1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// CastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant
*CastConstantVector(ConstantVector
*CV
,
43 const VectorType
*DstTy
) {
44 unsigned SrcNumElts
= CV
->getType()->getNumElements();
45 unsigned DstNumElts
= DstTy
->getNumElements();
46 const Type
*SrcEltTy
= CV
->getType()->getElementType();
47 const Type
*DstEltTy
= DstTy
->getElementType();
49 // If both vectors have the same number of elements (thus, the elements
50 // are the same size), perform the conversion now.
51 if (SrcNumElts
== DstNumElts
) {
52 std::vector
<Constant
*> Result
;
54 // If the src and dest elements are both integers, or both floats, we can
55 // just BitCast each element because the elements are the same size.
56 if ((SrcEltTy
->isInteger() && DstEltTy
->isInteger()) ||
57 (SrcEltTy
->isFloatingPoint() && DstEltTy
->isFloatingPoint())) {
58 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
)
60 ConstantExpr::getBitCast(CV
->getOperand(i
), DstEltTy
));
61 return ConstantVector::get(Result
);
64 // If this is an int-to-fp cast ..
65 if (SrcEltTy
->isInteger()) {
66 // Ensure that it is int-to-fp cast
67 assert(DstEltTy
->isFloatingPoint());
68 if (DstEltTy
->getTypeID() == Type::DoubleTyID
) {
69 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
70 ConstantInt
*CI
= cast
<ConstantInt
>(CV
->getOperand(i
));
71 double V
= CI
->getValue().bitsToDouble();
72 Result
.push_back(ConstantFP::get(Type::DoubleTy
, APFloat(V
)));
74 return ConstantVector::get(Result
);
76 assert(DstEltTy
== Type::FloatTy
&& "Unknown fp type!");
77 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
78 ConstantInt
*CI
= cast
<ConstantInt
>(CV
->getOperand(i
));
79 float V
= CI
->getValue().bitsToFloat();
80 Result
.push_back(ConstantFP::get(Type::FloatTy
, APFloat(V
)));
82 return ConstantVector::get(Result
);
85 // Otherwise, this is an fp-to-int cast.
86 assert(SrcEltTy
->isFloatingPoint() && DstEltTy
->isInteger());
88 if (SrcEltTy
->getTypeID() == Type::DoubleTyID
) {
89 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
90 uint64_t V
= cast
<ConstantFP
>(CV
->getOperand(i
))->
91 getValueAPF().convertToAPInt().getZExtValue();
92 Constant
*C
= ConstantInt::get(Type::Int64Ty
, V
);
93 Result
.push_back(ConstantExpr::getBitCast(C
, DstEltTy
));
95 return ConstantVector::get(Result
);
98 assert(SrcEltTy
->getTypeID() == Type::FloatTyID
);
99 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
100 uint32_t V
= (uint32_t)cast
<ConstantFP
>(CV
->getOperand(i
))->
101 getValueAPF().convertToAPInt().getZExtValue();
102 Constant
*C
= ConstantInt::get(Type::Int32Ty
, V
);
103 Result
.push_back(ConstantExpr::getBitCast(C
, DstEltTy
));
105 return ConstantVector::get(Result
);
108 // Otherwise, this is a cast that changes element count and size. Handle
109 // casts which shrink the elements here.
111 // FIXME: We need to know endianness to do this!
116 /// This function determines which opcode to use to fold two constant cast
117 /// expressions together. It uses CastInst::isEliminableCastPair to determine
118 /// the opcode. Consequently its just a wrapper around that function.
119 /// @brief Determine if it is valid to fold a cast of a cast
121 foldConstantCastPair(
122 unsigned opc
, ///< opcode of the second cast constant expression
123 const ConstantExpr
*Op
, ///< the first cast constant expression
124 const Type
*DstTy
///< desintation type of the first cast
126 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
127 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
128 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
130 // The the types and opcodes for the two Cast constant expressions
131 const Type
*SrcTy
= Op
->getOperand(0)->getType();
132 const Type
*MidTy
= Op
->getType();
133 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
134 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
136 // Let CastInst::isEliminableCastPair do the heavy lifting.
137 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
141 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, const Constant
*V
,
142 const Type
*DestTy
) {
143 const Type
*SrcTy
= V
->getType();
145 if (isa
<UndefValue
>(V
)) {
146 // zext(undef) = 0, because the top bits will be zero.
147 // sext(undef) = 0, because the top bits will all be the same.
148 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
)
149 return Constant::getNullValue(DestTy
);
150 return UndefValue::get(DestTy
);
153 // If the cast operand is a constant expression, there's a few things we can
154 // do to try to simplify it.
155 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
157 // Try hard to fold cast of cast because they are often eliminable.
158 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
159 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
160 } else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
161 // If all of the indexes in the GEP are null values, there is no pointer
162 // adjustment going on. We might as well cast the source pointer.
163 bool isAllNull
= true;
164 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
165 if (!CE
->getOperand(i
)->isNullValue()) {
170 // This is casting one pointer type to another, always BitCast
171 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
175 // We actually have to do a cast now. Perform the cast according to the
178 case Instruction::FPTrunc
:
179 case Instruction::FPExt
:
180 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
181 APFloat Val
= FPC
->getValueAPF();
182 Val
.convert(DestTy
== Type::FloatTy
? APFloat::IEEEsingle
:
183 DestTy
== Type::DoubleTy
? APFloat::IEEEdouble
:
184 DestTy
== Type::X86_FP80Ty
? APFloat::x87DoubleExtended
:
185 DestTy
== Type::FP128Ty
? APFloat::IEEEquad
:
187 APFloat::rmNearestTiesToEven
);
188 return ConstantFP::get(DestTy
, Val
);
190 return 0; // Can't fold.
191 case Instruction::FPToUI
:
192 case Instruction::FPToSI
:
193 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
194 APFloat V
= FPC
->getValueAPF();
196 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
197 APFloat::opStatus status
= V
.convertToInteger(x
, DestBitWidth
,
198 opc
==Instruction::FPToSI
,
199 APFloat::rmNearestTiesToEven
);
200 if (status
!=APFloat::opOK
&& status
!=APFloat::opInexact
)
202 APInt
Val(DestBitWidth
, 2, x
);
203 return ConstantInt::get(Val
);
205 return 0; // Can't fold.
206 case Instruction::IntToPtr
: //always treated as unsigned
207 if (V
->isNullValue()) // Is it an integral null value?
208 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
209 return 0; // Other pointer types cannot be casted
210 case Instruction::PtrToInt
: // always treated as unsigned
211 if (V
->isNullValue()) // is it a null pointer value?
