------------------===//
2401 // Rules to match Basic Blocks
2402 //===----------------------------------------------------------------------===//
2404 OptSideEffect : /* empty */ {
2405 $$ = false;
2406 CHECK_FOR_ERROR
2408 | SIDEEFFECT {
2409 $$ = true;
2410 CHECK_FOR_ERROR
2413 ConstValueRef : ESINT64VAL { // A reference to a direct constant
2414 $$ = ValID::create($1);
2415 CHECK_FOR_ERROR
2417 | EUINT64VAL {
2418 $$ = ValID::create($1);
2419 CHECK_FOR_ERROR
2421 | FPVAL { // Perhaps it's an FP constant?
2422 $$ = ValID::create($1);
2423 CHECK_FOR_ERROR
2425 | TRUETOK {
2426 $$ = ValID::create(ConstantInt::getTrue());
2427 CHECK_FOR_ERROR
2429 | FALSETOK {
2430 $$ = ValID::create(ConstantInt::getFalse());
2431 CHECK_FOR_ERROR
2433 | NULL_TOK {
2434 $$ = ValID::createNull();
2435 CHECK_FOR_ERROR
2437 | UNDEF {
2438 $$ = ValID::createUndef();
2439 CHECK_FOR_ERROR
2441 | ZEROINITIALIZER { // A vector zero constant.
2442 $$ = ValID::createZeroInit();
2443 CHECK_FOR_ERROR
2445 | '<' ConstVector '>' { // Nonempty unsized packed vector
2446 const Type *ETy = (*$2)[0]->getType();
2447 int NumElements = $2->size();
2449 VectorType* pt = VectorType::get(ETy, NumElements);
2450 PATypeHolder* PTy = new PATypeHolder(
2451 HandleUpRefs(
2452 VectorType::get(
2453 ETy,
2454 NumElements)
2458 // Verify all elements are correct type!
2459 for (unsigned i = 0; i < $2->size(); i++) {
2460 if (ETy != (*$2)[i]->getType())
2461 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2462 ETy->getDescription() +"' as required!\nIt is of type '" +
2463 (*$2)[i]->getType()->getDescription() + "'.");
2466 $$ = ValID::create(ConstantVector::get(pt, *$2));
2467 delete PTy; delete $2;
2468 CHECK_FOR_ERROR
2470 | ConstExpr {
2471 $$ = ValID::create($1);
2472 CHECK_FOR_ERROR
2474 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2475 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2476 delete $3;
2477 delete $5;
2478 CHECK_FOR_ERROR
2481 // SymbolicValueRef - Reference to one of two ways of symbolically refering to
2482 // another value.
2484 SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2485 $$ = ValID::createLocalID($1);
2486 CHECK_FOR_ERROR
2488 | GLOBALVAL_ID {
2489 $$ = ValID::createGlobalID($1);
2490 CHECK_FOR_ERROR
2492 | LocalName { // Is it a named reference...?
2493 $$ = ValID::createLocalName(*$1);
2494 delete $1;
2495 CHECK_FOR_ERROR
2497 | GlobalName { // Is it a named reference...?
2498 $$ = ValID::createGlobalName(*$1);
2499 delete $1;
2500 CHECK_FOR_ERROR
2503 // ValueRef - A reference to a definition... either constant or symbolic
2504 ValueRef : SymbolicValueRef | ConstValueRef;
2507 // ResolvedVal - a <type> <value> pair. This is used only in cases where the
2508 // type immediately preceeds the value reference, and allows complex constant
2509 // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2510 ResolvedVal : Types ValueRef {
2511 if (!UpRefs.empty())
2512 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2513 $$ = getVal(*$1, $2);
2514 delete $1;
2515 CHECK_FOR_ERROR
2519 BasicBlockList : BasicBlockList BasicBlock {
2520 $$ = $1;
2521 CHECK_FOR_ERROR
2523 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2524 $$ = $1;
2525 CHECK_FOR_ERROR
2529 // Basic blocks are terminated by branching instructions:
2530 // br, br/cc, switch, ret
2532 BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2533 setValueName($3, $2);
2534 CHECK_FOR_ERROR
2535 InsertValue($3);
2536 $1->getInstList().push_back($3);
2537 $$ = $1;
2538 CHECK_FOR_ERROR
2541 InstructionList : InstructionList Inst {
2542 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2543 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2544 if (CI2->getParent() == 0)
2545 $1->getInstList().push_back(CI2);
2546 $1->getInstList().push_back($2);
2547 $$ = $1;
2548 CHECK_FOR_ERROR
2550 | /* empty */ { // Empty space between instruction lists
2551 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2552 CHECK_FOR_ERROR
2554 | LABELSTR { // Labelled (named) basic block
2555 $$ = defineBBVal(ValID::createLocalName(*$1));
2556 delete $1;