212 return ConstantInt::get(DestTy
, 0);
213 return 0; // Other pointer types cannot be casted
214 case Instruction::UIToFP
:
215 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
216 double d
= CI
->getValue().roundToDouble();
217 if (DestTy
==Type::FloatTy
)
218 return ConstantFP::get(DestTy
, APFloat((float)d
));
219 else if (DestTy
==Type::DoubleTy
)
220 return ConstantFP::get(DestTy
, APFloat(d
));
222 return 0; // FIXME do this for long double
225 case Instruction::SIToFP
:
226 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
227 double d
= CI
->getValue().signedRoundToDouble();
228 if (DestTy
==Type::FloatTy
)
229 return ConstantFP::get(DestTy
, APFloat((float)d
));
230 else if (DestTy
==Type::DoubleTy
)
231 return ConstantFP::get(DestTy
, APFloat(d
));
233 return 0; // FIXME do this for long double
236 case Instruction::ZExt
:
237 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
238 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
239 APInt
Result(CI
->getValue());
240 Result
.zext(BitWidth
);
241 return ConstantInt::get(Result
);
244 case Instruction::SExt
:
245 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
246 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
247 APInt
Result(CI
->getValue());
248 Result
.sext(BitWidth
);
249 return ConstantInt::get(Result
);
252 case Instruction::Trunc
:
253 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
254 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
255 APInt
Result(CI
->getValue());
256 Result
.trunc(BitWidth
);
257 return ConstantInt::get(Result
);
260 case Instruction::BitCast
:
262 return (Constant
*)V
; // no-op cast
264 // Check to see if we are casting a pointer to an aggregate to a pointer to
265 // the first element. If so, return the appropriate GEP instruction.
266 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
267 if (const PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
)) {
268 SmallVector
<Value
*, 8> IdxList
;
269 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
270 const Type
*ElTy
= PTy
->getElementType();
271 while (ElTy
!= DPTy
->getElementType()) {
272 if (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
273 if (STy
->getNumElements() == 0) break;
274 ElTy
= STy
->getElementType(0);
275 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
276 } else if (const SequentialType
*STy
=
277 dyn_cast
<SequentialType
>(ElTy
)) {
278 if (isa
<PointerType
>(ElTy
)) break; // Can't index into pointers!
279 ElTy
= STy
->getElementType();
280 IdxList
.push_back(IdxList
[0]);
286 if (ElTy
== DPTy
->getElementType())
287 return ConstantExpr::getGetElementPtr(
288 const_cast<Constant
*>(V
), &IdxList
[0], IdxList
.size());
291 // Handle casts from one vector constant to another. We know that the src
292 // and dest type have the same size (otherwise its an illegal cast).
293 if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
294 if (const VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
295 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
296 "Not cast between same sized vectors!");
297 // First, check for null and undef
298 if (isa
<ConstantAggregateZero
>(V
))
299 return Constant::getNullValue(DestTy
);
300 if (isa
<UndefValue
>(V
))
301 return UndefValue::get(DestTy
);
303 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
304 // This is a cast from a ConstantVector of one type to a
305 // ConstantVector of another type. Check to see if all elements of
306 // the input are simple.
307 bool AllSimpleConstants
= true;
308 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
309 if (!isa
<ConstantInt
>(CV
->getOperand(i
)) &&
310 !isa
<ConstantFP
>(CV
->getOperand(i
))) {
311 AllSimpleConstants
= false;
316 // If all of the elements are simple constants, we can fold this.
317 if (AllSimpleConstants
)
318 return CastConstantVector(const_cast<ConstantVector
*>(CV
), DestPTy
);
323 // Finally, implement bitcast folding now. The code below doesn't handle
325 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
326 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
328 // Handle integral constant input.
329 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
330 if (DestTy
->isInteger())
331 // Integral -> Integral. This is a no-op because the bit widths must
332 // be the same. Consequently, we just fold to V.
333 return const_cast<Constant
*>(V
);
335 if (DestTy
->isFloatingPoint()) {
336 assert((DestTy
== Type::DoubleTy
|| DestTy
== Type::FloatTy
) &&
338 return ConstantFP::get(DestTy
, APFloat(CI
->getValue()));
340 // Otherwise, can't fold this (vector?)
344 // Handle ConstantFP input.
345 if (const ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
347 if (DestTy
== Type::Int32Ty
) {
348 return ConstantInt::get(FP
->getValueAPF().convertToAPInt());
350 assert(DestTy
== Type::Int64Ty
&& "only support f32/f64 for now!");
351 return ConstantInt::get(FP
->getValueAPF().convertToAPInt());
356 assert(!"Invalid CE CastInst opcode");
360 assert(0 && "Failed to cast constant expression");
364 Constant
*llvm::ConstantFoldSelectInstruction(const Constant
*Cond
,
366 const Constant
*V2
) {
367 if (const ConstantInt
*CB
= dyn_cast
<ConstantInt
>(Cond
))
368 return const_cast<Constant
*>(CB
->getZExtValue() ? V1
: V2
);
370 if (isa
<UndefValue
>(V1
)) return const_cast<Constant
*>(V2
);
371 if (isa
<UndefValue
>(V2
)) return const_cast<Constant
*>(V1
);
372 if (isa
<UndefValue
>(Cond
)) return const_cast<Constant
*>(V1
);
373 if (V1
== V2
) return const_cast<Constant
*>(V1
);
377 Constant
*llvm::ConstantFoldExtractElementInstruction(const Constant
*Val
,
378 const Constant
*Idx
) {
379 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
380 return UndefValue::get(cast
<VectorType
>(Val
->getType())->getElementType());
381 if (Val
->isNullValue()) // ee(zero, x) -> zero
382 return Constant::getNullValue(
383 cast
<VectorType
>(Val
->getType())->getElementType());
385 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
386 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
387 return const_cast<Constant
*>(CVal
->getOperand(CIdx
->getZExtValue()));
388 } else if (isa
<UndefValue
>(Idx
)) {
389 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
390 return const_cast<Constant
*>(CVal
->getOperand(0));
396 Constant
*llvm::ConstantFoldInsertElementInstruction(const Constant
*Val
,
398 const Constant
*Idx
) {
399 const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
401 APInt idxVal
= CIdx
->getValue();
402 if (isa
<UndefValue
>(Val
)) {
403 // Insertion of scalar constant into vector undef
404 // Optimize away insertion of undef
405 if (isa
<UndefValue
>(Elt
))
406 return const_cast<Constant
*>(Val
);
407 // Otherwise break the aggregate undef into multiple undefs and do
410 cast
<VectorType
>(Val
->getType())->getNumElements();
411 std::vector
<Constant
*> Ops
;
413 for (unsigned i
= 0; i
< numOps
; ++i
) {
415 (idxVal
== i
) ? Elt
: UndefValue::get(Elt
->getType());
416 Ops
.push_back(const_cast<Constant
*>(Op
));
418 return ConstantVector::get(Ops
);
420 if (isa
<ConstantAggregateZero
>(Val
)) {
421 // Insertion of scalar constant into vector aggregate zero
422 // Optimize away insertion of zero
423 if (Elt
->isNullValue())
424 return const_cast<Constant
*>(Val
);
425 // Otherwise break the aggregate zero into multiple zeros and do
428 cast
<VectorType
>(Val
->getType())->getNumElements();
429 std::vector
<Constant
*> Ops
;
431 for (unsigned i
= 0; i
< numOps
; ++i
) {
433 (idxVal
== i
) ? Elt
: Constant::getNullValue(Elt
->getType());
434 Ops
.push_back(const_cast<Constant
*>(Op
));
436 return ConstantVector::get(Ops
);
438 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
439 // Insertion of scalar constant into vector constant
440 std::vector
<Constant
*> Ops
;
441 Ops
.reserve(CVal
->getNumOperands());
442 for (unsigned i
= 0; i
< CVal
->getNumOperands(); ++i
) {
444 (idxVal
== i
) ? Elt
: cast
<Constant
>(CVal
->getOperand(i
));
445 Ops
.push_back(const_cast<Constant
*>(Op
));
447 return ConstantVector::get(Ops
);
452 Constant
*llvm::ConstantFoldShuffleVectorInstruction(const Constant
*V1
,
454 const Constant
*Mask
) {
459 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
460 /// function pointer to each element pair, producing a new ConstantVector
462 static Constant
*EvalVectorOp(const ConstantVector
*V1
,
463 const ConstantVector
*V2
,
464 Constant
*(*FP
)(Constant
*, Constant
*)) {
465 std::vector
<Constant
*> Res
;
466 for (unsigned i
= 0, e
= V1
->getNumOperands(); i
!= e
; ++i
)
467 Res
.push_back(FP(const_cast<Constant
*>(V1
->getOperand(i
)),
468 const_cast<Constant
*>(V2
->getOperand(i
))));
469 return ConstantVector::get(Res
);
472 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
,
474 const Constant
*C2
) {
475 // Handle UndefValue up front
476 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
478 case Instruction::Add
:
479 case Instruction::Sub
:
480 case Instruction::Xor
:
481 return UndefValue::get(C1
->getType());
482 case Instruction::Mul
:
483 case Instruction::And
:
484 return Constant::getNullValue(C1
->getType());
485 case Instruction::UDiv
:
486 case Instruction::SDiv
:
487 case Instruction::FDiv
:
488 case Instruction::URem
:
489 case Instruction::SRem
:
490 case Instruction::FRem
:
491 if (!isa
<UndefValue
>(C2
)) // undef / X -> 0
492 return Constant::getNullValue(C1
->getType());
493 return const_cast<Constant
*>(C2
); // X / undef -> undef
494 case Instruction::Or
: // X | undef -> -1
495 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(C1
->getType()))
496 return ConstantVector::getAllOnesValue(PTy
);
497 return ConstantInt::getAllOnesValue(C1
->getType());
498 case Instruction::LShr
:
499 if (isa
<UndefValue
>(C2
) && isa
<UndefValue
>(C1
))
500 return const_cast<Constant
*>(C1
); // undef lshr undef -> undef
501 return Constant::getNullValue(C1
->getType()); // X lshr undef -> 0
503 case Instruction::AShr
:
504 if (!isa
<UndefValue
>(C2
))
505 return const_cast<Constant
*>(C1
); // undef ashr X --> undef
506 else if (isa
<UndefValue
>(C1
))
507 return const_cast<Constant
*>(C1
); // undef ashr undef -> undef
509 return const_cast<Constant
*>(C1
); // X ashr undef --> X
510 case Instruction::Shl
:
511 // undef << X -> 0 or X << undef -> 0
512 return Constant::getNullValue(C1
->getType());
516 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
517 if (isa
<ConstantExpr
>(C2
)) {
518 // There are many possible foldings we could do here. We should probably
519 // at least fold add of a pointer with an integer into the appropriate
520 // getelementptr. This will improve alias analysis a bit.
522 // Just implement a couple of simple identities.
524 case Instruction::Add
:
525 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X + 0 == X
527 case Instruction::Sub
:
528 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X - 0 == X
530 case Instruction::Mul
:
531 if (C2
->isNullValue()) return const_cast<Constant
*>(C2
); // X * 0 == 0
532 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
533 if (CI
->equalsInt(1))
534 return const_cast<Constant
*>(C1
); // X * 1 == X
536 case Instruction::UDiv
:
537 case Instruction::SDiv
:
538 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
539 if (CI
->equalsInt(1))
540 return const_cast<Constant
*>(C1
); // X / 1 == X
542 case Instruction::URem
:
543 case Instruction::SRem
:
544 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
545 if (CI
->equalsInt(1))
546 return Constant::getNullValue(CI
->getType()); // X % 1 == 0
548 case Instruction::And
:
549 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
)) {
550 if (CI
->isZero()) return const_cast<Constant
*>(C2
); // X & 0 == 0
551 if (CI
->isAllOnesValue())
552 return const_cast<Constant
*>(C1
); // X & -1 == X
554 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
555 if (CE1
->getOpcode() == Instruction::ZExt
) {
556 APInt PossiblySetBits
557 = cast
<IntegerType
>(CE1
->getOperand(0)->getType())->getMask();
558 PossiblySetBits
.zext(C1
->getType()->getPrimitiveSizeInBits());
559 if ((PossiblySetBits
& CI
->getValue()) == PossiblySetBits
)
560 return const_cast<Constant
*>(C1
);
563 if (CE1
->isCast() && isa
<GlobalValue
>(CE1
->getOperand(0))) {
564 GlobalValue
*CPR
= cast
<GlobalValue
>(CE1
->getOperand(0));
566 // Functions are at least 4-byte aligned. If and'ing the address of a
567 // function with a constant < 4, fold it to zero.
568 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
569 if (CI
->getValue().ult(APInt(CI
->getType()->getBitWidth(),4)) &&
571 return Constant::getNullValue(CI
->getType());
574 case Instruction::Or
:
575 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X | 0 == X
576 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
577 if (CI
->isAllOnesValue())
578 return const_cast<Constant
*>(C2
); // X | -1 == -1
580 case Instruction::Xor
:
581 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X ^ 0 == X
583 case Instruction::AShr
:
584 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
585 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
586 return ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
587 const_cast<Constant
*>(C2
));
591 } else if (isa
<ConstantExpr
>(C2
)) {
592 // If C2 is a constant expr and C1 isn't, flop them around and fold the
593 // other way if possible.
595 case Instruction::Add
:
596 case Instruction::Mul
:
597 case Instruction::And
:
598 case Instruction::Or
:
599 case Instruction::Xor
:
600 // No change of opcode required.
601 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
603 case Instruction::Shl
:
604 case Instruction::LShr
:
605 case Instruction::AShr
:
606 case Instruction::Sub
:
607 case Instruction::SDiv
:
608 case Instruction::UDiv
:
609 case Instruction::FDiv
:
610 case Instruction::URem
:
611 case Instruction::SRem
:
612 case Instruction::FRem
:
613 default: // These instructions cannot be flopped around.