2557 CHECK_FOR_ERROR
2561 BBTerminatorInst : RET ResolvedVal { // Return with a result...
2562 $$ = new ReturnInst($2);
2563 CHECK_FOR_ERROR
2565 | RET VOID { // Return with no result...
2566 $$ = new ReturnInst();
2567 CHECK_FOR_ERROR
2569 | BR LABEL ValueRef { // Unconditional Branch...
2570 BasicBlock* tmpBB = getBBVal($3);
2571 CHECK_FOR_ERROR
2572 $$ = new BranchInst(tmpBB);
2573 } // Conditional Branch...
2574 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2575 assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
2576 BasicBlock* tmpBBA = getBBVal($6);
2577 CHECK_FOR_ERROR
2578 BasicBlock* tmpBBB = getBBVal($9);
2579 CHECK_FOR_ERROR
2580 Value* tmpVal = getVal(Type::Int1Ty, $3);
2581 CHECK_FOR_ERROR
2582 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2584 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2585 Value* tmpVal = getVal($2, $3);
2586 CHECK_FOR_ERROR
2587 BasicBlock* tmpBB = getBBVal($6);
2588 CHECK_FOR_ERROR
2589 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2590 $$ = S;
2592 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2593 E = $8->end();
2594 for (; I != E; ++I) {
2595 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2596 S->addCase(CI, I->second);
2597 else
2598 GEN_ERROR("Switch case is constant, but not a simple integer");
2600 delete $8;
2601 CHECK_FOR_ERROR
2603 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2604 Value* tmpVal = getVal($2, $3);
2605 CHECK_FOR_ERROR
2606 BasicBlock* tmpBB = getBBVal($6);
2607 CHECK_FOR_ERROR
2608 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2609 $$ = S;
2610 CHECK_FOR_ERROR
2612 | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
2613 TO LABEL ValueRef UNWIND LABEL ValueRef {
2615 // Handle the short syntax
2616 const PointerType *PFTy = 0;
2617 const FunctionType *Ty = 0;
2618 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2619 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2620 // Pull out the types of all of the arguments...
2621 std::vector<const Type*> ParamTypes;
2622 ParamAttrsVector Attrs;
2623 if ($8 != ParamAttr::None) {
2624 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2625 Attrs.push_back(PAWI);
2627 ValueRefList::iterator I = $6->begin(), E = $6->end();
2628 unsigned index = 1;
2629 for (; I != E; ++I, ++index) {
2630 const Type *Ty = I->Val->getType();
2631 if (Ty == Type::VoidTy)
2632 GEN_ERROR("Short call syntax cannot be used with varargs");
2633 ParamTypes.push_back(Ty);
2634 if (I->Attrs != ParamAttr::None) {
2635 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2636 Attrs.push_back(PAWI);
2640 ParamAttrsList *PAL = 0;
2641 if (!Attrs.empty())
2642 PAL = ParamAttrsList::get(Attrs);
2643 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2644 PFTy = PointerType::get(Ty);
2647 delete $3;
2649 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2650 CHECK_FOR_ERROR
2651 BasicBlock *Normal = getBBVal($11);
2652 CHECK_FOR_ERROR
2653 BasicBlock *Except = getBBVal($14);
2654 CHECK_FOR_ERROR
2656 // Check the arguments
2657 ValueList Args;
2658 if ($6->empty()) { // Has no arguments?
2659 // Make sure no arguments is a good thing!
2660 if (Ty->getNumParams() != 0)
2661 GEN_ERROR("No arguments passed to a function that "
2662 "expects arguments");
2663 } else { // Has arguments?
2664 // Loop through FunctionType's arguments and ensure they are specified
2665 // correctly!