618 // At this point we know neither constant is an UndefValue nor a ConstantExpr
619 // so look at directly computing the value.
620 if (const ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
621 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
622 using namespace APIntOps
;
623 APInt C1V
= CI1
->getValue();
624 APInt C2V
= CI2
->getValue();
628 case Instruction::Add
:
629 return ConstantInt::get(C1V
+ C2V
);
630 case Instruction::Sub
:
631 return ConstantInt::get(C1V
- C2V
);
632 case Instruction::Mul
:
633 return ConstantInt::get(C1V
* C2V
);
634 case Instruction::UDiv
:
635 if (CI2
->isNullValue())
636 return 0; // X / 0 -> can't fold
637 return ConstantInt::get(C1V
.udiv(C2V
));
638 case Instruction::SDiv
:
639 if (CI2
->isNullValue())
640 return 0; // X / 0 -> can't fold
641 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
642 return 0; // MIN_INT / -1 -> overflow
643 return ConstantInt::get(C1V
.sdiv(C2V
));
644 case Instruction::URem
:
645 if (C2
->isNullValue())
646 return 0; // X / 0 -> can't fold
647 return ConstantInt::get(C1V
.urem(C2V
));
648 case Instruction::SRem
:
649 if (CI2
->isNullValue())
650 return 0; // X % 0 -> can't fold
651 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
652 return 0; // MIN_INT % -1 -> overflow
653 return ConstantInt::get(C1V
.srem(C2V
));
654 case Instruction::And
:
655 return ConstantInt::get(C1V
& C2V
);
656 case Instruction::Or
:
657 return ConstantInt::get(C1V
| C2V
);
658 case Instruction::Xor
:
659 return ConstantInt::get(C1V
^ C2V
);
660 case Instruction::Shl
:
661 if (uint32_t shiftAmt
= C2V
.getZExtValue())
662 if (shiftAmt
< C1V
.getBitWidth())
663 return ConstantInt::get(C1V
.shl(shiftAmt
));
665 return UndefValue::get(C1
->getType()); // too big shift is undef
666 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
667 case Instruction::LShr
:
668 if (uint32_t shiftAmt
= C2V
.getZExtValue())
669 if (shiftAmt
< C1V
.getBitWidth())
670 return ConstantInt::get(C1V
.lshr(shiftAmt
));
672 return UndefValue::get(C1
->getType()); // too big shift is undef
673 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
674 case Instruction::AShr
:
675 if (uint32_t shiftAmt
= C2V
.getZExtValue())
676 if (shiftAmt
< C1V
.getBitWidth())
677 return ConstantInt::get(C1V
.ashr(shiftAmt
));
679 return UndefValue::get(C1
->getType()); // too big shift is undef
680 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
683 } else if (const ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
684 if (const ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
685 APFloat C1V
= CFP1
->getValueAPF();
686 APFloat C2V
= CFP2
->getValueAPF();
687 APFloat C3V
= C1V
; // copy for modification
688 bool isDouble
= CFP1
->getType()==Type::DoubleTy
;
692 case Instruction::Add
:
693 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
694 return ConstantFP::get(CFP1
->getType(), C3V
);
695 case Instruction::Sub
:
696 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
697 return ConstantFP::get(CFP1
->getType(), C3V
);
698 case Instruction::Mul
:
699 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
700 return ConstantFP::get(CFP1
->getType(), C3V
);
701 case Instruction::FDiv
:
702 // FIXME better to look at the return code
705 // IEEE 754, Section 7.1, #4
706 return ConstantFP::get(CFP1
->getType(), isDouble
?
707 APFloat(std::numeric_limits
<double>::quiet_NaN()) :
708 APFloat(std::numeric_limits
<float>::quiet_NaN()));
709 else if (C2V
.isNegZero() || C1V
.isNegative())
710 // IEEE 754, Section 7.2, negative infinity case
711 return ConstantFP::get(CFP1
->getType(), isDouble
?
712 APFloat(-std::numeric_limits
<double>::infinity()) :
713 APFloat(-std::numeric_limits
<float>::infinity()));
715 // IEEE 754, Section 7.2, positive infinity case
716 return ConstantFP::get(CFP1
->getType(), isDouble
?
717 APFloat(std::numeric_limits
<double>::infinity()) :
718 APFloat(std::numeric_limits
<float>::infinity()));
719 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
720 return ConstantFP::get(CFP1
->getType(), C3V
);
721 case Instruction::FRem
:
723 // IEEE 754, Section 7.1, #5
724 return ConstantFP::get(CFP1
->getType(), isDouble
?
725 APFloat(std::numeric_limits
<double>::quiet_NaN()) :
726 APFloat(std::numeric_limits
<float>::quiet_NaN()));
727 (void)C3V
.mod(C2V
, APFloat::rmNearestTiesToEven
);
728 return ConstantFP::get(CFP1
->getType(), C3V
);
731 } else if (const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
)) {
732 if (const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
)) {
736 case Instruction::Add
:
737 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getAdd
);
738 case Instruction::Sub
:
739 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSub
);
740 case Instruction::Mul
:
741 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getMul
);
742 case Instruction::UDiv
:
743 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getUDiv
);
744 case Instruction::SDiv
:
745 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSDiv
);
746 case Instruction::FDiv
:
747 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getFDiv
);
748 case Instruction::URem
:
749 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getURem
);
750 case Instruction::SRem
:
751 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSRem
);
752 case Instruction::FRem
:
753 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getFRem
);
754 case Instruction::And
:
755 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getAnd
);
756 case Instruction::Or
:
757 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getOr
);
758 case Instruction::Xor
:
759 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getXor
);
764 // We don't know how to fold this
768 /// isZeroSizedType - This type is zero sized if its an array or structure of
769 /// zero sized types. The only leaf zero sized type is an empty structure.
770 static bool isMaybeZeroSizedType(const Type
*Ty
) {
771 if (isa
<OpaqueType
>(Ty
)) return true; // Can't say.
772 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
774 // If all of elements have zero size, this does too.
775 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
776 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
779 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
780 return isMaybeZeroSizedType(ATy
->getElementType());
785 /// IdxCompare - Compare the two constants as though they were getelementptr
786 /// indices. This allows coersion of the types to be the same thing.
788 /// If the two constants are the "same" (after coersion), return 0. If the
789 /// first is less than the second, return -1, if the second is less than the
790 /// first, return 1. If the constants are not integral, return -2.
792 static int IdxCompare(Constant
*C1
, Constant
*C2
, const Type
*ElTy
) {
793 if (C1
== C2
) return 0;
795 // Ok, we found a different index. If they are not ConstantInt, we can't do
796 // anything with them.
797 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
798 return -2; // don't know!
800 // Ok, we have two differing integer indices. Sign extend them to be the same
801 // type. Long is always big enough, so we use it.
802 if (C1
->getType() != Type::Int64Ty
)
803 C1
= ConstantExpr::getSExt(C1
, Type::Int64Ty
);
805 if (C2
->getType() != Type::Int64Ty
)
806 C2
= ConstantExpr::getSExt(C2
, Type::Int64Ty
);
808 if (C1
== C2
) return 0; // They are equal
810 // If the type being indexed over is really just a zero sized type, there is
811 // no pointer difference being made here.
812 if (isMaybeZeroSizedType(ElTy
))
815 // If they are really different, now that they are the same type, then we
816 // found a difference!
817 if (cast
<ConstantInt
>(C1
)->getSExtValue() <
818 cast
<ConstantInt
>(C2
)->getSExtValue())
824 /// evaluateFCmpRelation - This function determines if there is anything we can
825 /// decide about the two constants provided. This doesn't need to handle simple
826 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
827 /// If we can determine that the two constants have a particular relation to
828 /// each other, we should return the corresponding FCmpInst predicate,
829 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
830 /// ConstantFoldCompareInstruction.
832 /// To simplify this code we canonicalize the relation so that the first
833 /// operand is always the most "complex" of the two. We consider ConstantFP
834 /// to be the simplest, and ConstantExprs to be the most complex.
835 static FCmpInst::Predicate
evaluateFCmpRelation(const Constant
*V1
,
836 const Constant
*V2
) {
837 assert(V1
->getType() == V2
->getType() &&
838 "Cannot compare values of different types!");
839 // Handle degenerate case quickly
840 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
842 if (!isa
<ConstantExpr
>(V1
)) {
843 if (!isa
<ConstantExpr
>(V2
)) {
844 // We distilled thisUse the standard constant folder for a few cases
846 Constant
*C1
= const_cast<Constant
*>(V1
);
847 Constant
*C2
= const_cast<Constant
*>(V2
);
848 R
= dyn_cast
<ConstantInt
>(
849 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, C1
, C2
));
850 if (R
&& !R
->isZero())
851 return FCmpInst::FCMP_OEQ
;
852 R
= dyn_cast
<ConstantInt
>(
853 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, C1
, C2
));
854 if (R
&& !R
->isZero())
855 return FCmpInst::FCMP_OLT
;
856 R
= dyn_cast
<ConstantInt
>(
857 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, C1
, C2
));
858 if (R
&& !R
->isZero())
859 return FCmpInst::FCMP_OGT
;
861 // Nothing more we can do
862 return FCmpInst::BAD_FCMP_PREDICATE
;
865 // If the first operand is simple and second is ConstantExpr, swap operands.
866 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
867 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
868 return FCmpInst::getSwappedPredicate(SwappedRelation
);
870 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
871 // constantexpr or a simple constant.
872 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
873 switch (CE1
->getOpcode()) {
874 case Instruction::FPTrunc
:
875 case Instruction::FPExt
:
876 case Instruction::UIToFP
:
877 case Instruction::SIToFP
:
878 // We might be able to do something with these but we don't right now.
884 // There are MANY other foldings that we could perform here. They will
885 // probably be added on demand, as they seem needed.
886 return FCmpInst::BAD_FCMP_PREDICATE
;
889 /// evaluateICmpRelation - This function determines if there is anything we can
890 /// decide about the two constants provided. This doesn't need to handle simple
891 /// things like integer comparisons, but should instead handle ConstantExprs
892 /// and GlobalValues. If we can determine that the two constants have a
893 /// particular relation to each other, we should return the corresponding ICmp
894 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
896 /// To simplify this code we canonicalize the relation so that the first
897 /// operand is always the most "complex" of the two. We consider simple
898 /// constants (like ConstantInt) to be the simplest, followed by
899 /// GlobalValues, followed by ConstantExpr's (the most complex).
901 static ICmpInst::Predicate
evaluateICmpRelation(const Constant
*V1
,
904 assert(V1
->getType() == V2
->getType() &&
905 "Cannot compare different types of values!");
906 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
908 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
)) {
909 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
)) {
910 // We distilled this down to a simple case, use the standard constant
913 Constant
*C1
= const_cast<Constant
*>(V1
);
914 Constant
*C2
= const_cast<Constant
*>(V2
);
915 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
916 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
917 if (R
&& !R
->isZero())
919 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
920 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
921 if (R
&& !R
->isZero())
923 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
924 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
925 if (R
&& !R
->isZero())
928 // If we couldn't figure it out, bail.
929 return ICmpInst::BAD_ICMP_PREDICATE
;
932 // If the first operand is simple, swap operands.
933 ICmpInst::Predicate SwappedRelation
=
934 evaluateICmpRelation(V2
, V1
, isSigned
);
935 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
936 return ICmpInst::getSwappedPredicate(SwappedRelation
);
938 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(V1
)) {
939 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
940 ICmpInst::Predicate SwappedRelation
=
941 evaluateICmpRelation(V2
, V1
, isSigned
);
942 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
943 return ICmpInst::getSwappedPredicate(SwappedRelation
);
945 return ICmpInst::BAD_ICMP_PREDICATE
;
948 // Now we know that the RHS is a GlobalValue or simple constant,
949 // which (since the types must match) means that it's a ConstantPointerNull.
950 if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
951 // Don't try to decide equality of aliases.
952 if (!isa
<GlobalAlias
>(CPR1
) && !isa
<GlobalAlias
>(CPR2
))
953 if (!CPR1
->hasExternalWeakLinkage() || !CPR2
->hasExternalWeakLinkage())
954 return ICmpInst::ICMP_NE
;
956 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
957 // GlobalVals can never be null. Don't try to evaluate aliases.
958 if (!CPR1
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(CPR1
))
959 return ICmpInst::ICMP_NE
;
962 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
963 // constantexpr, a CPR, or a simple constant.
964 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
965 const Constant
*CE1Op0
= CE1
->getOperand(0);
967 switch (CE1
->getOpcode()) {
968 case Instruction::Trunc
:
969 case Instruction::FPTrunc
:
970 case Instruction::FPExt
:
971 case Instruction::FPToUI
:
972 case Instruction::FPToSI
:
973 break; // We can't evaluate floating point casts or truncations.
975 case Instruction::UIToFP
:
976 case Instruction::SIToFP
:
977 case Instruction::IntToPtr
:
978 case Instruction::BitCast
:
979 case Instruction::ZExt
:
980 case Instruction::SExt
:
981 case Instruction::PtrToInt
:
982 // If the cast is not actually changing bits, and the second operand is a
983 // null pointer, do the comparison with the pre-casted value.