2666 FunctionType::param_iterator I = Ty->param_begin();
2667 FunctionType::param_iterator E = Ty->param_end();
2668 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2670 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2671 if (ArgI->Val->getType() != *I)
2672 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2673 (*I)->getDescription() + "'");
2674 Args.push_back(ArgI->Val);
2677 if (Ty->isVarArg()) {
2678 if (I == E)
2679 for (; ArgI != ArgE; ++ArgI)
2680 Args.push_back(ArgI->Val); // push the remaining varargs
2681 } else if (I != E || ArgI != ArgE)
2682 GEN_ERROR("Invalid number of parameters detected");
2685 // Create the InvokeInst
2686 InvokeInst *II = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
2687 II->setCallingConv($2);
2688 $$ = II;
2689 delete $6;
2690 CHECK_FOR_ERROR
2692 | UNWIND {
2693 $$ = new UnwindInst();
2694 CHECK_FOR_ERROR
2696 | UNREACHABLE {
2697 $$ = new UnreachableInst();
2698 CHECK_FOR_ERROR
2703 JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2704 $$ = $1;
2705 Constant *V = cast<Constant>(getExistingVal($2, $3));
2706 CHECK_FOR_ERROR
2707 if (V == 0)
2708 GEN_ERROR("May only switch on a constant pool value");
2710 BasicBlock* tmpBB = getBBVal($6);
2711 CHECK_FOR_ERROR
2712 $$->push_back(std::make_pair(V, tmpBB));
2714 | IntType ConstValueRef ',' LABEL ValueRef {
2715 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2716 Constant *V = cast<Constant>(getExistingVal($1, $2));
2717 CHECK_FOR_ERROR
2719 if (V == 0)
2720 GEN_ERROR("May only switch on a constant pool value");
2722 BasicBlock* tmpBB = getBBVal($5);
2723 CHECK_FOR_ERROR
2724 $$->push_back(std::make_pair(V, tmpBB));
2727 Inst : OptLocalAssign InstVal {
2728 // Is this definition named?? if so, assign the name...
2729 setValueName($2, $1);
2730 CHECK_FOR_ERROR
2731 InsertValue($2);
2732 $$ = $2;
2733 CHECK_FOR_ERROR
2737 PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2738 if (!UpRefs.empty())
2739 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2740 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2741 Value* tmpVal = getVal(*$1, $3);
2742 CHECK_FOR_ERROR
2743 BasicBlock* tmpBB = getBBVal($5);
2744 CHECK_FOR_ERROR
2745 $$->push_back(std::make_pair(tmpVal, tmpBB));
2746 delete $1;
2748 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2749 $$ = $1;
2750 Value* tmpVal = getVal($1->front().first->getType(), $4);
2751 CHECK_FOR_ERROR
2752 BasicBlock* tmpBB = getBBVal($6);
2753 CHECK_FOR_ERROR
2754 $1->push_back(std::make_pair(tmpVal, tmpBB));
2758 ValueRefList : Types ValueRef OptParamAttrs {
2759 if (!UpRefs.empty())
2760 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2761 // Used for call and invoke instructions
2762 $$ = new ValueRefList();
2763 ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
2764 $$->push_back(E);
2765 delete $1;
2767 | ValueRefList ',' Types ValueRef OptParamAttrs {
2768 if (!UpRefs.empty())
2769 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2770 $$ = $1;
2771 ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
2772 $$->push_back(E);
2773 delete $3;
2774 CHECK_FOR_ERROR
2776 | /*empty*/ { $$ = new ValueRefList(); };
2778 IndexList // Used for gep instructions and constant expressions
2779 : /*empty*/ { $$ = new std::vector<Value*>(); }
2780 | IndexList ',' ResolvedVal {
2781 $$ = $1;
2782 $$->push_back($3);
2783 CHECK_FOR_ERROR
2787 OptTailCall : TAIL CALL {
2788 $$ = true;
2789 CHECK_FOR_ERROR
2791 | CALL {
2792 $$ = false;
2793 CHECK_FOR_ERROR
2796 InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2797 if (!UpRefs.empty())
2798 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2799 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2800 !isa<VectorType>((*$2).get()))
2801 GEN_ERROR(
2802 "Arithmetic operator requires integer, FP, or packed operands");
2803 if (isa<VectorType>((*$2).get()) &&
2804 ($1 == Instruction::URem ||
2805 $1 == Instruction::SRem ||
2806 $1 == Instruction::FRem))
2807 GEN_ERROR("Remainder not supported on vector types");