984 if (V2
->isNullValue() &&
985 (isa
<PointerType
>(CE1
->getType()) || CE1
->getType()->isInteger())) {
986 bool sgnd
= CE1
->getOpcode() == Instruction::ZExt
? false :
987 (CE1
->getOpcode() == Instruction::SExt
? true :
988 (CE1
->getOpcode() == Instruction::PtrToInt
? false : isSigned
));
989 return evaluateICmpRelation(
990 CE1Op0
, Constant::getNullValue(CE1Op0
->getType()), sgnd
);
993 // If the dest type is a pointer type, and the RHS is a constantexpr cast
994 // from the same type as the src of the LHS, evaluate the inputs. This is
995 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
996 // which happens a lot in compilers with tagged integers.
997 if (const ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(V2
))
998 if (CE2
->isCast() && isa
<PointerType
>(CE1
->getType()) &&
999 CE1
->getOperand(0)->getType() == CE2
->getOperand(0)->getType() &&
1000 CE1
->getOperand(0)->getType()->isInteger()) {
1001 bool sgnd
= CE1
->getOpcode() == Instruction::ZExt
? false :
1002 (CE1
->getOpcode() == Instruction::SExt
? true :
1003 (CE1
->getOpcode() == Instruction::PtrToInt
? false : isSigned
));
1004 return evaluateICmpRelation(CE1
->getOperand(0), CE2
->getOperand(0),
1009 case Instruction::GetElementPtr
:
1010 // Ok, since this is a getelementptr, we know that the constant has a
1011 // pointer type. Check the various cases.
1012 if (isa
<ConstantPointerNull
>(V2
)) {
1013 // If we are comparing a GEP to a null pointer, check to see if the base
1014 // of the GEP equals the null pointer.
1015 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1016 if (GV
->hasExternalWeakLinkage())
1017 // Weak linkage GVals could be zero or not. We're comparing that
1018 // to null pointer so its greater-or-equal
1019 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1021 // If its not weak linkage, the GVal must have a non-zero address
1022 // so the result is greater-than
1023 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1024 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1025 // If we are indexing from a null pointer, check to see if we have any
1026 // non-zero indices.
1027 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1028 if (!CE1
->getOperand(i
)->isNullValue())
1029 // Offsetting from null, must not be equal.
1030 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1031 // Only zero indexes from null, must still be zero.
1032 return ICmpInst::ICMP_EQ
;
1034 // Otherwise, we can't really say if the first operand is null or not.
1035 } else if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1036 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1037 if (CPR2
->hasExternalWeakLinkage())
1038 // Weak linkage GVals could be zero or not. We're comparing it to
1039 // a null pointer, so its less-or-equal
1040 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1042 // If its not weak linkage, the GVal must have a non-zero address
1043 // so the result is less-than
1044 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1045 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1047 // If this is a getelementptr of the same global, then it must be
1048 // different. Because the types must match, the getelementptr could
1049 // only have at most one index, and because we fold getelementptr's
1050 // with a single zero index, it must be nonzero.
1051 assert(CE1
->getNumOperands() == 2 &&
1052 !CE1
->getOperand(1)->isNullValue() &&
1053 "Suprising getelementptr!");
1054 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1056 // If they are different globals, we don't know what the value is,
1057 // but they can't be equal.
1058 return ICmpInst::ICMP_NE
;
1062 const ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1063 const Constant
*CE2Op0
= CE2
->getOperand(0);
1065 // There are MANY other foldings that we could perform here. They will
1066 // probably be added on demand, as they seem needed.
1067 switch (CE2
->getOpcode()) {
1069 case Instruction::GetElementPtr
:
1070 // By far the most common case to handle is when the base pointers are
1071 // obviously to the same or different globals.
1072 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1073 if (CE1Op0
!= CE2Op0
) // Don't know relative ordering, but not equal
1074 return ICmpInst::ICMP_NE
;
1075 // Ok, we know that both getelementptr instructions are based on the
1076 // same global. From this, we can precisely determine the relative
1077 // ordering of the resultant pointers.
1080 // Compare all of the operands the GEP's have in common.
1081 gep_type_iterator GTI
= gep_type_begin(CE1
);
1082 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1084 switch (IdxCompare(CE1
->getOperand(i
), CE2
->getOperand(i
),
1085 GTI
.getIndexedType())) {
1086 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1087 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1088 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1091 // Ok, we ran out of things they have in common. If any leftovers
1092 // are non-zero then we have a difference, otherwise we are equal.
1093 for (; i
< CE1
->getNumOperands(); ++i
)
1094 if (!CE1
->getOperand(i
)->isNullValue())
1095 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1096 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1098 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1100 for (; i
< CE2
->getNumOperands(); ++i
)
1101 if (!CE2
->getOperand(i
)->isNullValue())
1102 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1103 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1105 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1106 return ICmpInst::ICMP_EQ
;
1115 return ICmpInst::BAD_ICMP_PREDICATE
;
1118 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1120 const Constant
*C2
) {
1122 // Handle some degenerate cases first
1123 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
))
1124 return UndefValue::get(Type::Int1Ty
);
1126 // icmp eq/ne(null,GV) -> false/true
1127 if (C1
->isNullValue()) {
1128 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1129 // Don't try to evaluate aliases. External weak GV can be null.
1130 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage())
1131 if (pred
== ICmpInst::ICMP_EQ
)
1132 return ConstantInt::getFalse();
1133 else if (pred
== ICmpInst::ICMP_NE
)
1134 return ConstantInt::getTrue();
1135 // icmp eq/ne(GV,null) -> false/true
1136 } else if (C2
->isNullValue()) {
1137 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1138 // Don't try to evaluate aliases. External weak GV can be null.
1139 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage())
1140 if (pred
== ICmpInst::ICMP_EQ
)
1141 return ConstantInt::getFalse();
1142 else if (pred
== ICmpInst::ICMP_NE
)
1143 return ConstantInt::getTrue();
1146 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1147 APInt V1
= cast
<ConstantInt
>(C1
)->getValue();
1148 APInt V2
= cast
<ConstantInt
>(C2
)->getValue();
1150 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1151 case ICmpInst::ICMP_EQ
: return ConstantInt::get(Type::Int1Ty
, V1
== V2
);
1152 case ICmpInst::ICMP_NE
: return ConstantInt::get(Type::Int1Ty
, V1
!= V2
);
1153 case ICmpInst::ICMP_SLT
:return ConstantInt::get(Type::Int1Ty
, V1
.slt(V2
));
1154 case ICmpInst::ICMP_SGT
:return ConstantInt::get(Type::Int1Ty
, V1
.sgt(V2
));
1155 case ICmpInst::ICMP_SLE
:return ConstantInt::get(Type::Int1Ty
, V1
.sle(V2
));
1156 case ICmpInst::ICMP_SGE
:return ConstantInt::get(Type::Int1Ty
, V1
.sge(V2
));
1157 case ICmpInst::ICMP_ULT
:return ConstantInt::get(Type::Int1Ty
, V1
.ult(V2
));
1158 case ICmpInst::ICMP_UGT
:return ConstantInt::get(Type::Int1Ty
, V1
.ugt(V2
));
1159 case ICmpInst::ICMP_ULE
:return ConstantInt::get(Type::Int1Ty
, V1
.ule(V2
));
1160 case ICmpInst::ICMP_UGE
:return ConstantInt::get(Type::Int1Ty
, V1
.uge(V2
));
1162 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1163 APFloat C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1164 APFloat C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1165 APFloat::cmpResult R
= C1V
.compare(C2V
);
1167 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1168 case FCmpInst::FCMP_FALSE
: return ConstantInt::getFalse();
1169 case FCmpInst::FCMP_TRUE
: return ConstantInt::getTrue();
1170 case FCmpInst::FCMP_UNO
:
1171 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
);
1172 case FCmpInst::FCMP_ORD
:
1173 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpUnordered
);
1174 case FCmpInst::FCMP_UEQ
:
1175 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1176 R
==APFloat::cmpEqual
);
1177 case FCmpInst::FCMP_OEQ
:
1178 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpEqual
);
1179 case FCmpInst::FCMP_UNE
:
1180 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpEqual
);
1181 case FCmpInst::FCMP_ONE
:
1182 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1183 R
==APFloat::cmpGreaterThan
);
1184 case FCmpInst::FCMP_ULT
:
1185 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1186 R
==APFloat::cmpLessThan
);
1187 case FCmpInst::FCMP_OLT
:
1188 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
);
1189 case FCmpInst::FCMP_UGT
:
1190 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1191 R
==APFloat::cmpGreaterThan
);
1192 case FCmpInst::FCMP_OGT
:
1193 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
);
1194 case FCmpInst::FCMP_ULE
:
1195 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpGreaterThan
);
1196 case FCmpInst::FCMP_OLE
:
1197 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1198 R
==APFloat::cmpEqual
);
1199 case FCmpInst::FCMP_UGE
:
1200 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpLessThan
);
1201 case FCmpInst::FCMP_OGE
:
1202 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
||
1203 R
==APFloat::cmpEqual
);
1205 } else if (const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
)) {
1206 if (const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
)) {
1207 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
) {
1208 for (unsigned i
= 0, e
= CP1
->getNumOperands(); i
!= e
; ++i
) {
1209 Constant
*C
= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
,
1210 const_cast<Constant
*>(CP1
->getOperand(i
)),
1211 const_cast<Constant
*>(CP2
->getOperand(i
)));
1212 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(C
))
1215 // Otherwise, could not decide from any element pairs.
1217 } else if (pred
== ICmpInst::ICMP_EQ
) {
1218 for (unsigned i
= 0, e
= CP1
->getNumOperands(); i
!= e
; ++i
) {
1219 Constant
*C
= ConstantExpr::getICmp(ICmpInst::ICMP_EQ
,
1220 const_cast<Constant
*>(CP1
->getOperand(i
)),
1221 const_cast<Constant
*>(CP2
->getOperand(i
)));
1222 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(C
))
1225 // Otherwise, could not decide from any element pairs.
1231 if (C1
->getType()->isFloatingPoint()) {
1232 switch (evaluateFCmpRelation(C1
, C2
)) {
1233 default: assert(0 && "Unknown relation!");
1234 case FCmpInst::FCMP_UNO
:
1235 case FCmpInst::FCMP_ORD
:
1236 case FCmpInst::FCMP_UEQ
:
1237 case FCmpInst::FCMP_UNE
:
1238 case FCmpInst::FCMP_ULT
:
1239 case FCmpInst::FCMP_UGT
:
1240 case FCmpInst::FCMP_ULE
:
1241 case FCmpInst::FCMP_UGE
:
1242 case FCmpInst::FCMP_TRUE
:
1243 case FCmpInst::FCMP_FALSE
:
1244 case FCmpInst::BAD_FCMP_PREDICATE
:
1245 break; // Couldn't determine anything about these constants.
1246 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1247 return ConstantInt::get(Type::Int1Ty
,
1248 pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1249 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1250 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1251 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1252 return ConstantInt::get(Type::Int1Ty
,
1253 pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1254 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1255 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1256 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1257 return ConstantInt::get(Type::Int1Ty
,
1258 pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1259 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1260 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1261 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1262 // We can only partially decide this relation.
1263 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1264 return ConstantInt::getFalse();
1265 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1266 return ConstantInt::getTrue();
1268 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1269 // We can only partially decide this relation.
1270 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1271 return ConstantInt::getFalse();
1272 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1273 return ConstantInt::getTrue();
1275 case ICmpInst::ICMP_NE
: // We know that C1 != C2
1276 // We can only partially decide this relation.
1277 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1278 return ConstantInt::getFalse();
1279 if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1280 return ConstantInt::getTrue();
1284 // Evaluate the relation between the two constants, per the predicate.
1285 switch (evaluateICmpRelation(C1
, C2
, CmpInst::isSigned(pred
))) {
1286 default: assert(0 && "Unknown relational!");
1287 case ICmpInst::BAD_ICMP_PREDICATE
:
1288 break; // Couldn't determine anything about these constants.
1289 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1290 // If we know the constants are equal, we can decide the result of this
1291 // computation precisely.
1292 return ConstantInt::get(Type::Int1Ty
,
1293 pred
== ICmpInst::ICMP_EQ
||
1294 pred
== ICmpInst::ICMP_ULE
||
1295 pred
== ICmpInst::ICMP_SLE
||
1296 pred
== ICmpInst::ICMP_UGE
||
1297 pred
== ICmpInst::ICMP_SGE
);
1298 case ICmpInst::ICMP_ULT
:
1299 // If we know that C1 < C2, we can decide the result of this computation
1301 return ConstantInt::get(Type::Int1Ty
,
1302 pred
== ICmpInst::ICMP_ULT
||
1303 pred
== ICmpInst::ICMP_NE
||
1304 pred
== ICmpInst::ICMP_ULE
);
1305 case ICmpInst::ICMP_SLT
:
1306 // If we know that C1 < C2, we can decide the result of this computation
1308 return ConstantInt::get(Type::Int1Ty
,
1309 pred
== ICmpInst::ICMP_SLT
||
1310 pred
== ICmpInst::ICMP_NE
||
1311 pred
== ICmpInst::ICMP_SLE
);
1312 case ICmpInst::ICMP_UGT
:
1313 // If we know that C1 > C2, we can decide the result of this computation
1315 return ConstantInt::get(Type::Int1Ty
,
1316 pred
== ICmpInst::ICMP_UGT
||
1317 pred
== ICmpInst::ICMP_NE
||
1318 pred
== ICmpInst::ICMP_UGE
);
1319 case ICmpInst::ICMP_SGT
:
1320 // If we know that C1 > C2, we can decide the result of this computation
1322 return ConstantInt::get(Type::Int1Ty
,
1323 pred
== ICmpInst::ICMP_SGT
||
1324 pred
== ICmpInst::ICMP_NE
||
1325 pred
== ICmpInst::ICMP_SGE
);
1326 case ICmpInst::ICMP_ULE
:
1327 // If we know that C1 <= C2, we can only partially decide this relation.