2808 Value* val1 = getVal(*$2, $3);
2809 CHECK_FOR_ERROR
2810 Value* val2 = getVal(*$2, $5);
2811 CHECK_FOR_ERROR
2812 $$ = BinaryOperator::create($1, val1, val2);
2813 if ($$ == 0)
2814 GEN_ERROR("binary operator returned null");
2815 delete $2;
2817 | LogicalOps Types ValueRef ',' ValueRef {
2818 if (!UpRefs.empty())
2819 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2820 if (!(*$2)->isInteger()) {
2821 if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
2822 !cast<VectorType>($2->get())->getElementType()->isInteger())
2823 GEN_ERROR("Logical operator requires integral operands");
2825 Value* tmpVal1 = getVal(*$2, $3);
2826 CHECK_FOR_ERROR
2827 Value* tmpVal2 = getVal(*$2, $5);
2828 CHECK_FOR_ERROR
2829 $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
2830 if ($$ == 0)
2831 GEN_ERROR("binary operator returned null");
2832 delete $2;
2834 | ICMP IPredicates Types ValueRef ',' ValueRef {
2835 if (!UpRefs.empty())
2836 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2837 if (isa<VectorType>((*$3).get()))
2838 GEN_ERROR("Vector types not supported by icmp instruction");
2839 Value* tmpVal1 = getVal(*$3, $4);
2840 CHECK_FOR_ERROR
2841 Value* tmpVal2 = getVal(*$3, $6);
2842 CHECK_FOR_ERROR
2843 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2844 if ($$ == 0)
2845 GEN_ERROR("icmp operator returned null");
2846 delete $3;
2848 | FCMP FPredicates Types ValueRef ',' ValueRef {
2849 if (!UpRefs.empty())
2850 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2851 if (isa<VectorType>((*$3).get()))
2852 GEN_ERROR("Vector types not supported by fcmp instruction");
2853 Value* tmpVal1 = getVal(*$3, $4);
2854 CHECK_FOR_ERROR
2855 Value* tmpVal2 = getVal(*$3, $6);
2856 CHECK_FOR_ERROR
2857 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2858 if ($$ == 0)
2859 GEN_ERROR("fcmp operator returned null");
2860 delete $3;
2862 | CastOps ResolvedVal TO Types {
2863 if (!UpRefs.empty())
2864 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2865 Value* Val = $2;
2866 const Type* DestTy = $4->get();
2867 if (!CastInst::castIsValid($1, Val, DestTy))
2868 GEN_ERROR("invalid cast opcode for cast from '" +
2869 Val->getType()->getDescription() + "' to '" +
2870 DestTy->getDescription() + "'");
2871 $$ = CastInst::create($1, Val, DestTy);
2872 delete $4;
2874 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2875 if ($2->getType() != Type::Int1Ty)
2876 GEN_ERROR("select condition must be boolean");
2877 if ($4->getType() != $6->getType())
2878 GEN_ERROR("select value types should match");
2879 $$ = new SelectInst($2, $4, $6);
2880 CHECK_FOR_ERROR
2882 | VAARG ResolvedVal ',' Types {
2883 if (!UpRefs.empty())
2884 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2885 $$ = new VAArgInst($2, *$4);
2886 delete $4;
2887 CHECK_FOR_ERROR
2889 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2890 if (!ExtractElementInst::isValidOperands($2, $4))
2891 GEN_ERROR("Invalid extractelement operands");
2892 $$ = new ExtractElementInst($2, $4);
2893 CHECK_FOR_ERROR
2895 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2896 if (!InsertElementInst::isValidOperands($2, $4, $6))
2897 GEN_ERROR("Invalid insertelement operands");
2898 $$ = new InsertElementInst($2, $4, $6);
2899 CHECK_FOR_ERROR
2901 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2902 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2903 GEN_ERROR("Invalid shufflevector operands");
2904 $$ = new ShuffleVectorInst($2, $4, $6);
2905 CHECK_FOR_ERROR
2907 | PHI_TOK PHIList {
2908 const Type *Ty = $2->front().first->getType();
2909 if (!Ty->isFirstClassType())
2910 GEN_ERROR("PHI node operands must be of first class type");
2911 $$ = new PHINode(Ty);
2912 ((PHINode*)$$)->reserveOperandSpace($2->size());
2913 while ($2->begin() != $2->end()) {
2914 if ($2->front().first->getType() != Ty)
2915 GEN_ERROR("All elements of a PHI node must be of the same type");
2916 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2917 $2->pop_front();
2919 delete $2; // Free the list...