1328 if (pred
== ICmpInst::ICMP_UGT
) return ConstantInt::getFalse();
1329 if (pred
== ICmpInst::ICMP_ULT
) return ConstantInt::getTrue();
1331 case ICmpInst::ICMP_SLE
:
1332 // If we know that C1 <= C2, we can only partially decide this relation.
1333 if (pred
== ICmpInst::ICMP_SGT
) return ConstantInt::getFalse();
1334 if (pred
== ICmpInst::ICMP_SLT
) return ConstantInt::getTrue();
1337 case ICmpInst::ICMP_UGE
:
1338 // If we know that C1 >= C2, we can only partially decide this relation.
1339 if (pred
== ICmpInst::ICMP_ULT
) return ConstantInt::getFalse();
1340 if (pred
== ICmpInst::ICMP_UGT
) return ConstantInt::getTrue();
1342 case ICmpInst::ICMP_SGE
:
1343 // If we know that C1 >= C2, we can only partially decide this relation.
1344 if (pred
== ICmpInst::ICMP_SLT
) return ConstantInt::getFalse();
1345 if (pred
== ICmpInst::ICMP_SGT
) return ConstantInt::getTrue();
1348 case ICmpInst::ICMP_NE
:
1349 // If we know that C1 != C2, we can only partially decide this relation.
1350 if (pred
== ICmpInst::ICMP_EQ
) return ConstantInt::getFalse();
1351 if (pred
== ICmpInst::ICMP_NE
) return ConstantInt::getTrue();
1355 if (!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) {
1356 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1357 // other way if possible.
1359 case ICmpInst::ICMP_EQ
:
1360 case ICmpInst::ICMP_NE
:
1361 // No change of predicate required.
1362 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1364 case ICmpInst::ICMP_ULT
:
1365 case ICmpInst::ICMP_SLT
:
1366 case ICmpInst::ICMP_UGT
:
1367 case ICmpInst::ICMP_SGT
:
1368 case ICmpInst::ICMP_ULE
:
1369 case ICmpInst::ICMP_SLE
:
1370 case ICmpInst::ICMP_UGE
:
1371 case ICmpInst::ICMP_SGE
:
1372 // Change the predicate as necessary to swap the operands.
1373 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1374 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1376 default: // These predicates cannot be flopped around.
1384 Constant
*llvm::ConstantFoldGetElementPtr(const Constant
*C
,
1385 Constant
* const *Idxs
,
1388 (NumIdx
== 1 && Idxs
[0]->isNullValue()))
1389 return const_cast<Constant
*>(C
);
1391 if (isa
<UndefValue
>(C
)) {
1392 const Type
*Ty
= GetElementPtrInst::getIndexedType(C
->getType(),
1394 (Value
**)Idxs
+NumIdx
,
1396 assert(Ty
!= 0 && "Invalid indices for GEP!");
1397 return UndefValue::get(PointerType::get(Ty
));
1400 Constant
*Idx0
= Idxs
[0];
1401 if (C
->isNullValue()) {
1403 for (unsigned i
= 0, e
= NumIdx
; i
!= e
; ++i
)
1404 if (!Idxs
[i
]->isNullValue()) {
1409 const Type
*Ty
= GetElementPtrInst::getIndexedType(C
->getType(),
1411 (Value
**)Idxs
+NumIdx
,
1413 assert(Ty
!= 0 && "Invalid indices for GEP!");
1414 return ConstantPointerNull::get(PointerType::get(Ty
));
1418 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(const_cast<Constant
*>(C
))) {
1419 // Combine Indices - If the source pointer to this getelementptr instruction
1420 // is a getelementptr instruction, combine the indices of the two
1421 // getelementptr instructions into a single instruction.
1423 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
1424 const Type
*LastTy
= 0;
1425 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
1429 if ((LastTy
&& isa
<ArrayType
>(LastTy
)) || Idx0
->isNullValue()) {
1430 SmallVector
<Value
*, 16> NewIndices
;
1431 NewIndices
.reserve(NumIdx
+ CE
->getNumOperands());
1432 for (unsigned i
= 1, e
= CE
->getNumOperands()-1; i
!= e
; ++i
)
1433 NewIndices
.push_back(CE
->getOperand(i
));
1435 // Add the last index of the source with the first index of the new GEP.
1436 // Make sure to handle the case when they are actually different types.
1437 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
1438 // Otherwise it must be an array.
1439 if (!Idx0
->isNullValue()) {
1440 const Type
*IdxTy
= Combined
->getType();
1441 if (IdxTy
!= Idx0
->getType()) {
1442 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, Type::Int64Ty
);
1443 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
,
1445 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
1448 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
1452 NewIndices
.push_back(Combined
);
1453 NewIndices
.insert(NewIndices
.end(), Idxs
+1, Idxs
+NumIdx
);
1454 return ConstantExpr::getGetElementPtr(CE
->getOperand(0), &NewIndices
[0],
1459 // Implement folding of:
1460 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1462 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1464 if (CE
->isCast() && NumIdx
> 1 && Idx0
->isNullValue()) {
1465 if (const PointerType
*SPT
=
1466 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType()))
1467 if (const ArrayType
*SAT
= dyn_cast
<ArrayType
>(SPT
->getElementType()))
1468 if (const ArrayType
*CAT
=
1469 dyn_cast
<ArrayType
>(cast
<PointerType
>(C
->getType())->getElementType()))
1470 if (CAT
->getElementType() == SAT
->getElementType())
1471 return ConstantExpr::getGetElementPtr(
1472 (Constant
*)CE
->getOperand(0), Idxs
, NumIdx
);
1475 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1476 // Into: inttoptr (i64 0 to i8*)
1477 // This happens with pointers to member functions in C++.
1478 if (CE
->getOpcode() == Instruction::IntToPtr
&& NumIdx
== 1 &&
1479 isa
<ConstantInt
>(CE
->getOperand(0)) && isa
<ConstantInt
>(Idxs
[0]) &&
1480 cast
<PointerType
>(CE
->getType())->getElementType() == Type::Int8Ty
) {
1481 Constant
*Base
= CE
->getOperand(0);
1482 Constant
*Offset
= Idxs
[0];
1484 // Convert the smaller integer to the larger type.
1485 if (Offset
->getType()->getPrimitiveSizeInBits() <
1486 Base
->getType()->getPrimitiveSizeInBits())
1487 Offset
= ConstantExpr::getSExt(Offset
, Base
->getType());
1488 else if (Base
->getType()->getPrimitiveSizeInBits() <
1489 Offset
->getType()->getPrimitiveSizeInBits())
1490 Base
= ConstantExpr::getZExt(Base
, Base
->getType());
1492 Base
= ConstantExpr::getAdd(Base
, Offset
);
1493 return ConstantExpr::getIntToPtr(Base
, CE
->getType());