2920 CHECK_FOR_ERROR
2922 | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
2923 OptFuncAttrs {
2925 // Handle the short syntax
2926 const PointerType *PFTy = 0;
2927 const FunctionType *Ty = 0;
2928 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2929 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2930 // Pull out the types of all of the arguments...
2931 std::vector<const Type*> ParamTypes;
2932 ParamAttrsVector Attrs;
2933 if ($8 != ParamAttr::None) {
2934 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2935 Attrs.push_back(PAWI);
2937 unsigned index = 1;
2938 ValueRefList::iterator I = $6->begin(), E = $6->end();
2939 for (; I != E; ++I, ++index) {
2940 const Type *Ty = I->Val->getType();
2941 if (Ty == Type::VoidTy)
2942 GEN_ERROR("Short call syntax cannot be used with varargs");
2943 ParamTypes.push_back(Ty);
2944 if (I->Attrs != ParamAttr::None) {
2945 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2946 Attrs.push_back(PAWI);
2950 ParamAttrsList *PAL = 0;
2951 if (!Attrs.empty())
2952 PAL = ParamAttrsList::get(Attrs);
2954 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2955 PFTy = PointerType::get(Ty);
2958 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2959 CHECK_FOR_ERROR
2961 // Check for call to invalid intrinsic to avoid crashing later.
2962 if (Function *theF = dyn_cast<Function>(V)) {
2963 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
2964 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
2965 !theF->getIntrinsicID(true))
2966 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
2967 theF->getName() + "'");
2970 // Check the arguments
2971 ValueList Args;
2972 if ($6->empty()) { // Has no arguments?
2973 // Make sure no arguments is a good thing!
2974 if (Ty->getNumParams() != 0)
2975 GEN_ERROR("No arguments passed to a function that "
2976 "expects arguments");
2977 } else { // Has arguments?
2978 // Loop through FunctionType's arguments and ensure they are specified
2979 // correctly!
2981 FunctionType::param_iterator I = Ty->param_begin();
2982 FunctionType::param_iterator E = Ty->param_end();
2983 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2985 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2986 if (ArgI->Val->getType() != *I)
2987 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2988 (*I)->getDescription() + "'");
2989 Args.push_back(ArgI->Val);
2991 if (Ty->isVarArg()) {
2992 if (I == E)
2993 for (; ArgI != ArgE; ++ArgI)
2994 Args.push_back(ArgI->Val); // push the remaining varargs
2995 } else if (I != E || ArgI != ArgE)
2996 GEN_ERROR("Invalid number of parameters detected");
2998 // Create the call node
2999 CallInst *CI = new CallInst(V, Args.begin(), Args.end());
3000 CI->setTailCall($1);
3001 CI->setCallingConv($2);
3002 $$ = CI;
3003 delete $6;
3004 delete $3;
3005 CHECK_FOR_ERROR
3007 | MemoryInst {
3008 $$ = $1;
3009 CHECK_FOR_ERROR
3012 OptVolatile : VOLATILE {
3013 $$ = true;
3014 CHECK_FOR_ERROR
3016 | /* empty */ {
3017 $$ = false;
3018 CHECK_FOR_ERROR
3023 MemoryInst : MALLOC Types OptCAlign {
3024 if (!UpRefs.empty())
3025 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3026 $$ = new MallocInst(*$2, 0, $3);
3027 delete $2;
3028 CHECK_FOR_ERROR
3030 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
3031 if (!UpRefs.empty())
3032 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3033 Value* tmpVal = getVal($4, $5);
3034 CHECK_FOR_ERROR
3035 $$ = new MallocInst(*$2, tmpVal, $6);
3036 delete $2;
3038 | ALLOCA Types OptCAlign {
3039 if (!UpRefs.empty())
3040 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3041 $$ = new AllocaInst(*$2, 0, $3);
3042 delete $2;
3043 CHECK_FOR_ERROR
3045 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3046 if (!UpRefs.empty())
3047 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3048 Value* tmpVal = getVal($4, $5);
3049 CHECK_FOR_ERROR
3050 $$ = new AllocaInst(*$2, tmpVal, $6);
3051 delete $2;
3053 | FREE ResolvedVal {
3054 if (!isa<PointerType>($2->getType()))
3055 GEN_ERROR("Trying to free nonpointer type " +
3056 $2->getType()->getDescription() + "");
3057 $$ = new FreeInst($2);
3058 CHECK_FOR_ERROR
3061 | OptVolatile LOAD Types ValueRef OptCAlign {
3062 if (!UpRefs.empty())
3063 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3064 if (!isa<PointerType>($3->get()))
3065 GEN_ERROR("Can't load from nonpointer type: " +
3066 (*$3)->getDescription());
3067 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3068 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3069 (*$3)->getDescription());
3070 Value* tmpVal = getVal(*$3, $4);
3071 CHECK_FOR_ERROR
3072 $$ = new LoadInst(tmpVal, "", $1, $5);
3073 delete $3;
3075 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3076 if (!UpRefs.empty())
3077 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3078 const PointerType *PT = dyn_cast<PointerType>($5->get());
3079 if (!PT)
3080 GEN_ERROR("Can't store to a nonpointer type: " +
3081 (*$5)->getDescription());
3082 const Type *ElTy = PT->getElementType();
3083 if (ElTy != $3->getType())
3084 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3085 "' into space of type '" + ElTy->getDescription() + "'");
3087 Value* tmpVal = getVal(*$5, $6);
3088 CHECK_FOR_ERROR
3089 $$ = new StoreInst($3, tmpVal, $1, $7);
3090 delete $5;
3092 | GETELEMENTPTR Types ValueRef IndexList {
3093 if (!UpRefs.empty())
3094 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3095 if (!isa<PointerType>($2->get()))
3096 GEN_ERROR("getelementptr insn requires pointer operand");
3098 if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end(), true))
3099 GEN_ERROR("Invalid getelementptr indices for type '" +
3100 (*$2)->getDescription()+ "'");
3101 Value* tmpVal = getVal(*$2, $3);
3102 CHECK_FOR_ERROR
3103 $$ = new GetElementPtrInst(tmpVal, $4->begin(), $4->end());
3104 delete $2;
3105 delete $4;
3111 // common code from the two 'RunVMAsmParser' functions
3112 static Module* RunParser(Module * M) {
3114 llvmAsmlineno = 1; // Reset the current line number...
3115 CurModule.CurrentModule = M;
3116 #if YYDEBUG
3117 yydebug = Debug;
3118 #endif
3120 // Check to make sure the parser succeeded
3121 if (yyparse()) {
3122 if (ParserResult)
3123 delete ParserResult;
3124 return 0;
3127 // Emit an error if there are any unresolved types left.
3128 if (!CurModule.LateResolveTypes.empty()) {
3129 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3130 if (DID.Type == ValID::LocalName) {
3131 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3132 } else {
3133 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3135 if (ParserResult)
3136 delete ParserResult;
3137 return 0;
3140 // Emit an error if there are any unresolved values left.
3141 if (!CurModule.LateResolveValues.empty()) {
3142 Value *V = CurModule.LateResolveValues.back();
3143 std::map<Value*, std::pair<ValID, int> >::iterator I =
3144 CurModule.PlaceHolderInfo.find(V);
3146 if (I != CurModule.PlaceHolderInfo.end()) {
3147 ValID &DID = I->second.first;
3148 if (DID.Type == ValID::LocalName) {
3149 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3150 } else {
3151 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3153 if (ParserResult)
3154 delete ParserResult;
3155 return 0;
3159 // Check to make sure that parsing produced a result
3160 if (!ParserResult)
3161 return 0;
3163 // Reset ParserResult variable while saving its value for the result.
3164 Module *Result = ParserResult;
3165 ParserResult = 0;
3167 return Result;
3170 void llvm::GenerateError(const std::string &message, int LineNo) {
3171 if (LineNo == -1) LineNo = llvmAsmlineno;
3172 // TODO: column number in exception
3173 if (TheParseError)
3174 TheParseError->setError(CurFilename, message, LineNo);
3175 TriggerError = 1;
3178 int yyerror(const char *ErrorMsg) {
3179 std::string where
3180 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3181 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
3182 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3183 if (yychar != YYEMPTY && yychar != 0)
3184 errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
3185 "'";
3186 GenerateError(errMsg);
3187 return 0;